Sample records for up-regulate gene expression

  1. Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury.

    PubMed

    Bertoletto, Paulo Roberto; Ikejiri, Adauto Tsutomu; Somaio Neto, Frederico; Chaves, José Carlos; Teruya, Roberto; Bertoletto, Eduardo Rodrigues; Taha, Murched Omar; Fagundes, Djalma José

    2012-11-01

    To determine the profile of gene expressions associated with oxidative stress and thereby contribute to establish parameters about the role of enzyme clusters related to the ischemia/reperfusion intestinal injury. Twelve male inbred mice (C57BL/6) were randomly assigned: Control Group (CG) submitted to anesthesia, laparotomy and observed by 120 min; Ischemia/reperfusion Group (IRG) submitted to anesthesia, laparotomy, 60 min of small bowel ischemia and 60 min of reperfusion. A pool of six samples was submitted to the qPCR-RT protocol (six clusters) for mouse oxidative stress and antioxidant defense pathways. On the 84 genes investigated, 64 (76.2%) had statistic significant expression and 20 (23.8%) showed no statistical difference to the control group. From these 64 significantly expressed genes, 60 (93.7%) were up-regulated and 04 (6.3%) were down-regulated. From the group with no statistical significantly expression, 12 genes were up-regulated and 8 genes were down-regulated. Surprisingly, 37 (44.04%) showed a higher than threefold up-regulation and then arbitrarily the values was considered as a very significant. Thus, 37 genes (44.04%) were expressed very significantly up-regulated. The remained 47 (55.9%) genes were up-regulated less than three folds (35 genes - 41.6%) or down-regulated less than three folds (12 genes - 14.3%). The intestinal ischemia and reperfusion promote a global hyper-expression profile of six different clusters genes related to antioxidant defense and oxidative stress.

  2. The Expression of Glyceraldehyde-3-Phosphate Dehydrogenase Associated Cell Cycle (GACC) Genes Correlates with Cancer Stage and Poor Survival in Patients with Solid Tumors

    PubMed Central

    Wang, Dunrui; Moothart, Daniel R.; Lowy, Douglas R.; Qian, Xiaolan

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is often used as a stable housekeeping marker for constant gene expression. However, the transcriptional levels of GAPDH may be highly up-regulated in some cancers, including non-small cell lung cancers (NSCLC). Using a publically available microarray database, we identified a group of genes whose expression levels in some cancers are highly correlated with GAPDH up-regulation. The majority of the identified genes are cell cycle-dependent (GAPDH Associated Cell Cycle, or GACC). The up-regulation pattern of GAPDH positively associated genes in NSCLC is similar to that observed in cultured fibroblasts grown under conditions that induce anti-senescence. Data analysis demonstrated that up-regulated GAPDH levels are correlated with aberrant gene expression related to both glycolysis and gluconeogenesis pathways. Down-regulation of fructose-1,6-bisphosphatase (FBP1) in gluconeogenesis in conjunction with up-regulation of most glycolytic genes is closely related to high expression of GAPDH in the tumors. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. Thus, this work suggests that GACC genes represent a potential new signature for cancer stage identification and disease prognosis. PMID:23620736

  3. Microarray-based gene expression profiling to elucidate effectiveness of fermented Codonopsis lanceolata in mice.

    PubMed

    Choi, Woon Yong; Kim, Ji Seon; Park, Sung Jin; Ma, Choong Je; Lee, Hyeon Yong

    2014-04-08

    In this study, the effect of Codonopsis lanceolata fermented by lactic acid on controlling gene expression levels related to obesity was observed in an oligonucleotide chip microarray. Among 8170 genes, 393 genes were up regulated and 760 genes were down regulated in feeding the fermented C. lanceolata (FCL). Another 374 genes were up regulated and 527 genes down regulated without feeding the sample. The genes were not affected by the FCL sample. It was interesting that among those genes, Chytochrome P450, Dmbt1, LOC76487, and thyroid hormones, etc., were mostly up or down regulated. These genes are more related to lipid synthesis. We could conclude that the FCL possibly controlled the gene expression levels related to lipid synthesis, which resulted in reducing obesity. However, more detailed protein expression experiments should be carried out.

  4. UP-REGULATION OF IL-6, IL-8 AND CCL2 GENE EXPRESSION AFTER ACUTE INFLAMMATION: CORRELATION TO CLINICAL PAIN

    PubMed Central

    Wang, Xiao-Min; Hamza, May; Wu, Tai-Xia; Dionne, Raymond A.

    2012-01-01

    Tissue injury initiates a cascade of inflammatory mediators and hyperalgesic substances including prostaglandins, cytokines and chemokines. Using microarray and qRT-PCR gene expression analyses, the present study evaluated changes in gene expression of a cascade of cytokines following acute inflammation and the correlation between the changes in the gene expression level and pain intensity in the oral surgery clinical model of acute inflammation. Tissue injury resulted in a significant up-regulation in the gene expression of Interleukin-6 (IL-6; 63.3-fold), IL-8 (8.1-fold), chemokine (C-C motif) ligand 2 (CCL2; 8.9-fold), chemokine (C-X-C motif) ligand 1 (CXCL1; 30.5-fold), chemokine (C-X-C motif) ligand 2 (CXCL2; 26-fold) and annexin A1 (ANXA1; 12-fold). The up-regulation of IL-6 gene expression was significantly correlated to the up-regulation on the gene expression of IL-8, CCL2, CXCL1 and CXCL2. Interestingly, the tissue injury induced up-regulation of IL-6 gene expression, IL-8 and CCL2 were positively correlated to pain intensity at 3 hours post-surgery, the onset of acute inflammatory pain. However, ketorolac treatment did not have a significant effect on the gene expression of IL-6, IL-8, CCL2, CXCL2 and ANXA1 at the same time point of acute inflammation. These results demonstrate that up-regulation of IL-6, IL-8 and CCL2 gene expression contributes to the development of acute inflammation and inflammatory pain. The lack of effect for ketorolac on the expression of these gene products may be related to the ceiling analgesic effects of non-steroidal anti-inflammatory drugs. PMID:19233564

  5. Transposable elements contribute to activation of maize genes in response to abiotic stress.

    PubMed

    Makarevitch, Irina; Waters, Amanda J; West, Patrick T; Stitzer, Michelle; Hirsch, Candice N; Ross-Ibarra, Jeffrey; Springer, Nathan M

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as "junk" DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize.

  6. Keratinocyte growth factor and the expression of wound-healing-related genes in primary human keratinocytes from burn patients.

    PubMed

    Chomiski, Verônica; Gragnani, Alfredo; Bonucci, Jéssica; Correa, Silvana Aparecida Alves; Noronha, Samuel Marcos Ribeiro de; Ferreira, Lydia Masako

    2016-08-01

    To evaluate the effect of keratinocyte growth factor (KGF) treatment on the expression of wound-healing-related genes in cultured keratinocytes from burn patients. Keratinocytes were cultured and divided into 4 groups (n=4 in each group): TKB (KGF-treated keratinocytes from burn patients), UKB (untreated keratinocytes from burn patients), TKC (KGF-treated keratinocytes from controls), and UKC (untreated keratinocytes from controls). Gene expression analysis using quantitative polymerase chain reaction (qPCR) array was performed to compare (1) TKC versus UKC, (2) UKB versus UKC, (3) TKB versus UKC, (4) TKB versus UKB, (5) TKB versus TKC, and (6) UKB versus TKC. Comparison 1 showed one down-regulated and one up-regulated gene; comparisons 2 and 3 resulted in the same five down-regulated genes; comparison 4 had no significant difference in relative gene expression; comparison 5 showed 26 down-regulated and 7 up-regulated genes; and comparison 6 showed 25 down-regulated and 11 up-regulated genes. There was no differential expression of wound-healing-related genes in cultured primary keratinocytes from burn patients treated with keratinocyte growth factor.

  7. Skin transcriptome profiles associated with coat color in sheep

    PubMed Central

    2013-01-01

    Background Previous molecular genetic studies of physiology and pigmentation of sheep skin have focused primarily on a limited number of genes and proteins. To identify additional genes that may play important roles in coat color regulation, Illumina sequencing technology was used to catalog global gene expression profiles in skin of sheep with white versus black coat color. Results There were 90,006 and 74,533 unigenes assembled from the reads obtained from white and black sheep skin, respectively. Genes encoding for the ribosomal proteins and keratin associated proteins were most highly expressed. A total of 2,235 known genes were differentially expressed in black versus white sheep skin, with 479 genes up-regulated and 1,756 genes down-regulated. A total of 845 novel genes were differentially expressed in black versus white sheep skin, consisting of 107 genes which were up-regulated (including 2 highly expressed genes exclusively expressed in black sheep skin) and 738 genes that were down-regulated. There was also a total of 49 known coat color genes expressed in sheep skin, from which 13 genes showed higher expression in black sheep skin. Many of these up-regulated genes, such as DCT, MATP, TYR and TYRP1, are members of the components of melanosomes and their precursor ontology category. Conclusion The white and black sheep skin transcriptome profiles obtained provide a valuable resource for future research to understand the network of gene expression controlling skin physiology and melanogenesis in sheep. PMID:23758853

  8. Cyclophosphamide Alters the Gene Expression Profile in Patients Treated with High Doses Prior to Stem Cell Transplantation

    PubMed Central

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Background Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. Methods We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Results Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. Conclusion This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression. PMID:24466173

  9. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.

    PubMed

    El-Serafi, Ibrahim; Abedi-Valugerdi, Manuchehr; Potácová, Zuzana; Afsharian, Parvaneh; Mattsson, Jonas; Moshfegh, Ali; Hassan, Moustapha

    2014-01-01

    Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

  10. Cyclic stretch-induced the cytoskeleton rearrangement and gene expression of cytoskeletal regulators in human periodontal ligament cells.

    PubMed

    Wu, Yaqin; Zhuang, Jiabao; Zhao, Dan; Zhang, Fuqiang; Ma, Jiayin; Xu, Chun

    2017-10-01

    This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.

  11. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).

    PubMed

    Deng, Qian-Wen; Luo, Xiang-Dong; Chen, Ya-Ling; Zhou, Yi; Zhang, Fan-Tao; Hu, Biao-Lin; Xie, Jian-Kun

    2018-03-15

    Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.

  12. Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust.

    PubMed

    Go, Yoon Young; Park, Moo Kyun; Kwon, Jee Young; Seo, Young Rok; Chae, Sung-Won; Song, Jae-Jun

    2015-12-01

    The primary aim of this study is to evaluate the gene expression profile of Asian sand dust (ASD)-treated human middle ear epithelial cell (HMEEC) using microarray analysis. The HMEEC was treated with ASD (400 µg/mL) and total RNA was extracted for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed. For selected genes, the changes in gene expression were confirmed by real-time polymerase chain reaction. A total of 1,274 genes were differentially expressed by ASD. Among them, 1,138 genes were 2 folds up-regulated, whereas 136 genes were 2 folds down-regulated. Up-regulated genes were mainly involved in cellular processes, including apoptosis, cell differentiation, and cell proliferation. Down-regulated genes affected cellular processes, including apoptosis, cell cycle, cell differentiation, and cell proliferation. The 10 genes including ADM, CCL5, EDN1, EGR1, FOS, GHRL, JUN, SOCS3, TNF, and TNFSF10 were identified as main modulators in up-regulated genes. A total of 11 genes including CSF3, DKK1, FOSL1, FST, TERT, MMP13, PTHLH, SPRY2, TGFBR2, THBS1, and TIMP1 acted as main components of pathway associated with 2-fold down regulated genes. We identified the differentially expressed genes in ASD-treated HMEEC. Our work indicates that air pollutant like ASD, may play an important role in the pathogenesis of otitis media.

  13. Altered gene expression in tree shrew retina and retinal pigment epithelium produced by short periods of minus-lens wear.

    PubMed

    He, Li; Frost, Michael R; Siegwart, John T; Norton, Thomas T

    2018-03-01

    Hyperopic refractive error is detected by retinal neurons, which generate GO signals through a direct emmetropization signaling cascade: retinal pigment epithelium (RPE) into choroid and then into sclera, thereby increasing axial elongation. To examine signaling early in this cascade, we measured gene expression in the retina and RPE after short exposure to hyperopia produced by minus-lens wear. Gene expression in each tissue was compared with gene expression in combined retina + RPE. Starting 24 days after normal eye opening, three groups of juvenile tree shrews (n = 7 each) wore a monocular -5 D lens. The untreated fellow eye served as a control. The "6h" group wore the lens for 6 h; the "24h" group wore the lens for 24 h; each group provided separate retina and RPE tissues. Group "24hC" wore the lens for 24 h and provided combined retina + RPE tissue. Quantitative PCR was used to measure the relative differences (treated eye vs. control eye) in mRNA levels for 66 candidate genes. In the retina after 6 h, mRNA levels for seven genes were significantly regulated: EGR1 and FOS (early intermediate genes) were down-regulated in the treated eyes. Genes with secreted protein products, BMP2 and CTGF, were down-regulated, whilst FGF10, IL18, and SST were up-regulated. After 24 h the pattern changed; only one of the seven genes still showed differential expression; BMP2 was still down-regulated. Two new genes with secreted protein products, IGF2 and VIP, were up-regulated. In the RPE, consistent with its role in receiving, processing, and transmitting GO signaling, differential expression was found for genes whose protein products are at the cell surface, intracellular, in the nucleus, and are secreted. After 6 h, mRNA levels for 17 genes were down-regulated in the treated eyes, whilst four genes (GJA1, IGF2R, LRP2, and IL18) were up-regulated. After 24 h the pattern was similar; mRNA levels for 14 of the same genes were still down-regulated; only LRP2 remained up-regulated. mRNA levels for six genes no longer showed differential expression, whilst nine genes, not differentially expressed at 6 h, now showed differential expression. In the combined retina + RPE after 24 h, mRNA levels for only seven genes were differentially regulated despite the differential expression of many genes in the RPE. Four genes showed the same expression in combined tissue as in retina alone, including up-regulation of VIP despite significant VIP down-regulation in RPE. Thus, hyperopia-induced GO signaling, as measured by differential gene expression, differs in the retina and the RPE. Retinal gene expression changed between 6 h and 24 h of treatment, suggesting evolution of the retinal response. Gene expression in the RPE was similar at both time points, suggesting sustained signaling. The combined retina + RPE does not accurately represent gene expression in either retina or, especially, RPE. When gene expression signatures were compared with those in choroid and sclera, GO signaling, as encoded by differential gene expression, differs in each compartment of the direct emmetropization signaling cascade. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Microarray analysis of gene expression alteration in human middle ear epithelial cells induced by micro particle.

    PubMed

    Song, Jae-Jun; Kwon, Jee Young; Park, Moo Kyun; Seo, Young Rok

    2013-10-01

    The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana.

    PubMed

    Tatematsu, Kiyoshi; Nakabayashi, Kazumi; Kamiya, Yuji; Nambara, Eiji

    2008-01-01

    To understand the molecular mechanisms underlying regulation of seed germination, we searched enriched cis elements in the upstream regions of Arabidopsis genes whose transcript levels increased during seed germination. Using available published microarray data, we found that two cis elements, Up1 or Up2, which regulate outgrowth of Arabidopsis axillary shoots, were significantly over-represented. Classification of Up1- and Up2-containing genes by gene ontology revealed that protein synthesis-related genes, especially ribosomal protein genes, were highly over-represented. Expression analysis using a reporter gene driven by a synthetic promoter regulated by these elements showed that the Up1 is necessary and sufficient for germination-associated gene induction, whereas Up2 acts as an enhancer of Up1. Up1-mediated gene expression was suppressed by treatments that blocked germination. Up1 is almost identical to the site II motif, which is the predicted target of TCP transcription factors. Of 24 AtTCP genes, AtTCP14, which showed the highest transcript level just prior to germination, was functionally characterized to test its involvement in the regulation of seed germination. Transposon-tagged lines for AtTCP14 showed delayed germination. In addition, germination of attcp14 mutants exhibited hypersensitivity to exogenously applied abscisic acid and paclobutrazol, an inhibitor of gibberellin biosynthesis. AtTCP14 was predominantly expressed in the vascular tissues of the embryo, and affected gene expression in radicles in a non-cell-autonomous manner. Taken together, these results indicate that AtTCP14 regulates the activation of embryonic growth potential in Arabidopsis seeds.

  16. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis

    PubMed Central

    Luo, Shouling; Cao, Nannan; Tang, Yao; Gu, Weirong

    2017-01-01

    Preeclampsia is a leading cause of perinatal maternal–foetal mortality and morbidity. The aim of this study is to identify the key microRNAs and genes in preeclampsia and uncover their potential functions. We downloaded the miRNA expression profile of GSE84260 and the gene expression profile of GSE73374 from the Gene Expression Omnibus database. Differentially expressed miRNAs and genes were identified and compared to miRNA-target information from MiRWalk 2.0, and a total of 65 differentially expressed miRNAs (DEMIs), including 32 up-regulated miRNAs and 33 down-regulated miRNAs, and 91 differentially expressed genes (DEGs), including 83 up-regulated genes and 8 down-regulated genes, were identified. The pathway enrichment analyses of the DEMIs showed that the up-regulated DEMIs were enriched in the Hippo signalling pathway and MAPK signalling pathway, and the down-regulated DEMIs were enriched in HTLV-I infection and miRNAs in cancers. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses of the DEGs were performed using Multifaceted Analysis Tool for Human Transcriptome. The up-regulated DEGs were enriched in biological processes (BPs), including the response to cAMP, response to hydrogen peroxide and cell-cell adhesion mediated by integrin; no enrichment of down-regulated DEGs was identified. KEGG analysis showed that the up-regulated DEGs were enriched in the Hippo signalling pathway and pathways in cancer. A PPI network of the DEGs was constructed by using Cytoscape software, and FOS, STAT1, MMP14, ITGB1, VCAN, DUSP1, LDHA, MCL1, MET, and ZFP36 were identified as the hub genes. The current study illustrates a characteristic microRNA profile and gene profile in preeclampsia, which may contribute to the interpretation of the progression of preeclampsia and provide novel biomarkers and therapeutic targets for preeclampsia. PMID:28594854

  17. Gene expression profile in cerebrum in the filial imprinting of domestic chicks (Gallus gallus domesticus).

    PubMed

    Yamaguchi, Shinji; Fujii-Taira, Ikuko; Katagiri, Sachiko; Izawa, Ei-Ichi; Fujimoto, Yasuyuki; Takeuchi, Hideaki; Takano, Tatsuya; Matsushima, Toshiya; Homma, Koichi J

    2008-06-15

    In newly hatched chicks, gene expression in the brain has previously been shown to be up-regulated following filial imprinting. By applying cDNA microarrays containing 13,007 expressed sequence tags, we examined the comprehensive gene expression profiling of the intermediate medial mesopallium in the chick cerebrum, which has been shown to play a key role in filial imprinting. We found 52 up-regulated genes and 6 down-regulated genes of at least 2.0-fold changes 3h after the training of filial imprinting, compared to the gene expression of the dark-reared chick brain. The up-regulated genes are known to be involved in a variety of pathways, including signal transduction, cytoskeletal organization, nuclear function, cell metabolism, RNA binding, endoplasmic reticulum or Golgi function, synaptic function, ion channel, and transporter. In contrast, fewer genes were down-regulated in the imprinting, coinciding with the previous data that the total RNA synthesis increased associated with filial imprinting. Our data suggests that the filial imprinting involves the modulation of multiple signaling pathways.

  18. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy.

    PubMed

    Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian

    2013-01-01

    In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.

  19. Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures.

    PubMed

    Che, Ping; Love, Tanzy M; Frame, Bronwyn R; Wang, Kan; Carriquiry, Alicia L; Howell, Stephen H

    2006-09-01

    Gene expression patterns were profiled during somatic embryogenesis in a regeneration-proficient maize hybrid line, Hi II, in an effort to identify genes that might be used as developmental markers or targets to optimize regeneration steps for recovering maize plants from tissue culture. Gene expression profiles were generated from embryogenic calli induced to undergo embryo maturation and germination. Over 1,000 genes in the 12,060 element arrays showed significant time variation during somatic embryo development. A substantial number of genes were downregulated during embryo maturation, largely histone and ribosomal protein genes, which may result from a slowdown in cell proliferation and growth during embryo maturation. The expression of these genes dramatically recovered at germination. Other genes up-regulated during embryo maturation included genes encoding hydrolytic enzymes (nucleases, glucosidases and proteases) and a few storage genes (an alpha-zein and caleosin), which are good candidates for developmental marker genes. Germination is accompanied by the up-regulation of a number of stress response and membrane transporter genes, and, as expected, greening is associated with the up-regulation of many genes encoding photosynthetic and chloroplast components. Thus, some, but not all genes typically associated with zygotic embryogenesis are significantly up or down-regulated during somatic embryogenesis in Hi II maize line regeneration. Although many genes varied in expression throughout somatic embryo development in this study, no statistically significant gene expression changes were detected between total embryogenic callus and callus enriched for transition stage somatic embryos.

  20. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  1. Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays

    PubMed Central

    Bobe, Julien; Montfort, Jerôme; Nguyen, Thaovi; Fostier, Alexis

    2006-01-01

    Background The hormonal control of oocyte maturation and ovulation as well as the molecular mechanisms of nuclear maturation have been thoroughly studied in fish. In contrast, the other molecular events occurring in the ovary during post-vitellogenesis have received far less attention. Methods Nylon microarrays displaying 9152 rainbow trout cDNAs were hybridized using RNA samples originating from ovarian tissue collected during late vitellogenesis, post-vitellogenesis and oocyte maturation. Differentially expressed genes were identified using a statistical analysis. A supervised clustering analysis was performed using only differentially expressed genes in order to identify gene clusters exhibiting similar expression profiles. In addition, specific genes were selected and their preovulatory ovarian expression was analyzed using real-time PCR. Results From the statistical analysis, 310 differentially expressed genes were identified. Among those genes, 90 were up-regulated at the time of oocyte maturation while 220 exhibited an opposite pattern. After clustering analysis, 90 clones belonging to 3 gene clusters exhibiting the most remarkable expression patterns were kept for further analysis. Using real-time PCR analysis, we observed a strong up-regulation of ion and water transport genes such as aquaporin 4 (aqp4) and pendrin (slc26). In addition, a dramatic up-regulation of vasotocin (avt) gene was observed. Furthermore, angiotensin-converting-enzyme 2 (ace2), coagulation factor V (cf5), adam 22, and the chemokine cxcl14 genes exhibited a sharp up-regulation at the time of oocyte maturation. Finally, ovarian aromatase (cyp19a1) exhibited a dramatic down-regulation over the post-vitellogenic period while a down-regulation of Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (cmah) was observed at the time of oocyte maturation. Conclusion We showed the over or under expression of more that 300 genes, most of them being previously unstudied or unknown in the fish preovulatory ovary. Our data confirmed the down-regulation of estrogen synthesis genes during the preovulatory period. In addition, the strong up-regulation of aqp4 and slc26 genes prior to ovulation suggests their participation in the oocyte hydration process occurring at that time. Furthermore, among the most up-regulated clones, several genes such as cxcl14, ace2, adam22, cf5 have pro-inflammatory, vasodilatory, proteolytics and coagulatory functions. The identity and expression patterns of those genes support the theory comparing ovulation to an inflammatory-like reaction. PMID:16872517

  2. Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes.

    PubMed

    Richert, Lysiane; Lamboley, Christelle; Viollon-Abadie, Catherine; Grass, Peter; Hartmann, Nicole; Laurent, Stephane; Heyd, Bruno; Mantion, Georges; Chibout, Salah-Dine; Staedtler, Frank

    2003-09-01

    The mRNA expression profile in control and clofibric acid (CLO)-treated mouse, rat, and human hepatocytes was analyzed using species-specific oligonucleotide DNA microarrays (Affymetrix). A statistical empirical Bayes procedure was applied in order to select the significantly differentially expressed genes. Treatment with the peroxisome proliferator CLO induced up-regulation of genes involved in peroxisome proliferation and in cell proliferation as well as down-regulation of genes involved in apoptosis in hepatocytes of rodent but not of human origin. CLO treatment induced up-regulation of microsomal cytochrome P450 4a genes in rodent hepatocytes and in two of six human hepatocyte cultures. In addition, genes encoding phenobarbital-inducible cytochrome P450s were also up-regulated by CLO in rodent and human hepatocyte cultures. Up-regulation of phenobarbital-inducible UDP-glucuronosyl-transferase genes by CLO was observed in both rat and human but not in mouse hepatocytes. CLO treatment induced up-regulation of L-fatty acid binding protein (L-FABP) gene in hepatocytes of both rodent and human origin. However, while genes of the cytosolic, microsomal, and mitochondrial pathways involved in fatty acid transport and metabolism were up-regulated by CLO in both rodent and human hepatocyte cultures, genes of the peroxisomal pathway of lipid metabolism were up-regulated in rodents only. An up-regulation of hepatocyte nuclear factor 1alpha (HNF1alpha) by CLO was observed only in human hepatocyte cultures, suggesting that this trans-activating factor may play a key role in the regulation of fatty acid metabolism in human liver as well as in the nonresponsiveness of human liver to CLO-induced regulation of cell proliferation and apoptosis.

  3. Concerted Changes in Gene Expression and Cell Physiology of the Cyanobacterium Synechocystis sp. Strain PCC 6803 during Transitions between Nitrogen and Light-Limited Growth1[W][OA

    PubMed Central

    Aguirre von Wobeser, Eneas; Ibelings, Bas W.; Bok, Jasper; Krasikov, Vladimir; Huisman, Jef; Matthijs, Hans C.P.

    2011-01-01

    Physiological adaptation and genome-wide expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to gradual transitions between nitrogen-limited and light-limited growth conditions were measured in continuous cultures. Transitions induced changes in pigment composition, light absorption coefficient, photosynthetic electron transport, and specific growth rate. Physiological changes were accompanied by reproducible changes in the expression of several hundred open reading frames, genes with functions in photosynthesis and respiration, carbon and nitrogen assimilation, protein synthesis, phosphorus metabolism, and overall regulation of cell function and proliferation. Cluster analysis of the nearly 1,600 regulated open reading frames identified eight clusters, each showing a different temporal response during the transitions. Two large clusters mirrored each other. One cluster included genes involved in photosynthesis, which were up-regulated during light-limited growth but down-regulated during nitrogen-limited growth. Conversely, genes in the other cluster were down-regulated during light-limited growth but up-regulated during nitrogen-limited growth; this cluster included several genes involved in nitrogen uptake and assimilation. These results demonstrate complementary regulation of gene expression for two major metabolic activities of cyanobacteria. Comparison with batch-culture experiments revealed interesting differences in gene expression between batch and continuous culture and illustrates that continuous-culture experiments can pick up subtle changes in cell physiology and gene expression. PMID:21205618

  4. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood

    PubMed Central

    2012-01-01

    Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2, Tox, and Trim24) and may contribute to the developmental changes that lead to global acquisition of liver sex-specificity by 8 wk of age. Conclusions Overall, the observed changes in gene expression during postnatal liver development reflect the deceleration of liver growth and the induction of specialized liver functions, with widespread changes in sex-specific gene expression primarily occurring in male liver. PMID:22475005

  5. Differentially expressed genes of Tetrahymena thermophila in response to tributyltin (TBT) identified by suppression subtractive hybridization and real time quantitative PCR.

    PubMed

    Feng, Lifang; Miao, Wei; Wu, Yuxuan

    2007-02-15

    Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T. thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system.

  6. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    PubMed

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Gene expression in thiazide diuretic or statin users in relation to incident type 2 diabetes.

    PubMed

    Suchy-Dicey, Astrid; Heckbert, Susan R; Smith, Nicholas L; McKnight, Barbara; Rotter, Jerome I; Chen, Yd Ida; Psaty, Bruce M; Enquobahrie, Daniel A

    2014-01-01

    Thiazide diuretics and statins are used to improve cardiovascular outcomes, but may also cause type 2 diabetes (T2DM), although mechanisms are unknown. Gene expression studies may facilitate understanding of these associations. Participants from ongoing population-based studies were sampled for these longitudinal studies of peripheral blood microarray gene expression, and followed to incident diabetes. All sampled subjects were statin or thiazide users. Those who developed diabetes during follow-up comprised cases (44 thiazide users; 19 statin users), and were matched to drug-using controls who did not develop diabetes on several factors. Supervised normalization, surrogate variable analyses removed technical bias and confounding. Differentially-expressed genes were those with a false discovery rate Q-value<0.05. Among thiazide users, diabetes cases had significantly different expression of CCL14 (down-regulated 6%, Q-value=0.0257), compared with controls. Among statin users, diabetes cases had marginal but insignificantly different expression of ZNF532 (up-regulated 15%, Q-value=0.0584), CXORF21 (up-regulated 11%, Q-value=0.0584), and ZNHIT3 (up-regulated 19%, Q-value=0.0959), compared with controls. These genes comprise potential targets for future expression or mechanistic research on medication-related diabetes development.

  8. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR.

    PubMed

    Ramiah, K; van Reenen, C A; Dicks, L M T

    2007-05-30

    Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA by Lactobacillus plantarum 423, grown in the presence of bile, pancreatin and at low pH, was studied by real-time PCR. Mub, MapA and EF-Tu were up-regulated in the presence of mucus, proportional to increasing concentrations. Expression of MapA was up-regulated in the presence of 3.0 g/l bile and 3.0 g/l pancreatin at pH 6.5. Similar results were recorded in the presence of 10.0 g/l bile and 10.0 g/l pancreatin at pH 6.5. Expression of Mub was down-regulated in the presence of bile and pancreatin, whilst the expression of EF-Tu and plaA remained unchanged. Expression of Mub and MapA remained unchanged at pH 4.0, whilst expression of EF-Tu and plaA were up-regulated. Expression of MapA was down-regulated in the presence of 1.0 g/l l-cysteine HCl, suggesting that the gene is regulated by transcription attenuation that involves cysteine.

  9. CHARACTERIZATION OF INFLAMMATORY GENE EXPRESSION AND GALECTIN-3 FUNCTION AFTER SPINAL CORD INJURY IN MICE

    PubMed Central

    Pajoohesh-Ganji, Ahdeah; Knoblach, Susan M.; Faden, Alan I.; Byrnes, Kimberly R.

    2012-01-01

    Inflammation has long been implicated in secondary tissue damage after spinal cord injury (SCI). Our previous studies of inflammatory gene expression in rats after SCI revealed two temporally correlated clusters: the first was expressed early after injury and the second was up-regulated later, with peak expression at 1–2 weeks and persistent up-regulation through 6 months. To further address the role of inflammation after SCI, we examined inflammatory genes in a second species, mice, through 28 days after SCI. Using anchor gene clustering analysis, we found similar expression patterns for both the acute and chronic gene clusters previously identified after rat SCI. The acute group returned to normal expression levels by 7 days post-injury. The chronic group, which included C1qB, p22phox and galectin-3, showed peak expression at 7 days and remained up-regulated through 28 days. Immunohistochemistry and western blot analysis showed that the protein expression of these genes was consistent with the mRNA expression. Further exploration of the role of one of these genes, galectin-3, suggests that galectin-3 may contribute to secondary injury. In summary, our findings extend our prior gene profiling data by demonstrating the chronic expression of a cluster of microglial associated inflammatory genes after SCI in mice. Moreover, by demonstrating that inhibition of one such factor improves recovery, the findings suggest that such chronic up-regulation of inflammatory processes may contribute to secondary tissue damage after SCI, and that there may be a broader therapeutic window for neuroprotection than generally accepted. PMID:22884909

  10. Differential gene expression in Staphylococcus aureus exposed to Orange II and Sudan III azo dyes

    PubMed Central

    Pan, Hongmiao; Xu, Joshua; Kweon, Oh-Gew; Zou, Wen; Feng, Jinhui; He, Gui-Xin; Cerniglia, Carl E.

    2018-01-01

    We previously demonstrated the effects of azo dyes and their reduction metabolites on bacterial cell growth and cell viability. In this report, the effects of Orange II and Sudan III on gene expression profiling in Staphylococcus aureus ATCC BAA 1556 were analyzed using microarray and quantitative RT-PCR technology. Upon exposure to 6 μg/ml Orange II for 18 h, 21 genes were found to be differently expressed. Among them, 8 and 13 genes were up- and down-regulated, respectively. Most proteins encoded by these differentially expressed genes involve stress response caused by drug metabolism, oxidation, and alkaline shock indicating that S. aureus could adapt to Orange II exposure through a balance between up and down regulated gene expression. Whereas, after exposure to 6 μg/ml Sudan III for 18 h, 57 genes were differentially expressed. In which, 51 genes were up-regulated and 6 were down-regulated. Most proteins encoded by these differentially expressed genes involve in cell wall/membrane biogenesis and biosynthesis, nutrient uptake, transport and metabolite, and stress response, suggesting that Sudan III damages the bacterial cell wall or/and membrane due to binding of the dye. Further analysis indicated that all differentially expressed genes encoded membrane proteins were up-regulated and most of them serve as transporters. The result suggested that these genes might contribute to survival, persistence and growth in the presence of Sudan III. Only one gene msrA, which plays an important role in oxidative stress resistance, was found to be down-regulated after exposure to both Orange II and Sudan III. The present results suggested that both these two azo dyes can cause stress in S. aureus and the response of the bacterium to the stress is mainly related to characteristics of the azo dyes. PMID:25720844

  11. [Research on the expression of hemolysin genes of Leptospira in vivo by genechip].

    PubMed

    Zhao, Hui; Bao, Lang

    2012-07-01

    To explore the expression of hemolysin genes of Leptospira in infected host. Amplified the gene segment of hemolysin genes from the genome of Leptospira by PCR for gene probe. Manufacture genechip by the VersArray Chipwriter systerm. The total RNAs of Leptospira before and after infection host were extracted, reversely transcribed to cDNA, after the random PCR, the products were marked with HEX and CY5 respectively, and hybridized to genechip to demonstrate the expression of hemolysin genes of Leptospira. The hemolysin genes LA1029 (Ratio = 0.65), LA1027 (Ratio = 0.53) were up-regulated after infection of host; LA3540 (Ratio = 1.88), LA3937 (Ratio = 5.58), LA1029 (Ratio = 3.00) were up-regulated and LA4004 (Ratio = 0.67) was down-regulated in live than in blood; LA3937 (Ratio = 2.28), LA1029 (Ratio = 2.20) were up-regulated in kidney than in blood. The expression level of hemolysin genes exist observable differences with inducement in vivo and in different organs. These suggested that these genes are probably involved in the pathogenesis and and disease progression.

  12. Screening of Critical Genes and MicroRNAs in Blood Samples of Patients with Ruptured Intracranial Aneurysms by Bioinformatic Analysis of Gene Expression Data.

    PubMed

    Bo, Lijuan; Wei, Bo; Wang, Zhanfeng; Kong, Daliang; Gao, Zheng; Miao, Zhuang

    2017-09-20

    BACKGROUND This study aimed to identify more potential genes and miRNAs associated with the pathogenesis of intracranial aneurysms (IAs). MATERIAL AND METHODS The dataset of GSE36791 (accession number) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened for in the blood samples from patients with ruptured IAs and controls, followed by functional and pathway enrichment analyses. In addition, gene co-expression network was constructed and significant modules were extracted from the network by WGCNA R package. Screening for miRNAs that could regulate DEGs in the modules was performed and an analysis of regulatory relationships was conducted. RESULTS A total of 304 DEGs (167 up-regulated and 137 down-regulated genes) were screened for in blood samples from patients with ruptured IAs compared with those from controls. Functional enrichment analysis showed that the up-regulated genes were mainly associated with immune response and the down-regulated DEGs were mainly concerned with the structure of ribosome and translation. Besides, six functional modules were significantly identified, including four modules enriched by up-regulated genes and two modules enriched by down-regulated genes. Thereinto, the blue, yellow, and turquoise modules of up-regulated genes were all linked with immune response. Additionally, 16 miRNAs were predicted to regulate DEGs in the three modules associated with immune response, such as hsa-miR-1304, hsa-miR-33b, hsa-miR-125b, and hsa-miR-125a-5p. CONCLUSIONS Several genes and miRNAs (such as miR-1304, miR-33b, IRS2 and KCNJ2) may take part in the pathogenesis of IAs.

  13. Expression profiles of differentially regulated genes during the early stages of apple flower infection with Erwinia amylovora

    PubMed Central

    Sarowar, Sujon; Zhao, Youfu; Soria-Guerra, Ruth Elena; Ali, Shahjahan; Zheng, Danman; Wang, Dongping; Korban, Schuyler S.

    2011-01-01

    To identify genes involved in the response to the fire blight pathogen Erwinia amylovora in apple (Malus×domestica), expression profiles were investigated using an apple oligo (70-mer) array representing 40, 000 genes. Blossoms of a fire blight-susceptible apple cultivar Gala were collected from trees growing in the orchard, placed on a tray in the laboratory, and spray-inoculated with a suspension of E. amylovora at a concentration of 108 cfu ml−1. Uninoculated detached flowers served as controls at each time point. Expression profiles were captured at three different time points post-inoculation at 2, 8, and 24 h, together with those at 0 h (uninoculated). A total of about 3500 genes were found to be significantly modulated in response to at least one of the three time points. Among those, a total of 770, 855, and 1002 genes were up-regulated, by 2-fold, at 2, 8, and 24 h following inoculation, respectively; while, 748, 1024, and 1455 genes were down-regulated, by 2-fold, at 2, 8, and 24 h following inoculation, respectively. Over the three time points post-inoculation, 365 genes were commonly up-regulated and 374 genes were commonly down-regulated. Both sets of genes were classified based on their functional categories. The majority of up-regulated genes were involved in metabolism, signal transduction, signalling, transport, and stress response. A number of transcripts encoding proteins/enzymes known to be up-regulated under particular biotic and abiotic stress were also up-regulated following E. amylovora treatment. Those up- or down-regulated genes encode transcription factors, signaling components, defense-related, transporter, and metabolism, all of which have been associated with disease responses in Arabidopsis and rice, suggesting similar response pathways are involved in apple blossoms. PMID:21725032

  14. Sexually Dimorphic Gene Expression Associated with Growth and Reproduction of Tongue Sole (Cynoglossus semilaevis) Revealed by Brain Transcriptome Analysis.

    PubMed

    Wang, Pingping; Zheng, Min; Liu, Jian; Liu, Yongzhuang; Lu, Jianguo; Sun, Xiaowen

    2016-08-26

    In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female's highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.

  15. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development.

    PubMed

    Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B

    2016-03-31

    Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.

  16. Differential mantle transcriptomics and characterization of growth-related genes in the diploid and triploid pearl oyster Pinctada fucata.

    PubMed

    Guan, Yunyan; He, Maoxian; Wu, Houbo

    2017-06-01

    To explore the molecular mechanism of triploidy effect in the pearl oyster Pinctada fucata, two RNA-seq libraries were constructed from the mantle tissue of diploids and triploids by Roche-454 massive parallel pyrosequencing. The identification of differential expressed genes (DEGs) between diploid and triploid may reveal the molecular mechanism of triploidy effect. In this study, 230 down-regulated and 259 up-regulated DEGs were obtained by comparison between diploid and triploid libraries. The gene ontology and KEGG pathway analysis revealed more functional activation in triploids and it may due to the duplicated gene expression in transcriptional level during whole genome duplication (WGD). To confirm the sequencing data, a set of 11 up-regulated genes related to growth and development control and regulation were analyzed by RT-qPCR in independent experiment. According to the validation and annotation of these genes, it is hypothesized that the set of up-regulated expressed genes had the correlated expression pattern involved in shell building or other interactive probable functions during triploidization. The up- regulation of growth-related genes may support the classic hypotheses of 'energy redistribution' from early research. The results provide valuable resources to understand the molecular mechanism of triploidy effect in both shell building and producing high-quality seawater pearls. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Amyotrophic lateral sclerosis, gene deregulation in the anterior horn of the spinal cord and frontal cortex area 8: implications in frontotemporal lobar degeneration

    PubMed Central

    Andrés-Benito, Pol; Moreno, Jesús; Aso, Ester; Povedano, Mónica; Ferrer, Isidro

    2017-01-01

    Transcriptome arrays identifies 747 genes differentially expressed in the anterior horn of the spinal cord and 2,300 genes differentially expressed in frontal cortex area 8 in a single group of typical sALS cases without frontotemporal dementia compared with age-matched controls. Main up-regulated clusters in the anterior horn are related to inflammation and apoptosis; down-regulated clusters are linked to axoneme structures and protein synthesis. In contrast, up-regulated gene clusters in frontal cortex area 8 involve neurotransmission, synaptic proteins and vesicle trafficking, whereas main down-regulated genes cluster into oligodendrocyte function and myelin-related proteins. RT-qPCR validates the expression of 58 of 66 assessed genes from different clusters. The present results: a. reveal regional differences in de-regulated gene expression between the anterior horn of the spinal cord and frontal cortex area 8 in the same individuals suffering from sALS; b. validate and extend our knowledge about the complexity of the inflammatory response in the anterior horn of the spinal cord; and c. identify for the first time extensive gene up-regulation of neurotransmission and synaptic-related genes, together with significant down-regulation of oligodendrocyte- and myelin-related genes, as important contributors to the pathogenesis of frontal cortex alterations in the sALS/frontotemporal lobar degeneration spectrum complex at stages with no apparent cognitive impairment. PMID:28283675

  18. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori)

    PubMed Central

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-01-01

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family. PMID:27706106

  19. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori).

    PubMed

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-10-03

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.

  20. Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow

    PubMed Central

    Kim, Su-Hwan; Kim, Young-Sung; Lee, Su-Yeon; Kim, Kyoung-Hwa; Lee, Yong-Moo; Kim, Won-Kyung

    2011-01-01

    Purpose The aim of this study is to compare the gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow for characterization of dental stem cells. Methods We employed GeneChip analysis to the expression levels of approximately 32,321 kinds of transcripts in 5 samples of bone-marrow-derived mesenchymal stem cells (BMSCs) (n=1), periodontal ligament stem cells (PDLSCs) (n=2), and dental pulp stem cells (DPSCs) (n=2). Each cell was sorted by a FACS Vantage Sorter using immunocytochemical staining of the early mesenchymal stem cell surface marker STRO-1 before the microarray analysis. Results We identified 379 up-regulated and 133 down-regulated transcripts in BMSCs, 68 up-regulated and 64 down-regulated transcripts in PDLSCs, and 218 up-regulated and 231 down-regulated transcripts in DPSCs. In addition, anatomical structure development and anatomical structure morphogenesis gene ontology (GO) terms were over-represented in all three different mesenchymal stem cells and GO terms related to blood vessels, and neurons were over-represented only in DPSCs. Conclusions This study demonstrated the genome-wide gene expression patterns of STRO-1+ mesenchymal stem cells derived from dental tissues and bone marrow. The differences among the expression profiles of BMSCs, PDLSCs, and DPSCs were shown, and 999 candidate genes were found to be definitely up- or down-regulated. In addition, GOstat analyses of regulated gene products provided over-represented GO classes. These data provide a first step for discovering molecules key to the characteristics of dental stem cells. PMID:21954424

  1. Molecular Insights on Post-chemotherapy Retinoblastoma by Microarray Gene Expression Analysis

    PubMed Central

    Nalini, Venkatesan; Segu, Ramya; Deepa, Perinkulam Ravi; Khetan, Vikas; Vasudevan, Madavan; Krishnakumar, Subramanian

    2013-01-01

    Purpose Management of Retinoblastoma (RB), a pediatric ocular cancer is limited by drug-resistance and drug-dosage related side effects during chemotherapy. Molecular de-regulation in post-chemotherapy RB tumors was investigated. Materials and Methods cDNA microarray analysis of two post-chemotherapy and one pre-chemotherapy RB tumor tissues was performed, followed by Principle Component Analysis, Gene ontology, Pathway Enrichment analysis and Biological Analysis Network (BAN) modeling. The drug modulation role of two significantly up-regulated genes (p≤0.05) − Ect2 (Epithelial-cell-transforming-sequence-2), and PRAME (preferentially-expressed-Antigen-in-Melanoma) was assessed by qRT-PCR, immunohistochemistry and cell viability assays. Results Differential up-regulation of 1672 genes and down-regulation of 2538 genes was observed in RB tissues (relative to normal adult retina), while 1419 genes were commonly de-regulated between pre-chemotherapy and post- chemotherapy RB. Twenty one key gene ontology categories, pathways, biomarkers and phenotype groups harboring 250 differentially expressed genes were dys-regulated (EZH2, NCoR1, MYBL2, RB1, STAMN1, SYK, JAK1/2, STAT1/2, PLK2/4, BIRC5, LAMN1, Ect2, PRAME and ABCC4). Differential molecular expressions of PRAME and Ect2 in RB tumors with and without chemotherapy were analyzed. There was neither up- regulation of MRP1, nor any significant shift in chemotherapeutic IC50, in PRAME over-expressed versus non-transfected RB cells. Conclusion Cell cycle regulatory genes were dys-regulated post-chemotherapy. Ect2 gene was expressed in response to chemotherapy-induced stress. PRAME does not contribute to drug resistance in RB, yet its nuclear localization and BAN information, points to its possible regulatory role in RB. PMID:24092970

  2. EFFECT OF HYPOXIA ON THE EXPRESSION OF GENES THAT ENCODE SOME IGFBP AND CCN PROTEINS IN U87 GLIOMA CELLS DEPENDS ON IRE1 SIGNALING.

    PubMed

    Minchenko, O H; Kharkova, A P; Minchenko, D O; Karbovskyi, L L

    2015-01-01

    We have studied hypoxic regulation of the expression of different insulin-like growth factor binding protein genes in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress, which controls cell proliferation and tumor growth. We have demonstrated that hypoxia leads to up-regulation of the expression of IGFBP6, IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulation--of IGFBP9/NOV gene at the mRNA level in control glioma cells, being more signifcant changes for IGFBP10/CYR61 and WISP2 genes. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes: eliminates sensitivity to hypoxia the expression of IGFBP7 and IGFBP9/NOV genes, suppresses effect of hypoxia on IGFBP6, IGFBP10/CYR61, and WISP2 genes, and slightly enhances hypoxic regulation of WISP1 gene expression in glioma cells. We have also demonstrated that the expression of all studied genes in glioma cells is regulated by IRE1 signaling enzyme upon normoxic condition, because inhibition of IRE1 significantly up-regulates IGFBP7, IGFBP10/CYR61, WISP1, and WISP2 genes and down-regulates IGFBP6 and IGFBP9/NOV genes as compared to control glioma cells. The present study demonstrates that hypoxia, which contributes to tumor growth, affects all studied IGFBP and WISP gene expressions and that inhibition of IRE1 preferentially abolishes or suppresses the hypoxic regulation of these gene expressions and thus possibly contributes to slower glioma growth. Moreover, inhibition of IRE1, which correlates with suppression of cell proliferation and glioma growth, is down-regulated expression of pro-proliferative IGFBP genes, attesting to the fact that endoplasmic reticulum stress is a necessary component of malignant tumor growth.

  3. Induction of P450 genes in Nilaparvata lugens and Sogatella furcifera by two neonicotinoid insecticides.

    PubMed

    Yang, Yuan-Xue; Yu, Na; Zhang, Jian-Hua; Zhang, Yi-Xi; Liu, Ze-Wen

    2018-06-01

    Nilaparvata lugens and Sogatella furcifera are two primary planthoppers on rice throughout Asian countries and areas. Neonicotinoid insecticides, such as imidacloprid (IMI), have been extensively used to control rice planthoppers and IMI resistance consequently occurred with an important mechanism from the over-expression of P450 genes. The induction of P450 genes by IMI may increase the ability to metabolize this insecticide in planthoppers and increase the resistance risk. In this study, the induction of P450 genes was compared in S. furcifera treated with IMI and nitromethyleneimidazole (NMI), in two planthopper species by IMI lethal dose that kills 85% of the population (LD 85 ), and in N. lugens among three IMI doses (LD 15 , LD 50 and LD 85 ). When IMI and NMI at the LD 85 dose were applied to S. furcifera, the expression changes in most P450 genes were similar, including the up-regulation of nine genes and down-regulation of three genes. In terms of the expression changes in 12 homologous P450 genes between N. lugens and S. furcifera treated with IMI at the LD 85 dose, 10 genes had very similar patterns, such as up-regulation in seven genes, down-regulation in one gene and no significant changes in two genes. When three different IMI doses were applied to N. lugens, the changes in P450 gene expression were much different, such as up-regulation in four genes at all doses and dose-dependent regulation of the other nine genes. For example, CYP6AY1 could be induced by all IMI doses, while CYP6ER1 was only up-regulated by the LD 50 dose, although both genes were reported important in IMI resistance. In conclusion, P450 genes in two planthopper species showed similar regulation patterns in responding to IMI, and the two neonicotinoid insecticides had similar effects on P450 gene expression, although the regulation was often dose-dependent. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  4. Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development.

    PubMed

    Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M

    2014-04-16

    The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.

  5. Gene expression in thiazide diuretic or statin users in relation to incident type 2 diabetes

    PubMed Central

    Suchy-Dicey, Astrid; Heckbert, Susan R; Smith, Nicholas L; McKnight, Barbara; Rotter, Jerome I; Chen, YD Ida; Psaty, Bruce M; Enquobahrie, Daniel A

    2014-01-01

    Thiazide diuretics and statins are used to improve cardiovascular outcomes, but may also cause type 2 diabetes (T2DM), although mechanisms are unknown. Gene expression studies may facilitate understanding of these associations. Participants from ongoing population-based studies were sampled for these longitudinal studies of peripheral blood microarray gene expression, and followed to incident diabetes. All sampled subjects were statin or thiazide users. Those who developed diabetes during follow-up comprised cases (44 thiazide users; 19 statin users), and were matched to drug-using controls who did not develop diabetes on several factors. Supervised normalization, surrogate variable analyses removed technical bias and confounding. Differentially-expressed genes were those with a false discovery rate Q-value<0.05. Among thiazide users, diabetes cases had significantly different expression of CCL14 (down-regulated 6%, Q-value=0.0257), compared with controls. Among statin users, diabetes cases had marginal but insignificantly different expression of ZNF532 (up-regulated 15%, Q-value=0.0584), CXORF21 (up-regulated 11%, Q-value=0.0584), and ZNHIT3 (up-regulated 19%, Q-value=0.0959), compared with controls. These genes comprise potential targets for future expression or mechanistic research on medication-related diabetes development. PMID:24596594

  6. In Vivo Regulation of Human Skeletal Muscle Gene Expression by Thyroid Hormone

    PubMed Central

    Clément, Karine; Viguerie, Nathalie; Diehn, Maximilian; Alizadeh, Ash; Barbe, Pierre; Thalamas, Claire; Storey, John D.; Brown, Patrick O.; Barsh, Greg S.; Langin, Dominique

    2002-01-01

    Thyroid hormones are key regulators of metabolism that modulate transcription via nuclear receptors. Hyperthyroidism is associated with increased metabolic rate, protein breakdown, and weight loss. Although the molecular actions of thyroid hormones have been studied thoroughly, their pleiotropic effects are mediated by complex changes in expression of an unknown number of target genes. Here, we measured patterns of skeletal muscle gene expression in five healthy men treated for 14 days with 75 μg of triiodothyronine, using 24,000 cDNA element microarrays. To analyze the data, we used a new statistical method that identifies significant changes in expression and estimates the false discovery rate. The 381 up-regulated genes were involved in a wide range of cellular functions including transcriptional control, mRNA maturation, protein turnover, signal transduction, cellular trafficking, and energy metabolism. Only two genes were down-regulated. Most of the genes are novel targets of thyroid hormone. Cluster analysis of triiodothyronine-regulated gene expression among 19 different human tissues or cell lines revealed sets of coregulated genes that serve similar biologic functions. These results define molecular signatures that help to understand the physiology and pathophysiology of thyroid hormone action. [The list of transcripts corresponding to up-regulated and down-regulated genes is available as a web supplement at http://www.genome.org.] PMID:11827947

  7. Study of formation of green eggshell color in ducks through global gene expression.

    PubMed

    Xu, Fa Qiong; Li, Ang; Lan, Jing Jing; Wang, Yue Ming; Yan, Mei Jiao; Lian, Sen Yang; Wu, Xu

    2018-01-01

    The green eggshell color produced by ducks is a threshold trait that can be influenced by various factors, such as hereditary, environment and nutrition. The aim of this study was to investigate the genetic regulation of the formation of eggs with green shells in Youxian ducks. We performed integrative analysis of mRNAs and miRNAs expression profiling in the shell gland samples from ducks by RNA-Seq. We found 124 differentially expressed genes that were associated with various pathways, such as the ATP-binding cassette (ABC) transporter and solute carrier supper family pathways. A total of 31 differentially expressed miRNAs were found between ducks laying green eggs and white eggs. KEGG pathway analysis of the predicted miRNA target genes also indicated the functional characteristics of these miRNAs; they were involved in the ABC transporter pathway and the solute carrier (SLC) supper family. Analysis with qRT-PCR was applied to validate the results of global gene expression, which showed a correlation between results obtained by RNA-seq and RT-qPCR. Moreover, a miRNA-mRNA interaction network was established using correlation analysis of differentially expressed mRNA and miRNA. Compared to ducks that lay white eggs, ducks that lay green eggs include six up-regulated miRNAs that had regulatory effects on 35 down-regulated genes, and seven down-regulated miRNAs which influenced 46 up-regulated genes. For example, the ABC transporter pathway could be regulated by expressing gga-miR-144-3p (up-regulated) with ABCG2 (up-regulated) and other miRNAs and genes. This study provides valuable information about mRNA and miRNA regulation in duck shell gland tissues, and provides foundational information for further study on the eggshell color formation and marker-assisted selection for Youxian duck breeding.

  8. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants.

    PubMed

    Iizasa, Sayaka; Iizasa, Ei'ichi; Watanabe, Keiichi; Nagano, Yukio

    2017-12-29

    Lipopolysaccharide (LPS) from Gram-negative bacteria cause innate immune responses in animals and plants. The molecules involved in LPS signaling in animals are well studied, whereas those in plants are not yet as well documented. Recently, we identified Arabidopsis AtLBR-2, which binds to LPS from Pseudomonas aeruginosa (pLPS) directly and regulates pLPS-induced defense responses, such as pathogenesis-related 1 (PR1) expression and reactive oxygen species (ROS) production. In this study, we investigated the pLPS-induced transcriptomic changes in wild-type (WT) and the atlbr-2 mutant Arabidopsis plants using RNA-Seq technology. RNA-Seq data analysis revealed that pLPS treatment significantly altered the expression of 2139 genes, with 605 up-regulated and 1534 down-regulated genes in WT. Gene ontology (GO) analysis on these genes showed that GO terms, "response to bacterium", "response to salicylic acid (SA) stimulus", and "response to abscisic acid (ABA) stimulus" were enriched amongst only in up-regulated genes, as compared to the genes that were down-regulated. Comparative analysis of differentially expressed genes between WT and the atlbr-2 mutant revealed that 65 genes were up-regulated in WT but not in the atlbr-2 after pLPS treatment. Furthermore, GO analysis on these 65 genes demonstrated their importance for the enrichment of several defense-related GO terms, including "response to bacterium", "response to SA stimulus", and "response to ABA stimulus". We also found reduced levels of pLPS-induced conjugated SA glucoside (SAG) accumulation in atlbr-2 mutants, and no differences were observed in the gene expression levels in SA-treated WT and the atlbr-2 mutants. These 65 AtLBR-2-dependent up-regulated genes appear to be important for the enrichment of some defense-related GO terms. Moreover, AtLBR-2 might be a key molecule that is indispensable for the up-regulation of defense-related genes and for SA signaling pathway, which is involved in defense against pathogens containing LPS.

  9. Mucin gene expression in human urothelium and in intestinal segments transposed into the urinary tract.

    PubMed

    N'Dow, J; Pearson, J P; Bennett, M K; Neal, D E; Robson, C N

    2000-10-01

    The repertoire of mucin (MUC) gene expression in the normal human urothelium is poorly defined and the alterations in MUC gene expression following transposition of intestinal segments into the urinary tract has not previously been studied. The aims of this study were to define MUC gene expression in the normal human urothelium; and in transposed intestinal segments. Non-isotopic in-situ hybridization was carried out using eight digoxigenin labeled oligonucleotide mucin gene probes (MUC 1 - 7). Immunohistochemistry using NCL-MUC1 and NCL-MUC2 monoclonal antibodies was performed on sections of paraffin-embedded tissues. Twenty-seven patients were investigated (normal human urothelium, n = 6; transposed ileal segments, n = 14 and normal ileal controls, n = 7). MUC1 and MUC4 were the predominant mucin genes expressed in the normal urothelium with MUC3 being expressed in a third of cases studied; MUC2, 5AC, 5B, 6 and 7 were not expressed. Despite the morphological changes seen in transposed ileal segments, MUC2 and MUC3 continued to be expressed in these segments albeit in a disorganised fashion. Both MUC1 and MUC4 were up-regulated in transposed ileal segments, genes expressed by the normal human urothelium. All eight mucin genes were expressed in an area of pyloric-type metaplasia found in one transposed ileal segment. In patients with clam enterocystoplasty there was evidence of increasing up-regulation of MUC2, 3, 4 and 5AC expression in the urothelium toward the anastomotic site. Transposition of ileal segments into the urinary tract results in up-regulation of MUC1 and MUC4, the predominant MUC genes expressed in the human bladder. The clinical implication of the up-regulation of some MUC genes toward the anastomotic site in patients with an enteroplasty and the aberrant expression of MUC5AC - MUC7 by transposed segments is at present unclear.

  10. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets.

    PubMed

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E; Whiteside, Theresa L

    2016-02-04

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4(+) Tconv, CD8(+) T or CD4(+) CD39(+) Treg were isolated from normal donors' peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24-27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4(+) Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes.

  11. Triazophos up-regulated gene expression in the female brown planthopper, Nilaparvata lugens.

    PubMed

    Bao, Yan-Yuan; Li, Bao-Ling; Liu, Zhao-Bu; Xue, Jian; Zhu, Zeng-Rong; Cheng, Jia-An; Zhang, Chuan-Xi

    2010-09-01

    The widespread use of insecticides has caused the resurgence of the brown planthopper, Nilaparvata lugens, in Asia. In this study, we investigated an organo-phosphorous insecticide, triazophos, and its ability to induce gene expression variation in female N. lugens nymphs just before emergence. By using the suppression subtractive hybridization method, a triazophos-induced cDNA library was constructed. In total, 402 differentially expressed cDNA clones were obtained. Real-time qPCR analysis confirmed that triazophos up-regulated the expression of six candidate genes at the transcript level in nymphs on day 3 of the 5th instar. These genes encode N. lugens vitellogenin, bystin, multidrug resistance protein (MRP), purine nucleoside phosphorylase (PNP), pyrroline-5-carboxylate reductase (P5CR) and carboxylesterase. Our results imply that the up-regulation of these genes may be involved in the induction of N. lugens female reproduction or resistance to insecticides.

  12. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Cubano, L. A.; Lewis, M. L.

    2001-01-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  13. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat).

    PubMed

    Cubano, L A; Lewis, M L

    2001-05-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  14. Systematic analysis of gene expression pattern in has-miR-197 over-expressed human uterine leiomyoma cells.

    PubMed

    Ling, Jing; Wu, Xiaoli; Fu, Ziyi; Tan, Jie; Xu, Qing

    2015-10-01

    Our previous study showed that the expression of miR-197 in leiomyoma was down-regulated compared with myometrium. Further, miR-197 has been identified to affect uterine leiomyoma cell proliferation, apoptosis, and metastasis ability, though the responsible molecular mechanism has not been well elucidated. In this study, we sought to determine the expression patterns of miR-197 targeted genes and to explore their potential functions, participating Pathways and the networks that are involved in the biological behavior of human uterine leiomyoma. After transfection of human uterine leiomyoma cells with miR-197, we confirmed the expression level of miR-197 using quantitative real-time PCR (qRT-PCR), and we detected the gene expression profiles after miR-197 over-expression through DNA microarray analysis. Further, we performed GO and Pathway analysis. The dominantly dys-regulated genes, which were up- or down-regulated by more than 10-fold, compared with parental cells, were confirmed using qRT-PCR technology. Compared with the control group, miR-197 was up-regulated by 30-fold after miR-197 lentiviral transfection. The microarray data showed that 872 genes were dys-regulated by more than 2-fold in human uterine leiomyoma cells after miR-197 overexpression, including 537 up-regulated and 335 down-regulated genes. The GO analysis indicated that the dys-regulated genes were primarily involved in response to stimuli, multicellular organ processes, and the signaling of biological progression. Further, Pathway analysis data showed that these genes participated in regulating several signaling Pathways, including the JAK/STAT signaling Pathway, the Toll-like receptor signaling Pathway, and cytokine-cytokine receptor interaction. The qRT-PCR results confirmed that 17 of the 66 selected genes, which were up- or down-regulated more than 10-fold by miR-197, were consistent with the microarray results, including tumorigenesis-related genes, such as DRT7, SLC549, SFMBT2, FLJ37956, FBLN2, C10orf35, HOXD12, CACNG7, and LOC100134279. Our study explored gene expression patterns after miR-197 overexpression and confirmed 17 dominantly dys-regulated genes, which could expand the insights into the function of miR-197 and the molecular mechanisms during the development and progression of uterine leiomyomas. This study might afford new clues for understanding the pathogenesis of uterine leiomyomas, and it could likely provide a unique method for diagnosing or predicting prognosis in the clinical treatment of leiomyoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  16. Image-guided genomic analysis of tissue response to laser-induced thermal stress

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.

    2011-05-01

    The cytoprotective response to thermal injury is characterized by transcriptional activation of ``heat shock proteins'' (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.

  17. Transcriptome profiling and cataloging differential gene expression in floral buds of fertile and sterile lines of cotton (Gossypium hirsutum L.).

    PubMed

    Hamid, Rasmieh; Tomar, Rukam S; Marashi, Hassan; Shafaroudi, Saeid Malekzadeh; Golakiya, Balaji A; Mohsenpour, Motahhareh

    2018-06-20

    Cytoplasmic Male Sterility is maternally inherited trait in plants, characterized by failure to produce functional pollen during anther development. Anther development is modulated through the interaction of nuclear and mitochondrial genes. In the present study, differential gene expression of floral buds at the sporogenous stage (SS) and microsporocyte stage (MS) between CGMS and its fertile maintainer line of cotton plants was studied. A total of 320 significantly differentially expressed genes, including 20 down-regulated and 37 up-regulated in CGMS comparing with its maintainer line at the SS stage, as well as and 89 down-regulated and 4 up-regulated in CGMS compared to the fertile line at MS stage. Comparing the two stages in the same line, there were 6 down-regulated differentially expressed genes only induced in CGMS and 9 up-regulated differentially expressed gene only induced in its maintainer. GO analysis revealed essential genes responsible for pollen development, and cytoskeleton category show differential expression between the fertile and CGMS lines. Validation studies by qRT-PCR shows concordance with RNA-seq result. A set of novel SSRs identified in this study can be used in evaluating genetic relationships among cultivars, QTL mapping, and marker-assisted breeding. We reported aberrant expression of genes related to pollen exine formation, and synthesis of pectin lyase, myosine heavy chain, tubulin, actin-beta, heat shock protein and myeloblastosis (MYB) protein as targets for CMS in cotton. The results of this study contribute to basic information for future screening of genes and identification of molecular portraits responsible for CMS as well as to elucidate molecular mechanisms that lead to CMS in cotton. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Arabidopsis Transcriptome Analysis Reveals Key Roles of Melatonin in Plant Defense Systems

    PubMed Central

    Weeda, Sarah; Zhang, Na; Zhao, Xiaolei; Ndip, Grace; Guo, Yangdong; Buck, Gregory A.; Fu, Conggui; Ren, Shuxin

    2014-01-01

    Melatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression. To comprehensively investigate the role(s) of melatonin at the genomics level, we utilized mRNA-seq technology to analyze Arabidopsis plants subjected to a 16-hour 100 pM (low) and 1 mM (high) melatonin treatment. The expression profiles were analyzed to identify differentially expressed genes. 100 pM melatonin treatment significantly affected the expression of only 81 genes with 51 down-regulated and 30 up-regulated. However, 1 mM melatonin significantly altered 1308 genes with 566 up-regulated and 742 down-regulated. Not all genes altered by low melatonin were affected by high melatonin, indicating different roles of melatonin in regulation of plant growth and development under low and high concentrations. Furthermore, a large number of genes altered by melatonin were involved in plant stress defense. Transcript levels for many stress receptors, kinases, and stress-associated calcium signals were up-regulated. The majority of transcription factors identified were also involved in plant stress defense. Additionally, most identified genes in ABA, ET, SA and JA pathways were up-regulated, while genes pertaining to auxin responses and signaling, peroxidases, and those associated with cell wall synthesis and modifications were mostly down-regulated. Our results indicate critical roles of melatonin in plant defense against various environmental stresses, and provide a framework for functional analysis of genes in melatonin-mediated signaling pathways. PMID:24682084

  19. [Endoplasmic reticulum stress in INS-1-3 cell associated with the expression changes of MODY gene pathway].

    PubMed

    Liu, Y T; Li, S R; Wang, Z; Xiao, J Z

    2016-09-13

    Objective: To profile the gene expression changes associated with endoplasmic reticulum stress in INS-1-3 cells induced by thapsigargin (TG) and tunicamycin (TM). Methods: Normal cultured INS-1-3 cells were used as a control. TG and TM were used to induce endoplasmic reticulum stress in INS-1-3 cells. Digital gene expression profiling technique was used to detect differentially expressed gene. The changes of gene expression were detected by expression pattern clustering analysis, gene ontology (GO) function and pathway enrichment analysis. Real time polymerase chain reaction (RT-PCR) was used to verify the key changes of gene expression. Results: Compared with the control group, there were 57 (45 up-regulated, 12 down-regulated) and 135 (99 up-regulated, 36 down-regulated) differentially expressed genes in TG and TM group, respectively. GO function enrichment analyses indicated that the main enrichment was in the endoplasmic reticulum. In signaling pathway analysis, the identified pathways were related with endoplasmic reticulum stress, antigen processing and presentation, protein export, and most of all, the maturity onset diabetes of the young (MODY) pathway. Conclusion: Under the condition of endoplasmic reticulum stress, the related expression changes of transcriptional factors in MODY signaling pathway may be related with the impaired function in islet beta cells.

  20. Targeting genes in insulin-associated signalling pathway, DNA damage, cell proliferation and cell differentiation pathways by tocotrienol-rich fraction in preventing cellular senescence of human diploid fibroblasts.

    PubMed

    Durani, L W; Jaafar, F; Tan, J K; Tajul Arifin, K; Mohd Yusof, Y A; Wan Ngah, W Z; Makpol, S

    2015-01-01

    Tocotrienols have been known for their antioxidant properties besides their roles in cellular signalling, gene expression, immune response and apoptosis. This study aimed to determine the molecular mechanism of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs) by targeting the genes in senescence-associated signalling pathways. Real time quantitative PCR (qRT-PCR) was utilized to evaluate the expression of genes involved in these pathways. Our findings showed that SOD1 and CCS-1 were significantly down-regulated in pre-senescent cells while CCS-1 and PRDX6 were up-regulated in senescent cells (p<0.05). Treatment with TRF significantly down-regulated SOD1 in pre-senescent and senescent HDFs, up-regulated SOD2 in senescent cells, CAT in young HDFs, GPX1 in young and pre-senescent HDFs, and CCS-1 in young, pre-senescent and senescent HDFs (p<0.05). TRF treatment also caused up-regulation of FOXO3A in all age groups of cells (p<0.05). The expression of TP53, PAK2 and CDKN2A was significantly increased in senescent HDFs and treatment with TRF significantly down-regulated TP53 in senescent cells (p<0.05). MAPK14 was significantly up-regulated (p<0.05) in senescent HDFs while no changes was observed on the expression of JUN. TRF treatment, however, down-regulated MAPK14 in young and senescent cells and up-regulated JUN in young and pre-senescent HDFs (p<0.05). TRF modulated the expression of genes involved in senescence-associated signalling pathways during replicative senescence of HDFs.

  1. Adaptation of Musca domestica L. Field Population to Laboratory Breeding Causes Transcriptional Alterations

    PubMed Central

    Højland, Dorte H.; Jensen, Karl-Martin Vagn; Kristensen, Michael

    2014-01-01

    Background The housefly, Musca domestica, has developed resistance to most insecticides applied for its control. Expression of genes coding for detoxification enzymes play a role in the response of the housefly when encountered by a xenobiotic. The highest level of constitutive gene expression of nine P450 genes was previously found in a newly-collected susceptible field population in comparison to three insecticide-resistant laboratory strains and a laboratory reference strain. Results We compared gene expression of five P450s by qPCR as well as global gene expression by RNAseq in the newly-acquired field population (845b) in generation F1, F13 and F29 to test how gene expression changes following laboratory adaption. Four (CYP6A1, CYP6A36, CYP6D3, CYP6G4) of five investigated P450 genes adapted to breeding by decreasing expression. CYP6D1 showed higher female expression in F29 than in F1. For males, about half of the genes accessed in the global gene expression were up-regulated in F13 and F29 in comparison with the F1 population. In females, 60% of the genes were up-regulated in F13 in comparison with F1, while 33% were up-regulated in F29. Forty potential P450 genes were identified. In most cases, P450 gene expression was decreased in F13 flies in comparison with F1. Gene expression then increased from F13 to F29 in males and decreased further in females. Conclusion The global gene expression changes massively during adaptation to laboratory breeding. In general, global expression decreased as a result of laboratory adaption in males, while female expression was not unidirectional. Expression of P450 genes was in general down-regulated as a result of laboratory adaption. Expression of hexamerin, coding for a storage protein was increased, while gene expression of genes coding for amylases decreased. This suggests a major impact of the surrounding environment on gene response to xenobiotics and genetic composition of housefly strains. PMID:24489682

  2. Dietary betaine supplementation in hens modulates hypothalamic expression of cholesterol metabolic genes in F1 cockerels through modification of DNA methylation.

    PubMed

    Idriss, Abdulrahman A; Hu, Yun; Hou, Zhen; Hu, Yan; Sun, Qinwei; Omer, Nagmeldin A; Abobaker, Halima; Ni, Yingdong; Zhao, Ruqian

    2018-03-01

    Betaine is widely used in animal nutrition to promote growth, development and methyl donor during methionine metabolism through nutritional reprogramming via regulation of gene expression. Prenatal betaine exposure is reported to modulate hypothalamic cholesterol metabolism in chickens, yet it remains unknown whether feeding hens with betaine-supplemented diet may affect hypothalamic cholesterol metabolism in F1 offspring. In this study, hens were fed with basal or betaine-supplemented (0.5%) for 30days, and the eggs were collected for incubation. The hatchlings were raised under the same condition up to 56days of age. Betaine-treated group showed significantly (P<0.05) higher plasma concentration of total cholesterol and HDL-cholesterol, together with increased hypothalamic content of total cholesterol and cholesterol ester. Concordantly, hypothalamic gene expression of SREBP2, HMGCR, and LDLR was significantly up regulated (P<0.05). Also, mRNA abundances of SREBP1, ACAT1 and APO-A1 were up-regulated, while that of CYP46A1 was significantly down-regulated (P<0.05). These changes coincided with a significant down-regulation of BDNF and CRH, and a significant up-regulation of NPY mRNA expression. Moreover, genes involved in methyl transfer cycle were also modulated. DNMT1 and BHMT were up-regulated (P<0.05) at both mRNA and protein levels, which was associated with significant modifications of CpG methylation on the promoter of SREBP-1, SREBP-2 and APO-A1 genes as detected by bisulfate sequencing. These results indicate that feeding betaine to hens modulates hypothalamic expression of genes involved in cholesterol metabolism and brain functions in F1 cockerels with modification of promoter DNA methylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Role of G-protein-coupled receptor-related genes in insecticide resistance of the mosquito, Culex quinquefasciatus.

    PubMed

    Li, Ting; Liu, Lena; Zhang, Lee; Liu, Nannan

    2014-09-29

    G-protein-coupled receptors regulate signal transduction pathways and play diverse and pivotal roles in the physiology of insects, however, the precise function of GPCRs in insecticide resistance remains unclear. Using quantitative RT-PCR and functional genomic methods, we, for the first time, explored the function of GPCRs and GPCR-related genes in insecticide resistance of mosquitoes, Culex quinquefasciatus. A comparison of the expression of 115 GPCR-related genes at a whole genome level between resistant and susceptible Culex mosquitoes identified one and three GPCR-related genes that were up-regulated in highly resistant Culex mosquito strains, HAmCq(G8) and MAmCq(G6), respectively. To characterize the function of these up-regulated GPCR-related genes in resistance, the up-regulated GPCR-related genes were knockdown in HAmCq(G8) and MAmCq(G6) using RNAi technique. Knockdown of these four GPCR-related genes not only decreased resistance of the mosquitoes to permethrin but also repressed the expression of four insecticide resistance-related P450 genes, suggesting the role of GPCR-related genes in resistance is involved in the regulation of resistance P450 gene expression. This results help in understanding of molecular regulation of resistance development in Cx. quinquefasciatus.

  4. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; hide

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  5. PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2.

    PubMed

    Liu, Yonghong; Qu, Linlin; Liu, Yuanyuan; Roizman, Bernard; Zhou, Grace Guoying

    2017-08-15

    PUM1 is an RNA binding protein shown to regulate the stability and function of mRNAs bearing a specific sequence. We report the following: ( i ) A key function of PUM1 is that of a repressor of key innate immunity genes by repressing the expression of LGP2. Thus, between 12 and 48 hours after transfection of human cells with siPUM1 RNA there was an initial (phase 1) upsurge of transcripts encoding LGP2, CXCL10, IL6, and PKR. This was followed 24 hours later (phase 2) by a significant accumulation of mRNAs encoding RIG-I, SP100, MDA5, IFIT1, PML, STING, and IFNβ. The genes that were not activated encoded HDAC4 and NF-κB1. ( ii ) Simultaneous depletion of PUM1 and LGP2, CXCL10, or IL6 revealed that up-regulation of phase 1 and phase 2 genes was the consequence of up-regulation of LGP2. ( iii ) IFNβ produced 48-72 hours after transfection of siPUM1 was effective in up-regulating LGP2 and phase 2 genes and reducing the replication of HSV-1 in untreated cells. ( iv ) Because only half of genes up-regulated in phase 1 and 2 encode mRNAs containing PUM1 binding sites, the upsurge in gene expression could not be attributed solely to stabilization of mRNAs in the absence of PUM1. ( v ) Lastly, depletion of PUM2 does not result in up-regulation of phase 1 or phase 2 genes. The results of the studies presented here indicate that PUM1 is a negative regulator of LGP2, a master regulator of innate immunity genes expressed in a cascade fashion.

  6. Sho-saiko-to, a traditional herbal medicine, regulates gene expression and biological function by way of microRNAs in primary mouse hepatocytes

    PubMed Central

    2014-01-01

    Background Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. Methods By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. Results The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. Conclusions We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST. PMID:24410935

  7. Sho-saiko-to, a traditional herbal medicine, regulates gene expression and biological function by way of microRNAs in primary mouse hepatocytes.

    PubMed

    Song, Kwang Hoon; Kim, Yun Hee; Kim, Bu-Yeo

    2014-01-11

    Sho-saiko-to (SST) (also known as so-shi-ho-tang or xiao-chai-hu-tang) has been widely prescribed for chronic liver diseases in traditional Oriental medicine. Despite the substantial amount of clinical evidence for SST, its molecular mechanism has not been clearly identified at a genome-wide level. By using a microarray, we analyzed the temporal changes of messenger RNA (mRNA) and microRNA expression in primary mouse hepatocytes after SST treatment. The pattern of genes regulated by SST was identified by using time-series microarray analysis. The biological function of genes was measured by pathway analysis. For the identification of the exact targets of the microRNAs, a permutation-based correlation method was implemented in which the temporal expression of mRNAs and microRNAs were integrated. The similarity of the promoter structure between temporally regulated genes was measured by analyzing the transcription factor binding sites in the promoter region. The SST-regulated gene expression had two major patterns: (1) a temporally up-regulated pattern (463 genes) and (2) a temporally down-regulated pattern (177 genes). The integration of the genes and microRNA demonstrated that 155 genes could be the targets of microRNAs from the temporally up-regulated pattern and 19 genes could be the targets of microRNAs from the temporally down-regulated pattern. The temporally up-regulated pattern by SST was associated with signaling pathways such as the cell cycle pathway, whereas the temporally down-regulated pattern included drug metabolism-related pathways and immune-related pathways. All these pathways could be possibly associated with liver regenerative activity of SST. Genes targeted by microRNA were moreover associated with different biological pathways from the genes not targeted by microRNA. An analysis of promoter similarity indicated that co-expressed genes after SST treatment were clustered into subgroups, depending on the temporal expression patterns. We are the first to identify that SST regulates temporal gene expression by way of microRNA. MicroRNA targets and non-microRNA targets moreover have different biological roles. This functional segregation by microRNA would be critical for the elucidation of the molecular activities of SST.

  8. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels.

    PubMed

    Andres, Marilou A; Cooke, Ian M; Bellinger, Frederick P; Berry, Marla J; Zaporteza, Maribel M; Rueli, Rachel H; Barayuga, Stephanie M; Chang, Linda

    2015-07-01

    In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the dopamine D1 receptor signaling pathway. These findings suggest Ca(2+) -mediated neurotoxicity owing to over-expression of calcium channels. © 2015 International Society for Neurochemistry.

  9. Sex Determination in Ceratopteris richardii Is Accompanied by Transcriptome Changes That Drive Epigenetic Reprogramming of the Young Gametophyte.

    PubMed

    Atallah, Nadia M; Vitek, Olga; Gaiti, Federico; Tanurdzic, Milos; Banks, Jo Ann

    2018-05-02

    The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants. Copyright © 2018, G3: Genes, Genomes, Genetics.

  10. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment.

    PubMed

    Singh, Padmanabh; Konar, Arpita; Kumar, Ashish; Srivas, Sweta; Thakur, Mahendra K

    2015-08-01

    The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin-modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin-modifying enzymes and recovery potential of enzyme modulators in scopolamine-induced amnesia. Scopolamine administration drastically up-regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB-binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza-2'deoxycytidine recovered scopolamine-impaired hippocampal-dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain-derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza-2'deoxycytidine and their co-administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine-induced up-regulation of chromatin-modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets. We propose the following putative pathway for scopolamine-mediated memory impairment; scopolamine up-regulates hippocampal DNMT1 and HDAC2 expression, induces methylation and deacetylation of BDNF and Arc promoter, represses gene expression and eventually impairs memory consolidation. On the other hand, Aza-2 and NaB inhibit DNMT1 and HDAC2 respectively, up-regulate BDNF and Arc expression and recover memory consolidation. We elucidate the action of scopolamine as an epigenetic modulator and hope that DNMT1 and HDAC2 would be ideal therapeutic targets for memory disorders. © 2015 International Society for Neurochemistry.

  11. The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a temporal DNA microarray study.

    PubMed

    Soule, Tanya; Gao, Qunjie; Stout, Valerie; Garcia-Pichel, Ferran

    2013-01-01

    Cyanobacteria in nature are exposed not only to the visible spectrum of sunlight but also to its harmful ultraviolet components (UVA and UVB). We used Nostoc punctiforme ATCC 29133 as a model to study the UVA response by analyzing global gene expression patterns using genomic microarrays. UVA exposure resulted in the statistically detectable differential expression of 573 genes of the 6903 that were probed, compared with that of the control cultures. Of those genes, 473 were up-regulated, while only 100 were down-regulated. Many of the down-regulated genes were involved in photosynthetic pigment biosynthesis, indicating a significant shift in this metabolism. As expected, we detected the up-regulation of genes encoding antioxidant enzymes and the sunscreen, scytonemin. However, a majority of the up-regulated genes, 47%, were unassignable bioinformatically to known functional categories, suggesting that the UVA stress response is not well understood. Interestingly, the most dramatic up-regulation involved several contiguous genes of unassigned metabolism on plasmid A. This is the first global UVA stress response analysis of any phototrophic microorganism and the differential expression of 8% of the genes of the Nostoc genome indicates that adaptation to UVA in Nostoc has been an evolutionary force of significance. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  12. Microarray analyses reveal distinct roles for Rel proteins in the Drosophila immune response

    PubMed Central

    Pal, Subhamoy; Wu, Junlin; Wu, Louisa P.

    2007-01-01

    The NF-κB group of transcription factors play an important role in mediating immune responses in organisms as diverse as insects and mammals. The fruit fly Drosophila melanogaster express three closely related NF-κB-like transcription factors: Dorsal, Dif, and Relish. To study their roles in vivo, we used microarrays to determine the effect of null mutations in individual Rel transcription factors on larval immune gene expression. Of the 188 genes that were significantly up-regulated in wildtype larvae upon bacterial challenge, overlapping but distinct groups of genes were affected in the Rel mutants. We also ectopically expressed Dorsal or Dif and used cDNA microarrays to determine the genes that were up-regulated in the presence of these transcription factors. This expression was sufficient to drive expression of some immune genes, suggesting redundancy in the regulation of these genes. Combining this data, we also identified novel genes that may be specific targets of Dif. PMID:17537510

  13. Global/temporal gene expression analysis of Escherichia coli in the early stages of symbiotic relationship development with the cellular slime mold Dictyostelium discoideum.

    PubMed

    Kihara, Kumiko; Mori, Kotaro; Suzuki, Shingo; Ono, Naoaki; Furusawa, Chikara; Yomo, Tetsuya

    2009-05-01

    Escherichia coli and the cellular slime mold Dictyostelium discoideum form stable viscous symbiotic colonies in the laboratory. To examine changes in E. coli gene expression during establishment of this symbiotic relationship, cells of symbiotic co-cultures and monocultures at various time points were subjected to microarrays analysis. Genes changed significantly over time compared to the initial gene expression level were determined as characteristics of GO function categories. The categories that appeared significantly at the same sampling time points between the two cultures were also identified. Up-regulation of genes from several GO categories associated with polysaccharide synthesis, cell wall degradation, and iron acquisition as well as down-regulation of genes from GO categories associated with biosynthesis through starvation response were observed in co-cultures, indicating exchange of molecules between the two organisms. Up-regulation of genes from several GO categories associated with anaerobic respiration and flagella biosynthesis were also observed, indicating that the environment inside symbiotic colonies was similar to that in developed biofilms. Up-regulation of genes associated with energy-generating systems indicated that E. coli prolonged survival within the symbiotic colony. Thus, E. coli showed not only molecule exchange but also altered expression of various genes in symbiosis with D. discoideum.

  14. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.

  15. Genes up-regulated during red coloration in UV-B irradiated lettuce leaves.

    PubMed

    Park, Jong-Sug; Choung, Myoung-Gun; Kim, Jung-Bong; Hahn, Bum-Soo; Kim, Jong-Bum; Bae, Shin-Chul; Roh, Kyung-Hee; Kim, Yong-Hwan; Cheon, Choong-Ill; Sung, Mi-Kyung; Cho, Kang-Jin

    2007-04-01

    Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3',5'-hydroxylase (F3',5'H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.

  16. Identification of transcriptional factors and key genes in primary osteoporosis by DNA microarray.

    PubMed

    Xie, Wengui; Ji, Lixin; Zhao, Teng; Gao, Pengfei

    2015-05-09

    A number of genes have been identified to be related with primary osteoporosis while less is known about the comprehensive interactions between regulating genes and proteins. We aimed to identify the differentially expressed genes (DEGs) and regulatory effects of transcription factors (TFs) involved in primary osteoporosis. The gene expression profile GSE35958 was obtained from Gene Expression Omnibus database, including 5 primary osteoporosis and 4 normal bone tissues. The differentially expressed genes between primary osteoporosis and normal bone tissues were identified by the same package in R language. The TFs of these DEGs were predicted with the Essaghir A method. DAVID (The Database for Annotation, Visualization and Integrated Discovery) was applied to perform the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of DEGs. After analyzing regulatory effects, a regulatory network was built between TFs and the related DEGs. A total of 579 DEGs was screened, including 310 up-regulated genes and 269 down-regulated genes in primary osteoporosis samples. In GO terms, more up-regulated genes were enriched in transcription regulator activity, and secondly in transcription factor activity. A total 10 significant pathways were enriched in KEGG analysis, including colorectal cancer, Wnt signaling pathway, Focal adhesion, and MAPK signaling pathway. Moreover, total 7 TFs were enriched, of which CTNNB1, SP1, and TP53 regulated most up-regulated DEGs. The discovery of the enriched TFs might contribute to the understanding of the mechanism of primary osteoporosis. Further research on genes and TFs related to the WNT signaling pathway and MAPK pathway is urgent for clinical diagnosis and directing treatment of primary osteoporosis.

  17. [Regulation of sporulation by two-component system YvcPQ in Bacillus thuringiensis].

    PubMed

    Fan, Qingyun; Zhang, Shumeng; Gong, Yujing; He, Jin

    2017-01-04

    To study the regulation of sporulation controlled by two-component system (TCS) YvcPQ. β-galactosidase experiment was used to verify the regulation of YvcP on kapD expression; bacterial one-hybrid assay, EMSA and RT-qPCR were applied to study the regulation of AbrB on yvcPQ expression; markerless gene deletion coupled with spore count was used to reveal the influence of yvcPQ and kapD expressions on sporulation. transcriptional regulator AbrB up-regulated the expression of yvcPQ; YvcP promoted the expression of kapD to inhibit sporulation. AbrB up-regulated the transcription of yvcPQ operon, then the increased YvcP strengthened the transcriptional acitivation of sporulation inhibitor gene kapD, and subsequently inhibited sporulation.

  18. Gene expression profile of isolated rat adipocytes treated with anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Kojo, Hitoshi; Yoshikawa, Toshikazu; Osawa, Toshihiko

    2005-04-15

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and adipocyte gene expression in adipocytes. In this study, we have shown for the first time the gene expression profile in isolated rat adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The rat adipocytes were treated with 100 muM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. A total of 633 or 427 genes was up-regulated (>1.5-fold) by the treatment of adipocytes with C3G or Cy, respectively. The up-regulated genes include lipid metabolism and signal transduction-related genes, however, the altered genes were partly different between the C3G- and Cy-treated groups. Based on the gene expression profile, we demonstrated the up-regulation of hormone sensitive lipase and enhancement of the lipolytic activity by the treatment of adipocytes with C3G or Cy. These data have provided an overview of the gene expression profiles in adipocytes treated with anthocyanins and identified new responsive genes with potentially important functions in adipocytes related with obesity and diabetes that merit further investigation.

  19. Dynamic changes in genes related to glucose uptake and utilization during pig skeletal and cardiac muscle development.

    PubMed

    Guo, Yanqin; Jin, Long; Wang, Fengjiao; He, Mengnan; Liu, Rui; Li, Mingzhou; Shuai, Surong

    2014-01-01

    Skeletal and cardiac muscle have important roles in glucose uptake and utilization. However, changes in expression of protein coding genes and miRNAs that participate in glucose metabolism during development are not fully understood. In this study, we investigated the expression of genes related to glucose metabolism during muscle development. We found an age-dependent increase in gene expression in cardiac muscle, with enrichment in heart development- and energy-related metabolic processes. A subset of genes that were up-regulated until 30 or 180 days postnatally, and then down-regulated in psoas major muscle was significantly enriched in mitochondrial oxidative-related processes, while genes that up-regulated in longissimus doris muscle was significantly enriched in glycolysis-related processes. Meanwhile, expression of energy-related microRNAs decreased with increasing age. In addition, we investigated the correlation between microRNAs and mRNAs in three muscle types across different stages of development and found many potential microRNA-mRNA pairs involved in regulating glucose metabolism.

  20. Microarray analysis of potential genes in the pathogenesis of recurrent oral ulcer.

    PubMed

    Han, Jingying; He, Zhiwei; Li, Kun; Hou, Lu

    2015-01-01

    Recurrent oral ulcer seriously threatens patients' daily life and health. This study investigated potential genes and pathways that participate in the pathogenesis of recurrent oral ulcer by high throughput bioinformatic analysis. RT-PCR and Western blot were applied to further verify screened interleukins effect. Recurrent oral ulcer related genes were collected from websites and papers, and further found out from Human Genome 280 6.0 microarray data. Each pathway of recurrent oral ulcer related genes were got through chip hybridization. RT-PCR was applied to test four recurrent oral ulcer related genes to verify the microarray data. Data transformation, scatter plot, clustering analysis, and expression pattern analysis were used to analyze recurrent oral ulcer related gene expression changes. Recurrent oral ulcer gene microarray was successfully established. Microarray showed that 551 genes involved in recurrent oral ulcer activity and 196 genes were recurrent oral ulcer related genes. Of them, 76 genes up-regulated, 62 genes down-regulated, and 58 genes up-/down-regulated. Total expression level up-regulated 752 times (60%) and down-regulated 485 times (40%). IL-2 plays an important role in the occurrence, development and recurrence of recurrent oral ulcer on the mRNA and protein levels. Gene microarray can be used to analyze potential genes and pathways in recurrent oral ulcer. IL-2 may be involved in the pathogenesis of recurrent oral ulcer.

  1. VDR, RXR, Coronin-1 and Interferonγ Levels in PBMCs of Type-2 Diabetes Patients: Molecular Link between Diabetes and Tuberculosis.

    PubMed

    Syal, Kirtimaan; Srinivasan, Anand; Banerjee, Dibyajyoti

    2015-07-01

    Diabetes and tuberculosis are world's most deadly epidemics. People suffering from diabetes are susceptible to tuberculosis. Molecular link between the two is largely unknown. It is known that Vitamin A receptor (RXR) heterodimerizes with Vitamin D receptor (VDR) and Peroxisome proliferator-activator receptor-γ (PPARγ) to regulate Tryptophan-aspartate containing coat protein (TACO) expression and fatty acid metabolism respectively, so it would be interesting to check the expression of these genes in diabetes mellitus (DM) patients which might explain the susceptibility of diabetics to tuberculosis. In this study, we checked the expression of RXR, VDR, TACO and Interferon-γ (IFNγ) genes in type-2 DM patients for understanding the link between the two diseases. We observed down regulation of RXR gene and corresponding up regulation of TACO gene expression. We have not observed significant change in expression of VDR and IFNγ genes in type-2 DM patients. Repression of RXR gene could hamper VDR-RXR heterodimer formation and thus would up regulate TACO gene expression which may predispose the type-2 DM patients to tuberculosis. Also, decrease in RXR-PPARγ heterodimer could be involved in DM.

  2. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Homoeolog-specific transcriptional bias in allopolyploid wheat

    PubMed Central

    2010-01-01

    Background Interaction between parental genomes is accompanied by global changes in gene expression which, eventually, contributes to growth vigor and the broader phenotypic diversity of allopolyploid species. In order to gain a better understanding of the effects of allopolyploidization on the regulation of diverged gene networks, we performed a genome-wide analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat created by the hybridization of a tetraploid derivative of hexaploid wheat with the diploid ancestor of the wheat D genome Ae. tauschii. Results Affymetrix wheat genome arrays were used for both the discovery of divergent homoeolog-specific mutations and analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat. More than 34,000 detectable parent-specific features (PSF) distributed across the wheat genome were used to assess AB genome (could not differentiate A and B genome contributions) and D genome parental expression in the allopolyploid transcriptome. In re-synthesized polyploid 81% of PSFs detected mid-parent levels of gene expression, and only 19% of PSFs showed the evidence of non-additive expression. Non-additive expression in both AB and D genomes was strongly biased toward up-regulation of parental type of gene expression with only 6% and 11% of genes, respectively, being down-regulated. Of all the non-additive gene expression, 84% can be explained by differences in the parental genotypes used to make the allopolyploid. Homoeolog-specific co-regulation of several functional gene categories was found, particularly genes involved in photosynthesis and protein biosynthesis in wheat. Conclusions Here, we have demonstrated that the establishment of interactions between the diverged regulatory networks in allopolyploids is accompanied by massive homoeolog-specific up- and down-regulation of gene expression. This study provides insights into interactions between homoeologous genomes and their role in growth vigor, development, and fertility of allopolyploid species. PMID:20849627

  4. Dynamics of Immune System Gene Expression upon Bacterial Challenge and Wounding in a Social Insect (Bombus terrestris)

    PubMed Central

    Erler, Silvio; Popp, Mario; Lattorff, H. Michael G.

    2011-01-01

    The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge. Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment. Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription factor relish, which is necessary for effector gene expression. PMID:21479237

  5. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores

    DOE PAGES

    Appel, Heidi M.; Fescemyer, Howard; Ehlting, Juergen; ...

    2014-11-14

    We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up-more » and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3–15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes.« less

  6. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, Heidi M.; Fescemyer, Howard; Ehlting, Juergen

    We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up-more » and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3–15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes.« less

  7. Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets

    PubMed Central

    Chelh, Ilham; Meunier, Bruno; Picard, Brigitte; Reecy, Mark James; Chevalier, Catherine; Hocquette, Jean-François; Cassar-Malek, Isabelle

    2009-01-01

    Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. PMID:19397818

  8. Comparative Gene Expression Analysis of the Human Periodontal Ligament in Deciduous and Permanent Teeth

    PubMed Central

    Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun

    2013-01-01

    There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription–polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level. PMID:23593441

  9. Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth.

    PubMed

    Song, Je Seon; Hwang, Dong Hwan; Kim, Seong-Oh; Jeon, Mijeong; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; Park, Wonse; Choi, Hyung-Jun

    2013-01-01

    There are histological and functional differences between human deciduous and permanent periodontal ligament (PDL) tissues. The aim of this study was to determine the differences between these two types of tissue at the molecular level by comparing their gene expression patterns. PDL samples were obtained from permanent premolars (n = 38) and anterior deciduous teeth (n = 31) extracted from 40 healthy persons. Comparative cDNA microarray analysis revealed several differences in gene expression between the deciduous and permanent PDL tissues. These findings were verified by qRT-PCR (quantitative reverse-transcription-polymerase chain reaction) analysis, and the areas where genes are expressed were revealed by immunohistochemical staining. The expressions of 21 genes were up-regulated in deciduous relative to PDL tissues, and those of 30 genes were up-regulated in permanent relative to deciduous PDL tissues. The genes that were up-regulated in deciduous PDL tissues were those involved in the formation of the extracellular matrix (LAMC2, LAMB3, and COMP), tissue development (IGF2BP, MAB21L2, and PAX3), and inflammatory or immune reactions leading to tissue degradation (IL1A, CCL21, and CCL18). The up-regulated genes in permanent PDL tissues were related to tissue degradation (IL6 and ADAMTS18), myocontraction (PDE3B, CASQ2, and MYH10), and neurological responses (FOS, NCAM2, SYT1, SLC22A3, DOCK3, LRRTM1, LRRTM3, PRSS12, and ARPP21). The analysis of differential gene expressions between deciduous and permanent PDL tissues aids our understanding of histological and functional differences between them at the molecular level.

  10. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    PubMed Central

    Christiansen, Michael W.; Matthewman, Colette; Podzimska-Sroka, Dagmara; O’Shea, Charlotte; Lindemose, Søren; Møllegaard, Niels Erik; Holme, Inger B.; Hebelstrup, Kim; Skriver, Karen; Gregersen, Per L.

    2016-01-01

    The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005 is associated with developmental senescence. It was significantly up-regulated following ABA treatment, supported by ABA-responsive elements in its promoter, but it was not up-regulated during dark-induced senescence. The C-termini of proteins closely related to HvNAC005 showed overall high divergence but also contained conserved short motifs. A serine- and leucine-containing central motif was essential for transcriptional activity of the HvNAC005 C-terminus in yeast. Over-expression of HvNAC005 in barley resulted in a strong phenotype with delayed development combined with precocious senescence. The over-expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein–DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence and so is an obvious target for the fine-tuning of gene expression in future attempts to improve nutrient remobilization related to the senescence process in barley. PMID:27436280

  11. Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells.

    PubMed

    Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S; Hewitt, Stephen M; Ward, Jerrold M; Kimura, Shioko

    2015-04-01

    Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma-derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer.

  12. Expression of Stanniocalcin 1 in Thyroid Side Population Cells and Thyroid Cancer Cells

    PubMed Central

    Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S.; Hewitt, Stephen M.; Ward, Jerrold M.

    2015-01-01

    Background: Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Method: Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Results: Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma–derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. Conclusion: These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer. PMID:25647164

  13. Protective Vaccination against Blood-Stage Malaria of Plasmodium chabaudi: Differential Gene Expression in the Liver of Balb/c Mice toward the End of Crisis Phase

    PubMed Central

    Al-Quraishy, Saleh A.; Dkhil, Mohamed A.; Abdel-Baki, Abdel-Azeem A.; Delic, Denis; Wunderlich, Frank

    2016-01-01

    Protective vaccination induces self-healing of otherwise fatal blood-stage malaria of Plasmodium chabaudi in female Balb/c mice. To trace processes critically involved in self-healing, the liver, an effector against blood-stage malaria, is analyzed for possible changes of its transcriptome in vaccination-protected in comparison to non-protected mice toward the end of the crisis phase. Gene expression microarray analyses reveal that vaccination does not affect constitutive expression of mRNA and lincRNA. However, malaria induces significant (p < 0.01) differences in hepatic gene and lincRNA expression in vaccination-protected vs. non-vaccinated mice toward the end of crisis phase. In vaccination-protected mice, infections induce up-regulations of 276 genes and 40 lincRNAs and down-regulations of 200 genes and 43 lincRNAs, respectively, by >3-fold as compared to the corresponding constitutive expressions. Massive up-regulations, partly by >100-fold, are found for genes as RhD, Add2, Ank1, Ermap, and Slc4a, which encode proteins of erythrocytic surface membranes, and as Gata1 and Gfi1b, which encode transcription factors involved in erythrocytic development. Also, Cldn13 previously predicted to be expressed on erythroblast surfaces is up-regulated by >200-fold, though claudins are known as main constituents of tight junctions acting as paracellular barriers between epithelial cells. Other genes are up-regulated by <100- and >10-fold, which can be subgrouped in genes encoding proteins known to be involved in mitosis, in cell cycle regulation, and in DNA repair. Our data suggest that protective vaccination enables the liver to respond to P. chabaudi infections with accelerated regeneration and extramedullary erythropoiesis during crisis, which contributes to survival of otherwise lethal blood-stage malaria. PMID:27471498

  14. Celecoxib can suppress expression of genes associated with PGE2 pathway in chondrocytes under inflammatory conditions.

    PubMed

    Sun, Tian-Wen; Wu, Zhi-Hong; Weng, Xi-Sheng

    2015-01-01

    This study aimed to investigate the effect of a selective cyclooxygenase-2 (COX-2) inhibitor (celecoxib) on the expression of arachidonate-associated inflammatory genes in cultured human normal chondrocytes. Normal chondrocytes were obtained from the cartilage of three different amputated patients without osteoarthritis (OA). Affymetrix Human microarray was used to assess the alterations in gene expression in three groups of cells: untreated cells (negative control group), cells treated with interleukin-1β (IL-1β) (positive control group), and cells treated with IL-1β and celecoxib. The patterns of up-regulation and down-regulation of gene expression were further validated by real-time PCR. A total of 1091 up-regulated genes and 1252 down-regulated genes were identified in the positive control group compared with the negative control group. Among them, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 are known to be involved in chondrocyte inflammation, while VEGFA, BCL2, TRAF1, CYR61, BMP6, DAPK1, DUSP7, IL1RN, MMP13 and TNFSF10 were reported being associated with cytokine and chemokine signaling. 189 up-regulated genes and 177 down-regulated genes were identified in the positive control group compared with intervention group. PTGS1, PTGS2, ADAMTS5, PTGER2, mPTGES and PTGER4 were among the genes down-regulated upon the treatment with celecoxib. Our results demonstrated that the OA chondrocytes are the site of active eicosanoid production. IL-1β can activate inflammation in chondrocytes and trigger the production of various proteins involved in cyclooxygenase pathway. The expression of genes corresponding to these proteins can be down-regulated by celecoxib. The findings indicate that the therapy with prostaglandin E2 (PGE2)-blocking agents may decrease the PGE2 production not only by direct inhibition of COX-2 activity, but also by down-regulating the expression of genes encoding for COX-2, microsomal prostaglandin-endoperoxide synthase 1 (mPGES-1) and prostaglandin E receptors 4 (EP4) in the articular chondrocytes.

  15. Characterization of Changes in Global Genes Expression in the Distal Colon of Loperamide-Induced Constipation SD Rats in Response to the Laxative Effects of Liriope platyphylla

    PubMed Central

    Kim, Ji Eun; Park, So Hae; Kwak, Moon Hwa; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Sung, Ji Eun; Lee, Hee Seob; Hong, Jin Tae; Hwang, Dae Youn

    2015-01-01

    To characterize the changes in global gene expression in the distal colon of constipated SD rats in response to the laxative effects of aqueous extracts of Liriope platyphylla (AEtLP), including isoflavone, saponin, oligosaccharide, succinic acid and hydroxyproline, the total RNA extracted from the distal colon of AEtLP-treated constipation rats was hybridized to oligonucleotide microarrays. The AEtLP treated rats showed an increase in the number of stools, mucosa thickness, flat luminal surface thickness, mucin secretion, and crypt number. Overall, compared to the controls, 581 genes were up-regulated and 216 genes were down-regulated by the constipation induced by loperamide in the constipated rats. After the AEtLP treatment, 67 genes were up-regulated and 421 genes were down-regulated. Among the transcripts up-regulated by constipation, 89 were significantly down-regulated and 22 were recovered to the normal levels by the AEtLP treatment. The major genes in the down-regulated categories included Slc9a5, klk10, Fgf15, and Alpi, whereas the major genes in the recovered categories were Cyp2b2, Ace, G6pc, and Setbp1. On the other hand, after the AEtLP treatment, ten of these genes down-regulated by constipation were up-regulated significantly and five were recovered to the normal levels. The major genes in the up-regulated categories included Serpina3n, Lcn2 and Slc5a8, whereas the major genes in the recovered categories were Tmem45a, Rerg and Rgc32. These results indicate that several gene functional groups and individual genes as constipation biomarkers respond to an AEtLP treatment in constipated model rats. PMID:26151867

  16. Expression Analysis of Stress-Related Genes in Kernels of Different Maize (Zea mays L.) Inbred Lines with Different Resistance to Aflatoxin Contamination

    PubMed Central

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K.; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T.; Guo, Baozhu

    2011-01-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six “cross-talking” genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  17. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups

    PubMed Central

    2014-01-01

    Background Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). Results Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories ‘response to external stimulus’, ‘establishment of localization’, and ‘response to stress’ were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the ‘response to stress’ category are involved in immunity while in small fish most of these gene functions are related to apoptosis. Conclusions A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the ‘response to stress’ and ‘response to external stimulus’ categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout. PMID:24450799

  18. Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction

    PubMed Central

    2011-01-01

    Background It has been well documented that pre-eclampsia and unexplained fetal growth restriction (FGR) have a common etiological background, but little is known about their linkage at the molecular level. The aim of this study was to further investigate the mechanisms underlying pre-eclampsia and unexplained FGR. Methods We analyzed differentially expressed genes in placental tissue from severe pre-eclamptic pregnancies (n = 8) and normotensive pregnancies with or (n = 8) without FGR (n = 8) using a microarray method. Results A subset of the FGR samples showed a high correlation coefficient overall in the microarray data from the pre-eclampsia samples. Many genes that are known to be up-regulated in pre-eclampsia are also up-regulated in FGR, including the anti-angiogenic factors, FLT1 and ENG, believed to be associated with the onset of maternal symptoms of pre-eclampsia. A total of 62 genes were found to be differentially expressed in both disorders. However, gene set enrichment analysis for these differentially expressed genes further revealed higher expression of TP53-downstream genes in pre-eclampsia compared with FGR. TP53-downstream apoptosis-related genes, such as BCL6 and BAX, were found to be significantly more up-regulated in pre-eclampsia than in FGR, although the caspases are expressed at equivalent levels. Conclusions Our current data indicate a common pathophysiology for FGR and pre-eclampsia, leading to an up-regulation of placental anti-angiogenic factors. However, our findings also suggest that it may possibly be the excretion of these factors into the maternal circulation through the TP53-mediated early-stage apoptosis of trophoblasts that leads to the maternal symptoms of pre-eclampsia. PMID:21810232

  19. Estrogen treatment up-regulates female genes but does not suppress all early testicular markers during rainbow trout male-to-female gonadal transdifferentiation.

    PubMed

    Vizziano-Cantonnet, Denise; Baron, Daniel; Mahè, Sophie; Cauty, Chantal; Fostier, Alexis; Guiguen, Yann

    2008-11-01

    In non-mammalian vertebrates, estrogens are key players in ovarian differentiation, but the mechanisms by which they act remain poorly understood. The present study on rainbow trout was designed to investigate whether estrogens trigger the female pathway by activating a group of early female genes (i.e. cyp19a1, foxl2a, foxl2b, fst, bmp4, and fshb) and by repressing early testicular markers (i.e. dmrt1, nr0b1, sox9a1 and sox9a2). Feminization was induced in genetically all-male populations using 17alpha-ethynylestradiol (EE2, 20 mg/kg of food during 2 months). The expression profiles of 100 candidate genes were obtained by real-time RT-PCR and 45 expression profiles displayed a significant differential expression between control populations (males and females) and EE2-treated populations. These expression profiles were grouped in five temporally correlated expression clusters. The estrogen treatment induced most of the early ovarian differentiation genes (foxl2a, foxl2b, fst, bmp4, and fshb) and in particular foxl2a, which was strongly and quickly up-regulated. Simultaneously, Leydig cell genes, involved in androgen synthesis, as well as some Sertoli cell markers (amh, sox9a2) were strongly repressed. However, in contrast to our initial hypothesis, some genes considered as essential for mammalian and fish testis differentiation were not suppressed during the early process of estrogen-induced feminization (dmrt1, nr0b1, sox9a1 and pax2a) and some were even strongly up-regulated (nr0b1, sox9a1and pax2a). In conclusion, estrogens trigger male-to-female transdifferentiation by up-regulating most ovarian specific genes and this up-regulation appears to be crucial for an effective feminization, but estrogens do not concomitantly down-regulate all the testicular differentiation markers.

  20. Role of the autonomic nervous system in rat liver regeneration.

    PubMed

    Xu, Cunshuan; Zhang, Xinsheng; Wang, Gaiping; Chang, Cuifang; Zhang, Lianxing; Cheng, Qiuyan; Lu, Ailing

    2011-05-01

    To study the regulatory role of autonomic nervous system in rat regenerating liver, surgical operations of rat partial hepatectomy (PH) and its operation control (OC), sympathectomy combining partial hepatectomy (SPH), vagotomy combining partial hepatectomy (VPH), and total liver denervation combining partial hepatectomy (TDPH) were performed, then expression profiles of regenerating livers at 2 h after operation were detected using Rat Genome 230 2.0 array. It was shown that the expressions of 97 genes in OC, 230 genes in PH, 253 genes in SPH, 187 genes in VPH, and 177 genes in TDPH were significantly changed in biology. The relevance analysis showed that in SPH, genes involved in stimulus response, immunity response, amino acids and K(+) transport, amino acid catabolism, cell adhesion, cell proliferation mediated by JAK-STAT, Ca(+), and platelet-derived growth factor receptor, cell growth and differentiation through JAK-STAT were up-regulated, while the genes involved in chromatin assembly and disassembly, and cell apoptosis mediated by MAPK were down-regulated. In VPH, the genes associated with chromosome modification-related transcription factor, oxygen transport, and cell apoptosis mediated by MAPK pathway were up-regulated, but the genes associated with amino acid catabolism, histone acetylation-related transcription factor, and cell differentiation mediated by Wnt pathway were down-regulated. In TDPH, the genes related to immunity response, growth and development of regenerating liver, cell growth by MAPK pathway were up-regulated. Our data suggested that splanchnic and vagal nerves could regulate the expressions of liver regeneration-related genes.

  1. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ E-regulated SPI-2 gene expression

    DOE PAGES

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.; ...

    2015-02-10

    The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  2. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ E-regulated SPI-2 gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.

    The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  3. Comparisons of Transcriptional Profiles of Gut Genes between Cry1Ab-Resistant and Susceptible Strains of Ostrinia nubilalis Revealed Genes Possibly Related to the Adaptation of Resistant Larvae to Transgenic Cry1Ab Corn.

    PubMed

    Yao, Jianxiu; Zhu, Yu-Cheng; Lu, Nanyan; Buschman, Lawrent L; Zhu, Kun Yan

    2017-01-30

    A microarray developed on the basis of 2895 unique transcripts from larval gut was used to compare gut gene expression profiles between a laboratory-selected Cry1Ab-resistant (R) strain and its isoline susceptible (S) strain of the European corn borer (Ostrinia nubilalis) after the larvae were fed the leaves of transgenic corn (MON810) expressing Cry1Ab or its non-transgenic isoline for 6 h. We revealed 398 gut genes differentially expressed (i.e., either up- or down-regulated genes with expression ratio ≥2.0) in S-strain, but only 264 gut genes differentially expressed in R-strain after being fed transgenic corn leaves. Although the percentages of down-regulated genes among the total number of differentially expressed genes (50% in S-strain and 45% in R-strain) were similar between the R- and S-strains, the expression ratios of down-regulated genes were much higher in S-strain than in R-strain. We revealed that 17 and 9 significantly up- or down-regulated gut genes from S and R-strain, respectively, including serine proteases and aminopeptidases. These genes may be associated with Cry1Ab toxicity by degradation, binding, and cellular defense. Overall, our study suggests enhanced adaptation of Cry1Ab-resistant larvae on transgenic Cry1Ab corn as revealed by lower number and lower ratios of differentially expressed genes in R-strain than in S-strain of O. nubilalis.

  4. [Change of chart genes expression in small intestines of mouse induced by electromagnetic pulse irradiation].

    PubMed

    Ren, Dongqing; Jin, Juan; Li, Xiaojuan; Zeng, Guiying

    2008-01-01

    To explore the bio-effects of electromagnetic pulse(EMP) on mouse small intestines induced by means of gene chip. Twelve BALB/c mice were randomly assigned to the normal control group and the EMP group with 6 in each group. The EMP group was irradiated with 200 kV/m, 200 pulses EMP. 18 hours after the irradiation, the mice were sacrificed and their jejunum of small intestines were eviscerated. The fluorescent cDNA probes labeled with Cy3 and Cy5 were prepared from RNA extracted from the intestines of the two groups. Probes of the two groups were then hybridized against cDNA gene chip, the fluorescent signals were scanned with a scanner and the results were analyzed by computer. Compared with the control, 56 genes in gene expression profile were altered. The expression levels of 37 genes were up-regulated distinctly while 19 genes were down-regulated significantly. Among the 56 genes, 19 were reported with known or inferred functions, 12 up-regulated genes were catenin alpha 1 (alpha-catenin), ly-6 alloantigen(Ly-6E), fructose-6-phosphate transaminase (GF6P), ribosomal protein S17 (rpS17), small proline-rich protein 2A (Sprr2a), glandular kallikrein27 (GK27), lipoxygenase-3, aldo-keto reductase (Akr1c12), GSG1, amylase 2 (Amy2),elastase 2, p6-5 gene and 7 down-regulated genes were junctional adhesion molecule (Jam), protein arginine methyltransferase (Carm1),NNP-1, 2-5 A synthetase L2,Mlark gene, ATP synthase alpha subunit, uncoupling protein-2 (Ucp2) gene; the other 37 were reported with unknown functions. EMP irradiation could induce specific expressions of some genes in mouse small intestines and most of these genes were up-regulated ones.

  5. RNA-seq of the aging brain in the short-lived fish N. furzeri - conserved pathways and novel genes associated with neurogenesis.

    PubMed

    Baumgart, Mario; Groth, Marco; Priebe, Steffen; Savino, Aurora; Testa, Giovanna; Dix, Andreas; Ripa, Roberto; Spallotta, Francesco; Gaetano, Carlo; Ori, Michela; Terzibasi Tozzini, Eva; Guthke, Reinhard; Platzer, Matthias; Cellerino, Alessandro

    2014-12-01

    The brains of teleost fish show extensive adult neurogenesis and neuronal regeneration. The patterns of gene regulation during fish brain aging are unknown. The short-lived teleost fish Nothobranchius furzeri shows markers of brain aging including reduced learning performances, gliosis, and reduced adult neurogenesis. We used RNA-seq to quantify genome-wide transcript regulation and sampled five different time points to characterize whole-genome transcript regulation during brain aging of N. furzeri. Comparison with human datasets revealed conserved up-regulation of ribosome, lysosome, and complement activation and conserved down-regulation of synapse, mitochondrion, proteasome, and spliceosome. Down-regulated genes differ in their temporal profiles: neurogenesis and extracellular matrix genes showed rapid decay, synaptic and axonal genes a progressive decay. A substantial proportion of differentially expressed genes (~40%) showed inversion of their temporal profiles in the last time point: spliceosome and proteasome showed initial down-regulation and stress-response genes initial up-regulation. Extensive regulation was detected for chromatin remodelers of the DNMT and CBX families as well as members of the polycomb complex and was mirrored by an up-regulation of the H3K27me3 epigenetic mark. Network analysis showed extensive coregulation of cell cycle/DNA synthesis genes with the uncharacterized zinc-finger protein ZNF367 as central hub. In situ hybridization showed that ZNF367 is expressed in neuronal stem cell niches of both embryonic zebrafish and adult N. furzeri. Other genes down-regulated with age, not previously associated with adult neurogenesis and with similar patterns of expression are AGR2, DNMT3A, KRCP, MEX3A, SCML4, and CBX1. CBX7, on the other hand, was up-regulated with age. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens.

    PubMed

    Lin, Shumao; Li, Hongmei; Mu, Heping; Luo, Wen; Li, Ying; Jia, Xinzheng; Wang, Sibing; Jia, Xiaolu; Nie, Qinghua; Li, Yugu; Zhang, Xiquan

    2012-07-10

    A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3' untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. There is a critical miRNA, let-7b, involved in the regulation of GHR. SOCS3 plays a critical role in regulating skeletal muscle growth and fat deposition via let-7b-mediated GHR expression.

  7. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens

    PubMed Central

    2012-01-01

    Background A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. Results At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3′ untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. Conclusions There is a critical miRNA, let-7b, involved in the regulation of GHR. SOCS3 plays a critical role in regulating skeletal muscle growth and fat deposition via let-7b-mediated GHR expression. PMID:22781587

  8. Evaluation of genome-wide expression profiles of blood and sputum neutrophils in cystic fibrosis patients before and after antibiotic therapy.

    PubMed

    Conese, Massimo; Castellani, Stefano; Lepore, Silvia; Palumbo, Orazio; Manca, Antonio; Santostasi, Teresa; Polizzi, Angela Maria; Copetti, Massimiliano; Di Gioia, Sante; Casavola, Valeria; Guerra, Lorenzo; Diana, Anna; Montemurro, Pasqualina; Mariggiò, Maria Addolorata; Gallo, Crescenzio; Maffione, Angela Bruna; Carella, Massimo

    2014-01-01

    In seeking more specific biomarkers of the cystic fibrosis (CF) lung inflammatory disease that would be sensitive to antibiotic therapy, we sought to evaluate the gene expression profiles of neutrophils in CF patients before treatment in comparison with non-CF healthy individuals and after antibiotic treatment. Genes involved in neutrophil-mediated inflammation, i.e. chemotaxis, respiratory burst, apoptosis, and granule exocytosis, were the targets of this study. Microarray analysis was carried out in blood and airway neutrophils from CF patients and in control subjects. A fold change (log) threshold of 1.4 and a cut-off of p<0.05 were utilized to identify significant genes. Community networks and principal component analysis were used to distinguish the groups of controls, pre- and post-therapy patients. Control subjects and CF patients before therapy were readily separated, whereas a clear distinction between patients before and after antibiotic therapy was not possible. Blood neutrophils before therapy presented 269 genes down-regulated and 56 up-regulated as compared with control subjects. Comparison between the same patients before and after therapy showed instead 44 genes down-regulated and 72 up-regulated. Three genes appeared to be sensitive to therapy and returned to "healthy" condition: phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), hydrogen voltage-gated channel 1 (HVCN1), and β-arrestin 1 (ARRB1). The up-regulation of these genes after therapy were confirmed by real time PCR. In airway neutrophils, 1029 genes were differentially expressed post- vs pre-therapy. Of these, 30 genes were up-regulated and 75 down-regulated following antibiotic treatment. However, biological plausibility determined that only down-regulated genes belonged to the gene classes studied for blood neutrophils. Finally, it was observed that commonly expressed genes showed a greater variability in airway neutrophils than that found in blood neutrophils, both before and after therapy. These results indicate more specific targets for future interventions in CF patients involving respiratory burst, apoptosis, and granule exocytosis.

  9. Evaluation of Genome-Wide Expression Profiles of Blood and Sputum Neutrophils in Cystic Fibrosis Patients Before and After Antibiotic Therapy

    PubMed Central

    Conese, Massimo; Castellani, Stefano; Lepore, Silvia; Palumbo, Orazio; Manca, Antonio; Santostasi, Teresa; Polizzi, Angela Maria; Copetti, Massimiliano; Di Gioia, Sante; Casavola, Valeria; Guerra, Lorenzo; Diana, Anna; Montemurro, Pasqualina; Mariggiò, Maria Addolorata; Gallo, Crescenzio; Maffione, Angela Bruna; Carella, Massimo

    2014-01-01

    In seeking more specific biomarkers of the cystic fibrosis (CF) lung inflammatory disease that would be sensitive to antibiotic therapy, we sought to evaluate the gene expression profiles of neutrophils in CF patients before treatment in comparison with non-CF healthy individuals and after antibiotic treatment. Genes involved in neutrophil-mediated inflammation, i.e. chemotaxis, respiratory burst, apoptosis, and granule exocytosis, were the targets of this study. Microarray analysis was carried out in blood and airway neutrophils from CF patients and in control subjects. A fold change (log) threshold of 1.4 and a cut-off of p<0.05 were utilized to identify significant genes. Community networks and principal component analysis were used to distinguish the groups of controls, pre- and post-therapy patients. Control subjects and CF patients before therapy were readily separated, whereas a clear distinction between patients before and after antibiotic therapy was not possible. Blood neutrophils before therapy presented 269 genes down-regulated and 56 up-regulated as compared with control subjects. Comparison between the same patients before and after therapy showed instead 44 genes down-regulated and 72 up-regulated. Three genes appeared to be sensitive to therapy and returned to “healthy” condition: phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), hydrogen voltage-gated channel 1 (HVCN1), and β-arrestin 1 (ARRB1). The up-regulation of these genes after therapy were confirmed by real time PCR. In airway neutrophils, 1029 genes were differentially expressed post- vs pre-therapy. Of these, 30 genes were up-regulated and 75 down-regulated following antibiotic treatment. However, biological plausibility determined that only down-regulated genes belonged to the gene classes studied for blood neutrophils. Finally, it was observed that commonly expressed genes showed a greater variability in airway neutrophils than that found in blood neutrophils, both before and after therapy. These results indicate more specific targets for future interventions in CF patients involving respiratory burst, apoptosis, and granule exocytosis. PMID:25084273

  10. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss.

    PubMed

    Krieg, S A; Fan, X; Hong, Y; Sang, Q-X; Giaccia, A; Westphal, L M; Lathi, R B; Krieg, A J; Nayak, N R

    2012-09-01

    Recurrent pregnancy loss (RPL) occurs in ∼5% of women. However, the etiology is still poorly understood. Defects in decidualization of the endometrium during early pregnancy contribute to several pregnancy complications, such as pre-eclampsia and intrauterine growth restriction (IUGR), and are believed to be important in the pathogenesis of idiopathic RPL. We performed microarray analysis to identify gene expression alterations in the deciduas of idiopathic RPL patients. Control patients had one antecedent term delivery, but were undergoing dilation and curettage for current aneuploid miscarriage. Gene expression differences were evaluated using both pathway and gene ontology (GO) analysis. Selected genes were validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). A total of 155 genes were found to be significantly dysregulated in the deciduas of RPL patients (>2-fold change, P < 0.05), with 22 genes up-regulated and 133 genes down-regulated. GO analysis linked a large percentage of genes to discrete biological functions, including immune response (23%), cell signaling (18%) and cell invasion (17.1%), and pathway analysis revealed consistent changes in both the interleukin 1 (IL-1) and IL-8 pathways. All genes in the IL-8 pathway were up-regulated while genes in the IL-1 pathway were down-regulated. Although both pathways can promote inflammation, IL-1 pathway activity is important for normal implantation. Additionally, genes known to be critical for degradation of the extracellular matrix, including matrix metalloproteinase 26 and serine peptidase inhibitor Kazal-type 1, were also highly up-regulated. In this first microarray approach to decidual gene expression in RPL patients, our data suggest that dysregulation of genes associated with cell invasion and immunity may contribute significantly to idiopathic recurrent miscarriage.

  11. Global gene expression analysis of the response of physic nut (Jatropha curcas L.) to medium- and long-term nitrogen deficiency

    PubMed Central

    Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu

    2017-01-01

    Jatropha curcas L. is an important biofuel plant with excellent tolerance of barren environments. However, studies on the regulatory mechanisms that operate in this plant in response to nitrogen (N) shortage are scarce. In this study, genome-wide transcriptional profiles of the roots and leaves of 8-week old physic nut seedlings were analyzed after 2 and 16 days of N starvation. Enrichment results showed that genes associated with N metabolism, processing and regulation of RNA, and transport predominated among those showing alterations in expression. Genes encoding transporter families underwent major changes in expression in both roots and leaves; in particular, those with roles in ammonia, amino acid and peptide transport were generally up-regulated after long-term starvation, while AQUAPORIN genes, whose products function in osmoregulation, were down-regulated. We also found that ASPARA−GINASE B1 and SARCOSINE OXIDASE genes were up-regulated in roots and leaves after 2 and 16 d N starvation. Genes associated with ubiquitination-mediated protein degradation were significantly up-regulated. In addition, genes in the JA biosynthesis pathway were strongly activated while expression of those in GA signaling was inhibited in leaves. We showed that four major classes of genes, those with roles in N uptake, N reutilization, C/N ratio balance, and cell structure and synthesis, were particularly influenced by long-term N limitation. Our discoveries may offer clues to the molecular mechanisms that regulate N reallocation and reutilization so as to maintain or increase plant performance even under adverse environmental conditions. PMID:28817702

  12. Global gene expression analysis of the response of physic nut (Jatropha curcas L.) to medium- and long-term nitrogen deficiency.

    PubMed

    Kuang, Qi; Zhang, Sheng; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2017-01-01

    Jatropha curcas L. is an important biofuel plant with excellent tolerance of barren environments. However, studies on the regulatory mechanisms that operate in this plant in response to nitrogen (N) shortage are scarce. In this study, genome-wide transcriptional profiles of the roots and leaves of 8-week old physic nut seedlings were analyzed after 2 and 16 days of N starvation. Enrichment results showed that genes associated with N metabolism, processing and regulation of RNA, and transport predominated among those showing alterations in expression. Genes encoding transporter families underwent major changes in expression in both roots and leaves; in particular, those with roles in ammonia, amino acid and peptide transport were generally up-regulated after long-term starvation, while AQUAPORIN genes, whose products function in osmoregulation, were down-regulated. We also found that ASPARA-GINASE B1 and SARCOSINE OXIDASE genes were up-regulated in roots and leaves after 2 and 16 d N starvation. Genes associated with ubiquitination-mediated protein degradation were significantly up-regulated. In addition, genes in the JA biosynthesis pathway were strongly activated while expression of those in GA signaling was inhibited in leaves. We showed that four major classes of genes, those with roles in N uptake, N reutilization, C/N ratio balance, and cell structure and synthesis, were particularly influenced by long-term N limitation. Our discoveries may offer clues to the molecular mechanisms that regulate N reallocation and reutilization so as to maintain or increase plant performance even under adverse environmental conditions.

  13. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    PubMed

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  14. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle

    PubMed Central

    Gutzwiller, Florence; Carmo, Catarina R.; Miller, Danny E.; Rice, Danny W.; Newton, Irene L. G.; Hawley, R. Scott; Teixeira, Luis; Bergman, Casey M.

    2015-01-01

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome. PMID:26497146

  15. Integration of multiple stimuli-sensing systems to regulate HrpS and type III secretion system in Erwinia amylovora.

    PubMed

    Lee, Jae Hoon; Zhao, Youfu

    2018-02-01

    The bacterial enhancer binding protein (bEBP) HrpS is essential for Erwinia amylovora virulence by activating the type III secretion system (T3SS). However, how the hrpS gene is regulated remains poorly understood in E. amylovora. In this study, 5' rapid amplification of cDNA ends and promoter deletion analyses showed that the hrpS gene contains two promoters driven by HrpX/HrpY and the Rcs phosphorelay system, respectively. Electrophoretic mobility shift and gene expression assays demonstrated that integration host factor IHF positively regulates hrpS expression through directly binding the hrpX promoter and positively regulating hrpX/hrpY expression. Moreover, hrpX expression was down-regulated in the relA/spoT ((p)ppGpp-deficient) mutant and the dksA mutant, but up-regulated when the wild-type strain was treated with serine hydroxamate, which induced (p)ppGpp-mediated stringent response. Furthermore, the csrA mutant showed significantly reduced transcripts of major hrpS activators, including the hrpX/hrpY, rcsA and rcsB genes, indicating that CsrA is required for full hrpS expression. On the other hand, the csrB mutant exhibited up-regulation of the rcsA and rcsB genes, and hrpS expression was largely diminished in the csrB/rcsB mutant, indicating that the Rcs system is mainly responsible for the increased hrpS expression in the csrB mutant. These findings suggest that E. amylovora recruits multiple stimuli-sensing systems, including HrpX/HrpY, the Rcs phosphorelay system and the Gac-Csr system, to regulate hrpS and T3SS gene expression.

  16. Comparison of prostaglandin F2alpha, bimatoprost (prostamide), and butaprost (EP2 agonist) on Cyr61 and connective tissue growth factor gene expression.

    PubMed

    Liang, Yanbin; Li, Chen; Guzman, Victor M; Evinger, Albert J; Protzman, Charles E; Krauss, Achim H-P; Woodward, David F

    2003-07-18

    Connective tissue growth factor (CTGF) and Cyr61 (cysteine-rich angiogenic protein 61) are members of the CCN gene family that encode multifunctional, extracellular matrix-associated signaling proteins. Because the mechanism of action of certain anti-glaucoma drugs involves extracellular matrix remodeling of ocular ciliary muscle, with a resultant increase in drainage of aqueous humor from the eye, we compared the effects of three pharmacologically distinct ocular hypotensive agents on Cyr61 and CTGF gene expression. Thus, prostaglandin F2alpha (PGF2alpha) (FP receptor agonist), Butaprost (EP2 receptor agonist), and Bimatoprost (a prostamide) were compared. Using Affymetrix gene chip technology, we first identified that PGF2alpha dramatically up-regulated Cyr61 and CTGF mRNA expression in HEK 293/EBNA cells (hFP-HEK 293/EBNA). Northern blot further confirmed the Cyr61 and CTGF up-regulation is in a dose- and time-dependent manner. PGF2alpha-induced up-regulation of Cyr61 appeared to exclusively involve the Rho pathway, and up-regulation of CTGF was via multiple intracellular pathways. Because prostamide receptors are, to date, defined only at the pharmacological level, Bimatoprost effects on Cyr61 and CTGF were studied in the isolated feline iris sphincter preparation, a tissue highly responsive to prostamides. Both PGF2alpha and Bimatoprost up-regulated Cyr61 mRNA expression in the cat iris tissue. Only PGF2alpha up-regulated CTGF mRNA expression in the cat iris. Therefore, PGF2alpha and Bimatoprost appear to interact with different receptors populations in the cat iris, according to their markedly different effects on CTGF. Activation of prostaglandin EP2 receptors (Gs-coupled) also up-regulated Cyr61 but not CTGF mRNA expression in the isolated cat iris. Similar data were observed in human primary ciliary smooth muscle cells. Thus, despite quite different signal transduction pathways, FP receptor stimulation up-regulates CTGF and Cyr61. The prostamide analog Bimatoprost and an EP2-selective agonist affects only Cyr61.

  17. Effect of hypoxia on the expression of genes encoding insulin-like growth factors and some related proteins in U87 glioma cells without IRE1 function.

    PubMed

    Minchenko, Dmytro O; Kharkova, A P; Halkin, O V; Karbovskyi, L L; Minchenko, O H

    2016-04-01

    The aim of the present study was to investigate the effect of hypoxia on the expression of genes encoding insulin-like growth factors (IGF1 and IGF2), their receptor (IGF1R), binding protein-4 (IGFBP4), and stanniocalcin 2 (STC2) in U87 glioma cells in relation to inhibition of endoplasmic reticulum stress signaling mediated by IRE1 (inositol requiring enzyme 1) for evaluation of their possible significance in the control of tumor growth. The expression of IGF1, IGF2, IGF1R, IGFBP4, and STC2 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia was studied by qPCR. The expression of IGF1 and IGF2 genes is down-regulated in glioma cells without IRE1 signaling enzyme function in comparison with the control cells. At the same time, the expression of IGF1R, IGFBP4, and STC2 genes was up-regulated in glioma cells upon inhibition of IRE1, with more significant changes for IGFBP4 and STC2 genes. We also showed that hypoxia does not change significantly the expression of IGF1, IGF2, and IGF1R genes but up-regulated IGFBP4 and STC2 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells does not change significantly the effect of hypoxia on the expression of IGF1, IGF1R, and IGFBP4 genes but introduces sensitivity of IGF2 gene to hypoxic condition. Thus, the expression of IGF2 gene is resistant to hypoxia only in control glioma cells and significantly down-regulated in cells without functional activity of IRE1 signaling enzyme, which is central mediator of the unfolded protein response and an important component of the tumor growth as well as metabolic diseases. Results of this study demonstrate that the expression of IGF1 and IGF1R genes is resistant to hypoxic condition both in control U87 glioma cells and cells without IRE1 signaling enzyme function. However, hypoxia significantly up-regulates the expression of IGFBP4 gene independently on the inhibition of IRE1 enzyme. These data show that proteins encoded by these genes are resistant to hypoxia except IGFBP4 and participate in the regulation of metabolic and proliferative processes through IRE1 signaling.

  18. Hypoxic regulation of the expression of cell proliferation related genes in U87 glioma cells upon inhibition of ire1 signaling enzyme

    PubMed

    Minchenko, O H; Tsymbal, D O; Minchenko, D O; Riabovol, O O; Ratushna, O O; Karbovskyi, L L

    2016-01-01

    We have studied the effect of inhibition of IRE1 (inositol requiring enzyme 1), which is a central mediator of endoplasmic reticulum stress and a controller of cell proliferation and tumor growth, on hypoxic regulation of the expression of different proliferation related genes in U87 glioma cells. It was shown that hypoxia leads to up-regulation of the expression of IL13RA2, CD24, ING1, ING2, ENDOG, and POLG genes and to down-regulation – of KRT18, TRAPPC3, TSFM, and MTIF2 genes at the mRNA level in control glioma cells. Changes for ING1 and CD24 genes were more significant. At the same time, inhibition of IRE1 modifies the effect of hypoxia on the expression of all studied genes. In particular, it increases sensitivity to hypoxia of the expression of IL13RA2, TRAPPC3, ENDOG, and PLOG genes and suppresses the effect of hypoxia on the expression of ING1 gene. Additionally, it eliminates hypoxic regulation of KRT18, CD24, ING2, TSFM, and MTIF2 genes expressions and introduces sensitivity to hypoxia of the expression of BET1 gene in glioma cells. The present study demonstrates that hypoxia, which often contributes to tumor growth, affects the expression of almost all studied genes. Additionally, inhibition of IRE1 can both enhance and suppress the hypoxic regulation of these gene expressions in a gene specific manner and thus possibly contributes to slower glioma growth, but several aspects of this regulation must be further clarified.

  19. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model

    PubMed Central

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40–50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na+ and H+ extrusion. PMID:26903967

  20. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis).

    PubMed

    Zhou, Xiangjun; Fei, Zhangjun; Thannhauser, Theodore W; Li, Li

    2011-11-23

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  1. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis)

    PubMed Central

    2011-01-01

    Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant. PMID:22112144

  2. Gene transcripts selectively down-regulated in the shell of the nucleus accumbens long after heroin self-administration are up-regulated in the core independent of response contingency.

    PubMed

    Jacobs, Edwin H; de Vries, Taco J; Smit, August B; Schoffelmeer, Anton N M

    2004-01-01

    Long-term drug-induced alterations in neurotransmission within the nucleus accumbens (NAc) shell and core may underlie relapse to drug-seeking behavior and drug-taking upon re-exposure to drugs and drug-associated stimuli (cues) during abstinence. Using an open screening strategy, we recently identified 25 gene transcripts, encoding for proteins involved in neuronal functioning and structure that are down-regulated in rat NAc shell after contingent (active), but not after non-contingent (passive), heroin administration. Studying the expression of the same transcripts in the NAc core by means of quantitative PCR, we now demonstrate that most of these transcripts are up-regulated in that NAc subregion long (3 weeks) after heroin self-administration in rats. A similar up-regulation in gene expression was also apparent in the NAc core of animals with a history of non-contingent heroin administration (yoked controls). These data indicate that heroin self-administration differentially regulates genes in the NAc core as compared with the shell. Moreover, whereas cognitive processes involved in active drug self-administration (e.g., instrumental learning) seems to direct gene expression in the NAc shell, neuroplasticity in the NAc core may be due to the pharmacological effects of heroin (including Pavlovian conditioning), as expressed in rats upon contingent as well as non-contingent administration of heroin.

  3. Analyzing Gene Expression Profiles with Preliminary Validations in Cardiac Hypertrophy Induced by Pressure-overload.

    PubMed

    Gao, Jing; Li, Yuhong; Wang, Tongmei; Shi, Zhuo; Zhang, Yiqi; Liu, Shuang; Wen, Pushuai; Ma, Chunyan

    2018-03-06

    The aim of this study was to identify the key genes involved in the cardiac hypertrophy (CH) induced by pressure overload. mRNA microarray dataset GSE5500 and GSE18801 were downloaded from GEO database, and differentially expressed genes (DEGs) were screened using Limma package; then, functional and pathway enrichment analysis were performed for common DEGs using DAVID database. Furthermore, the top DEGs were further validated using qPCR in the hypertrophic heart tissue induced by Isoprenaline (ISO). A total of 113 common DEGs with absolute fold change >0.5, including 60 significantly up-regulated DEGs and 53 down-regulated DEGs were obtained. GO term enrichment analysis suggested that common up-regulated DEG mainly enriched in neutrophil chemotaxis, extracellular fibril organization and cell proliferation, and the common down-regulated genes were significantly enriched in ion transport, endoplasmic reticulum and dendritic spine. KEGG pathway analysis found that the common DEGs were mainly enriched in ECM-receptor interaction, phagosome, and focal adhesion. Additionally, the expression of Mfap4, Ltbp2, Aspn, Serpina3n, and Cnksr1 were up-regulated in the model of cardiac hypertrophy, while the expression of Anp32a was down-regulated. The current study identified the key deregulated genes and pathways involved in the CH, which could shed new light to understand the mechanism of CH.

  4. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    PubMed

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  5. Gene expression profile differences in left and right liver lobes from mid-gestation fetal baboons: a cautionary tale

    PubMed Central

    Cox, Laura A; Schlabritz-Loutsevitch, Natalia; Hubbard, Gene B; Nijland, Mark J; McDonald, Thomas J; Nathanielsz, Peter W

    2006-01-01

    Interpretation of gene array data presents many potential pitfalls in adult tissues. Gene array techniques applied to fetal tissues present additional confounding pitfalls. The left lobe of the fetal liver is supplied with blood containing more oxygen than the right lobe. Since synthetic activity and cell function are oxygen dependent, we hypothesized major differences in mRNA expression between the fetal right and left liver lobes. Our aim was to demonstrate the need to evaluate RNA samples from both lobes. We performed whole genome expression profiling on left and right liver lobe RNA from six 90-day gestation baboon fetuses (term 180 days). Comparing right with left, we found 875 differentially expressed genes – 312 genes were up-regulated and 563 down-regulated. Pathways for damaged DNA binding, endonuclease activity, interleukin binding and receptor activity were up-regulated in right lobe; ontological pathways related to cell signalling, cell organization, cell biogenesis, development, intracellular transport, phospholipid metabolism, protein biosynthesis, protein localization, protein metabolism, translational regulation and vesicle mediated transport were down-regulated in right lobe. Molecular pathway analysis showed down-regulation of pathways related to heat shock protein binding, ion channel and transporter activities, oxygen binding and transporter activities, translation initiation and translation regulator activities. Genes involved in amino acid biosynthesis, lipid biosynthesis and oxygen transport were also differentially expressed. This is the first demonstration of RNA differences between the two lobes of the fetal liver. The data support the argument that a complete interpretation of gene expression in the developing liver requires data from both lobes. PMID:16484296

  6. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress.

    PubMed

    Zhang, Yanjun; Kong, Xiangqiang; Dai, Jianlong; Luo, Zhen; Li, Zhenhuai; Lu, Hequan; Xu, Shizhen; Tang, Wei; Zhang, Dongmei; Li, Weijiang; Xin, Chengsong; Dong, Hezhong

    2017-01-01

    Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.

  7. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress

    PubMed Central

    Zhang, Yanjun; Kong, Xiangqiang; Dai, Jianlong; Luo, Zhen; Li, Zhenhuai; Lu, Hequan; Xu, Shizhen; Tang, Wei; Zhang, Dongmei; Li, Weijiang; Xin, Chengsong

    2017-01-01

    Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress. PMID:28953908

  8. Altered Molecular Expression of the TLR4/NF-κB Signaling Pathway in Mammary Tissue of Chinese Holstein Cattle with Mastitis

    PubMed Central

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis. PMID:25706977

  9. Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis.

    PubMed

    Wu, Jie; Li, Lian; Sun, Yu; Huang, Shuai; Tang, Juan; Yu, Pan; Wang, Genlin

    2015-01-01

    Toll-like receptor 4 (TLR4) mediated activation of the nuclear transcription factor κB (NF-κB) signaling pathway by mastitis initiates expression of genes associated with inflammation and the innate immune response. In this study, the profile of mastitis-induced differential gene expression in the mammary tissue of Chinese Holstein cattle was investigated by Gene-Chip microarray and bioinformatics. The microarray results revealed that 79 genes associated with the TLR4/NF-κB signaling pathway were differentially expressed. Of these genes, 19 were up-regulated and 29 were down-regulated in mastitis tissue compared to normal, healthy tissue. Statistical analysis of transcript and protein level expression changes indicated that 10 genes, namely TLR4, MyD88, IL-6, and IL-10, were up-regulated, while, CD14, TNF-α, MD-2, IL-β, NF-κB, and IL-12 were significantly down-regulated in mastitis tissue in comparison with normal tissue. Analyses using bioinformatics database resources, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and the Gene Ontology Consortium (GO) for term enrichment analysis, suggested that these differently expressed genes implicate different regulatory pathways for immune function in the mammary gland. In conclusion, our study provides new evidence for better understanding the differential expression and mechanisms of the TLR4 /NF-κB signaling pathway in Chinese Holstein cattle with mastitis.

  10. Single administration of recombinant IL-6 restores the gene expression of lipogenic enzymes in liver of fasting IL-6-deficient mice.

    PubMed

    Gavito, A L; Cabello, R; Suarez, J; Serrano, A; Pavón, F J; Vida, M; Romero, M; Pardo, V; Bautista, D; Arrabal, S; Decara, J; Cuesta, A L; Valverde, A M; Rodríguez de Fonseca, F; Baixeras, E

    2016-03-01

    Lipogenesis is intimately controlled by hormones and cytokines as well as nutritional conditions. IL-6 participates in the regulation of fatty acid metabolism in the liver. We investigated the role of IL-6 in mediating fasting/re-feeding changes in the expression of hepatic lipogenic enzymes. Gene and protein expression of lipogenic enzymes were examined in livers of wild-type (WT) and IL-6-deficient (IL-6(-/-) ) mice during fasting and re-feeding conditions. Effects of exogenous IL-6 administration on gene expression of these enzymes were evaluated in vivo. The involvement of STAT3 in mediating these IL-6 responses was investigated by using siRNA in human HepG2 cells. During feeding, the up-regulation in the hepatic expression of lipogenic genes presented similar time kinetics in WT and IL-6(-/-) mice. During fasting, expression of lipogenic genes decreased gradually over time in both strains, although the initial drop was more marked in IL-6(-/-) mice. Protein levels of hepatic lipogenic enzymes were lower in IL-6(-/-) than in WT mice at the end of the fasting period. In WT, circulating IL-6 levels paralleled gene expression of hepatic lipogenic enzymes. IL-6 administration in vivo and in vitro showed that IL-6-mediated signalling was associated with the up-regulation of hepatic lipogenic enzyme genes. Moreover, silencing STAT3 in HepG2 cells attenuated IL-6 mediated up-regulation of lipogenic gene transcription levels. IL-6 sustains levels of hepatic lipogenic enzymes during fasting through activation of STAT3. Our findings indicate that clinical use of STAT3-associated signalling cytokines, particularly against steatosis, should be undertaken with caution. © 2016 The British Pharmacological Society.

  11. Expression of Iroquois genes is up-regulated during early lung development in the nitrofen-induced pulmonary hypoplasia.

    PubMed

    Doi, Takashi; Lukošiūtė, Aušra; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2011-01-01

    Iroquois homeobox (Irx) genes have been implicated in the early lung morphogenesis of vertebrates. Irx1-3 and Irx5 gene expression is seen in fetal lung in rodents up to day (D) 18.5 of gestation. Fetal lung in Irx knockdown mice shows loss of mesenchyme and dilated airspaces, whereas nitrofen-induced hypoplastic lung displays thickened mesenchyme and diminished airspaces. We hypothesized that the Irx genes are up-regulated during early lung morphogenesis in the nitrofen-induced hypoplastic lung. Pregnant rats were exposed either to olive oil or nitrofen on D9. Fetal lungs harvested on D15 were divided into control and nitrofen groups; and the lungs harvested on D18 were divided into control, nitrofen without congenital diaphragmatic hernia (CDH[-]), and nitrofen with CDH (CDH[+]). Irx gene expression levels were analyzed by reverse transcriptase polymerase chain reaction. Immunohistochemistry was performed to evaluate protein expression of Irx family. Pulmonary Irx1-3 and Irx5 messenger RNA expression levels were significantly up-regulated in nitrofen group compared with controls at D15. On D15, Irx immunoreactivity was increased in nitrofen-induced hypoplastic lung compared with controls. Overexpression of Irx genes in the early lung development may cause pulmonary hypoplasia in the nitrofen CDH model by inducing lung dysmorphogenesis with thickened mesenchyme and diminished airspaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis

    PubMed Central

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  13. Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection.

    PubMed

    Liu, Hai-peng; Chen, Rong-yuan; Zhang, Qiu-xia; Peng, Hui; Wang, Ke-jian

    2011-07-01

    White spot syndrome virus (WSSV) is one of the most important viral pathogens in crustaceans. During WSSV infection, multiple cell signaling cascades are activated, leading to the generation of antiviral molecules and initiation of programmed cell death of the virus infected cells. To gain novel insight into cell signaling mechanisms employed in WSSV infection, we have used suppression subtractive hybridization (SSH) to elucidate the cellular response to WSSV challenge at the gene level in red claw crayfish haematopoietic tissue (Hpt) stem cell cultures. Red claw crayfish Hpt cells were infected with WSSV for 1h (L1 library) and 12h (L12 library), respectively, after which the cell RNA was prepared for SSH using uninfected cells as drivers. By screening the L1 and L12 forward libraries, we have isolated the differentially expressed genes of crayfish Hpt cells upon WSSV infection. Among these genes, the level of many key molecules showed clearly up-regulated expression, including the genes involved in immune responses, cytoskeletal system, signal transduction molecules, stress, metabolism and homestasis related genes, and unknown genes in both L1 and L12 libraries. Importantly, of the 2123 clones screened, 176 novel genes were found the first time to be up-regulated in WSSV infection in crustaceans. To further confirm the up-regulation of differentially expressed genes, the semi-quantitative RT-PCR were performed to test twenty randomly selected genes, in which eight of the selected genes exhibited clear up-regulation upon WSSV infection in red claw crayfish Hpt cells, including DNA helicase B-like, multiprotein bridging factor 1, apoptosis-linked gene 2 and an unknown gene-L1635 from L1 library; coatomer gamma subunit, gabarap protein gene, tripartite motif-containing 32 and an unknown gene-L12-254 from L2 library, respectively. Taken together, as well as in immune and stress responses are regulated during WSSV infection of crayfish Hpt cells, our results also light the significance of cytoskeletal system, signal transduction and other unknown genes in the regulation of antiviral signals during WSSV infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Microarray analysis of gene regulations and potential association with acephate-resistance and fitness cost in Lygus lineolaris.

    PubMed

    Zhu, Yu Cheng; Guo, Zibiao; He, Yueping; Luttrell, Randall

    2012-01-01

    The tarnished plant bug has become increasingly resistant to organophosphates in recent years. To better understand acephate resistance mechanisms, biological, biochemical, and molecular experiments were systematically conducted with susceptible (LLS) and acephate-selected (LLR) strains. Selection of a field population with acephate significantly increased resistance ratio to 5.9-fold, coupled with a significant increase of esterase activities by 2-fold. Microarray analysis of 6,688 genes revealed 329 up- and 333 down-regulated (≥2-fold) genes in LLR. Six esterase, three P450, and one glutathione S-transferase genes were significantly up-regulated, and no such genes were down-regulated in LLR. All vitellogenin and eggshell protein genes were significantly down-regulated in LLR. Thirteen protease genes were significantly down-regulated and only 3 were up-regulated in LLR. More than twice the number of catalysis genes and more than 3.6-fold of metabolic genes were up-regulated, respectively, as compared to those down-regulated with the same molecular and biological functions. The large portion of metabolic or catalysis genes with significant up-regulations indicated a substantial increase of metabolic detoxification in LLR. Significant increase of acephate resistance, increases of esterase activities and gene expressions, and variable esterase sequences between LLS and LLR consistently demonstrated a major esterase-mediated resistance in LLR, which was functionally provable by abolishing the resistance with esterase inhibitors. In addition, significant elevation of P450 gene expression and reduced susceptibility to imidacloprid in LLR indicated a concurrent resistance risk that may impact other classes of insecticides. This study demonstrated the first association of down-regulation of reproductive- and digestive-related genes with resistance to conventional insecticides, suggesting potential fitness costs associated with resistance development. This study shed new light on the understanding of the molecular basis of insecticide resistance, and the information is highly valuable for development of chemical control guidelines and tactics to minimize resistance and cross-resistance risks.

  15. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    PubMed

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  16. Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging.

    PubMed

    Dosunmu, Remi; Alashwal, Hany; Zawia, Nasser H

    2012-06-01

    In this study, we assessed global gene expression patterns in adolescent mice exposed to lead (Pb) as infants and their aged siblings to identify reprogrammed genes. Global expression on postnatal day 20 and 700 was analyzed and genes that were down- and up-regulated (≥2 fold) were identified, clustered and analyzed for their relationship to DNA methylation. About 150 genes were differentially expressed in old age. In normal aging, we observed an up-regulation of genes related to the immune response, metal-binding, metabolism and transcription/transduction coupling. Prior exposure to Pb revealed a repression in these genes suggesting that disturbances in developmental stages of the brain compromise the ability to defend against age-related stressors, thus promoting the neurodegenerative process. Overexpression and repression of genes corresponded with their DNA methylation profile. Published by Elsevier Ireland Ltd.

  17. The skin immune response of rainbow trout, Oncorhynchus mykiss (Walbaum), associated with puffy skin disease (PSD).

    PubMed

    Christie, Lyndsay; van Aerle, Ronny; Paley, Richard K; Verner-Jeffreys, David W; Tidbury, Hannah; Green, Matthew; Feist, Stephen W; Cano, Irene

    2018-07-01

    Puffy skin disease (PSD) is an emerging skin condition which affects rainbow trout, Oncorhynchus mykiss (Walbaum). The transmission pattern of PSD suggests an infectious aetiology, however, the actual causative infectious agent(s) remain(s) unknown. In the present study, the rainbow trout epidermal immune response to PSD was characterised. Skin samples from infected fish were analysed and classified as mild, moderate or severe PSD by gross pathology and histological assessment. The level of expression of 26 immune-associated genes including cytokines, immunoglobulins and cell markers were examined by TaqMan qPCR assays. A significant up-regulation of the gene expression of C3, lysozyme, IL-1β and T-bet and down-regulation of TGFβ and TLR3 was observed in PSD fish compared to control fish. MHCI gene expression was up-regulated only in severe PSD lesions. Histological examinations of the epidermis showed a significant increase in the number of eosinophil cells and dendritic melanocytes in PSD fish. In severe lesions, mild diffuse lymphocyte infiltration was observed. IgT and CD8 positive cells were detected locally in the skin of PSD fish by in situ hybridisation (ISH), however, the gene expression of those genes was not different from control fish. Total IgM in serum of diseased animals was not different from control fish, measured by a sandwich ELISA, nor was significant up regulation of IgM gene expression in PSD lesions observed. Taken together, these results show activation of the complement pathway, up-regulation of a Th17 type response and eosinophilia during PSD. This is typical of a response to extracellular pathogens (i.e. bacteria and parasites) and allergens, commonly associated with acute dermatitis. Copyright © 2018. Published by Elsevier Ltd.

  18. RNAi targeting GPR4 influences HMEC-1 gene expression by microarray analysis

    PubMed Central

    Ren, Juan; Zhang, Yuelang; Cai, Hui; Ma, Hongbing; Zhao, Dongli; Zhang, Xiaozhi; Li, Zongfang; Wang, Shufeng; Wang, Jiangsheng; Liu, Rui; Li, Yi; Qian, Jiansheng; Wei, Hongxia; Niu, Liying; Liu, Yan; Xiao, Lisha; Ding, Muyang; Jiang, Shiwen

    2014-01-01

    G-protein coupled receptor 4 (GPR4) belongs to a protein family comprised of 3 closely related G protein-coupled receptors. Recent studies have shown that GPR4 plays important roles in angiogenesis, proton sensing, and regulating tumor cells as an oncogenic gene. How GPR4 conducts its functions? Rare has been known. In order to detect the genes related to GPR4, microarray technology was employed. GPR4 is highly expressed in human vascular endothelial cell HMEC-1. Small interfering RNA against GPR4 was used to knockdown GPR4 expression in HMEC-1. Then RNA from the GPR4 knockdown cells and control cells were analyzed through genome microarray. Microarray results shown that among the whole genes and expressed sequence tags, 447 differentially expressed genes were identified, containing 318 up-regulated genes and 129 down-regulated genes. These genes whose expression dramatically changed may be involved in the GPR4 functions. These genes were related to cell apoptosis, cytoskeleton and signal transduction, cell proliferation, differentiation and cell-cycle regulation, gene transcription and translation and cell material and energy metabolism. PMID:24753754

  19. A nonimprinted Prader-Willi Syndrome (PWS)-region gene regulates a different chromosomal domain in trans but the imprinted pws loci do not alter genome-wide mRNA levels.

    PubMed

    Stefan, Mihaela; Portis, Toni; Longnecker, Richard; Nicholls, Robert D

    2005-05-01

    Prader-Willi syndrome (PWS) is a complex neurobehavioral disorder that results from loss of function of 10 clustered, paternally expressed genes in a 1.5-Mb region of chromosome 15q11-q13. Many of the primary PWS region genes appear to have nuclear RNA regulatory functions, suggesting that multiple genetic pathways could be secondarily affected in PWS. Using a transgenic mouse model of PWS (TgPWS) with an approximately 4-Mb chromosome 7C deletion of paternal origin that models the neonatal phenotype of the human syndrome we compared by oligonucleotide microarrays expression levels of approximately 12,000 genes and ESTs in TgPWS and wild-type brain. Hybridization data were processed with two distinct statistical algorithms and revealed a dramatically reduced expression of 4 imprinted genes within the deletion region in TgPWS mice, with 2 nonimprinted, codeleted genes reduced twofold. However, only 3 genes outside the deletion were significantly altered in TgPWS mouse brain, with approximately 1.5-fold up-regulation of mRNA levels. Remarkably, these genes map to a single chromosome domain (18B3), and by quantitative RT-PCR we show that 8 genes in this domain are up-regulated in TgPWS brain. These 18B3 genes were up-regulated in an equivalent manner in Angelman syndrome mouse (TgAS) brain, which has the same deletion but of maternal origin. Therefore, the trans-regulation of the chromosome 18B3 domain is due to decreased expression of a nonimprinted gene within the TgPWS/AS mouse deletion in mouse chromosome 7C. Most surprisingly, since 48-60% of the genome was screened, it appears that the imprinted mouse PWS loci do not widely regulate mRNA levels of other genes and may regulate RNA structure.

  20. Identification of the key regulating genes of diminished ovarian reserve (DOR) by network and gene ontology analysis.

    PubMed

    Pashaiasl, Maryam; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2016-09-01

    Diminished ovarian reserve (DOR) is one of the reasons for infertility that not only affects both older and young women. Ovarian reserve assessment can be used as a new prognostic tool for infertility treatment decision making. Here, up- and down-regulated gene expression profiles of granulosa cells were analysed to generate a putative interaction map of the involved genes. In addition, gene ontology (GO) analysis was used to get insight intol the biological processes and molecular functions of involved proteins in DOR. Eleven up-regulated genes and nine down-regulated genes were identified and assessed by constructing interaction networks based on their biological processes. PTGS2, CTGF, LHCGR, CITED, SOCS2, STAR and FSTL3 were the key nodes in the up-regulated networks, while the IGF2, AMH, GREM, and FOXC1 proteins were key in the down-regulated networks. MIRN101-1, MIRN153-1 and MIRN194-1 inhibited the expression of SOCS2, while CSH1 and BMP2 positively regulated IGF1 and IGF2. Ossification, ovarian follicle development, vasculogenesis, sequence-specific DNA binding transcription factor activity, and golgi apparatus are the major differential groups between up-regulated and down-regulated genes in DOR. Meta-analysis of publicly available transcriptomic data highlighted the high coexpression of CTGF, connective tissue growth factor, with the other key regulators of DOR. CTGF is involved in organ senescence and focal adhesion pathway according to GO analysis. These findings provide a comprehensive system biology based insight into the aetiology of DOR through network and gene ontology analyses.

  1. Exposure to Cell Phone Radiation Up-Regulates Apoptosis Genes in Primary Cultures of Neurons and Astrocytes

    PubMed Central

    Zhao, Tian-Yong; Zou, Shi-Ping; Knapp, Pamela E.

    2007-01-01

    The health effects of cell phone radiation exposure are a growing public concern. This study investigated whether expression of genes related to cell death pathways are dysregulated in primary cultured neurons and astrocytes by exposure to a working GSM (Global System for Mobile Communication) cell phone rated at a frequency of 1900 MHz. Primary cultures were exposed to cell phone emissions for 2 hrs. We used array analysis and real-time RT-PCR to show up-regulation of caspase-2, caspase-6 and Asc (apoptosis associated speck-like protein containing a card) gene expression in neurons and astrocytes. Upregulation occurred in both “on” and “stand-by” modes in neurons, but only in “on” mode in astrocytes. Additionally, astrocytes showed up-regulation of the Bax gene. The effects are specific since up-regulation was not seen for other genes associated with apoptosis, such as caspase-9 in either neurons and astrocytes, or Bax in neurons. The results show that even relatively short-term exposure to cell phone radiofrequency emissions can up-regulate elements of apoptotic pathways in cells derived from the brain, and that neurons appear to be more sensitive to this effect than astrocytes. PMID:17187929

  2. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  3. Cortical Auditory Deafferentation Induces Long-Term Plasticity in the Inferior Colliculus of Adult Rats: Microarray and qPCR Analysis

    PubMed Central

    Clarkson, Cheryl; Herrero-Turrión, M. Javier; Merchán, Miguel A.

    2012-01-01

    The cortico-collicular pathway is a bilateral excitatory projection from the cortex to the inferior colliculus (IC). It is asymmetric and predominantly ipsilateral. Using microarrays and RT-qPCR we analyzed changes in gene expression in the IC after unilateral lesions of the auditory cortex, comparing the ICs ipsi- and contralateral to the lesioned side. At 15 days after surgery there were mainly changes in gene expression in the IC ipsilateral to the lesion. Regulation primarily involved inflammatory cascade genes, suggesting a direct effect of degeneration rather than a neuronal plastic reorganization. Ninety days after the cortical lesion the ipsilateral IC showed a significant up-regulation of genes involved in apoptosis and axonal regeneration combined with a down-regulation of genes involved in neurotransmission, synaptic growth, and gap junction assembly. In contrast, the contralateral IC at 90 days post-lesion showed an up-regulation in genes primarily related to neurotransmission, cell proliferation, and synaptic growth. There was also a down-regulation in autophagy and neuroprotection genes. These findings suggest that the reorganization in the IC after descending pathway deafferentation is a long-term process involving extensive changes in gene expression regulation. Regulated genes are involved in many different neuronal functions, and the number and gene rearrangement profile seems to depend on the density of loss of the auditory cortical inputs. PMID:23233834

  4. S-ADENOSYLMETHIONINE PREVENTS THE UP REGULATION OF TOLL-LIKE RECEPTOR (TLR) SIGNALING CAUSED BY CHRONIC ETHANOL FEEDING IN RATS

    PubMed Central

    Oliva, Joan; Bardag-Gorce, Fawzia; Li, Jun; French, Barbara A; French, Samuel W

    2011-01-01

    Toll-like receptors (TLR) play a role in mediating the proinflammatory response, fibrogenesis and carcinogenesis in chronic liver diseases such as alcoholic liver disease, non-alcoholic liver disease, hepatitis C and hepatocellular carcinoma. This is true in experimental models of these diseases. For this reason, we investigated the TLR proinflammatory response in the chronic intragastric tube feeding rat model of alcohol liver disease. The methyl donor S-adenosylmethionine was also fed to prevent the gene expression changes induced by ethanol. Ethanol feeding tended to increase the up regulation of the gene expression of TLR2 and TLR4. SAMe feeding prevented this. TLR4 and MyD88 protein levels were significantly increased by ethanol and this was prevented by SAMe. This is the first report where ethanol feeding induced TLR2 and SAMe prevented the induction by ethanol. CD34, FOS, interferon responsive factor 1 (IRF-1), Jun, TLR 1,2,3,4,6 and 7 and Traf-6 were found to be up regulated as seen by microarray analysis where rats were sacrified at high blood alcohol levels compared to pair fed controls. Il-6, IL-10 and IFNγ were also up regulated by high blood levels of ethanol. The gene expression of CD14, MyD88 and TNFR1SF1 were not up regulated by ethanol but were down regulated by SAMe. The gene expression of IL-1R1 and IRF1 tended to be up regulated by ethanol and this was prevented by feeding SAMe. The results suggest that SAMe, fed chronically prevents activation of TLR pathways caused by ethanol. In this way the proinflammatory response, fibrogenesis, cirrhosis and hepatocellular carcinoma formation due to alcohol liver disease could be prevented by SAMe. PMID:21276439

  5. Disruption of Heat Shock Protein 90 (Hsp90)-Protein Kinase Cδ (PKCδ) Interaction by (−)-Maackiain Suppresses Histamine H1 Receptor Gene Transcription in HeLa Cells*

    PubMed Central

    Nariai, Yuki; Mizuguchi, Hiroyuki; Ogasawara, Takeyasu; Nagai, Hiroaki; Sasaki, Yohei; Okamoto, Yasunobu; Yoshimura, Yoshiyuki; Kitamura, Yoshiaki; Nemoto, Hisao; Takeda, Noriaki; Fukui, Hiroyuki

    2015-01-01

    The histamine H1 receptor (H1R) gene is an allergic disease sensitive gene, and its expression level is strongly correlated with the severity of allergic symptoms. (−)-Maackiain was identified as a Kujin-derived anti-allergic compound that suppresses the up-regulation of the H1R gene. However, the underlying mechanism of H1R gene suppression remains unknown. Here, we sought to identify a target protein of (−)-maackiain and investigate its mechanism of action. A fluorescence quenching assay and immunoblot analysis identified heat shock protein 90 (Hsp90) as a target protein of (−)-maackiain. A pull-down assay revealed that (−)-maackiain disrupted the interaction of Hsp90 with PKCδ, resulting in the suppression of phorbol 12-myristate 13-acetate (PMA)-induced up-regulation of H1R gene expression in HeLa cells. Additional Hsp90 inhibitors, including 17-(allylamino)-17-demethoxygeldanamycin, celastrol, and novobiocin also suppressed PMA-induced H1R gene up-regulation. 17-(Allylamino)-17-demethoxygeldanamycin inhibited PKCδ translocation to the Golgi and phosphorylation of Tyr311 on PKCδ. These data suggest that (−)-maackiain is a novel Hsp90 pathway inhibitor. The underlying mechanism of the suppression of PMA-induced up-regulation of H1R gene expression by (−)-maackiain and Hsp90 inhibitors is the inhibition of PKCδ activation through the disruption of Hsp90-PKCδ interaction. Involvement of Hsp90 in H1R gene up-regulation suggests that suppression of the Hsp90 pathway could be a novel therapeutic strategy for allergic rhinitis. PMID:26391399

  6. Ezrin Inhibition Up-regulates Stress Response Gene Expression*

    PubMed Central

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T.; Minas, Tsion Z.; Conn, Erin J.; Hong, Sung-Hyeok; Pauly, Gary T.; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A.; Toretsky, Jeffrey A.; Üren, Aykut

    2016-01-01

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. PMID:27137931

  7. Screening of differentially expressed genes between multiple trauma patients with and without sepsis.

    PubMed

    Ji, S C; Pan, Y T; Lu, Q Y; Sun, Z Y; Liu, Y Z

    2014-03-17

    The purpose of this study was to identify critical genes associated with septic multiple trauma by comparing peripheral whole blood samples from multiple trauma patients with and without sepsis. A microarray data set was downloaded from the Gene Expression Omnibus (GEO) database. This data set included 70 samples, 36 from multiple trauma patients with sepsis and 34 from multiple trauma patients without sepsis (as a control set). The data were preprocessed, and differentially expressed genes (DEGs) were then screened for using packages of the R language. Functional analysis of DEGs was performed with DAVID. Interaction networks were then established for the most up- and down-regulated genes using HitPredict. Pathway-enrichment analysis was conducted for genes in the networks using WebGestalt. Fifty-eight DEGs were identified. The expression levels of PLAU (down-regulated) and MMP8 (up-regulated) presented the largest fold-changes, and interaction networks were established for these genes. Further analysis revealed that PLAT (plasminogen activator, tissue) and SERPINF2 (serpin peptidase inhibitor, clade F, member 2), which interact with PLAU, play important roles in the pathway of the component and coagulation cascade. We hypothesize that PLAU is a major regulator of the component and coagulation cascade, and down-regulation of PLAU results in dysfunction of the pathway, causing sepsis.

  8. Differential gene expression by 1,25(OH)2D3 in an endometriosis stromal cell line.

    PubMed

    Ingles, Sue Ann; Wu, Liang; Liu, Benjamin T; Chen, Yibu; Wang, Chun-Yeh; Templeman, Claire; Brueggmann, Doerthe

    2017-10-01

    Endometriosis is a common female reproductive disease characterized by invasion of endometrial cells into other organs, frequently causing pelvic pain and infertility. Alterations of the vitamin D system have been linked to endometriosis incidence and severity. To shed light on the potential mechanism for these associations, we examined the effects of 1,25(OH) 2 D 3 on gene expression in endometriosis cells. Stromal cell lines derived from endometriosis tissue were treated with 1,25(OH) 2 D 3 , and RNA-seq was used to identify genes differentially expressed between treated and untreated cells. Gene ontology and pathway analyses were carried out using Partek Flow and Ingenuity software suites, respectively. We identified 1627 genes that were differentially expressed (886 down-regulated and 741 up-regulated) by 1,25(OH) 2 D 3 . Only one gene, CYP24A1, was strongly up-regulated (369-fold). Many genes were strongly down-regulated. 1,25(OH) 2 D 3 treatment down-regulated several genetic pathways related to neuroangiogenesis, cellular motility, and invasion, including pathways for axonal guidance, Rho GDP signaling, and matrix metalloprotease inhibition. These findings support a role for vitamin D in the pathophysiology of endometriosis, and provide new targets for investigation into possible causes and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparison between smaller ruptured intracranial aneurysm and larger un-ruptured intracranial aneurysm: gene expression profile analysis.

    PubMed

    Li, Hao; Li, Haowen; Yue, Haiyan; Wang, Wen; Yu, Lanbing; ShuoWang; Cao, Yong; Zhao, Jizong

    2017-07-01

    As it grows in size, an intracranial aneurysm (IA) is prone to rupture. In this study, we compared two extreme groups of IAs, ruptured IAs (RIAs) smaller than 10 mm and un-ruptured IAs (UIAs) larger than 10 mm, to investigate the genes involved in the facilitation and prevention of IA rupture. The aneurismal walls of 6 smaller saccular RIAs (size smaller than 10 mm), 6 larger saccular UIAs (size larger than 10 mm) and 12 paired control arteries were obtained during surgery. The transcription profiles of these samples were studied by microarray analysis. RT-qPCR was used to confirm the expression of the genes of interest. In addition, functional group analysis of the differentially expressed genes was performed. Between smaller RIAs and larger UIAs, 101 genes and 179 genes were significantly over-expressed, respectively. In addition, functional group analysis demonstrated that the up-regulated genes in smaller RIAs mainly participated in the cellular response to metal ions and inorganic substances, while most of the up-regulated genes in larger UIAs were involved in inflammation and extracellular matrix (ECM) organization. Moreover, compared with control arteries, inflammation was up-regulated and muscle-related biological processes were down-regulated in both smaller RIAs and larger UIAs. The genes involved in the cellular response to metal ions and inorganic substances may facilitate the rupture of IAs. In addition, the healing process, involving inflammation and ECM organization, may protect IAs from rupture.

  10. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  11. Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera).

    PubMed

    Chaâbene, Zayneb; Rorat, Agnieszka; Rekik Hakim, Imen; Bernard, Fabien; Douglas, Grubb C; Elleuch, Amine; Vandenbulcke, Franck; Mejdoub, Hafedh

    2018-04-01

    Phytochelatin synthase and metallothionein gene expressions were monitored via qPCR in order to investigate the molecular mechanisms involved in Cd and Cr detoxification in date palm (Phoenix dactylifera). A specific reference gene validation procedure using BestKeeper, NormFinder and geNorm programs allowed selection of the three most stable reference genes in a context of Cd or Cr contamination among six reference gene candidates, namely elongation factor α1, actin, aldehyde dehydrogenase, SAND family, tubulin 6 and TaTa box binding protein. Phytochelatin synthase (pcs) and metallothionein (mt) encoding gene expression were induced from the first days of exposure. At low Cd stress (0.02 mM), genes were still up-regulated until 60th day of exposure. At the highest metal concentrations, however, pcs and mt gene expressions decreased. pcs encoding gene was significantly up-regulated under Cr exposure, and was more responsive to increasing Cr concentration than mt encoding gene. Moreover, exposure to Cd or Cr influenced clearly seed germination and hypocotyls elongation. Thus, the results have proved that both analyzed genes participate in metal detoxification and their expression is regulated at transcriptional level in date palm subjected to Cr and Cd stress. Consequently, variations of expression of mt and pcs genes may serve as early-warning biomarkers of metal stress in this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings.

    PubMed

    Li, Shi-Weng; Leng, Yan; Shi, Rui-Fang

    2017-02-17

    Hydrogen peroxide (H 2 O 2 ) has been known to function as a signalling molecule involved in the modulation of various physiological processes in plants. H 2 O 2 has been shown to act as a promoter during adventitious root formation in hypocotyl cuttings. In this study, RNA-Seq was performed to reveal the molecular mechanisms underlying H 2 O 2 -induced adventitious rooting. RNA-Seq data revealed that H 2 O 2 treatment greatly increased the numbers of clean reads and expressed genes and abundance of gene expression relative to the water treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that a profound change in gene function occurred in the 6-h H 2 O 2 treatment and that H 2 O 2 mainly enhanced gene expression levels at the 6-h time point but reduced gene expression levels at the 24-h time point compared with the water treatment. In total, 4579 differentially expressed (2-fold change > 2) unigenes (DEGs), of which 78.3% were up-regulated and 21.7% were down-regulated; 3525 DEGs, of which 64.0% were up-regulated and 36.0% were down-regulated; and 7383 DEGs, of which 40.8% were up-regulated and 59.2% were down-regulated were selected in the 6-h, 24-h, and from 6- to 24-h treatments, respectively. The number of DEGs in the 6-h treatment was 29.9% higher than that in the 24-h treatment. The functions of the most highly regulated genes were associated with stress response, cell redox homeostasis and oxidative stress response, cell wall loosening and modification, metabolic processes, and transcription factors (TFs), as well as plant hormone signalling, including auxin, ethylene, cytokinin, gibberellin, and abscisic acid pathways. Notably, a large number of genes encoding for heat shock proteins (HSPs) and heat shock transcription factors (HSFs) were significantly up-regulated during H 2 O 2 treatments. Furthermore, real-time quantitative PCR (qRT-PCR) results showed that, during H 2 O 2 treatments, the expression levels of ARFs, IAAs, AUXs, NACs, RD22, AHKs, MYBs, PIN1, AUX15A, LBD29, LBD41, ADH1b, and QORL were significantly up-regulated at the 6- and/or 24-h time points. In contrast, PER1 and PER2 were significantly down-regulated by H 2 O 2 treatment. These qRT-PCR results strongly correlated with the RNA-Seq data. Using RNA-Seq and qRT-PCR techniques, we analysed the global changes in gene expression and functional profiling during H 2 O 2 -induced adventitious rooting in mung bean seedlings. These results strengthen the current understanding of H 2 O 2 -induced adventitious rooting and the molecular traits of H 2 O 2 priming in plants.

  13. Inducible, tunable and multiplex human gene regulation using CRISPR-Cpf1-based transcription factors | Office of Cancer Genomics

    Cancer.gov

    Targeted and inducible regulation of mammalian gene expression is a broadly important research capability that may also enable development of novel therapeutics for treating human diseases. Here we demonstrate that a catalytically inactive RNA-guided CRISPR-Cpf1 nuclease fused to transcriptional activation domains can up-regulate endogenous human gene expression. We engineered drug-inducible Cpf1-based activators and show how this system can be used to tune the regulation of endogenous gene transcription in human cells.

  14. MTA3 regulates CGB5 and Snail genes in trophoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Miyazaki, Jun; Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed inmore » the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3 occupied the proximal promoter regions of both Snail and hCG within BeWo cells. Furthermore, we examined MTA3 expression in placental trophoblast by immunohistochemistry and found that MTA3 expression was higher in villous cytotrophoblasts versus syncytiotrophoblasts, which supports an inverse association of MTA3 with hCG expression. Lastly, using the well-characterized trophoblast fusion model, we examined MTA3 and hCG levels in forskolin-treated BeWo cells and found that MTA3 down-regulation was accompanied by an up-regulation of hCG. These data further suggest that MTA3 is repressing placental hCG expression. In summary, MTA3 plays a critical role in repressing hCG and Snail in placenta trophoblast and its deregulation is associated with preeclampsia.« less

  15. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum

    PubMed Central

    Ngwa, Che J.; Kiesow, Meike J.; Papst, Olga; Orchard, Lindsey M.; Filarsky, Michael; Rosinski, Alina N.; Voss, Till S.; Llinás, Manuel; Pradel, Gabriele

    2017-01-01

    Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1 expression mainly in the sexual stages of P. falciparum with peak expression in stage II gametocytes, where the protein localized to the nucleus and cytoplasm. Pfrnf1 promoter and coding regions associated with acetylated histones, and TSA-treatment resulted in increased PfRNF1 levels. Our combined data point to an essential role of histone acetylation for gene regulation in gametocytes, which can be exploited for malaria transmission-blocking interventions. PMID:28791254

  16. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.

    PubMed

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.

  17. Gene Expression in Gut Symbiotic Organ of Stinkbug Affected by Extracellular Bacterial Symbiont

    PubMed Central

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations. PMID:23691247

  18. [Knockdown of dopamine receptor D2 upregulates the expression of adiogenic genes in mouse primary mesencephalic neurons].

    PubMed

    Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi

    2018-01-01

    Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.

  19. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni

    PubMed Central

    de Paula, Renato G.; Ornelas, Alice M. M.; Moreira, Érika B. C.; Badoco, Fernanda Rafacho; Magalhães, Lizandra G.; Verjovski-Almeida, Sergio; Rodrigues, Vanderlei

    2017-01-01

    Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites’ tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis. PMID:28898250

  20. Expression of a chitin deacetylase gene, up-regulated in Cryptococcus laurentii strain RY1, under nitrogen limitation.

    PubMed

    Chakraborty, Writachit; Sarkar, Soumyadev; Chakravorty, Somnath; Bhattacharya, Semantee; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-05-01

    This study reports the identification of a chitin deacetylase gene in Cryptococcus laurentii strain RY1 over-expressing under nitrogen limitation by differential display. The up-regulation took place in robustly growing cells rather than in starving quiescent autophagic cells. Quantitative Real Time-PCR, enzyme activity in cell lysate and cell wall analysis corroborated the up-regulation of chitin deacetylase under nitrogen limitation. These results suggest chitin deacetylase might play a significant role in nitrogen limiting growth of Cryptococcus laurentii strain RY1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Ca2+/Calcineurin-Regulated cup Gene Family in Dictyostelium discoideum and Its Possible Involvement in Development

    PubMed Central

    Coukell, Barrie; Li, Yi; Moniakis, John; Cameron, Anne

    2004-01-01

    Changes in free intracellular Ca2+ are thought to regulate several major processes during Dictyostelium development, including cell aggregation and cell type-specific gene expression, but the mechanisms involved are unclear. To learn more about Ca2+ signaling and Ca2+ homeostasis in this organism, we used suppression subtractive hybridization to identify genes up-regulated by high extracellular Ca2+. Unexpectedly, many of the genes identified belong to a novel gene family (termed cup) with seven members. In vegetative cells, the cup genes were up-regulated by high Ca2+ but not by other ions or by heat, oxidative, or osmotic stress. cup induction by Ca2+ was blocked completely by inhibitors of calcineurin and protein synthesis. In developing cells, cup expression was high during aggregation and late development but low during the slug stage. This pattern correlates closely with reported levels of free intracellular Ca2+ during development. The cup gene products are highly homologous, acidic proteins possessing putative ricin domains. BLAST searches failed to reveal homologs in other organisms, but Western analyses suggested that Cup-like proteins might exist in certain other cellular slime mold species. Localization experiments indicated that Cup proteins are primarily cytoplasmic but become cell membrane-associated during Ca2+ stress and cell aggregation. When cup expression was down-regulated by antisense RNA, the cells failed to aggregate. However, this developmental block was overcome by partially up-regulating cup expression. Together, these results suggest that the Cup proteins in Dictyostelium might play an important role in stabilizing and/or regulating the cell membrane during Ca2+ stress and/or certain stages of development. PMID:14871937

  2. Expression of Glutamine Transporter Slc38a3 (SNAT3) During Acidosis is Mediated by a Different Mechanism than Tissue-Specific Expression

    PubMed Central

    Balkrishna, Sarojini; Bröer, Angelika; Welford, Scott M.; Hatzoglou, Maria; Bröer, Stefan

    2015-01-01

    Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene. PMID:24854847

  3. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia

    PubMed Central

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J. V.; Schulz, Marcel H.; Simon, Martin

    2015-01-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. PMID:26231545

  4. Microgravity and Immunity: Changes in Lymphocyte Gene Expression

    NASA Technical Reports Server (NTRS)

    Risin, D.; Pellis, N. R.; Ward, N. E.; Risin, S. A.

    2006-01-01

    Earlier studies had shown that modeled and true microgravity (MG) cause multiple direct effects on human lymphocytes. MG inhibits lymphocyte locomotion, suppresses polyclonal and antigen-specific activation, affects signal transduction mechanisms, as well as activation-induced apoptosis. In this study we assessed changes in gene expression associated with lymphocyte exposure to microgravity in an attempt to identify microgravity-sensitive genes (MGSG) in general and specifically those genes that might be responsible for the functional and structural changes observed earlier. Two sets of experiments targeting different goals were conducted. In the first set, T-lymphocytes from normal donors were activated with antiCD3 and IL2 and then cultured in 1g (static) and modeled MG (MMG) conditions (Rotating Wall Vessel bioreactor) for 24 hours. This setting allowed searching for MGSG by comparison of gene expression patterns in zero and 1 g gravity. In the second set - activated T-cells after culturing for 24 hours in 1g and MMG were exposed three hours before harvesting to a secondary activation stimulus (PHA) thus triggering the apoptotic pathway. Total RNA was extracted using the RNeasy isolation kit (Qiagen, Valencia, CA). Affymetrix Gene Chips (U133A), allowing testing for 18,400 human genes, were used for microarray analysis. In the first set of experiments MMG exposure resulted in altered expression of 89 genes, 10 of them were up-regulated and 79 down-regulated. In the second set, changes in expression were revealed in 85 genes, 20 were up-regulated and 65 were down-regulated. The analysis revealed that significant numbers of MGS genes are associated with signal transduction and apoptotic pathways. Interestingly, the majority of genes that responded by up- or down-regulation in the alternative sets of experiments were not the same, possibly reflecting different functional states of the examined T-lymphocyte populations. The responder genes (MGSG) might play an essential role in adaptation to MG and/or be responsible for pathologic changes encountered in Space and thus represent potential targets for molecular-based countermeasures

  5. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells.

    PubMed

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-04-11

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells.

  6. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    PubMed Central

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely unknown. Therefore, we investigated the effects of two non-selective HDACi, trichostatin A (TSA) and sodium butyrate (SB), on the expression of the cathelicidin LL-37 in human airway epithelial cells. LL37 in human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells(PNEC) in response to HDAC inhibitors with or without poly (I:C) stimulation was assessed using real-time PCR and western blot. In parallel, IL-6 expression was evaluated by ELISA. Our results showed that HDAC inhibitors up-regulated LL-37 gene expression independent of poly (I:C) stimulation in PNEC as well as in NCI-H292 cells. HDAC inhibitors increased LL37 protein expression in NCI-H292 cells but not in PNEC. In addition, HDAC inhibitors significantly inhibited poly (I:C)-induced IL-6 production in both of the epithelial cells. In conclusion, HDAC inhibitors directly up-regulated LL-37 gene expression in human airway epithelial cells. PMID:23577829

  7. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

    PubMed

    González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J

    2014-10-01

    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

  8. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.

    PubMed

    Muff, Roman; Rath, Prisni; Ram Kumar, Ram Mohan; Husmann, Knut; Born, Walter; Baudis, Michael; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages. The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines. Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

  9. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acidmore » binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.« less

  10. Transcriptome Analysis of ABA/JA-Dual Responsive Genes in Rice Shoot and Root.

    PubMed

    Kim, Jin-Ae; Bhatnagar, Nikita; Kwon, Soon Jae; Min, Myung Ki; Moon, Seok-Jun; Yoon, In Sun; Kwon, Taek-Ryoun; Kim, Sun Tae; Kim, Beom-Gi

    2018-01-01

    The phytohormone abscisic acid (ABA) enables plants to adapt to adverse environmental conditions through the modulation of metabolic pathways and of growth and developmental programs. We used comparative microarray analysis to identify genes exhibiting ABA-dependent expression and other hormone-dependent expression among them in Oryza sativa shoot and root. We identified 854 genes as significantly up- or down-regulated in root or shoot under ABA treatment condition. Most of these genes had similar expression profiles in root and shoot under ABA treatment condition, whereas 86 genes displayed opposite expression responses in root and shoot. To examine the crosstalk between ABA and other hormones, we compared the expression profiles of the ABA-dependently regulated genes under several different hormone treatment conditions. Interestingly, around half of the ABA-dependently expressed genes were also regulated by jasmonic acid based on microarray data analysis. We searched the promoter regions of these genes for cis-elements that could be responsible for their responsiveness to both hormones, and found that ABRE and MYC2 elements, among others, were common to the promoters of genes that were regulated by both ABA and JA. These results show that ABA and JA might have common gene expression regulation system and might explain why the JA could function for both abiotic and biotic stress tolerance.

  11. Influence of white spot syndrome virus infection on hepatopancreas gene expression of `Huanghai No. 2' shrimp ( Fenneropenaeus chinensis)

    NASA Astrophysics Data System (ADS)

    Meng, Xianhong; Shi, Xiaoli; Kong, Jie; Luan, Sheng; Luo, Kun; Cao, Baoxiang; Liu, Ning; Lu, Xia; Li, Xupeng; Deng, Kangyu; Cao, Jiawang; Zhang, Yingxue; Zhang, Hengheng

    2017-10-01

    To elucidate the molecular response of shrimp hepatopancreas to white spot syndrome virus (WSSV) infection, microarray was applied to investigate the differentially expressed genes in the hepatopancreas of `Huanghai No. 2' ( Fenneropenaeus chinensis). A total of 59137 unigenes were designed onto a custom-made 60K Agilent chip. After infection, the gene expression profiles in the hepatopancreas of the shrimp with a lower viral load at early (48-96 h), peak (168-192 h) and late (264-288 h) infection phases were analyzed. Of 18704 differentially expressed genes, 6412 were annotated. In total, 5453 differentially expressed genes (1916 annotated) expressed at all three phases, and most of the annotated were either up- or down-regulated continuously. These genes function diversely in, for example, immune response, cytoskeletal system, signal transduction, stress resistance, protein synthesis and processing, metabolism among others. Some of the immune-related genes, including antilipopolysaccharide factor, Kazal-type proteinase inhibitor, C-type lectin and serine protease encoding genes, were up-regulated after WSSV infection. These genes have been reported to be involved in the anti-WSSV responses. The expression of genes related to the cytoskeletal system, including β-actin and myosin but without tubulin genes, were down-regulated after WSSV infection. Astakine was found for the first time in the WSSV-infected F. chinensis. To further confirm the expression of differentially expressed genes, quantitative real-time PCR was performed to test the expression of eight randomly selected genes and verified the reliability and accuracy of the microarray expression analysis. The data will provide valuable information to understanding the immune mechanism of shrimp's response to WSSV.

  12. RNA-Seq Analysis of Developing Pecan (Carya illinoinensis) Embryos Reveals Parallel Expression Patterns among Allergen and Lipid Metabolism Genes.

    PubMed

    Mattison, Christopher P; Rai, Ruhi; Settlage, Robert E; Hinchliffe, Doug J; Madison, Crista; Bland, John M; Brashear, Suzanne; Graham, Charles J; Tarver, Matthew R; Florane, Christopher; Bechtel, Peter J

    2017-02-22

    The pecan nut is a nutrient-rich part of a healthy diet full of beneficial fatty acids and antioxidants, but can also cause allergic reactions in people suffering from food allergy to the nuts. The transcriptome of a developing pecan nut was characterized to identify the gene expression occurring during the process of nut development and to highlight those genes involved in fatty acid metabolism and those that commonly act as food allergens. Pecan samples were collected at several time points during the embryo development process including the water, gel, dough, and mature nut stages. Library preparation and sequencing were performed using Illumina-based mRNA HiSeq with RNA from four time points during the growing season during August and September 2012. Sequence analysis with Trinotate software following the Trinity protocol identified 133,000 unigenes with 52,267 named transcripts and 45,882 annotated genes. A total of 27,312 genes were defined by GO annotation. Gene expression clustering analysis identified 12 different gene expression profiles, each containing a number of genes. Three pecan seed storage proteins that commonly act as allergens, Car i 1, Car i 2, and Car i 4, were significantly up-regulated during the time course. Up-regulated fatty acid metabolism genes that were identified included acyl-[ACP] desaturase and omega-6 desaturase genes involved in oleic and linoleic acid metabolism. Notably, a few of the up-regulated acyl-[ACP] desaturase and omega-6 desaturase genes that were identified have expression patterns similar to the allergen genes based upon gene expression clustering and qPCR analysis. These findings suggest the possibility of coordinated accumulation of lipids and allergens during pecan nut embryogenesis.

  13. Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension

    PubMed Central

    Dehlin, Heather M.; Manteufel, Edward J.; Monroe, Andrew L.; Reimer, Michael H.; Levick, Scott P.

    2013-01-01

    Background Substance P is a sensory nerve neuropeptide located near coronary vessels in the heart. Therefore, substance P may be one of the first mediators released in the heart in response to hypertension, and can contribute to adverse myocardial remodeling via interactions with the neurokinin-1 receptor. We asked: 1) whether substance P promoted cardiac hypertrophy, including the expression of fetal genes known to be re-expressed during pathological hypertrophy; and 2) the extent to which substance P regulated collagen production and fibrosis. Methods and Results Spontaneously hypertensive rats (SHR) were treated with the neurokinin-1 receptor antagonist L732138 (5 mg/kg/d) from 8 to 24 weeks of age. Age-matched WKY served as controls. The gene encoding substance P, TAC1, was up-regulated as blood pressure increased in SHR. Fetal gene expression by cardiomyocytes was increased in SHR and was prevented by L732138. Cardiac fibrosis also occurred in the SHR and was prevented by L732138. Endothelin-1 was up-regulated in the SHR and this was prevented by L732138. In isolated cardiac fibroblasts, substance P transiently up-regulated several genes related to cell-cell adhesion, cell-matrix adhesion, and extracellular matrix regulation, however, no changes in fibroblast function were observed. Conclusions Substance P activation of the neurokinin-1 receptor induced expression of fetal genes related to pathological hypertrophy in the hypertensive heart. Additionally, activation of the neurokinin-1 receptor was critical to the development of cardiac fibrosis. Since no functional changes were induced in isolated cardiac fibroblasts by substance P, we conclude that substance P mediates fibrosis via up-regulation of endothelin-1. PMID:23962787

  14. Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF

    PubMed Central

    García-Cano, Elena; Magori, Shimpei; Sun, Qi; Ding, Zehong; Lazarowitz, Sondra G.; Citovsky, Vitaly

    2015-01-01

    Agrobacterium is a natural genetic engineer of plants that exports several virulence proteins into host cells in order to take advantage of the cell machinery to facilitate transformation and support bacterial growth. One of these effectors is the F-box protein VirF, which presumably uses the host ubiquitin/proteasome system (UPS) to uncoat the packaging proteins from the invading bacterial T-DNA. By analogy to several other bacterial effectors, VirF most likely has several functions in the host cell and, therefore, several interacting partners among host proteins. Here we identify one such interactor, an Arabidopsis trihelix-domain transcription factor VFP3, and further show that its very close homolog VFP5 also interacted with VirF. Interestingly, interactions of VirF with either VFP3 or VFP5 did not activate the host UPS, suggesting that VirF might play other UPS-independent roles in bacterial infection. To better understand the potential scope of VFP3 function, we used RNAi to reduce expression of the VFP3 gene. Transcriptome profiling of these VFP3-silenced plants using high-throughput cDNA sequencing (RNA-seq) revealed that VFP3 substantially affected plant gene expression; specifically, 1,118 genes representing approximately 5% of all expressed genes were significantly either up- or down-regulated in the VFP3 RNAi line compared to wild-type Col-0 plants. Among the 507 up-regulated genes were genes implicated in the regulation of transcription, protein degradation, calcium signaling, and hormone metabolism, whereas the 611 down-regulated genes included those involved in redox regulation, light reactions of photosynthesis, and metabolism of lipids, amino acids, and cell wall. Overall, this pattern of changes in gene expression is characteristic of plants under stress. Thus, VFP3 likely plays an important role in controlling plant homeostasis. PMID:26571494

  15. Integrated proteomics identified novel activation of dynein IC2-GR-COX-1 signaling in neurofibromatosis type I (NF1) disease model cells.

    PubMed

    Hirayama, Mio; Kobayashi, Daiki; Mizuguchi, Souhei; Morikawa, Takashi; Nagayama, Megumi; Midorikawa, Uichi; Wilson, Masayo M; Nambu, Akiko N; Yoshizawa, Akiyasu C; Kawano, Shin; Araki, Norie

    2013-05-01

    Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural abnormalities are, in part, caused by up-regulation of dynein IC2-GR-COX-1 signaling, which may be a novel therapeutic target for NF1.

  16. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    PubMed

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  17. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  18. [Screening of virulence gene in golden hamster cheek pouch mucosa carcinomatous change induced by 9,10-dimethylene-1,2-benzanthracene].

    PubMed

    Zhang, Guo-dong; Yang, Kai; Mei, Jie

    2010-05-01

    To examine and analyze the global gene expression at the different stages of golden hamster cheek pouch mucosa carcinomatous change induced by 9,10-dimethylene-1,2 benzanthracene (DMBA). The model of golden hamster cheek pouch squamous cell carcinoma was induced by DMBA. The RNA of normal mucosa, precancerous lesions and squamous cell carcinoma of fresh tissue of golden hamsters was extracted and purified and the cRNA labeled by fluorescent Cy3 synthesized, which respectively hybridized with the agilent rat cDNA microarray containing 41 000 genes-expressed sequence tags, scanning with Agilent G2565AA fluorescence scanner. The Ratio>or=2 and Ratio

  19. Daytime soybean transcriptome fluctuations during water deficit stress.

    PubMed

    Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Marcolino-Gomes, Juliana; Nakayama, Thiago Jonas; Molinari, Hugo Bruno Correa; Lobo, Francisco Pereira; Harmon, Frank G; Nepomuceno, Alexandre Lima

    2015-07-07

    Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.

  20. RNA-seq methods for identifying differentially expressed gene in human pancreatic islet cells treated with pro-inflammatory cytokines.

    PubMed

    Li, Bo; Bi, Chang Long; Lang, Ning; Li, Yu Ze; Xu, Chao; Zhang, Ying Qi; Zhai, Ai Xia; Cheng, Zhi Feng

    2014-01-01

    Type 1 diabetes is a chronic autoimmune disease in which pancreatic beta cells are killed by the infiltrating immune cells as well as the cytokines released by these cells. Many studies indicate that inflammatory mediators have an essential role in this disease. In the present study, we profiled the transcriptome in human islets of langerhans under control conditions or following exposure to the pro-inflammatory cytokines based on the RNA sequencing dataset downloaded from SRA database. After filtered the low-quality ones, the RNA readers was aligned to human genome hg19 by TopHat and then assembled by Cufflinks. The expression value of each transcript was calculated and consequently differentially expressed genes were screened out. Finally, a total of 63 differentially expressed genes were identified including 60 up-regulated and three down-regulated genes. GBP5 and CXCL9 stood out as the top two most up-regulated genes in cytokines treated samples with the log2 fold change of 12.208 and 10.901, respectively. Meanwhile, PTF1A and REG3G were identified as the top two most down-regulated genes with the log2 fold change of -3.759 and -3.606, respectively. Of note, we also found 262 lncRNAs (long non-coding RNA), 177 of which were inferred as novel lncRNAs. Further in-depth follow-up analysis of the transcriptional regulation reported in this study may shed light on the specific function of these lncRNA.

  1. A framework to identify gene expression profiles in a model of inflammation induced by lipopolysaccharide after treatment with thalidomide

    PubMed Central

    2012-01-01

    Background Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS) stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. Results We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. Conclusions The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis. PMID:22695124

  2. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome

    PubMed Central

    Gunewardena, Sumedha S.; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D.; Cui, Julia Yue

    2015-01-01

    During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome. PMID:26496202

  3. Deciphering the Developmental Dynamics of the Mouse Liver Transcriptome.

    PubMed

    Gunewardena, Sumedha S; Yoo, Byunggil; Peng, Lai; Lu, Hong; Zhong, Xiaobo; Klaassen, Curtis D; Cui, Julia Yue

    2015-01-01

    During development, liver undergoes a rapid transition from a hematopoietic organ to a major organ for drug metabolism and nutrient homeostasis. However, little is known on a transcriptome level of the genes and RNA-splicing variants that are differentially regulated with age, and which up-stream regulators orchestrate age-specific biological functions in liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcriptome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were significantly expressed in at least one age, 7,289 were differently regulated with age, and 859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of hepatic genes fall into six distinct groups based on their temporal expression. The average expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and translation regulators decreased with age, whereas the average expression of peptidases, enzymes and transmembrane receptors increased with age. The average expression of growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified critical biological functions, upstream regulators, and putative transcription modules that seem to govern age-specific gene expression. We also observed differential ontogenic expression of known splicing variants of certain genes, and 1,455 novel splicing isoform candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled critical networks and up-stream regulators that orchestrate age-specific biological functions in liver, and suggest that age contributes to the complexity of the alternative splicing landscape of the hepatic transcriptome.

  4. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development

    PubMed Central

    2012-01-01

    Background During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the protection and dispersal of sexual spores. Fruiting bodies contain a number of cell types not found in vegetative mycelium, and these morphological differences are thought to be mediated by changes in gene expression. However, little is known about the spatial distribution of gene expression in fungal development. Here, we used laser microdissection (LM) and RNA-seq to determine gene expression patterns in young fruiting bodies (protoperithecia) and non-reproductive mycelia of the ascomycete Sordaria macrospora. Results Quantitative analysis showed major differences in the gene expression patterns between protoperithecia and total mycelium. Among the genes strongly up-regulated in protoperithecia were the pheromone precursor genes ppg1 and ppg2. The up-regulation was confirmed by fluorescence microscopy of egfp expression under the control of ppg1 regulatory sequences. RNA-seq analysis of protoperithecia from the sterile mutant pro1 showed that many genes that are differentially regulated in these structures are under the genetic control of transcription factor PRO1. Conclusions We have generated transcriptional profiles of young fungal sexual structures using a combination of LM and RNA-seq. This allowed a high spatial resolution and sensitivity, and yielded a detailed picture of gene expression during development. Our data revealed significant differences in gene expression between protoperithecia and non-reproductive mycelia, and showed that the transcription factor PRO1 is involved in the regulation of many genes expressed specifically in sexual structures. The LM/RNA-seq approach will also be relevant to other eukaryotic systems in which multicellular development is investigated. PMID:23016559

  5. Differentiation and Glucocorticoid Regulated Apopto-Phagocytic Gene Expression Patterns in Human Macrophages. Role of Mertk in Enhanced Phagocytosis

    PubMed Central

    Zahuczky, Gábor; Kristóf, Endre; Majai, Gyöngyike; Fésüs, László

    2011-01-01

    The daily clearance of physiologically dying cells is performed safely mainly by cells in the mononuclear phagocyte system. They can recognize and engulf dying cells utilizing several cooperative mechanisms. In our study we show that the expression of a broad range of apopto-phagocytic genes is strongly up-regulated during differentiation of human monocytes to macrophages with different donor variability. The glucocorticoid dexamethasone has a profound effect on this process by selectively up-regulating six genes and down-regulating several others. The key role of the up-regulated mer tyrosine kinase (Mertk) in dexamethasone induced enhancement of phagocytosis could be demonstrated in human monocyte derived macrophages by gene silencing as well as blocking antibodies, and also in a monocyte-macrophage like cell line. However, the additional role of other glucocorticoid induced elements must be also considered since the presence of autologous serum during phagocytosis could almost completely compensate for the blocked function of Mertk. PMID:21731712

  6. Two host microRNAs influence WSSV replication via STAT gene regulation.

    PubMed

    Huang, Ying; Wang, Wen; Ren, Qian

    2016-03-31

    MicroRNAs (miRNAs) have important roles in post-transcriptional regulation of gene expression. During viral infection, viruses utilize hosts to enhance their replication by altering cellular miRNAs. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway plays crucial roles in the antiviral responses. In this study, two miRNAs (miR-9041 and miR-9850) from Macrobrachium rosenbergii were found to promote white spot syndrome virus (WSSV) replication. The up-regulation of miR-9041 or miR-9850 suppresses STAT expression in the gills of M. rosenbergii, which subsequently down-regulates the expression of its downstream dynamin (Dnm) genes: Dnm1, Dnm2, and Dnm3. Knockdown of miR-9041 and miR-9850 restricts WSSV replication by up-regulating STAT and Dnm gene expression. The silencing of STAT, Dnm1, Dnm2, or Dnm3 led to an increase of the number of WSSV copies in shrimp. The injection of recombinant Dnm1, Dnm2, or Dnm3 proteins could inhibit WSSV replication in vivo. Overall, our research indicates the roles of host miRNAs in the enhancement of WSSV replication by regulating the host JAK/STAT pathway.

  7. Orphan nuclear receptor ERRγ is a key regulator of human fibrinogen gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lu, Yan; Jung, Yoon Seok; Lee, Ji-min; Kim, Young-Hoon; Lee, Yong Soo; Kim, Jina; Dewidar, Bedair; Jeong, Won-IL; Lee, In-Kyu; Cho, Sung Jin; Dooley, Steven; Lee, Chul-Ho; Li, Xiaoying

    2017-01-01

    Fibrinogen, 1 of 13 coagulation factors responsible for normal blood clotting, is synthesized by hepatocytes. Detailed roles of the orphan nuclear receptors regulating fibrinogen gene expression have not yet been fully elucidated. Here, we identified estrogen-related receptor gamma (ERRγ) as a novel transcriptional regulator of human fibrinogen gene expression. Overexpression of ERRγ specially increased fibrinogen expression in human hepatoma cell line. Cannabinoid receptor types 1(CB1R) agonist arachidonyl-2'-chloroethylamide (ACEA) up-regulated transcription of fibrinogen via induction of ERRγ, whereas knockdown of ERRγ attenuated fibrinogen expression. Deletion analyses of the fibrinogen γ (FGG) gene promoter and ChIP assays revealed binding sites of ERRγ on human fibrinogen γ gene promoter. Moreover, overexpression of ERRγ was sufficient to increase fibrinogen gene expression, whereas treatment with GSK5182, a selective inverse agonist of ERRγ led to its attenuation in cell culture. Finally, fibrinogen and ERRγ gene expression were elevated in liver tissue of obese patients suggesting a conservation of this mechanism. Overall, this study elucidates a molecular mechanism linking CB1R signaling, ERRγ expression and fibrinogen gene transcription. GSK5182 may have therapeutic potential to treat hyperfibrinogenemia. PMID:28750085

  8. Selenium effect on selenoprotein transcriptome in chondrocytes.

    PubMed

    Yan, Jidong; Zheng, Yuewen; Min, Zixin; Ning, Qilan; Lu, Shemin

    2013-04-01

    Selenium is an essential micronutrient and exerts its biological functions predominantly through selenoproteins. Selenium deficiency is associated with cartilage function. This study demonstrated that all 24 selenoprotein transcripts in mouse genome were detectable in ATDC5 chondrocytes except deiodinase 1 (DIO1), DIO2, and selenoprotein V (Sel V), while all 25 selenoprotein transcripts in human genome were detectable in C28/I2 chondrocytes except glutathione peroxidase 6 (GPx6) and DIO1. In addition, gene expression of five selenoproteins (GPx1, Sel H, Sel N, Sel P, and Sel W) was up-regulated and two selenoproteins (SPS2 and Sel O) was down-regulated by sodium selenite (Se) in both ATDC5 and C28/I2 cells. Gene expression of six selenoproteins (TrxR1, Sel I, Sel M, Sel R, Sel S, Sel T) and one selenoprotein (GPx3) was up-regulated by Se in ATDC5 and C28/I2 cells, respectively. Gene expression of one selenoprotein (TrxR2) was down-regulated by Se only in ATDC5 cells. Further transcription inhibition assay showed that both transcriptional and posttranscriptional mechanisms involved in Se-regulated gene expression of GPx1, TrxR1, TrxR2, SPS2, Sel O, and Sel S. However, Se-regulated gene expression of Sel H, Sel I, Sel M, Sel N, Sel P, Sel R, Sel T, and Sel W mainly at posttranscriptional level. Moreover, new protein synthesis inhibition assay indicated that Se-mediated new protein synthesis also played roles in Se-regulated gene expression of GPx1, TrxR1, TrxR2, Sel H, Sel O, Sel P, Sel R, and Sel W. In summary, this study described the selenoprotein transcriptome, Se-regulated selenoproteins and possible mechanisms involved in chondrocytes.

  9. Viral hemorrhagic septicaemia virus (VHSV) up-regulates the cytotoxic activity and the perforin/granzyme pathway in the rainbow trout RTS11 cell line.

    PubMed

    Ordás, M C; Cuesta, A; Mercado, L; Bols, N C; Tafalla, C

    2011-08-01

    A survey of immune-relevant genes that might be up-regulated in response to viral hemorrhagic septicaemia virus (VHSV) in the rainbow trout monocyte-macrophage cell line, RTS11, unexpectedly revealed an increased expression of perforin (PRF) and granzyme (GRZ) genes, which represent components of the major cytotoxic pathway. The natural killer-enhancing factor (NKEF), also known to modulate cytotoxic activity, was up-regulated at the gene but strikingly down-regulated at protein level. The expression of these genes was not affected in head kidney leukocytes (HKLs) infected with VHSV, leading us to evaluate the potential cytotoxic activity of RTS11 and HKLs. For the first time, the cytotoxic activity of RTS11 against xenogeneic targets has been demonstrated, although this was modest relative to HKLs. Yet the activity in RTS11 was significantly increased by VHSV, as in HKLs. This cytotoxic activity elicited by viral infection appeared to require viral gene expression because inactivated VHSV failed to increase RTS11 cytotoxic activity. As for other immune functions, RTS11 cells provide a model for further studying cytotoxic activities of fish monocyte-macrophages. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Whole transcriptome profiling of taste bud cells.

    PubMed

    Sukumaran, Sunil K; Lewandowski, Brian C; Qin, Yumei; Kotha, Ramana; Bachmanov, Alexander A; Margolskee, Robert F

    2017-08-08

    Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.

  11. [Identification of candidate genes and expression profiles, as doping biomarkers].

    PubMed

    Paparini, A; Impagnatiello, F; Pistilli, A; Rinaldi, M; Gianfranceschi, G; Signori, E; Stabile, A M; Fazio, V; Rende, M; Romano Spica, V

    2007-01-01

    Administration of prohibited substances to enhance athletic performance represents an emerging medical, social, ethical and legal issue. Traditional controls are based on direct detection of substances or their catabolites. However out-of-competition doping may not be easily revealed by standard analytical methods. Alternative indirect control strategies are based on the evaluation of mid- and long-term effects of doping in tissues. Drug-induced long-lasting changes of gene expression may be taken as effective indicators of doping exposure. To validate this approach, we used real-time PCR to monitor the expression pattern of selected genes in human haematopoietic cells exposed to nandrolone, insulin-like growth factor I (IGF-I) or growth hormone (GH). Some candidate genes were found significantly and consistently modulated by treatments. Nandrolone up-regulated AR, ESR2 and PGR in K562 cells, and SRD5A1, PPARA and JAK2 in Jurkat cells; IGF-I up-regulated EPOR and PGR in HL60 cells, and SRD5A1 in Jurkat; GH up-regulated SRD5A1 and GHR in K562. GATA1 expression was down-regulated in IGF-1-treated HL60, ESR2 was down-regulated in nandrolone-treated Jurkat, and AR and PGR were down-regulated in GH-treated Jurkat. This pilot study shows the potential of molecular biology-based strategies in anti-doping controls.

  12. Hypoxia and PGE2 Regulate MiTF-CX During Cervical Ripening

    PubMed Central

    Hari Kishore, Annavarapu; Li, Xiang-Hong

    2012-01-01

    The mechanisms by which the cervix remains closed during the massive uterine expansion of pregnancy are unknown. IL-8 is important for recruitment of immune cells into the cervical stroma, matrix remodeling, and dilation of the cervix during labor. Previously, we have shown that several cytokine genes transcriptionally repressed in the cervix during gestation are activated during cervical ripening and dilation. IL-8 gene expression is repressed in cervical stromal cells during pregnancy by the transcription factor microphthalmia-associated transcription factor (MiTF-CX). Here, we tested the hypothesis that hypoxia and the transcription factor hypoxia inducible factor-1α (HIF-1α) may regulate MiTF-CX and cervical ripening. Using tissues from women during pregnancy before and after cervical ripening, we show that, during cervical ripening, HIF-1α was stabilized and relocalized to the nucleus. Further, we found that hypoxia and two hypoxia mimetics that stabilize HIF-1α activated the transcriptional repressor differentiated embryo chondrocyte-expressed gene 1, which bound to sites in the MiTF-CX promoter crucial for its positive autoregulation. Ectopic overexpression of MiTF-CX abrogated hypoxia-induced up-regulation of IL-8 gene expression. We also show that activation of HIF-1α induced cyclooxygenase-2 and that prostaglandin E2 repressed MiTF-CX. We conclude that hypoxia and stabilization of the transcription factor HIF-1α result in up-regulation of differentiated embryo chondrocyte-expressed gene 1, loss of MiTF, and absence of MiTF binding to the IL-8 promoter, which in turn leads to up-regulation of IL-8 gene expression. Hypoxia also up-regulated cyclooxygenase-2, leading to prostaglandin E2-mediated loss of MiTF in cervical stromal cells. The results support a pivotal role for hypoxia and HIF-1α in the cervical ripening process during pregnancy. PMID:23144021

  13. Transcriptional profiling of predator-induced phenotypic plasticity in Daphnia pulex.

    PubMed

    Rozenberg, Andrey; Parida, Mrutyunjaya; Leese, Florian; Weiss, Linda C; Tollrian, Ralph; Manak, J Robert

    2015-01-01

    Predator-induced defences are a prominent example of phenotypic plasticity found from single-celled organisms to vertebrates. The water flea Daphnia pulex is a very convenient ecological genomic model for studying predator-induced defences as it exhibits substantial morphological changes under predation risk. Most importantly, however, genetically identical clones can be transcriptionally profiled under both control and predation risk conditions and be compared due to the availability of the sequenced reference genome. Earlier gene expression analyses of candidate genes as well as a tiled genomic microarray expression experiment have provided insights into some genes involved in predator-induced phenotypic plasticity. Here we performed the first RNA-Seq analysis to identify genes that were differentially expressed in defended vs. undefended D. pulex specimens in order to explore the genetic mechanisms underlying predator-induced defences at a qualitatively novel level. We report 230 differentially expressed genes (158 up- and 72 down-regulated) identified in at least two of three different assembly approaches. Several of the differentially regulated genes belong to families of paralogous genes. The most prominent classes amongst the up-regulated genes include cuticle genes, zinc-metalloproteinases and vitellogenin genes. Furthermore, several genes from this group code for proteins recruited in chromatin-reorganization or regulation of the cell cycle (cyclins). Down-regulated gene classes include C-type lectins, proteins involved in lipogenesis, and other families, some of which encode proteins with no known molecular function. The RNA-Seq transcriptome data presented in this study provide important insights into gene regulatory patterns underlying predator-induced defences. In particular, we characterized different effector genes and gene families found to be regulated in Daphnia in response to the presence of an invertebrate predator. These effector genes are mostly in agreement with expectations based on observed phenotypic changes including morphological alterations, i.e., expression of proteins involved in formation of protective structures and in cuticle strengthening, as well as proteins required for resource re-allocation. Our findings identify key genetic pathways associated with anti-predator defences.

  14. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landmark-Hoyvik, Hege, E-mail: hblandma@rr-research.n; Institute for Clinical Medicine, University of Oslo, Oslo; Dumeaux, Vanessa

    2011-03-01

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0more » and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-{beta}1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-{beta}1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.« less

  15. RNA-Seq Revealed Differences in Transcriptomes between 3ADON and 15ADON Populations of Fusarium graminearum In Vitro and In Planta.

    PubMed

    Puri, Krishna D; Yan, Changhui; Leng, Yueqiang; Zhong, Shaobin

    2016-01-01

    Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) in barley and wheat in North America. The fungus not only causes yield loss of the crops but also produces harmful trichothecene mycotoxins [Deoxynivalenol (DON) and its derivatives-3-acetyldeoxynivalenol (3ADON) and 15-acetyldeoxynivalenol (15ADON), and nivalenol (NIV)] that contaminate grains. Previous studies showed a dramatic increase of 3ADON-producing isolates with higher aggressiveness and DON production than the 15ADON-producing isolates in North America. However, the genetic and molecular basis of differences between the two types of isolates is unclear. In this study, we compared transcriptomes of the 3ADON and 15ADON isolates in vitro (in culture media) and in planta (during infection on the susceptible wheat cultivar 'Briggs') using RNA-sequencing. The in vitro gene expression comparison identified 479 up-regulated and 801 down-regulated genes in the 3ADON isolates; the up-regulated genes were mainly involved in C-compound and carbohydrate metabolism (18.6%), polysaccharide metabolism (7.7%) or were of unknown functions (57.6%). The in planta gene expression analysis revealed that 185, 89, and 62 genes were up-regulated in the 3ADON population at 48, 96, and 144 hours after inoculation (HAI), respectively. The up-regulated genes were significantly enriched in functions for cellular import, C-compound and carbohydrate metabolism, allantoin and allantoate transport at 48 HAI, for detoxification and virulence at 96 HAI, and for metabolism of acetic acid derivatives, detoxification, and cellular import at 144 HAI. Comparative analyses of in planta versus in vitro gene expression further revealed 2,159, 1,981 and 2,095 genes up-regulated in the 3ADON isolates, and 2,415, 2,059 and 1,777 genes up-regulated in the 15ADON isolates at the three time points after inoculation. Collectively, our data provides a foundation for further understanding of molecular mechanisms involved in aggressiveness and DON production of the two chemotype isolates of F. graminearum.

  16. Gamma-oryzanol rich fraction regulates the expression of antioxidant and oxidative stress related genes in stressed rat's liver.

    PubMed

    Ismail, Maznah; Al-Naqeeb, Ghanya; Mamat, Wan Abd Aziz Bin; Ahmad, Zalinah

    2010-03-24

    Gamma-oryzanol (OR), a phytosteryl ferulate mixture extracted from rice bran oil, has a wide spectrum of biological activities in particular, it has antioxidant properties. The regulatory effect of gamma-oryzanol rich fraction (ORF) extracted and fractionated from rice bran using supercritical fluid extraction (SFE) in comparison with commercially available OR on 14 antioxidant and oxidative stress related genes was determined in rat liver. Rats were subjected to a swimming exercise program for 10 weeks to induce stress and were further treated with either ORF at 125, 250 and 500 mg/kg or OR at 100 mg/kg in emulsion forms for the last 5 weeks of the swimming program being carried out. The GenomeLab Genetic Analysis System (GeXPS) was used to study the multiplex gene expression of the selected genes. Upon comparison of RNA expression levels between the stressed and untreated group (PC) and the unstressed and untreated group (NC), seven genes were found to be down-regulated, while seven genes were up-regulated in PC group compared to NC group. Further treatment of stressed rats with ORF at different doses and OR resulted in up-regulation of 10 genes and down regulation of four genes compared to the PC group. Gamma-oryzanol rich fraction showed potential antioxidant activity greater than OR in the regulation of antioxidants and oxidative stress gene markers.

  17. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster.

    PubMed

    Landis, Gary; Shen, Jie; Tower, John

    2012-11-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging.

  18. Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster

    PubMed Central

    Landis, Gary; Shen, Jie; Tower, John

    2012-01-01

    Gene expression changes in response to aging, heat stress, hyperoxia, hydrogen peroxide, and ionizing radiation were compared using microarrays. A set of 18 genes were up-regulated across all conditions, indicating a general stress response shared with aging, including the heat shock protein (Hsp) genes Hsp70, Hsp83 and l(2)efl, the glutathione-S-transferase gene GstD2, and the mitochondrial unfolded protein response (mUPR) gene ref(2)P. Selected gene expression changes were confirmed using quantitative PCR, Northern analysis and GstD-GFP reporter constructs. Certain genes were altered in only a subset of the conditions, for example, up-regulation of numerous developmental pathway and signaling genes in response to hydrogen peroxide. While aging shared features with each stress, aging was more similar to the stresses most associated with oxidative stress (hyperoxia, hydrogen peroxide, ionizing radiation) than to heat stress. Aging is associated with down-regulation of numerous mitochondrial genes, including electron-transport-chain (ETC) genes and mitochondrial metabolism genes, and a sub-set of these changes was also observed upon hydrogen peroxide stress and ionizing radiation stress. Aging shared the largest number of gene expression changes with hyperoxia. The extensive down-regulation of mitochondrial and ETC genes during aging is consistent with an aging-associated failure in mitochondrial maintenance, which may underlie the oxidative stress-like and proteotoxic stress-like responses observed during aging. PMID:23211361

  19. Discretization provides a conceptually simple tool to build expression networks.

    PubMed

    Vass, J Keith; Higham, Desmond J; Mudaliar, Manikhandan A V; Mao, Xuerong; Crowther, Daniel J

    2011-04-18

    Biomarker identification, using network methods, depends on finding regular co-expression patterns; the overall connectivity is of greater importance than any single relationship. A second requirement is a simple algorithm for ranking patients on how relevant a gene-set is. For both of these requirements discretized data helps to first identify gene cliques, and then to stratify patients.We explore a biologically intuitive discretization technique which codes genes as up- or down-regulated, with values close to the mean set as unchanged; this allows a richer description of relationships between genes than can be achieved by positive and negative correlation. We find a close agreement between our results and the template gene-interactions used to build synthetic microarray-like data by SynTReN, which synthesizes "microarray" data using known relationships which are successfully identified by our method.We are able to split positive co-regulation into up-together and down-together and negative co-regulation is considered as directed up-down relationships. In some cases these exist in only one direction, with real data, but not with the synthetic data. We illustrate our approach using two studies on white blood cells and derived immortalized cell lines and compare the approach with standard correlation-based computations. No attempt is made to distinguish possible causal links as the search for biomarkers would be crippled by losing highly significant co-expression relationships. This contrasts with approaches like ARACNE and IRIS.The method is illustrated with an analysis of gene-expression for energy metabolism pathways. For each discovered relationship we are able to identify the samples on which this is based in the discretized sample-gene matrix, along with a simplified view of the patterns of gene expression; this helps to dissect the gene-sample relevant to a research topic--identifying sets of co-regulated and anti-regulated genes and the samples or patients in which this relationship occurs.

  20. Characterization of the yeast copper-inducible promoter system in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Inducible promoters or gene-switches are used to both spatially and temporally regulate gene expression. Such regulation can provide information concerning the function of a gene in a developmental context as well as avoid potential harmful effects due to overexpression. A gfp construct under the control of a copper-inducible promoter was introduced into Arabidopsis thaliana (L.) Heynh. and the regulatory parameters of this inducible promoter were determined. Here, we describe the time-course of up- and down-regulation of GFP expression in response to copper level, the optimal regulatory levels of copper, and the tissue specificity of expression in three transgenic lines. We conclude that the copper-inducible promoter system may be useful in regulating the time and location of gene expression in A. thaliana.

  1. Neurobehavioral changes in response to alterations in gene expression profiles in the brains of mice exposed to low and high levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Akiko; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2014-08-01

    This study examined the relationship between neurobehavioral changes and alterations in gene expression profiles in the brains of mice exposed to different levels of Hg(0) during postnatal development. Neonatal mice were repeatedly exposed to mercury vapor (Hg(0)) at a concentration of 0.057 mg/m(3) (low level), which was close to the current threshold value (TLV), and 0.197 mg/m(3) (high level) for 24 hr until the 20(th) day postpartum. Behavioral responses were evaluated based on changes in locomotor activity in the open field test (OPF), learning ability in the passive avoidance response test (PA), and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. No significant differences were observed in the three behavioral measurements between mice exposed to the low level of Hg(0) and control mice. On the other hand, total locomotive activity in mice exposed to the high level of Hg(0) was significantly decreased and central locomotion was reduced in the OPF task. Mercury concentrations were approximately 0.4 μg/g and 1.9 μg/g in the brains of mice exposed to the low and high levels of Hg(0), respectively. Genomic analysis revealed that the expression of 2 genes was up-regulated and 18 genes was down-regulated in the low-level exposure group, while the expression of 3 genes was up-regulated and 70 genes was down-regulated in the high-level exposure group. Similar alterations in the expression of seven genes, six down-regulated genes and one up-regulated gene, were observed in both groups. The results indicate that an increase in the number of altered genes in the brain may be involved in the emergence of neurobehavioral effects, which may be associated with the concentration of mercury in the brain. Moreover, some of the commonly altered genes following exposure to both concentrations of Hg(0) with and without neurobehavioral effects may be candidates as sensitive biomarker genes for assessing behavioral effects in the early stages of development.

  2. MicroRNAs expression in ox-LDL treated HUVECs: MiR-365 modulates apoptosis and Bcl-2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Bing; Xiao, Bo; Liang, Desheng

    Highlights: {yields} We evaluated the role of miRNAs in ox-LDL induced apoptosis in ECs. {yields} We found 4 up-regulated and 11 down-regulated miRNAs in apoptotic ECs. {yields} Target genes of the dysregulated miRNAs regulate ECs apoptosis and atherosclerosis. {yields} MiR-365 promotes ECs apoptosis via suppressing Bcl-2 expression. {yields} MiR-365 inhibitor alleviates ECs apoptosis induced by ox-LDL. -- Abstract: Endothelial cells (ECs) apoptosis induced by oxidized low-density lipoprotein (ox-LDL) is thought to play a critical role in atherosclerosis. MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth,more » proliferation, and apoptosis. However, whether miRNAs are associated with ox-LDL induced apoptosis and their effect on ECs is still unknown. Therefore, this study evaluated potential miRNAs and their involvement in ECs apoptosis in response to ox-LDL stimulation. Microarray and qRT-PCR analysis performed on human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL identified 15 differentially expressed (4 up- and 11 down-regulated) miRNAs. Web-based query tools were utilized to predict the target genes of the differentially expressed miRNAs, and the potential target genes were classified into different function categories with the gene ontology (GO) term and KEGG pathway annotation. In particular, bioinformatics analysis suggested that anti-apoptotic protein B-cell CLL/lymphoma 2 (Bcl-2) is a target gene of miR-365, an apoptomir up-regulated by ox-LDL stimulation in HUVECs. We further showed that transfection of miR-365 inhibitor partly restored Bcl-2 expression at both mRNA and protein levels, leading to a reduction of ox-LDL-mediated apoptosis in HUVECs. Taken together, our findings indicate that miRNAs participate in ox-LDL-mediated apoptosis in HUVECs. MiR-365 potentiates ox-LDL-induced ECs apoptosis by regulating the expression of Bcl-2, suggesting potential novel therapeutic targets for atherosclerosis.« less

  3. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L.

    PubMed

    Miyaji, Naomi; Shimizu, Motoki; Miyazaki, Junji; Osabe, Kenji; Sato, Maho; Ebe, Yusuke; Takada, Satoko; Kaji, Makoto; Dennis, Elizabeth S; Fujimoto, Ryo; Okazaki, Keiichi

    2017-12-01

    Resistant and susceptible lines in Brassica rapa have different immune responses against Fusarium oxysporum inoculation. Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease of Brassicaceae; however, the mechanism of how host plants respond to Foc is still unknown. By comparing with and without Foc inoculation in both resistant and susceptible lines of Chinese cabbage (Brassica rapa var. pekinensis), we identified differentially expressed genes (DEGs) between the bulked inoculated (6, 12, 24, and 72 h after inoculation (HAI)) and non-inoculated samples. Most of the DEGs were up-regulated by Foc inoculation. Quantitative real-time RT-PCR showed that most up-regulated genes increased their expression levels from 24 HAI. An independent transcriptome analysis at 24 and 72 HAI was performed in resistant and susceptible lines. GO analysis using up-regulated genes at 24 HAI indicated that Foc inoculation activated systemic acquired resistance (SAR) in resistant lines and tryptophan biosynthetic process and responses to chitin and ethylene in susceptible lines. By contrast, GO analysis using up-regulated genes at 72 HAI showed the overrepresentation of some categories for the defense response in susceptible lines but not in the resistant lines. We also compared DEGs between B. rapa and Arabidopsis thaliana after F. oxysporum inoculation at the same time point, and identified genes related to defense response that were up-regulated in the resistant lines of Chinese cabbage and A. thaliana. Particular genes that changed expression levels overlapped between the two species, suggesting that they are candidates for genes involved in the resistance mechanisms against F. oxysporum.

  4. Fatty Acid β-Oxidation Is Essential in Leptin-Mediated Oocytes Maturation of Yellow Catfish Pelteobagrus fulvidraco.

    PubMed

    Song, Yu-Feng; Tan, Xiao-Ying; Pan, Ya-Xiong; Zhang, Li-Han; Chen, Qi-Liang

    2018-05-14

    Although several studies have been conducted to study leptin function, information is very scarce on the molecular mechanism of leptin in fatty acid β-oxidation and oocytes maturation in fish. In this study, we investigated the potential role of fatty acid β-oxidation in leptin-mediated oocytes maturation in Pelteobagrus fulvidraco . Exp. 1 investigated the transcriptomic profiles of ovary and the differential expression of genes involved in β-oxidation and oocytes maturation following rt-hLEP injection; rt-hLEP injection was associated with significant changes in the expression of genes, including twenty-five up-regulated genes ( CPT1 , Acsl , Acadl , Acadm , Hadhb , Echsl , Hsd17b4 , Acca , PPARα , CYP8B1 , ACOX1 , ACBP , MAPK , RINGO , Cdc2 , MEK1 , IGF-1R , APC/C, Cdk2 , GnRHR, STAG3 , SMC1 , FSHβ and C-Myc ) and ten down-regulated gene ( PPARγ , FATCD36 , UBC , PDK1 , Acads , Raf , Fizzy , C3H-4 , Raf and PKC ), involved in fatty acid β-oxidation and oocytes maturation. In Exp. 2, rt-hLEP and specific inhibitors AG490 (JAK-STAT inhibitor) were used to explore whether leptin induced oocytes maturation, and found that leptin incubation increased the diameters of oocytes and percentage of germinal vesicle breakdown (GVBD)-MII oocytes, up-regulated mRNA levels of genes involved in oocytes maturation and that leptin-induced oocyte maturation was related to activation of JAK-STAT pathway. In Exp. 3, primary oocytes of P. fulvidraco were treated with (R)-(+)-etomoxir (an inhibitor of β-oxidation) or l-carnitine (an enhancer of β-oxidation) for 48 h under rt-hLEP incubation. Exp. 3 indicated that the inhibition of fatty acid β-oxidation resulted in the down-regulation of gene expression involved in oocytes maturation, and repressed the leptin-induced up-regulation of these gene expression. Activation of fatty acid β-oxidation improved the maturation rate and mean diameter of oocytes, and up-regulated gene expression involved in oocytes maturation. Leptin is one of the main factors that links fatty acid β-oxidation with oocyte maturation; β-oxidation is essential for leptin-mediated oocyte maturation in fish.

  5. Discovery of genes implicated in whirling disease infection and resistance in rainbow trout using genome-wide expression profiling

    PubMed Central

    Baerwald, Melinda R; Welsh, Amy B; Hedrick, Ronald P; May, Bernie

    2008-01-01

    Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection. PMID:18218127

  6. Elevated gene expression levels distinguish human from non-human primate brains

    PubMed Central

    Cáceres, Mario; Lachuer, Joel; Zapala, Matthew A.; Redmond, John C.; Kudo, Lili; Geschwind, Daniel H.; Lockhart, David J.; Preuss, Todd M.; Barlow, Carrolee

    2003-01-01

    Little is known about how the human brain differs from that of our closest relatives. To investigate the genetic basis of human specializations in brain organization and cognition, we compared gene expression profiles for the cerebral cortex of humans, chimpanzees, and rhesus macaques by using several independent techniques. We identified 169 genes that exhibited expression differences between human and chimpanzee cortex, and 91 were ascribed to the human lineage by using macaques as an outgroup. Surprisingly, most differences between the brains of humans and non-human primates involved up-regulation, with ≈90% of the genes being more highly expressed in humans. By contrast, in the comparison of human and chimpanzee heart and liver, the numbers of up- and down-regulated genes were nearly identical. Our results indicate that the human brain displays a distinctive pattern of gene expression relative to non-human primates, with higher expression levels for many genes belonging to a wide variety of functional classes. The increased expression of these genes could provide the basis for extensive modifications of cerebral physiology and function in humans and suggests that the human brain is characterized by elevated levels of neuronal activity. PMID:14557539

  7. Ezrin Inhibition Up-regulates Stress Response Gene Expression.

    PubMed

    Çelik, Haydar; Bulut, Gülay; Han, Jenny; Graham, Garrett T; Minas, Tsion Z; Conn, Erin J; Hong, Sung-Hyeok; Pauly, Gary T; Hayran, Mutlu; Li, Xin; Özdemirli, Metin; Ayhan, Ayşe; Rudek, Michelle A; Toretsky, Jeffrey A; Üren, Aykut

    2016-06-17

    Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity

    PubMed Central

    Jacques-Fricke, Bridget T.; Gammill, Laura S.

    2014-01-01

    Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the dynamic process of neural crest migration is unclear. Here we show that the lysine methyltransferase NSD3 is abundantly and specifically expressed in premigratory and migratory neural crest cells. NSD3 expression commences before up-regulation of neural crest genes, and NSD3 is necessary for expression of the neural plate border gene Msx1, as well as the key neural crest transcription factors Sox10, Snail2, Sox9, and FoxD3, but not gene expression generally. Nevertheless, only Sox10 histone H3 lysine 36 dimethylation requires NSD3, revealing unexpected complexity in NSD3-dependent neural crest gene regulation. In addition, by temporally limiting expression of a dominant negative to migratory stages, we identify a novel, direct requirement for NSD3-related methyltransferase activity in neural crest migration. These results identify NSD3 as the first protein methyltransferase essential for neural crest gene expression during specification and show that NSD3-related methyltransferase activity independently regulates migration. PMID:25318671

  9. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    PubMed

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  10. Delayed inflammatory mRNA and protein expression after spinal cord injury

    PubMed Central

    2011-01-01

    Background Spinal cord injury (SCI) induces secondary tissue damage that is associated with inflammation. We have previously demonstrated that inflammation-related gene expression after SCI occurs in two waves - an initial cluster that is acutely and transiently up-regulated within 24 hours, and a more delayed cluster that peaks between 72 hours and 7 days. Here we extend the microarray analysis of these gene clusters up to 6 months post-SCI. Methods Adult male rats were subjected to mild, moderate or severe spinal cord contusion injury at T9 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 hours, 24 hours, 7 days, 28 days, 3 months or 6 months post-injury and processed for microarray analysis and protein expression. Results Anchor gene analysis using C1qB revealed a cluster of genes that showed elevated expression through 6 months post-injury, including galectin-3, p22PHOX, gp91PHOX, CD53 and progranulin. The expression of these genes occurred primarily in microglia/macrophage cells and was confirmed at the protein level using both immunohistochemistry and western blotting. As p22PHOX and gp91PHOX are components of the NADPH oxidase enzyme, enzymatic activity and its role in SCI were assessed and NADPH oxidase activity was found to be significantly up-regulated through 6 months post-injury. Further, treating rats with the nonspecific, irreversible NADPH oxidase inhibitor diphenylene iodinium (DPI) reduced both lesion volume and expression of chronic gene cluster proteins one month after trauma. Conclusions These data demonstrate that inflammation-related genes are chronically up-regulated after SCI and may contribute to further tissue loss. PMID:21975064

  11. Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis.

    PubMed

    Guan, Ruo-Bing; Li, Hai-Chao; Miao, Xue-Xia

    2018-06-01

    When using RNA interference (RNAi) to study gene functions in Lepidoptera insects, we discovered that some genes could not be suppressed; instead, their expression levels could be up-regulated by double-stranded RNA (dsRNA). To predict which genes could be easily silenced, we treated the Asian corn borer (Ostrinia furnacalis) with dsGFP (green fluorescent protein) and dsMLP (muscle lim protein). A transcriptome sequence analysis was conducted using the cDNAs 6 h after treatment with dsRNA. The results indicated that 160 genes were up-regulated and 44 genes were down-regulated by the two dsRNAs. Then, 50 co-up-regulated, 25 co-down-regulated and 43 unaffected genes were selected to determine their RNAi responses. All the 25 down-regulated genes were knocked down by their corresponding dsRNA. However, several of the up-regulated and unaffected genes were up-regulated when treated with their corresponding dsRNAs instead of being knocked down. The genes up-regulated by the dsGFP treatment may be involved in insect immune responses or the RNAi pathway. When the immune-related genes were excluded, only seven genes were induced by dsGFP, including ago-2 and dicer-2. These results not only provide a reference for efficient RNAi target predications, but also provide some potential RNAi pathway-related genes for further study. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  12. Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics

    PubMed Central

    Antoni, Michael H.; Lutgendorf, Susan K.; Blomberg, Bonnie; Carver, Charles S.; Lechner, Suzanne; Diaz, Alain; Stagl, Jamie; Arevalo, Jesusa M.G.; Cole, Steven W.

    2011-01-01

    Background Chronic threat and anxiety are associated with pro-inflammatory transcriptional profiles in circulating leukocytes, but the causal direction of that relationship has not been established. This study tested whether a Cognitive-Behavioral Stress Management (CBSM) intervention targeting negative affect and cognition might counteract anxiety-related transcriptional alterations in people confronting a major medical threat. Methods 199 women undergoing primary treatment of Stage 0–III breast cancer were randomized to a 10-week CBSM protocol or an active control condition. 79 provided peripheral blood leukocyte samples for genome-wide transcriptional profiling and bioinformatic analyses at baseline, 6-, and 12-month follow-ups. Results Baseline negative affect was associated with > 50% differential expression of 201 leukocyte transcripts, including up-regulated expression of pro-inflammatory and metastasis-related genes. CBSM altered leukocyte expression of 91 genes by > 50% at follow-up (Group × Time interaction), including down-regulation of pro-inflammatory and metastasis-related genes and up-regulation of Type I interferon response genes. Promoter-based bioinformatic analyses implicated decreased activity of NF-κB/Rel and GATA family transcription factors and increased activity of Interferon Response Factors and the Glucocorticoid Receptor (GR) as potential mediators of CBSM-induced transcriptional alterations. Conclusions In early stage breast cancer patients, a 10-week CBSM intervention can reverse anxiety-related up-regulation of pro-inflammatory gene expression in circulating leukocytes. These findings clarify the molecular signaling pathways by which behavioral interventions can influence physical health and alter peripheral inflammatory processes that may reciprocally affect brain affective and cognitive processes. PMID:22088795

  13. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatalmore » rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.« less

  14. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia.

    PubMed

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin

    2015-08-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  15. RhNAC2 and RhEXPA4 Are Involved in the Regulation of Dehydration Tolerance during the Expansion of Rose Petals1[C][W][OA

    PubMed Central

    Dai, Fanwei; Zhang, Changqing; Jiang, Xinqiang; Kang, Mei; Yin, Xia; Lü, Peitao; Zhang, Xiao; Zheng, Yi; Gao, Junping

    2012-01-01

    Dehydration inhibits petal expansion resulting in abnormal flower opening and results in quality loss during the marketing of cut flowers. We constructed a suppression subtractive hybridization library from rose (Rosa hybrida) flowers containing 3,513 unique expressed sequence tags and analyzed their expression profiles during cycles of dehydration. We found that 54 genes were up-regulated by the first dehydration, restored or even down-regulated by rehydration, and once again up-regulated by the second dehydration. Among them, we identified a putative NAC family transcription factor (RhNAC2). With transactivation activity of its carboxyl-terminal domain in yeast (Saccharomyces cerevisiae) cell and Arabidopsis (Arabidopsis thaliana) protoplast, RhNAC2 belongs to the NAC transcription factor clade related to plant development in Arabidopsis. A putative expansin gene named RhEXPA4 was also dramatically up-regulated by dehydration. Silencing RhNAC2 or RhEXPA4 in rose petals by virus-induced gene silencing significantly decreased the recovery of intact petals and petal discs during rehydration. Overexpression of RhNAC2 or RhEXPA4 in Arabidopsis conferred strong drought tolerance in the transgenic plants. RhEXPA4 expression was repressed in RhNAC2-silenced rose petals, and the amino-terminal binding domain of RhNAC2 bound to the RhEXPA4 promoter. Twenty cell wall-related genes, including seven expansin family members, were up-regulated in Arabidopsis plants overexpressing RhNAC2. These data indicate that RhNAC2 and RhEXPA4 are involved in the regulation of dehydration tolerance during the expansion of rose petals and that RhEXPA4 expression may be regulated by RhNAC2. PMID:23093360

  16. Gene Expression Profiling of Evening Fatigue in Women Undergoing Chemotherapy for Breast Cancer

    PubMed Central

    Kober, Kord M.; Dunn, Laura; Mastick, Judy; Cooper, Bruce; Langford, Dale; Melisko, Michelle; Venook, Alan; Chen, Lee-May; Wright, Fay; Hammer, Marilyn J.; Schmidt, Brian L.; Levine, Jon; Miaskowski, Christine; Aouizerat, Bradley E.

    2017-01-01

    Moderate to severe fatigue occurs in 14% to 96% of oncology patients undergoing active treatment. Current interventions for fatigue are not efficacious. A major impediment to the development of effective treatments is a lack of understanding of the fundamental mechanisms underlying fatigue. In the current study, differences in phenotypic characteristics and gene expression profiles were evaluated in a sample of breast cancer patients undergoing chemotherapy (CTX) who reported low (n=19) and high (n=25) levels of evening fatigue. Compared to the low group, patients in the high evening fatigue group reported lower functional status scores, higher comorbidity scores, and fewer prior cancer treatments. One gene was identified as up-regulated and eleven genes were identified to be down-regulated in the high evening fatigue group. Gene set analysis found 24 down-regulated and 94 simultaneously up and down perturbed pathways between the two fatigue groups. Transcript Origin Analysis found that differential expression originated primarily from monocytes and dendritic cell types. Query of public data sources found 18 gene expression experiments with similar differential expression profiles. Our analyses revealed that inflammation, neurotransmitter regulation, and energy metabolism are likely mechanisms associated with evening fatigue severity; that CTX may contribute to fatigue seen in oncology patients; and that the patterns of gene expression may be shared with other models of fatigue (e.g., physical exercise, pathogen-induced sickness behavior). These results suggest that the mechanisms that underlie fatigue in oncology patients are multi-factorial. PMID:26957308

  17. [Up regulation of phenylacetate to glioma homeobox gene expression].

    PubMed

    Tian, Yu; Yang, Chaohua; Zhao, Conghai

    2002-03-01

    Even though phenylacetate (PA) bas been shown to inhibit the growth and induce differentiation in rat C6 glioma cell line, its mechanisms are still poorly understood. This study is aimed to identify which Hox gene is related to glioma and to observe the change in expression on mRNA level as treated by phenylasetate. Twenty-two kinds of Hox gene were divided into 3 groups according to their primer sequence. Semiquantitative reverse transcription- polymerase chain reaction (RT-PCR) was used to investigate the mRNA expression of Hox gene groups and some Hox gene in rat C6 glioma cell line following differentiation induced by PA. The level of Hox gene expression was expressed as ratio expression rate (RER) of Hox gene/beta-actin according to computer image analysis and the difference between C6 cells and PA treated C6 cells was analyzed by student t-test. It was found that Hox genes matching to primers P2 were mildly expressed in C6 cells and the expression of HoxB2 mRNA was significantly up-regulated in PA treated C6 cells (P < 0.001). The weak expression of HoxB2 may be involved in glioma origin and the mechanisms of PA action are correlated with transcription process in the glioma cells.

  18. A nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain.

    PubMed

    Luceri, Cristina; Bigagli, Elisabetta; Pitozzi, Vanessa; Giovannelli, Lisa

    2017-03-01

    Middle-aged C57Bl/6J mice fed for 6 months with extra-virgin olive oil rich in phenols (H-EVOO, phenol dose/day: 6 mg/kg) showed cognitive and motor improvement compared to controls fed the same olive oil deprived of phenolics (L-EVOO). The aim of the present study was to evaluate whether these behavioral modifications were associated with changes in gene and miRNA expression in the brain. Two brain areas involved in cognitive and motor processes were chosen: cortex and cerebellum. Gene and miRNA profiling were analyzed by microarray and correlated with performance in behavioral tests. After 6 months, most of the gene expression changes were restricted to the cerebral cortex. The genes modulated by aging were mainly down-regulated, and the treatment with H-EVOO was associated with a significant up-regulation of genes compared to L-EVOO. Among those, we found genes previously associated with synaptic plasticity and with motor and cognitive behavior, such as Notch1, BMPs, NGFR, GLP1R and CRTC3. The agrin pathway was also significantly modulated. miRNAs were mostly up-regulated in old L-EVOO animals compared to young. However, H-EVOO-fed mice cortex displayed miRNA expression profiles similar to those observed in young mice. Sixty-three miRNAs, out of 1203 analyzed, were significantly down-regulated compared to the L-EVOO group; among them, we found miRNAs whose predicted target genes were up-regulated by the treatment, such as mir-484, mir-27, mir-137, mir-30, mir-34 and mir-124. We are among the first to report that a dietary intervention starting from middle age with food rich in phenols can modulate at the central level the expression of genes and miRNAs involved in neuronal function and synaptic plasticity, along with cognitive, motor and emotional behavior.

  19. Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.).

    PubMed

    Georgiou, Stella; Alami-Durante, Hélène; Power, Deborah M; Sarropoulou, Elena; Mamuris, Zissis; Moutou, Katerina A

    2016-02-01

    Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth.

  20. Focal exposure of limited lung volumes to high-dose irradiation down-regulated organ development-related functions and up-regulated the immune response in mouse pulmonary tissues.

    PubMed

    Kim, Bu-Yeo; Jin, Hee; Lee, Yoon-Jin; Kang, Ga-Young; Cho, Jaeho; Lee, Yun-Sil

    2016-01-27

    Despite the emergence of stereotactic body radiotherapy (SBRT) for treatment of medically inoperable early-stage non-small-cell lung cancer patients, the molecular effects of focal exposure of limited lung volumes to high-dose radiation have not been fully characterized. This study was designed to identify molecular changes induced by focal high-dose irradiation using a mouse model of SBRT. Central areas of the mouse left lung were focally-irradiated (3 mm in diameter) with a single high-dose of radiation (90 Gy). Temporal changes in gene expression in the irradiated and non-irradiated neighboring lung regions were analyzed by microarray. For comparison, the long-term effect (12 months) of 20 Gy radiation on a diffuse region of lung was also measured. The majority of genes were down-regulated in the focally-irradiated lung areas at 2 to 3 weeks after irradiation. This pattern of gene expression was clearly different than gene expression in the diffuse region of lungs exposed to low-dose radiation. Ontological and pathway analyses indicated these down-regulated genes were mainly associated with organ development. Although the number was small, genes that were up-regulated after focal irradiation were associated with immune-related functions. The temporal patterns of gene expression and the associated biological functions were also similar in non-irradiated neighboring lung regions, although statistical significance was greatly reduced when compared with those from focally-irradiated areas of the lung. From network analysis of temporally regulated genes, we identified inter-related modules associated with diverse functions, including organ development and the immune response, in both the focally-irradiated regions and non-irradiated neighboring lung regions. Focal exposure of lung tissue to high-dose radiation induced expression of genes associated with organ development and the immune response. This pattern of gene expression was also observed in non-irradiated neighboring areas of lung tissue, indicating a global lung response to focal high-dose irradiation.

  1. Expression of Notch pathway genes in mammalian epidermis and modulation by beta-catenin.

    PubMed

    Ambler, Carrie A; Watt, Fiona M

    2007-06-01

    The Notch pathway is required for hair follicle maintenance and is activated through beta-catenin induced transcription of the Notch ligand Jagged1. We show that hair follicles in the resting phase express low levels of Jagged1 and Hes1, and other Notch target genes are undetectable. In growing (anagen) follicles, Jagged1 and Hes1 expression increases, Hes5 and HeyL are expressed in distinct cell layers, and Hey2 is expressed in the dermal papilla. When beta-catenin is activated by means of an inducible transgene, Jagged1, Hes1, Hes5, HeyL, and Hey2 are up-regulated, the sites of expression being the same in beta-catenin induced ectopic follicles as in anagen follicles. beta-Catenin also induces Hey1 in dermal papilla cells. beta-Catenin-induced up-regulation of Jagged1 precedes induction of other Notch target genes. The different sites of expression of Hes and Hey genes suggest input from additional signaling pathways. Copyright 2007 Wiley-Liss, Inc.

  2. Inactivation of p53 in pterygium influence miR-200a expression resulting in ZEB1/ZEB2 up-regulation and EMT processing.

    PubMed

    Wu, Chueh-Wei; Peng, Mei-Ling; Yeh, Ken-Tu; Tsai, Yi-Yu; Chiang, Chun-Chi; Cheng, Ya-Wen

    2016-05-01

    Loss of p53 function has been linked to progression of pterygium. MiR-200a is known to be controlled by p53. Here, we hypothesize that expression of miR-200a and downstream ZEB1/ZEB2 genes are regulated epithelial-mesenchymal transition (EMT) involved in the pathogenesis and recurrence of pterygium. For this study, 120 primary pterygial samples were collected. Immunohistochemistry and real-time RT-PCR were performed to determine the expression of p53, p53 down-stream EMT associated protein and miR-200a. The molecular correlation of p53, miR-200a and downstream genes were confirmed using primary pterygium cells (PECs). Expression of miR-200a in pterygium tissues was significantly lower than in conjunctiva controls (p = 0.015). Up-regulated miR-200a levels were positively correlated with and p53 protein expression (p < 0.001). The miR-200a downstream ZEB1/ZEB1 protein expression were negative correlated with miR-200a expression. Cell model studies demonstrated that miR-200a controlled the EMT of PECs through up-regulated ZEB1, ZEB2 and Snail gene expression. Our study demonstrated that inactivation of p53 in pterygium may influence miR-200a, resulting in ZEB1/ZEB2 up-regulation and EMT processing of pterygium. Therefore, we suggest that expression of miR-200a play an important role in EMT processing and recurrence of pterygium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Insect and wound induced GUS gene expression from a Beta vulgaris proteinase inhibitor gene promoter

    USDA-ARS?s Scientific Manuscript database

    Inducible gene promoters that are specifically activated by pathogen invasion or insect pest attack are needed for effective expression of resistance genes to control plant diseases. In the present study, a promoter from a serine proteinase inhibitor gene (BvSTI) shown to be up-regulated in resist...

  4. First Generation Gene Expression Signature for Early Prediction of Late Occurring Hematological Acute Radiation Syndrome in Baboons.

    PubMed

    Port, M; Herodin, F; Valente, M; Drouet, M; Lamkowski, A; Majewski, M; Abend, M

    2016-07-01

    We implemented a two-stage study to predict late occurring hematologic acute radiation syndrome (HARS) in a baboon model based on gene expression changes measured in peripheral blood within the first two days after irradiation. Eighteen baboons were irradiated to simulate different patterns of partial-body and total-body exposure, which corresponded to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. Blood samples taken before irradiation served as unexposed control (H0, n = 17). For stage I of this study, a whole genome screen (mRNA microarrays) was performed using a portion of the samples (H0, n = 5; H1-2, n = 4; H2-3, n = 5). For stage II, using the remaining samples and the more sensitive methodology, qRT-PCR, validation was performed on candidate genes that were differentially up- or down-regulated during the first two days after irradiation. Differential gene expression was defined as significant (P < 0.05) and greater than or equal to a twofold difference above a H0 classification. From approximately 20,000 genes, on average 46% appeared to be expressed. On day 1 postirradiation for H2-3, approximately 2-3 times more genes appeared up-regulated (1,418 vs. 550) or down-regulated (1,603 vs. 735) compared to H1-2. This pattern became more pronounced at day 2 while the number of differentially expressed genes decreased. The specific genes showed an enrichment of biological processes coding for immune system processes, natural killer cell activation and immune response (P = 1 × E-06 up to 9 × E-14). Based on the P values, magnitude and sustained differential gene expression over time, we selected 89 candidate genes for validation using qRT-PCR. Ultimately, 22 genes were confirmed for identification of H1-3 classifications and seven genes for identification of H2-3 classifications using qRT-PCR. For H1-3 classifications, most genes were constantly three to fivefold down-regulated relative to H0 over both days, but some genes appeared 10.3-fold (VSIG4) or even 30.7-fold up-regulated (CD177) over H0. For H2-3, some genes appeared four to sevenfold up-regulated relative to H0 (RNASE3, DAGLA, ARG2), but other genes showed a strong 14- to 33-fold down-regulation relative to H0 (WNT3, POU2AF1, CCR7). All of these genes allowed an almost completely identifiable separation among each of the HARS categories. In summary, clinically relevant HARS can be independently predicted with all 29 irradiated genes examined in the peripheral blood of baboons within the first two days postirradiation. While further studies are needed to confirm these findings, this model shows potential relevance in the prediction of clinical outcomes in exposed humans and as an aid in the prioritizing of medical treatment.

  5. The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides.

    PubMed

    Nicolás, Francisco E; Vila, Ana; Moxon, Simon; Cascales, María D; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Garre, Victoriano

    2015-03-25

    RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which they derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants. Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. This work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model.

  6. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation.

    PubMed

    Calabrese, Silvia; Kohler, Annegret; Niehl, Annette; Veneault-Fourrey, Claire; Boller, Thomas; Courty, Pierre-Emmanuel

    2017-06-01

    Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels.

    PubMed

    Guo, Rui; Wang, Simei; Xue, Renyu; Cao, Guangli; Hu, Xiaolong; Huang, Moli; Zhang, Yangqi; Lu, Yahong; Zhu, Liyuan; Chen, Fei; Liang, Zi; Kuang, Sulan; Gong, Chengliang

    2015-06-01

    High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

  8. The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators.

    PubMed

    De la Cruz, Miguel A; Ruiz-Tagle, Alejandro; Ares, Miguel A; Pacheco, Sabino; Yáñez, Jorge A; Cedillo, Lilia; Torres, Javier; Girón, Jorge A

    2017-05-01

    Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Transcription of PR3 and Related Myelopoiesis Genes in Peripheral Blood Mononuclear Cells in Active Wegener's Granulomatosis

    PubMed Central

    Cheadle, Chris; Berger, Alan E.; Andrade, Felipe; James, Regina; Johnson, Kristen; Watkins, Tonya; Park, Jin Kyun; Chen, Yu-Chi; Ehrlich, Eva; Mullins, Marissa; Chrest, Francis; Barnes, Kathleen C.; Levine, Stuart M.

    2010-01-01

    Objective Wegener's granulomatosis (WG) is a systemic inflammatory disease causing substantial morbidity. This study seeks to understand the biology underlying WG, and to discover markers of disease activity useful in prognosis and treatment guidance. Methods Gene expression profiling was performed using total RNA from PBMC and granulocyte fractions from 41 WG patients and 23 healthy controls. Gene set enrichment analysis (GSEA) was performed to search for candidate WG-associated molecular pathways and disease activity biomarkers. Principal component analysis (PCA) was used to visualize relationships between subgroups of WG patients and controls. Longitudinal changes in PR3 expression were evaluated using RT-PCR, and clinical outcomes including remission status and disease activity were determined using the BVAS-WG. Results We identified 86 genes significantly up-regulated in WG PBMCs and 40 in WG PMNs relative to controls. Genes up-regulated in WG PBMCs were involved in myeloid differentiation, and included the WG autoantigen, PR3. The coordinated regulation of myeloid differentiation genes was confirmed by gene set analysis. Median expression values of the 86 WG PBMC genes were associated with disease activity (p=1.3 × 10−4), and patients expressing these genes at a lower level were only modestly different from healthy controls (p=0.07). PR3 transcription was significantly up-regulated in the PBMCs (p=1.3 ×10−5, FDR=0.002), but not in the PMNs (p=0.03, FDR=0.28) of WG patients, and changes in BVAS-WG tracked with PBMC PR3 RNA levels in a preliminary longitudinal analysis. Conclusion Transcription of PR3 and related myeloid differentiation genes in PBMCs may represent novel markers of disease activity in WG. PMID:20155833

  10. Modulation of Gene Expression in Actinobacillus pleuropneumoniae Exposed to Bronchoalveolar Fluid

    PubMed Central

    Lone, Abdul G.; Deslandes, Vincent; Nash, John H. E.; Jacques, Mario; MacInnes, Janet I.

    2009-01-01

    Background Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia, is an important pathogen of swine throughout the world. It must rapidly overcome the innate pulmonary immune defenses of the pig to cause disease. To better understand this process, the objective of this study was to identify genes that are differentially expressed in a medium that mimics the lung environment early in the infection process. Methods and Principal Findings Since bronchoalveolar lavage fluid (BALF) contains innate immune and other components found in the lungs, we examined gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after a 30 min exposure to BALF, using DNA microarrays and real-time PCR. The functional classes of genes found to be up-regulated most often in BALF were those encoding proteins involved in energy metabolism, especially anaerobic metabolism, and in cell envelope, DNA, and protein biosynthesis. Transcription of a number of known virulence genes including apxIVA and the gene for SapF, a protein which is involved in resistance to antimicrobial peptides, was also up-regulated in BALF. Seventy-nine percent of the genes that were up-regulated in BALF encoded a known protein product, and of these, 44% had been reported to be either expressed in vivo and/or involved in virulence. Conclusions The results of this study suggest that in early stages of infection, A. pleuropneumoniae may modulate expression of genes involved in anaerobic energy generation and in the synthesis of proteins involved in cell wall biogenesis, as well as established virulence factors. Given that many of these genes are thought to be expressed in vivo or involved in virulence, incubation in BALF appears, at least partially, to simulate in vivo conditions and may provide a useful medium for the discovery of novel vaccine or therapeutic targets. PMID:19578537

  11. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells

    PubMed Central

    Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.

    2009-01-01

    Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936

  12. Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition

    PubMed Central

    Deniaud, Emmanuelle; Baguet, Joël; Chalard, Roxane; Blanquier, Bariza; Brinza, Lilia; Meunier, Julien; Michallet, Marie-Cécile; Laugraud, Aurélie; Ah-Soon, Claudette; Wierinckx, Anne; Castellazzi, Marc; Lachuer, Joël; Gautier, Christian

    2009-01-01

    Background The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. Methodology and Principal Findings We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. Conclusion This study shows that the binding to DNA of overexpressed Sp1 induces an inhibition of cell cycle progression that precedes apoptosis and a transcriptional response targeting genes containing Sp1 binding sites in their promoter or not suggesting both direct Sp1-driven transcription and indirect mechanisms. PMID:19753117

  13. Transcriptional Profiling of Murine Organ Genes in Response to Infection with Bacillus anthracis Ames Spores

    PubMed Central

    Moen, Scott T.; Yeager, Linsey A.; Lawrence, William S.; Ponce, Cindy; Galindo, Cristi L.; Garner, Harold R.; Baze, Wallace B.; Suarez, Giovanni; Peterson, Johnny W.; Chopra, Ashok K.

    2008-01-01

    Bacillus anthracis is the gram positive, spore-forming etiological agent of anthrax, an affliction studied because of its importance as a potential bioweapon. Although in vitro transcriptional responses of macrophages to either spore or anthrax toxins have been previously reported, little is known regarding the impact of infection on gene expression in host tissues. We infected Swiss-Webster mice intranasally with 5 LD50 of B. anthracis virulent Ames spores and observed the global transcriptional profiles of various tissues over a 48 hr time period. RNA was extracted from spleen, lung, and heart tissues of infected and control mice and examined by Affymetrix GeneChip analysis. Approximately 580 host genes were significantly over or under expressed among the lung, spleen, and heart tissues at 8 hr and 48 hr time points. Expression of genes encoding for surfactant and major histocompatibility complex (MHC) presentation was diminished during the early phase of infection in lungs. By 48 hr, a significant number of genes were modulated in the heart, including up-regulation of calcium-binding related gene expression, and down-regulation of multiple genes related to cell adhesion, formation of the extracellular matrix, and the cell cytoskeleton. Interestingly, the spleen 8 hr post-infection showed striking increases in the expression of genes that encode hydrolytic enzymes, and these levels remained elevated throughout infection. Further, genes involving antigen presentation and interferon responses were down-regulated in the spleen at 8 hr. In late stages of infection, splenic genes related to the inflammatory response were up-regulated. This study is the first to describe the in vivo global transcriptional response of multiple organs during inhalational anthrax. Although numerous genes related to the host immunological response and certain protection mechanisms were up-regulated in these organs, a vast list of genes important for fully developing and maintaining this response were decreased. Additionally, the lung, spleen, and heart showed differential responses to the infection, further validating the demand for a better understanding of anthrax pathogenesis in order to design therapies against novel targets. PMID:18037264

  14. Differential expression of genes in fetal brain as a consequence of maternal protein deficiency and nematode infection.

    PubMed

    Haque, Manjurul; Starr, Lisa M; Koski, Kristine G; Scott, Marilyn E

    2018-01-01

    Maternal dietary protein deficiency and gastrointestinal nematode infection during early pregnancy have negative impacts on both maternal placental gene expression and fetal growth in the mouse. Here we used next-generation RNA sequencing to test our hypothesis that maternal protein deficiency and/or nematode infection also alter the expression of genes in the developing fetal brain. Outbred pregnant CD1 mice were used in a 2×2 design with two levels of dietary protein (24% versus 6%) and two levels of infection (repeated sham versus Heligmosomoides bakeri beginning at gestation day 5). Pregnant dams were euthanized on gestation day 18 to harvest the whole fetal brain. Four fetal brains from each treatment group were analyzed using RNA Hi-Seq sequencing and the differential expression of genes was determined by the edgeR package using NetworkAnalyst. In response to maternal H. bakeri infection, 96 genes (88 up-regulated and eight down-regulated) were differentially expressed in the fetal brain. Differentially expressed genes were involved in metabolic processes, developmental processes and the immune system according to the PANTHER classification system. Among the important biological functions identified, several up-regulated genes have known neurological functions including neuro-development (Gdf15, Ing4), neural differentiation (miRNA let-7), synaptic plasticity (via suppression of NF-κβ), neuro-inflammation (S100A8, S100A9) and glucose metabolism (Tnnt1, Atf3). However, in response to maternal protein deficiency, brain-specific serine protease (Prss22) was the only up-regulated gene and only one gene (Dynlt1a) responded to the interaction of maternal nematode infection and protein deficiency. In conclusion, maternal exposure to GI nematode infection from day 5 to 18 of pregnancy may influence developmental programming of the fetal brain. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro.

    PubMed

    Zhang, Lancui; Ma, Gang; Kato, Masaya; Yamawaki, Kazuki; Takagi, Toshihiko; Kiriiwa, Yoshikazu; Ikoma, Yoshinori; Matsumoto, Hikaru; Yoshioka, Terutaka; Nesumi, Hirohisa

    2012-01-01

    In the present study, to investigate the mechanisms regulating carotenoid accumulation in citrus, a culture system was set up in vitro with juice sacs of three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). The juice sacs of all the three varieties enlarged gradually with carotenoid accumulation. The changing patterns of carotenoid content and the expression of carotenoid metabolic genes in juice sacs in vitro were similar to those ripening on trees in the three varieties. Using this system, the changes in the carotenoid content and the expression of carotenoid metabolic genes in response to environmental stimuli were investigated. The results showed that carotenoid accumulation was induced by blue light treatment, but was not affected by red light treatment in the three varieties. Different regulation of CitPSY expression, which was up-regulated by blue light while unaffected by red light, led to different changes in carotenoid content in response to these two treatments in Satsuma mandarin and Valencia orange. In all three varieties, increases in carotenoid content were observed with sucrose and mannitol treatments. However, the accumulation of carotenoid in the two treatments was regulated by distinct mechanisms at the transcriptional level. With abscisic acid (ABA) treatment, the expression of the genes investigated in this study was up-regulated in Satsuma mandarin and Lisbon lemon, indicating that ABA induced its own biosynthesis at the transcriptional level. This feedback regulation of ABA led to decreases in carotenoid content. With gibberellin (GA) treatment, carotenoid content was significantly decreased in the three varieties. Changes in the expression of genes related to carotenoid metabolism varied among the three varieties in response to GA treatment. These results provided insights into improving carotenoid content and composition in citrus during fruit maturation.

  16. Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro

    PubMed Central

    Zhang, Lancui; Ma, Gang; Kato, Masaya; Yamawaki, Kazuki; Takagi, Toshihiko; Kiriiwa, Yoshikazu; Ikoma, Yoshinori; Matsumoto, Hikaru; Yoshioka, Terutaka; Nesumi, Hirohisa

    2012-01-01

    In the present study, to investigate the mechanisms regulating carotenoid accumulation in citrus, a culture system was set up in vitro with juice sacs of three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). The juice sacs of all the three varieties enlarged gradually with carotenoid accumulation. The changing patterns of carotenoid content and the expression of carotenoid metabolic genes in juice sacs in vitro were similar to those ripening on trees in the three varieties. Using this system, the changes in the carotenoid content and the expression of carotenoid metabolic genes in response to environmental stimuli were investigated. The results showed that carotenoid accumulation was induced by blue light treatment, but was not affected by red light treatment in the three varieties. Different regulation of CitPSY expression, which was up-regulated by blue light while unaffected by red light, led to different changes in carotenoid content in response to these two treatments in Satsuma mandarin and Valencia orange. In all three varieties, increases in carotenoid content were observed with sucrose and mannitol treatments. However, the accumulation of carotenoid in the two treatments was regulated by distinct mechanisms at the transcriptional level. With abscisic acid (ABA) treatment, the expression of the genes investigated in this study was up-regulated in Satsuma mandarin and Lisbon lemon, indicating that ABA induced its own biosynthesis at the transcriptional level. This feedback regulation of ABA led to decreases in carotenoid content. With gibberellin (GA) treatment, carotenoid content was significantly decreased in the three varieties. Changes in the expression of genes related to carotenoid metabolism varied among the three varieties in response to GA treatment. These results provided insights into improving carotenoid content and composition in citrus during fruit maturation. PMID:21994171

  17. Up-regulation of COUP-TFII gene expression in the nitrofen-induced hypoplastic lung.

    PubMed

    Doi, Takashi; Sugimoto, Kaoru; Puri, Prem

    2009-02-01

    Recent studies have suggested that the retinoid signaling pathway (RSP) is inhibited in the nitrofen-induced hypoplastic lung. The exact mechanism by which nitrofen acts in the RSP remains unclear. Targeted ablation of COUP-TFII, a gene encoding a transfactor regulated by the RSP, has been shown to cause Bochdalek-type congenital diaphragmatic hernia. It has been shown that COUP-TFII has 2 main roles in the RSP, (i) repressing the RSP by directly sequestering retinoid X receptors, thereby preventing heterodimerization to retinoid acid receptors and inhibiting gene transcription, and (ii) modulating the transcriptional activity of GATA proteins. We designed this study to investigate the gene expression of COUP-TFII in the nitrofen-induced hypoplastic lung. Pregnant rats were exposed to either olive oil or 100 mg of nitrofen on day 9 of gestation. Fetuses were harvested and lungs were dissected on day 15 (D15), D18, and D21 and divided into 2 groups: control (n = 9) and nitrofen (n = 9). Real-time reverse transcription-polymerase chain reaction was performed to evaluate the relative mRNA levels of COUP-TFII expression in the hypoplastic lung. The relative mRNA levels of COUP-TFII at D15 was significantly increased in the nitrofen group (0.76 +/- 0.53) compared to controls (0.45 +/- 0.05) (P < .01). The expression levels of COUP-TFII at D18 and D21 were not significantly different between the nitrofen group and controls. Our results provide evidence for the first time that the pulmonary gene expression of COUP-TFII is up-regulated in the early stages of lung development in the nitrofen-induced hypoplastic lung. We speculate that up-regulation of COUP-TFII gene expression during the stage of branching lung morphogenesis may cause pulmonary hypoplasia by repressing RSP.

  18. Determination of multidrug resistance mechanisms in Clostridium perfringens type A isolates using RNA sequencing and 2D-electrophoresis.

    PubMed

    Ma, Yu-Hua; Ye, Gui-Sheng

    2018-06-11

    In this study, we screened differentially expressed genes in a multidrug-resistant isolate strain of Clostridium perfringens by RNA sequencing. We also separated and identified differentially expressed proteins (DEPs) in the isolate strain by two-dimensional electrophoresis (2-DE) and mass spectrometry (MS). The RNA sequencing results showed that, compared with the control strain, 1128 genes were differentially expressed in the isolate strain, and these included 227 up-regulated genes and 901 down-regulated genes. Bioinformatics analysis identified the following genes and gene categories that are potentially involved in multidrug resistance (MDR) in the isolate strain: drug transport, drug response, hydrolase activity, transmembrane transporter, transferase activity, amidase transmembrane transporter, efflux transmembrane transporter, bacterial chemotaxis, ABC transporter, and others. The results of the 2-DE showed that 70 proteins were differentially expressed in the isolate strain, 45 of which were up-regulated and 25 down-regulated. Twenty-seven DEPs were identified by MS and these included the following protein categories: ribosome, antimicrobial peptide resistance, and ABC transporter, all of which may be involved in MDR in the isolate strain of C. perfringens. The results provide reference data for further investigations on the drug resistant molecular mechanisms of C. perfringens.

  19. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems.

  20. Expression of Selected Ginkgo biloba Heat Shock Protein Genes After Cold Treatment Could Be Induced by Other Abiotic Stress

    PubMed Central

    Cao, Fuliang; Cheng, Hua; Cheng, Shuiyuan; Li, Linling; Xu, Feng; Yu, Wanwen; Yuan, Honghui

    2012-01-01

    Heat shock proteins (HSPs) play various stress-protective roles in plants. In this study, three HSP genes were isolated from a suppression subtractive hybridization (SSH) cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full length of the three genes were predicted to encode three polypeptide chains containing 149 amino acids (Aa), 152 Aa, and 657 Aa, and their corresponding molecular weights were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three genes exhibited distinctive expression patterns in different organs or development stages. GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit. This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of GbHSP16.8 and GbHSP70, and abscisic acid (ABA) treatment caused up-regulation of GbHSP70 primarily. PMID:22754330

  1. Transcriptional profiles of the annual growth cycle in Populus deltoides.

    PubMed

    Park, Sunchung; Keathley, Daniel E; Han, Kyung-Hwan

    2008-03-01

    Cycling between vegetative growth and dormancy is an important adaptive mechanism in temperate woody plants. To gain insights into the underlying molecular mechanisms, we carried out global transcription analyses on stem samples from poplar (Populus deltoides Bartr. ex Marsh.) trees grown in the field and in controlled environments. Among seasonal changes in the transcriptome, up-regulation of defense-related genes predominated in early winter, whereas signaling-related genes were up-regulated during late winter. Cluster analysis of the differentially expressed genes showed that plants regulated seasonal growth by integrating environmental factors with development. Short day lengths induced some cold-associated genes without concomitant low temperature exposure, and enhanced the expression of some genes when combined with low temperature exposure. These mechanisms appear to maintain closer synchrony between cold hardiness and climate than would be achieved through responses to temperature alone.

  2. Microarray analysis of thyroid stimulating hormone, insulin-like growth factor-1, and insulin-induced gene expression in FRTL-5 thyroid cells.

    PubMed

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Park, Young Joo; Cho, Bo Youn

    2007-10-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation.

  3. Microarray Analysis of Thyroid Stimulating Hormone, Insulin-Like Growth Factor-1, and Insulin-Induced Gene Expression in FRTL-5 Thyroid Cells

    PubMed Central

    Lee, You Jin; Park, Do Joon; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Cho, Bo Youn

    2007-01-01

    To determine which genes are regulated by thyroid stimulating hormone (thyrotropin, TSH), insulin and insulin-like growth factor-1 (IGF-1) in the rat thyroid, we used the microarray technology and observed the changes in gene expression. The expressions of genes for bone morphogenetic protein 6, the glucagon receptor, and cyclin D1 were increased by both TSH and IGF-1; for cytochrome P450, 2c37, the expression was decreased by both. Genes for cholecystokinin, glucuronidase, beta, demethyl-Q 7, and cytochrome c oxidase, subunit VIIIa, were up-regulated; the genes for ribosomal protein L37 and ribosomal protein L4 were down-regulated by TSH and insulin. However, there was no gene observed to be regulated by all three: TSH, IGF-1, and insulin molecules studied. These findings suggest that TSH, IGF-1, and insulin stimulate different signal pathways, which can interact with one another to regulate the proliferation of thyrocytes, and thereby provide additional influence on the process of cellular proliferation. PMID:17982240

  4. Expression of microRNA-122 contributes to apoptosis in H9C2 myocytes

    PubMed Central

    Huang, Xiaoyan; Huang, Fang; Yang, Deye; Dong, Fengquan; Shi, Xiangxiang; Wang, Hongyu; Zhou, Xi; Wang, Suyun; Dai, Shengchuan

    2012-01-01

    The microRNAs (miRNAs) can post-transcriptionally regulate gene expression and heart development. The Pax-8 gene knockout mice have apparent heart abnormalities. This study investigated the role of miRNAs in regulation of cardiac apoptosis and development in the knockout mice. MicroRNA microarrays demonstrated differential expression of microRNAs between Pax-8−/− and Pax-8+/− mice, confirmed by real-time PCR. The miR-122 was up-regulated by 1.92 folds in Pax-8−/− mice. There were ventricular septum defects in Pax-8−/− mice, and increased numbers of apoptotic cells in the left ventricular wall and interventricular septum in Pax-8−/− mice. In H9C2 myocytes, treatment with miR-122 mimics or miR-122 inhibitor affects the expression of CCK-8 and activity of Caspase-3. The miR-122 is up-regulated in the myocytes of Pax-8−/− mice and may participate in the apoptotic gene expression and pathogenesis of heart development defect. PMID:22453009

  5. Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach

    PubMed Central

    Ragno, Silvia; Romano, Maria; Howell, Steven; Pappin, Darryl J C; Jenner, Peter J; Colston, Michael J

    2001-01-01

    We investigated the changes which occur in gene expression in the human macrophage cell line, THP1, at 1, 6 and 12 hr following infection with Mycobacterium tuberculosis. The analysis was carried out at the transcriptome level, using microarrays consisting of 375 human genes generally thought to be involved in immunoregulation, and at the proteomic level, using two-dimensional gel electrophoresis and mass spectrometry. The analysis of the transcriptome using microarrays revealed that many genes were up-regulated at 6 and 12 hr. Most of these genes encoded proteins involved in cell migration and homing, including the chemokines interleukin (IL)-8, osteopontin, monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), regulated on activation, normal, T-cell expressed and secreted (RANTES), MIP-1β, MIP-3α, myeloid progenitor inhibitory factor-1 (MPIF-1), pulmonary and activation regulated chemokine (PARC), growth regulated gene-β (GRO-β), GRO-γ, MCP-2, I-309, and the T helper 2 (Th2) and eosinophil-attracting chemokine, eotaxin. Other genes involved in cell migration which were up-regulated included the matrix metalloproteinase MMP-9, vascular endothelial growth factor (VEGF) and its receptor Flk-1, the chemokine receptor CCR3, and the cell adhesion molecules vesicular cell adhesion molecule-1 (VCAM-1) and integrin a3. In addition to the chemokine response, genes encoding the proinflammatory cytokines IL-1β (showing a 433-fold induction), IL-2 and tumour necrosis factor-α (TNF-α), were also found to be induced at 6 and/or 12 hr. It was more difficult to detect changes using the proteomic approach. Nevertheless, IL-1β was again shown to be strongly up-regulated. The enzyme manganese superoxide dismutase was also found to be strongly up-regulated; this enzyme was found to be macrophage-, rather than M. tuberculosis, derived. The heat-shock protein hsp27 was found to be down-regulated following infection. We also identified a mycobacterial protein, the product of the atpD gene (thought to be involved in the regulation of cytoplasmic pH) in the infected macrophage extracts. PMID:11576227

  6. Molecular characterization and expression analysis of the critical floral genes in hickory (Carya cathayensis Sarg.).

    PubMed

    Shen, Chen; Xu, Yingwu; Huang, Jianqin; Wang, Zhengjia; Qiu, Jiani; Huang, Youjun

    2014-10-01

    The full ORFs of three floral genes in hickory (Carya cathayensis Sarg.), CcAGL24 (the AGAMOUS-LIKE24 homolog), CcSOC1 (the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 homolog) and CcAP1 (the APETALA1 homolog) are derived using a 5' RACE PCR protocol. Through sequence alignment and phylogenetic analysis, it is demonstrated that the three genes belong to the MADS-Box family. According to the evolutionary trees of the three genes, the homologous genes from the same family cluster well together, while those from different orders doesn't match evolutionary regularity of individual organisms. The result of Quantitative RT-PCR analysis shows that the transcriptional levels of the three genes are up-regulated in early stage and down-regulated in late stage in pistillate floral development. However, it takes different time to reach respective expression peak among the three genes. In staminate floral development, the transcription trend of the three genes is up-regulated, subsequently down-regulated, and then up-regulated again. Nevertheless, those trajectories, peaks, expression levels, inflection points are different in pistillate floral development. The result suggests that their functions are different in between pistillate and staminate floral development. The probable ordinal site of the three genes in the flowering network from top down is CcAGL24, CcSOC1, and CcAP1, which is identical to that in herbaceous plants. Moreover, several adverse environmental factors trigger several negative genes and then confine the development of staminate floral buds. Our results suggest the possible relationship among the three critical floral genes and their functions throughout the floral development in hickory. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Functional characterization of the Hyles euphorbiae hawkmoth transcriptome reveals strong expression of phorbol ester detoxification and seasonal cold hardiness genes.

    PubMed

    Barth, M Benjamin; Buchwalder, Katja; Kawahara, Akito Y; Zhou, Xin; Liu, Shanlin; Krezdorn, Nicolas; Rotter, Björn; Horres, Ralf; Hundsdoerfer, Anna K

    2018-01-01

    The European spurge hawkmoth, Hyles euphorbiae (Lepidoptera, Sphingidae), has been intensively studied as a model organism for insect chemical ecology, cold hardiness and evolution of species delineation. To understand species isolation mechanisms at a molecular level, this study aims at determining genetic factors underlying two adaptive ecological trait candidates, phorbol ester (TPA) detoxification and seasonal cold acclimation. A draft transcriptome of H. euphorbiae was generated using Illumina sequencing, providing the first genomic resource for the hawkmoth subfamily Macroglossinae. RNA expression levels in tissues of experimental TPA feeding larvae and cooled pupae was compared to levels in control larvae and pupae using 26 bp RNA sequence tag libraries (DeepSuperSAGE). Differential gene expression was assessed by homology searches of the tags in the transcriptome. In total, 389 and 605 differentially expressed transcripts for detoxification and cold hardiness, respectively, could be identified and annotated with proteins. The majority (22 of 28) of differentially expressed detox transcripts of the four 'drug metabolism' enzyme groups (cytochrome P450 (CYP), carboxylesterases (CES), glutathione S-transferases (GST) and lipases) are up-regulated. Triacylglycerol lipase was significantly over proportionally annotated among up-regulated detox transcripts. We record several up-regulated lipases, GSTe2, two CESs, CYP9A21, CYP6BD6 and CYP9A17 as candidate genes for further H. euphorbiae TPA detoxification analyses. Differential gene expression of the cold acclimation treatment is marked by metabolic depression with enriched Gene Ontology terms among down-regulated transcripts almost exclusively comprising metabolism, aerobic respiration and dissimilative functions. Down-regulated transcripts include energy expensive respiratory proteins like NADH dehydrogenase, cytochrome oxidase and ATP synthase. Gene expression patterns show shifts in carbohydrate metabolism towards cryoprotectant production. The Glycolysis enzymes, G1Pase, A1e, Gpi and an Akr isoform are up-regulated. Glycerol, an osmolyte which lowers the body liquid supercooling point, appears to be the predominant polyol cryoprotectant in H. euphorbiae diapause pupae. Several protein candidates involved in glucose, glycerol, myo-inositol and potentially sorbitol and trehalose synthesis were identified. A majority of differently expressed transcripts unique for either detoxification or cold hardiness indicates highly specialized functional adaptation which may have evolved from general cell metabolism and stress response.The transcriptome and extracted candidate biomarkers provide a basis for further gene expression studies of physiological processes and adaptive traits in H. euphorbiae .

  8. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus

    PubMed Central

    2013-01-01

    Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae. PMID:23725589

  9. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    PubMed

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes, indicating for its role upstream in the apical-to-floral meristem signalling cascade.

  10. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine.

    PubMed

    Li, Yunhai; Lee, Kee Khoon; Walsh, Sean; Smith, Caroline; Hadingham, Sophie; Sorefan, Karim; Cawley, Gavin; Bevan, Michael W

    2006-03-01

    Establishing transcriptional regulatory networks by analysis of gene expression data and promoter sequences shows great promise. We developed a novel promoter classification method using a Relevance Vector Machine (RVM) and Bayesian statistical principles to identify discriminatory features in the promoter sequences of genes that can correctly classify transcriptional responses. The method was applied to microarray data obtained from Arabidopsis seedlings treated with glucose or abscisic acid (ABA). Of those genes showing >2.5-fold changes in expression level, approximately 70% were correctly predicted as being up- or down-regulated (under 10-fold cross-validation), based on the presence or absence of a small set of discriminative promoter motifs. Many of these motifs have known regulatory functions in sugar- and ABA-mediated gene expression. One promoter motif that was not known to be involved in glucose-responsive gene expression was identified as the strongest classifier of glucose-up-regulated gene expression. We show it confers glucose-responsive gene expression in conjunction with another promoter motif, thus validating the classification method. We were able to establish a detailed model of glucose and ABA transcriptional regulatory networks and their interactions, which will help us to understand the mechanisms linking metabolism with growth in Arabidopsis. This study shows that machine learning strategies coupled to Bayesian statistical methods hold significant promise for identifying functionally significant promoter sequences.

  11. MicroRNA expression profiling in alveolar macrophages of indigenous Chinese Tongcheng pigs infected with PRRSV in vivo.

    PubMed

    Zhou, Xiang; Michal, Jennifer J; Jiang, Zhihua; Liu, Bang

    2017-11-01

    Porcine respiratory and reproductive syndrome (PRRS), caused by PRRS virus (PRRSV), is one of the most serious infectious diseases in the swine industry worldwide. Indigenous Chinese Tongcheng (TC) pigs reportedly show strong resistance to PRRSV infection. The miRNA expression profiles of porcine alveolar macrophages (PAMs) of control TC pigs and those infected with PRRSV in vivo were analyzed by high-throughput sequencing to explore changes induced by infection. A total of 182 known miRNAs including 101 miRNA-5p and 81 miRNA-3p were identified with 23 up-regulated differentially expressed miRNAs (DEmiRNAs) and 25 down-regulated DEmiRNAs. Gene Ontology analysis showed that predicted target genes for the DEmiRNAs were enriched in immune response, transcription regulation, and cell death. The integrative analysis of mRNA and miRNA expression revealed that down-regulated methylation-related genes (DNMT1 and DNMT3b) were targeted by five up-regulated DEmiRNAs. Furthermore, 35 pairs of miRNAs (70 miRNAs) were co-expressed after PRRSV infection and six pairs were co-expressed differently. Our results describe miRNA expression profiles of TC pigs in response to PRRSV infection and lay a strong foundation for developing novel therapies to control PRRS in pigs.

  12. Comparative Transcriptomes Analysis of Red- and White-Fleshed Apples in an F1 Population of Malus sieversii f. niedzwetzkyana Crossed with M. domestica ‘Fuji’

    PubMed Central

    Wang, Nan; Zheng, Yi; Duan, Naibin; Zhang, Zongying; Ji, Xiaohao; Jiang, Shenghui; Sun, Shasha; Yang, Long; Bai, Yang; Fei, Zhangjun; Chen, Xuesen

    2015-01-01

    Transcriptome profiles of the red- and white-fleshed apples in an F1 segregating population of Malus sieversii f.Niedzwetzkyana and M.domestica ‘Fuji’ were generated using the next-generation high-throughput RNA sequencing (RNA-Seq) technology and compared. A total of 114 differentially expressed genes (DEGs) were obtained, of which 88 were up-regulated and 26 were down-regulated in red-fleshed apples. The 88 up-regulated genes were enriched with those related to flavonoid biosynthetic process and stress responses. Further analysis identified 22 genes associated with flavonoid biosynthetic process and 68 genes that may be related to stress responses. Furthermore, the expression of 20 up-regulated candidate genes (10 related to flavonoid biosynthesis, two encoding MYB transcription factors and eight related to stress responses) and 10 down-regulated genes were validated by quantitative real-time PCR. After exploring the possible regulatory network, we speculated that flavonoid metabolism might be involved in stress responses in red-fleshed apple. Our findings provide a theoretical basis for further enriching gene resources associated with flavonoid synthesis and stress responses of fruit trees and for breeding elite apples with high flavonoid content and/or increased stress tolerances. PMID:26207813

  13. Comparative Transcriptomes Analysis of Red- and White-Fleshed Apples in an F1 Population of Malus sieversii f. niedzwetzkyana Crossed with M. domestica 'Fuji'.

    PubMed

    Wang, Nan; Zheng, Yi; Duan, Naibin; Zhang, Zongying; Ji, Xiaohao; Jiang, Shenghui; Sun, Shasha; Yang, Long; Bai, Yang; Fei, Zhangjun; Chen, Xuesen

    2015-01-01

    Transcriptome profiles of the red- and white-fleshed apples in an F1 segregating population of Malus sieversii f.Niedzwetzkyana and M.domestica 'Fuji' were generated using the next-generation high-throughput RNA sequencing (RNA-Seq) technology and compared. A total of 114 differentially expressed genes (DEGs) were obtained, of which 88 were up-regulated and 26 were down-regulated in red-fleshed apples. The 88 up-regulated genes were enriched with those related to flavonoid biosynthetic process and stress responses. Further analysis identified 22 genes associated with flavonoid biosynthetic process and 68 genes that may be related to stress responses. Furthermore, the expression of 20 up-regulated candidate genes (10 related to flavonoid biosynthesis, two encoding MYB transcription factors and eight related to stress responses) and 10 down-regulated genes were validated by quantitative real-time PCR. After exploring the possible regulatory network, we speculated that flavonoid metabolism might be involved in stress responses in red-fleshed apple. Our findings provide a theoretical basis for further enriching gene resources associated with flavonoid synthesis and stress responses of fruit trees and for breeding elite apples with high flavonoid content and/or increased stress tolerances.

  14. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress.

    PubMed

    Sun, Li; Di, Dongwei; Li, Guangjie; Kronzucker, Herbert J; Shi, Weiming

    2017-05-01

    Ammonium (NH 4 + ) is the predominant nitrogen (N) source in many natural and agricultural ecosystems, including flooded rice fields. While rice is known as an NH 4 + -tolerant species, it nevertheless suffers NH 4 + toxicity at elevated soil concentrations. NH 4 + excess rapidly leads to the disturbance of various physiological processes that ultimately inhibit shoot and root growth. However, the global transcriptomic response to NH 4 + stress in rice has not been examined. In this study, we mapped the spatio-temporal specificity of gene expression profiles in rice under excess NH 4 + and the changes in gene expression in root and shoot at various time points by RNA-Seq (Quantification) using Illumina HiSeqTM 2000. By comparative analysis, 307 and 675 genes were found to be up-regulated after 4h and 12h of NH 4 + exposure in the root, respectively. In the shoot, 167 genes were up-regulated at 4h, compared with 320 at 12h. According to KEGG analysis, up-regulated DEGs mainly participate in phenylpropanoid (such as flavonoid) and amino acid (such as proline, cysteine, and methionine) metabolism, which is believed to improve NH 4 + stress tolerance through adjustment of energy metabolism in the shoot, while defense and signaling pathways, guiding whole-plant acclimation, play the leading role in the root. We furthermore critically assessed the roles of key phytohormones, and found abscisic acid (ABA) and ethylene (ET) to be the major regulatory molecules responding to excess NH 4 + and activating the MAPK (mitogen-activated protein kinase) signal-transduction pathway. Moreover, we found up-regulated hormone-associated genes are involved in regulating flavonoid biosynthesis and are regulated by tissue flavonoid accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls

    NASA Astrophysics Data System (ADS)

    Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.; Hoson, T.

    2003-05-01

    Under hypergravity conditions, the cell wall of stem organs becomes mechanically rigid and elongation growth is suppressed, which can be recognized as the mechanism for plants to resist gravitational force. The changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by the differential display method, for identifying genes involved in hypergravity-induced growth suppression. Sixty-two cDNA clones were expressed differentially between the control and 300 g conditions: the expression levels of 39 clones increased, whereas those of 23 clones decreased under hypergravity conditions. Sequence analysis and database searching revealed that 12 clones, 9 up-regulated and 3 down-regulated, have homology to known proteins. The expression of these genes was further analyzed using RT-PCR. Finally, six genes were confirmed to be up-regulated by hypergravity. One of such genes encoded 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor ofterpenoids such as membrane sterols and several types of hormones. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of genes encoding CCR1 and ERD15, which were shown to take part in the signaling pathway of environmental stimuli such as temperature and water, and those of the α-tubulin gene. These genes may be involved in a series of cellular events leading to growth suppression of stem organs under hypergravity conditions.

  16. Research Resource: Preovulatory LH Surge Effects on Follicular Theca and Granulosa Transcriptomes

    PubMed Central

    Gunewardena, Sumedha; Hong, Xiaoman; Spitschak, Marion; Baufeld, Anja

    2013-01-01

    The molecular mechanisms that regulate the pivotal transformation processes observed in the follicular wall following the preovulatory LH surge, are still not established, particularly for cells of the thecal layer. To elucidate thecal cell (TC) and granulosa cell (GC) type-specific biologic functions and signaling pathways, large dominant bovine follicles were collected before and 21 hours after an exogenous GnRH-induced LH surge. Antral GCs (aGCs; aspirated by follicular puncture) and membrane-associated GCs (mGCs; scraped from the follicular wall) were compared with TC expression profiles determined by mRNA microarrays. Of the approximately 11 000 total genes expressed in the periovulatory follicle, only 2% of thecal vs 25% of the granulosa genes changed in response to the LH surge. The majority of the 203 LH-regulated thecal genes were also LH regulated in GCs, leaving a total of 57 genes as LH-regulated TC-specific genes. Of the 57 thecal-specific LH-regulated genes, 74% were down-regulated including CYP17A1 and NR5A1, whereas most other genes are being identified for the first time within theca. Many of the newly identified up-regulated thecal genes (eg, PTX3, RND3, PPP4R4) were also up-regulated in granulosa. Minimal expression differences were observed between aGCs and mGCs; however, transcripts encoding extracellular proteins (NID2) and matrix modulators (ADAMTS1, SASH1) dominated these differences. We also identified large numbers of unknown LH-regulated GC genes and discuss their putative roles in ovarian function. This Research Resource provides an easy-to-access global evaluation of LH regulation in TCs and GCs that implicates numerous molecular pathways heretofore unknown within the follicle. PMID:23716604

  17. Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes.

    PubMed

    Christenson, Lane K; Gunewardena, Sumedha; Hong, Xiaoman; Spitschak, Marion; Baufeld, Anja; Vanselow, Jens

    2013-07-01

    The molecular mechanisms that regulate the pivotal transformation processes observed in the follicular wall following the preovulatory LH surge, are still not established, particularly for cells of the thecal layer. To elucidate thecal cell (TC) and granulosa cell (GC) type-specific biologic functions and signaling pathways, large dominant bovine follicles were collected before and 21 hours after an exogenous GnRH-induced LH surge. Antral GCs (aGCs; aspirated by follicular puncture) and membrane-associated GCs (mGCs; scraped from the follicular wall) were compared with TC expression profiles determined by mRNA microarrays. Of the approximately 11 000 total genes expressed in the periovulatory follicle, only 2% of thecal vs 25% of the granulosa genes changed in response to the LH surge. The majority of the 203 LH-regulated thecal genes were also LH regulated in GCs, leaving a total of 57 genes as LH-regulated TC-specific genes. Of the 57 thecal-specific LH-regulated genes, 74% were down-regulated including CYP17A1 and NR5A1, whereas most other genes are being identified for the first time within theca. Many of the newly identified up-regulated thecal genes (eg, PTX3, RND3, PPP4R4) were also up-regulated in granulosa. Minimal expression differences were observed between aGCs and mGCs; however, transcripts encoding extracellular proteins (NID2) and matrix modulators (ADAMTS1, SASH1) dominated these differences. We also identified large numbers of unknown LH-regulated GC genes and discuss their putative roles in ovarian function. This Research Resource provides an easy-to-access global evaluation of LH regulation in TCs and GCs that implicates numerous molecular pathways heretofore unknown within the follicle.

  18. Gamma-oryzanol rich fraction regulates the expression of antioxidant and oxidative stress related genes in stressed rat's liver

    PubMed Central

    2010-01-01

    Background Gamma-oryzanol (OR), a phytosteryl ferulate mixture extracted from rice bran oil, has a wide spectrum of biological activities in particular, it has antioxidant properties. Methods The regulatory effect of gamma-oryzanol rich fraction (ORF) extracted and fractionated from rice bran using supercritical fluid extraction (SFE) in comparison with commercially available OR on 14 antioxidant and oxidative stress related genes was determined in rat liver. Rats were subjected to a swimming exercise program for 10 weeks to induce stress and were further treated with either ORF at 125, 250 and 500 mg/kg or OR at 100 mg/kg in emulsion forms for the last 5 weeks of the swimming program being carried out. The GenomeLab Genetic Analysis System (GeXPS) was used to study the multiplex gene expression of the selected genes. Results Upon comparison of RNA expression levels between the stressed and untreated group (PC) and the unstressed and untreated group (NC), seven genes were found to be down-regulated, while seven genes were up-regulated in PC group compared to NC group. Further treatment of stressed rats with ORF at different doses and OR resulted in up-regulation of 10 genes and down regulation of four genes compared to the PC group. Conclusions Gamma-oryzanol rich fraction showed potential antioxidant activity greater than OR in the regulation of antioxidants and oxidative stress gene markers. PMID:20331906

  19. Intermittent Hypoxia Alters Gene Expression in Peripheral Blood Mononuclear Cells of Healthy Volunteers.

    PubMed

    Polotsky, Vsevolod Y; Bevans-Fonti, Shannon; Grigoryev, Dmitry N; Punjabi, Naresh M

    2015-01-01

    Obstructive sleep apnea is associated with high cardiovascular morbidity and mortality. Intermittent hypoxia of obstructive sleep apnea is implicated in the development and progression of insulin resistance and atherosclerosis, which have been attributed to systemic inflammation. Intermittent hypoxia leads to pro-inflammatory gene up-regulation in cell culture, but the effects of intermittent hypoxia on gene expression in humans have not been elucidated. A cross-over study was performed exposing eight healthy men to intermittent hypoxia or control conditions for five hours with peripheral blood mononuclear cell isolation before and after exposures. Total RNA was isolated followed by gene microarrays and confirmatory real time reverse transcriptase PCR. Intermittent hypoxia led to greater than two fold up-regulation of the pro-inflammatory gene toll receptor 2 (TLR2), which was not increased in the control exposure. We hypothesize that up-regulation of TLR2 by intermittent hypoxia may lead to systemic inflammation, insulin resistance and atherosclerosis in patients with obstructive sleep apnea.

  20. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia

    PubMed Central

    Zemp, Niklaus; Tavares, Raquel; Widmer, Alex

    2015-01-01

    Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism. PMID:26448481

  1. Fungal Infection Induces Sex-Specific Transcriptional Changes and Alters Sexual Dimorphism in the Dioecious Plant Silene latifolia.

    PubMed

    Zemp, Niklaus; Tavares, Raquel; Widmer, Alex

    2015-10-01

    Sexual dimorphism, including differences in morphology, behavior and physiology between females and males, is widespread in animals and plants and is shaped by gene expression differences between the sexes. Such expression differences may also underlie sex-specific responses of hosts to pathogen infections, most notably when pathogens induce partial sex reversal in infected hosts. The genetic changes associated with sex-specific responses to pathogen infections on the one hand, and sexual dimorphism on the other hand, remain poorly understood. The dioecious White Campion (Silene latifolia) displays sexual dimorphism in floral traits and infection with the smut fungus Micobrotryum lychnidis-dioicae induces a partial sex reversal in females. We find strong sex-specific responses to pathogen infection and reduced sexual dimorphism in infected S. latifolia. This provides a direct link between pathogen-mediated changes in sex-biased gene expression and altered sexual dimorphism in the host. Expression changes following infection affected mainly genes with male-biased expression in healthy plants. In females, these genes were up-regulated, leading to a masculinization of the transcriptome. In contrast, infection in males was associated with down-regulation of these genes, leading to a demasculinization of the transcriptome. To a lesser extent, genes with female-biased expression in healthy plants were also affected in opposite directions in the two sexes. These genes were overall down-regulated in females and up-regulated in males, causing, respectively, a defeminization in infected females and a feminization of the transcriptome in infected males. Our results reveal strong sex-specific responses to pathogen infection in a dioecious plant and provide a link between pathogen-induced changes in sex-biased gene expression and sexual dimorphism.

  2. Thyroid Hormone Receptor β (THRB) Is a Major Target Gene for MicroRNAs Deregulated in Papillary Thyroid Carcinoma (PTC)

    PubMed Central

    Boguslawska, Joanna; Jendrzejewski, Jaroslaw; Liyanarachchi, Sandya; Pachucki, Janusz; Wardyn, Kazimierz A.; Nauman, Alicja

    2011-01-01

    Context: Loss of the thyroid hormone receptor is common in tumors. In mouse models, a truncated THRB gene leads to thyroid cancer. Previously, we observed up-regulation of the expression of eight microRNAs (miRs) in papillary thyroid carcinoma (PTC) tumors. Objective: Our objective was to determine whether THRB might be inhibited by miRs up-regulated in PTC. Design: The potential binding of miR to the 3′-untranslated region of THRB was analyzed in silico. Direct inhibition by miRs binding to the cloned 3′-untranslated region of THRB was evaluated using luciferase assays. Inhibition of endogenous THRB and its target genes (DIO1 and APP) was examined in cell lines transfected by pre-miRs. The impact on thyroid hormone response element (TRE) was evaluated in promoter assays. Correlations between the expression of THRB and miRs was evaluated in 13 PTC tumor/normal tissue pairs. Results: THRB contains binding sites for the top seven miRs up-regulated in PTC (P = 0.0000002). Direct interaction with THRB was shown for miR-21 and miR-146a. We observed lower levels of THRB transcripts in cell lines transfected with miR-21, -146a, and -221 (down-regulation of 37–48%; P < 0.0001), but not with miR-181a. THRB protein was suppressed down to 10–28% by each of four miRs. Concomitant expression of DIO1 and APP was affected (down-regulation of 32–66%, P < 0.0034 and up-regulation of 48–57%, P < 0.0002, respectively). All four miRs affected TRE activity in promoter assays. Down-regulation of luciferase occurred after transfection with pTRE-TK-Luc construct and each of four miRs. The analysis of tumor/normal tissue pairs revealed down-regulation of THRB in 11 of 13 pairs (1.3- to 9.1-fold), and up-regulation of miR-21, -146a, -181a, and -221 in almost all pairs. Conclusions: MiRs up-regulated in PTC tumors directly inhibit the expression of THRB, an important tumor suppressor gene. PMID:21159845

  3. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    PubMed

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  4. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells.

    PubMed

    Charlebois, Audrey; Jacques, Mario; Archambault, Marie

    2016-10-01

    Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxaemias in animal species. Recently, C. perfringens was shown to form biofilms, a structured community of bacterial cells enclosed in a self-produced extracellular matrix. However, very little is known on the subject and no information is available on gene expression in C. perfringens biofilms. To gain insights into the differences between free-living C. perfringens cells and those in biofilms, we used RNA sequencing. In total, 25.7% of genes showed differential expression in the two growth modes; about 12.8% of genes were up-regulated and about 12.9% were down-regulated in biofilms. We show that 772 genes were significantly differentially expressed between biofilms and planktonic cells from the supernatant of biofilms. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in virulence, energy production, amino acid, nucleotide and carbohydrate metabolism, and in translation and ribosomal structure. Genes up-regulated in biofilm cells were mainly involved in amino acid and carbohydrate metabolism, transcription, inorganic ion metabolism and in defence mechanisms. This study provides new insights into the transcriptomic response of C. perfringens during biofilm formation.

  5. Identification of Differentially Expressed Genes Related to Dehydration Resistance in a Highly Drought-Tolerant Pear, Pyrus betulaefolia, as through RNA-Seq.

    PubMed

    Li, Kong-Qing; Xu, Xiao-Yong; Huang, Xiao-San

    2016-01-01

    Drought is a major abiotic stress that affects plant growth, development and productivity. Pear is one of the most important deciduous fruit trees in the world, but the mechanisms of drought tolerance in this plant are still unclear. To better understand the molecular basis regarding drought stress response, RNA-seq was performed on samples collected before and after dehydration in Pyrus betulaefolia. In total, 19,532 differentially expressed genes (DEGs) were identified. These genes were annotated into 144 Gene Ontology (GO) terms and 18 clusters of orthologous groups (COG) involved in 129 Kyoto Encyclopedia of Genes and Genomes (KEGG) defined pathways. These DEGs comprised 49 (26 up-regulated, 23 down-regulated), 248 (166 up-regulated, 82 down-regulated), 3483 (1295 up-regulated, 2188 down-regulated), 1455 (1065 up-regulated, 390 down-regulated) genes from the 1 h, 3 h and 6 h dehydration-treated samples and a 24 h recovery samples, respectively. RNA-seq was validated by analyzing the expresson patterns of randomly selected 16 DEGs by quantitative real-time PCR. Photosynthesis, signal transduction, innate immune response, protein phosphorylation, response to water, response to biotic stimulus, and plant hormone signal transduction were the most significantly enriched GO categories amongst the DEGs. A total of 637 transcription factors were shown to be dehydration responsive. In addition, a number of genes involved in the metabolism and signaling of hormones were significantly affected by the dehydration stress. This dataset provides valuable information regarding the Pyrus betulaefolia transcriptome changes in response to dehydration and may promote identification and functional analysis of potential genes that could be used for improving drought tolerance via genetic engineering of non-model, but economically-important, perennial species.

  6. Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration

    PubMed Central

    Kamran, Fariha; Andrade, Anenisia C.; Nella, Aikaterini A.; Clokie, Samuel J.; Rezvani, Geoffrey; Nilsson, Ola; Baron, Jeffrey

    2015-01-01

    Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age–down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3′-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth. PMID:25866874

  7. Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration.

    PubMed

    Kamran, Fariha; Andrade, Anenisia C; Nella, Aikaterini A; Clokie, Samuel J; Rezvani, Geoffrey; Nilsson, Ola; Baron, Jeffrey; Lui, Julian C

    2015-06-01

    Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age-down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3'-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth.

  8. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans.

    PubMed

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A

    2008-12-23

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans.

  9. RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans

    PubMed Central

    Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A.

    2008-01-01

    In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans. PMID:19073934

  10. Hepatic transcriptome analysis and identification of differentially expressed genes response to dietary oxidized fish oil in loach Misgurnus anguillicaudatus.

    PubMed

    Zhang, Yin; Li, Yang; Liang, Xiao; Cao, Xiaojuan; Huang, Longfei; Yan, Jie; Wei, Yanxing; Gao, Jian

    2017-01-01

    RNA sequencing and short-read assembly were utilized to produce a transcriptome of livers from loaches (Misgurnus anguillicaudatus) fed with three different diets respectively containing fresh fish oil (FO group), medium oxidized fish oil (MO group) and high oxidized fish oil (HO group). A total of 60,663 unigenes were obtained in this study, with mean length 848.74 bp. 50,814, 49,584 and 49,814 unigenes were respectively obtained from FO, MO and HO groups. There were 2,343 differentially expressed genes between FO and MO, with 855 down- and 1,488 up-regulated genes in the MO group. 2,813 genes were differentially expressed between FO and HO, including 1,256 down- and 1,552 up-regulated genes in the HO group. 2,075 differentially expressed genes were found in the comparison of MO and HO, including 1,074 up- and 1,001 down-regulated genes in the MO group. Some differentially expressed genes, such as fatty acid transport protein (fatp), fatty acid binding protein (fabp), apolipoprotein (apo), peroxisome proliferator activated receptor-gamma (ppar-γ), acetyl-CoA synthetase (acs) and arachidonate 5-lipoxygenase (alox5), were involved in lipid metabolism, suggesting these genes in the loach were responsive to dietary oxidized fish oil. Results of transcriptome profilings here were validated using quantitative real time PCR in fourteen randomly selected unigenes. The present study provides insights into hepatic transcriptome profile of the loach, which is a valuable resource for studies of loach genomics. More importantly, this study identifies some important genes responsible for dietary oxidized fish oil, which will benefit researches of lipid metabolism in fish.

  11. Aniline exposure associated with up-regulated transcriptional responses of three glutathione S-transferase Delta genes in Drosophila melanogaster.

    PubMed

    Chan, Wen-Chiao; Chien, Yi-Chih; Chien, Cheng-I

    2015-03-01

    Complex transcriptional profile of glutathione S-transferase Delta cluster genes occurred in the developmental process of the fruit fly Drosophila melanogaster. The purpose of this project was to quantify the expression levels of Gst Delta class genes altered by aniline exposure and to understand the relationship between aniline dosages and the variation of Gst Delta genes expressed in D. melanogaster. Using RT-PCR expression assays, the expression patterns of the transcript mRNAs of the glutathione S-transferase Delta genes were revealed and their expression levels were measured at eggs, larvae, pupae and adults. The adult stage was selected for further dose-response assays. After analysis, the results indicated that three Gst Delta genes (Gst D2, Gst D5 and Gst D6) were found to show a peak of up-regulated transcriptional response at 6-8h of exposure of aniline. Furthermore, the dose-response relationship of their induction levels within the dose regiments (from 1.2 to 2.0 μl/tube) had been measured. The expression patterns and annotations of these genes were discussed in the context. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  13. Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum

    PubMed Central

    Reyes-Dominguez, Yazmid; Boedi, Stefan; Sulyok, Michael; Wiesenberger, Gerlinde; Stoppacher, Norbert; Krska, Rudolf; Strauss, Joseph

    2012-01-01

    Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin. PMID:22100541

  14. High-throughput sequencing analyses of XX genital ridges lacking FOXL2 reveal DMRT1 up-regulation before SOX9 expression during the sex-reversal process in goats.

    PubMed

    Elzaiat, Maëva; Jouneau, Luc; Thépot, Dominique; Klopp, Christophe; Allais-Bonnet, Aurélie; Cabau, Cédric; André, Marjolaine; Chaffaux, Stéphane; Cribiu, Edmond-Paul; Pailhoux, Eric; Pannetier, Maëlle

    2014-12-01

    FOXL2 loss of function in goats leads to the early transdifferentiation of ovaries into testes, then to the full sex reversal of XX homozygous mutants. By contrast, Foxl2 loss of function in mice induces an arrest of follicle formation after birth, followed by complete female sterility. In order to understand the molecular role of FOXL2 during ovarian differentiation in the goat species, putative FOXL2 target genes were determined at the earliest stage of gonadal sex-specific differentiation by comparing the mRNA profiles of XX gonads expressing the FOXL2 protein or not. Of these 163 deregulated genes, around two-thirds corresponded to testicular genes that were up-regulated when FOXL2 was absent, and only 19 represented female-associated genes, down-regulated in the absence of FOXL2. FOXL2 should therefore be viewed as an antitestis gene rather than as a female-promoting gene. In particular, the key testis-determining gene DMRT1 was found to be up-regulated ahead of SOX9, thus suggesting in goats that SOX9 primary up-regulation may require DMRT1. Overall, our results equated to FOXL2 being an antitestis gene, allowing us to propose an alternative model for the sex-determination process in goats that differs slightly from that demonstrated in mice. © 2014 by the Society for the Study of Reproduction, Inc.

  15. Opposite effects on regulation of urea synthesis by early and late uraemia in rats.

    PubMed

    Nielsen, Susanne Schouw; Grøfte, Thorbjørn; Grønbaek, Henning; Tygstrup, Niels; Vilstrup, Hendrik

    2007-04-01

    Acute and chronic kidney failure lead to catabolism with loss of lean body mass. Up-regulation of hepatic urea synthesis may play a role for the loss of body nitrogen and for the level of uraemia. The aims were to investigate the effects of early and late experimental renal failure on the regulation of hepatic urea synthesis and the expression of urea cycle enzyme genes in the liver. We examined the in vivo capacity of urea nitrogen synthesis, mRNA levels of urea cycle enzyme genes, and N-balances 6 days and 21 days after 5/6th partial nephrectomy in rats, and compared these data with pair- and free-fed control animals. Compared with pair-fed animals, early uraemia halved the in vivo urea synthesis capacity and decreased urea gene expressions (P<0.05). In contrast, late uraemia up-regulated in vivo urea synthesis and expression of all urea genes (P<0.05), save that of the flux-generating enzyme carbamoyl phosphate synthetase. The N-balance in rats with early uraemia was markedly negative (P<0.05) and near zero in late uraemia. Early uraemia down-regulated urea synthesis, so hepatic ureagenesis was not in itself involved in the negative N-balance. In contrast, late uraemia up-regulated urea synthesis, which probably contributed towards the reduced N-balance of this condition. These time-dependent, opposite effects on the uraemia-induced regulation of urea synthesis in vivo were not related to food restriction and probably mostly reflected regulation on gene level.

  16. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells

    PubMed Central

    Lukiw, Walter J.; Pogue, Aileen I.

    2007-01-01

    Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death. PMID:17629564

  17. Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite and kidney development

    PubMed Central

    Yan, Bo; Neilson, Karen M.; Ranganathan, Ramya; Maynard, Thomas; Streit, Andrea; Moody, Sally A.

    2014-01-01

    Background Six1 plays an important role in the development of several vertebrate organs, including cranial sensory placodes, somites and kidney. Although Six1 mutations cause one form of Branchio-Otic Syndrome (BOS), the responsible gene in many patients has not been identified; genes that act downstream of Six1 are potential BOS candidates. Results We sought to identify novel genes expressed during placode, somite and kidney development by comparing gene expression between control and Six1-expressing ectodermal explants. The expression patterns of 19 of the significantly up-regulated and 11 of the significantly down-regulated genes were assayed from cleavage to larval stages. 28/30 genes are expressed in the otocyst, a structure that is functionally disrupted in BOS, and 26/30 genes are expressed in the nephric mesoderm, a structure that is functionally disrupted in the related Branchio-Otic-Renal (BOR) syndrome. We also identified the chick homologues of 5 genes and show that they have conserved expression patterns. Conclusions Of the 30 genes selected for expression analyses, all are expressed at many of the developmental times and appropriate tissues to be regulated by Six1. Many have the potential to play a role in the disruption of hearing and kidney function seen in BOS/BOR patients. PMID:25403746

  18. Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content.

    PubMed

    Fu, San-Xiong; Cheng, Hao; Qi, Cunkou

    2009-11-01

    The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, Arabidopsis microarray was used to analyze the gene differential expression of the immature seeds 30 days after flowering of a high oil Brassica napus, H105, whose oil content was 46.04 +/- 1.42, 53.94 +/- 1.35 and 53.09 +/- 1.35% when planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m), respectively. Transcript levels of 363 genes and 421 genes were altered twofold or more for H105 planted in Xining and Lhasa compared to that in Nanjing, respectively. Together, there were 53 common up-regulated and 42 common down-regulated expression transcripts shared by H105 planted in Xining and Lhasa compared to that in Nanjing. Some important genes, such as sucrose synthase, pyruvate kinase and 6-phosphogluconate dehydrogenase which related to sugar metabolism were identified common up-regulated in higher oil content H105. These results revealed the expressional disciplinarian of correlative genes, and provided important information of the molecular genetic mechanism of oil content difference of rapeseed. In addition, these differential expression genes could be suitable as targets for genetic improvement of seed oil content.

  19. Investigation of candidate genes for osteoarthritis based on gene expression profiles.

    PubMed

    Dong, Shuanghai; Xia, Tian; Wang, Lei; Zhao, Qinghua; Tian, Jiwei

    2016-12-01

    To explore the mechanism of osteoarthritis (OA) and provide valid biological information for further investigation. Gene expression profile of GSE46750 was downloaded from Gene Expression Omnibus database. The Linear Models for Microarray Data (limma) package (Bioconductor project, http://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to identify differentially expressed genes (DEGs) in inflamed OA samples. Gene Ontology function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of DEGs were performed based on Database for Annotation, Visualization and Integrated Discovery data, and protein-protein interaction (PPI) network was constructed based on the Search Tool for the Retrieval of Interacting Genes/Proteins database. Regulatory network was screened based on Encyclopedia of DNA Elements. Molecular Complex Detection was used for sub-network screening. Two sub-networks with highest node degree were integrated with transcriptional regulatory network and KEGG functional enrichment analysis was processed for 2 modules. In total, 401 up- and 196 down-regulated DEGs were obtained. Up-regulated DEGs were involved in inflammatory response, while down-regulated DEGs were involved in cell cycle. PPI network with 2392 protein interactions was constructed. Moreover, 10 genes including Interleukin 6 (IL6) and Aurora B kinase (AURKB) were found to be outstanding in PPI network. There are 214 up- and 8 down-regulated transcription factor (TF)-target pairs in the TF regulatory network. Module 1 had TFs including SPI1, PRDM1, and FOS, while module 2 contained FOSL1. The nodes in module 1 were enriched in chemokine signaling pathway, while the nodes in module 2 were mainly enriched in cell cycle. The screened DEGs including IL6, AGT, and AURKB might be potential biomarkers for gene therapy for OA by being regulated by TFs such as FOS and SPI1, and participating in the cell cycle and cytokine-cytokine receptor interaction pathway. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  20. Gene expression profiling in equine polysaccharide storage myopathy revealed inflammation, glycogenesis inhibition, hypoxia and mitochondrial dysfunctions.

    PubMed

    Barrey, Eric; Mucher, Elodie; Jeansoule, Nicolas; Larcher, Thibaut; Guigand, Lydie; Herszberg, Bérénice; Chaffaux, Stéphane; Guérin, Gérard; Mata, Xavier; Benech, Philippe; Canale, Marielle; Alibert, Olivier; Maltere, Péguy; Gidrol, Xavier

    2009-08-07

    Several cases of myopathies have been observed in the horse Norman Cob breed. Muscle histology examinations revealed that some families suffer from a polysaccharide storage myopathy (PSSM). It is assumed that a gene expression signature related to PSSM should be observed at the transcriptional level because the glycogen storage disease could also be linked to other dysfunctions in gene regulation. Thus, the functional genomic approach could be conducted in order to provide new knowledge about the metabolic disorders related to PSSM. We propose exploring the PSSM muscle fiber metabolic disorders by measuring gene expression in relationship with the histological phenotype. Genotypying analysis of GYS1 mutation revealed 2 homozygous (AA) and 5 heterozygous (GA) PSSM horses. In the PSSM muscles, histological data revealed PAS positive amylase resistant abnormal polysaccharides, inflammation, necrosis, and lipomatosis and active regeneration of fibers. Ultrastructural evaluation revealed a decrease of mitochondrial number and structural disorders. Extensive accumulation of an abnormal polysaccharide displaced and partially replaced mitochondria and myofibrils. The severity of the disease was higher in the two homozygous PSSM horses.Gene expression analysis revealed 129 genes significantly modulated (p < 0.05). The following genes were up-regulated over 2 fold: IL18, CTSS, LUM, CD44, FN1, GST01. The most down-regulated genes were the following: mitochondrial tRNA, SLC2A2, PRKCalpha, VEGFalpha. Data mining analysis showed that protein synthesis, apoptosis, cellular movement, growth and proliferation were the main cellular functions significantly associated with the modulated genes (p < 0.05). Several up-regulated genes, especially IL18, revealed a severe muscular inflammation in PSSM muscles. The up-regulation of glycogen synthase kinase-3 (GSK3beta) under its active form could be responsible for glycogen synthase (GYS1) inhibition and hypoxia-inducible factor (HIF1alpha) destabilization. The main disorders observed in PSSM muscles could be related to mitochondrial dysfunctions, glycogenesis inhibition and the chronic hypoxia of the PSSM muscles.

  1. Characterization of a RacGTPase up-regulated in the large yellow croaker Pseudosciaena crocea immunity.

    PubMed

    Han, Fang; Wang, Xiaoqing; Yang, Qilian; Cai, Mingyi; Wang, Zhi Yong

    2011-02-01

    The Rac proteins are members of the Rho family of small G proteins and are implicated in the regulation of several pathways, including those leading to cytoskeleton reorganization, gene expression, cell proliferation, cell adhesion and cell migration and survival. In this investigation, a Rac gene (named as LycRac gene) was obtained from the large yellow croaker and it was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified fusion protein (GST-LycRac). Moreover, the GTP-binding assay showed that the LycRac protein had GTP-binding activity. The LycRac gene was ubiquitously transcribed and expressed in 9 tissues. Quantitative real-time RT-PCR and Western blot analysis revealed the highest expression in gill and the weakest expression in spleen. Time-course analysis revealed that LycRac expression was obviously up-regulated in blood, spleen and liver after immunization with polyinosinic polycytidynic acid (poly I:C), formalin-inactive Gram-negative bacterium Vibrio parahemolyticus and bacterial lipopolysaccharides (LPS). These results suggested that LycRac protein might play an important role in the immune response against microorganisms in large yellow croaker. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  2. Correlation Analysis Between Expression Levels of Hepatic Growth Hormone Receptor, Janus Kinase 2, Insulin-Like Growth Factor-I Genes and Dwarfism Phenotype in Bama Minipig.

    PubMed

    Yang, Haowen; Jiang, Qinyang; Wu, Dan; Lan, Ganqiu; Fan, Jing; Guo, Yafen; Chen, Baojian; Yang, Xiurong; Jiang, Hesheng

    2015-02-01

    Animal growth and development are complex and sophisticated biological metabolic processes, in which genes plays an important role. In this paper, we employed real-time quantitative PCR (RT-qPCR) to analyze the expression levels of hepatic GHR, JAK2 and IGF-I genes in 1, 30, 180 day of Bama minipig and Landrace with attempt to verify the correlation between the expression of these growth-associated genes and the dwarfism phenotype of Bama minipig. The results showed that the expression levels of these 3 genes in Bama minipigs were down-regulated expressed from 1 day to 30 day, and which was up-regulated expressed in Landrace. The expression levels of the 3 genes on 1, 30, 180 day were prominently higher in Landrace than in Bama minipigs. The significant differences of the 3 genes expression levels on 1 day between this two breeds indicate that different expressions of these genes might occur before birth. It is speculated that the down-regulated expression of the 3 genes may have a close correlation with the dwarfism phenotype of Bama minipig. More investigations in depth of this study is under progress with the help of biochip nanotechnology.

  3. Genome-wide transcriptome analysis in the ovaries of two goats identifies differentially expressed genes related to fecundity.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu

    2016-05-10

    The goats are widely kept as livestock throughout the world. Two excellent domestic breeds in China, the Laiwu Black and Jining Grey goats, have different fecundities and prolificacies. Although the goat genome sequences have been resolved recently, little is known about the gene regulations at the transcriptional level in goat. To understand the molecular and genetic mechanisms related to the fecundities and prolificacies, we performed genome-wide sequencing of the mRNAs from two breeds of goat using the next-generation RNA-Seq technology and used functional annotation to identify pathways of interest. Digital gene expression analysis showed 338 genes were up-regulated in the Jining Grey goats and 404 were up-regulated in the Laiwu Black goats. Quantitative real-time PCR verified the reliability of the RNA-Seq data. This study suggests that multiple genes responsible for various biological functions and signaling pathways are differentially expressed in the two different goat breeds, and these genes might be involved in the regulation of goat fecundity and prolificacy. Taken together, our study provides insight into the transcriptional regulation in the ovaries of 2 species of goats that might serve as a key resource for understanding goat fecundity, prolificacy and genetic diversity between species. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Arrigo, Patrizio; Steele, Vernon E.; Croce, Carlo M.; De Flora, Silvio

    2009-01-01

    Although microRNAs have been investigated extensively in cancer research, little is known regarding their response to noxious agents in apparently healthy tissues. We analyzed the expression of 484 miRNAs in the lungs of rats exposed to environmental cigarette smoke (ECS) for 28 days. ECS down-regulated 126 miRNAs (26.0%) at least 2-fold and 24 miRNAs more than 3-fold. We previously demonstrated that 107 of 4858 genes (2.9%) and 50 of 518 proteins (9.7%) were up-regulated by ECS in the same tissue, which is consistent with the role of microRNAs as negative regulators of gene expression. The most remarkably down-regulated microRNAs belonged to the families of let-7, miR-10, miR-26, miR-30, miR-34, miR-99, miR-122, miR-123, miR-124, miR-125, miR-140, miR-145, miR-146, miR-191, miR-192, miR-219, miR-222, and miR-223, which regulate stress response, apoptosis, proliferation, angiogenesis, and expression of genes. In contrast, miR-294, an inhibitor of transcriptional repressor genes, was up-regulated by ECS. There was a strong parallelism in dysregulation of rodent microRNAs and their human homologues, which are often transcribed from genes localized in fragile sites deleted in lung cancer. Five ECS-down-regulated microRNAs are known to be affected by single nucleotide polymorphisms. Thus, changes in microRNA expression are an early event following exposure to cigarette smoke.—Izzotti, A., Calin, G. A., Arrigo, P., Steele, V. E., Croce, C. M., De Flora, S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. PMID:18952709

  5. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings.

    PubMed

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan; Zhou, Yuan

    2016-01-12

    Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.

  6. Utrophin Up-Regulation by an Artificial Transcription Factor in Transgenic Mice

    PubMed Central

    Mattei, Elisabetta; Corbi, Nicoletta; Di Certo, Maria Grazia; Strimpakos, Georgios; Severini, Cinzia; Onori, Annalisa; Desantis, Agata; Libri, Valentina; Buontempo, Serena; Floridi, Aristide; Fanciulli, Maurizio; Baban, Dilair; Davies, Kay E.; Passananti, Claudio

    2007-01-01

    Duchenne Muscular Dystrophy (DMD) is a severe muscle degenerative disease, due to absence of dystrophin. There is currently no effective treatment for DMD. Our aim is to up-regulate the expression level of the dystrophin related gene utrophin in DMD, complementing in this way the lack of dystrophin functions. To this end we designed and engineered several synthetic zinc finger based transcription factors. In particular, we have previously shown that the artificial three zinc finger protein named Jazz, fused with the appropriate effector domain, is able to drive the transcription of a test gene from the utrophin promoter “A”. Here we report on the characterization of Vp16-Jazz-transgenic mice that specifically over-express the utrophin gene at the muscular level. A Chromatin Immunoprecipitation assay (ChIP) demonstrated the effective access/binding of the Jazz protein to active chromatin in mouse muscle and Vp16-Jazz was shown to be able to up-regulate endogenous utrophin gene expression by immunohistochemistry, western blot analyses and real-time PCR. To our knowledge, this is the first example of a transgenic mouse expressing an artificial gene coding for a zinc finger based transcription factor. The achievement of Vp16-Jazz transgenic mice validates the strategy of transcriptional targeting of endogenous genes and could represent an exclusive animal model for use in drug discovery and therapeutics. PMID:17712422

  7. Cloning and characterization of an adenoviral vector for highly efficient and doxycycline – suppressible expression of bioactive human single – chain interleukin 12 in colon cancer

    PubMed Central

    Wulff, Holger; Krieger, Thorsten; Krüger, Karen; Stahmer, Ingrid; Thaiss, Friedrich; Schäfer, Hansjörg; Block, Andreas

    2007-01-01

    Background Interleukin-12 (IL-12) is well characterized to induce cellular antitumoral immunity by activation of NK-cells and T-lymphocytes. However, systemic administration of recombinant human IL-12 resulted in severe toxicity without perceptible therapeutic benefit. Even though intratumoral expression of IL-12 leads to tumor regression and long-term survival in a variety of animal models, clinical trials have not yet shown a significant therapeutic benefit. One major obstacle in the treatment with IL-12 is to overcome the relatively low expression of the therapeutic gene without compromising the safety of such an approach. Our objective was to generate an adenoviral vector system enabling the regulated expression of very high levels of bioactive, human IL-12. Results High gene expression was obtained utilizing the VP16 herpes simplex transactivator. Strong regulation of gene expression was realized by fusion of the VP16 to a tetracycline repressor with binding of the fusion protein to a flanking tetracycline operator and further enhanced by auto-regulated expression of its fusion gene within a bicistronic promoter construct. Infection of human colon cancer cells (HT29) at a multiplicity of infection (m.o.i.) of 10 resulted in the production of up to 8000 ng/106 cells in 48 h, thus exceeding any published vector system so far. Doxycycline concentrations as low as 30 ng/ml resulted in up to 5000-fold suppression, enabling significant reduction of gene expression in a possible clinical setting. Bioactivity of the human single-chain IL-12 was similar to purified human heterodimeric IL-12. Frozen sections of human colon cancer showed high expression of the coxsackie adenovirus receptor with significant production of human single chain IL-12 in colon cancer biopsies after infection with 3*107 p.f.u. Ad.3r-scIL12. Doxycycline mediated suppression of gene expression was up to 9000-fold in the infected colon cancer tissue. Conclusion VP16 transactivator-mediated and doxycycline-regulated expression of the human interleukin-12 gene enables highly efficient and tightly controlled cytokine expression in human cancer. These data illustrate the potential of the described adenoviral vector system for the safe and superior expression of therapeutic genes in the treatment of colorectal cancer and other malignancies. PMID:17594499

  8. The expression of genes involved in myometrial contractility changes during ex situ culture of pregnant human uterine smooth muscle tissue.

    PubMed

    Ilicic, Marina; Butler, Trent; Zakar, Tamas; Paul, Jonathan W

    2017-01-01

    Ex situ analyses of human myometrial tissue has been used to investigate the regulation of uterine quiescence and transition to a contractile phenotype. Following concerns about the validity of cultured primary cells, we examined whether myometrial tissue undergoes culture-induced changes ex situ that may affect the validity of in vitro models. To determine whether human myometrial tissue undergoes culture-induced changes ex situ in Estrogen receptor 1 (ESR1), Prostaglandin-endoperoxide synthase 2 (PTGS2) and Oxytocin receptor (OXTR) expression. Additionally, to determine whether culture conditions approaching the in vivo environment influence the expression of these key genes. Term non-laboring human myometrial tissues were cultured in the presence of specific treatments, including; serum supplementation, progesterone and estrogen, cAMP, PMA, stretch or NF-κB inhibitors. ESR1, PTGS2 and OXTR mRNA abundance after 48 h culture was determined using quantitative RT-PCR. Myometrial tissue in culture exhibited culture-induced up-regulation of ESR1 and PTGS2 and down-regulation of OXTR mRNA expression. Progesterone prevented culture-induced increase in ESR1 expression. Estrogen further up-regulated PTGS2 expression. Stretch had no direct effect, but blocked the effects of progesterone and estrogen on ESR1 and PTGS2 expression. cAMP had no effect whereas PMA further up-regulated PTGS2 expression and prevented decline of OXTR expression. Human myometrial tissue in culture undergoes culture-induced gene expression changes consistent with transition toward a laboring phenotype. Changes in ESR1, PTGS2 and OXTR expression could not be controlled simultaneously. Until optimal culture conditions are determined, results of in vitro experiments with myometrial tissues should be interpreted with caution.

  9. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Chang-Jin; Wei, Tong; Sharma, Rita

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differentialmore » expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in ‘cell death’ and ‘vesicle-mediated transport’. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling ‘vesicle-mediated transport’ in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.« less

  10. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae

    DOE PAGES

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; ...

    2017-06-02

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differentialmore » expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in ‘cell death’ and ‘vesicle-mediated transport’. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling ‘vesicle-mediated transport’ in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.« less

  11. Microarray profiling of gene expression in human adipocytes in response to anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Yoshikawa, Toshikazu; Kojo, Hitoshi; Osawa, Toshihiko

    2006-04-14

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and its gene expression in adipocytes. In this study, we have shown the gene expression profile in human adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The human adipocytes were treated with 100 microM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. Based on the gene expression profile, we demonstrated the significant changes of adipocytokine expression (up-regulation of adiponectin and down-regulation of plasminogen activator inhibitor-1 and interleukin-6). Some of lipid metabolism related genes (uncoupling protein2, acylCoA oxidase1 and perilipin) also significantly induced in both common the C3G or Cy treatment groups. These studies have provided an overview of the gene expression profiles in human adipocytes treated with anthocyanins and demonstrated that anthocyanins can regulate adipocytokine gene expression to ameliorate adipocyte function related with obesity and diabetes that merit further investigation.

  12. DkPK Genes Promote Natural Deastringency in C-PCNA Persimmon by Up-regulating DkPDC and DkADH Expression

    PubMed Central

    Guan, Changfei; Du, Xiaoyun; Zhang, Qinglin; Ma, Fengwang; Luo, Zhengrong; Yang, Yong

    2017-01-01

    The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree. This process is controlled by a single locus and is dominant against other types of persimmons; therefore, this variant is an important candidate for commercial cultivation and the breeding of PCNA cultivars. In our previous study, six full-length coding sequences (CDS) for pyruvate kinase genes (DkPK1-6) were isolated, and DkPK1 is thought to be involved in the natural deastringency of C-PCNA persimmon fruit. Here, we characterize the eight other DkPK genes (DkPK7-14) from C-PCNA persimmon fruit based on transcriptome data. The transcript changes in DkPK7-14 genes and correlations with the proanthocyanidin (PA) content were investigated during different fruit development stages in C-PCNA, J-PCNA, and non-PCNA persimmon; DkPK7 and DkPK8 exhibited up-regulation patterns during the last developmental stage in C-PCNA persimmon that was negatively correlated with the decrease in soluble PAs. Phylogenetic analysis and subcellular localization analysis revealed that DkPK7 and DkPK8 are cytosolic proteins. Notably, DkPK7 and DkPK8 were ubiquitously expressed in various persimmon organs and abundantly up-regulated in seeds. Furthermore, transient over-expression of DkPK7 and DkPK8 in persimmon leaves led to a significant decrease in the content of soluble PAs but a significant increase in the expression levels of the pyruvate decarboxylase (DkPDC) and alcohol dehydrogenase genes (DkADH), which are closely related to acetaldehyde metabolism. The accumulated acetaldehyde that results from the up-regulation of the DkPDC and DkADH genes can combine with soluble PAs to form insoluble PAs, resulting in the removal of astringency from persimmon fruit. Thus, we suggest that both DkPK7 and DkPK8 are likely to be involved in natural deastringency via the up-regulation of DkPDC and DkADH expression during the last developmental stage in C-PCNA persimmon. PMID:28243247

  13. Differential expression analysis of genes involved in high-temperature induced sex differentiation in Nile tilapia.

    PubMed

    Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan

    2014-01-01

    Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes

    PubMed Central

    Marriott, Andrew S.; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A.; McLennan, Alexander G.; Jones, Nigel J.

    2016-01-01

    Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis. PMID:27144453

  15. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes.

    PubMed

    Marriott, Andrew S; Vasieva, Olga; Fang, Yongxiang; Copeland, Nikki A; McLennan, Alexander G; Jones, Nigel J

    2016-01-01

    Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis.

  16. The antenna transcriptome changes in mosquito Anopheles sinensis, pre- and post- blood meal.

    PubMed

    Chen, Qian; Pei, Di; Li, Jianyong; Jing, Chengyu; Wu, Wenjian; Man, Yahui

    2017-01-01

    Antenna is the main chemosensory organ in mosquitoes. Characterization of the transcriptional changes after blood meal, especially those related to chemoreception, may help to explain mosquito blood sucking behavior and to identify novel targets for mosquito control. Anopheles sinensis is an Asiatic mosquito species which transmits malaria and lymphatic filariasis. However, studies on chemosensory biology in female An. sinensis are quite lacking. Here we report a transcriptome analysis of An. sinensis female antennae pre- and post- blood meal. We created six An. sinensis antenna RNA-seq libraries, three from females without blood meal and three from females five hours after a blood meal. Illumina sequencing was conducted to analyze the transcriptome differences between the two groups. In total, the sequenced fragments created 21,643 genes, 1,828 of them were novel. 12,861 of these genes were considered to be expressed (FPKM >1.0) in at least one of the two groups, with 12,159 genes expressed in both groups. 548 genes were differentially expressed in the blood-fed group, with 331 genes up-regulated and 217 genes down-regulated. GO enrichment analysis of the differentially expressed genes suggested that there were no statistically over represented GO terms among down-regulated genes in blood-fed mosquitoes, while the enriched GO terms of the up-regulated genes occurred mainly in metabolic process. For the chemosensory gene families, a subtle distinction in the expression levels can be observed according to our statistical analysis. However, the firstly comprehensive identification of these chemosensory gene families in An. sinensis antennae will help to characterize the precise function of these proteins in odor recognition in mosquitoes. This study provides a first global view in the changes of transcript accumulation elicited by blood meal in An. sinensis female antennae.

  17. Comparative MicroRNA Expression Patterns in Fibroblasts after Low and High Doses of Low-LET Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia

    2007-01-01

    Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2 Gy suggest the cellular response to functionally suppress the apoptotic death signaling reflex after exposure to high dose radiation. Further analyses with transcriptome and global proteomic profiling will validate the reciprocal expression of signature microRNAs selected in our radiation-exposed cells, and their candidate target gene families, and test our hypothesis that unique radiation-specific microRNAs are keys in governing signaling responses for damage control of this environmental hazard.

  18. Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets.

    PubMed

    Wang, Lei; Qin, Wanhai; Ruidong, Zhai; Liu, Shiting; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2015-01-01

    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p < 0.05). The up-regulated genes are involved in energy metabolism, gene transcription and translation, virulence related gene such as LPS, Trimeric Autotransporter Adhesin, RTX and similar genes. The down-regulated genes are involved in amino acid, cofactor, and vitamin metabolism, and also include ABC transporters. These data demonstrate that A. pleuropneumoniae induces apoptosis of PAMs and undergoes complex changes in gene transcription, including expression changes in known and potential virulence factors. Some potentially novel virulence targets have been identified, suggesting new strategies for the development of vaccines and medicines for both preventive and clinical use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme.

    PubMed

    Tucker, A S; Al Khamis, A; Sharpe, P T

    1998-08-01

    Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. Bmp4 has been identified as a candidate signalling molecule in these interactions, initially as an epithelial signal and then later at the bud stage as a mesenchymal signal (Vainio et al. [1993] Cell 75:45-58). A target gene for Bmp4 signalling is the homeobox gene Msx-1, identified by the ability of recombinant Bmp4 protein to induce expression in mesenchyme. There is, however, no evidence that Bmp4 is the endogenous inducer of Msx-1 expression. Msx-1 and Bmp-4 show dynamic, interactive patterns of expression in oral epithelium and ectomesenchyme during the early stages of tooth development. In this study, we compare the temporal and spatial expression of these two genes to determine whether the changing expression patterns of these genes are consistent with interactions between the two molecules. We show that changes in Bmp-4 expression precede changes in Msx-1 expression. At embryonic day (E)10.5-E11.0, expression patterns are consistent with BMP4 from the epithelium, inducing or maintaining Msx-1 in underlying mesenchyme. At E11.5, Bmp-4 expression shifts from epithelium to mesenchyme and is rapidly followed by localised up-regulation of Msx-1 expression at the sites of Bmp-4 expression. Using cultured explants of developing mandibles, we confirm that exogenous BMP4 is capable of replacing the endogenous source in epithelium and inducing Msx-1 gene expression in mesenchyme. By using noggin, a BMP inhibitor, we show that endogenous Msx-1 expression can be inhibited at E10.5 and E11.5, providing the first evidence that endogenous Bmp-4 from the epithelium is responsible for regulating the early spatial expression of Msx-1. We also show that the mesenchymal shift in Bmp-4 is responsible for up-regulating Msx-1 specifically at the sites of future tooth formation. Thus, we establish that a reciprocal series of interactions act to restrict expression of both genes to future sites of tooth formation, creating a positive feedback loop that maintains expression of both genes in tooth mesenchymal cells.

  20. Small and Smaller—sRNAs and MicroRNAs in the Regulation of Toxin Gene Expression in Prokaryotic Cells: A Mini-Review

    PubMed Central

    Bloch, Sylwia; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Nejman-Faleńczyk, Bożena

    2017-01-01

    Non-coding small RNAs (sRNAs) have been identified in the wide range of bacteria (also pathogenic species) and found to play an important role in the regulation of many processes, including toxin gene expression. The best characterized prokaryotic sRNAs regulate gene expression by base pairing with mRNA targets and fall into two broad classes: cis-encoded sRNAs (also called antisense RNA) and trans-acting sRNAs. Molecules from the second class are frequently considered as the most related to eukaryotic microRNAs. Interestingly, typical microRNA-size RNA molecules have also been reported in prokaryotic cells, although they have received little attention up to now. In this work we have collected information about all three types of small prokaryotic RNAs in the context of the regulation of toxin gene expression. PMID:28556797

  1. Small and Smaller-sRNAs and MicroRNAs in the Regulation of Toxin Gene Expression in Prokaryotic Cells: A Mini-Review.

    PubMed

    Bloch, Sylwia; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Nejman-Faleńczyk, Bożena

    2017-05-30

    Non-coding small RNAs (sRNAs) have been identified in the wide range of bacteria (also pathogenic species) and found to play an important role in the regulation of many processes, including toxin gene expression. The best characterized prokaryotic sRNAs regulate gene expression by base pairing with mRNA targets and fall into two broad classes: cis -encoded sRNAs (also called antisense RNA) and trans -acting sRNAs. Molecules from the second class are frequently considered as the most related to eukaryotic microRNAs. Interestingly, typical microRNA-size RNA molecules have also been reported in prokaryotic cells, although they have received little attention up to now. In this work we have collected information about all three types of small prokaryotic RNAs in the context of the regulation of toxin gene expression.

  2. Genomic evidence of reactive oxygen species elevation in papillary thyroid carcinoma with Hashimoto thyroiditis.

    PubMed

    Yi, Jin Wook; Park, Ji Yeon; Sung, Ji-Youn; Kwak, Sang Hyuk; Yu, Jihan; Chang, Ji Hyun; Kim, Jo-Heon; Ha, Sang Yun; Paik, Eun Kyung; Lee, Woo Seung; Kim, Su-Jin; Lee, Kyu Eun; Kim, Ju Han

    2015-01-01

    Elevated levels of reactive oxygen species (ROS) have been proposed as a risk factor for the development of papillary thyroid carcinoma (PTC) in patients with Hashimoto thyroiditis (HT). However, it has yet to be proven that the total levels of ROS are sufficiently increased to contribute to carcinogenesis. We hypothesized that if the ROS levels were increased in HT, ROS-related genes would also be differently expressed in PTC with HT. To find differentially expressed genes (DEGs) we analyzed data from the Cancer Genomic Atlas, gene expression data from RNA sequencing: 33 from normal thyroid tissue, 232 from PTC without HT, and 60 from PTC with HT. We prepared 402 ROS-related genes from three gene sets by genomic database searching. We also analyzed a public microarray data to validate our results. Thirty-three ROS related genes were up-regulated in PTC with HT, whereas there were only nine genes in PTC without HT (Chi-square p-value < 0.001). Mean log2 fold changes of up-regulated genes was 0.562 in HT group and 0.252 in PTC without HT group (t-test p-value = 0.001). In microarray data analysis, 12 of 32 ROS-related genes showed the same differential expression pattern with statistical significance. In gene ontology analysis, up-regulated ROS-related genes were related with ROS metabolism and apoptosis. Immune function-related and carcinogenesis-related gene sets were enriched only in HT group in Gene Set Enrichment Analysis. Our results suggested that ROS levels may be increased in PTC with HT. Increased levels of ROS may contribute to PTC development in patients with HT.

  3. Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L.

    PubMed

    Kim, Changsoo; Lemke, Cornelia; Paterson, Andrew H

    2009-05-01

    Water deficit is one of the main abiotic factors that affect plant productivity in subtropical regions. To identify genes induced during the water stress response in Bermudagrass (Cynodon dactylon), cDNA macroarrays were used. The macroarray analysis identified 189 drought-responsive candidate genes from C. dactylon, of which 120 were up-regulated and 69 were down-regulated. The candidate genes were classified into seven groups by cluster analysis of expression levels across two intensities and three durations of imposed stress. Annotation using BLASTX suggested that up-regulated genes may be involved in proline biosynthesis, signal transduction pathways, protein repair systems, and removal of toxins, while down-regulated genes were mostly related to basic plant metabolism such as photosynthesis and glycolysis. The functional classification of gene ontology (GO) was consistent with the BLASTX results, also suggesting some crosstalk between abiotic and biotic stress. Comparative analysis of cis-regulatory elements from the candidate genes implicated specific elements in drought response in Bermudagrass. Although only a subset of genes was studied, Bermudagrass shared many drought-responsive genes and cis-regulatory elements with other botanical models, supporting a strategy of cross-taxon application of drought-responsive genes, regulatory cues, and physiological-genetic information.

  4. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.

    PubMed

    Wang, Jing; Cui, Xun; Yang, Le; Zhang, Zhe; Lv, Liping; Wang, Haoyuan; Zhao, Zhenmin; Guan, Ningzi; Dong, Lichun; Chen, Rachel

    2017-07-01

    Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering. Copyright © 2017. Published by Elsevier Inc.

  5. Exposure to the lampricide 3-trifluoromethyl-4-nitrophenol results in increased expression of carbohydrate transporters in S. cerevisiae

    PubMed Central

    Hinkle, Karen L.; Anderson, Chad C.; Forkey, Blake; Griffin, Jacob; Cone, Kelsey; Vitzthum, Carl; Olsen, Darlene

    2016-01-01

    The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) is used to control sea lamprey (Petromyzon marinus) populations in freshwater lakes. While TFM can have sublethal and lethal effects, little is known about gene expression changes with TFM exposure. Microarray analysis was used to determine differential gene expression over 4 hours of exposure in S. cerevisiae. Among the most significantly up regulated genes were regulators of carbohydrate transport including HXT1, HXT3, HXT4, IMA5, MIG2, and YKR075C. PMID:26606276

  6. Thymic stromal lymphopoietin is up-regulated in the skin of patients with systemic sclerosis and induces profibrotic genes and intracellular signaling that overlap with those induced by interleukin-13 and transforming growth factor β.

    PubMed

    Christmann, Romy B; Mathes, Allison; Affandi, Alsya J; Padilla, Cristina; Nazari, Banafsheh; Bujor, Andreea M; Stifano, Giuseppina; Lafyatis, Robert

    2013-05-01

    To explore the expression of thymic stromal lymphopoietin (TSLP) in patients with diffuse cutaneous systemic sclerosis (dcSSc) and compare its effects in vivo and in vitro with those of interleukin-13 (IL-13) and transforming growth factor β (TGFβ). Skin biopsy specimens from patients with dcSSc (n = 14) and healthy controls (n = 13) were analyzed by immunohistochemistry and immunofluorescence for TSLP, TSLP receptor, CD4, CD8, CD31, and CD163 markers. Wild-type, IL-4Rα1-, and TSLP-deficient mice were treated with TGFβ, IL-13, poly(I-C), or TSLP by osmotic pump. Human fibroblasts and peripheral blood mononuclear cells (PBMCs) were stimulated with TGFβ, IL-13, poly(I-C), or TSLP. Microarray analysis and quantitative polymerase chain reaction were performed to determine gene expression, and protein levels of phospho-Smad2 and macrophage marker CD163 were tested. TSLP was highly expressed in the skin of dcSSc patients, more strongly in perivascular areas and in immune cells, and was produced mainly by CD163+ cells. The skin of TSLP-treated mice showed up-regulated clusters of gene expression that overlapped strongly with those in IL-13- and TGFβ-treated mice. TSLP up-regulated specific genes, including CXCL9, proteasome, and interferon (IFN)-regulated genes. TSLP treatment in IL-4Rα1-deficient mice promoted similar cutaneous inflammation as in wild-type mice, though TSLP-induced arginase 1, CCL2, and matrix metalloproteinase 12 messenger RNA levels were blocked. In PBMCs, TSLP up-regulated tumor necrosis factor α, Mx-1, IFNγ, CXCL9, and mannose receptor 1 gene expression. TSLP-deficient mice treated with TGFβ showed less fibrosis and blocked expression of plasminogen activator inhibitor 1 and osteopontin 1. Poly(I-C)-treated mice showed high levels of cutaneous TSLP. TSLP is highly expressed in the skin of dcSSc patients and interacts in a complex manner with 2 other profibrotic cytokines, TGFβ and IL-13, strongly suggesting that it might promote SSc fibrosis directly or indirectly by synergistically stimulating profibrotic genes, or production of these cytokines. Copyright © 2013 by the American College of Rheumatology.

  7. Supranutritional dietary selenium depressed expression of selenoprotein genes in three immune organs of broilers.

    PubMed

    Tang, Jiayong; Huang, Xiaofeng; Wang, Longqiong; Li, Qiang; Xu, Jinyang; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying; Zhao, Hua

    2017-02-01

    The objective of this study was to investigate the effects of supranutritional dietary selenium (Se) on selenoproteins expression in three immune organs of chickens. A total of 160 1-day-old male Cobb broilers were randomly divided into two groups and fed a Se-deficient corn-soybean basal diet supplemented with 0.3 (adequate) and 3.0 (excess) mg/kg Se for 42 days. Immune organs were collected, and effects of supranutritional Se on messenger RNA abundance of 23 selenoprotein genes and eight inflammation-related genes were compared at day 42. Also enzyme activities were measured at days 14, 28 and 42. The results showed supranutritional dietary Se depressed growth performance of chicken and down-regulated nine and three selenoprotein genes in thymus and spleen, respectively, and only Sepp1 was up-regulated in the bursa of Fabricius. Also three, three and seven inflammation-related genes were up-regulated in three organs, respectively. Supranutritional Se elevated (P < 0.05) activities of superoxidase dismutase, total antioxidant capacity and glutathione peroxidase, mainly in early stages. In summary, supranutritional Se resulted in down-regulation of selenoprotein genes and up-regulation of inflammation-related genes in three immune organs of chicken, which indicated potential roles of those selenoprotein genes in immune organs of the chicken. © 2016 Japanese Society of Animal Science.

  8. Mechanisms of action of acetaldehyde in the up-regulation of the human α2(I) collagen gene in hepatic stellate cells: key roles of Ski, SMAD3, SMAD4, and SMAD7.

    PubMed

    Reyes-Gordillo, Karina; Shah, Ruchi; Arellanes-Robledo, Jaime; Hernández-Nazara, Zamira; Rincón-Sánchez, Ana Rosa; Inagaki, Yutaka; Rojkind, Marcos; Lakshman, M Raj

    2014-05-01

    Alcohol-induced liver fibrosis and eventually cirrhosis is a leading cause of death. Acetaldehyde, the first metabolite of ethanol, up-regulates expression of the human α2(I) collagen gene (COL1A2). Early acetaldehyde-mediated effects involve phosphorylation and nuclear translocation of SMAD3/4-containing complexes that bind to COL1A2 promoter to induce fibrogenesis. We used human and mouse hepatic stellate cells to elucidate the mechanisms whereby acetaldehyde up-regulates COL1A2 by modulating the role of Ski and the expression of SMADs 3, 4, and 7. Acetaldehyde induced up-regulation of COL1A2 by 3.5-fold, with concomitant increases in the mRNA (threefold) and protein (4.2- and 3.5-fold) levels of SMAD3 and SMAD4, respectively. It also caused a 60% decrease in SMAD7 expression. Ski, a member of the Ski/Sno oncogene family, is colocalized in the nucleus with SMAD4. Acetaldehyde induces translocation of Ski and SMAD4 to the cytoplasm, where Ski undergoes proteasomal degradation, as confirmed by the ability of the proteasomal inhibitor lactacystin to blunt up-regulation of acetaldehyde-dependent COL1A2, but not of the nonspecific fibronectin gene (FN1). We conclude that acetaldehyde up-regulates COL1A2 by enhancing expression of the transactivators SMAD3 and SMAD4 while inhibiting the repressor SMAD7, along with promoting Ski translocation from the nucleus to cytoplasm. We speculate that drugs that prevent proteasomal degradation of repressors targeting COL1A2 may have antifibrogenic properties. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Mechanisms of Action of Acetaldehyde in the Up-Regulation of the Human α2(I) Collagen Gene in Hepatic Stellate Cells

    PubMed Central

    Reyes-Gordillo, Karina; Shah, Ruchi; Arellanes-Robledo, Jaime; Hernández-Nazara, Zamira; Rincón-Sánchez, Ana Rosa; Inagaki, Yutaka; Rojkind, Marcos; Lakshman, M. Raj

    2015-01-01

    Alcohol-induced liver fibrosis and eventually cirrhosis is a leading cause of death. Acetaldehyde, the first metabolite of ethanol, up-regulates expression of the human α2(I) collagen gene (COL1A2). Early acetaldehyde-mediated effects involve phosphorylation and nuclear translocation of SMAD3/4–containing complexes that bind to COL1A2 promoter to induce fibrogenesis. We used human and mouse hepatic stellate cells to elucidate the mechanisms whereby acetaldehyde up-regulates COL1A2 by modulating the role of Ski and the expression of SMADs 3, 4, and 7. Acetaldehyde induced up-regulation of COL1A2 by 3.5-fold, with concomitant increases in the mRNA (threefold) and protein (4.2- and 3.5-fold) levels of SMAD3 and SMAD4, respectively. It also caused a 60% decrease in SMAD7 expression. Ski, a member of the Ski/Sno oncogene family, is colocalized in the nucleus with SMAD4. Acetaldehyde induces translocation of Ski and SMAD4 to the cytoplasm, where Ski undergoes proteasomal degradation, as confirmed by the ability of the proteasomal inhibitor lactacystin to blunt up-regulation of acetaldehyde-dependent COL1A2, but not of the nonspecific fibronectin gene (FN1). We conclude that acetaldehyde up-regulates COL1A2 by enhancing expression of the transactivators SMAD3 and SMAD4 while inhibiting the repressor SMAD7, along with promoting Ski translocation from the nucleus to cytoplasm. We speculate that drugs that prevent proteasomal degradation of repressors targeting COL1A2 may have antifibrogenic properties. PMID:24641900

  10. A LGG-derived protein promotes IgA production through up-regulation of APRIL expression in intestinal epithelial cells

    PubMed Central

    Wang, Yang; Liu, Liping; Moore, Daniel J; Shen, Xi; Peek, Richard M.; Acra, Sari A; Li, Hui; Ren, Xiubao; Polk, D Brent; Yan, Fang

    2016-01-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting IgA production. p40 up-regulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfrfl/fl , but not Egfrfl/fl-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B cell class switching to IgA+ cells and IgA production, which was suppressed by APRIL receptor neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA+B220+, IgA+CD19+, and IgA+ plasma cells in lamina propria of Egfrfl/fl, but not Egfrfl/fl-Vil-Cre mice. Thus, p40 up-regulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production. PMID:27353252

  11. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling

    PubMed Central

    Bourquin, Jean-Pierre; Subramanian, Aravind; Langebrake, Claudia; Reinhardt, Dirk; Bernard, Olivier; Ballerini, Paola; Baruchel, André; Cavé, Hélène; Dastugue, Nicole; Hasle, Henrik; Kaspers, Gertjan L.; Lessard, Michel; Michaux, Lucienne; Vyas, Paresh; van Wering, Elisabeth; Zwaan, Christian M.; Golub, Todd R.; Orkin, Stuart H.

    2006-01-01

    Individuals with Down syndrome (DS) are predisposed to develop acute megakaryoblastic leukemia (AMKL), characterized by expression of truncated GATA1 transcription factor protein (GATA1s) due to somatic mutation. The treatment outcome for DS-AMKL is more favorable than for AMKL in non-DS patients. To gain insight into gene expression differences in AMKL, we compared 24 DS and 39 non-DS AMKL samples. We found that non-DS-AMKL samples cluster in two groups, characterized by differences in expression of HOX/TALE family members. Both of these groups are distinct from DS-AMKL, independent of chromosome 21 gene expression. To explore alterations of the GATA1 transcriptome, we used cross-species comparison with genes regulated by GATA1 expression in murine erythroid precursors. Genes repressed after GATA1 induction in the murine system, most notably GATA-2, MYC, and KIT, show increased expression in DS-AMKL, suggesting that GATA1s fail to repress this class of genes. Only a subset of genes that are up-regulated upon GATA1 induction in the murine system show increased expression in DS-AMKL, including GATA1 and BACH1, a probable negative regulator of megakaryocytic differentiation located on chromosome 21. Surprisingly, expression of the chromosome 21 gene RUNX1, a known regulator of megakaryopoiesis, was not elevated in DS-AMKL. Our results identify relevant signatures for distinct AMKL entities and provide insight into gene expression changes associated with these related leukemias. PMID:16492768

  12. Involvement of c-Ski oncoprotein in carcinogenesis of cholangiocacinoma induced by Opisthorchis viverrini and N-nitrosodimethylamine.

    PubMed

    Boonmars, Thidarut; Wu, Zhiliang; Boonjaruspinyo, Sirintip; Puapairoj, Anucha; Kaewsamut, Butsara; Nagano, Isao; Pinlaor, Somchai; Yongvanit, Puangrat; Wonkchalee, Orasa; Juasook, Amornrat; Sudsarn, Pakkayanee; Srisawangwong, Tuanchai

    2011-06-01

    Opisthorchiasis is the major public health problem in the endemic areas of Thailand and Laos because Opisthorchis viverrini infection causes serious hepatobiliary diseases including CCA. The molecular mechanism of the CCA carcinogenesis induced by the infection remains obscure. To reveal the potential genes and signaling pathways to involve in the carcinogenesis, the present study investigated the expression of c-Ski, an oncogene, and two TGF-β signaling pathway relative genes, TGF-β and Smad4, during the development of CCA induced by O. viverrini infection in hamster model, and in human opisthorchiasis associated CCA. The results showed that the expression of c-Ski gene was greatly up-regulated during the carcinogenesis of CCA in hamster model. The overexpression of c-Ski was confirmed by immunohistological staining result which showed the increased expression of c-Ski protein in cytoplasm of the epithelial lining of hepatic bile ducts. Moreover, the immunohistological staining of the specimens of human opisthorchiasis associated CCA revealed the up-regulated expression of c-Ski and Smad4 proteins in the cytoplasm of the epithelial lining of hepatic bile ducts and stomal fibrosis respectively. The expression of TGF-β and Smad4 were up-regulated, which expression kinetics was time-dependent of CCA development. These results suggest that c-Ski is likely involved in the carcinogenesis of CCA induced by O. viverrini infection through regulating TGF-β signaling pathway.

  13. Gene expression profiling defined pathways correlated with fibroblast cell proliferation induced by Opisthorchis viverrini excretory/secretory product.

    PubMed

    Thuwajit, Chanitra; Thuwajit, Peti; Uchida, Kazuhiko; Daorueang, Daoyot; Kaewkes, Sasithorn; Wongkham, Sopit; Miwa, Masanao

    2006-06-14

    To investigate the mechanism of fibroblast cell proliferation stimulated by the Opisthorchis viverrini excretory/secretory (ES) product. NIH-3T3, mouse fibroblast cells were treated with O. viverrini ES product by non-contact co-cultured with the adult parasites. Total RNA from NIH-3T3 treated and untreated with O. viverrini was extracted, reverse transcribed and hybridized with the mouse 15K complementary DNA (cDNA) array. The result was analyzed by ArrayVision version 5 and GeneSpring version 5 softwares. After normalization, the ratios of gene expression of parasite treated to untreated NIH-3T3 cells of 2-and more-fold upregulated was defined as the differentially expressed genes. The expression levels of the signal transduction genes were validated by semi-quantitative SYBR-based real-time RT-PCR. Among a total of 15,000 genes/ESTs, 239 genes with established cell proliferation-related function were 2 fold-and more-up-regulated by O. viverrini ES product compared to those in cells without exposure to the parasitic product. These genes were classified into groups including energy and metabolism, signal transduction, protein synthesis and translation, matrix and structural protein, transcription control, cell cycle and DNA replication. Moreover, the expressions of serine-threonine kinase receptor, receptor tyrosine kinase and collagen production-related genes were up-regulated by O. viverrini ES product. The expression level of signal transduction genes; pkC, pdgfr alpha, jak 1, eps 8, tgf beta 1i4, strap and h ras measured by real-time RT-PCR confirmed their expression levels to those obtained from cDNA array. However, only the up-regulated expression of pkC, eps 8 and tgfbeta 1i4 which are the downstream signaling molecules of either epidermal growth factor (EGF) or transforming growth factor-beta (TGF-beta) showed statistical significance (P < 0.05). O. viverrini ES product stimulates the significant changes of gene expression in several functional categories and these mainly include transcripts related to cell proliferation. The TGF-beta and EGF signal transduction pathways are indicated as the possible pathways of O. viverrini-driven cell proliferation.

  14. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.

    PubMed

    Xu, Jinhua; Zhang, Man; Liu, Guang; Yang, Xingping; Hou, Xilin

    2016-12-01

    Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress. Copyright © 2016. Published by Elsevier Masson SAS.

  15. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants

    PubMed Central

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5′ transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5′UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5′end can modulate protein levels up to 160%–300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for engineering synthetic gene expression in eukaryotes. PMID:26176266

  16. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants.

    PubMed

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5' transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5'UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5'end can modulate protein levels up to 160%-300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple rules for engineering synthetic gene expression in eukaryotes.

  17. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    PubMed

    Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C

    2014-01-01

    Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  18. Identification of Common Differentially Expressed Genes in Urinary Bladder Cancer

    PubMed Central

    Zaravinos, Apostolos; Lambrou, George I.; Boulalas, Ioannis; Delakas, Dimitris; Spandidos, Demetrios A.

    2011-01-01

    Background Current diagnosis and treatment of urinary bladder cancer (BC) has shown great progress with the utilization of microarrays. Purpose Our goal was to identify common differentially expressed (DE) genes among clinically relevant subclasses of BC using microarrays. Methodology/Principal Findings BC samples and controls, both experimental and publicly available datasets, were analyzed by whole genome microarrays. We grouped the samples according to their histology and defined the DE genes in each sample individually, as well as in each tumor group. A dual analysis strategy was followed. First, experimental samples were analyzed and conclusions were formulated; and second, experimental sets were combined with publicly available microarray datasets and were further analyzed in search of common DE genes. The experimental dataset identified 831 genes that were DE in all tumor samples, simultaneously. Moreover, 33 genes were up-regulated and 85 genes were down-regulated in all 10 BC samples compared to the 5 normal tissues, simultaneously. Hierarchical clustering partitioned tumor groups in accordance to their histology. K-means clustering of all genes and all samples, as well as clustering of tumor groups, presented 49 clusters. K-means clustering of common DE genes in all samples revealed 24 clusters. Genes manifested various differential patterns of expression, based on PCA. YY1 and NFκB were among the most common transcription factors that regulated the expression of the identified DE genes. Chromosome 1 contained 32 DE genes, followed by chromosomes 2 and 11, which contained 25 and 23 DE genes, respectively. Chromosome 21 had the least number of DE genes. GO analysis revealed the prevalence of transport and binding genes in the common down-regulated DE genes; the prevalence of RNA metabolism and processing genes in the up-regulated DE genes; as well as the prevalence of genes responsible for cell communication and signal transduction in the DE genes that were down-regulated in T1-Grade III tumors and up-regulated in T2/T3-Grade III tumors. Combination of samples from all microarray platforms revealed 17 common DE genes, (BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20, LHCGR, TM9SF1 and HCCS) 4 of which participate in numerous pathways. Conclusions/Significance The identification of the common DE genes among BC samples of different histology can provide further insight into the discovery of new putative markers. PMID:21483740

  19. Virulence gene regulation by CvfA, a putative RNase: the CvfA-enolase complex in Streptococcus pyogenes links nutritional stress, growth-phase control, and virulence gene expression.

    PubMed

    Kang, Song Ok; Caparon, Michael G; Cho, Kyu Hong

    2010-06-01

    Streptococcus pyogenes, a multiple-auxotrophic human pathogen, regulates virulence gene expression according to nutritional availability during various stages in the infection process or in different infection sites. We discovered that CvfA influenced the expression of virulence genes according to growth phase and nutritional status. The influence of CvfA in C medium, rich in peptides and poor in carbohydrates, was most pronounced at the stationary phase. Under these conditions, up to 30% of the transcriptome exhibited altered expression; the levels of expression of multiple virulence genes were altered, including the genes encoding streptokinase, CAMP factor, streptolysin O, M protein (more abundant in the CvfA(-) mutant), SpeB, mitogenic factor, and streptolysin S (less abundant). The increase of carbohydrates or peptides in media restored the levels of expression of the virulence genes in the CvfA(-) mutant to wild-type levels (emm, ska, and cfa by carbohydrates; speB by peptides). Even though the regulation of gene expression dependent on nutritional stress is commonly linked to the stringent response, the levels of ppGpp were not altered by deletion of cvfA. Instead, CvfA interacted with enolase, implying that CvfA, a putative RNase, controls the transcript decay rates of virulence factors or their regulators according to nutritional status. The virulence of CvfA(-) mutants was highly attenuated in murine models, indicating that CvfA-mediated gene regulation is necessary for the pathogenesis of S. pyogenes. Taken together, the CvfA-enolase complex in S. pyogenes is involved in the regulation of virulence gene expression by controlling RNA degradation according to nutritional stress.

  20. [Expression changes of major outer membrane protein antigens in Leptospira interrogans during infection and its mechanism].

    PubMed

    Zheng, Linli; Ge, Yumei; Hu, Weilin; Yan, Jie

    2013-03-01

    To determine expression changes of major outer membrane protein(OMP) antigens of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai during infection of human macrophages and its mechanism. OmpR encoding genes and OmpR-related histidine kinase (HK) encoding gene of L.interrogans strain Lai and their functional domains were predicted using bioinformatics technique. mRNA level changes of the leptospiral major OMP-encoding genes before and after infection of human THP-1 macrophages were detected by real-time fluorescence quantitative RT-PCR. Effects of the OmpR-encoding genes and HK-encoding gene on the expression of leptospiral OMPs during infection were determined by HK-peptide antiserum block assay and closantel inhibitive assays. The bioinformatics analysis indicated that LB015 and LB333 were referred to OmpR-encoding genes of the spirochete, while LB014 might act as a OmpR-related HK-encoding gene. After the spirochete infecting THP-1 cells, mRNA levels of leptospiral lipL21, lipL32 and lipL41 genes were rapidly and persistently down-regulated (P <0.01), whereas mRNA levels of leptospiral groEL, mce, loa22 and ligB genes were rapidly but transiently up-regulated (P<0.01). The treatment with closantel and HK-peptide antiserum partly reversed the infection-based down-regulated mRNA levels of lipL21 and lipL48 genes (P <0.01). Moreover, closantel caused a decrease of the infection-based up-regulated mRNA levels of groEL, mce, loa22 and ligB genes (P <0.01). Expression levels of L.interrogans strain Lai major OMP antigens present notable changes during infection of human macrophages. There is a group of OmpR-and HK-encoding genes which may play a major role in down-regulation of expression levels of partial OMP antigens during infection.

  1. Genome-Wide Transcriptional Profiling of Skin and Dorsal Root Ganglia after Ultraviolet-B-Induced Inflammation

    PubMed Central

    Paterson, Kathryn J.; Sisignano, Marco; Schmid, Ramona; Rust, Werner; Hildebrandt, Tobias; Geisslinger, Gerd; Orengo, Christine; Bennett, David L.; McMahon, Stephen B.

    2014-01-01

    Ultraviolet-B (UVB)-induced inflammation produces a dose-dependent mechanical and thermal hyperalgesia in both humans and rats, most likely via inflammatory mediators acting at the site of injury. Previous work has shown that the gene expression of cytokines and chemokines is positively correlated between species and that these factors can contribute to UVB-induced pain. In order to investigate other potential pain mediators in this model we used RNA-seq to perform genome-wide transcriptional profiling in both human and rat skin at the peak of hyperalgesia. In addition we have also measured transcriptional changes in the L4 and L5 DRG of the rat model. Our data show that UVB irradiation produces a large number of transcriptional changes in the skin: 2186 and 3888 genes are significantly dysregulated in human and rat skin, respectively. The most highly up-regulated genes in human skin feature those encoding cytokines (IL6 and IL24), chemokines (CCL3, CCL20, CXCL1, CXCL2, CXCL3 and CXCL5), the prostanoid synthesising enzyme COX-2 and members of the keratin gene family. Overall there was a strong positive and significant correlation in gene expression between the human and rat (R = 0.8022). In contrast to the skin, only 39 genes were significantly dysregulated in the rat L4 and L5 DRGs, the majority of which had small fold change values. Amongst the most up-regulated genes in DRG were REG3B, CCL2 and VGF. Overall, our data shows that numerous genes were up-regulated in UVB irradiated skin at the peak of hyperalgesia in both human and rats. Many of the top up-regulated genes were cytokines and chemokines, highlighting again their potential as pain mediators. However many other genes were also up-regulated and might play a role in UVB-induced hyperalgesia. In addition, the strong gene expression correlation between species re-emphasises the value of the UVB model as translational tool to study inflammatory pain. PMID:24732968

  2. Transcriptional profile of Paracoccidioides induced by oenothein B, a potential antifungal agent from the Brazilian Cerrado plant Eugenia uniflora

    PubMed Central

    2013-01-01

    Background The compound oenothein B (OenB), which is isolated from the leaves of Eugenia uniflora, a Brazilian Cerrado plant, interferes with Paracoccidioides yeast cell morphology and inhibits 1,3-β-D-glucan synthase (PbFKS1) transcript accumulation, which is involved in cell wall synthesis. In this work we examined the gene expression changes in Paracoccidioides yeast cells following OenB treatment in order to investigate the adaptive cellular responses to drug stress. Results We constructed differential gene expression libraries using Representational Difference Analysis (RDA) of Paracoccidioides yeast cells treated with OenB for 90 and 180 min. Treatment for 90 min resulted in the identification of 463 up-regulated expressed sequences tags (ESTs) and 104 down-regulated ESTs. For the 180 min treatment 301 up-regulated ESTs and 143 down-regulated were identified. Genes involved in the cell wall biosynthesis, such as GLN1, KRE6 and FKS1, were found to be regulated by OenB. Infection experiments in macrophages corroborated the in vitro results. Fluorescence microscopy showed increased levels of chitin in cells treated with OenB. The carbohydrate polymer content of the cell wall of the fungus was also evaluated, and the results corroborated with the transcriptional data. Several other genes, such as those involved in a variety of important cellular processes (i.e., membrane maintenance, stress and virulence) were found to be up-regulated in response to OenB treatment. Conclusions The exposure of Paracoccidioides to OenB resulted in a complex altered gene expression profile. Some of the changes may represent specific adaptive responses to this compound in this important pathogenic fungus. PMID:24119145

  3. Prophylactic effect of Mucuna pruriens Linn (velvet bean) seed extract against experimental Naja sputatrix envenomation: gene expression studies.

    PubMed

    Fung, Shin Yee; Sim, Si Mui; Kandiah; Jeyaseelan; Armugam, Arunmozhiarasi; Aguiyi, John Chinyere; Tan, Nget Hong

    2014-09-01

    Mucuna pruriens is widely used in traditional medicine for treatments of various diseases. In certain region of Nigeria, the seed is used as oral prophylactics for snakebite. Rats pretreated with the aqueous extract from M. pruriens seed (MPE) were protected against the lethal effects of Naja sputatrix (Javan spitting cobra) venom [Tan et al., J Ethnopharmacol, 123 (2009) 356]. The pretreatment also protected against venom-induced histopathological changes in rat heart. To contribute to the understanding of the mechanism of cardio-protective action, the present study examined the effects of MPE-pretreatment on gene expression profile of rat heart as well as effect of MPE-pretreatment on N. sputatrix venom-induced gene expression alterations in rat heart. The gene expression profiles were examined by microarray analysis and verified by real time PCR. The results showed that pretreatment with MPE caused 50 genes in the rat heart substantially up-regulated of which 19 were related to immune responses, 7 were related to energy production and metabolism. The up-regulation of genes related to energy metabolism probably plays a role in maintaining the viability of the heart. Four other genes that were up-regulated (alpha synuclein, natriuretic peptide precursor, calsequestrin and triadin) were involved in the maintenance of homeostasis of the heart or maintaining its viability, thereby contributing to the direct protective action. The results demonstrated that protective effect of MPE pretreatment against snake venom poisoning may involve a direct action on the heart.

  4. Differential gene expression profiling of matched primary renal cell carcinoma and metastases reveals upregulation of extracellular matrix genes.

    PubMed

    Ho, T H; Serie, D J; Parasramka, M; Cheville, J C; Bot, B M; Tan, W; Wang, L; Joseph, R W; Hilton, T; Leibovich, B C; Parker, A S; Eckel-Passow, J E

    2017-03-01

    The majority of renal cell carcinoma (RCC) studies analyze primary tumors, and the corresponding results are extrapolated to metastatic RCC tumors. However, it is unknown if gene expression profiles from primary RCC tumors differs from patient-matched metastatic tumors. Thus, we sought to identify differentially expressed genes between patient-matched primary and metastatic RCC tumors in order to understand the molecular mechanisms underlying the development of RCC metastases. We compared gene expression profiles between patient-matched primary and metastatic RCC tumors using a two-stage design. First, we used Affymetrix microarrays on 15 pairs of primary RCC [14 clear cell RCC (ccRCC), 1 papillary] tumors and patient-matched pulmonary metastases. Second, we used a custom NanoString panel to validate seven candidate genes in an independent cohort of 114 ccRCC patients. Differential gene expression was evaluated using a mixed effect linear model; a random effect denoting patient was included to account for the paired data. Third, The Cancer Genome Atlas (TCGA) data were used to evaluate associations with metastasis-free and overall survival in primary ccRCC tumors. We identified and validated up regulation of seven genes functionally involved in the formation of the extracellular matrix (ECM): DCN, SLIT2, LUM, LAMA2, ADAMTS12, CEACAM6 and LMO3. In primary ccRCC, CEACAM6 and LUM were significantly associated with metastasis-free and overall survival (P < 0.01). We evaluated gene expression profiles using the largest set to date, to our knowledge, of patient-matched primary and metastatic ccRCC tumors and identified up regulation of ECM genes in metastases. Our study implicates up regulation of ECM genes as a critical molecular event leading to visceral, bone and soft tissue metastases in ccRCC. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Differential gene expression during conidiation in the grape powdery mildew fungus, Erysiphe necator

    USDA-ARS?s Scientific Manuscript database

    Asexual sporulation (conidiation) is coordinately regulated in the grape powdery mildew fungus Erysiphe necator, but nothing is known about its genetic regulation. We hypothesized that genes required for conidiation in other fungi would be up-regulated at conidiophore initiation and/or full conidia...

  6. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection.

    PubMed

    Florez, Juan Carlos; Mofatto, Luciana Souto; do Livramento Freitas-Lopes, Rejane; Ferreira, Sávio Siqueira; Zambolim, Eunize Maciel; Carazzolle, Marcelo Falsarella; Zambolim, Laércio; Caixeta, Eveline Teixeira

    2017-12-01

    We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.

  7. Cross-species transcriptomic approach reveals genes in hamster implantation sites.

    PubMed

    Lei, Wei; Herington, Jennifer; Galindo, Cristi L; Ding, Tianbing; Brown, Naoko; Reese, Jeff; Paria, Bibhash C

    2014-12-01

    The mouse model has greatly contributed to understanding molecular mechanisms involved in the regulation of progesterone (P4) plus estrogen (E)-dependent blastocyst implantation process. However, little is known about contributory molecular mechanisms of the P4-only-dependent blastocyst implantation process that occurs in species such as hamsters, guineapigs, rabbits, pigs, rhesus monkeys, and perhaps humans. We used the hamster as a model of P4-only-dependent blastocyst implantation and carried out cross-species microarray (CSM) analyses to reveal differentially expressed genes at the blastocyst implantation site (BIS), in order to advance the understanding of molecular mechanisms of implantation. Upregulation of 112 genes and downregulation of 77 genes at the BIS were identified using a mouse microarray platform, while use of the human microarray revealed 62 up- and 38 down-regulated genes at the BIS. Excitingly, a sizable number of genes (30 up- and 11 down-regulated genes) were identified as a shared pool by both CSMs. Real-time RT-PCR and in situ hybridization validated the expression patterns of several up- and down-regulated genes identified by both CSMs at the hamster and mouse BIS to demonstrate the merit of CSM findings across species, in addition to revealing genes specific to hamsters. Functional annotation analysis found that genes involved in the spliceosome, proteasome, and ubiquination pathways are enriched at the hamster BIS, while genes associated with tight junction, SAPK/JNK signaling, and PPARα/RXRα signalings are repressed at the BIS. Overall, this study provides a pool of genes and evidence of their participation in up- and down-regulated cellular functions/pathways at the hamster BIS. © 2014 Society for Reproduction and Fertility.

  8. Differential regulation of glutamic acid decarboxylase gene expression after extinction of a recent memory vs. intermediate memory.

    PubMed

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jörg; Pape, Hans-Christian

    2012-04-17

    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65 isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). However, a detailed analysis of changes in gene expression of GAD in the subregions comprising the extinction network has not been undertaken. Here, we report changes in gene expression of the GAD65 and GAD67 isoforms of GAD, as measured by relative quantitative real-time RT-PCR, in subregions of the amygdala, hippocampus, and prefrontal cortex 24-26 h after extinction of a recent (1-d) or intermediate (14-d) fear memory. Our results show that extinction of a recent memory induces a down-regulation of Gad65 gene expression in the hippocampus (CA1, dentate gyrus) and an up-regulation of Gad67 gene expression in the infralimbic cortex. Extinguishing an intermediate memory increased Gad65 gene expression in the central amygdala. These results indicate a differential regulation of Gad gene expression after extinction of a recent memory vs. intermediate memory.

  9. Chronology and regulation of gene expression of RANKL in the rat dental follicle.

    PubMed

    Liu, D; Yao, S; Pan, F; Wise, G E

    2005-10-01

    Tooth eruption in the rat requires bone resorption resulting from a major burst of osteoclastogenesis on postnatal day 3 and a minor burst of osteoclastogenesis on postnatal day 10 in the alveolar bone of the first mandibular molar. The dental follicle regulates the major burst on postnatal day 3 by down-regulating its osteoprotegerin (OPG) gene expression to enable osteoclastogenesis to occur. To determine the role of receptor activator of nuclear factor-kappa B ligand (RANKL) in tooth eruption, its gene expression was measured on postnatal days 1-11 in the dental follicle. The results show that RANKL expression was significantly elevated on postnatal days 9-11 in comparison to low expression levels at earlier time-points. As OPG expression is high at this latter time-point, this increase in RANKL expression would be needed for stimulating the minor burst of osteoclastogenesis. Tumor necrosis factor-alpha enhances RANKL gene expression in vitro and it may be responsible for up-regulating RANKL in vivo. Transforming growth factor-beta1 and interleukin-1alpha also enhance RANKL gene expression in vitro but probably have no effect in vivo because they are maximally expressed early. Bone morphogenetic protein-2 acts to down-regulate RANKL expression in vitro and, in vivo, may promote alveolar bone growth in the basal region of the tooth.

  10. Activation of Nrf2 is required for up-regulation of the π class of glutathione S-transferase in rat primary hepatocytes with L-methionine starvation.

    PubMed

    Lin, Ai-Hsuan; Chen, Haw-Wen; Liu, Cheng-Tze; Tsai, Chia-Wen; Lii, Chong-Kuei

    2012-07-04

    Numerous genes expression is regulated in response to amino acid shortage, which helps organisms adapt to amino acid limitation. The expression of the π class of glutathione (GSH) S-transferase (GSTP), a highly inducible phase II detoxification enzyme, is regulated mainly by activates activating protein 1 (AP-1) binding to the enhancer I of GSTP (GPEI). Here we show the critical role of nuclear factor erythroid-2-related factor 2 (Nrf2) in up-regulating GSTP gene transcription. Primary rat hepatocytes were cultured in a methionine-restricted medium, and immunoblotting and RT-PCR analyses showed that methionine restriction time-dependently increased GSTP protein and mRNA expression over a 48 h period. Nrf2 translocation to the nucleus, nuclear proteins binding to GPEI, and antioxidant response element (ARE) luciferase reporter activity were increased by methionine restriction as well as by l-buthionine sulfoximine (BSO), a GSH synthesis inhibitor. Transfection with Nrf2 siRNA knocked down Nrf2 expression and reversed the methionine-induced GSTP expression and GPEI binding activity. Chromatin immunoprecipitation assay confirmed the binding of Nrf2 to the GPEI. Phosphorylation of extracellular signal-regulated kinase 2 (ERK2) was increased in methionine-restricted and BSO-treated cells. ERK2 siRNA abolished methionine restriction-induced Nrf2 nuclear translocation, GPEI binding activity, ARE-luciferase reporter activity, and GSTP expression. Our results suggest that the up-regulation of GSTP gene transcription in response to methionine restriction likely occurs via the ERK-Nrf2-GPEI signaling pathway.

  11. Constitutive androstane receptor activation evokes the expression of glycolytic genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarushkin, Andrei A.; Kazantseva, Yuliya A.; Prokopyeva, Elena A.

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in amore » mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation. - Highlights: • CAR-mediated liver growth is correlated with increased expression of cMyc. • CAR activation increased the expression of glycolytic genes in mouse livers. • CAR activation increased the level of Pkm2 in mouse livers.« less

  12. The combined presence of H pylori infection and gastro-oesophageal reflux disease leads to an up-regulation of CDX2 gene expression in antrum and cardia.

    PubMed

    Bornschein, J; Wex, T; Peitz, U; Kuester, D; Roessner, A; Malfertheiner, P

    2009-03-01

    CDX2 is an epithelial transcription factor that regulates intestinal differentiation and is involved in the development of intestinal metaplasia (IM). To analyse the expression of CDX2 in the gastric mucosa in various locations and its relationship to Helicobacter pylori infection and gastro-oesophageal reflux disease (GORD). 69 patients with upper gastrointestinal symptoms were stratified into four groups according to their H pylori and GORD status. Patients without infection and without GORD were the reference group (H pylori(-)/GORD(-)). Biopsies from the antrum, corpus and cardia were assessed by histopathology according to the updated Sydney System. CDX2 transcription levels were determined by quantitative RT-PCR and immunohistochemistry. CDX2 gene expression was significantly up-regulated in antral and cardia mucosa of patients with both H pylori infection and GORD (26- and 100-fold, respectively; p<0.05), but remained unchanged in corpus mucosa. If only H pylori infection or GORD was present, CDX2 expression levels were 6- to 11-fold increased in the antrum, but without reaching statistical significance. CDX2 expression correlated positively with the degree of IM (p<0.01) and the degree of H pylori induced inflammation (p<0.05). Gene expression data were confirmed immunohistochemically by the detection of CDX2 in areas of IM and in focally distributed CDX2-expressing cells in non-metaplastic gastric mucosa. The combined presence of H pylori infection and GORD leads to an up-regulation of CDX2 gene expression in cardia and antral mucosa, but not in the corpus.

  13. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE

    PubMed Central

    Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.

    2010-01-01

    Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258

  14. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    PubMed

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that the plant hormone ethylene induces combinatorial effects of H3K9Ac, K14Ac and K23Ac histone acetylation in gene expression genome widely. Further, for a group of ethylene regulated genes, in the absence of ethylene the levels and the covered breadths of H3K9Ac are the preexist markers for distinguishing up- and down- regulated genes, the change in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expression in the presence of ethylene.

  15. Transcriptional Analysis of Resistance to Low Temperatures in Bermudagrass Crown Tissues

    PubMed Central

    Melmaiee, Kalpalatha; Anderson, Michael; Elavarthi, Sathya; Guenzi, Arron; Canaan, Patricia

    2015-01-01

    Bermudagrass (Cynodon dactylon L pers.) is one of the most geographically adapted and utilized of the warm-season grasses. However, bermudagrass adaptation to the Northern USA is limited by freeze damage and winterkill. Our study provides the first large-scale analyses of gene expression in bermudagrass regenerative crown tissues during cold acclimation. We compared gene expression patterns in crown tissues from highly cold tolerant “MSU” and susceptible “Zebra” genotypes exposed to near-freezing temperatures. Suppressive subtractive hybridization was used to isolate putative cold responsive genes Approximately, 3845 transcript sequences enriched for cold acclimation were deposited in the GenBank. A total of 4589 ESTs (3184 unigenes) including 744 ESTs associated with the bermudagrass disease spring dead spot were printed on microarrays and hybridized with cold acclimated complementary Deoxyribonucleic acid (cDNA). A total of 587 differentially expressed unigenes were identified in this study. Of these only 97 (17%) showed significant NCBI matches. The overall expression pattern revealed 40% more down- than up-regulated genes, which was particularly enhanced in MSU compared to Zebra. Among the up-regulated genes 68% were uniquely expressed in MSU (36%) or Zebra (32%). Among the down-regulated genes 40% were unique to MSU, while only 15% to Zebra. Overall expression intensity was significantly higher in MSU than in Zebra (p value ≤ 0.001) and the overall number of genes expressed at 28 days was 2.7 fold greater than at 2 days. These changes in expression patterns reflect the strong genotypic and temporal response to cold temperatures. Additionally, differentially expressed genes from this study can be utilized for developing molecular markers in bermudagrass and other warm season grasses for enhancing cold hardiness. PMID:26348040

  16. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    PubMed

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  17. SPINDLY, a Negative Regulator of Gibberellic Acid Signaling, Is Involved in the Plant Abiotic Stress Response1[W][OA

    PubMed Central

    Qin, Feng; Kodaira, Ken-Suke; Maruyama, Kyonoshin; Mizoi, Junya; Tran, Lam-Son Phan; Fujita, Yasunari; Morimoto, Kyoko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-01-01

    The SPINDLY (SPY) gene was first identified as a negative regulator of plant gibberellic acid (GA) signaling because mutation of this gene phenocopies plants treated with an overdose of bioactive GA and results in insensitivity to a GA inhibitor during seed germination. The SPY gene encodes an O-linked N-acetylglucosamine transferase that can modify the target protein and modulate the protein activity in cells. In this study, we describe the strong salt and drought tolerance phenotypes of Arabidopsis (Arabidopsis thaliana) spy-1 and spy-3 mutants in addition to their GA-related phenotypes. SPY gene expression was found to be drought stress inducible and slightly responsive to salt stress. Transcriptome analysis of spy-3 revealed that many GA-responsive genes were up-regulated, which could explain the GA-overdosed phenotype of spy-3. Some stress-inducible genes were found to be up-regulated in spy-3, such as genes encoding late embryogenesis abundant proteins, Responsive to Dehydration20, and AREB1-like transcription factor, which may confer stress tolerance on spy-3. CKX3, a cytokinin (CK) catabolism gene, was up-regulated in spy-3; this up-regulation indicates that the mutant possesses reduced CK signaling, which is consistent with a positive role for SPY in CK signaling. Moreover, overexpression of SPY in transgenics (SPY overexpressing [SPY-OX]) impaired plant drought stress tolerance, opposite to the phenotype of spy. The expression levels of several genes, such as DREB1E/DDF1 and SNH1/WIN1, were decreased in SPY-OX but increased in spy-3. Taken together, these data indicate that SPY plays a negative role in plant abiotic stress tolerance, probably by integrating environmental stress signals via GA and CK cross talk. PMID:22013217

  18. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, wemore » generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.« less

  19. Systematical analysis of cutaneous squamous cell carcinoma network of microRNAs, transcription factors, and target and host genes.

    PubMed

    Wang, Ning; Xu, Zhi-Wen; Wang, Kun-Hao

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.

  20. [Detection and analysis of the characteristic expression of microRNAs of anal fistula patients].

    PubMed

    Qiu, Jianming; Yu, Jiping; Yang, Guangen; Xu, Kan; Tao, Yong; Lin, Ali; Wang, Dong

    2016-07-01

    To detect and analyze the characteristic miRNAs profile of anal fistula and explore their possible target genes and potential clinical significance. The anal mucosa close to the hemorrhoids were collected from three patients undergoing fistulectomy and hemorrhoidectomy (fistula group) as well as three patients receiving only hemorroidectomy(hemorrhoids group), matching with fistula group in age, gender and body weight. miRNA microarray was used to compare the expression of 1 285 human miRNAs of the anal mucosa between two groups. Cluster analysis was adopted to analyze the accumulation of the differentially expressed miRNAs(P<0.05, fold≥2.0 or ≤0.5) and their target genes were predicted with 10 softwares such as DIANAmT, miRanda, miRDB, miRWalk etc. Comprehensive scoring was performed to identify genes with highest predictive score. Gene ontology (GO) concentration technique was used to analyze the target gene-associated biological process. Immunohistochemistry was used to examine protein expression of genes with the highest score. Among 1285 miRNAs in fistula group, 13 miRNAs were differentially expressed with those in hemorrhoid group, including 2 of up-regulation and 11 of down-regulation. Paired t test showed that in fistula group, miRNA-3609 up-regulation was 5.98 folds(P=0.0231) and miR-181a-2-3p down-regulation was 0.13 folds(P=0.0067) compared to those in hemorrhoid group, which had the greatest differential expression. Cluster analysis suggested that up-regulated miR-3609 and miR-6086 had similar change trend in both groups. Among 11 down-regulated miRNAs, miR-125bp-1-3p and miR-548q had similar expression and other 9 miRNAs had similar expression as well, including miR-1185-1-3p, miR-532-3p, miR-1233-5p, miR-769-5p, miR-149-5p, miR-99b-3p, miR-141-3p, miR-138-5p, and miR-181a-2-3p. Target gene prediction analysis of above 13 genes showed that 7 miRNAs(53.8%) were eligible to predict their potential target genes, yielding totally 104 possible target genes. The rest of 6 miRNAs(46.2%) failed to predict any target gene. The highest score in prediction of target gene was chitinase 1(ChIT1) and its corresponding differential miRNA was miR-769-5p(r=-0.94286, P=0.0167). Gene ontology analysis showed that the most associated biological process related with these 104 target genes was keratinization, immune response and signal transduction. Immunohistochemistry revealed ChiT1 expression of anal mucosa in fistula group was significantly higher compared to hemorrhoid group(P<0.01). There is a characteristic miRNAs profile in anal fistula patients, which may play a role in the occurrence and development of anal fistula.

  1. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.

    PubMed

    Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu

    2015-01-01

    The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.

  2. Male- and Female-Biased Gene Expression of Olfactory-Related Genes in the Antennae of Asian Corn Borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae)

    PubMed Central

    Zhang, Tiantao; Coates, Brad S.; Ge, Xing; Bai, Shuxiong; He, Kanglai; Wang, Zhenying

    2015-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a destructive pest insect of cultivated corn crops, for which antennal-expressed receptors are important to detect olfactory cues for mate attraction and oviposition. Few olfactory related genes were reported in ACB, so we sequenced and characterized the transcriptome of male and female O. furnacalis antennae. Non-normalized male and female O. furnacalis antennal cDNA libraries were sequenced on the Illumina HiSeq 2000 and assembled into a reference transcriptome. Functional gene annotations identified putative olfactory-related genes; 56 odorant receptors (ORs), 23 odorant binding proteins (OBPs), and 10 CSPs. RNA-seq estimates of gene expression respectively showed up- and down-regulation of 79 and 30 genes in female compared to male antennae, which included up-regulation of 8 ORs and 1 PBP gene in male antennae as well as 3 ORs in female antennae. Quantitative real-time RT-PCR analyses validated strong male antennal-biased expression of OfurOR3, 4, 6, 7, 8, 11, 12, 13 and 14 transcripts, whereas OfurOR17 and 18 were specially expressed in female antennae. Sex-biases gene expression described here provides important insight in gene functionalization, and provides candidate genes putatively involved in environmental perception, host plant attraction, and mate recognition. PMID:26062030

  3. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress

    PubMed Central

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A. Lane; Voigt, Thomas; Lee, D. K.

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  4. Candidate gene identification of ovulation-inducing genes by RNA sequencing with an in vivo assay in zebrafish.

    PubMed

    Klangnurak, Wanlada; Fukuyo, Taketo; Rezanujjaman, M D; Seki, Masahide; Sugano, Sumio; Suzuki, Yutaka; Tokumoto, Toshinobu

    2018-01-01

    We previously reported the microarray-based selection of three ovulation-related genes in zebrafish. We used a different selection method in this study, RNA sequencing analysis. An additional eight up-regulated candidates were found as specifically up-regulated genes in ovulation-induced samples. Changes in gene expression were confirmed by qPCR analysis. Furthermore, up-regulation prior to ovulation during natural spawning was verified in samples from natural pairing. Gene knock-out zebrafish strains of one of the candidates, the starmaker gene (stm), were established by CRISPR genome editing techniques. Unexpectedly, homozygous mutants were fertile and could spawn eggs. However, a high percentage of unfertilized eggs and abnormal embryos were produced from these homozygous females. The results suggest that the stm gene is necessary for fertilization. In this study, we selected additional ovulation-inducing candidate genes, and a novel function of the stm gene was investigated.

  5. [Differentially expressed genes of cell signal transduction associated with benzene poisoning by cDNA microarray].

    PubMed

    Wang, Hong; Bi, Yongyi; Tao, Ning; Wang, Chunhong

    2005-08-01

    To detect the differential expression of cell signal transduction genes associated with benzene poisoning, and to explore the pathogenic mechanisms of blood system damage induced by benzene. Peripheral white blood cell gene expression profile of 7 benzene poisoning patients, including one aplastic anemia, was determined by cDNA microarray. Seven chips from normal workers were served as controls. Cluster analysis of gene expression profile was performed. Among the 4265 target genes, 176 genes associated with cell signal transduction were differentially expressed. 35 up-regulated genes including PTPRC, STAT4, IFITM1 etc were found in at least 6 pieces of microarray; 45 down-regulated genes including ARHB, PPP3CB, CDC37 etc were found in at least 5 pieces of microarray. cDNA microarray technology is an effective technique for screening the differentially expressed genes of cell signal transduction. Disorder in cell signal transduction may play certain role in the pathogenic mechanism of benzene poisoning.

  6. Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana

    PubMed Central

    Waters, Brian M.; Stein, Ricardo J.

    2012-01-01

    Iron (Fe) is an essential plant micronutrient, and its deficiency limits plant growth and development on alkaline soils. Under Fe deficiency, plant responses include up-regulation of genes involved in Fe uptake from the soil. However, little is known about shoot responses to Fe deficiency. Using microarrays to probe gene expression in Kas-1 and Tsu-1 ecotypes of Arabidopsis thaliana, and comparison with existing Col-0 data, revealed conserved rosette gene expression responses to Fe deficiency. Fe-regulated genes included known metal homeostasis-related genes, and a number of genes of unknown function. Several genes responded to Fe deficiency in both roots and rosettes. Fe deficiency led to up-regulation of Cu,Zn superoxide dismutase (SOD) genes CSD1 and CSD2, and down-regulation of FeSOD genes FSD1 and FSD2. Eight microRNAs were found to respond to Fe deficiency. Three of these (miR397a, miR398a, and miR398b/c) are known to regulate transcripts of Cu-containing proteins, and were down-regulated by Fe deficiency, suggesting that they could be involved in plant adaptation to Fe limitation. Indeed, Fe deficiency led to accumulation of Cu in rosettes, prior to any detectable decrease in Fe concentration. ccs1 mutants that lack functional Cu,ZnSOD proteins were prone to greater oxidative stress under Fe deficiency, indicating that increased Cu concentration under Fe limitation has an important role in oxidative stress prevention. The present results show that Cu accumulation, microRNA regulation, and associated differential expression of Fe and CuSOD genes are coordinated responses to Fe limitation. PMID:22962679

  7. Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones

    NASA Astrophysics Data System (ADS)

    Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.

    2009-07-01

    Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.

  8. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis.

    PubMed

    Mishina, Tatiana E; Lamb, Chris; Zeier, Jürgen

    2007-01-01

    Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.

  9. Defining Global Gene Expression Changes of the Hypothalamic-Pituitary-Gonadal Axis in Female sGnRH-Antisense Transgenic Common Carp (Cyprinus carpio)

    PubMed Central

    Xu, Jing; Huang, Wei; Zhong, Chengrong; Luo, Daji; Li, Shuangfei; Zhu, Zuoyan; Hu, Wei

    2011-01-01

    Background The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. Methodology/Principal Findings In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. Conclusions/Significance This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish. PMID:21695218

  10. The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolas, Francisco E.; Vila, Ana; Moxon, Simon

    Here, RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which theymore » derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. In conclusion, this work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model.« less

  11. The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides

    DOE PAGES

    Nicolas, Francisco E.; Vila, Ana; Moxon, Simon; ...

    2015-03-25

    Here, RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which theymore » derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. In conclusion, this work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model.« less

  12. Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes

    PubMed Central

    Eticha, Dejene; Zahn, Marc; Bremer, Melanie; Yang, Zhongbao; Rangel, Andrés F.; Rao, Idupulapati M.; Horst, Walter J.

    2010-01-01

    Background and Aims Aluminium (Al) resistance in common bean is known to be due to exudation of citrate from the root after a lag phase, indicating the induction of gene transcription and protein synthesis. The aims of this study were to identify Al-induced differentially expressed genes and to analyse the expression of candidate genes conferring Al resistance in bean. Methods The suppression subtractive hybridization (SSH) method was used to identify differentially expressed genes in an Al-resistant bean genotype (‘Quimbaya’) during the induction period. Using quantitative real-time PCR the expression patterns of selected genes were compared between an Al-resistant and an Al-sensitive genotype (‘VAX 1’) treated with Al for up to 24 h. Key Results Short-term Al treatment resulted in up-regulation of stress-induced genes and down-regulation of genes involved in metabolism. However, the expressions of genes encoding enzymes involved in citrate metabolism were not significantly affected by Al. Al treatment dramatically increased the expression of common bean expressed sequence tags belonging to the citrate transporter gene family MATE (multidrug and toxin extrusion family protein) in both the Al-resistant and -sensitive genotype in close agreement with Al-induced citrate exudation. Conclusions The expression of a citrate transporter MATE gene is crucial for citrate exudation in common bean. However, although the expression of the citrate transporter is a prerequisite for citrate exudation, genotypic Al resistance in common bean particularly depends on the capacity to sustain the synthesis of citrate for maintaining the cytosolic citrate pool that enables exudation. PMID:20237115

  13. The effects of whole ovarian perfusion and cryopreservation on endothelial cell-related gene expression in the ovarian medulla and pedicle.

    PubMed

    Onions, V J; Webb, R; Pincott-Allen, C; Picton, H M; Campbell, B K

    2013-04-01

    Fertility preservation by whole ovarian cryopreservation requires successful cryopreservation of both the ovary and its vascular supply. Previous work has indicated detrimental effects of both perfusion and cryopreservation on the ovarian vasculature. This study assessed the effects of blood perfusion, alone or in combination with cryopreservation, on functional effects in the follicle population and ovarian function in vivo following short-term autotransplantation of the tissue after vascular reanastomosis and measured acute changes in endothelial cell-related gene expression within the ovarian medulla and pedicle. Following autotransplantation for 7 days, primordial, transitional and primary follicle densities were significantly reduced (P < 0.05) and stromal Ki67 and caspase-3 expression significantly increased (P < 0.05) in cryopreserved but not fresh or perfused whole ovaries. There was evidence of clot formation and fluorescent microsphere (FMS) extravasation in the medulla of all cryopreserved ovaries, indicating vascular damage. Utilizing a customized RT-PCR array or conventional RT-PCR, we found that perfusion alone resulted in down-regulation in the expression of caspase 6 and thrombospondin 1 (THBS1) genes in the medulla. Following additional cryopreservation, endothelial nitric oxide synthase (eNOS), endothelin 1, endothelin receptor A and Bcl-2 expression were significantly (P < 0.05) down-regulated. In the pedicle, both perfusion and cryopreservation caused a (P < 0.05) down-regulation of eNOS and THBS1, and an up-regulation in Bax expression. Perfusion also caused a down-regulation of TNF and up-regulation of endothelin-2 expression (P < 0.05). In conclusion, this study has identified a number of endothelial cell-related genes expressed in the medulla which are acutely affected by both cryopreservation and perfusion, supporting the hypothesis that both interventions have deleterious effects on endothelial cell function.

  14. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    PubMed

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-03-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

  15. Proteomic and transcriptomic analysis of lung tissue in OVA-challenged mice.

    PubMed

    Lee, Yongjin; Hwang, Yun-Ho; Kim, Kwang-Jin; Park, Ae-Kyung; Paik, Man-Jeong; Kim, Seong Hwan; Lee, Su Ui; Yee, Sung-Tae; Son, Young-Jin

    2018-01-01

    Asthma is a long term inflammatory disease of the airway of lungs characterized by variable airflow obstruction and bronchospasm. Asthma is caused by a complex combination of environmental and genetic interactions. In this study, we conducted proteomic analysis of samples derived from control and OVA challenged mice for environmental respiratory disease by using 2-D gel electrophoresis. In addition, we explored the genes associated with the environmental substances that cause respiratory disease and conducted RNA-seq by next-generation sequencing. Proteomic analysis revealed 7 up-regulated (keratin KB40, CRP, HSP27, chaperonin containing TCP-1, TCP-10, keratin, and albumin) and 3 down-regulated proteins (PLC-α, PLA2, and precursor ApoA-1). The expression diversity of many genes was found in the lung tissue of OVA challenged moue by RNA-seq. 146 genes were identified as significantly differentially expressed by OVA treatment, and 118 genes of the 146 differentially expressed genes were up-regulated and 28 genes were downregulated. These genes were related to inflammation, mucin production, and airway remodeling. The results presented herein enable diagnosis and the identification of quantitative markers to monitor the progression of environmental respiratory disease using proteomics and genomic approaches.

  16. Expression pattern analysis of IRF4 and its related genes revealed the functional differentiation of IRF4 paralogues in teleost.

    PubMed

    Ai, Kete; Luo, Kai; Li, Youshen; Hu, Wei; Gao, Weihua; Fang, Liu; Tian, Guangming; Ruan, Guoliang; Xu, Qiaoqing

    2017-01-01

    In mammals, interferon regulatory factor 4 (IRF4) plays an important role in the process of development and differentiation of B cells, T cells and dendritic cells. It can regulate immune pathway through IRF5, MyD88, IL21, PGC1α, and NOD2. In the present study, we investigated the expression pattern of IRF4 paralogues and these related genes for the first time in teleosts. The results showed that these genes were all expressed predominantly in known immune tissues while IRF5 was also relatively highly expressed in muscle. IRF4b, IL21, MyD88, IRF5 and NOD2 showed maternal expression in the oocyte and the higher expression of IRF4a, Mx and PGC1α before hatching might be involved in the embryonic innate defense system. Zebrafish embryonic fibroblast (ZF4) cells were infected with GCRV and SVCV. During GCRV infection, the expression of Mx was significantly up-regulated from 3 h to 24 h, reaching the highest level at 12 h (101.5-fold over the controls, P < 0.001). And the expression of IRF4a was significantly up-regulated from 3 h to 48 h, reaching the highest level at 12 h (13.75-fold over the controls, P < 0.001). While the expression of IRF4b was only slightly up-regulated at 12 h and 24 h (3.39-fold, 1.93-fold) above control levels, respectively. Whereas the expression of Mx was significantly up-regulated during SVCV infection from 1 h to 48 h, reaching the highest level at 24 h (11.49-fold over the controls, P < 0.001). IRF4a transcripts were significantly up-regulated from 6 h to 24 h, reaching the highest level at 24 h (41-fold over the controls, P < 0.01). IRF4b only showed a slightly up-regulation by SVCV at 24 h (3.2-fold over the controls, P < 0.01). IRF4a and IRF4b displayed a distinct tissue expression pattern, embryonic stages expression and inducible expression in vivo and in vitro, suggesting that IRF4 paralogues might play different roles in immune system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Vasopressin up-regulates the expression of growth-related immediate-early genes via two distinct EGF receptor transactivation pathways

    PubMed Central

    Fuentes, Lida Q.; Reyes, Carlos E.; Sarmiento, José M.; Villanueva, Carolina I.; Figueroa, Carlos D.; Navarro, Javier; González, Carlos B.

    2008-01-01

    Activation of V1a receptor triggers the expression of growth-related immediate-early genes (IEGs), including c-Fos and Egr-1. Here we found that pre-treatment of rat vascular smooth muscle A-10 cell line with the EGF receptor inhibitor AG1478 or the over-expression of an EGFR dominant negative mutant (HEBCD533) blocked the vasopressin-induced expression of IEGs, suggesting that activation of these early genes mediated by V1a receptor is via transactivation of the EGF receptor. Importantly, the inhibition of the metalloproteinases, which catalyzed the shedding of the EGF receptor agonist HB-EGF, selectively blocked the vasopressin-induced expression c-Fos. On the other hand, the inhibition of c-Src selectively blocked the vasopressin-induced expression of Egr-1. Interestingly, in contrast to the expression of c-Fos, the expression of Egr-1 was mediated via the Ras/MEK/MAPK-dependent signalling pathway. Vasopressin-triggered expression of both genes required the release of intracellular calcium, activation of PKC and β-arrestin 2. These findings demonstrated that vasopressin up-regulated the expression of c-Fos and Erg-1 via transactivation of two distinct EGF receptor-dependent signalling pathways. PMID:18571897

  18. Transgenic expression of medicago truncatula PR10 and PR5 promoters in alfalfa shows pathogen-induced up-regulation of transgene expression

    USDA-ARS?s Scientific Manuscript database

    Genetic modification of alfalfa to introduce novel traits requires promoters for controlling gene expression. Promoters that are constitutively activated for expression of genes that enhance disease resistance pose a great energy load on the plant and exert a strong selective pressure on the pathoge...

  19. A promoter polymorphism in the monoamine oxidase A gene is associated with the pineal MAOA activity in Alzheimer's disease patients.

    PubMed

    Wu, Ying-Hui; Fischer, David F; Swaab, Dick F

    2007-09-05

    Monoamine oxidase A (MAOA) is involved in the pathogenesis of mood disorders and Alzheimer's disease (AD). MAOA activity and gene expression have been found to be up-regulated in different brain areas of AD patients, including the pineal gland. Increased pineal MAOA activity might contribute to the reduced pineal melatonin production in AD. A promoter polymorphism of a variable number tandem repeats (VNTR) in the MAOA gene shows to affect MAOA transcriptional activity in vitro. Here we examined in 63 aged controls and 44 AD patients the effects of the MAOA-VNTR on MAOA gene expression and activity in the pineal gland as endophenotypes, and on melatonin production. AD patients carrying long MAOA-VNTR genotype (consisting of 3.5- or 4-repeat alleles) showed higher MAOA gene expression and activity than the short-genotyped (i.e., 3-repeat allele) AD patients. Moreover, the AD-related up-regulation of MAOA showed up only among long-genotype bearing subjects. There was no significant effect of the MAOA-VNTR on MAOA activity or gene expression in controls, or on melatonin production in both controls and AD patients. Our data suggest that the MAOA-VNTR affects the activity and gene expression of MAOA in the brain of AD patients, and is involved in the changes of monoamine metabolism.

  20. Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, Ruxandra; Malone, P. Brandon; Hill, Leigh Anne; Ellis, Kenneth M.; Schwartz, Robert J.; Nordstrom, Jeffrey L.

    2002-01-01

    Regulated animal growth occurred following a single electroporated injection of a mixture of two plasmids (10 microg of DNA), one expressing the GeneSwitch regulator protein, the other an inducible growth hormone releasing hormone (GHRH) gene, into the tibialis anterior muscles of adult SCID mice. Administration of the ligand mifepristone (MFP) up-regulated GHRH expression, as shown by elevations of IGF-I levels, and when MFP dosing was withdrawn, IGF-I returned to baseline levels. Five cycles of IGF-I induction were observed during a five-month period. Chronic MFP dosing for 25 days increased lean body mass, weight gain, and bone mineral density significantly compared with non-MFP treated controls. In summary, long-term drug-regulated GHRH expression was achieved following plasmid-based gene therapy, and chronic induction of GHRH expression in adult animals led to improvements in weight gain and body composition.

  1. Enhanced animal growth via ligand-regulated GHRH myogenic-injectable vectors.

    PubMed

    Draghia-Akli, Ruxandra; Malone, P Brandon; Hill, Leigh Anne; Ellis, Kenneth M; Schwartz, Robert J; Nordstrom, Jeffrey L

    2002-03-01

    Regulated animal growth occurred following a single electroporated injection of a mixture of two plasmids (10 microg of DNA), one expressing the GeneSwitch regulator protein, the other an inducible growth hormone releasing hormone (GHRH) gene, into the tibialis anterior muscles of adult SCID mice. Administration of the ligand mifepristone (MFP) up-regulated GHRH expression, as shown by elevations of IGF-I levels, and when MFP dosing was withdrawn, IGF-I returned to baseline levels. Five cycles of IGF-I induction were observed during a five-month period. Chronic MFP dosing for 25 days increased lean body mass, weight gain, and bone mineral density significantly compared with non-MFP treated controls. In summary, long-term drug-regulated GHRH expression was achieved following plasmid-based gene therapy, and chronic induction of GHRH expression in adult animals led to improvements in weight gain and body composition.

  2. Profiling and bioinformatic analysis of circular RNA expression regulated by c-Myc.

    PubMed

    Gou, Qiheng; Wu, Ke; Zhou, Jian-Kang; Xie, Yuxin; Liu, Lunxu; Peng, Yong

    2017-09-22

    The c-Myc transcription factor is involved in cell proliferation, cell cycle and apoptosis by activating or repressing transcription of multiple genes. Circular RNAs (circRNAs) are widely expressed non-coding RNAs participating in the regulation of gene expression. Using a high-throughput microarray assay, we showed that Myc regulates the expression of certain circRNAs. A total of 309 up- and 252 down-regulated circRNAs were identified. Among them, randomly selected 8 circRNAs were confirmed by real-time PCR. Subsequently, Myc-binding sites were found to generally exist in the promoter regions of differentially expressed circRNAs. Based on miRNA sponge mechanism, we constructed circRNAs/miRNAs network regulated by Myc, suggesting that circRNAs may widely regulate protein expression through miRNA sponge mechanism. Lastly, we took advantage of Gene Ontology and KEGG analyses to point out that Myc-regulated circRNAs could impact cell proliferation through affecting Ras signaling pathway and pathways in cancer. Our study for the first time demonstrated that Myc transcription factor regulates the expression of circRNAs, adding a novel component of the Myc tumorigenic program and opening a window to investigate the function of certain circRNAs in tumorigenesis.

  3. Understanding regulation of microRNAs on intestine regeneration in the sea cucumber Apostichopus japonicus using high-throughput sequencing.

    PubMed

    Sun, Lina; Sun, Jingchun; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng; Wang, Qing

    2017-06-01

    The sea cucumber, as a member of the Echinodermata, has the capacity to restore damaged organs and body parts, which has always been a key scientific issue. MicroRNAs (miRNAs), a class of short noncoding RNAs, play important roles in regulating gene expression. In the present study, we applied high-throughput sequencing to investigate alterations of miRNA expression in regenerative intestine compared to normal intestine. A total of 73 differentially expressed miRNAs were obtained, including 59 up-regulated miRNAs and 14 down-regulated miRNAs. Among these molecules, Aja-miR-1715-5p, Aja-miR-153, Aja-miR-252a, Aja-miR-153-5p, Aja-miR-252b, Aja-miR-2001, Aja-miR-64d-3p, and Aja-miR-252-5p were differentially expressed over 10-fold at 3days post-evisceration (dpe). Notably, real-time PCR revealed that Aja-miR-1715-5p was up-regulated 1390-fold at 3dpe. Moreover, putative target gene co-expression analyses, gene ontology, and pathway analyses suggest that these miRNAs play important roles in specific cellular events (cell proliferation, migration, and apoptosis), metabolic regulation, and energy redistribution. These results will provide a basis for future studies of miRNA regulation in sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression.

    PubMed

    Gonzalez, Lauren E; Keller, Kristen; Chan, Karen X; Gessel, Megan M; Thines, Bryan C

    2017-07-17

    The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1-1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level.

  5. Epigenetic alterations mediate iPSC normalization of DNA-repair expression and TNR stability in Huntington's disease.

    PubMed

    Mollica, Peter A; Zamponi, Martina; Reid, John A; Sharma, Deepak K; White, Alyson E; Ogle, Roy C; Bruno, Robert D; Sachs, Patrick C

    2018-06-13

    Huntington's disease (HD) is a rare autosomal dominant neurodegenerative disorder caused by a cytosine-adenine-guanine (CAG) trinucleotide repeat (TNR) expansion within the HTT gene. The mechanisms underlying HD-associated cellular dysfunction during pluripotency and neurodevelopment, are poorly understood. Here we tested the hypothesis that hypomethylation during cellular reprogramming leads to up-regulation of DNA repair genes and stabilization of TNRs in HD cells. We sought to determine how the HD TNR region is affected by global epigenetic changes through cellular reprogramming and early neurodifferentiation. We find that early-stage HD-affected neural stem cells (NSCs) contain increased levels of global 5-hydroxymethylation (5-hmC) and normalized DNA repair gene expression. We confirm TNR stability is induced during pluripotency, and maintained in HD-NSCs. We also identify up-regulation of 5-hmC catalyzing ten-eleven translocation (TET1/2) proteins, and show their knockdown leads to a corresponding decrease in select DNA repair gene expression. We further confirm decreased expression of TET regulating miR-29 family members in HD-NSCs. Our findings demonstrate that mechanisms involved in pluripotency recover the selected DNA repair gene expression and stabilizes pathogenic TNRs in HD. © 2018. Published by The Company of Biologists Ltd.

  6. Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 or EIN2

    NASA Technical Reports Server (NTRS)

    Johnson, K. A.; Sistrunk, M. L.; Polisensky, D. H.; Braam, J.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    Plants exposed to repetitive touch or wind are generally shorter and stockier than sheltered plants. These mechanostimulus-induced developmental changes are termed thigmomorphogenesis and may confer resistance to subsequent stresses. An early response of Arabidopsis thaliana to touch or wind is the up-regulation of TCH (touch) gene expression. The signal transduction pathway that leads to mechanostimulus responses is not well defined. A role for ethylene has been proposed based on the observation that mechanostimulation of plants leads to ethylene evolution and exogenous ethylene leads to thigmomorphogenetic-like changes. To determine whether ethylene has a role in plant responses to mechanostimulation, we assessed the ability of two ethylene-insensitive mutants, etr1-3 and ein2-1, to undergo thigmomorphogenesis and TCH gene up-regulation of expression. The ethylene-insensitive mutants responded to wind similarly to the wild type, with a delay in flowering, decrease in inflorescence elongation rate, shorter mature primary inflorescences, more rosette paraclades, and appropriate TCH gene expression changes. Also, wild-type and mutant Arabidopsis responded to vibrational stimulation, with an increase in hypocotyl elongation and up-regulation of TCH gene expression. We conclude that the ETR1 and EIN2 protein functions are not required for the developmental and molecular responses to mechanical stimulation.

  7. Proton receptor GPR68 expression in dendritic-cell-like S100β-positive cells of rat anterior pituitary gland: GPR68 induces interleukin-6 gene expression in extracellular acidification.

    PubMed

    Horiguchi, Kotaro; Higuchi, Masashi; Yoshida, Saishu; Nakakura, Takashi; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Kato, Takako; Kato, Yukio

    2014-11-01

    S100β-positive cells, which do not express the classical pituitary hormones, appear to possess multifunctional properties and are assumed to be heterogeneous in the anterior pituitary gland. The presence of several protein markers has shown that S100β-positive cells are composed of populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. Recently, we succeeded in separating S100β-positive cells into round-cell (dendritic-cell-like) and process-cell types. We also found the characteristic expression of anti-inflammatory factors (interleukin-6, Il-6) and membrane receptors (integrin β-6) in the round type. Here, we further investigate the function of the subpopulation of S100β-positive cells. Since IL-6 is also a paracrine factor that regulates hormone producing-cells, we examine whether a correlation exists among extracellular acid stress, IL-6 and hormone production by using primary cultures of anterior pituitary cells. Dendritic-cell-like S100β-positive cells notably expressed Gpr68 (proton receptor) and Il-6. Furthermore, the expression of Il-6 and proopiomelanocortin (Pomc) was up-regulated by extracellular acidification. The functional role of IL-6 and GPR68 in the gene expression of Pomc during extracellular acidification was also examined. Small interfering RNA for Il-6 up-regulated Pomc expression and that for Gpr68 reversed the down-regulation of Il-6 and up-regulated Pomc expression by extracellular acidification. Thus, S100β-positive dendritic-like cells can sense an increase in extracellular protons via GPR68 and respond by the production of IL-6 in order to suppress the up-regulation of Pomc expression.

  8. Acute Exposure to Tris(1,3-dichloro-2-propyl) Phosphate (TDCIPP) Causes Hepatic Inflammation and Leads to Hepatotoxicity in Zebrafish

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Su, Guanyong; Giesy, John P.; Letcher, Robert J.; Li, Guangyu; Agrawal, Ira; Li, Jing; Yu, Liqin; Wang, Jianghua; Gong, Zhiyuan

    2016-01-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been frequently detected in environmental media and has adverse health effect on wildlife and humans. It has been implicated to have hepatotoxicity, but its molecular mechanisms remain unclear. In the present study, adult male zebrafish were exposed to TDCIPP and global hepatic gene expression was examined by RNA-Seq and RT-qPCR in order to understand the molecular mechanisms of TDCIPP-induced hepatotoxicity. Our results indicated that TDCIPP exposure significantly up-regulated the expression of genes involved in endoplasmic reticulum stress and Toll-like receptor (TLR) pathway, implying an inflammatory response, which was supported by up-regulation of inflammation-related biomaker genes. Hepatic inflammation was further confirmed by histological observation of increase of infiltrated neutrophils and direct observation of liver recruitment of neutrophils labeled with Ds-Red fluorescent protein of Tg(lysC:DsRed) zebrafish upon TDCIPP exposure. To further characterize the hepatotoxicity of TDCIPP, the expression of hepatotoxicity biomarker genes, liver histopathology and morphology were examined. The exposure to TDCIPP significantly up-regulated the expression of several biomarker genes for hepatotoxicity (gck, gsr and nqo1) and caused hepatic vacuolization and apoptosis as well as increase of the liver size. Collectively, our results suggest that exposure to TDCIPP induces hepatic inflammation and leads to hepatotoxicity in zebrafish.

  9. Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.

    PubMed

    Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping

    2011-10-01

    In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.

  10. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress.

    PubMed

    Zhang, Chao; Zhang, Lin; Zhang, Sheng; Zhu, Shuang; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-01-21

    Physic nut (Jatropha curcas L.) is a small perennial tree or large shrub, which is well-adapted to semi-arid regions and is considered to have potential as a crop for biofuel production. It is now regarded as an excellent model for studying biofuel plants. However, our knowledge about the molecular responses of this species to drought stress is currently limited. In this study, genome-wide transcriptional profiles of roots and leaves of 8-week old physic nut seedlings were analyzed 1, 4 and 7 days after withholding irrigation. We observed a total of 1533 and 2900 differentially expressed genes (DEGs) in roots and leaves, respectively. Gene Ontology analysis showed that the biological processes enriched in droughted plants relative to unstressed plants were related to biosynthesis, transport, nucleobase-containing compounds, and cellular protein modification. The genes found to be up-regulated in roots were related to abscisic acid (ABA) synthesis and ABA signal transduction, and to the synthesis of raffinose. Genes related to ABA signal transduction, and to trehalose and raffinose synthesis, were up-regulated in leaves. Endoplasmic reticulum (ER) stress response genes were significantly up-regulated in leaves under drought stress, while a number of genes related to wax biosynthesis were also up-regulated in leaves. Genes related to unsaturated fatty acid biosynthesis were down-regulated and polyunsaturated fatty acids were significantly reduced in leaves 7 days after withholding irrigation. As drought stress increased, genes related to ethylene synthesis, ethylene signal transduction and chlorophyll degradation were up-regulated, and the chlorophyll content of leaves was significantly reduced by 7 days after withholding irrigation. This study provides us with new insights to increase our understanding of the response mechanisms deployed by physic nut seedlings under drought stress. The genes and pathways identified in this study also provide much information of potential value for germplasm improvement and breeding for drought resistance.

  11. Transcriptome analysis of the whitefly, Bemisia tabaci MEAM1 during feeding on tomato infected with the crinivirus, Tomato chlorosis virus, identifies a temporal shift in gene expression and differential regulation of novel orphan genes.

    PubMed

    Kaur, Navneet; Chen, Wenbo; Zheng, Yi; Hasegawa, Daniel K; Ling, Kai-Shu; Fei, Zhangjun; Wintermantel, William M

    2017-05-11

    Whiteflies threaten agricultural crop production worldwide, are polyphagous in nature, and transmit hundreds of plant viruses. Little is known how whitefly gene expression is altered due to feeding on plants infected with a semipersistently transmitted virus. Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) is transmitted by the whitefly (Bemisia tabaci) in a semipersistent manner and infects several globally important agricultural and ornamental crops, including tomato. To determine changes in global gene regulation in whiteflies after feeding on tomato plants infected with a crinivirus (ToCV), comparative transcriptomic analysis was performed using RNA-Seq on whitefly (Bemisia tabaci MEAM1) populations after 24, 48, and 72 h acquisition access periods on either ToCV-infected or uninfected tomatoes. Significant differences in gene expression were detected between whiteflies fed on ToCV-infected tomato and those fed on uninfected tomato among the three feeding time periods: 447 up-regulated and 542 down-regulated at 24 h, 4 up-regulated and 7 down-regulated at 48 h, and 50 up-regulated and 160 down-regulated at 72 h. Analysis revealed differential regulation of genes associated with metabolic pathways, signal transduction, transport and catabolism, receptors, glucose transporters, α-glucosidases, and the uric acid pathway in whiteflies fed on ToCV-infected tomatoes, as well as an abundance of differentially regulated novel orphan genes. Results demonstrate for the first time, a specific and temporally regulated response by the whitefly to feeding on a host plant infected with a semipersistently transmitted virus, and advance the understanding of the whitefly vector-virus interactions that facilitate virus transmission. Whitefly transmission of semipersistent viruses is believed to require specific interactions between the virus and its vector that allow binding of virus particles to factors within whitefly mouthparts. Results provide a broader understanding of the potential mechanism of crinivirus transmission by whitefly, aid in discerning genes or loci in whitefly that influence virus interactions or transmission, and subsequently facilitate development of novel, genetics-based control methods against whitefly and whitefly-transmitted viruses.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun-Mi, E-mail: lala1647@hanmail.net; Lee, Chung Won, E-mail: vasculardoctorlee@gmail.com; Kim, Bo-Young, E-mail: kimboyoung@pusan.ac.kr

    We attempted to determine the effects of a milieu rich in cholesterol molecules on expression of chemokine CXCL8. A high-cholesterol diet led to an increased transcription of the IL-8 gene in the arteries and elevated levels of CXCL8 in sera of ApoE{sup −/−} mice, compared with those of wild-type C57BL/6 mice. Treatment of THP-1 monocyte/macrophage cells with 27-hydroxycholesterol (27OHChol) resulted in transcription of the IL-8 gene and increased secretion of its corresponding gene product whereas cholesterol did not induce expression of CXCL8 in THP-1 cells. 27OHChol-induced transcription of the IL-8 gene was blocked by cycloheximide, but not by polymyxin B.more » Treatment of THP-1 cells with 27OHChol caused translocation of p65 NF-κB subunit into the nucleus and up-regulation of CD88. Inhibition of NF-κB and CD88 using SN50 and W-54011, respectively, resulted in reduced transcription of the IL-8 gene and attenuated secretion of CXCL8 induced by 27OHChol. We propose that oxidatively modified cholesterol like 27OHChol, rather than cholesterol, is responsible for sustained expression of CXCL8 in monocytes/macrophages in atherosclerotic arteries. - Highlights: • Consumption of a high-cholesterol diet leads to increased CXCL8 expression in ApoE{sup −/−} mice. • 27OHChol, but not cholesterol, up-regulates expression of CXCL8 in macrophages. • 27OHChol enhances nuclear translocation of NF-κB and expression of CD88 in macrophages. • Inhibition of NF-κB or CD88 results in decreased CXCL8 expression induced by 27OHChol. • 27OHChol up-regulates CXCL8 expression via NF-κB and CD88 in macrophages.« less

  13. Differential gene expression induced by exposure of captive mink to fuel oil: A model for the sea otter

    USGS Publications Warehouse

    Bowen, Lizabeth; Riva, F.; Mohr, C.; Aldridge, B.; Schwartz, J.; Miles, A. Keith; Stott, J.L.

    2007-01-01

    Free-ranging sea otters are subject to hydrocarbon exposure from a variety of sources, both natural and anthropogenic. Effects of direct exposure to unrefined crude oil, such as that associated with the Exxon Valdez oil spill, are readily apparent. However, the impact of subtle but pathophysiologically relevant concentrations of crude oil on sea otters is difficult to assess. The present study was directed at developing a model for assessing the impact of low concentrations of fuel oil on sea otters. Quantitative PCR was used to identify differential gene expression in American mink that were exposed to low concentrations of bunker C fuel oil. A total of 23 genes, representing 10 different physiological systems, were analyzed for perturbation. Six genes with immunological relevance were differentially expressed in oil-fed mink. Interleukin-18 (IL-18), IL-10, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and complement cytolysis inhibitor (CLI) were down-regulated while IL-2 was up-regulated. Expression of two additional genes was affected; heat shock protein 70 (HSP70) was up-regulated and thyroid hormone receptor (THR) was down-regulated. While the significance of each perturbation is not immediately evident, we identified differential expression of genes that would be consistent with the presence of immune system-modifying and endocrine-disrupting compounds in fuel oil. Application of this approach to identify effects of petroleum contamination on sea otters should be possible following expansion of this mink model to identify a greater number of affected genes in peripheral blood leukocytes.

  14. Comprehensive Gene Expression Analysis of Rice Aleurone Cells: Probing the Existence of an Alternative Gibberellin Receptor1

    PubMed Central

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-01-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  15. Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity

    PubMed Central

    Chatani, Masahiro; Morimoto, Hiroya; Takeyama, Kazuhiro; Mantoku, Akiko; Tanigawa, Naoki; Kubota, Koji; Suzuki, Hiromi; Uchida, Satoko; Tanigaki, Fumiaki; Shirakawa, Masaki; Gusev, Oleg; Sychev, Vladimir; Takano, Yoshiro; Itoh, Takehiko; Kudo, Akira

    2016-01-01

    Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we performed live-imaging of animals during a space mission followed by transcriptome analysis using medaka transgenic lines expressing osteoblast and osteoclast-specific promoter-driven GFP and DsRed. In live-imaging for osteoblasts, the intensity of osterix- or osteocalcin-DsRed fluorescence in pharyngeal bones was significantly enhanced 1 day after launch; and this enhancement continued for 8 or 5 days. In osteoclasts, the signals of TRAP-GFP and MMP9-DsRed were highly increased at days 4 and 6 after launch in flight. HiSeq from pharyngeal bones of juvenile fish at day 2 after launch showed up-regulation of 2 osteoblast- and 3 osteoclast- related genes. Gene ontology analysis for the whole-body showed that transcription of genes in the category “nucleus” was significantly enhanced; particularly, transcription-regulators were more up-regulated at day 2 than at day 6. Lastly, we identified 5 genes, c-fos, jun-B-like, pai-1, ddit4 and tsc22d3, which were up-regulated commonly in the whole-body at days 2 and 6, and in the pharyngeal bone at day 2. Our results suggested that exposure to microgravity immediately induced dynamic alteration of gene expression levels in osteoblasts and osteoclasts. PMID:28004797

  16. Effects of strenuous exercise on Th1/Th2 gene expression from human peripheral blood mononuclear cells of marathon participants.

    PubMed

    Xiang, Lianbin; Rehm, Kristina E; Marshall, Gailen D

    2014-08-01

    Physical stressors, such as strenuous exercise, can have numerous effects on the human body including the immune system. The aim of this study was to evaluate the gene expression profile of Th1/Th2 cytokines and related transcription factor genes in order to investigate possible immune imbalances before and after a marathon. Blood samples were collected from 16 normal volunteers 24-48 h before and one week after completing a marathon race. Gene expression of Th1 and Th2 related cytokines from human peripheral blood mononuclear cells (PBMC) was analyzed using Human Th1-Th2-Th3 RT(2) Profiler PCR Array and qRT-PCR that measured the transcript levels of 84 genes related to T cell activation. We found that PBMC express a characteristic Th2-like gene profile one week post-marathon compared to pre-marathon. The majority of genes up-regulated one week post-marathon such as IL-4, GATA3, and CCR4 were Th2 associated. For Th1-related genes, CXCR3 and IRF1 were up-regulated one week post-marathon. There was a trend of down-regulation of two Th1 related genes, T-bet and STAT1. Th3-related gene expression patterns did not change in the study. The ratios of both IFN-γ/IL-4 and T-bet/GATA3 gene expressions were significantly lower one week after marathon. These findings suggest that a Th1/Th2 immune imbalance persisted at least 1 week after completion of a marathon which offers a mechanistic rationale for the increased risk of upper respiratory tract infections often reported after strenuous exercise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Expression of Fushi tarazu factor 1 homolog and Pit-1 genes in the pituitaries of pre-spawning chum and sockeye salmon.

    PubMed

    Higa, M; Ando, H; Urano, A

    2001-06-01

    Fushi tarazu factor-1 (FTZ-F1) and Pit-1 are major pituitary transcription factors, controlling expression of genes coding for gonadotropin (GTH) subunits and growth hormone/prolactin/somatolactin family hormone, respectively. As a first step to investigate physiological factors regulating gene expression of these transcription factors, we determined their mRNA levels in the pituitaries of chum salmon (Oncorhynchus keta) at different stages of sexual maturation. FTZ-F1 gene expression was increased in males at the stage before spermiation, where the levels of GTH alpha and IIbeta subunit mRNAs were elevated. Pit-1 mRNA showed maximum levels at the final stage of sexual maturation in both sexes, when expression of somatolactin gene peaked. To clarify whether gonadotropin-releasing hormone (GnRH) is involved in these increases in FTZ-F1 and Pit-1 gene expression, we examined effects of GnRH analog (GnRHa) administration on their gene expression in maturing sockeye salmon (Oncorhynchus nerka). GnRHa stimulated Pit-1 gene expression in females only, but failed to stimulate FTZ-F1 gene expression in both sexes. The up-regulated expression of FTZ-F1 and Pit-1 genes at the pre-spawning stages suggest that the two transcription factors have roles in sexual maturation of salmonids. Physiological factors regulating gene expression of FTZ-F1 and Pit-1 are discussed in this review.

  18. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Hughes-Fulford, M.

    1997-01-01

    The development of prostate cancer has been linked to high level of dietary fat intake. Our laboratory investigates the connection between cancer cell growth and fatty acid products. Studying human prostatic carcinoma PC-3 cells, we found that prostaglandin E2 (PGE2) increased cell growth and up-regulated the gene expression of its own synthesizing enzyme, cyclooxygenase-2 (COX-2). PGE2 increased COX-2 mRNA expression dose-dependently with the highest levels of stimulation seen at the 3-hour period following PGE2 addition. The NSAID flurbiprofen (5 microM), in the presence of exogenous PGE2, inhibited the up-regulation of COX-2 mRNA and cell growth. These data suggest that the levels of local intracellular PGE2 play a major role in the growth of prostate cancer cells through an activation of COX-2 gene expression.

  19. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Anand S.; Kaushal, Sharmeela; Mishra, Rangnath

    2006-07-28

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, andmore » direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes ({alpha}-globin, {beta}H-1 globin, {beta}-major globin, {epsilon} -globin, and {zeta}-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, {epsilon}-globin, {gamma}-globin, {beta}H1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured in media containing dexamethasone showed a down-regulation of GATA-3 and an up-regulation of GATA-1, Flk-1, and Epo-R in comparison to the two other cytokines and growth factor combinations containing media. The secondary differentiation also showed an enhanced production of erythrocytic precursors in dexamethasone containing media in comparison to that in the control media. Our results indicate that dexamethasone can prove to be an effective agent which can be employed to enhance differentiation towards erythrocytic progenitors from ES cells.« less

  20. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis1[W

    PubMed Central

    Weichert, Nicola; Saalbach, Isolde; Weichert, Heiko; Kohl, Stefan; Erban, Alexander; Kopka, Joachim; Hause, Bettina; Varshney, Alok; Sreenivasulu, Nese; Strickert, Marc; Kumlehn, Jochen; Weschke, Winfriede; Weber, Hans

    2010-01-01

    Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations. PMID:20018590

  1. Imatinib induces up-regulation of NM23, a metastasis suppressor gene, in human Hepatocarcinoma (HepG2) Cell Line

    PubMed Central

    Keshavarz-Pakseresht, Behta; Shandiz, Seyed Ataollah Sadat; Baghbani-arani, Fahimeh

    2017-01-01

    Aim: The present study investigated the anti-tumor activity of Imatinib mesylate through modulation of NM23 gene expression in human hepatocellular carcinoma (HepG2) cell line. Background: Hepatocellular carcinoma (HCC) is considered to be the third leading cause of cancer related death worldwide. Down regulation of NM23, a metastasis suppressor gene, has been associated with several types of malignant cancer. Recently, effects of Imatinib mesylate, a first member of tyrosine kinases inhibitors, were indicated in research and treatment of different malignant tumors. Methods: Cell viability was quantitated by MTT assay after HepG2 cells exposure to Imatinib mesylate at various concentrations of 0, 1.56, 3.125, 6.25, 12.5, 25,50μM for 24 hours. Also, quantitative real time PCR technique was applied for the detection of NM23 gene expression in HepG2 cell line. Results: There was a dose dependent increase in the cytotoxicity effect of imatinib. The real time PCR results demonstrated that inhibitory effect of Imatinib mesylate on viability via up regulation of NM23 gene expression compared to GAPDH gene (internal control gene) in cancer cells. Conclusion: According to our findings, imatinib can modulate metastasis by enhancing Nm23 gene expression in human hepatocellular carcinoma (HepG2) cell line. PMID:28331561

  2. Korean Red Ginseng Up-regulates C21-Steroid Hormone Metabolism via Cyp11a1 Gene in Senescent Rat Testes

    PubMed Central

    Kim, In-Hye; Kim, Si-Kwan; Kim, Eun-Hye; Kim, Sung-Won; Sohn, Sang-Hyun; Lee, Soo Cheol; Choi, Sangdun; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-01-01

    Ginseng (Panax ginseng Meyer) has been shown to have anti-aging effects in animal and clinical studies. However, the molecular mechanisms by which ginseng exerts these effects remain unknown. Here, the anti-aging effect of Korean red ginseng (KRG) in rat testes was examined by system biology analysis. KRG water extract prepared in feed pellets was administered orally into 12 month old rats for 4 months, and gene expression in testes was determined by microarray analysis. Microarray analysis identified 33 genes that significantly changed. Compared to the 2 month old young rats, 13 genes (Rps9, Cyp11a1, RT1-A2, LOC365778, Sv2b, RGD1565959, RGD1304748, etc.) were up-regulated and 20 genes (RT1-Db1, Cldn5, Svs5, Degs1, Vdac3, Hbb, LOC684355, Svs5, Tmem97, Orai1, Insl3, LOC497959, etc.) were down-regulated by KRG in the older rats. Ingenuity Pathway Analysis of untreated aged rats versus aged rats treated with KRG showed that the affected most was Cyp11a1, responsible for C21-steroid hormone metabolism, and the top molecular and cellular functions are organ morphology and reproductive system development and function. When genes in young rat were compared with those in the aged rat, sperm capacitation related genes were down-regulated in the old rat. However, when genes in the old rat were compared with those in the old rat treated with KRG, KRG treatment up-regulated C21-steroid hormone metabolism. Taken together, Cyp11a1 expression is decreased in the aged rat, however, it is up-regulated by KRG suggesting that KRG seems enhance testes function via Cyp11a1. PMID:23717070

  3. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis.

    PubMed

    Liu, Na; Enkemann, Steven A; Liang, Ping; Hersmus, Remko; Zanazzi, Claudia; Huang, Junjiu; Wu, Chao; Chen, Zhisheng; Looijenga, Leendert H J; Keefe, David L; Liu, Lin

    2010-12-01

    Mammalian parthenogenesis could not survive but aborted during mid-gestation, presumably because of lack of paternal gene expression. To understand the molecular mechanisms underlying the failure of parthenogenesis at early stages of development, we performed global gene expression profiling and functional analysis of parthenogenetic blastocysts in comparison with those of blastocysts from normally fertilized embryos. Parthenogenetic blastocysts exhibited changes in the expression of 749 genes, of which 214 had lower expression and 535 showed higher expressions than fertilized embryos using a minimal 1.8-fold change as a cutoff. Genes important for placenta development were decreased in their expression in parthenote blastocysts. Some maternally expressed genes were up-regulated and paternal-related genes were down-regulated. Moreover, aberrantly increased Wnt signaling and reduced mitogen-activated protein kinase (MAPK) signaling were associated with early parthenogenesis. The protein level of extracellular signal-regulated kinase 2 (ERK2) was low in parthenogenetic blastocysts compared with that of fertilized blastocysts 120 h after fertilization. 6-Bromoindirubin-3'-oxime, a specific glycogen synthase kinase-3 (GSK-3) inhibitor, significantly decreased embryo hatching. The expression of several imprinted genes was altered in parthenote blastocysts. Gene expression also linked reduced expression of Xist to activation of X chromosome. Our findings suggest that failed X inactivation, aberrant imprinting, decreased ERK/MAPK signaling and possibly elevated Wnt signaling, and reduced expression of genes for placental development collectively may contribute to abnormal placenta formation and failed fetal development in parthenogenetic embryos.

  4. 5'-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea

    PubMed Central

    2013-01-01

    Background The transition from the vegetative mycelium to the primordium during fruiting body development is the most complex and critical developmental event in the life cycle of many basidiomycete fungi. Understanding the molecular mechanisms underlying this process has long been a goal of research on basidiomycetes. Large scale assessment of the expressed transcriptomes of these developmental stages will facilitate the generation of a more comprehensive picture of the mushroom fruiting process. In this study, we coupled 5'-Serial Analysis of Gene Expression (5'-SAGE) to high-throughput pyrosequencing from 454 Life Sciences to analyze the transcriptomes and identify up-regulated genes among vegetative mycelium (Myc) and stage 1 primordium (S1-Pri) of Coprinopsis cinerea during fruiting body development. Results We evaluated the expression of >3,000 genes in the two respective growth stages and discovered that almost one-third of these genes were preferentially expressed in either stage. This identified a significant turnover of the transcriptome during the course of fruiting body development. Additionally, we annotated more than 79,000 transcription start sites (TSSs) based on the transcriptomes of the mycelium and stage 1 primoridum stages. Patterns of enrichment based on gene annotations from the GO and KEGG databases indicated that various structural and functional protein families were uniquely employed in either stage and that during primordial growth, cellular metabolism is highly up-regulated. Various signaling pathways such as the cAMP-PKA, MAPK and TOR pathways were also identified as up-regulated, consistent with the model that sensing of nutrient levels and the environment are important in this developmental transition. More than 100 up-regulated genes were also found to be unique to mushroom forming basidiomycetes, highlighting the novelty of fruiting body development in the fungal kingdom. Conclusions We implicated a wealth of new candidate genes important to early stages of mushroom fruiting development, though their precise molecular functions and biological roles are not yet fully known. This study serves to advance our understanding of the molecular mechanisms of fruiting body development in the model mushroom C. cinerea. PMID:23514374

  5. Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings

    PubMed Central

    Tanaka, Kiwamu; Cho, Sung-Hwan; Lee, Hyeyoung; Pham, An Q.; Batek, Josef M.; Cui, Shiqi; Qiu, Jing; Khan, Saad M.; Joshi, Trupti; Zhang, Zhanyuan J.; Xu, Dong; Stacey, Gary

    2015-01-01

    Although lipo-chitooligosaccharides (LCOs) are important signal molecules for plant-symbiont interactions, a number of reports suggest that LCOs can directly impact plant growth and development, separate from any role in plant symbioses. In order to investigate this more closely, maize and Setaria seedlings were treated with LCO and their growth was evaluated. The data indicate that LCO treatment significantly enhanced root growth. RNA-seq transcriptomic analysis of LCO-treated maize roots identified a number of genes whose expression was significantly affected by the treatment. Among these genes, some LCO-up-regulated genes are likely involved in root growth promotion. Interestingly, some stress-related genes were down-regulated after LCO treatment, which might indicate reallocation of resources from defense responses to plant growth. The promoter activity of several LCO-up-regulated genes using a β-glucuronidase reporter system was further analysed. The results showed that the promoters were activated by LCO treatment. The data indicate that LCO can directly impact maize root growth and gene expression. PMID:26049159

  6. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter.more » We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.« less

  7. Moraxella osloensis gene expression in the slug host Deroceras reticulatum.

    PubMed

    An, Ruisheng; Sreevatsan, Srinand; Grewal, Parwinder S

    2008-01-28

    The bacterium Moraxella osloensis is a mutualistic symbiont of the slug-parasitic nematode Phasmarhabditis hermaphrodita. In nature, P. hermaphrodita vectors M. osloensis into the shell cavity of the slug host Deroceras reticulatum in which the bacteria multiply and kill the slug. As M. osloensis is the main killing agent, genes expressed by M. osloensis in the slug are likely to play important roles in virulence. Studies on pathogenic interactions between bacteria and lower order hosts are few, but such studies have the potential to shed light on the evolution of bacterial virulence. Therefore, we investigated such an interaction by determining gene expression of M. osloensis in its slug host D. reticulatum by selectively capturing transcribed sequences. Thirteen M. osloensis genes were identified to be up-regulated post infection in D. reticulatum. Compared to the in vitro expressed genes in the stationary phase, we found that genes of ubiquinone synthetase (ubiS) and acyl-coA synthetase (acs) were up-regulated in both D. reticulatum and stationary phase in vitro cultures, but the remaining 11 genes were exclusively expressed in D. reticulatum and are hence infection specific. Mutational analysis on genes of protein-disulfide isomerase (dsbC) and ubiS showed that the virulence of both mutants to slugs was markedly reduced and could be complemented. Further, compared to the growth rate of wild-type M. osloensis, the dsbC and ubiS mutants showed normal and reduced growth rate in vitro, respectively. We conclude that 11 out of the 13 up-regulated M. osloensis genes are infection specific. Distribution of these identified genes in various bacterial pathogens indicates that the virulence genes are conserved among different pathogen-host interactions. Mutagenesis, growth rate and virulence bioassays further confirmed that ubiS and dsbC genes play important roles in M. osloensis survival and virulence, respectively in D. reticulatum.

  8. Moraxella osloensis Gene Expression in the Slug Host Deroceras reticulatum

    PubMed Central

    An, Ruisheng; Sreevatsan, Srinand; Grewal, Parwinder S

    2008-01-01

    Background The bacterium Moraxella osloensis is a mutualistic symbiont of the slug-parasitic nematode Phasmarhabditis hermaphrodita. In nature, P. hermaphrodita vectors M. osloensis into the shell cavity of the slug host Deroceras reticulatum in which the bacteria multiply and kill the slug. As M. osloensis is the main killing agent, genes expressed by M. osloensis in the slug are likely to play important roles in virulence. Studies on pathogenic interactions between bacteria and lower order hosts are few, but such studies have the potential to shed light on the evolution of bacterial virulence. Therefore, we investigated such an interaction by determining gene expression of M. osloensis in its slug host D. reticulatum by selectively capturing transcribed sequences. Results Thirteen M. osloensis genes were identified to be up-regulated post infection in D. reticulatum. Compared to the in vitro expressed genes in the stationary phase, we found that genes of ubiquinone synthetase (ubiS) and acyl-coA synthetase (acs) were up-regulated in both D. reticulatum and stationary phase in vitro cultures, but the remaining 11 genes were exclusively expressed in D. reticulatum and are hence infection specific. Mutational analysis on genes of protein-disulfide isomerase (dsbC) and ubiS showed that the virulence of both mutants to slugs was markedly reduced and could be complemented. Further, compared to the growth rate of wild-type M. osloensis, the dsbC and ubiS mutants showed normal and reduced growth rate in vitro, respectively. Conclusion We conclude that 11 out of the 13 up-regulated M. osloensis genes are infection specific. Distribution of these identified genes in various bacterial pathogens indicates that the virulence genes are conserved among different pathogen-host interactions. Mutagenesis, growth rate and virulence bioassays further confirmed that ubiS and dsbC genes play important roles in M. osloensis survival and virulence, respectively in D. reticulatum. PMID:18226222

  9. IRE1 inhibition affects the expression of insulin-like growth factor binding protein genes and modifies its sensitivity to glucose deprivation in U87 glioma cells.

    PubMed

    Minchenko, D O; Kharkova, A P; Tsymbal, D O; Karbovskyi, L L; Minchenko, O H

    2015-10-01

    The aim of the present study was to investigate the effect of inhibition of endoplasmic reticulum stress signaling mediated by IRE1/ERN1 (inositol-requiring enzyme 1/endoplasmic reticulum to nucleus signaling 1) on the expression of genes encoding different groups of insulin-like growth binding proteins (IGFBP6 and IGFBP7) and CCN family (IGFBP8/CTGF/CCN2, IGFBP9/NOV/CCN3, IGFBP10/CYR61/CCN1, WISP1/CCN4, and WISP2/CCN5) and its sensitivity to glucose deprivation in U87 glioma cells. The expression of IGFBP6, IGFBP7, IGFBP8, IGFBP9, IGFBP10, WISP1, and WISP2 genes was studied by qPCR in control U87 glioma cells (wild-type) and its subline with IRE1 signaling enzyme loss of function upon glucose deprivation. The expression of IGFBP8, IGFBP9, and WISP2 genes was up-regulated in control glioma cells upon glucose deprivation with most significant changes for IGFBP9 gene. At the same time, the expression of IGFBP6, IGFBP10, and WISP1 genes was resistant to glucose deprivation in these glioma cells, but the IGFBP7 gene expression was down-regulated. The inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells modified the sensitivity of most studied gene expressions to glucose deprivation condition: introduced sensitivity of IGFBP10 and WISP1 genes to glucose deprivation, enhanced the effect of this deprivation on IGFBP7 and IGFBP9 gene expressions, and reduced this effect on WISP2 gene and induced suppressive effect of glucose deprivation on the expression of IGFBP8 gene. Furthermore, the inhibition of IRE1 strongly affected the expression of all studied genes in glioma cells upon regular growing condition in gene specific manner: up-regulated the expression levels of IGFBP7, IGFBP8, IGFBP10, WISP1, and WISP2 genes and down-regulated the IGFBP6 and IGFBP9 genes. The data of this investigation demonstrate that the expression of IGFBP7, IGFBP8, IGFBP9, and WISP2 genes are sensitive to glucose deprivation in U87 glioma cells and that inhibition of IRE1 signaling enzyme function may significantly affect the expression of all studied genes in the presence of glucose as well as modify the effect of glucose deprivation on the expression of most studied genes. These data also show that proteins encoded by these genes may participate in the regulation of metabolic and proliferative processes via IGF/INS receptors and possibly other signaling pathways as well, via IRE1 signaling, which is a central mediator of the unfolded protein response and an important component of the tumor growth and metabolic diseases.

  10. Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells.

    PubMed

    Gardiner, Erin J; Cairns, Murray J; Liu, Bing; Beveridge, Natalie J; Carr, Vaughan; Kelly, Brian; Scott, Rodney J; Tooney, Paul A

    2013-04-01

    Peripheral blood mononuclear cells (PBMCs) represent an accessible tissue source for gene expression profiling in schizophrenia that could provide insight into the molecular basis of the disorder. This study used the Illumina HT_12 microarray platform and quantitative real time PCR (QPCR) to perform mRNA expression profiling on 114 patients with schizophrenia or schizoaffective disorder and 80 non-psychiatric controls from the Australian Schizophrenia Research Bank (ASRB). Differential expression analysis revealed altered expression of 164 genes (59 up-regulated and 105 down-regulated) in the PBMCs from patients with schizophrenia compared to controls. Bioinformatic analysis indicated significant enrichment of differentially expressed genes known to be involved or associated with immune function and regulating the immune response. The differential expression of 6 genes, EIF2C2 (Ago 2), MEF2D, EVL, PI3, S100A12 and DEFA4 was confirmed by QPCR. Genome-wide expression analysis of PBMCs from individuals with schizophrenia was characterized by the alteration of genes with immune system function, supporting the hypothesis that the disorder has a significant immunological component in its etiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Genome-wide identification of physically clustered genes suggests chromatin-level co-regulation in male reproductive development in Arabidopsis thaliana

    PubMed Central

    Reimegård, Johan; Kundu, Snehangshu; Pendle, Ali; Irish, Vivian F.; Shaw, Peter

    2017-01-01

    Abstract Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation. PMID:28175342

  12. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response

    PubMed Central

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most functions up regulated during VI would lead to cell death. These differences are discussed in the frame of a multilayered response to non self in fungi. PMID:27148175

  13. Impact of chronic unpredicted mild stress-induced depression on repaglinide fate via glucocorticoid signaling pathway.

    PubMed

    Wei, Hongyan; Zhou, Ting; Tan, Boyu; Zhang, Lei; Li, Mingming; Xiao, Zhijun; Xu, Feng

    2017-07-04

    Chronic unpredicted mild stress (CUMS)-induced depression could alter the pharmacokinetics of many drugs in rats, however, the underlying mechanism is not clear. In this work we studied the pharmacokinetics of repaglinide, and explored the role of glucocorticoid and adrenergic signaling pathway in regulating drug metabolizing enzymes (DMEs) in GK rats and BRL 3A cells. The plasma cortisol and epinephrine levels were increased, meanwhile the pharmacokinetics of repaglinide were altered significantly in depression model rats. Forty-nine genes in liver of model rats displayed significant difference comparing to control rats. The differentially expressed genes enriched in the drug metabolism and steroid hormone biosynthesis pathway significantly, and Nr1i3 matched 335 connectivity genes. CAR and Ugt1a1 protein expression were enhanced significantly in liver of model rats. The mRNA expression of Ugt1a1 and Nr1i2 were increased 2 and 4 times respectively with dexamethasone (DEX) and 8-Br-cAMP co-treatment in BRL 3A cells. The protein expression of PXR was up-regulated, too. However, RU486 reversed the up-regulated effect. The adrenergic receptor agonists had little impact on the DMEs in BRL 3A. Our data suggested that CUMS-induced depression might up-regulate DMEs expression via glucocorticoid signaling pathway, and accelerate the fate of the repaglinide in spontaneous diabetes rats.

  14. Impact of chronic unpredicted mild stress-induced depression on repaglinide fate via glucocorticoid signaling pathway

    PubMed Central

    Tan, Boyu; Zhang, Lei; Li, Mingming; Xiao, Zhijun; Xu, Feng

    2017-01-01

    Chronic unpredicted mild stress (CUMS)-induced depression could alter the pharmacokinetics of many drugs in rats, however, the underlying mechanism is not clear. In this work we studied the pharmacokinetics of repaglinide, and explored the role of glucocorticoid and adrenergic signaling pathway in regulating drug metabolizing enzymes (DMEs) in GK rats and BRL 3A cells. The plasma cortisol and epinephrine levels were increased, meanwhile the pharmacokinetics of repaglinide were altered significantly in depression model rats. Forty-nine genes in liver of model rats displayed significant difference comparing to control rats. The differentially expressed genes enriched in the drug metabolism and steroid hormone biosynthesis pathway significantly, and Nr1i3 matched 335 connectivity genes. CAR and Ugt1a1 protein expression were enhanced significantly in liver of model rats. The mRNA expression of Ugt1a1 and Nr1i2 were increased 2 and 4 times respectively with dexamethasone (DEX) and 8-Br-cAMP co-treatment in BRL 3A cells. The protein expression of PXR was up-regulated, too. However, RU486 reversed the up-regulated effect. The adrenergic receptor agonists had little impact on the DMEs in BRL 3A. Our data suggested that CUMS-induced depression might up-regulate DMEs expression via glucocorticoid signaling pathway, and accelerate the fate of the repaglinide in spontaneous diabetes rats. PMID:28574832

  15. Transcriptional up-regulation of the human androgen receptor by androgen in bone cells.

    PubMed

    Wiren, K M; Zhang, X; Chang, C; Keenan, E; Orwoll, E S

    1997-06-01

    Androgen regulation of androgen receptor (AR) expression has been observed in a variety of tissues, generally as inhibition, and is thought to attenuate cellular responses to androgen. AR is expressed in osteoblasts, the bone-forming cell, suggesting direct actions of androgens on bone. Here we characterized the effect of androgen exposure on AR gene expression in human osteoblastic SaOS-2 and U-2 OS cells. Treatment of osteoblastic cells with the nonaromatizable androgen 5alpha-dihydrotestosterone increased AR steady state messenger RNA levels in a time- and dose-dependent fashion. Reporter assays with 2.3 kilobases of the proximal 5'-flanking region of the human AR promoter linked to the chloramphenicol acetyltransferase gene in transfected cultures showed that up-regulation of AR promoter activity by androgen was time and dose dependent. Treatment with other steroid hormones, including progesterone, 17beta-estradiol, and dexamethasone, was without effect. The antiandrogen hydroxyflutamide completely antagonized androgen up-regulation. Thus, in contrast to many other androgen target tissues, androgen exposure increases steady state AR messenger RNA levels in osteoblasts. This regulation occurs at least partially at the level of transcription, is mediated by the 5'-promoter region of the AR gene, and is dependent on functional AR. These results suggest that physiological concentrations of androgens have significant effects on AR expression in skeletal tissue.

  16. Gene expression profiling in whole blood of patients with coronary artery disease

    PubMed Central

    Taurino, Chiara; Miller, William H.; McBride, Martin W.; McClure, John D.; Khanin, Raya; Moreno, María U.; Dymott, Jane A.; Delles, Christian; Dominiczak, Anna F.

    2010-01-01

    Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease. PMID:20528768

  17. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress.

    PubMed

    Sivan, Arun; Shriram, Ananganallur Nagarajan; Muruganandam, Nagarajan; Thamizhmani, Ramanathan

    2017-03-01

    Climatic changes are responsible, to a certain extent for the occurrence and spread of arboviral pathogens world over. Temperature is one of the important abiotic factors influencing the physiological processes of mosquitoes. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes, which aid in overcoming stress induced by elevated temperature. In order to understand expression of HSP family genes in the Andaman population of Aedes aegypti and Aedes albopictus, we used quantitative real-time polymerase chain reaction (qPCR) to examine expression levels of HSPs in response to thermal stress under laboratory and in actual field conditions. HSP genes AeaHsp26, AeaHsp83 and AeaHsc70 were examined by comparing relative transcript expression levels at 31°C, 33°C, 34°C, 37°C and 39°C respectively. Enhanced up-regulation of HSPs was evident in third instar larvae of Ae. aegypti with rise in water temperatures (31°C, 33°C, 34°C) in the containers in the nature and thermally stressed (37°C and 39°C) in laboratory conditions. In Ae. albopictus up-regulation of HSPs was observed in field conditions at 34°C only and when thermally treated at 37°C, while down regulation was evident in larvae subjected to thermal stress in laboratory at 39°C. Data on expression levels revealed that larvae of Ae. aegypti was tolerant to thermal stress, while Ae. albopictus larvae was sensitive to heat shock treatment. Statistical analysis indicated that AeaHsp83 genes were significantly up-regulated in Ae. aegypti larvae after 360min exposure to high temperature (39°C). The difference in expression levels of AeaHsp26, AeaHsc70 and AeaHsp83 genes in Ae. albopictus larvae was statistically significant between different exposure temperatures. All of these genes were significantly up-regulated at 37°C. These results indicate that AeaHsp26, AeaHsc70 and AeaHsp83 are important markers of stress and perhaps function as proteins conferring protection and enhance survival of the Andaman population of both the Aedine species. Biological implications of these findings could impact the vector competencies. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Rhesus monkey model of liver disease reflecting clinical disease progression and hepatic gene expression analysis

    PubMed Central

    Wang, Hong; Tan, Tao; Wang, Junfeng; Niu, Yuyu; Yan, Yaping; Guo, Xiangyu; Kang, Yu; Duan, Yanchao; Chang, Shaohui; Liao, Jianpeng; Si, Chenyang; Ji, Weizhi; Si, Wei

    2015-01-01

    Alcoholic liver disease (ALD) is a significant public health issue with heavy medical and economic burdens. The aetiology of ALD is not yet completely understood. The development of drugs and therapies for ALD is hampered by a lack of suitable animal models that replicate both the histological and metabolic features of human ALD. Here, we characterize a rhesus monkey model of alcohol-induced liver steatosis and hepatic fibrosis that is compatible with the clinical progression of the biochemistry and pathology in humans with ALD. Microarray analysis of hepatic gene expression was conducted to identify potential molecular signatures of ALD progression. The up-regulation of expression of hepatic genes related to liver steatosis (CPT1A, FASN, LEPR, RXRA, IGFBP1, PPARGC1A and SLC2A4) was detected in our rhesus model, as was the down-regulation of such genes (CYP7A1, HMGCR, GCK and PNPLA3) and the up-regulation of expression of hepatic genes related to liver cancer (E2F1, OPCML, FZD7, IGFBP1 and LEF1). Our results demonstrate that this ALD model reflects the clinical disease progression and hepatic gene expression observed in humans. These findings will be useful for increasing the understanding of ALD pathogenesis and will benefit the development of new therapeutic procedures and pharmacological reagents for treating ALD. PMID:26442469

  19. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans.

    PubMed

    Wang, Chenyin; Saar, Valeria; Leung, Ka Lai; Chen, Liang; Wong, Garry

    2018-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the presence of extracellular amyloid plaques consisting of Amyloid-β peptide (Aβ) aggregates and neurofibrillary tangles formed by aggregation of hyperphosphorylated microtubule-associated protein tau. We generated a novel invertebrate model of AD by crossing Aβ1-42 (strain CL2355) with either pro-aggregating tau (strain BR5270) or anti-aggregating tau (strain BR5271) pan-neuronal expressing transgenic Caenorhabditis elegans. The lifespan and progeny viability of the double transgenic strains were significantly decreased compared with wild type N2 (P<0.0001). In addition, co-expression of these transgenes interfered with neurotransmitter signaling pathways, caused deficits in chemotaxis associative learning, increased protein aggregation visualized by Congo red staining, and increased neuronal loss. Global transcriptomic RNA-seq analysis revealed 248 up- and 805 down-regulated genes in N2 wild type versus Aβ1-42+pro-aggregating tau animals, compared to 293 up- and 295 down-regulated genes in N2 wild type versus Aβ1-42+anti-aggregating tau animals. Gene set enrichment analysis of Aβ1-42+pro-aggregating tau animals uncovered up-regulated annotation clusters UDP-glucuronosyltransferase (5 genes, P<4.2E-4), protein phosphorylation (5 genes, P<2.60E-02), and aging (5 genes, P<8.1E-2) while the down-regulated clusters included nematode cuticle collagen (36 genes, P<1.5E-21). RNA interference of 13 available top up-regulated genes in Aβ1-42+pro-aggregating tau animals revealed that F-box family genes and nep-4 could enhance life span deficits and chemotaxis deficits while Y39G8C.2 (TTBK2) could suppress these behaviors. Comparing the list of regulated genes from C. elegans to the top 60 genes related to human AD confirmed an overlap of 8 genes: patched homolog 1, PTCH1 (ptc-3), the Rab GTPase activating protein, TBC1D16 (tbc-16), the WD repeat and FYVE domain-containing protein 3, WDFY3 (wdfy-3), ADP-ribosylation factor guanine nucleotide exchange factor 2, ARFGEF2 (agef-1), Early B-cell Factor, EBF1 (unc-3), d-amino-acid oxidase, DAO (daao-1), glutamate receptor, metabotropic 1, GRM1 (mgl-2), prolyl 4-hydroxylase subunit alpha 2, P4HA2 (dpy-18 and phy-2). Taken together, our C. elegans double transgenic model provides insight on the fundamental neurobiologic processes underlying human AD and recapitulates selected transcriptomic changes observed in human AD brains. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A systems-based approach to analyse the host response in murine lung macrophages challenged with respiratory syncytial virus

    PubMed Central

    2013-01-01

    Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in young children. The degree of disease severity is determined by the host response to infection. Lung macrophages play an important early role in the host response to infection and we have used a systems-based approach to examine the host response in RSV-infected lung-derived macrophage cells. Results Lung macrophage cells could be efficiently infected (>95%) with RSV in vitro, and the expression of several virus structural proteins could be detected. Although we failed to detect significant levels of virus particle production, virus antigen could be detected up until 96 hours post-infection (hpi). Microarray analysis indicated that 20,086 annotated genes were expressed in the macrophage cells, and RSV infection induced an 8.9% and 11.3% change in the global gene transcriptome at 4 hpi and 24 hpi respectively. Genes showing up-regulated expression were more numerous and exhibited higher changes in expression compared to genes showing down-regulated expression. Based on gene ontology, genes with cytokine, antiviral, cell death, and signal transduction functions showed the highest increases in expression, while signalling transduction, RNA binding and protein kinase genes showed the greatest reduction in expression levels. Analysis of the global gene expression profile using pathway enrichment analysis confirmed that up-regulated expression of pathways related to pathogen recognition, interferon signalling and antigen presentation occurred in the lung macrophage cells challenged with RSV. Conclusion Our data provided a comprehensive analysis of RSV-induced gene expression changes in lung macrophages. Although virus gene expression was detected, our data was consistent with an abortive infection and this correlated with the activation of several antivirus signalling pathways such as interferon type I signalling and cell death signalling. RSV infection induced a relatively large increase in pro-inflammatory cytokine expression, however the maintenance of this pro-inflammatory response was not dependent on the production of infectious virus particles. The sustained pro-inflammatory response even in the absence of a productive infection suggests that drugs that control the pro-inflammatory response may be useful in the treatment of patients with severe RSV infection. PMID:23506210

  1. An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light

    PubMed Central

    Li, Chun-Xia; Xu, Zhi-Gang; Dong, Rui-Qi; Chang, Sheng-Xin; Wang, Lian-Zhen; Khalil-Ur-Rehman, Muhammad; Tao, Jian-Min

    2017-01-01

    Using an RNA sequencing (RNA-seq) approach, we analyzed the differentially expressed genes (DEGs) and physiological behaviors of “Manicure Finger” grape plantlets grown in vitro under white, blue, green, and red light. A total of 670, 1601, and 746 DEGs were identified in plants exposed to blue, green, and red light, respectively, compared to the control (white light). By comparing the gene expression patterns with the growth and physiological responses of the grape plantlets, we were able to link the responses of the plants to light of different spectral wavelengths and the expression of particular sets of genes. Exposure to red and green light primarily triggered responses associated with the shade-avoidance syndrome (SAS), such as enhanced elongation of stems, reduced investment in leaf growth, and decreased chlorophyll levels accompanied by the expression of genes encoding histone H3, auxin repressed protein, xyloglucan endotransglycosylase/hydrolase, the ELIP protein, and microtubule proteins. Furthermore, specific light treatments were associated with the expression of a large number of genes, including those involved in the glucan metabolic pathway and the starch and sucrose metabolic pathways; these genes were up/down-regulated in ways that may explain the increase in the starch, sucrose, and total sugar contents in the plants. Moreover, the enhanced root growth and up-regulation of the expression of defense genes accompanied with SAS after exposure to red and green light may be related to the addition of 30 g/L sucrose to the culture medium of plantlets grown in vitro. In contrast, blue light induced the up-regulation of genes related to microtubules, serine carboxypeptidase, chlorophyll synthesis, and sugar degradation and the down-regulation of auxin-repressed protein as well as a large number of resistance-related genes that may promote leaf growth, improve chlorophyll synthesis and chloroplast development, increase the ratio of chlorophyll a (chla)/chlorophyll b (chlb), and decrease the ratio of carbohydrates to proteins in plants. Although exposure to red and green light seems to impose “shade stress” on the plantlets, growth under blue light is comparable to growth observed under white or broad-spectrum light. PMID:28197159

  2. Zyflamend Sensitizes Tumor Cells to TRAIL-Induced Apoptosis Through Up-Regulation of Death Receptors and Down-Regulation of Survival Proteins: Role of ROS-Dependent CCAAT/Enhancer-Binding Protein-Homologous Protein Pathway

    PubMed Central

    Kim, Ji Hye; Park, Byoungduck; Gupta, Subash C.; Kannappan, Ramaswamy; Sung, Bokyung

    2012-01-01

    Abstract Aim: TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), is a selective killer of tumor cells, although its potential is limited by the development of resistance. In this article, we investigated whether the polyherbal preparation Zyflamend® can sensitize tumor cells to TRAIL. Results: We found that Zyflamend potentiated TRAIL-induced apoptosis in human cancer cells. Zyflamend manifested its effects through several mechanisms. First, it down-regulated the expression of cell survival proteins known to be linked to resistance to TRAIL. Second, Zyflamend up-regulated the expression of pro-apoptotic protein, Bax. Third, Zyflamend up-regulated the expression of death receptors (DRs) for TRAIL. Up-regulation of DRs was critical as gene-silencing of these receptors significantly reduced the effect of Zyflamend on TRAIL-induced apoptosis. The up-regulation of DRs was dependent on CCAAT/enhancer-binding protein-homologous protein (CHOP), as Zyflamend induced CHOP, its gene-silencing abolished the induction of receptors, and mutation of the CHOP binding site on DR5 promoter abolished Zyflamend-mediated DR5 transactivation. Zyflamend mediated its effects through reactive oxygen species (ROS), as ROS quenching reduced its effect. Further, Zyflamend induced DR5 and CHOP and down-regulated the expression of cell survival proteins in nude mice bearing human pancreatic cancer cells. Innovation: Zyflamend can sensitize tumor cells to TRAIL through modulation of multiple cell signaling mechanisms that are linked to ROS. Conclusion: Zyflamend potentiates TRAIL-induced apoptosis through the ROS-CHOP-mediated up-regulation of DRs, increase in pro-apoptotic protein and down-regulation of cell survival proteins. Antioxid. Redox Signal. 16, 413–427. PMID:22004570

  3. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue.

    PubMed

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-03-01

    Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer.

    PubMed

    Snezhkina, Anastasiya Vladimirovna; Krasnov, George Sergeevich; Zaretsky, Andrew Rostislavovich; Zhavoronkov, Alex; Nyushko, Kirill Mikhailovich; Moskalev, Alexey Alexandrovich; Karpova, Irina Yurievna; Afremova, Anastasiya Isaevna; Lipatova, Anastasiya Valerievna; Kochetkov, Dmitriy Vladimitovich; Fedorova, Maria Sergeena; Volchenko, Nadezhda Nikolaevna; Sadritdinova, Asiya Fayazovna; Melnikova, Nataliya Vladimirovna; Sidorov, Dmitry Vladimirovich; Popov, Anatoly Yurievich; Kalinin, Dmitry Valerievich; Kaprin, Andrey Dmitrievich; Alekseev, Boris Yakovlevich; Dmitriev, Alexey Alexandrovich; Kudryavtseva, Anna Viktorovna

    2016-12-28

    Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. CRC molecular pathogenesis is heterogeneous and may be followed by mutations in oncogenes and tumor suppressor genes, chromosomal and microsatellite instability, alternative splicing alterations, hypermethylation of CpG islands, oxidative stress, impairment of different signaling pathways and energy metabolism. In the present work, we have studied the alterations of alternative splicing patterns of genes related to energy metabolism in CRC. Using CrossHub software, we analyzed The Cancer Genome Atlas (TCGA) RNA-Seq datasets derived from colon tumor and matched normal tissues. The expression of 1014 alternative mRNA isoforms involved in cell energy metabolism was examined. We found 7 genes with differentially expressed alternative transcripts whereas overall expression of these genes was not significantly altered in CRC. A set of 8 differentially expressed transcripts of interest has been validated by qPCR. These eight isoforms encoded by OGDH, COL6A3, ICAM1, PHPT1, PPP2R5D, SLC29A1, and TRIB3 genes were up-regulated in colorectal tumors, and this is in concordance with the bioinformatics data. The alternative transcript NM_057167 of COL6A3 was also strongly up-regulated in breast, lung, prostate, and kidney tumors. Alternative transcript of SLC29A1 (NM_001078177) was up-regulated only in CRC samples, but not in the other tested tumor types. We identified tumor-specific expression of alternative spliced transcripts of seven genes involved in energy metabolism in CRC. Our results bring new knowledge on alternative splicing in colorectal cancer and suggest a set of mRNA isoforms that could be used for cancer diagnosis and development of treatment methods.

  5. Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus

    PubMed Central

    2012-01-01

    Background Geographic variation in the thermal environment impacts a broad range of biochemical and physiological processes and can be a major selective force leading to local population adaptation. In the intertidal copepod Tigriopus californicus, populations along the coast of California show differences in thermal tolerance that are consistent with adaptation, i.e., southern populations withstand thermal stresses that are lethal to northern populations. To understand the genetic basis of these physiological differences, we use an RNA-seq approach to compare genome-wide patterns of gene expression in two populations known to differ in thermal tolerance. Results Observed differences in gene expression between the southern (San Diego) and the northern (Santa Cruz) populations included both the number of affected loci as well as the identity of these loci. However, the most pronounced differences concerned the amplitude of up-regulation of genes producing heat shock proteins (Hsps) and genes involved in ubiquitination and proteolysis. Among the hsp genes, orthologous pairs show markedly different thermal responses as the amplitude of hsp response was greatly elevated in the San Diego population, most notably in members of the hsp70 gene family. There was no evidence of accelerated evolution at the sequence level for hsp genes. Among other sets of genes, cuticle genes were up-regulated in SD but down-regulated in SC, and mitochondrial genes were down-regulated in both populations. Conclusions Marked changes in gene expression were observed in response to acute sub-lethal thermal stress in the copepod T. californicus. Although some qualitative differences were observed between populations, the most pronounced differences involved the magnitude of induction of numerous hsp and ubiquitin genes. These differences in gene expression suggest that evolutionary divergence in the regulatory pathway(s) involved in acute temperature stress may offer at least a partial explanation of population differences in thermal tolerance observed in Tigriopus. PMID:22950661

  6. Aspirin augments the expression of Adenomatous Polyposis Coli protein by suppression of IKKβ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashida, Noboru, E-mail: nashida@kuhp.kyoto-u.ac.jp; Kishihata, Masako; Tien, Dat Nguyen

    Highlights: • Clinical studies revealed aspirin inhibits cancer, but the mechanism is not known. • Adenomatous Polyposis Coli (APC) is a well-known tumor-suppressing gene. • We found aspirin up-regulates the protein of APC. • Aspirin suppressed the expression of IKKβ, an essential kinase in NFκB activation. • The deletion of IKKβ significantly increases the expression of APC protein. - Abstract: Aspirin has been widely used as analgesic, antipyretic and anti-inflammatory medicine for long. In addition to these traditional effects, clinical studies suggest that aspirin can protect against cancer, but its mechanism has not been explored. To unveil it, we identifiedmore » the proteins up- or down-regulated after incubation with aspirin by using proteomics analysis with Nano-flow LC/MALDI-TOF system. Interestingly, the analysis identified the protein of Adenomatous Polyposis Coli (APC) as one of the most up-regulated protein. APC regulates cell proliferation or angiogenesis, and is widely known as a tumor-suppressing gene which can cause colorectal cancer when it is mutated. Western blots confirmed this result, and real-time PCR indicated it is transcriptionally regulated. We further tried to elucidate the molecular mechanism with focusing on IKKβ. IKKβ is the essential kinase in activation of nuclear factor-kappa B (NF-κB), major transcriptional factors that regulate genes responsible for inflammation or immune response. Previous reports indicated that aspirin specifically inhibits IKKβ activity, and constitutively active form of IKKβ accelerates APC loss. We found that aspirin suppressed the expression of IKKβ, and the deletion of IKKβ by siRNA increases the expression of APC in HEK294 cells. Finally, we observed similar effects of aspirin in human umbilical vein endothelial cells. Taken together, these results reveal that aspirin up-regulates the expression of APC via the suppression of IKKβ. This can be a mechanism how aspirin prevents cancer at least in part, and a novel link between inflammatory NF-κB signaling and cancer.« less

  7. Digital gene expression analysis of corky split vein caused by boron deficiency in 'Newhall' Navel Orange (Citrus sinensis Osbeck) for selecting differentially expressed genes related to vascular hypertrophy.

    PubMed

    Yang, Cheng-Quan; Liu, Yong-Zhong; An, Ji-Cui; Li, Shuang; Jin, Long-Fei; Zhou, Gao-Feng; Wei, Qing-Jiang; Yan, Hui-Qing; Wang, Nan-Nan; Fu, Li-Na; Liu, Xiao; Hu, Xiao-Mei; Yan, Ting-Shuai; Peng, Shu-Ang

    2013-01-01

    Corky split vein caused by boron (B) deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE) analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs) revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st) phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd) and 3(rd) phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.

  8. Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury.

    PubMed

    Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki

    2017-09-01

    Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    PubMed

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    PubMed Central

    Hsieh, En-Jung; Waters, Brian M.

    2016-01-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716

  11. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    PubMed Central

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes. PMID:27855160

  12. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandova, Jana; Janda, Jaroslav; Sligh, James E, E-mail: jsligh@azcc.arizona.edu

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarraymore » analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear genes associated with tumorigenesis. Black-Right-Pointing-Pointer MMP-9 is up-regulated and Col1a1 is down-regulated in mutant cybrids. Black-Right-Pointing-Pointer GM6001 reduced the enhanced motility of mutant cybrids caused by up-regulated MMP-9. Black-Right-Pointing-Pointer The MMP-9 expression and invasiveness of mutant cybrids were reduced by Bay 11-7802.« less

  13. Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization.

    PubMed

    Gallou, Adrien; Declerck, Stéphane; Cranenbrouck, Sylvie

    2012-03-01

    The establishment of arbuscular mycorrhizal associations causes major changes in plant roots and affects significantly the host in term of plant nutrition and resistance against biotic and abiotic stresses. As a consequence, major changes in root transcriptome, especially in plant genes related to biotic stresses, are expected. Potato microarray analysis, followed by real-time quantitative PCR, was performed to detect the wide transcriptome changes induced during the pre-, early and late stages of potato root colonization by Glomus sp. MUCL 41833. The microarray analysis revealed 526 up-regulated and 132 down-regulated genes during the pre-stage, 272 up-regulated and 109 down-regulated genes during the early stage and 734 up-regulated and 122 down-regulated genes during the late stage of root colonization. The most important class of regulated genes was associated to plant stress and in particular to the WRKY transcription factors genes during the pre-stage of root colonization. The expression profiling clearly demonstrated a wide transcriptional change during the pre-, early and late stages of root colonization. It further suggested that the WRKY transcription factor genes are involved in the mechanisms controlling the arbuscular mycorrhizal establishment by the regulation of plant defence genes.

  14. Characterization of human septic sera induced gene expression modulation in human myocytes

    PubMed Central

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  15. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling.

    PubMed

    Ko, Jae-Heung; Han, Kyung-Hwan; Park, Sunchung; Yang, Jaemo

    2004-06-01

    Wood is an important raw material and environmentally cost-effective renewable source of energy. However, the molecular biology of wood formation (i.e. secondary growth) is surprisingly understudied. A novel experimental system was employed to study the molecular regulation of secondary xylem formation in Arabidopsis. First, we demonstrate that the weight carried by the stem is a primary signal for the induction of cambium differentiation and the plant hormone, auxin, is a downstream carrier of the signal for this process. We used Arabidopsis whole-transcriptome (23 K) GeneChip analysis to examine gene expression profile changes in the inflorescent stems treated for wood formation by cultural manipulation or artificial weight application. Many of the genes up-regulated in wood-forming stems had auxin responsive cis-acting elements in their promoter region, indicating auxin-mediated regulation of secondary growth. We identified 700 genes that were differentially expressed during the transition from primary growth to secondary growth. More than 40% of the genes that were up-regulated (>5x) were associated with signal transduction and transcriptional regulation. Biological significance of these regulatory genes is discussed in light of the induction and development of secondary xylem.

  16. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes

    PubMed Central

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B.; Zhang, Yaou

    2013-01-01

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3′-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation. PMID:23125370

  17. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes.

    PubMed

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B; Zhang, Yaou

    2013-01-07

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3'-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation.

  18. Exposure to butachlor causes thyroid endocrine disruption and promotion of metamorphosis in Xenopus laevis.

    PubMed

    Li, Shuying; Li, Meng; Wang, Qiangwei; Gui, Wenjun; Zhu, Guonian

    2016-06-01

    Butachlor is extensively applied in rice paddy ecosystem in china, and has been widespread contaminant in the aquatic environment. Here, Xenopus laevis was used for the evaluation of teratogenesis developmental toxicity, and disruption of thyroid system when exposure to different concentrations of butachlor by window phase exposure. Acute toxicity investigation shown that 96 h-LC50 value of butachlor was 1.424 mg L(-1) and 0.962 mg L(-1) for tadpoles (starting from stages 46/47) and embryos (starting from stages 8/9), respectively. Exposure to butachlor caused malformation, including abnormal eye, pericardial edema, enlarged proctodaeum and bent tail. Window phase exposure test indicated that butachlor significantly promote the contents of whole-body thyroid hormones (THs, T3 and T4) at higher levels, indicating thyroid endocrine disruption. At 7 days, exposure to butachlor up-regulated the mRNA expression of genes involved in THs synthesis and metabolism (tshα, tg, tpo and dio1) and THs receptors (trα and trβ). At 14 days, up-regulation of the mRNA expression of genes related to THs synthesis and metabolism (tshα, tshβ, tg, tpo, dio1, dio2 and ttr) and THs receptors (trβ) were also observed after the exposure to butachlor. At 21 days, butachlor up-regulated the mRNA expression of tshα, tg, tpo genes and down-regulated the mRNA expression of tshβ, tg, dio1, ttr and trα genes. These results showed that butachlor could change the mRNA expression of genes involved in the HPT axis and increase whole-body thyroid hormones levels of X. laevis tadpoles in a dose- and time-dependent manner, causing thyroid endocrine disruption and developmental toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Genome-Wide Identification and Comprehensive Expression Profiling of Ribosomal Protein Small Subunit (RPS) Genes and their Comparative Analysis with the Large Subunit (RPL) Genes in Rice

    PubMed Central

    Saha, Anusree; Das, Shubhajit; Moin, Mazahar; Dutta, Mouboni; Bakshi, Achala; Madhav, M. S.; Kirti, P. B.

    2017-01-01

    Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops. PMID:28966624

  20. Transcriptome Analysis of the Brucella abortus BvrR/BvrS Two-Component Regulatory System

    PubMed Central

    Viadas, Cristina; Rodríguez, María C.; Sangari, Felix J.; Gorvel, Jean-Pierre; García-Lobo, Juan M.; López-Goñi, Ignacio

    2010-01-01

    Background The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. Methodology/Principal Findings A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d), lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others) were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ) were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. Conclusions/Significance All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche. PMID:20422049

  1. Profiling analysis of FOX gene family members identified FOXE1 as potential regulator of NSCLC development.

    PubMed

    Ji, G H; Cui, Y; Yu, H; Cui, X B

    2016-09-30

    Lung cancer is one of the most malignant tumors worldwide with a high mortality rate, which has not been improved since several decades ago. FOX gene family members have been reported to play extensive roles in regulating many biological processes and disorders. In order to clarify the contribution of FOX gene family members in lung cancer biology, we performed expression profiling analysis of FOX gene family members from FOXA to FOXR in lung cancer cell lines and tissue specimens by Real-time PCR, western blot and immunohistochemistry analysis. We found that FOXE1 was the only gene which was over-expressed in six out of eight lung cancer cell lines and human cancer tissue specimens (28 out of 35 cases with higher expression and 7 out of 35 cases with moderate expression). Further investigation showed that MMP2 gene was up-regulated, and autophagy markers such as LC3B, ATG5, ATG12 and BECLIN1, were down-regulated concomitant with the increase of FOXE1. These results implicated that FOXE1 may be an important regulator by targeting autophagy and MMPs pathways in lung cancer development.

  2. Comparison of gene expression response to neutron and x-ray irradiation using mouse blood.

    PubMed

    Broustas, Constantinos G; Xu, Yanping; Harken, Andrew D; Garty, Guy; Amundson, Sally A

    2017-01-03

    In the event of an improvised nuclear device detonation, the prompt radiation exposure would consist of photons plus a neutron component that would contribute to the total dose. As neutrons cause more complex and difficult to repair damage to cells that would result in a more severe health burden to affected individuals, it is paramount to be able to estimate the contribution of neutrons to an estimated dose, to provide information for those making treatment decisions. Mice exposed to either 0.25 or 1 Gy of neutron or 1 or 4 Gy x-ray radiation were sacrificed at 1 or 7 days after exposure. Whole genome microarray analysis identified 7285 and 5045 differentially expressed genes in the blood of mice exposed to neutron or x-ray radiation, respectively. Neutron exposure resulted in mostly downregulated genes, whereas x-rays showed both down- and up-regulated genes. A total of 34 differentially expressed genes were regulated in response to all ≥1 Gy exposures at both times. Of these, 25 genes were consistently downregulated at days 1 and 7, whereas 9 genes, including the transcription factor E2f2, showed bi-directional regulation; being downregulated at day 1, while upregulated at day 7. Gene ontology analysis revealed that genes involved in nucleic acid metabolism processes were persistently downregulated in neutron irradiated mice, whereas genes involved in lipid metabolism were upregulated in x-ray irradiated animals. Most biological processes significantly enriched at both timepoints were consistently represented by either under- or over-expressed genes. In contrast, cell cycle processes were significant among down-regulated genes at day 1, but among up-regulated genes at day 7 after exposure to either neutron or x-rays. Cell cycle genes downregulated at day 1 were mostly distinct from the cell cycle genes upregulated at day 7. However, five cell cycle genes, Fzr1, Ube2c, Ccna2, Nusap1, and Cdc25b, were both downregulated at day 1 and upregulated at day 7. We describe, for the first time, the gene expression profile of mouse blood cells following exposure to neutrons. We have found that neutron radiation results in both distinct and common gene expression patterns compared with x-ray radiation.

  3. Identification of potential therapeutic target genes, key miRNAs and mechanisms in oral lichen planus by bioinformatics analysis.

    PubMed

    Gong, Cuihua; Sun, Shangtong; Liu, Bing; Wang, Jing; Chen, Xiaodong

    2017-06-01

    The study aimed to identify the potential target genes and key miRNAs as well as to explore the underlying mechanisms in the pathogenesis of oral lichen planus (OLP) by bioinformatics analysis. The microarray data of GSE38617 were downloaded from Gene Expression Omnibus (GEO) database. A total of 7 OLP and 7 normal samples were used to identify the differentially expressed genes (DEGs) and miRNAs. The DEGs were then performed functional enrichment analyses. Furthermore, DEG-miRNA network and miRNA-function network were constructed by Cytoscape software. Total 1758 DEGs (598 up- and 1160 down-regulated genes) and 40 miRNAs (17 up- and 23 down-regulated miRNAs) were selected. The up-regulated genes were related to nuclear factor-Kappa B (NF-κB) signaling pathway, while down-regulated genes were mainly enriched in the function of ribosome. Tumor necrosis factor (TNF), caspase recruitment domain family, member 11 (CARD11) and mitochondrial ribosomal protein (MRP) genes were identified in these functions. In addition, miR-302 was a hub node in DEG-miRNA network and regulated cyclin D1 (CCND1). MiR-548a-2 was the key miRNA in miRNA-function network by regulating multiple functions including ribosomal function. The NF-κB signaling pathway and ribosome function may be the pathogenic mechanisms of OLP. The genes such as TNF, CARD11, MRP genes and CCND1 may be potential therapeutic target genes in OLP. MiR-548a-2 and miR-302 may play important roles in OLP development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparative analysis of temporal gene expression patterns in the developing ovary of the embryonic chicken

    PubMed Central

    YU, Minli; XU, Yali; YU, Defu; YU, Debing; DU, Wenxing

    2015-01-01

    Many genes participate in the process of ovarian germ cell development, while the combined action mechanisms of these molecular regulators still need clarification. The present study was focused on determination of differentially expressed genes and gene functions at four critical time points in chicken ovarian development. Comparative transcriptional profiling of ovaries from embryonic day 5.5 (E5.5), E12.5, E15.5 and E18.5 was performed using an Affymetrix GeneChip chicken genome microarray. Differential expression patterns for genes specifically depleted and enriched in each stage were identified. The results showed that most of the up- and downregulated genes were involved in the metabolism of retinoic acid (RA) and synthesis of hormones. Among them, a higher number of up- and downregulated genes in the E15.5 ovary were identified as being involved in steroid biosynthesis and retinol metabolism, respectively. To validate gene changes, expressions of twelve candidate genes related to germ cell development were examined by real-time PCR and found to be consistent with the of GeneChip data. Moreover, the immunostaining results suggested that ovarian development during different stages was regulated by different genes. Furthermore, a Raldh2 knockdown chicken model was produced to investigate the fundamental role of Raldh2 in meiosis initiation. It was found that meiosis occurred abnormally in Raldh2 knockdown ovaries, but the inhibitory effect on meiosis was reversed by the addition of exogenous RA. This study offers insights into the profile of gene expression and mechanisms regulating ovarian development, especially the notable role of Raldh2 in meiosis initiation in the chicken. PMID:25736178

  5. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits.

    PubMed

    Pan, Yu; Bradley, Glyn; Pyke, Kevin; Ball, Graham; Lu, Chungui; Fray, Rupert; Marshall, Alexandra; Jayasuta, Subhalai; Baxter, Charles; van Wijk, Rik; Boyden, Laurie; Cade, Rebecca; Chapman, Natalie H; Fraser, Paul D; Hodgman, Charlie; Seymour, Graham B

    2013-03-01

    Carotenoids represent some of the most important secondary metabolites in the human diet, and tomato (Solanum lycopersicum) is a rich source of these health-promoting compounds. In this work, a novel and fruit-related regulator of pigment accumulation in tomato has been identified by artificial neural network inference analysis and its function validated in transgenic plants. A tomato fruit gene regulatory network was generated using artificial neural network inference analysis and transcription factor gene expression profiles derived from fruits sampled at various points during development and ripening. One of the transcription factor gene expression profiles with a sequence related to an Arabidopsis (Arabidopsis thaliana) ARABIDOPSIS PSEUDO RESPONSE REGULATOR2-LIKE gene (APRR2-Like) was up-regulated at the breaker stage in wild-type tomato fruits and, when overexpressed in transgenic lines, increased plastid number, area, and pigment content, enhancing the levels of chlorophyll in immature unripe fruits and carotenoids in red ripe fruits. Analysis of the transcriptome of transgenic lines overexpressing the tomato APPR2-Like gene revealed up-regulation of several ripening-related genes in the overexpression lines, providing a link between the expression of this tomato gene and the ripening process. A putative ortholog of the tomato APPR2-Like gene in sweet pepper (Capsicum annuum) was associated with pigment accumulation in fruit tissues. We conclude that the function of this gene is conserved across taxa and that it encodes a protein that has an important role in ripening.

  6. Application of a cDNA microarray for profiling the gene expression of Echinococcus granulosus protoscoleces treated with albendazole and artemisinin.

    PubMed

    Lü, Guodong; Zhang, Wenbao; Wang, Jianhua; Xiao, Yunfeng; Zhao, Jun; Zhao, Jianqin; Sun, Yimin; Zhang, Chuanshan; Wang, Junhua; Lin, Renyong; Liu, Hui; Zhang, Fuchun; Wen, Hao

    2014-12-01

    Cystic echinoccocosis (CE) is a neglected zoonosis that is caused by the dog-tapeworm Echinococcus granulosus. The disease is endemic worldwide. There is an urgent need for searching effective drug for the treatment of the disease. In this study, we sequenced a cDNA library constructed using RNA isolated from oncospheres, protoscoleces, cyst membrane and adult worms of E. granulosus. A total of 9065 non-redundant or unique sequences were obtained and spotted on chips as uniEST probes to profile the gene expression in protoscoleces of E. granulosus treated with the anthelmintic drugs albendazole and artemisinin, respectively. The results showed that 7 genes were up-regulated and 38 genes were down-regulated in the protoscoleces treated with albendazole. Gene analysis showed that these genes are responsible for energy metabolism, cell cycle and assembly of cell structure. We also identified 100 genes up-regulated and 6 genes down-regulated in the protoscoleces treated with artemisinin. These genes play roles in the transduction of environmental signals, and metabolism. Albendazole appeared its drug efficacy in damaging cell structure, while artemisinin was observed to increase the formation of the heterochromatin in protoscolex cells. Our results highlight the utility of using cDNA microarray methods to detect gene expression profiles of E. granulosus and, in particular, to understand the pharmacologic mechanism of anti-echinococcosis drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit

    PubMed Central

    Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna

    2008-01-01

    Background Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45–55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Results Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Conclusion Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development. PMID:18279528

  8. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit.

    PubMed

    Janssen, Bart J; Thodey, Kate; Schaffer, Robert J; Alba, Rob; Balakrishnan, Lena; Bishop, Rebecca; Bowen, Judith H; Crowhurst, Ross N; Gleave, Andrew P; Ledger, Susan; McArtney, Steve; Pichler, Franz B; Snowden, Kimberley C; Ward, Shayna

    2008-02-17

    Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.

  9. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

    PubMed

    Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E

    2015-01-01

    Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.

  10. Characterization, expression profiles, intracellular distribution and association analysis of porcine PNAS-4 gene with production traits.

    PubMed

    Mo, Delin; Zhu, Zhengmao; te Pas, Marinus F W; Li, Xinyun; Yang, Shulin; Wang, Heng; Wang, Huanling; Li, Kui

    2008-06-30

    In a previous screen to identify differentially expressed genes associated with embryonic development, the porcine PNAS-4 gene had been found. Considering differentially expressed genes in early stages of muscle development are potential candidate genes to improve meat quality and production efficiency, we determined how porcine PNAS-4 gene regulates meat production. Therefore, this gene has been sequenced, expression analyzed and associated with meat production traits. We cloned the full-length cDNA of porcine PNAS-4 gene encoding a protein of 194 amino acids which was expressed in the Golgi complex. This gene was mapped to chromosome 10, q11-16, in a region of conserved synteny with human chromosome 1 where the human homologous gene was localized. Real-time PCR revealed that PNAS-4 mRNA was widely expressed with highest expression levels in skeletal muscle followed by lymph, liver and other tissues, and showed a down-regulated expression pattern during prenatal development while a up-regulated expression pattern after weaning. Association analysis revealed that allele C of SNP A1813C was prevalent in Chinese indigenous breeds whereas A was dominant allele in Landrace and Large White, and the pigs with homozygous CC had a higher fat content than those of the pigs with other genotypes (P < 0.05). Porcine PNAS-4 protein tagged with green fluorescent protein accumulated in the Golgi complex, and its mRNA showed a widespread expression across many tissues and organs in pigs. It may be an important factor affecting the meat production efficiency, because its down-regulated expression pattern during early embryogenesis suggests involvement in increase of muscle fiber number. In addition, the SNP A1813C associated with fat traits might be a genetic marker for molecular-assisted selection in animal breeding.

  11. Genome-Wide Survey on Genomic Variation, Expression Divergence, and Evolution in Two Contrasting Rice Genotypes under High Salinity Stress

    PubMed Central

    Jiang, Shu-Ye; Ma, Ali; Ramamoorthy, Rengasamy; Ramachandran, Srinivasan

    2013-01-01

    Expression profiling is one of the most important tools for dissecting biological functions of genes and the upregulation or downregulation of gene expression is sufficient for recreating phenotypic differences. Expression divergence of genes significantly contributes to phenotypic variations. However, little is known on the molecular basis of expression divergence and evolution among rice genotypes with contrasting phenotypes. In this study, we have implemented an integrative approach using bioinformatics and experimental analyses to provide insights into genomic variation, expression divergence, and evolution between salinity-sensitive rice variety Nipponbare and tolerant rice line Pokkali under normal and high salinity stress conditions. We have detected thousands of differentially expressed genes between these two genotypes and thousands of up- or downregulated genes under high salinity stress. Many genes were first detected with expression evidence using custom microarray analysis. Some gene families were preferentially regulated by high salinity stress and might play key roles in stress-responsive biological processes. Genomic variations in promoter regions resulted from single nucleotide polymorphisms, indels (1–10 bp of insertion/deletion), and structural variations significantly contributed to the expression divergence and regulation. Our data also showed that tandem and segmental duplication, CACTA and hAT elements played roles in the evolution of gene expression divergence and regulation between these two contrasting genotypes under normal or high salinity stress conditions. PMID:24121498

  12. Expression of NF-kappaB dependent genes in human cells in response to heavy ion beams

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine; Baumstark-Khan, Christa; Ruland, Rebecca; Schmitz, Claudia; Lau, Patrick; Testard, Isabelle; Reitz, Guenther

    Space radiation is a primary concern for manned spaceflight and is a potentially limiting factor for long term orbital and interplanetary missions. Understanding of the cellular and molecular processes underlying cell death and transformation related events by space radiation may allow better risk estimation and development of appropriate countermeasures. The pathway leading to activation of the transcription factor nuclear factor κB (NF-κB) and increased transcription of its target gene might modulate cellular radiation response. Previous studies suggest a linear energy transfer (LET) dependency of transcription factor nuclear factor κB (NF-κB) activation: high LET radiation activates NF-κB more efficiently than low LET radiation. In this work, the relative expressions of several NF-κB regulated genes (Gadd45β, NFKBIA encoding the NF-κB inhibitor IκBα, and the anti-apoptotic genes XIAP, bcl-2, and bcl-xL) were examined by quantitative real-time Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). Human embryonic cells with neuronal differentiation potential (HEK/293) were exposed to accelerated heavy ions or to X-rays (200 kV) or incubated in presence of the strong NF-κB activator tumor necrosis factor α (TNF-α). Target gene expression data were normalized to the expression index of several unregulated reference genes (B2M, GAPDH, PBGD, HPRT). NFKBIA expression is enhanced for 24 h after TNF-α treatment, while Gadd45β expression was only temporarily up-regulated. High doses of X-rays (8 and 16 Gy) and of 13 C ions (75 MeV/n, LET 33 keV/µm, 4.7 Gy) up-regulate NFKBIA and Gadd45β expression temporarily. 13 C ion with higher LET (35 MeV/n, 73 keV/µm) enhance NFKBIA expression already after 1 Gy, and a passing up-regulation of Bcl-2, bcl-xL and XIAP expression was observed 2 h after 0.5 Gy. 20 Ne (95 MeV/A, 80 keV/µm) and 36 Ar ions (95 MeV/A, 271 keV/µm) were the strongest inducers of Gadd45β, NFKBIA, and XIAP with doses from 0.5 to 3.8 Gy. 58 Ni (75 MeV/A, 906 keV/µm) and 208 Pb ion exposure (29 MeV/A, 9764 keV/µm) reduced the expression of Gadd45β. NFKBIA expression was enhanced after 58 Ni ion exposure, but down-regulated after 208 Pb ion exposure. Bcl-2 and Bcl-xL were mostly unaffected by the tested irradiation conditions or only transitorily up-regulated. In conclusion, genes involved in cell cycle regulation (Gadd45β), in inhibition of apoptosis (XIAP, bcl-2, and bcl-xL) and in control of the NF-κB pathway (NFKBIA) show a differentiated expression profile after exposure of human cells to heavy ions of different LET. This might be a step towards understanding of the previously observed LET dependency of cell survival and cell cycle arrest.

  13. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity

    PubMed Central

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Furukawa, Takahisa

    2017-01-01

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity. PMID:28900001

  14. Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.

    PubMed

    Omori, Yoshihiro; Kubo, Shun; Kon, Tetsuo; Furuhashi, Mayu; Narita, Hirotaka; Kominami, Taro; Ueno, Akiko; Tsutsumi, Ryotaro; Chaya, Taro; Yamamoto, Haruka; Suetake, Isao; Ueno, Shinji; Koseki, Haruhiko; Nakagawa, Atsushi; Furukawa, Takahisa

    2017-09-26

    Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7- null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7 -deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.

  15. Short-term exposure of Arabidopsis cell culures to hyper-G: Short-term changes in transcription regulation expression

    NASA Astrophysics Data System (ADS)

    Babbick, Maren; Hampp, Rudiger

    2005-08-01

    Callus cultures of Arabidopsis thaliana (cv. Columbia) were used to screen for early changes in gene expression in response to altered gravitational fields. In a recent microarray study we found hyper- g dependent changes in gene expression which indicated the involvement of WRKY genes [Martzivanou M. and Hampp R., Physiol. Plant., 118, 221-231,2003]. WRKY genes code for a family of plant-specific regulators of gene expression. In this study we report on the exposure of Arabidopsis callus cultures to 8g for up to 30 min. Quantitative analysis by real time RT-PCR of the amount of transcripts of WRKYs 3, 6, 22, 46, 65 and 70 showed individual changes in expression. As far as their function is known, these WRKY proteins are mainly involved in stress responses. As most alterations in transcript amount occurred within 10 min of treatment, such genes can be used for the investigation of microgravity-related effects on gene expression under sounding rocket conditions (TEXUS, MAXUS).

  16. Role of the Chemokine MCP-1 in Sensitization of PKC-Mediated Apoptosis in Prostate Cancer Cells

    DTIC Science & Technology

    2010-02-01

    component. As phorbol esters are strong inducers of gene expression, we analyzed changes in gene expression using Affymetrix microarrays. These studies...were carried out at the UPenn Microarray Facility. We studied the dynamics of changes in gene expression by PMA at different times between 0 and 24 h...after PMA treatment. We identified ~ 5,000 PMA- genes up- or down-regulated by PMA (> 2-fold change), identified early and late genes , and classified

  17. Feeding and fasting controls liver expression of a regulator of G protein signaling (Rgs16) in periportal hepatocytes

    PubMed Central

    Huang, Jie; Pashkov, Victor; Kurrasch, Deborah M; Yu, Kan; Gold, Stephen J; Wilkie, Thomas M

    2006-01-01

    Background Heterotrimeric G protein signaling in liver helps maintain carbohydrate and lipid homeostasis. G protein signaling is activated by binding of extracellular ligands to G protein coupled receptors and inhibited inside cells by regulators of G protein signaling (RGS) proteins. RGS proteins are GTPase activating proteins, and thereby regulate Gi and/or Gq class G proteins. RGS gene expression can be induced by the ligands they feedback regulate, and RGS gene expression can be used to mark tissues and cell-types when and where Gi/q signaling occurs. We characterized the expression of mouse RGS genes in liver during fasting and refeeding to identify novel signaling pathways controlling changes in liver metabolism. Results Rgs16 is the only RGS gene that is diurnally regulated in liver of ad libitum fed mice. Rgs16 transcription, mRNA and protein are up regulated during fasting and rapidly down regulated after refeeding. Rgs16 is expressed in periportal hepatocytes, the oxygen-rich zone of the liver where lipolysis and gluconeogenesis predominates. Restricting feeding to 4 hr of the light phase entrained Rgs16 expression in liver but did not affect circadian regulation of Rgs16 expression in the suprachiasmatic nuclei (SCN). Conclusion Rgs16 is one of a subset of genes that is circadian regulated both in SCN and liver. Rgs16 mRNA expression in liver responds rapidly to changes in feeding schedule, coincident with key transcription factors controlling the circadian clock. Rgs16 expression can be used as a marker to identify and investigate novel G-protein mediated metabolic and circadian pathways, in specific zones within the liver. PMID:17123436

  18. Silibinin induces apoptosis of HT29 colon carcinoma cells through early growth response-1 (EGR-1)-mediated non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) up-regulation.

    PubMed

    Woo, Seon Min; Min, Kyoung-Jin; Kim, Shin; Park, Jong-Wook; Kim, Dong Eun; Chun, Kyung-Soo; Kim, Young Ho; Lee, Tae-Jin; Kim, Sang Hyun; Choi, Yung Hyun; Chang, Jong-Soo; Kwon, Taeg Kyu

    2014-03-25

    Silibinin, an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration. However, the molecular mechanisms responsible for these effects are not fully understood. We observed that silibinin significantly induced the expression of the non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) in both p53 wild-type and p53-null cancer cell lines, suggesting that silibinin-induced NAG-1 up-regulation is p53-independent manner. Silibinin up-regulates early growth response-1 (EGR-1) expression. The ectopic expression of EGR-1 significantly increased NAG-1 promoter activity and NAG-1 protein expression in a dose-dependent manner. Furthermore, down-regulation of EGR-1 expression using siRNA markedly reduced silibinin-mediated NAG-1 expression, suggesting that the expression of EGR-1 is critical for silibinin-induced NAG-1 expression. We also observed that reactive oxygen species (ROS) are generated by silibinin; however, ROS did not affect silibinin-induced NAG-1 expression and apoptosis. In addition, we demonstrated that the mitogen-activated protein kinase (MAP kinase) signal transduction pathway is involved in silibinin-induced NAG-1 expression. Inhibitors of p38 MAP kinase (SB203580) attenuated silibinin-induced NAG-1 expression. Furthermore, we found that siRNA-mediated knockdown of NAG-1 attenuated silibinin-induced apoptosis. Collectively, the results of this study demonstrate for the first time that up-regulation of NAG-1 contributes to silibinin-induced apoptosis in cancer cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding oxidase components.

    PubMed

    Condino-Neto, A; Whitney, C; Newburger, P E

    1998-11-01

    We investigated the effects of dexamethasone or indomethacin on the NADPH oxidase activity, cytochrome b558 content, and expression of genes encoding the components gp91-phox and p47-phox of the NADPH oxidase system in the human monocytic THP-1 cell line, differentiated with IFN-gamma and TNF-alpha, alone or in combination, for up to 7 days. IFN-gamma and TNF-alpha, alone or in combination, caused a significant up-regulation of the NADPH oxidase system as reflected by an enhancement of the PMA-stimulated superoxide release, cytochrome b558 content, and expression of gp91-phox and p47-phox genes on both days 2 and 7 of cell culture. Noteworthy was the tremendous synergism between IFN-gamma and TNF-alpha for all studied parameters. Dexamethasone down-regulated the NADPH oxidase system of cytokine-differentiated THP-1 cells as assessed by an inhibition on the PMA-stimulated superoxide release, cytochrome b558 content, and expression of the gp91-phox and p47-phox genes. The nuclear run-on assays indicated that dexamethasone down-regulated the NADPH oxidase system at least in part by inhibiting the transcription of gp91-phox and p47-phox genes. Indomethacin inhibited only the PMA-stimulated superoxide release of THP-1 cells differentiated with IFN-gamma and TNF-alpha during 7 days. None of the other parameters was affected by indomethacin. We conclude that dexamethasone down-regulates the NADPH oxidase system at least in part by inhibiting the expression of genes encoding the gp91-phox and p47-phox components of the NADPH oxidase system.

  20. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells.more » Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.« less

  1. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation.

    PubMed

    De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego

    2013-01-01

    Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.

  2. Transforming Growth Factor-β/SMAD Target Gene SKIL Is Negatively Regulated by the Transcriptional Cofactor Complex SNON-SMAD4*

    PubMed Central

    Tecalco-Cruz, Angeles C.; Sosa-Garrocho, Marcela; Vázquez-Victorio, Genaro; Ortiz-García, Layla; Domínguez-Hüttinger, Elisa; Macías-Silva, Marina

    2012-01-01

    The human SKI-like (SKIL) gene encodes the SMAD transcriptional corepressor SNON that antagonizes TGF-β signaling. SNON protein levels are tightly regulated by the TGF-β pathway: whereas a short stimulation with TGF-β decreases SNON levels by its degradation via the proteasome, longer TGF-β treatment increases SNON levels by inducing SKIL gene expression. Here, we investigated the molecular mechanisms involved in the self-regulation of SKIL gene expression by SNON. Bioinformatics analysis showed that the human SKIL gene proximal promoter contains a TGF-β response element (TRE) bearing four groups of SMAD-binding elements that are also conserved in mouse. Two regions of 408 and 648 bp of the human SKIL gene (∼2.4 kb upstream of the ATG initiation codon) containing the core promoter, transcription start site, and the TRE were cloned for functional analysis. Binding of SMAD and SNON proteins to the TRE region of the SKIL gene promoter after TGF-β treatment was demonstrated by ChIP and sequential ChIP assays. Interestingly, the SNON-SMAD4 complex negatively regulated basal SKIL gene expression through binding the promoter and recruiting histone deacetylases. In response to TGF-β signal, SNON is removed from the SKIL gene promoter, and then the activated SMAD complexes bind the promoter to induce SKIL gene expression. Subsequently, the up-regulated SNON protein in complex with SMAD4 represses its own expression as part of the negative feedback loop regulating the TGF-β pathway. Accordingly, when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-β target genes is modified. PMID:22674574

  3. Transforming growth factor-β/SMAD Target gene SKIL is negatively regulated by the transcriptional cofactor complex SNON-SMAD4.

    PubMed

    Tecalco-Cruz, Angeles C; Sosa-Garrocho, Marcela; Vázquez-Victorio, Genaro; Ortiz-García, Layla; Domínguez-Hüttinger, Elisa; Macías-Silva, Marina

    2012-08-03

    The human SKI-like (SKIL) gene encodes the SMAD transcriptional corepressor SNON that antagonizes TGF-β signaling. SNON protein levels are tightly regulated by the TGF-β pathway: whereas a short stimulation with TGF-β decreases SNON levels by its degradation via the proteasome, longer TGF-β treatment increases SNON levels by inducing SKIL gene expression. Here, we investigated the molecular mechanisms involved in the self-regulation of SKIL gene expression by SNON. Bioinformatics analysis showed that the human SKIL gene proximal promoter contains a TGF-β response element (TRE) bearing four groups of SMAD-binding elements that are also conserved in mouse. Two regions of 408 and 648 bp of the human SKIL gene (∼2.4 kb upstream of the ATG initiation codon) containing the core promoter, transcription start site, and the TRE were cloned for functional analysis. Binding of SMAD and SNON proteins to the TRE region of the SKIL gene promoter after TGF-β treatment was demonstrated by ChIP and sequential ChIP assays. Interestingly, the SNON-SMAD4 complex negatively regulated basal SKIL gene expression through binding the promoter and recruiting histone deacetylases. In response to TGF-β signal, SNON is removed from the SKIL gene promoter, and then the activated SMAD complexes bind the promoter to induce SKIL gene expression. Subsequently, the up-regulated SNON protein in complex with SMAD4 represses its own expression as part of the negative feedback loop regulating the TGF-β pathway. Accordingly, when the SNON-SMAD4 complex is absent as in some cancer cells lacking SMAD4 the regulation of some TGF-β target genes is modified.

  4. Leptin stimulation of cell cycle and inhibition of apoptosis gene and protein expression in OVCAR-3 ovarian cancer cells.

    PubMed

    Ptak, Anna; Kolaczkowska, Elzbieta; Gregoraszczuk, Ewa L

    2013-04-01

    The OVCAR-3 cell line expressing the long (ObRb) and short (ObRt) isoforms of leptin receptor mRNA was used to analyze the effect of leptin on the expression of selected genes and proteins involved in the cell cycle and apoptosis. OVCAR-3 cells were exposed to 2, 20, 40, and 100 ng/ml of leptin. Cell proliferation was determined using the alamarBlue cell viability test and flow cytometry. Apoptosis was measured using a cellular DNA fragmentation ELISA kit. The expression of selected cell cycle and apoptosis genes was evaluated by real-time PCR and confirmed by western blot. The stimulatory action of leptin on cell proliferation was observed as an increase in cells in the S and G2/M phases. Up-regulation of genes responsible for inducing cell proliferation and suppression of genes responsible for inhibition of proliferation were noted. Western blots revealed increased expression of cyclins D and A and inhibition of p21WAF1/CIP1 protein expression by leptin. Inhibition of DNA fragmentation was observed under all leptin doses. Suppression of genes involved in the extrinsic and intrinsic apoptotic pathway was observed. Western blots illustrated decreased Bad, TNFR1, and caspase 6 protein expression in response to leptin treatment. Leptin promotes ovarian cancer cell line growth by up-regulating genes and proteins responsible for inducing cell proliferation as well as down-regulating pro-apoptotic genes and proteins in apoptotic pathways. Results of this study warrant examining the relationship between the risk of ovarian cancer and elevated leptin levels in obese women.

  5. Identification and Characterization of CYC-Like Genes in Regulation of Ray Floret Development in Chrysanthemum morifolium.

    PubMed

    Huang, Di; Li, Xiaowei; Sun, Ming; Zhang, Tengxun; Pan, Huitang; Cheng, Tangren; Wang, Jia; Zhang, Qixiang

    2016-01-01

    Chrysanthemum morifolium , one of the most economically important ornamental crops worldwide, is well-known for the elaborate and complex inflorescence which is composed of both bilaterally symmetrical ray florets and radially symmetrical disc florets. Despite continuing efforts, the molecular mechanisms underlying regulation of the two flower types are still unclear so far. CYC -like proteins have been shown to control flower symmetry or regulate flower-type identity in several angiosperm plant lineages. In this study, we conducted comparative analysis of the CmCYC2 genes in two chrysanthemum cultivars and their F1 progenies with various whorls of ray florets. Six CmCYC genes were identified and sequenced, all of which were grouped into the CYC2 subclade. All the six CmCYC2 genes were predominantly expressed in reproductive organs, and in particular in the petal of ray florets. Of these genes, the transcription level of CmCYC2c was highly up-regulated in ray florets of the double-ray flowered heads. In addition, the result that CmCYC2c was highly expressed at key developing stages indicates its role in regulating petal development. Furthermore, overexpression of CmCYC2c in C. lavandulifolium , one of the original species of C. morifolium , led to significant increase in flower numbers and petal ligule length of ray florets. Besides CmCYC2c , the expression of CmCYC2f was also significantly up-regulated in transgenic lines, implying a possible role in regulating development of ray florets. Both results of expression patterns and transgenic phenotypes suggest that CmCYC2c is involved in regulating ray floret identity in the chrysanthemum. This study will be useful for genetic manipulation of flower shape in chrysanthemum and hence promote the process of molecular breeding.

  6. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function

    PubMed Central

    Miller, Brooke H.; Zeier, Zane; Xi, Li; Lanz, Thomas A.; Deng, Shibing; Strathmann, Julia; Willoughby, David; Kenny, Paul J.; Elsworth, John D.; Lawrence, Matthew S.; Roth, Robert H.; Edbauer, Dieter; Kleiman, Robin J.; Wahlestedt, Claes

    2012-01-01

    Schizophrenia is characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of 854 miRNAs in prefrontal cortical tissue from 100 control, schizophrenic, and bipolar subjects. The cyclic AMP-responsive element binding- and NMDA-regulated microRNA miR-132 was significantly down-regulated in both the schizophrenic discovery cohort and a second, independent set of schizophrenic subjects. Analysis of miR-132 target gene expression in schizophrenia gene-expression microarrays identified 26 genes up-regulated in schizophrenia subjects. Consistent with NMDA-mediated hypofunction observed in schizophrenic subjects, administration of an NMDA antagonist to adult mice results in miR-132 down-regulation in the prefrontal cortex. Furthermore, miR-132 expression in the murine prefrontal cortex exhibits significant developmental regulation and overlaps with critical neurodevelopmental processes during adolescence. Adult prefrontal expression of miR-132 can be down-regulated by pharmacologic inhibition of NMDA receptor signaling during a brief postnatal period. Several key genes, including DNMT3A, GATA2, and DPYSL3, are regulated by miR-132 and exhibited altered expression either during normal neurodevelopment or in tissue from adult schizophrenic subjects. Our data suggest miR-132 dysregulation and subsequent abnormal expression of miR-132 target genes contribute to the neurodevelopmental and neuromorphological pathologies present in schizophrenia. PMID:22315408

  7. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    NASA Astrophysics Data System (ADS)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00974f

  8. Transcriptional Modulation of Genes Encoding Structural Characteristics of Differentiating Enterocytes During Development of a Polarized Epithelium In Vitro

    PubMed Central

    Halbleib, Jennifer M.; Sääf, Annika M.

    2007-01-01

    Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590

  9. RNA sequencing reveals differential thermal regulation mechanisms between sexes of Glanville fritillary butterfly in the Tianshan Mountains, China.

    PubMed

    Lei, Ying; Wang, Yang; Ahola, Virpi; Luo, Shiqi; Xu, Chongren; Wang, Rongjiang

    2016-12-01

    The Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae) has been extensively studied as a model species in metapopulation ecology. We investigated in the earlier studies that female butterflies exhibit higher thermal tolerance than males in the Tianshan Mountains of China. We aim to understand the molecular mechanism of differences of thermal responses between sexes. We used RNA-seq approach and performed de novo assembly of transcriptome to compare the gene expression patterns between two sexes after heat stress. All the reads were assembled into 84,376 transcripts and 72,701 unigenes. The number of differential expressed genes (DEGs) between control and heat shock samples was 175 and 268 for males and females, respectively. Heat shock proteins genes (hsps) were up-regulated in response to heat stress in both males and females. Most of the up-regulated hsps showed higher fold changes in males than in females. Females expressed more ribosomal subunit protein genes, transcriptional elongation factor genes, and methionine-rich storage protein genes, participating in protein synthesis. It indicated that protein synthesis is needed for females to replace the damaged proteins due to heat shock. In addition, aspartate decarboxylase might contribute to thermal tolerance in females. These differences in gene expression may at least partly explain the response to high temperature stress, and the fact that females exhibit higher thermal tolerance.

  10. Effects of High Hydrostatic Pressure on Expression Profiles of In Vitro Produced Vitrified Bovine Blastocysts

    PubMed Central

    Jiang, Zongliang; Harrington, Patrick; Zhang, Ming; Marjani, Sadie L.; Park, Joonghoon; Kuo, Lynn; Pribenszky, Csaba; Tian, Xiuchun (Cindy)

    2016-01-01

    High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes. PMID:26883277

  11. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    PubMed

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  12. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.

    PubMed

    Kebede, Aida Z; Johnston, Anne; Schneiderman, Danielle; Bosnich, Whynn; Harris, Linda J

    2018-02-09

    Gibberella ear rot (GER) is one of the most economically important fungal diseases of maize in the temperate zone due to moldy grain contaminated with health threatening mycotoxins. To develop resistant genotypes and control the disease, understanding the host-pathogen interaction is essential. RNA-Seq-derived transcriptome profiles of fungal- and mock-inoculated developing kernel tissues of two maize inbred lines were used to identify differentially expressed transcripts and propose candidate genes mapping within GER resistance quantitative trait loci (QTL). A total of 1255 transcripts were significantly (P ≤ 0.05) up regulated due to fungal infection in both susceptible and resistant inbreds. A greater number of transcripts were up regulated in the former (1174) than the latter (497) and increased as the infection progressed from 1 to 2 days after inoculation. Focusing on differentially expressed genes located within QTL regions for GER resistance, we identified 81 genes involved in membrane transport, hormone regulation, cell wall modification, cell detoxification, and biosynthesis of pathogenesis related proteins and phytoalexins as candidate genes contributing to resistance. Applying droplet digital PCR, we validated the expression profiles of a subset of these candidate genes from QTL regions contributed by the resistant inbred on chromosomes 1, 2 and 9. By screening global gene expression profiles for differentially expressed genes mapping within resistance QTL regions, we have identified candidate genes for gibberella ear rot resistance on several maize chromosomes which could potentially lead to a better understanding of Fusarium resistance mechanisms.

  13. Global Gene Expression Patterns and Somatic Mutations in Sporadic Intracranial Aneurysms.

    PubMed

    Li, Zhili; Tan, Haibin; Shi, Yi; Huang, Guangfu; Wang, Zhenyu; Liu, Ling; Yin, Cheng; Wang, Qi

    2017-04-01

    High-throughput sequencing technologies can expand our understanding of the pathologic basis of intracranial aneurysms (IAs). Our study was aimed to decipher the gene expression signature and genetic factors associated with IAs. We determined the gene expression levels of 3 cases of IAs by RNA sequencing. Bioinformatics analysis was conducted to identify the differentially expressed genes (DEGs) and uncover their biological function. In addition, whole genome sequencing was performed on an additional 6 cases of IAs to detect the potential somatic alterations in DEGs. Compared with the normal arterial tissue, 1709 genes were differentially expressed in IAs arterial tissue. The most significantly up-regulated gene and down-regulated gene, H19 and HIST1H3J, may be essential for tumorigenesis of IAs. Hub protein of IKBKG in protein-protein interaction network was probably involved in the inflammation process in aneurysms. Another 2 hub proteins, ACTB and MKI67IP, as well as up-regulated genes, might be abnormally activated in aneurysms and involved in the pathogenesis of IAs. Further whole genome sequencing and filtering yielded 4 candidate somatic single nucleotide variants including MUC3B, and BLM may be involved in the pathogenesis of IAs. Even though, our results do not support the hypothesis of somatic mutations occurred in the DEGs. Two-dimensional genomic data from transcriptome and whole genome sequencing indicated that no somatic mutations occurred in DEGs. In addition, 3 DEGs (IKBKG, ACTB, and MKI67IP) and 2 mutant genes (MUC3B and BLM) were essential in IAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions.

    PubMed

    Li, Yajun; Zhang, Jiachang; Zhang, Juan; Hao, Ling; Hua, Jinping; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-08-01

    LOS5/ABA3 gene encoding molybdenum cofactor sulphurase is involved in aldehyde oxidase (AO) activity in Arabidopsis, which indirectly regulates ABA biosynthesis and increased stress tolerance. Here, we used a constitutive super promoter to drive LOS5/ABA3 overexpression in soybean (Glycine max L.) to enhance drought tolerance in growth chamber and field conditions. Expression of LOS5/ABA3 was up-regulated by drought stress, which led to increasing AO activity and then a notable increase in ABA accumulation. Transgenic soybean under drought stress had reduced water loss by decreased stomatal aperture size and transpiration rate, which alleviated leaf wilting and maintained higher relative water content. Exposed to drought stress, transgenic soybean exhibited reduced cell membrane damage by reducing electrolyte leakage and production of malondialdehyde and promoting proline accumulation and antioxidant enzyme activities. Also, overexpression of LOS5/ABA3 enhanced expression of stress-up-regulated genes. Furthermore, the seed yield of transgenic plants is at least 21% higher than that of wide-type plants under drought stress conditions in the field. These data suggest that overexpression of LOS5/ABA3 could improve drought tolerance in transgenic soybean via enhanced ABA accumulation, which could activate expression of stress-up-regulated genes and cause a series of physiological and biochemical resistant responses. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype.

    PubMed

    Marzotto, Marta; Bonafini, Clara; Olioso, Debora; Baruzzi, Anna; Bettinetti, Laura; Di Leva, Francesca; Galbiati, Elisabetta; Bellavite, Paolo

    2016-01-01

    Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a "wound-healing" phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic target.

  16. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype

    PubMed Central

    Marzotto, Marta; Bonafini, Clara; Olioso, Debora; Baruzzi, Anna; Bettinetti, Laura; Di Leva, Francesca; Galbiati, Elisabetta; Bellavite, Paolo

    2016-01-01

    Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a “wound-healing” phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic target. PMID:27832158

  17. Analysis of the meiotic transcriptome reveals the genes related to the regulation of pollen abortion in cytoplasmic male-sterile pepper (Capsicum annuum L.).

    PubMed

    Qiu, Yilan; Liao, Lijuan; Jin, Xiaorui; Mao, Dandan; Liu, Rushi

    2018-01-30

    CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper. Copyright © 2017. Published by Elsevier B.V.

  18. Suppressing male spermatogenesis-associated protein 5-like gene expression reduces vitellogenin gene expression and fecundity in Nilaparvata lugens Stål

    USDA-ARS?s Scientific Manuscript database

    In our previous study with the brown planthopper (BPH), Nilaparvata lugens, triazophos (tzp, organophosphate) treatments led to substantial up-regulation of a male spermatogenesis-associated protein 5-like gene (NlSPATA5) compared to untreated controls. Mating with tzp-treated males significantly in...

  19. Sugar beet proteinase inhibitor (BvSTI) gene promoter is regulated by insects and wounding in transgenic Nicotiana benthamiana

    USDA-ARS?s Scientific Manuscript database

    A regulatory sequence from a serine proteinase inhibitor gene (BvSTIpro) shown to be up-regulated in resistant interactions with a root pest of sugar beet, the sugar beet root maggot, was fused to the ß-glucuronidase (GUS) reporter gene to characterize its expression patterns in transgenic Nicotiana...

  20. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing.

    PubMed

    Kur-Piotrowska, Anna; Kopcewicz, Marta; Kozak, Leslie P; Sachadyn, Pawel; Grabowska, Anna; Gawronska-Kozak, Barbara

    2017-01-09

    Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny among mammals. The resemblance of gene expression profiles in the skin of both nude and E14 mice are direct or indirect consequences of the Foxn1 deficiency. Foxn1 appears to regulate the balance between cell proliferation and differentiation and its inactivity creates a pro-regenerative environment.

  1. Genome-Wide Transcriptional Reorganization Associated with Senescence-to-Immortality Switch during Human Hepatocellular Carcinogenesis

    PubMed Central

    Konu, Ozlen; Yuzugullu, Haluk; Gursoy-Yuzugullu, Ozge; Ozturk, Nuri; Ozen, Cigdem; Ozdag, Hilal; Erdal, Esra; Karademir, Sedat; Sagol, Ozgul; Mizrak, Dilsa; Bozkaya, Hakan; Ilk, Hakki Gokhan; Ilk, Ozlem; Bilen, Biter; Cetin-Atalay, Rengul; Akar, Nejat; Ozturk, Mehmet

    2013-01-01

    Senescence is a permanent proliferation arrest in response to cell stress such as DNA damage. It contributes strongly to tissue aging and serves as a major barrier against tumor development. Most tumor cells are believed to bypass the senescence barrier (become “immortal”) by inactivating growth control genes such as TP53 and CDKN2A. They also reactivate telomerase reverse transcriptase. Senescence-to-immortality transition is accompanied by major phenotypic and biochemical changes mediated by genome-wide transcriptional modifications. This appears to happen during hepatocellular carcinoma (HCC) development in patients with liver cirrhosis, however, the accompanying transcriptional changes are virtually unknown. We investigated genome-wide transcriptional changes related to the senescence-to-immortality switch during hepatocellular carcinogenesis. Initially, we performed transcriptome analysis of senescent and immortal clones of Huh7 HCC cell line, and identified genes with significant differential expression to establish a senescence-related gene list. Through the analysis of senescence-related gene expression in different liver tissues we showed that cirrhosis and HCC display expression patterns compatible with senescent and immortal phenotypes, respectively; dysplasia being a transitional state. Gene set enrichment analysis revealed that cirrhosis/senescence-associated genes were preferentially expressed in non-tumor tissues, less malignant tumors, and differentiated or senescent cells. In contrast, HCC/immortality genes were up-regulated in tumor tissues, or more malignant tumors and progenitor cells. In HCC tumors and immortal cells genes involved in DNA repair, cell cycle, telomere extension and branched chain amino acid metabolism were up-regulated, whereas genes involved in cell signaling, as well as in drug, lipid, retinoid and glycolytic metabolism were down-regulated. Based on these distinctive gene expression features we developed a 15-gene hepatocellular immortality signature test that discriminated HCC from cirrhosis with high accuracy. Our findings demonstrate that senescence bypass plays a central role in hepatocellular carcinogenesis engendering systematic changes in the transcription of genes regulating DNA repair, proliferation, differentiation and metabolism. PMID:23691139

  2. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    PubMed Central

    2013-01-01

    Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro. Conclusions The two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer. PMID:23374247

  3. Transcriptome Analysis Reveals Genes Commonly Induced by Botrytis cinerea Infection, Cold, Drought and Oxidative Stresses in Arabidopsis

    PubMed Central

    Al-Ameri, Salma; Al-Mahmoud, Bassam; Awwad, Falah; Al-Rawashdeh, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2014-01-01

    Signaling pathways controlling biotic and abiotic stress responses may interact synergistically or antagonistically. To identify the similarities and differences among responses to diverse stresses, we analyzed previously published microarray data on the transcriptomic responses of Arabidopsis to infection with Botrytis cinerea (a biotic stress), and to cold, drought, and oxidative stresses (abiotic stresses). Our analyses showed that at early stages after B. cinerea inoculation, 1498 genes were up-regulated (B. cinerea up-regulated genes; BUGs) and 1138 genes were down-regulated (B. cinerea down-regulated genes; BDGs). We showed a unique program of gene expression was activated in response each biotic and abiotic stress, but that some genes were similarly induced or repressed by all of the tested stresses. Of the identified BUGs, 25%, 6% and 12% were also induced by cold, drought and oxidative stress, respectively; whereas 33%, 7% and 5.5% of the BDGs were also down-regulated by the same abiotic stresses. Coexpression and protein-protein interaction network analyses revealed a dynamic range in the expression levels of genes encoding regulatory proteins. Analysis of gene expression in response to electrophilic oxylipins suggested that these compounds are involved in mediating responses to B. cinerea infection and abiotic stress through TGA transcription factors. Our results suggest an overlap among genes involved in the responses to biotic and abiotic stresses in Arabidopsis. Changes in the transcript levels of genes encoding components of the cyclopentenone signaling pathway in response to biotic and abiotic stresses suggest that the oxylipin signal transduction pathway plays a role in plant defense. Identifying genes that are commonly expressed in response to environmental stresses, and further analyzing the functions of their encoded products, will increase our understanding of the plant stress response. This information could identify targets for genetic modification to improve plant resistance to multiple stresses. PMID:25422934

  4. Combined Chromatin and Expression Analysis Reveals Specific Regulatory Mechanisms within Cytokine Genes in the Macrophage Early Immune Response

    PubMed Central

    Emanuelsson, Olof; Sennblad, Bengt; Pirmoradian Najafabadi, Mohammad; Folkersen, Lasse; Mälarstig, Anders; Lagergren, Jens; Eriksson, Per; Hamsten, Anders; Odeberg, Jacob

    2012-01-01

    Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS). To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches - gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac) and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII), which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF), was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines), was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/−LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40%) was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at the chromatin level for specific genes and this study highlights the level of fine-tuning that occurs in the immune response. PMID:22384210

  5. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout

    PubMed Central

    Cai, Bei; Zhou, Shiwei; Zhu, Haijing; Qu, Lei; Wang, Xiaolong

    2017-01-01

    Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the MSTN knockout goat, which is a valuable resource for studying goat genomics. PMID:29228005

  6. Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application

    PubMed Central

    2013-01-01

    Background The species of T. harzianum are well known for their biocontrol activity against many plant pathogens. However, there is a lack of studies concerning its use as a biological control agent against F. solani, a pathogen involved in several crop diseases. In this study, we have used subtractive library hybridization (SSH) and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum genes expression during growth on cell wall of F. solani (FSCW) or glucose. RT-qPCR was also used to examine the regulation of 18 genes, potentially involved in biocontrol, during confrontation between T. harzianum and F. solani. Results Data obtained from two subtractive libraries were compared after annotation using the Blast2GO suite. A total of 417 and 78 readable EST sequence were annotated in the FSCW and glucose libraries, respectively. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on FSCW or glucose. We identified various genes of biotechnological value encoding to proteins which function such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. Fifteen genes were up-regulated and sixteen were down-regulated at least at one-time point during growth of T. harzianum in FSCW. During the confrontation assay most of the genes were up-regulated, mainly after contact, when the interaction has been established. Conclusions This study demonstrates that T. harzianum expressed different genes when grown on FSCW compared to glucose. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against F. solani. The identification and evaluation of these genes may contribute to the development of an efficient biological control agent. PMID:23497274

  7. Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application.

    PubMed

    Vieira, Pabline Marinho; Coelho, Alexandre Siqueira Guedes; Steindorff, Andrei Stecca; de Siqueira, Saulo José Linhares; Silva, Roberto do Nascimento; Ulhoa, Cirano José

    2013-03-15

    The species of T. harzianum are well known for their biocontrol activity against many plant pathogens. However, there is a lack of studies concerning its use as a biological control agent against F. solani, a pathogen involved in several crop diseases. In this study, we have used subtractive library hybridization (SSH) and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum genes expression during growth on cell wall of F. solani (FSCW) or glucose. RT-qPCR was also used to examine the regulation of 18 genes, potentially involved in biocontrol, during confrontation between T. harzianum and F. solani. Data obtained from two subtractive libraries were compared after annotation using the Blast2GO suite. A total of 417 and 78 readable EST sequence were annotated in the FSCW and glucose libraries, respectively. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on FSCW or glucose. We identified various genes of biotechnological value encoding to proteins which function such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. Fifteen genes were up-regulated and sixteen were down-regulated at least at one-time point during growth of T. harzianum in FSCW. During the confrontation assay most of the genes were up-regulated, mainly after contact, when the interaction has been established. This study demonstrates that T. harzianum expressed different genes when grown on FSCW compared to glucose. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against F. solani. The identification and evaluation of these genes may contribute to the development of an efficient biological control agent.

  8. Circular RNA expression alterations are involved in OGD/R-induced neuron injury.

    PubMed

    Lin, Shao-Peng; Ye, Shan; Long, Youming; Fan, Yongxiang; Mao, Hai-Feng; Chen, Mei-Ting; Ma, Qiu-Jie

    2016-02-26

    Cerebral ischemia-reperfusion injury (IRI) is a common clinical pathological process, and it is a key step in causing further ischemic organ damage. The mechanism of cerebral IRI is still not fully understood, leading to a lack of effective treatment. It has been demonstrated that circular RNAs (circRNAs) can act as miRNA sponges and play an important role in regulating gene expression through a circRNA-miRNA-gene pathway. The specific role of circRNAs in the pathogenesis of cerebral IRI, however, is still unclear. Thus, in the present study, we investigated circRNA expression differences in HT22 cells with oxygen-glucose deprivation/reoxygenation (OGD/R) versus normal controls. The results from circRNA microarrays revealed that 15 circRNAs were significantly altered in the OGD/R model (p < 0.05) compared with the control group. Among them, 3 were significantly up-regulated, and the other 12 were down-regulated. Furthermore, the up-regulated expression of mmu-circRNA-015947 was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics analysis revealed that up-regulated expression of mmu-circRNA-015947 could interact with miRNAs (mmu-miR-188-3p, mmu-miR-329-5p, mmu-miR-3057-3p, mmu-miR-5098 and mmu-miR-683) and thereby enhance target gene expression. KEGG pathway analysis predicted that mmu-circRNA-015947 may participate in apoptosis-related, metabolism-related and immune-related pathways, which are known to be involved in the pathogenesis of IRI. This research suggests that the overlapping expression of mmu-circRNA-015947 might be involved in the process of cerebral IRI and presents a novel molecular target for clinical therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Up-Regulation of Angiotensin-Converting Enzyme (ACE) Enhances Cell Proliferation and Predicts Poor Prognosis in Laryngeal Cancer.

    PubMed

    Han, Chao-Dong; Ge, Wen-Sheng

    2016-11-01

    BACKGROUND The angiotensin-converting enzyme (ACE, CD143) gene plays a crucial role in the pathology of many cancers. Previous studies mostly focused on the gene polymorphism, but the other functions of ACE have rarely been reported. The purpose of this study was to investigate the expression of ACE and its biological function, as well as its prognostic value, in laryngeal cancer. MATERIAL AND METHODS The expression of ACE was detected by quantitative real-time polymerase chain reaction (qRT-PCR) analysis in 106 patients with laryngeal cancer and 85 healthy people. Then the cell proliferation was estimated after the cell lines Hep-2 were transfected with pGL3-ACE and empty vector, respectively. In addition, the relationship between ACE expression and clinicopathologic characteristics was analyzed. Finally, Kaplan-Meier analysis was used to evaluate the overall survival of patients with different ACE expression, while Cox regression analysis was conducted to reveal the prognostic value of ACE in laryngeal cancer. RESULTS Our results demonstrate that ACE is over-expressed in laryngeal cancer and thus promotes cell proliferation. The up-regulation of ACE was significantly influenced by tumor stage and lymph node metastasis. Patients with high ACE expression had a shorter overall survival compared with those with low ACE expression according to Kaplan-Meier analysis. The ACE gene was also found to be an important factor in the prognosis of laryngeal cancer. CONCLUSIONS Our study shows that the ACE gene was up-regulated, which promoted the cell proliferation, and it could be an independent prognostic marker in laryngeal cancer.

  10. Impact of Pyrrolidine Dithiocarbamate and Interleukin-6 on Mammalian Target of Rapamycin Complex 1 Regulation and Global Protein TranslationS⃞

    PubMed Central

    Song, Shaoming; Abdelmohsen, Kotb; Zhang, Yongqing; Becker, Kevin G.; Gorospe, Myriam

    2011-01-01

    Interleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological, and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in signal transducer and activator of transcription-3 activation and downstream signaling. To further elucidate the biological properties of PDTC, global gene expression profiling of human HepG2 hepatocellular carcinoma cells was carried out after treatment with PDTC or IL-6 for up to 8 h. Through an unbiased pathway analysis method, gene array analysis showed dramatic and temporal differences in expression changes in response to PDTC versus IL-6. A significant number of genes associated with metabolic pathways, inflammation, translation, and mitochondrial function were changed, with ribosomal protein genes and DNA damage-inducible transcript 4 protein (DDIT4) primarily up-regulated with PDTC but down-regulated with IL-6. Quantitative polymerase chain reaction and Western blot analyses validated the microarray data and showed the reciprocal expression pattern of the mammalian target of rapamycin (mTOR)-negative regulator DDIT4 in response to PDTC versus IL-6. Cell treatment with PDTC resulted in a rapid and sustained activation of Akt and subsequently blocked the IL-6-mediated increase in mTOR complex 1 function through up-regulation in DDIT4 expression. Conversely, down-regulation of DDIT4 with small interfering RNA dampened the capacity of PDTC to block IL-6-dependent mTOR activation. The overall protein biosynthetic capacity of the cells was severely blunted by IL-6 but increased in a rapamycin-independent pathway by PDTC. These results demonstrate a critical effect of PDTC on mTOR complex 1 function and provide evidence that PDTC can reverse IL-6-related signaling via induction of DDIT4. PMID:21917559

  11. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  12. A microRNA expression signature of the postprandial state in response to a high-saturated-fat challenge.

    PubMed

    Lopez, Sergio; Bermudez, Beatriz; Montserrat-de la Paz, Sergio; Abia, Rocio; Muriana, Francisco J G

    2018-07-01

    The postprandial hypertriglyceridemia is an important and largely silent disturbance involved in the genesis of numerous pathological conditions. Exaggerated and prolonged states of postprandial hypertriglyceridemia are frequently related to the ingestion of meals enriched in saturated fatty acids (SFAs). MicroRNAs are noncoding RNAs that function as gene regulators and play significant roles in both health and disease. However, differential miRNA expression between fasting and postprandial states has never been elucidated. Here, we studied the impact of a high-saturated-fat meal, mainly rich in palmitic acid, on the miRNA signature in peripheral blood mononuclear cells (PBMCs) of nine male healthy individuals in the postprandial period by using a two-step analysis: miRNA array and validation through quantitative real-time polymerase chain reaction. Compared with miRNA expression signature in PBMCs at fasting, 36 miRNAs were down-regulated and 43 miRNAs were up-regulated in PBMCs at postprandial hypertriglyceridemic peak. Six chromosomes (3, 7, 8, 12, 14 and 19) had nearly half (48.1%) of dysregulated miRNA-gene-containing regions. Down-regulated miR-300 and miR-369-3p and up-regulated miR-495-3p, miR-129-5p and miR-7-2-3p had the highest number of target genes. The differentially expressed miRNAs and their predicted target genes involved pathways in cancer, MAPK signaling pathway, endocytosis and axon guidance. Only down-regulated miRNAs notably targeted PI3K-Akt signaling pathways, whereas only up-regulated miRNAs targeted focal adhesion, Wnt signaling pathway, transcriptional misregulation in cancer and ubiquitin-mediated proteolysis. This is the first study of miRNA expression analysis of human PBMCs during postprandial hypertriglyceridemia and offers insight into new potential mechanisms by which dietary SFAs influence health or disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon).

    PubMed

    Zhang, Fantao; Zhou, Yi; Zhang, Meng; Luo, Xiangdong; Xie, Jiankun

    2017-06-30

    Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice ( Oryza rufipogon , DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars. © 2017 The Author(s).

  14. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes.

    PubMed

    Hermans, Christian; Vuylsteke, Marnik; Coppens, Frederik; Craciun, Adrian; Inzé, Dirk; Verbruggen, Nathalie

    2010-07-01

    *Plant growth and development ultimately depend on environmental variables such as the availability of essential minerals. Unravelling how nutrients affect gene expression will help to understand how they regulate plant growth. *This study reports the early transcriptomic response to magnesium (Mg) deprivation in Arabidopsis. Whole-genome transcriptome was studied in the roots and young mature leaves 4, 8 and 28 h after the removal of Mg from the nutrient solution. *The highest number of regulated genes was first observed in the roots. Contrary to other mineral deficiencies, Mg depletion did not induce a higher expression of annotated genes in Mg uptake. Remarkable responses include the perturbation of the central oscillator of the circadian clock in roots and the triggering of abscisic acid (ABA) signalling, with half of the up-regulated Mg genes in leaves being ABA-responsive. However, no change in ABA content was observed. *The specificity of the response of some Mg-regulated genes was challenged by studying their expression after other mineral deficiencies and environmental stresses. The possibility to develop markers for Mg incipient deficiency is discussed here.

  15. Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress.

    PubMed

    Slattery, Martha L; Pellatt, Daniel F; Mullany, Lila E; Wolff, Roger K

    2015-01-01

    Several diet and lifestyle factors may impact health by influencing oxidative stress levels. We hypothesize that level of cigarette smoking, alcohol, anti-inflammatory drugs, and diet alter gene expression. We analyzed RNA-seq data from 144 colon cancer patients who had information on recent cigarette smoking, recent alcohol consumption, diet, and recent aspirin/non-steroidal anti-inflammatory use. Using a false discovery rate of 0.1, we evaluated gene differential expression between high and low levels of exposure using DESeq2. Ingenuity Pathway Analysis (IPA) was used to determine networks associated with de-regulated genes in our data. We identified 46 deregulated genes associated with recent cigarette use; these genes enriched causal networks regulated by TEK and MAP2K3. Different differentially expressed genes were associated with type of alcohol intake; five genes were associated with total alcohol, six were associated with beer intake, six were associated with wine intake, and four were associated with liquor consumption. Recent use of aspirin and/or ibuprofen was associated with differential expression of TMC06, ST8SIA4, and STEAP3 while a summary oxidative balance score (OBS) was associated with SYCP3, HDX, and NRG4 (all up-regulated with greater oxidative balance). Of the dietary antioxidants and carotenoids evaluated only intake of beta carotene (1 gene), Lutein/Zeaxanthine (5 genes), and Vitamin E (4 genes) were associated with differential gene expression. There were similarities in biological function of de-regulated genes associated with various dietary and lifestyle factors. Our data support the hypothesis that diet and lifestyle factors associated with oxidative stress can alter gene expression. However genes altered were unique to type of alcohol and type of antioxidant. Because of potential differences in associations observed between platforms these findings need replication in other populations.

  16. Restoring Effects of Natural Anti-Oxidant Quercetin on Cellular Senescent Human Dermal Fibroblasts.

    PubMed

    Sohn, Eun-Ju; Kim, Jung Min; Kang, Se-Hui; Kwon, Joseph; An, Hyun Joo; Sung, Jung-Suk; Cho, Kyung A; Jang, Ik-Soon; Choi, Jong-Soon

    2018-05-08

    The oxidative damage initiated by reactive oxygen species (ROS) is a major contributor to the functional decline and disability that characterizes aging. The anti-oxidant flavonoid, quercetin, is a plant polyphenol that may be beneficial for retarding the aging process. We examined the restoring properties of quercetin on human dermal fibroblasts (HDFs). Quercetin directly reduced either intracellular or extracellular ROS levels in aged HDFs. To find the aging-related target genes by quercetin, microarray analysis was performed and two up-regulated genes LPL and KCNE2 were identified. Silencing LPL increased the expression levels of senescence proteins such as p16 INK4A and p53 and silencing KCNE2 reversed gene expressions of EGR1 and p-ERK in quercetin-treated aged HDFs. Silencing of LPL and KCNE2 decreased the expression levels of antioxidant enzymes such as superoxide dismutase and catalase. Also, the mitochondrial dysfunction in aged HDFs was ameliorated by quercetin treatment. Taken together, these results suggest that quercetin has restoring effect on the cellular senescence by down-regulation of senescence activities and up-regulation of the gene expressions of anti-oxidant enzymes in aged HDFs.

  17. Effect of hypergravity on lignin formation and expression of lignin-related genes in inflorescence stems of an ethylene-insensitive Arabidopsis mutant ein3-1

    NASA Astrophysics Data System (ADS)

    Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro

    Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.

  18. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  19. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    PubMed

    Burtnick, Mary N; Brett, Paul J

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  20. Analysis of the Expression of Anthocyanin Pathway Genes in Developing Vitis vinifera L. cv Shiraz Grape Berries and the Implications for Pathway Regulation.

    PubMed Central

    Boss, P. K.; Davies, C.; Robinson, S. P.

    1996-01-01

    Anthocyanin synthesis in Vitis vinifera L. cv Shiraz grape berries began 10 weeks postflowering and continued throughout berry ripening. Expression of seven genes of the anthocyanin biosynthetic pathway (phenylalanine ammonia lyase [PAL], chalcone synthase [CHS], chalcone isomerase [CHI], flavanone-3-hydroxylase [F3H], dihydroflavonol 4-reductase [DFR], leucoanthocyanidin dioxygen-ase [LDOX], and UDP glucose-flavonoid 3-o-glucosyl transferase [UFGT]) was determined. In flowers and grape berry skins, expression of all of the genes, except UFGT, was detected up to 4 weeks postflowering, followed by a reduction in this expression 6 to 8 weeks postflowering. Expression of CHS, CHI, F3H, DFR, LDOX, and UFGT then increased 10 weeks postflowering, coinciding with the onset of anthocyanin synthesis. In grape berry flesh, no PAL or UFGT expression was detected at any stage of development, but CHS, CHI, F3H, DFR, and LDOX were expressed up to 4 weeks postflowering. These results indicate that the onset of anthocyanin synthesis in ripening grape berry skins coincides with a coordinated increase in expression of a number of genes in the anthocyanin biosynthetic pathway, suggesting the involvement of regulatory genes. UFGT is regulated independently of the other genes, suggesting that in grapes the major control point in this pathway is later than that observed in maize, petunia, and snapdragon. PMID:12226348

  1. Gene expression networks underlying ovarian development in wild largemouth bass (Micropterus salmoides).

    PubMed

    Martyniuk, Christopher J; Prucha, Melinda S; Doperalski, Nicholas J; Antczak, Philipp; Kroll, Kevin J; Falciani, Francesco; Barber, David S; Denslow, Nancy D

    2013-01-01

    Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks. Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.

  2. Developmental and Wound-, Cold-, Desiccation-, Ultraviolet-B-Stress-Induced Modulations in the Expression of the Petunia Zinc Finger Transcription Factor Gene ZPT2-21

    PubMed Central

    van der Krol, Alexander R.; van Poecke, Remco M.P.; Vorst, Oscar F.J.; Voogt, Charlotte; van Leeuwen, Wessel; Borst-Vrensen, Tanja W.M.; Takatsuji, Hiroshi; van der Plas, Linus H.W.

    1999-01-01

    The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia. PMID:10594102

  3. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412

  4. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner

    PubMed Central

    Gertz, Jason; Reddy, Timothy E.; Varley, Katherine E.; Garabedian, Michael J.; Myers, Richard M.

    2012-01-01

    Endogenous estrogens that are synthesized in the body impact gene regulation by activating estrogen receptors in diverse cell types. Exogenous compounds that have estrogenic properties can also be found circulating in the blood in both children and adults. The genome-wide impact of these environmental estrogens on gene regulation is unclear. To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq to identify estrogen receptor 1 (ESR1; previously estrogen receptor α) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ESR1 binding sites and >50 gene expression changes, representing a subset of E2-induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ESR1 binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ESR1 binding site but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ESR1 on a genome-wide scale, although with lower potency resulting in less ESR1 binding sites and less gene expression changes compared to the endogenous estrogen, E2. PMID:23019147

  5. Modulating prime molecular expressions and in vitro wound healing rate in keratinocyte (HaCaT) population under characteristic honey dilutions.

    PubMed

    Chaudhary, Amrita; Bag, Swarnendu; Mandal, Mousumi; Krishna Karri, Sri Phani; Barui, Ananya; Rajput, Monika; Banerjee, Provas; Sheet, Debdoot; Chatterjee, Jyotirmoy

    2015-05-26

    In traditional medicines honey is known for healing efficacy and vividly used as "Anupan" in Ayurvedic medicines appreciating roles in dilutions. Validating efficacy of physico-chemically characterized honey in dilutions, studies on in vitro wound healing and attainment of cellular confluence epithelial cells including expressions of cardinal genes is crucial. To evaluate effects of characterized honey in varied dilutions on cellular viability, in vitro wound healing and modulation of prime epithelial gene expressions. Six Indian honey-samples from different sources were physico-chemically characterized and optimal one was explored in dilutions (v/v%) through in vitro studies on human epithelial (HaCaT) cells for viability, wound healing and expressions of genes p63, E-cadherin, β-catenin, GnT-III and GnT-V. Studied honey samples (i.e. A-F) depicted range of pH (2-4), water (12.48-23.95), electrical conductivity (2.57-14.34), carbohydrate (68.73-98.65), protein (.316-5.36) and antioxidant potential. Though sample A and F showed physico-chemical proximity, but overall bio-impact of the earlier was better, thus studied in 8-.1% (v/v) dilution range. Four dilutions (.01, .04, .1, .25 v/v%) augmented cellular viability but in vitro wound healing was fastest (p<.05) under .1%. Such efficacy was further documented for p63 up-regulation by immunocytochemistry and mRNA studies. The E-cadherin and β-catenin mRNA-expressions were also up-regulated and their proteins were predominantly cytoplasmic. E-cadherin up-regulation was corroborative with down-regulation and up-regulation of GnT-III and GnT-V respectively. Present study illustrated efficacy of particular honey dilution (.1%) with characteristic free radical scavenging activity in facilitating cell proliferation and attainment of confluence towards faster wound healing and modulation of cardinal epithelial genes (viz. p63, E-cadherin, β-catenin, Gnt-III and V). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Transcriptional changes of rice in response to rice black-streaked dwarf virus.

    PubMed

    Ahmed, Mohamed M S; Ji, Wen; Wang, Muyue; Bian, Shiquan; Xu, Meng; Wang, Weiyun; Zhang, Jiangxiang; Xu, Zhihao; Yu, Meimei; Liu, Qiaoquan; Zhang, Changquan; Zhang, Honggen; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu

    2017-09-10

    Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the understanding of the regulatory mechanisms involved in rice-RBSDV interaction and the biological basis of rice black-streaked dwarf disease development in rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Egr-1: A Candidate Transcription Factor Involved in Molecular Processes Underlying Time-Memory.

    PubMed

    Shah, Aridni; Jain, Rikesh; Brockmann, Axel

    2018-01-01

    In honey bees, continuous foraging is accompanied by a sustained up-regulation of the immediate early gene Egr-1 (early growth response protein-1) and candidate downstream genes involved in learning and memory. Here, we present a series of feeder training experiments indicating that Egr-1 expression is highly correlated with the time and duration of training even in the absence of the food reward. Foragers that were trained to visit a feeder over the whole day and then collected on a day without food presentation showed Egr-1 up-regulation over the whole day with a peak expression around 14:00. When exposed to a time-restricted feeder presentation, either 2 h in the morning or 2 h in the evening, Egr-1 expression in the brain was up-regulated only during the hours of training. Foragers that visited a feeder in the morning as well as in the evening showed two peaks of Egr-1 expression. Finally, when we prevented time-trained foragers from leaving the colony using artificial rain, Egr-1 expression in the brains was still slightly but significantly up-regulated around the time of feeder training. In situ hybridization studies showed that active foraging and time-training induced Egr-1 up-regulation occurred in the same brain areas, preferentially the small Kenyon cells of the mushroom bodies and the antennal and optic lobes. Based on these findings we propose that foraging induced Egr-1 expression can get regulated by the circadian clock after time-training over several days and Egr-1 is a candidate transcription factor involved in molecular processes underlying time-memory.

  8. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens

    PubMed Central

    Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu

    2016-01-01

    Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic stress and hormone-related genes were firstly founded response to FZB42 volatiles. PMID:27513952

  9. Opiorphin is a master regulator of the hypoxic response in corporal smooth muscle cells.

    PubMed

    Fu, Shibo; Tar, Moses Tarndie; Melman, Arnold; Davies, Kelvin Paul

    2014-08-01

    Men with sickle cell disease (SCD) risk developing priapism. Recognizing that SCD is a disease of hypoxia, we investigated the effect of hypoxia on gene expression in corporal smooth muscle (CSM) cells. Rat CSM cells in vitro were treated with CoCl2 or low oxygen tension to mimic hypoxia. Hypoxic conditions increased expression of genes previously associated with priapism in animal models. Variable coding sequence a1 (Vcsa1; the rat opiorphin homologue, sialorphin), hypoxia-inducible factor 1a (Hif-1a), and A2B adenosine receptor (a2br) were increased by 10-, 4-, and 6-fold, respectively, by treatment with CoCl2, whereas low oxygen tension caused increases in expression of 3-, 4-, and 1.5-fold, respectively. Sialorphin-treated CSM cells increased expression of Hif-1a and a2br by 4-fold, and vcsa1-siRNA treatment reduced expression by ∼50%. Using a Hif-1a inhibitor, we demonstrated up-regulation of a2br by sialorphin is dependent on Hif-1a, and knockdown of vcsa1 expression with vcsa1-siRNA demonstrated that hypoxic-up-regulation of Hif-1a is dependent on vcsa1. In CSM from a SCD mouse, there was 15-fold up-regulation of opiorphin at a life stage prior to priapism. We conclude that in CSM, opiorphins are master regulators of the hypoxic response. Opiorphin up-regulation in response to SCD-associated hypoxia activates CSM "relaxant" pathways; excessive activation of these pathways results in priapism. © FASEB.

  10. Gene function in early mouse embryonic stem cell differentiation

    PubMed Central

    Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2007-01-01

    Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database. PMID:17394647

  11. Effects of Chronic Ascariasis and Trichuriasis on Cytokine Production and Gene Expression in Human Blood: A Cross-Sectional Study

    PubMed Central

    Benitez, Susana; Broncano, Nely; Chico, Martha E.; Vaca, Maritza; Alexander, Neal; Lewis, David J.; Dougan, Gordon; Cooper, Philip J.

    2011-01-01

    Background Chronic soil-transmitted helminth (STH) infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood. Methodology/Principal Findings Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups) and chronic STH infection (chronic vs. combined light and uninfected groups). The chronic STH infection effect was associated with elevated production of GM-CSF (P = 0.007), IL-2 (P = 0.03), IL-5 (P = 0.01), and IL-10 (P = 0.01). Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P = 0.03; CCL23, P = 0.008, HRK, P = 0.005), down-regulation of microRNA hsa-let-7d (P = 0.01) and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P = 0.0002; RNASE2, up-regulated, P = 0.009; RNASE3, up-regulated, p = 0.03). Conclusions/Significance Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a modified Th2 immune response during chronic STH infections could explain the systemic immunologic effects that have been associated with these infections such as impaired immune responses to vaccines and the suppression of inflammatory diseases. PMID:21666788

  12. Specialized Motor-Driven dusp1 Expression in the Song Systems of Multiple Lineages of Vocal Learning Birds

    PubMed Central

    Horita, Haruhito; Kobayashi, Masahiko; Liu, Wan-chun; Oka, Kotaro; Jarvis, Erich D.; Wada, Kazuhiro

    2012-01-01

    Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits. PMID:22876306

  13. Exploring Regulatory Mechanisms of Atrial Myocyte Hypertrophy of Mitral Regurgitation through Gene Expression Profiling Analysis: Role of NFAT in Cardiac Hypertrophy

    PubMed Central

    Chang, Tzu-Hao; Chen, Mien-Cheng; Chang, Jen-Ping; Huang, Hsien-Da; Ho, Wan-Chun; Lin, Yu-Sheng; Pan, Kuo-Li; Huang, Yao-Kuang; Liu, Wen-Hao; Wu, Chia-Chen

    2016-01-01

    Background Left atrial enlargement in mitral regurgitation (MR) predicts a poor prognosis. The regulatory mechanisms of atrial myocyte hypertrophy of MR patients remain unknown. Methods and Results This study comprised 14 patients with MR, 7 patients with aortic valve disease (AVD), and 6 purchased samples from normal subjects (NC). We used microarrays, enrichment analysis and quantitative RT-PCR to study the gene expression profiles in the left atria. Microarray results showed that 112 genes were differentially up-regulated and 132 genes were differentially down-regulated in the left atria between MR patients and NC. Enrichment analysis of differentially expressed genes demonstrated that “NFAT in cardiac hypertrophy” pathway was not only one of the significant associated canonical pathways, but also the only one predicted with a non-zero score of 1.34 (i.e. activated) through Ingenuity Pathway Analysis molecule activity predictor. Ingenuity Pathway Analysis Global Molecular Network analysis exhibited that the highest score network also showed high association with cardiac related pathways and functions. Therefore, 5 NFAT associated genes (PPP3R1, PPP3CB, CAMK1, MEF2C, PLCE1) were studies for validation. The mRNA expressions of PPP3CB and MEF2C were significantly up-regulated, and CAMK1 and PPP3R1 were significantly down-regulated in MR patients compared to NC. Moreover, MR patients had significantly increased mRNA levels of PPP3CB, MEF2C and PLCE1 compared to AVD patients. The atrial myocyte size of MR patients significantly exceeded that of the AVD patients and NC. Conclusions Differentially expressed genes in the “NFAT in cardiac hypertrophy” pathway may play a critical role in the atrial myocyte hypertrophy of MR patients. PMID:27907007

  14. Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma.

    PubMed

    Nwosu, Zeribe Chike; Megger, Dominik Andre; Hammad, Seddik; Sitek, Barbara; Roessler, Stephanie; Ebert, Matthias Philip; Meyer, Christoph; Dooley, Steven

    2017-09-01

    Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC). We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers ( ECM2 and MMP9) (Pearson correlation P < .05) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes (n = 284) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts.

  15. Campylobacter jejuni transcriptome changes during loss of culturability in water

    PubMed Central

    Bronowski, Christina; Mustafa, Kasem; Goodhead, Ian; James, Chloe E.; Nelson, Charlotte; Lucaci, Anita; Wigley, Paul; Humphrey, Tom J.; Williams, Nicola J.; Winstanley, Craig

    2017-01-01

    Background Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three, strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene expression. PMID:29190673

  16. IL-17A Mediates a Selective Gene Expression Profile in Asthmatic Human Airway Smooth Muscle Cells

    PubMed Central

    Dragon, Stéphane; Hirst, Stuart J.; Lee, Tak H.

    2014-01-01

    Airway smooth muscle (ASM) cells are thought to contribute to the pathogenesis of allergic asthma by orchestrating and perpetuating airway inflammation and remodeling responses. In this study, we evaluated the IL-17RA signal transduction and gene expression profile in ASM cells from subjects with mild asthma and healthy individuals. Human primary ASM cells were treated with IL-17A and probed by the Affymetrix GeneChip array, and gene targets were validated by real-time quantitative RT-PCR. Genomic analysis underlined the proinflammatory nature of IL-17A, as multiple NF-κB regulatory factors and chemokines were induced in ASM cells. Transcriptional regulators consisting of primary response genes were overrepresented and displayed dynamic expression profiles. IL-17A poorly enhanced IL-1β or IL-22 gene responses in ASM cells from both subjects with mild asthma and healthy donors. Interestingly, protein modifications to the NF-κB regulatory network were not observed after IL-17A stimulation, although oscillations in IκBε expression were detected. ASM cells from subjects with mild asthma up-regulated more genes with greater overall variability in response to IL-17A than from healthy donors. Finally, in response to IL-17A, ASM cells displayed rapid activation of the extracellular signal–regulated kinase/ribosomal S6 kinase signaling pathway and increased nuclear levels of phosphorylated extracellular signal–regulated kinase. Taken together, our results suggest that IL-17A mediated modest gene expression response, which, in cooperation with the NF-κB signaling network, may regulate the gene expression profile in ASM cells. PMID:24393021

  17. Oxygen and tissue culture affect placental gene expression.

    PubMed

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Transcriptome analysis reveals mucin 4 to be highly associated with periodontitis and identifies pleckstrin as a link to systemic diseases

    PubMed Central

    Lundmark, Anna; Davanian, Haleh; Båge, Tove; Johannsen, Gunnar; Koro, Catalin; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2015-01-01

    The multifactorial chronic inflammatory disease periodontitis, which is characterized by destruction of tooth-supporting tissues, has also been implicated as a risk factor for various systemic diseases. Although periodontitis has been studied extensively, neither disease-specific biomarkers nor therapeutic targets have been identified, nor its link with systemic diseases. Here, we analyzed the global transcriptome of periodontitis and compared its gene expression profile with those of other inflammatory conditions, including cardiovascular disease (CVD), rheumatoid arthritis (RA), and ulcerative colitis (UC). Gingival biopsies from 62 patients with periodontitis and 62 healthy subjects were subjected to RNA sequencing. The up-regulated genes in periodontitis were related to inflammation, wounding and defense response, and apoptosis, whereas down-regulated genes were related to extracellular matrix organization and structural support. The most highly up-regulated gene was mucin 4 (MUC4), and its protein product was confirmed to be over-expressed in periodontitis. When comparing the expression profile of periodontitis with other inflammatory diseases, several gene ontology categories, including inflammatory response, cell death, cell motion, and homeostatic processes, were identified as common to all diseases. Only one gene, pleckstrin (PLEK), was significantly overexpressed in periodontitis, CVD, RA, and UC, implicating this gene as an important networking link between these chronic inflammatory diseases. PMID:26686060

  19. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation.

    PubMed

    Shaw, Lindsay M; McIntyre, C Lynne; Gresshoff, Peter M; Xue, Gang-Ping

    2009-11-01

    DNA binding with One Finger (Dof) protein is a plant-specific transcription factor implicated in the regulation of many important plant-specific processes, including photosynthesis and carbohydrate metabolism. This study has identified 31 Dof genes (TaDof) in bread wheat through extensive analysis of current nucleotide databases. Phylogenetic analysis suggests that the TaDof family can be divided into four clades. Expression analysis of the TaDof family across all major organs using quantitative RT-PCR and searches of the wheat genome array database revealed that the majority of TaDof members were predominately expressed in vegetative organs. A large number of TaDof members were down-regulated by drought and/or were responsive to the light and dark cycle. Further expression analysis revealed that light up-regulated TaDof members were highly correlated in expression with a number of genes that are involved in photosynthesis or sucrose transport. These data suggest that the TaDof family may have an important role in light-mediated gene regulation, including involvement in the photosynthetic process.

  20. Changes in gene expression of DOR and other thyroid hormone receptors in rat liver during acute-phase response

    PubMed Central

    Baumgartner, Bernhard G.; Naz, Naila; Sheikh, Nadeem; Moriconi, Federico; Ramadori, Giuliano

    2010-01-01

    Non-thyroidal illness is characterized by low tri-iodothyronine (T3) serum level under acute-phase conditions. We studied hepatic gene expression of the newly identified thyroid hormone receptor (TR) cofactor DOR/TP53INP2 together with TRs in a rat model of aseptic abscesses induced by injecting intramuscular turpentine-oil into each hind limb. A fast (4-6 h) decrease in the serum level of free thyroxine and free T3 was observed. By immunohistology, abundant DOR protein expression was detected in the nuclei of hepatocytes and ED-1+ (mononuclear phagocytes), CK-19+ (biliary cells), and SMA+ (mesenchymal cells of the portal tract) cells. DOR signal was reduced with a minimum at 6-12 h after the acute-phase reaction (APR). Immunohistology also showed a similar pattern of protein expression in TRα1 but without a significant change during APR. Transcripts specific for DOR, nuclear receptor co-repressor 1 (NCoR-1), and TRβ1 were down-regulated with a minimum at 6-12 h, whereas expression for TRα1 and TRα2 was slightly and significantly up-regulated, respectively, with a maximum at 24 h after APR was initiated. In cultured hepatocytes, acute-phase cytokines interleukin-1β (IL-1β) and IL-6 down-regulated DOR and TRβ1 at the mRNA level. Moreover, gene expression of DOR and TRs (TRα1, TRα2, and TRβ1) was up-regulated in hepatocytes by adding T3 to the culture medium; this up-regulation was almost completely blocked by treating the cells with IL-6. Thus, TRβ1, NCoR-1, and the recently identified DOR/TP53INP2 are abundantly expressed and down-regulated in liver cells during APR. Their down-regulation is attributable to the decreased serum level of thyroid hormones and most probably also to the direct action of the main acute-phase cytokines. PMID:20949361

Top