Sample records for updated adaptive learning

  1. Functionally dissociable influences on learning rate in a dynamic environment

    PubMed Central

    McGuire, Joseph T.; Nassar, Matthew R.; Gold, Joshua I.; Kable, Joseph W.

    2015-01-01

    Summary Maintaining accurate beliefs in a changing environment requires dynamically adapting the rate at which one learns from new experiences. Beliefs should be stable in the face of noisy data, but malleable in periods of change or uncertainty. Here we used computational modeling, psychophysics and fMRI to show that adaptive learning is not a unitary phenomenon in the brain. Rather, it can be decomposed into three computationally and neuroanatomically distinct factors that were evident in human subjects performing a spatial-prediction task: (1) surprise-driven belief updating, related to BOLD activity in visual cortex; (2) uncertainty-driven belief updating, related to anterior prefrontal and parietal activity; and (3) reward-driven belief updating, a context-inappropriate behavioral tendency related to activity in ventral striatum. These distinct factors converged in a core system governing adaptive learning. This system, which included dorsomedial frontal cortex, responded to all three factors and predicted belief updating both across trials and across individuals. PMID:25459409

  2. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    PubMed Central

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  3. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition.

    PubMed

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-06-13

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).

  4. Highly undersampled MR image reconstruction using an improved dual-dictionary learning method with self-adaptive dictionaries.

    PubMed

    Li, Jiansen; Song, Ying; Zhu, Zhen; Zhao, Jun

    2017-05-01

    Dual-dictionary learning (Dual-DL) method utilizes both a low-resolution dictionary and a high-resolution dictionary, which are co-trained for sparse coding and image updating, respectively. It can effectively exploit a priori knowledge regarding the typical structures, specific features, and local details of training sets images. The prior knowledge helps to improve the reconstruction quality greatly. This method has been successfully applied in magnetic resonance (MR) image reconstruction. However, it relies heavily on the training sets, and dictionaries are fixed and nonadaptive. In this research, we improve Dual-DL by using self-adaptive dictionaries. The low- and high-resolution dictionaries are updated correspondingly along with the image updating stage to ensure their self-adaptivity. The updated dictionaries incorporate both the prior information of the training sets and the test image directly. Both dictionaries feature improved adaptability. Experimental results demonstrate that the proposed method can efficiently and significantly improve the quality and robustness of MR image reconstruction.

  5. Designing an Adaptive Web-Based Learning System Based on Students' Cognitive Styles Identified Online

    ERIC Educational Resources Information Center

    Lo, Jia-Jiunn; Chan, Ya-Chen; Yeh, Shiou-Wen

    2012-01-01

    This study developed an adaptive web-based learning system focusing on students' cognitive styles. The system is composed of a student model and an adaptation model. It collected students' browsing behaviors to update the student model for unobtrusively identifying student cognitive styles through a multi-layer feed-forward neural network (MLFF).…

  6. Embracing Change: Adapting and Evolving Your Distance Learning Library Services to Meet the New ACRL Distance Learning Library Services Standards

    ERIC Educational Resources Information Center

    Marcum, Brad

    2016-01-01

    This article examines the update and revision of the current Association of College and Research Libraries (ACRL) Distance Learning Standards that has been proposed and submitted to the ACRL Standards Committee. An in-depth analysis of the update is included, along with some comparisons between the old and new. Practical advice detailing…

  7. Electronic Education System Model-2

    ERIC Educational Resources Information Center

    Güllü, Fatih; Kuusik, Rein; Laanpere, Mart

    2015-01-01

    In this study we presented new EES Model-2 extended from EES model for more productive implementation in e-learning process design and modelling in higher education. The most updates were related to uppermost instructional layer. We updated learning processes object of the layer for adaptation of educational process for young and old people,…

  8. Online adaptation and over-trial learning in macaque visuomotor control.

    PubMed

    Braun, Daniel A; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten

    2011-01-01

    When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning.

  9. Online Adaptation and Over-Trial Learning in Macaque Visuomotor Control

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Paz, Rony; Vaadia, Eilon; Rotter, Stefan; Mehring, Carsten

    2011-01-01

    When faced with unpredictable environments, the human motor system has been shown to develop optimized adaptation strategies that allow for online adaptation during the control process. Such online adaptation is to be contrasted to slower over-trial learning that corresponds to a trial-by-trial update of the movement plan. Here we investigate the interplay of both processes, i.e., online adaptation and over-trial learning, in a visuomotor experiment performed by macaques. We show that simple non-adaptive control schemes fail to perform in this task, but that a previously suggested adaptive optimal feedback control model can explain the observed behavior. We also show that over-trial learning as seen in learning and aftereffect curves can be explained by learning in a radial basis function network. Our results suggest that both the process of over-trial learning and the process of online adaptation are crucial to understand visuomotor learning. PMID:21720526

  10. Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.

    PubMed

    Fung, Wai-keung; Liu, Yun-hui

    2003-12-01

    Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks.

  11. Stress attenuates the flexible updating of aversive value

    PubMed Central

    Raio, Candace M.; Hartley, Catherine A.; Orederu, Temidayo A.; Li, Jian; Phelps, Elizabeth A.

    2017-01-01

    In a dynamic environment, sources of threat or safety can unexpectedly change, requiring the flexible updating of stimulus−outcome associations that promote adaptive behavior. However, aversive contexts in which we are required to update predictions of threat are often marked by stress. Acute stress is thought to reduce behavioral flexibility, yet its influence on the modulation of aversive value has not been well characterized. Given that stress exposure is a prominent risk factor for anxiety and trauma-related disorders marked by persistent, inflexible responses to threat, here we examined how acute stress affects the flexible updating of threat responses. Participants completed an aversive learning task, in which one stimulus was probabilistically associated with an electric shock, while the other stimulus signaled safety. A day later, participants underwent an acute stress or control manipulation before completing a reversal learning task during which the original stimulus−outcome contingencies switched. Skin conductance and neuroendocrine responses provided indices of sympathetic arousal and stress responses, respectively. Despite equivalent initial learning, stressed participants showed marked impairments in reversal learning relative to controls. Additionally, reversal learning deficits across participants were related to heightened levels of alpha-amylase, a marker of noradrenergic activity. Finally, fitting arousal data to a computational reinforcement learning model revealed that stress-induced reversal learning deficits emerged from stress-specific changes in the weight assigned to prediction error signals, disrupting the adaptive adjustment of learning rates. Our findings provide insight into how stress renders individuals less sensitive to changes in aversive reinforcement and have implications for understanding clinical conditions marked by stress-related psychopathology. PMID:28973957

  12. A linear recurrent kernel online learning algorithm with sparse updates.

    PubMed

    Fan, Haijin; Song, Qing

    2014-02-01

    In this paper, we propose a recurrent kernel algorithm with selectively sparse updates for online learning. The algorithm introduces a linear recurrent term in the estimation of the current output. This makes the past information reusable for updating of the algorithm in the form of a recurrent gradient term. To ensure that the reuse of this recurrent gradient indeed accelerates the convergence speed, a novel hybrid recurrent training is proposed to switch on or off learning the recurrent information according to the magnitude of the current training error. Furthermore, the algorithm includes a data-dependent adaptive learning rate which can provide guaranteed system weight convergence at each training iteration. The learning rate is set as zero when the training violates the derived convergence conditions, which makes the algorithm updating process sparse. Theoretical analyses of the weight convergence are presented and experimental results show the good performance of the proposed algorithm in terms of convergence speed and estimation accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Technology Enhanced Learning: Best Practices

    ERIC Educational Resources Information Center

    Lytras, Miltiadis D., Ed.; Gasevic, Dragan, Ed.; Ordonez de Pablos, Patricia, Ed.; Huang, Weihong, Ed.

    2008-01-01

    With the shift towards the knowledge society, the change of working conditions, and the high-speed evolution of information and communication technologies, peoples' knowledge and skills need continuous updating. Learning based on collaborative working, creativity, multidisciplinarity, adaptiveness, intercultural communication, and problem solving…

  14. Continuous-time adaptive critics.

    PubMed

    Hanselmann, Thomas; Noakes, Lyle; Zaknich, Anthony

    2007-05-01

    A continuous-time formulation of an adaptive critic design (ACD) is investigated. Connections to the discrete case are made, where backpropagation through time (BPTT) and real-time recurrent learning (RTRL) are prevalent. Practical benefits are that this framework fits in well with plant descriptions given by differential equations and that any standard integration routine with adaptive step-size does an adaptive sampling for free. A second-order actor adaptation using Newton's method is established for fast actor convergence for a general plant and critic. Also, a fast critic update for concurrent actor-critic training is introduced to immediately apply necessary adjustments of critic parameters induced by actor updates to keep the Bellman optimality correct to first-order approximation after actor changes. Thus, critic and actor updates may be performed at the same time until some substantial error build up in the Bellman optimality or temporal difference equation, when a traditional critic training needs to be performed and then another interval of concurrent actor-critic training may resume.

  15. Discriminative clustering on manifold for adaptive transductive classification.

    PubMed

    Zhang, Zhao; Jia, Lei; Zhang, Min; Li, Bing; Zhang, Li; Li, Fanzhang

    2017-10-01

    In this paper, we mainly propose a novel adaptive transductive label propagation approach by joint discriminative clustering on manifolds for representing and classifying high-dimensional data. Our framework seamlessly combines the unsupervised manifold learning, discriminative clustering and adaptive classification into a unified model. Also, our method incorporates the adaptive graph weight construction with label propagation. Specifically, our method is capable of propagating label information using adaptive weights over low-dimensional manifold features, which is different from most existing studies that usually predict the labels and construct the weights in the original Euclidean space. For transductive classification by our formulation, we first perform the joint discriminative K-means clustering and manifold learning to capture the low-dimensional nonlinear manifolds. Then, we construct the adaptive weights over the learnt manifold features, where the adaptive weights are calculated through performing the joint minimization of the reconstruction errors over features and soft labels so that the graph weights can be joint-optimal for data representation and classification. Using the adaptive weights, we can easily estimate the unknown labels of samples. After that, our method returns the updated weights for further updating the manifold features. Extensive simulations on image classification and segmentation show that our proposed algorithm can deliver the state-of-the-art performance on several public datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.

    PubMed

    Lin, Chuan-Kai

    2005-04-01

    A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.

  17. The advantage of flexible neuronal tunings in neural network models for motor learning

    PubMed Central

    Marongelli, Ellisha N.; Thoroughman, Kurt A.

    2013-01-01

    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141

  18. Adaptive System Modeling for Spacecraft Simulation

    NASA Technical Reports Server (NTRS)

    Thomas, Justin

    2011-01-01

    This invention introduces a methodology and associated software tools for automatically learning spacecraft system models without any assumptions regarding system behavior. Data stream mining techniques were used to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). Evaluation on historical ISS telemetry data shows that adaptive system modeling reduces simulation error anywhere from 50 to 90 percent over existing approaches. The purpose of the methodology is to outline how someone can create accurate system models from sensor (telemetry) data. The purpose of the software is to support the methodology. The software provides analysis tools to design the adaptive models. The software also provides the algorithms to initially build system models and continuously update them from the latest streaming sensor data. The main strengths are as follows: Creates accurate spacecraft system models without in-depth system knowledge or any assumptions about system behavior. Automatically updates/calibrates system models using the latest streaming sensor data. Creates device specific models that capture the exact behavior of devices of the same type. Adapts to evolving systems. Can reduce computational complexity (faster simulations).

  19. Orbital frontal cortex updates state-induced value change for decision-making.

    PubMed

    Baltz, Emily T; Yalcinbas, Ege A; Renteria, Rafael; Gremel, Christina M

    2018-06-13

    Recent hypotheses have posited that orbital frontal cortex (OFC) is important for using inferred consequences to guide behavior. Less clear is OFC's contribution to goal-directed or model-based behavior, where the decision to act is controlled by previous experience with the consequence or outcome. Investigating OFC's role in learning about changed outcomes separate from decision-making is not trivial and often the two are confounded. Here we adapted an incentive learning task to mice, where we investigated processes controlling experience-based outcome updating independent from inferred action control. We found chemogenetic OFC attenuation did not alter the ability to perceive motivational state-induced changes in outcome value but did prevent the experience-based updating of this change. Optogenetic inhibition of OFC excitatory neuron activity selectively when experiencing an outcome change disrupted the ability to update, leaving mice unable to infer the appropriate behavior. Our findings support a role for OFC in learning that controls decision-making. © 2018, Baltz et al.

  20. The cerebellum does more than sensory prediction error-based learning in sensorimotor adaptation tasks.

    PubMed

    Butcher, Peter A; Ivry, Richard B; Kuo, Sheng-Han; Rydz, David; Krakauer, John W; Taylor, Jordan A

    2017-09-01

    Individuals with damage to the cerebellum perform poorly in sensorimotor adaptation paradigms. This deficit has been attributed to impairment in sensory prediction error-based updating of an internal forward model, a form of implicit learning. These individuals can, however, successfully counter a perturbation when instructed with an explicit aiming strategy. This successful use of an instructed aiming strategy presents a paradox: In adaptation tasks, why do individuals with cerebellar damage not come up with an aiming solution on their own to compensate for their implicit learning deficit? To explore this question, we employed a variant of a visuomotor rotation task in which, before executing a movement on each trial, the participants verbally reported their intended aiming location. Compared with healthy control participants, participants with spinocerebellar ataxia displayed impairments in both implicit learning and aiming. This was observed when the visuomotor rotation was introduced abruptly ( experiment 1 ) or gradually ( experiment 2 ). This dual deficit does not appear to be related to the increased movement variance associated with ataxia: Healthy undergraduates showed little change in implicit learning or aiming when their movement feedback was artificially manipulated to produce similar levels of variability ( experiment 3 ). Taken together the results indicate that a consequence of cerebellar dysfunction is not only impaired sensory prediction error-based learning but also a difficulty in developing and/or maintaining an aiming solution in response to a visuomotor perturbation. We suggest that this dual deficit can be explained by the cerebellum forming part of a network that learns and maintains action-outcome associations across trials. NEW & NOTEWORTHY Individuals with cerebellar pathology are impaired in sensorimotor adaptation. This deficit has been attributed to an impairment in error-based learning, specifically, from a deficit in using sensory prediction errors to update an internal model. Here we show that these individuals also have difficulty in discovering an aiming solution to overcome their adaptation deficit, suggesting a new role for the cerebellum in sensorimotor adaptation tasks. Copyright © 2017 the American Physiological Society.

  1. Success Factors for e-Learning in a Developing Country: A Case Study of Serbia

    ERIC Educational Resources Information Center

    Raspopovic, Miroslava; Jankulovic, Aleksandar; Runic, Jovana; Lucic, Vanja

    2014-01-01

    In this paper, DeLone and McLean's updated information system model was used to evaluate the success of an e-Learning system and its courses in a transitional country like Serbia. In order to adapt this model to an e-Learning system, suitable success metrics were chosen for each of the evaluation stages. Furthermore, the success metrics for…

  2. Taking Aim at the Cognitive Side of Learning in Sensorimotor Adaptation Tasks.

    PubMed

    McDougle, Samuel D; Ivry, Richard B; Taylor, Jordan A

    2016-07-01

    Sensorimotor adaptation tasks have been used to characterize processes responsible for calibrating the mapping between desired outcomes and motor commands. Research has focused on how this form of error-based learning takes place in an implicit and automatic manner. However, recent work has revealed the operation of multiple learning processes, even in this simple form of learning. This review focuses on the contribution of cognitive strategies and heuristics to sensorimotor learning, and how these processes enable humans to rapidly explore and evaluate novel solutions to enable flexible, goal-oriented behavior. This new work points to limitations in current computational models, and how these must be updated to describe the conjoint impact of multiple processes in sensorimotor learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    PubMed

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  4. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.

    PubMed

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-07-21

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.

  5. A meta-learning system based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  6. Learning Rate Updating Methods Applied to Adaptive Fuzzy Equalizers for Broadband Power Line Communications

    NASA Astrophysics Data System (ADS)

    Ribeiro, Moisés V.

    2004-12-01

    This paper introduces adaptive fuzzy equalizers with variable step size for broadband power line (PL) communications. Based on delta-bar-delta and local Lipschitz estimation updating rules, feedforward, and decision feedback approaches, we propose singleton and nonsingleton fuzzy equalizers with variable step size to cope with the intersymbol interference (ISI) effects of PL channels and the hardness of the impulse noises generated by appliances and nonlinear loads connected to low-voltage power grids. The computed results show that the convergence rates of the proposed equalizers are higher than the ones attained by the traditional adaptive fuzzy equalizers introduced by J. M. Mendel and his students. Additionally, some interesting BER curves reveal that the proposed techniques are efficient for mitigating the above-mentioned impairments.

  7. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  8. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

  9. Adapting to change: The role of the right hemisphere in mental model building and updating.

    PubMed

    Filipowicz, Alex; Anderson, Britt; Danckert, James

    2016-09-01

    We recently proposed that the right hemisphere plays a crucial role in the processes underlying mental model building and updating. Here, we review the evidence we and others have garnered to support this novel account of right hemisphere function. We begin by presenting evidence from patient work that suggests a critical role for the right hemisphere in the ability to learn from the statistics in the environment (model building) and adapt to environmental change (model updating). We then provide a review of neuroimaging research that highlights a network of brain regions involved in mental model updating. Next, we outline specific roles for particular regions within the network such that the anterior insula is purported to maintain the current model of the environment, the medial prefrontal cortex determines when to explore new or alternative models, and the inferior parietal lobule represents salient and surprising information with respect to the current model. We conclude by proposing some future directions that address some of the outstanding questions in the field of mental model building and updating. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. A Focus on Reward Prediction and the Lateral Habenula: Functional Alterations and the Behavioral Outcomes Induced by Drugs of Abuse.

    PubMed

    Graziane, Nicholas M; Neumann, Peter A; Dong, Yan

    2018-01-01

    The lateral habenula (LHb) regulates reward learning and controls the updating of reward-related information. Drugs of abuse have the capacity to hijack the cellular and neurocircuit mechanisms mediating reward learning, forming non-adaptable, compulsive behaviors geared toward obtaining illicit substances. Here, we discuss current findings demonstrating how drugs of abuse alter intrinsic and synaptic LHb neuronal function. Additionally, we discuss evidence for how drug-induced LHb alterations may affect the ability to predict reward, potentially facilitating an addiction-like state. Altogether, we combine ex vivo and in vivo results for an overview of how drugs of abuse alter LHb function and how these functional alterations affect the ability to learn and update behavioral responses to hedonic external stimuli.

  11. Adaptive Semantic and Social Web-based learning and assessment environment for the STEM

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Atchison, Chris; Sunderraman, Rajshekhar

    2014-05-01

    We are building a cloud- and Semantic Web-based personalized, adaptive learning environment for the STEM fields that integrates and leverages Social Web technologies to allow instructors and authors of learning material to collaborate in semi-automatic development and update of their common domain and task ontologies and building their learning resources. The semi-automatic ontology learning and development minimize issues related to the design and maintenance of domain ontologies by knowledge engineers who do not have any knowledge of the domain. The social web component of the personal adaptive system will allow individual and group learners to interact with each other and discuss their own learning experience and understanding of course material, and resolve issues related to their class assignments. The adaptive system will be capable of representing key knowledge concepts in different ways and difficulty levels based on learners' differences, and lead to different understanding of the same STEM content by different learners. It will adapt specific pedagogical strategies to individual learners based on their characteristics, cognition, and preferences, allow authors to assemble remotely accessed learning material into courses, and provide facilities for instructors to assess (in real time) the perception of students of course material, monitor their progress in the learning process, and generate timely feedback based on their understanding or misconceptions. The system applies a set of ontologies that structure the learning process, with multiple user friendly Web interfaces. These include the learning ontology (models learning objects, educational resources, and learning goal); context ontology (supports adaptive strategy by detecting student situation), domain ontology (structures concepts and context), learner ontology (models student profile, preferences, and behavior), task ontologies, technological ontology (defines devices and places that surround the student), pedagogy ontology, and learner ontology (defines time constraint, comment, profile).

  12. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks

    PubMed Central

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-01-01

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It’s theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods. PMID:27669250

  13. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks.

    PubMed

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-09-22

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.

  14. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    PubMed

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  15. Uncertainty, learning, and the optimal management of wildlife

    USGS Publications Warehouse

    Williams, B.K.

    2001-01-01

    Wildlife management is limited by uncontrolled and often unrecognized environmental variation, by limited capabilities to observe and control animal populations, and by a lack of understanding about the biological processes driving population dynamics. In this paper I describe a comprehensive framework for management that includes multiple models and likelihood values to account for structural uncertainty, along with stochastic factors to account for environmental variation, random sampling, and partial controllability. Adaptive optimization is developed in terms of the optimal control of incompletely understood populations, with the expected value of perfect information measuring the potential for improving control through learning. The framework for optimal adaptive control is generalized by including partial observability and non-adaptive, sample-based updating of model likelihoods. Passive adaptive management is derived as a special case of constrained adaptive optimization, representing a potentially efficient suboptimal alternative that nonetheless accounts for structural uncertainty.

  16. A New Concept Map Model for E-Learning Environments

    NASA Astrophysics Data System (ADS)

    Dattolo, Antonina; Luccio, Flaminia L.

    Web-based education enables learners and teachers to access a wide quantity of continuously updated educational sources. In order to support the learning process, a system has to provide some fundamental features, such as simple mechanisms for the identification of the collection of “interesting” documents, adequate structures for storing, organizing and visualizing these documents, and appropriate mechanisms for creating personalized adaptive paths and views for learners.

  17. Adaptive learning and control for MIMO system based on adaptive dynamic programming.

    PubMed

    Fu, Jian; He, Haibo; Zhou, Xinmin

    2011-07-01

    Adaptive dynamic programming (ADP) is a promising research field for design of intelligent controllers, which can both learn on-the-fly and exhibit optimal behavior. Over the past decades, several generations of ADP design have been proposed in the literature, which have demonstrated many successful applications in various benchmarks and industrial applications. While many of the existing researches focus on multiple-inputs-single-output system with steepest descent search, in this paper we investigate a generalized multiple-input-multiple-output (GMIMO) ADP design for online learning and control, which is more applicable to a wide range of practical real-world applications. Furthermore, an improved weight-updating algorithm based on recursive Levenberg-Marquardt methods is presented and embodied in the GMIMO approach to improve its performance. Finally, we test the performance of this approach based on a practical complex system, namely, the learning and control of the tension and height of the looper system in a hot strip mill. Experimental results demonstrate that the proposed approach can achieve effective and robust performance.

  18. Adaptive Event-Triggered Control Based on Heuristic Dynamic Programming for Nonlinear Discrete-Time Systems.

    PubMed

    Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo

    2017-07-01

    This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.

  19. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  20. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update

    NASA Astrophysics Data System (ADS)

    Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F.

    2018-06-01

    Objective. Most current electroencephalography (EEG)-based brain–computer interfaces (BCIs) are based on machine learning algorithms. There is a large diversity of classifier types that are used in this field, as described in our 2007 review paper. Now, approximately ten years after this review publication, many new algorithms have been developed and tested to classify EEG signals in BCIs. The time is therefore ripe for an updated review of EEG classification algorithms for BCIs. Approach. We surveyed the BCI and machine learning literature from 2007 to 2017 to identify the new classification approaches that have been investigated to design BCIs. We synthesize these studies in order to present such algorithms, to report how they were used for BCIs, what were the outcomes, and to identify their pros and cons. Main results. We found that the recently designed classification algorithms for EEG-based BCIs can be divided into four main categories: adaptive classifiers, matrix and tensor classifiers, transfer learning and deep learning, plus a few other miscellaneous classifiers. Among these, adaptive classifiers were demonstrated to be generally superior to static ones, even with unsupervised adaptation. Transfer learning can also prove useful although the benefits of transfer learning remain unpredictable. Riemannian geometry-based methods have reached state-of-the-art performances on multiple BCI problems and deserve to be explored more thoroughly, along with tensor-based methods. Shrinkage linear discriminant analysis and random forests also appear particularly useful for small training samples settings. On the other hand, deep learning methods have not yet shown convincing improvement over state-of-the-art BCI methods. Significance. This paper provides a comprehensive overview of the modern classification algorithms used in EEG-based BCIs, presents the principles of these methods and guidelines on when and how to use them. It also identifies a number of challenges to further advance EEG classification in BCI.

  1. Reorganization of finger coordination patterns during adaptation to rotation and scaling of a newly learned sensorimotor transformation.

    PubMed

    Liu, Xiaolin; Mosier, Kristine M; Mussa-Ivaldi, Ferdinando A; Casadio, Maura; Scheidt, Robert A

    2011-01-01

    We examined how people organize redundant kinematic control variables (finger joint configurations) while learning to make goal-directed movements of a virtual object (a cursor) within a low-dimensional task space (a computer screen). Subjects participated in three experiments performed on separate days. Learning progressed rapidly on day 1, resulting in reduced target capture error and increased cursor trajectory linearity. On days 2 and 3, one group of subjects adapted to a rotation of the nominal map, imposed either stepwise or randomly over trials. Another group experienced a scaling distortion. We report two findings. First, adaptation rates and memory-dependent motor command updating depended on distortion type. Stepwise application and removal of the rotation induced a marked increase in finger motion variability but scaling did not, suggesting that the rotation initiated a more exhaustive search through the space of viable finger motions to resolve the target capture task than did scaling. Indeed, subjects formed new coordination patterns in compensating the rotation but relied on patterns established during baseline practice to compensate the scaling. These findings support the idea that the brain compensates direction and extent errors separately and in computationally distinct ways, but are inconsistent with the idea that once a task is learned, command updating is limited to those degrees of freedom contributing to performance (thereby minimizing energetic or similar costs of control). Second, we report that subjects who learned a scaling while moving to just one target generalized more narrowly across directions than those who learned a rotation. This contrasts with results from whole-arm reaching studies, where a learned scaling generalizes more broadly across direction than rotation. Based on inverse- and forward-dynamics analyses of reaching with the arm, we propose the difference in results derives from extensive exposure in reaching with familiar arm dynamics versus the novelty of the manual task.

  2. Optimal structure of metaplasticity for adaptive learning

    PubMed Central

    2017-01-01

    Learning from reward feedback in a changing environment requires a high degree of adaptability, yet the precise estimation of reward information demands slow updates. In the framework of estimating reward probability, here we investigated how this tradeoff between adaptability and precision can be mitigated via metaplasticity, i.e. synaptic changes that do not always alter synaptic efficacy. Using the mean-field and Monte Carlo simulations we identified ‘superior’ metaplastic models that can substantially overcome the adaptability-precision tradeoff. These models can achieve both adaptability and precision by forming two separate sets of meta-states: reservoirs and buffers. Synapses in reservoir meta-states do not change their efficacy upon reward feedback, whereas those in buffer meta-states can change their efficacy. Rapid changes in efficacy are limited to synapses occupying buffers, creating a bottleneck that reduces noise without significantly decreasing adaptability. In contrast, more-populated reservoirs can generate a strong signal without manifesting any observable plasticity. By comparing the behavior of our model and a few competing models during a dynamic probability estimation task, we found that superior metaplastic models perform close to optimally for a wider range of model parameters. Finally, we found that metaplastic models are robust to changes in model parameters and that metaplastic transitions are crucial for adaptive learning since replacing them with graded plastic transitions (transitions that change synaptic efficacy) reduces the ability to overcome the adaptability-precision tradeoff. Overall, our results suggest that ubiquitous unreliability of synaptic changes evinces metaplasticity that can provide a robust mechanism for mitigating the tradeoff between adaptability and precision and thus adaptive learning. PMID:28658247

  3. On the role of model-based monitoring for adaptive planning under uncertainty

    NASA Astrophysics Data System (ADS)

    Raso, Luciano; Kwakkel, Jan; Timmermans, Jos; Haasnoot, Mariolijn

    2016-04-01

    Adaptive plans, designed to anticipate and respond to an unfolding uncertain future, have found a fertile application domain in the planning of deltas that are exposed to rapid socioeconomic development and climate change. Adaptive planning, under the moniker of adaptive delta management, is used in the Dutch Delta Program for developing a nation-wide plan to prepare for uncertain climate change and socio-economic developments. Scientifically, adaptive delta management relies heavily on Dynamic Adaptive Policy Pathways. Currently, in the Netherlands the focus is shifting towards implementing the adaptive delta plan. This shift is especially relevant because the efficacy of adaptive plans hinges on monitoring on-going developments and ensuring that actions are indeed taken if and when necessary. In the design of an effective monitoring system for an adaptive plan, three challenges have to be confronted: • Shadow of the past: The development of adaptive plans and the design of their monitoring system relies heavily on current knowledge of the system, and current beliefs about plausible future developments. A static monitoring system is therefore exposed to the exact same uncertainties one tries to address through adaptive planning. • Inhibition of learning: Recent applications of adaptive planning tend to overlook the importance of learning and new information, and fail to account for this explicitly in the design of adaptive plans. • Challenge of surprise: Adaptive policies are designed in light of the current foreseen uncertainties. However, developments that are not considered during the design phase as being plausible could still substantially affect the performance of adaptive policies. The shadow of the past, the inhibition of learning, and the challenge of surprise taken together suggest that there is a need for redesigning the concepts of monitoring and evaluation to support the implementation of adaptive plans. Innovations from control theory, triggered by the challenge of uncertainty in operational control, may offer solutions from which monitoring for adaptive planning can benefit. Specifically: (i) in control, observations are incorporated into the model through data assimilation, updating the present state, boundary conditions, and parameters based on new observations, diminishing the shadow of the past; (ii) adaptive control is a way to modify the characteristics of the internal model, incorporating new knowledge on the system, countervailing the inhibition of learning; and (iii) in closed-loop control, a continuous system update equips the controller with "inherent robustness", i.e. to capacity to adapts to new conditions even when these were not initially considered. We aim to explore how inherent robustness addresses the challenge of surprise. Innovations in model-based control might help to improve and adapt the models used to support adaptive delta management to new information (reducing uncertainty). Moreover, this would offer a starting point for using these models not only in the design of adaptive plans, but also as part of the monitoring. The proposed research requires multidisciplinary cooperation between control theory, the policy sciences, and integrated assessment modeling.

  4. Self-supervised online metric learning with low rank constraint for scene categorization.

    PubMed

    Cong, Yang; Liu, Ji; Yuan, Junsong; Luo, Jiebo

    2013-08-01

    Conventional visual recognition systems usually train an image classifier in a bath mode with all training data provided in advance. However, in many practical applications, only a small amount of training samples are available in the beginning and many more would come sequentially during online recognition. Because the image data characteristics could change over time, it is important for the classifier to adapt to the new data incrementally. In this paper, we present an online metric learning method to address the online scene recognition problem via adaptive similarity measurement. Given a number of labeled data followed by a sequential input of unseen testing samples, the similarity metric is learned to maximize the margin of the distance among different classes of samples. By considering the low rank constraint, our online metric learning model not only can provide competitive performance compared with the state-of-the-art methods, but also guarantees convergence. A bi-linear graph is also defined to model the pair-wise similarity, and an unseen sample is labeled depending on the graph-based label propagation, while the model can also self-update using the more confident new samples. With the ability of online learning, our methodology can well handle the large-scale streaming video data with the ability of incremental self-updating. We evaluate our model to online scene categorization and experiments on various benchmark datasets and comparisons with state-of-the-art methods demonstrate the effectiveness and efficiency of our algorithm.

  5. Adaptive Urban Stormwater Management Using a Two-stage Stochastic Optimization Model

    NASA Astrophysics Data System (ADS)

    Hung, F.; Hobbs, B. F.; McGarity, A. E.

    2014-12-01

    In many older cities, stormwater results in combined sewer overflows (CSOs) and consequent water quality impairments. Because of the expense of traditional approaches for controlling CSOs, cities are considering the use of green infrastructure (GI) to reduce runoff and pollutants. Examples of GI include tree trenches, rain gardens, green roofs, and rain barrels. However, the cost and effectiveness of GI are uncertain, especially at the watershed scale. We present a two-stage stochastic extension of the Stormwater Investment Strategy Evaluation (StormWISE) model (A. McGarity, JWRPM, 2012, 111-24) to explicitly model and optimize these uncertainties in an adaptive management framework. A two-stage model represents the immediate commitment of resources ("here & now") followed by later investment and adaptation decisions ("wait & see"). A case study is presented for Philadelphia, which intends to extensively deploy GI over the next two decades (PWD, "Green City, Clean Water - Implementation and Adaptive Management Plan," 2011). After first-stage decisions are made, the model updates the stochastic objective and constraints (learning). We model two types of "learning" about GI cost and performance. One assumes that learning occurs over time, is automatic, and does not depend on what has been done in stage one (basic model). The other considers learning resulting from active experimentation and learning-by-doing (advanced model). Both require expert probability elicitations, and learning from research and monitoring is modelled by Bayesian updating (as in S. Jacobi et al., JWRPM, 2013, 534-43). The model allocates limited financial resources to GI investments over time to achieve multiple objectives with a given reliability. Objectives include minimizing construction and O&M costs; achieving nutrient, sediment, and runoff volume targets; and community concerns, such as aesthetics, CO2 emissions, heat islands, and recreational values. CVaR (Conditional Value at Risk) and chance constraints are placed on the objectives to achieve desired confidence levels. By varying the budgets, reliability constraints, and priorities among other objectives, we generate a range of GI deployment strategies that represent tradeoffs among objectives as well as the confidence in achieving them.

  6. Beyond "The Total Organization": A Graduate-Level Simulation

    ERIC Educational Resources Information Center

    Kane, Kathleen R.; Goldgehn, Leslie A.

    2011-01-01

    This simulation is designed to help students understand the complexity of organizational life and learn how to navigate a work world of chaos, conflict, and uncertainty. This adaptation and update of an exercise by Cohen, Fink, Gadon, and Willits has been a successful addition to MBA and EMBA courses. The participants must self-organize, choose…

  7. Real-time model learning using Incremental Sparse Spectrum Gaussian Process Regression.

    PubMed

    Gijsberts, Arjan; Metta, Giorgio

    2013-05-01

    Novel applications in unstructured and non-stationary human environments require robots that learn from experience and adapt autonomously to changing conditions. Predictive models therefore not only need to be accurate, but should also be updated incrementally in real-time and require minimal human intervention. Incremental Sparse Spectrum Gaussian Process Regression is an algorithm that is targeted specifically for use in this context. Rather than developing a novel algorithm from the ground up, the method is based on the thoroughly studied Gaussian Process Regression algorithm, therefore ensuring a solid theoretical foundation. Non-linearity and a bounded update complexity are achieved simultaneously by means of a finite dimensional random feature mapping that approximates a kernel function. As a result, the computational cost for each update remains constant over time. Finally, algorithmic simplicity and support for automated hyperparameter optimization ensures convenience when employed in practice. Empirical validation on a number of synthetic and real-life learning problems confirms that the performance of Incremental Sparse Spectrum Gaussian Process Regression is superior with respect to the popular Locally Weighted Projection Regression, while computational requirements are found to be significantly lower. The method is therefore particularly suited for learning with real-time constraints or when computational resources are limited. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Optimizing the learning rate for adaptive estimation of neural encoding models

    PubMed Central

    2018-01-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069

  9. Optimizing the learning rate for adaptive estimation of neural encoding models.

    PubMed

    Hsieh, Han-Lin; Shanechi, Maryam M

    2018-05-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.

  10. Discriminative object tracking via sparse representation and online dictionary learning.

    PubMed

    Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua

    2014-04-01

    We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

  11. Moving target detection method based on improved Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Ma, J. Y.; Jie, F. R.; Hu, Y. J.

    2017-07-01

    Gaussian Mixture Model is often employed to build background model in background difference methods for moving target detection. This paper puts forward an adaptive moving target detection algorithm based on improved Gaussian Mixture Model. According to the graylevel convergence for each pixel, adaptively choose the number of Gaussian distribution to learn and update background model. Morphological reconstruction method is adopted to eliminate the shadow.. Experiment proved that the proposed method not only has good robustness and detection effect, but also has good adaptability. Even for the special cases when the grayscale changes greatly and so on, the proposed method can also make outstanding performance.

  12. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  13. Critical role for the mediodorsal thalamus in permitting rapid reward-guided updating in stochastic reward environments

    PubMed Central

    Chakraborty, Subhojit; Kolling, Nils; Walton, Mark E; Mitchell, Anna S

    2016-01-01

    Adaptive decision-making uses information gained when exploring alternative options to decide whether to update the current choice strategy. Magnocellular mediodorsal thalamus (MDmc) supports adaptive decision-making, but its causal contribution is not well understood. Monkeys with excitotoxic MDmc damage were tested on probabilistic three-choice decision-making tasks. They could learn and track the changing values in object-reward associations, but they were severely impaired at updating choices after reversals in reward contingencies or when there were multiple options associated with reward. These deficits were not caused by perseveration or insensitivity to negative feedback though. Instead, monkeys with MDmc lesions exhibited an inability to use reward to promote choice repetition after switching to an alternative option due to a diminished influence of recent past choices and the last outcome to guide future behavior. Together, these data suggest MDmc allows for the rapid discovery and persistence with rewarding options, particularly in uncertain or changing environments. DOI: http://dx.doi.org/10.7554/eLife.13588.001 PMID:27136677

  14. What drives the perceptual change resulting from speech motor adaptation? Evaluation of hypotheses in a Bayesian modeling framework

    PubMed Central

    Perrier, Pascal; Schwartz, Jean-Luc; Diard, Julien

    2018-01-01

    Shifts in perceptual boundaries resulting from speech motor learning induced by perturbations of the auditory feedback were taken as evidence for the involvement of motor functions in auditory speech perception. Beyond this general statement, the precise mechanisms underlying this involvement are not yet fully understood. In this paper we propose a quantitative evaluation of some hypotheses concerning the motor and auditory updates that could result from motor learning, in the context of various assumptions about the roles of the auditory and somatosensory pathways in speech perception. This analysis was made possible thanks to the use of a Bayesian model that implements these hypotheses by expressing the relationships between speech production and speech perception in a joint probability distribution. The evaluation focuses on how the hypotheses can (1) predict the location of perceptual boundary shifts once the perturbation has been removed, (2) account for the magnitude of the compensation in presence of the perturbation, and (3) describe the correlation between these two behavioral characteristics. Experimental findings about changes in speech perception following adaptation to auditory feedback perturbations serve as reference. Simulations suggest that they are compatible with a framework in which motor adaptation updates both the auditory-motor internal model and the auditory characterization of the perturbed phoneme, and where perception involves both auditory and somatosensory pathways. PMID:29357357

  15. SWCD: a sliding window and self-regulated learning-based background updating method for change detection in videos

    NASA Astrophysics Data System (ADS)

    Işık, Şahin; Özkan, Kemal; Günal, Serkan; Gerek, Ömer Nezih

    2018-03-01

    Change detection with background subtraction process remains to be an unresolved issue and attracts research interest due to challenges encountered on static and dynamic scenes. The key challenge is about how to update dynamically changing backgrounds from frames with an adaptive and self-regulated feedback mechanism. In order to achieve this, we present an effective change detection algorithm for pixelwise changes. A sliding window approach combined with dynamic control of update parameters is introduced for updating background frames, which we called sliding window-based change detection. Comprehensive experiments on related test videos show that the integrated algorithm yields good objective and subjective performance by overcoming illumination variations, camera jitters, and intermittent object motions. It is argued that the obtained method makes a fair alternative in most types of foreground extraction scenarios; unlike case-specific methods, which normally fail for their nonconsidered scenarios.

  16. More Lessons Learned from Research, Volume 1: Useful and Usable Research Related to Core Mathematical Practices

    ERIC Educational Resources Information Center

    Silver, Edward A., Ed.; Kenney, Patricia Ann, Ed.

    2015-01-01

    This book's 28 chapters are adapted and updated from articles published in NCTM's "Journal for Research in Mathematics Education" between 2000 and 2010. The authors have rewritten and revised their work to make it clear, understandable, and--most of all--useful for mathematics teachers today. To help teachers even more, these articles…

  17. Should the parameters of a BCI translation algorithm be continually adapted?

    PubMed

    McFarland, Dennis J; Sarnacki, William A; Wolpaw, Jonathan R

    2011-07-15

    People with or without motor disabilities can learn to control sensorimotor rhythms (SMRs) recorded from the scalp to move a computer cursor in one or more dimensions or can use the P300 event-related potential as a control signal to make discrete selections. Data collected from individuals using an SMR-based or P300-based BCI were evaluated offline to estimate the impact on performance of continually adapting the parameters of the translation algorithm during BCI operation. The performance of the SMR-based BCI was enhanced by adaptive updating of the feature weights or adaptive normalization of the features. In contrast, P300 performance did not benefit from either of these procedures. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Adaptation and Evaluation of Online Self-learning Modules to Teach Critical Appraisal and Evidence-Based Practice in Nursing: An International Collaboration.

    PubMed

    Gagnon, Johanne; Gagnon, Marie-Pierre; Buteau, Rose-Anne; Azizah, Ginette Mbourou; Jetté, Sylvie; Lampron, Amélie; Simonyan, David; Asua, José; Reviriego, Eva

    2015-07-01

    Healthcare professionals need to update their knowledge and acquire skills to continually inform their practice based on scientific evidence. This study was designed to evaluate online self-learning modules on critical appraisal skills to promote the use of research in clinical practice among nurses from Quebec (Canada) and the Basque Country (Spain). The teaching material was developed in Quebec and adapted to the Basque Country as part of an international collaboration project. A prospective pre-post study was conducted with 36 nurses from Quebec and 47 from the Basque Country. Assessment comprised the administration of questionnaires before and after the course in order to explore the main intervention outcomes: knowledge acquisition and self-learning readiness. Satisfaction was also measured at the end of the course. Two of the three research hypotheses were confirmed: (1) participants significantly improved their overall knowledge score after the educational intervention; and (2) they were, in general, satisfied with the course, giving it a rating of seven out of 10. Participants also reported a greater readiness for self-directed learning after the course, but this result was not significant in Quebec. The study provides unique knowledge on the cultural adaptation of online self-learning modules for teaching nurses about critical appraisal skills and evidence-based practice.

  19. Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature.

    PubMed

    Li, Yuankun; Xu, Tingfa; Deng, Honggao; Shi, Guokai; Guo, Jie

    2018-02-23

    Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.

  20. Adaptive online monitoring for ICU patients by combining just-in-time learning and principal component analysis.

    PubMed

    Li, Xuejian; Wang, Youqing

    2016-12-01

    Offline general-type models are widely used for patients' monitoring in intensive care units (ICUs), which are developed by using past collected datasets consisting of thousands of patients. However, these models may fail to adapt to the changing states of ICU patients. Thus, to be more robust and effective, the monitoring models should be adaptable to individual patients. A novel combination of just-in-time learning (JITL) and principal component analysis (PCA), referred to learning-type PCA (L-PCA), was proposed for adaptive online monitoring of patients in ICUs. JITL was used to gather the most relevant data samples for adaptive modeling of complex physiological processes. PCA was used to build an online individual-type model and calculate monitoring statistics, and then to judge whether the patient's status is normal or not. The adaptability of L-PCA lies in the usage of individual data and the continuous updating of the training dataset. Twelve subjects were selected from the Physiobank's Multi-parameter Intelligent Monitoring for Intensive Care II (MIMIC II) database, and five vital signs of each subject were chosen. The proposed method was compared with the traditional PCA and fast moving-window PCA (Fast MWPCA). The experimental results demonstrated that the fault detection rates respectively increased by 20 % and 47 % compared with PCA and Fast MWPCA. L-PCA is first introduced into ICU patients monitoring and achieves the best monitoring performance in terms of adaptability to changes in patient status and sensitivity for abnormality detection.

  1. Protocol Independent Adaptive Route Update for VANET

    PubMed Central

    Rasheed, Asim; Qayyum, Amir

    2014-01-01

    High relative node velocity and high active node density have presented challenges to existing routing approaches within highly scaled ad hoc wireless networks, such as Vehicular Ad hoc Networks (VANET). Efficient routing requires finding optimum route with minimum delay, updating it on availability of a better one, and repairing it on link breakages. Current routing protocols are generally focused on finding and maintaining an efficient route, with very less emphasis on route update. Adaptive route update usually becomes impractical for dense networks due to large routing overheads. This paper presents an adaptive route update approach which can provide solution for any baseline routing protocol. The proposed adaptation eliminates the classification of reactive and proactive by categorizing them as logical conditions to find and update the route. PMID:24723807

  2. An incremental knowledge assimilation system (IKAS) for mine detection

    NASA Astrophysics Data System (ADS)

    Porway, Jake; Raju, Chaitanya; Varadarajan, Karthik Mahesh; Nguyen, Hieu; Yadegar, Joseph

    2010-04-01

    In this paper we present an adaptive incremental learning system for underwater mine detection and classification that utilizes statistical models of seabed texture and an adaptive nearest-neighbor classifier to identify varied underwater targets in many different environments. The first stage of processing uses our Background Adaptive ANomaly detector (BAAN), which identifies statistically likely target regions using Gabor filter responses over the image. Using this information, BAAN classifies the background type and updates its detection using background-specific parameters. To perform classification, a Fully Adaptive Nearest Neighbor (FAAN) determines the best label for each detection. FAAN uses an extremely fast version of Nearest Neighbor to find the most likely label for the target. The classifier perpetually assimilates new and relevant information into its existing knowledge database in an incremental fashion, allowing improved classification accuracy and capturing concept drift in the target classes. Experiments show that the system achieves >90% classification accuracy on underwater mine detection tasks performed on synthesized datasets provided by the Office of Naval Research. We have also demonstrated that the system can incrementally improve its detection accuracy by constantly learning from new samples.

  3. Efficient Use of Information in Adaptive Management with an Application to Managing Recreation near Golden Eagle Nesting Sites

    PubMed Central

    Fackler, Paul L.; Pacifici, Krishna; Martin, Julien; McIntyre, Carol

    2014-01-01

    It is generally the case that a significant degree of uncertainty exists concerning the behavior of ecological systems. Adaptive management has been developed to address such structural uncertainty, while recognizing that decisions must be made without full knowledge of how a system behaves. This paradigm attempts to use new information that develops during the course of management to learn how the system works. To date, however, adaptive management has used a very limited information set to characterize the learning that is possible. This paper uses an extension of the Partial Observable Markov Decision Process (POMDP) framework to expand the information set used to update belief in competing models. This feature can potentially increase the speed of learning through adaptive management, and lead to better management in the future. We apply this framework to a case study wherein interest lies in managing recreational restrictions around golden eagle (Aquila chrysaetos) nesting sites. The ultimate management objective is to maintain an abundant eagle population in Denali National Park while minimizing the regulatory burden on park visitors. In order to capture this objective, we developed a utility function that trades off expected breeding success with hiker access. Our work is relevant to the management of human activities in protected areas, but more generally demonstrates some of the benefits of POMDP in the context of adaptive management. PMID:25098955

  4. Design of robust adaptive controller and feedback error learning for rehabilitation in Parkinson's disease: a simulation study.

    PubMed

    Rouhollahi, Korosh; Emadi Andani, Mehran; Karbassi, Seyed Mahdi; Izadi, Iman

    2017-02-01

    Deep brain stimulation (DBS) is an efficient therapy to control movement disorders of Parkinson's tremor. Stimulation of one area of basal ganglia (BG) by DBS with no feedback is the prevalent opinion. Reduction of additional stimulatory signal delivered to the brain is the advantage of using feedback. This results in reduction of side effects caused by the excessive stimulation intensity. In fact, the stimulatory intensity of controllers is decreased proportional to reduction of hand tremor. The objective of this study is to design a new controller structure to decrease three indicators: (i) the hand tremor; (ii) the level of delivered stimulation in disease condition; and (iii) the ratio of the level of delivered stimulation in health condition to disease condition. For this purpose, the authors offer a new closed-loop control structure to stimulate two areas of BG simultaneously. One area (STN: subthalamic nucleus) is stimulated by an adaptive controller with feedback error learning. The other area (GPi: globus pallidus internal) is stimulated by a partial state feedback (PSF) controller. Considering the three indicators, the results show that, stimulating two areas simultaneously leads to better performance compared with stimulating one area only. It is shown that both PSF and adaptive controllers are robust regarding system parameter uncertainties. In addition, a method is proposed to update the parameters of the BG model in real time. As a result, the parameters of the controllers can be updated based on the new parameters of the BG model.

  5. Instrumental learning and cognitive flexibility processes are impaired in children exposed to early life stress.

    PubMed

    Harms, Madeline B; Shannon Bowen, Katherine E; Hanson, Jamie L; Pollak, Seth D

    2017-10-19

    Children who experience severe early life stress show persistent deficits in many aspects of cognitive and social adaptation. Early stress might be associated with these broad changes in functioning because it impairs general learning mechanisms. To explore this possibility, we examined whether individuals who experienced abusive caregiving in childhood had difficulties with instrumental learning and/or cognitive flexibility as adolescents. Fifty-three 14-17-year-old adolescents (31 exposed to high levels of childhood stress, 22 control) completed an fMRI task that required them to first learn associations in the environment and then update those pairings. Adolescents with histories of early life stress eventually learned to pair stimuli with both positive and negative outcomes, but did so more slowly than their peers. Furthermore, these stress-exposed adolescents showed markedly impaired cognitive flexibility; they were less able than their peers to update those pairings when the contingencies changed. These learning problems were reflected in abnormal activity in learning- and attention-related brain circuitry. Both altered patterns of learning and neural activation were associated with the severity of lifetime stress that the adolescents had experienced. Taken together, the results of this experiment suggest that basic learning processes are impaired in adolescents exposed to early life stress. These general learning mechanisms may help explain the emergence of social problems observed in these individuals. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  6. Neural network-based model reference adaptive control system.

    PubMed

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  7. Social anxiety is characterized by biased learning about performance and the self.

    PubMed

    Koban, Leonie; Schneider, Rebecca; Ashar, Yoni K; Andrews-Hanna, Jessica R; Landy, Lauren; Moscovitch, David A; Wager, Tor D; Arch, Joanna J

    2017-12-01

    People learn about their self from social information, and recent work suggests that healthy adults show a positive bias for learning self-related information. In contrast, social anxiety disorder (SAD) is characterized by a negative view of the self, yet what causes and maintains this negative self-view is not well understood. Here the authors use a novel experimental paradigm and computational model to test the hypothesis that biased social learning regarding self-evaluation and self-feelings represents a core feature that distinguishes adults with SAD from healthy controls. Twenty-one adults with SAD and 35 healthy controls (HCs) performed a speech in front of 3 judges. They subsequently evaluated themselves and received performance feedback from the judges and then rated how they felt about themselves and the judges. Affective updating (i.e., change in feelings about the self over time, in response to feedback from the judges) was modeled using an adapted Rescorla-Wagner learning model. HCs demonstrated a positivity bias in affective updating, which was absent in SAD. Further, self-performance ratings revealed group differences in learning from positive feedback-a difference that endured at an average of 1 year follow up. These findings demonstrate the presence and long-term endurance of positively biased social learning about the self among healthy adults, a bias that is absent or reversed among socially anxious adults. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Cogging effect minimization in PMSM position servo system using dual high-order periodic adaptive learning compensation.

    PubMed

    Luo, Ying; Chen, Yangquan; Pi, Youguo

    2010-10-01

    Cogging effect which can be treated as a type of position-dependent periodic disturbance, is a serious disadvantage of the permanent magnetic synchronous motor (PMSM). In this paper, based on a simulation system model of PMSM position servo control, the cogging force, viscous friction, and applied load in the real PMSM control system are considered and presented. A dual high-order periodic adaptive learning compensation (DHO-PALC) method is proposed to minimize the cogging effect on the PMSM position and velocity servo system. In this DHO-PALC scheme, more than one previous periods stored information of both the composite tracking error and the estimate of the cogging force is used for the control law updating. Asymptotical stability proof with the proposed DHO-PALC scheme is presented. Simulation is implemented on the PMSM servo system model to illustrate the proposed method. When the constant speed reference is applied, the DHO-PALC can achieve a faster learning convergence speed than the first-order periodic adaptive learning compensation (FO-PALC). Moreover, when the designed reference signal changes periodically, the proposed DHO-PALC can obtain not only faster convergence speed, but also much smaller final error bound than the FO-PALC. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Coordinating Learning Agents for Active Information Collection

    DTIC Science & Technology

    2011-06-30

    the experiments were not particularly sensitive to this parameter. By limiting the number of actions that are updated (DANT-L in black/ dark ), the...Bazzan, A. and Ossowski, S. (eds.), Applications of Agent Technology in Traffic and Transportation (Springer, 2005). [19] Mataric , M. J., Coordination...organizing market (1998), preprint cond- mat/9802177. [19] Jones, C. and Mataric , M. J., Adaptive division of labor in large-scale multi-robot systems, in IEEE

  10. Passive mapping and intermittent exploration for mobile robots

    NASA Technical Reports Server (NTRS)

    Engleson, Sean P.

    1994-01-01

    An adaptive state space architecture is combined with diktiometric representation to provide the framework for designing a robot mapping system with flexible navigation planning tasks. This involves indexing waypoints described as expectations, geometric indexing, and perceptual indexing. Matching and updating the robot's projected position and sensory inputs with indexing waypoints involves matchers, dynamic priorities, transients, and waypoint restructuring. The robot's map learning can be opganized around the principles of passive mapping.

  11. An improved multi-domain convolution tracking algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Wang, Haiying; Zeng, Yingsen

    2018-04-01

    Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.

  12. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation

    PubMed Central

    Kong, Zehui; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control. PMID:28671967

  13. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    PubMed

    Kong, Zehui; Zou, Yuan; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  14. Evaluation of a new eLearning platform for distance teaching of microsurgery.

    PubMed

    Messaoudi, T; Bodin, F; Hidalgo Diaz, J J; Ichihara, S; Fikry, T; Lacreuse, I; Liverneaux, P; Facca, S

    2015-06-01

    Online learning (or eLearning) is in constant evolution in medicine. An analytical survey of the websites of eight academic societies and medical schools was carried out. These sites were evaluated against parameters that define the quality of an eLearning website, as well as the shareable content object reference model (SCORM) technical standards. All studied platforms were maintained by a webmaster and regularly updated. Only two platforms had teleconference opportunities, five had courses in PDF format, and four allowed online testing. Based on SCORM standards, only four platforms allowed direct access without a password. The content of all platforms was adaptable, interoperable and reusable. But their sustainability was difficult to assess. In parallel, we developed the first eLearning platform to be used as part of a university diploma in microsurgery in France. The platform was evaluated by students enrolled this diploma program. A satisfaction survey and platform evaluation showed that students were generally satisfied and had used the platform for microsurgery education, especially the seven students living abroad. ELearning for microsurgery allows the content to be continuously updated, makes for fewer classroom visits, provides easy remote access, and especially better training time management and cost savings in terms of travel and accommodations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification.

    PubMed

    Mirza, Bilal; Lin, Zhiping

    2016-08-01

    In this paper, a meta-cognitive online sequential extreme learning machine (MOS-ELM) is proposed for class imbalance and concept drift learning. In MOS-ELM, meta-cognition is used to self-regulate the learning by selecting suitable learning strategies for class imbalance and concept drift problems. MOS-ELM is the first sequential learning method to alleviate the imbalance problem for both binary class and multi-class data streams with concept drift. In MOS-ELM, a new adaptive window approach is proposed for concept drift learning. A single output update equation is also proposed which unifies various application specific OS-ELM methods. The performance of MOS-ELM is evaluated under different conditions and compared with methods each specific to some of the conditions. On most of the datasets in comparison, MOS-ELM outperforms the competing methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  17. Joint seismic data denoising and interpolation with double-sparsity dictionary learning

    NASA Astrophysics Data System (ADS)

    Zhu, Lingchen; Liu, Entao; McClellan, James H.

    2017-08-01

    Seismic data quality is vital to geophysical applications, so that methods of data recovery, including denoising and interpolation, are common initial steps in the seismic data processing flow. We present a method to perform simultaneous interpolation and denoising, which is based on double-sparsity dictionary learning. This extends previous work that was for denoising only. The original double-sparsity dictionary learning algorithm is modified to track the traces with missing data by defining a masking operator that is integrated into the sparse representation of the dictionary. A weighted low-rank approximation algorithm is adopted to handle the dictionary updating as a sparse recovery optimization problem constrained by the masking operator. Compared to traditional sparse transforms with fixed dictionaries that lack the ability to adapt to complex data structures, the double-sparsity dictionary learning method learns the signal adaptively from selected patches of the corrupted seismic data, while preserving compact forward and inverse transform operators. Numerical experiments on synthetic seismic data indicate that this new method preserves more subtle features in the data set without introducing pseudo-Gibbs artifacts when compared to other directional multi-scale transform methods such as curvelets.

  18. Shared internal models for feedforward and feedback control.

    PubMed

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  19. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback

    PubMed Central

    Whitney, Paul; Hinson, John M.; Jackson, Melinda L.; Van Dongen, Hans P.A.

    2015-01-01

    Study Objectives: To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Design: Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Setting: Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Subjects: Twenty-six subjects (22–40 y of age; 10 women). Interventions: Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Results: Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Conclusions: Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback or because the feedback is not cognitively bound with the choice. This has important implications for understanding and managing sleep loss-induced cognitive impairment in emergency response, disaster management, military operations, and other dynamic real-world settings with uncertain outcomes and imperfect information. Citation: Whitney P, Hinson JM, Jackson ML, Van Dongen HPA. Feedback blunting: total sleep deprivation impairs decision making that requires updating based on feedback. SLEEP 2015;38(5):745–754. PMID:25515105

  20. Constructing Temporally Extended Actions through Incremental Community Detection

    PubMed Central

    Li, Ge

    2018-01-01

    Hierarchical reinforcement learning works on temporally extended actions or skills to facilitate learning. How to automatically form such abstraction is challenging, and many efforts tackle this issue in the options framework. While various approaches exist to construct options from different perspectives, few of them concentrate on options' adaptability during learning. This paper presents an algorithm to create options and enhance their quality online. Both aspects operate on detected communities of the learning environment's state transition graph. We first construct options from initial samples as the basis of online learning. Then a rule-based community revision algorithm is proposed to update graph partitions, based on which existing options can be continuously tuned. Experimental results in two problems indicate that options from initial samples may perform poorly in more complex environments, and our presented strategy can effectively improve options and get better results compared with flat reinforcement learning. PMID:29849543

  1. Reinforcement learning neural-network-based controller for nonlinear discrete-time systems with input constraints.

    PubMed

    He, Pingan; Jagannathan, S

    2007-04-01

    A novel adaptive-critic-based neural network (NN) controller in discrete time is designed to deliver a desired tracking performance for a class of nonlinear systems in the presence of actuator constraints. The constraints of the actuator are treated in the controller design as the saturation nonlinearity. The adaptive critic NN controller architecture based on state feedback includes two NNs: the critic NN is used to approximate the "strategic" utility function, whereas the action NN is employed to minimize both the strategic utility function and the unknown nonlinear dynamic estimation errors. The critic and action NN weight updates are derived by minimizing certain quadratic performance indexes. Using the Lyapunov approach and with novel weight updates, the uniformly ultimate boundedness of the closed-loop tracking error and weight estimates is shown in the presence of NN approximation errors and bounded unknown disturbances. The proposed NN controller works in the presence of multiple nonlinearities, unlike other schemes that normally approximate one nonlinearity. Moreover, the adaptive critic NN controller does not require an explicit offline training phase, and the NN weights can be initialized at zero or random. Simulation results justify the theoretical analysis.

  2. Stochastic Prediction and Feedback Control of Router Queue Size in a Virtual Network Environment

    DTIC Science & Technology

    2014-09-18

    predictor equations, while the update equations for measurement can be thought of as corrector equations. 11 2.3.1.1 Predict Equations In the... Adaptive Filters and Self -Learning Systems. Springer London, 2005. [11] Zarchan, P., and Musoff, H. Fundamentals of Kalman filtering: A Practical...iv AFIT-ENG-T-14-S-10 Abstract Modern congestion and routing management algorithms work well for networks with static topologies and moderate

  3. Robust speech perception: Recognize the familiar, generalize to the similar, and adapt to the novel

    PubMed Central

    Kleinschmidt, Dave F.; Jaeger, T. Florian

    2016-01-01

    Successful speech perception requires that listeners map the acoustic signal to linguistic categories. These mappings are not only probabilistic, but change depending on the situation. For example, one talker’s /p/ might be physically indistinguishable from another talker’s /b/ (cf. lack of invariance). We characterize the computational problem posed by such a subjectively non-stationary world and propose that the speech perception system overcomes this challenge by (1) recognizing previously encountered situations, (2) generalizing to other situations based on previous similar experience, and (3) adapting to novel situations. We formalize this proposal in the ideal adapter framework: (1) to (3) can be understood as inference under uncertainty about the appropriate generative model for the current talker, thereby facilitating robust speech perception despite the lack of invariance. We focus on two critical aspects of the ideal adapter. First, in situations that clearly deviate from previous experience, listeners need to adapt. We develop a distributional (belief-updating) learning model of incremental adaptation. The model provides a good fit against known and novel phonetic adaptation data, including perceptual recalibration and selective adaptation. Second, robust speech recognition requires listeners learn to represent the structured component of cross-situation variability in the speech signal. We discuss how these two aspects of the ideal adapter provide a unifying explanation for adaptation, talker-specificity, and generalization across talkers and groups of talkers (e.g., accents and dialects). The ideal adapter provides a guiding framework for future investigations into speech perception and adaptation, and more broadly language comprehension. PMID:25844873

  4. Conditions and limitations on learning in the adaptive management of mallard harvests

    USGS Publications Warehouse

    Johnson, F.A.; Kendall, W.L.; Dubovsky, J.A.

    2002-01-01

    In 1995, the United States Fish and Wildlife Service adopted a protocol for the adaptive management of waterfowl hunting regulations (AHM) to help reduce uncertainty about the magnitude of sustainable harvests. To date, the AHM process has focused principally on the midcontinent population of mallards (Anas platyrhynchos), whose dynamics are described by 4 alternative models. Collectively, these models express uncertainty (or disagreement) about whether harvest is an additive or a compensatory form of mortality and whether the reproductive process is weakly or strongly density-dependent. Each model is associated with a probability or 'weight,' which describes its relative ability to predict changes in population size. These Bayesian probabilities are updated annually using a comparison of population size predicted under each model with that observed by a monitoring program. The current AHM process is passively adaptive, in the sense that there is no a priori consideration of how harvest decisions might affect discrimination among models. We contrast this approach with an actively adaptive approach, in which harvest decisions are used in part to produce the learning needed to increase long-term management performance. Our investigation suggests that the passive approach is expected to perform nearly as well as an optimal actively adaptive approach, particularly considering the nature of the model set, management objectives and constraints, and current regulatory alternatives. We offer some comments about the nature of the biological hypotheses being tested and describe some of the inherent limitations on learning in the AHM process.

  5. Nonuniformity correction for an infrared focal plane array based on diamond search block matching.

    PubMed

    Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian

    2016-05-01

    In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.

  6. A combination of HARMONIE short time direct normal irradiance forecasts and machine learning: The #hashtdim procedure

    NASA Astrophysics Data System (ADS)

    Gastón, Martín; Fernández-Peruchena, Carlos; Körnich, Heiner; Landelius, Tomas

    2017-06-01

    The present work describes the first approach of a new procedure to forecast Direct Normal Irradiance (DNI): the #hashtdim that treats to combine ground information and Numerical Weather Predictions. The system is centered in generate predictions for the very short time. It combines the outputs from the Numerical Weather Prediction Model HARMONIE with an adaptive methodology based on Machine Learning. The DNI predictions are generated with 15-minute and hourly temporal resolutions and presents 3-hourly updates. Each update offers forecasts to the next 12 hours, the first nine hours are generated with 15-minute temporal resolution meanwhile the last three hours present hourly temporal resolution. The system is proved over a Spanish emplacement with BSRN operative station in south of Spain (PSA station). The #hashtdim has been implemented in the framework of the Direct Normal Irradiance Nowcasting methods for optimized operation of concentrating solar technologies (DNICast) project, under the European Union's Seventh Programme for research, technological development and demonstration framework.

  7. A novel model of motor learning capable of developing an optimal movement control law online from scratch.

    PubMed

    Shimansky, Yury P; Kang, Tao; He, Jiping

    2004-02-01

    A computational model of a learning system (LS) is described that acquires knowledge and skill necessary for optimal control of a multisegmental limb dynamics (controlled object or CO), starting from "knowing" only the dimensionality of the object's state space. It is based on an optimal control problem setup different from that of reinforcement learning. The LS solves the optimal control problem online while practicing the manipulation of CO. The system's functional architecture comprises several adaptive components, each of which incorporates a number of mapping functions approximated based on artificial neural nets. Besides the internal model of the CO's dynamics and adaptive controller that computes the control law, the LS includes a new type of internal model, the minimal cost (IM(mc)) of moving the controlled object between a pair of states. That internal model appears critical for the LS's capacity to develop an optimal movement trajectory. The IM(mc) interacts with the adaptive controller in a cooperative manner. The controller provides an initial approximation of an optimal control action, which is further optimized in real time based on the IM(mc). The IM(mc) in turn provides information for updating the controller. The LS's performance was tested on the task of center-out reaching to eight randomly selected targets with a 2DOF limb model. The LS reached an optimal level of performance in a few tens of trials. It also quickly adapted to movement perturbations produced by two different types of external force field. The results suggest that the proposed design of a self-optimized control system can serve as a basis for the modeling of motor learning that includes the formation and adaptive modification of the plan of a goal-directed movement.

  8. SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting

    NASA Astrophysics Data System (ADS)

    Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.

    2014-12-01

    Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.

  9. Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.

  10. Neural Basis of Reinforcement Learning and Decision Making

    PubMed Central

    Lee, Daeyeol; Seo, Hyojung; Jung, Min Whan

    2012-01-01

    Reinforcement learning is an adaptive process in which an animal utilizes its previous experience to improve the outcomes of future choices. Computational theories of reinforcement learning play a central role in the newly emerging areas of neuroeconomics and decision neuroscience. In this framework, actions are chosen according to their value functions, which describe how much future reward is expected from each action. Value functions can be adjusted not only through reward and penalty, but also by the animal’s knowledge of its current environment. Studies have revealed that a large proportion of the brain is involved in representing and updating value functions and using them to choose an action. However, how the nature of a behavioral task affects the neural mechanisms of reinforcement learning remains incompletely understood. Future studies should uncover the principles by which different computational elements of reinforcement learning are dynamically coordinated across the entire brain. PMID:22462543

  11. Hybrid adaptive ascent flight control for a flexible launch vehicle

    NASA Astrophysics Data System (ADS)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.

  12. An adaptive learning control system for aircraft

    NASA Technical Reports Server (NTRS)

    Mekel, R.; Nachmias, S.

    1978-01-01

    A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.

  13. Conformity does not perpetuate suboptimal traditions in a wild population of songbirds

    PubMed Central

    Aplin, Lucy M.; Sheldon, Ben C.; McElreath, Richard

    2017-01-01

    Social learning is important to the life history of many animals, helping individuals to acquire new adaptive behavior. However despite long-running debate, it remains an open question whether a reliance on social learning can also lead to mismatched or maladaptive behavior. In a previous study, we experimentally induced traditions for opening a bidirectional door puzzle box in replicate subpopulations of the great tit Parus major. Individuals were conformist social learners, resulting in stable cultural behaviors. Here, we vary the rewards gained by these techniques to ask to what extent established behaviors are flexible to changing conditions. When subpopulations with established foraging traditions for one technique were subjected to a reduced foraging payoff, 49% of birds switched their behavior to a higher-payoff foraging technique after only 14 days, with younger individuals showing a faster rate of change. We elucidated the decision-making process for each individual, using a mechanistic learning model to demonstrate that, perhaps surprisingly, this population-level change was achieved without significant asocial exploration and without any evidence for payoff-biased copying. Rather, by combining conformist social learning with payoff-sensitive individual reinforcement (updating of experience), individuals and populations could both acquire adaptive behavior and track environmental change. PMID:28739943

  14. Tracking of multiple targets using online learning for reference model adaptation.

    PubMed

    Pernkopf, Franz

    2008-12-01

    Recently, much work has been done in multiple object tracking on the one hand and on reference model adaptation for a single-object tracker on the other side. In this paper, we do both tracking of multiple objects (faces of people) in a meeting scenario and online learning to incrementally update the models of the tracked objects to account for appearance changes during tracking. Additionally, we automatically initialize and terminate tracking of individual objects based on low-level features, i.e., face color, face size, and object movement. Many methods unlike our approach assume that the target region has been initialized by hand in the first frame. For tracking, a particle filter is incorporated to propagate sample distributions over time. We discuss the close relationship between our implemented tracker based on particle filters and genetic algorithms. Numerous experiments on meeting data demonstrate the capabilities of our tracking approach. Additionally, we provide an empirical verification of the reference model learning during tracking of indoor and outdoor scenes which supports a more robust tracking. Therefore, we report the average of the standard deviation of the trajectories over numerous tracking runs depending on the learning rate.

  15. Computerized Hammer Sounding Interpretation for Concrete Assessment with Online Machine Learning.

    PubMed

    Ye, Jiaxing; Kobayashi, Takumi; Iwata, Masaya; Tsuda, Hiroshi; Murakawa, Masahiro

    2018-03-09

    Developing efficient Artificial Intelligence (AI)-enabled systems to substitute the human role in non-destructive testing is an emerging topic of considerable interest. In this study, we propose a novel hammering response analysis system using online machine learning, which aims at achieving near-human performance in assessment of concrete structures. Current computerized hammer sounding systems commonly employ lab-scale data to validate the models. In practice, however, the response signal patterns can be far more complicated due to varying geometric shapes and materials of structures. To deal with a large variety of unseen data, we propose a sequential treatment for response characterization. More specifically, the proposed system can adaptively update itself to approach human performance in hammering sounding data interpretation. To this end, a two-stage framework has been introduced, including feature extraction and the model updating scheme. Various state-of-the-art online learning algorithms have been reviewed and evaluated for the task. To conduct experimental validation, we collected 10,940 response instances from multiple inspection sites; each sample was annotated by human experts with healthy/defective condition labels. The results demonstrated that the proposed scheme achieved favorable assessment accuracy with high efficiency and low computation load.

  16. Adaptive fuzzy leader clustering of complex data sets in pattern recognition

    NASA Technical Reports Server (NTRS)

    Newton, Scott C.; Pemmaraju, Surya; Mitra, Sunanda

    1992-01-01

    A modular, unsupervised neural network architecture for clustering and classification of complex data sets is presented. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system that learns on-line in a stable and efficient manner. The initial classification is performed in two stages: a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from fuzzy C-means system equations for the centroids and the membership values. The AFLC algorithm is applied to the Anderson Iris data and laser-luminescent fingerprint image data. It is concluded that the AFLC algorithm successfully classifies features extracted from real data, discrete or continuous.

  17. Real-Time Adaptive Color Segmentation by Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2004-01-01

    Artificial neural networks that would utilize the cascade error projection (CEP) algorithm have been proposed as means of autonomous, real-time, adaptive color segmentation of images that change with time. In the original intended application, such a neural network would be used to analyze digitized color video images of terrain on a remote planet as viewed from an uninhabited spacecraft approaching the planet. During descent toward the surface of the planet, information on the segmentation of the images into differently colored areas would be updated adaptively in real time to capture changes in contrast, brightness, and resolution, all in an effort to identify a safe and scientifically productive landing site and provide control feedback to steer the spacecraft toward that site. Potential terrestrial applications include monitoring images of crops to detect insect invasions and monitoring of buildings and other facilities to detect intruders. The CEP algorithm is reliable and is well suited to implementation in very-large-scale integrated (VLSI) circuitry. It was chosen over other neural-network learning algorithms because it is better suited to realtime learning: It provides a self-evolving neural-network structure, requires fewer iterations to converge and is more tolerant to low resolution (that is, fewer bits) in the quantization of neural-network synaptic weights. Consequently, a CEP neural network learns relatively quickly, and the circuitry needed to implement it is relatively simple. Like other neural networks, a CEP neural network includes an input layer, hidden units, and output units (see figure). As in other neural networks, a CEP network is presented with a succession of input training patterns, giving rise to a set of outputs that are compared with the desired outputs. Also as in other neural networks, the synaptic weights are updated iteratively in an effort to bring the outputs closer to target values. A distinctive feature of the CEP neural network and algorithm is that each update of synaptic weights takes place in conjunction with the addition of another hidden unit, which then remains in place as still other hidden units are added on subsequent iterations. For a given training pattern, the synaptic weight between (1) the inputs and the previously added hidden units and (2) the newly added hidden unit is updated by an amount proportional to the partial derivative of a quadratic error function with respect to the synaptic weight. The synaptic weight between the newly added hidden unit and each output unit is given by a more complex function that involves the errors between the outputs and their target values, the transfer functions (hyperbolic tangents) of the neural units, and the derivatives of the transfer functions.

  18. Re-examination of sea lamprey control policies for the St. Marys River: Completion of an adaptive management cycle

    USGS Publications Warehouse

    Jones, Michael L.; Brenden, Travis O.; Irwin, Brian J.

    2015-01-01

    The St. Marys River (SMR) historically has been a major producer of sea lampreys (Petromyzon marinus) in the Laurentian Great Lakes. In the early 2000s, a decision analysis (DA) project was conducted to evaluate sea lamprey control policies for the SMR; this project suggested that an integrated policy of trapping, sterile male releases, and Bayluscide treatment was the most cost-effective policy. Further, it concluded that formal assessment of larval sea lamprey abundance and distribution in the SMR would be valuable for future evaluation of control strategies. We updated this earlier analysis, adding information from annual larval assessments conducted since 1999 and evaluating additional control policies. Bayluscide treatments continued to be critical for sea lamprey control, but high recruitment compensation minimized the effectiveness of trapping and sterile male release under current feasible ranges. Because Bayluscide control is costly, development of strategies to enhance trapping success remains a priority. This study illustrates benefits of an adaptive management cycle, wherein models inform decisions, are updated based on learning achieved from those decisions, and ultimately inform future decisions.

  19. Online Distributed Learning Over Networks in RKH Spaces Using Random Fourier Features

    NASA Astrophysics Data System (ADS)

    Bouboulis, Pantelis; Chouvardas, Symeon; Theodoridis, Sergios

    2018-04-01

    We present a novel diffusion scheme for online kernel-based learning over networks. So far, a major drawback of any online learning algorithm, operating in a reproducing kernel Hilbert space (RKHS), is the need for updating a growing number of parameters as time iterations evolve. Besides complexity, this leads to an increased need of communication resources, in a distributed setting. In contrast, the proposed method approximates the solution as a fixed-size vector (of larger dimension than the input space) using Random Fourier Features. This paves the way to use standard linear combine-then-adapt techniques. To the best of our knowledge, this is the first time that a complete protocol for distributed online learning in RKHS is presented. Conditions for asymptotic convergence and boundness of the networkwise regret are also provided. The simulated tests illustrate the performance of the proposed scheme.

  20. Catheter tracking via online learning for dynamic motion compensation in transcatheter aortic valve implantation.

    PubMed

    Wang, Peng; Zheng, Yefeng; John, Matthias; Comaniciu, Dorin

    2012-01-01

    Dynamic overlay of 3D models onto 2D X-ray images has important applications in image guided interventions. In this paper, we present a novel catheter tracking for motion compensation in the Transcatheter Aortic Valve Implantation (TAVI). To address such challenges as catheter shape and appearance changes, occlusions, and distractions from cluttered backgrounds, we present an adaptive linear discriminant learning method to build a measurement model online to distinguish catheters from background. An analytic solution is developed to effectively and efficiently update the discriminant model and to minimize the classification errors between the tracking object and backgrounds. The online learned discriminant model is further combined with an offline learned detector and robust template matching in a Bayesian tracking framework. Quantitative evaluations demonstrate the advantages of this method over current state-of-the-art tracking methods in tracking catheters for clinical applications.

  1. Hedging Your Bets by Learning Reward Correlations in the Human Brain

    PubMed Central

    Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.

    2011-01-01

    Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609

  2. Revisiting cognitive and learning styles in computer-assisted instruction: not so useful after all.

    PubMed

    Cook, David A

    2012-06-01

    In a previous systematic review, the author proposed that adaptation to learners' cognitive and learning styles (CLSs) could improve the efficiency of computer-assisted instruction (CAI). In the present article, he questions that proposition, arguing that CLSs do not make a substantive difference in CAI. To support this argument, the author performed an updated systematic literature search, pooled new findings with those from the previous review, and reinterpreted this evidence with a focus on aptitude-treatment interactions. (An aptitude-treatment interaction occurs when a student with attribute 1 learns better with instructional approach A than with approach B, whereas a student with attribute 2 learns better with instructional approach B).Of 65 analyses reported in 48 studies, only 9 analyses (14%) showed significant interactions between CLS and instructional approach. It seems that aptitude-treatment interactions with CLSs are at best infrequent and small in magnitude. There are several possible explanations for this lack of effect. First, the influence of strong instructional methods likely dominates the impact of CLSs. Second, current methods for assessing CLSs lack validity evidence and are inadequate to accurately characterize the individual learner. Third, theories are vague, and empiric evidence is virtually nonexistent to guide the planning of style-targeted instructional designs. Adaptation to learners' CLSs thus seems unlikely to enhance CAI. The author recommends that educators focus on employing strong instructional methods. Educators might also consider assessing and adapting to learners' prior knowledge or allowing learners to select among alternate instructional approaches.

  3. Adaptive Baseline Enhances EM-Based Policy Search: Validation in a View-Based Positioning Task of a Smartphone Balancer

    PubMed Central

    Wang, Jiexin; Uchibe, Eiji; Doya, Kenji

    2017-01-01

    EM-based policy search methods estimate a lower bound of the expected return from the histories of episodes and iteratively update the policy parameters using the maximum of a lower bound of expected return, which makes gradient calculation and learning rate tuning unnecessary. Previous algorithms like Policy learning by Weighting Exploration with the Returns, Fitness Expectation Maximization, and EM-based Policy Hyperparameter Exploration implemented the mechanisms to discard useless low-return episodes either implicitly or using a fixed baseline determined by the experimenter. In this paper, we propose an adaptive baseline method to discard worse samples from the reward history and examine different baselines, including the mean, and multiples of SDs from the mean. The simulation results of benchmark tasks of pendulum swing up and cart-pole balancing, and standing up and balancing of a two-wheeled smartphone robot showed improved performances. We further implemented the adaptive baseline with mean in our two-wheeled smartphone robot hardware to test its performance in the standing up and balancing task, and a view-based approaching task. Our results showed that with adaptive baseline, the method outperformed the previous algorithms and achieved faster, and more precise behaviors at a higher successful rate. PMID:28167910

  4. Log-polar mapping-based scale space tracking with adaptive target response

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Wen, Gongjian; Kuai, Yangliu; Zhang, Ximing

    2017-05-01

    Correlation filter-based tracking has exhibited impressive robustness and accuracy in recent years. Standard correlation filter-based trackers are restricted to translation estimation and equipped with fixed target response. These trackers produce an inferior performance when encountered with a significant scale variation or appearance change. We propose a log-polar mapping-based scale space tracker with an adaptive target response. This tracker transforms the scale variation of the target in the Cartesian space into a shift along the logarithmic axis in the log-polar space. A one-dimensional scale correlation filter is learned online to estimate the shift along the logarithmic axis. With the log-polar representation, scale estimation is achieved accurately without a multiresolution pyramid. To achieve an adaptive target response, a variance of the Gaussian function is computed from the response map and updated online with a learning rate parameter. Our log-polar mapping-based scale correlation filter and adaptive target response can be combined with any correlation filter-based trackers. In addition, the scale correlation filter can be extended to a two-dimensional correlation filter to achieve joint estimation of the scale variation and in-plane rotation. Experiments performed on an OTB50 benchmark demonstrate that our tracker achieves superior performance against state-of-the-art trackers.

  5. A selective-update affine projection algorithm with selective input vectors

    NASA Astrophysics Data System (ADS)

    Kong, NamWoong; Shin, JaeWook; Park, PooGyeon

    2011-10-01

    This paper proposes an affine projection algorithm (APA) with selective input vectors, which based on the concept of selective-update in order to reduce estimation errors and computations. The algorithm consists of two procedures: input- vector-selection and state-decision. The input-vector-selection procedure determines the number of input vectors by checking with mean square error (MSE) whether the input vectors have enough information for update. The state-decision procedure determines the current state of the adaptive filter by using the state-decision criterion. As the adaptive filter is in transient state, the algorithm updates the filter coefficients with the selected input vectors. On the other hand, as soon as the adaptive filter reaches the steady state, the update procedure is not performed. Through these two procedures, the proposed algorithm achieves small steady-state estimation errors, low computational complexity and low update complexity for colored input signals.

  6. Inter-firm Networks, Organizational Learning and Knowledge Updating: An Empirical Study

    NASA Astrophysics Data System (ADS)

    Zhang, Su-rong; Wang, Wen-ping

    In the era of knowledge-based economy which information technology develops rapidly, the rate of knowledge updating has become a critical factor for enterprises to gaining competitive advantage .We build an interactional theoretical model among inter-firm networks, organizational learning and knowledge updating thereby and demonstrate it with empirical study at last. The result shows that inter-firm networks and organizational learning is the source of knowledge updating.

  7. Development of force adaptation during childhood.

    PubMed

    Konczak, Jürgen; Jansen-Osmann, Petra; Kalveram, Karl-Theodor

    2003-03-01

    Humans learn to make reaching movements in novel dynamic environments by acquiring an internal motor model of their limb dynamics. Here, the authors investigated how 4- to 11-year-old children (N = 39) and adults (N = 7) adapted to changes in arm dynamics, and they examined whether those data support the view that the human brain acquires inverse dynamics models (IDM) during development. While external damping forces were applied, the children learned to perform goal-directed forearm flexion movements. After changes in damping, all children showed kinematic aftereffects indicative of a neural controller that still attempted to compensate the no longer existing damping force. With increasing age, the number of trials toward complete adaptation decreased. When damping was present, forearm paths were most perturbed and most variable in the youngest children but were improved in the older children. The findings indicate that the neural representations of limb dynamics are less precise in children and less stable in time than those of adults. Such controller instability might be a primary cause of the high kinematic variability observed in many motor tasks during childhood. Finally, the young children were not able to update those models at the same rate as the older children, who, in turn, adapted more slowly than adults. In conclusion, the ability to adapt to unknown forces is a developmental achievement. The present results are consistent with the view that the acquisition and modification of internal models of the limb dynamics form the basis of that adaptive process.

  8. The influence of learning and updating speed on the growth of commercial websites

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoji; Deng, Guishi; Bai, Yang; Xue, Shaowei

    2012-08-01

    In this paper, we study the competition model of commercial websites with learning and updating speed, and further analyze the influence of learning and updating speed on the growth of commercial websites from a nonlinear dynamics perspective. Using the center manifold theory and the normal form method, we give the explicit formulas determining the stability and periodic fluctuation of commercial sites. Numerical simulations reveal that sites periodically fluctuate as the speed of learning and updating crosses one threshold. The study provides reference and evidence for website operators to make decisions.

  9. Novel method to form adaptive internal impedance profiles in walkers.

    PubMed

    Escudero Morland, Maximilano F; Althoefer, Kaspar; Nanayakkara, Thrishantha

    2015-01-01

    This paper proposes a novel approach to improve walking in prosthetics, orthotics and robotics without closed loop controllers. The approach requires impedance profiles to be formed in a walker and uses state feedback to update the profiles in real-time via a simple policy. This approach is open loop and inherently copes with the challenge of uncertain environment. In application it could be used either online for a walker to adjust its impedance profiles in real-time to compensate for environmental changes, or offline to learn suitable profiles for specific environments. So far we have conducted simulations and experiments to investigate the transient and steady state gaits obtained using two simple update policies to form damping profiles in a passive dynamic walker known as the rimless wheel (RW). The damping profiles are formed in the motor that moves the RW vertically along a rail, analogous to a knee joint, and the two update equations were designed to a) control the angular velocity profile and b) minimise peak collision forces. Simulation results show that the velocity update equation works within limits and can cope with varying ground conditions. Experiment results show the angular velocity average reaching the target as well as the peak force update equation reducing peak collision forces in real-time.

  10. Fast Compressive Tracking.

    PubMed

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  11. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback.

    PubMed

    Whitney, Paul; Hinson, John M; Jackson, Melinda L; Van Dongen, Hans P A

    2015-05-01

    To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Twenty-six subjects (22-40 y of age; 10 women). Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback or because the feedback is not cognitively bound with the choice. This has important implications for understanding and managing sleep loss-induced cognitive impairment in emergency response, disaster management, military operations, and other dynamic real-world settings with uncertain outcomes and imperfect information. © 2015 Associated Professional Sleep Societies, LLC.

  12. An Approach to Stable Gradient-Descent Adaptation of Higher Order Neural Units.

    PubMed

    Bukovsky, Ivo; Homma, Noriyasu

    2017-09-01

    Stability evaluation of a weight-update system of higher order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on the spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring the stability of the weight-update system (at every single adaptation step) naturally results in the adaptation stability of the whole neural architecture that adapts to the target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters.

  13. A single-rate context-dependent learning process underlies rapid adaptation to familiar object dynamics.

    PubMed

    Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M

    2011-09-01

    Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.

  14. Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation.

    PubMed

    Grossi, Giuliano; Lanzarotti, Raffaella; Lin, Jianyi

    2017-01-01

    In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD's robustness and wide applicability.

  15. [Internet-based continuing medical education: as effective as live continuing medical education].

    PubMed

    Maisonneuve, Hervé; Chabot, Olivier

    2009-10-01

    E-learning consists in using new multimedia and Internet technologies to improve the quality of learning activities by facilitating access to resources and services, as well as exchanges and remote collaboration. The Internet is used for adult education in most professional domains, but its use for continuing medical education is less developed. Advantages are observed for teachers (e.g., permanent updating, interactive links, illustrations, archiving, and collective intelligence) and for the learners (e.g., accessibility, autonomy, flexibility, and adaptable pace). Research and meta-analyses have shown that e-CME is as effective as live events for immediate and retained learning. English-language educational medical websites that grant CME credits are numerous; few such French-language sites can currently grant credits. Accreditation of websites for CME, in its infancy in Europe, is common in North America.

  16. Incremental Structured Dictionary Learning for Video Sensor-Based Object Tracking

    PubMed Central

    Xue, Ming; Yang, Hua; Zheng, Shibao; Zhou, Yi; Yu, Zhenghua

    2014-01-01

    To tackle robust object tracking for video sensor-based applications, an online discriminative algorithm based on incremental discriminative structured dictionary learning (IDSDL-VT) is presented. In our framework, a discriminative dictionary combining both positive, negative and trivial patches is designed to sparsely represent the overlapped target patches. Then, a local update (LU) strategy is proposed for sparse coefficient learning. To formulate the training and classification process, a multiple linear classifier group based on a K-combined voting (KCV) function is proposed. As the dictionary evolves, the models are also trained to timely adapt the target appearance variation. Qualitative and quantitative evaluations on challenging image sequences compared with state-of-the-art algorithms demonstrate that the proposed tracking algorithm achieves a more favorable performance. We also illustrate its relay application in visual sensor networks. PMID:24549252

  17. TH-E-201-01: Diagnostic Radiology Residents Physics Curriculum and Updates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sensakovic, W.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  18. Top-Down Visual Saliency via Joint CRF and Dictionary Learning.

    PubMed

    Yang, Jimei; Yang, Ming-Hsuan

    2017-03-01

    Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.

  19. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.

    2017-04-01

    To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.

  20. Implementing a bar-coded bedside medication administration system.

    PubMed

    Yates, Cindy

    2007-01-01

    Hospitals across the nation are struggling with implementing electronic medication administration and reporting (eMAR) systems as part of patient safety programs. St Luke's Hospital in Chesterfield, Mo, initiated their eMAR initiative in June 2003, initiating program start-up in September 2004. This case study documents how the project was approached, its overall success, and what was learned along the way. Also included is a recent update highlighting the expansion of St Luke's patient safety initiative, adapting eMAR to two specialty units: dialysis and laboratory processes.

  1. Feedback-related negativity codes outcome valence, but not outcome expectancy, during reversal learning.

    PubMed

    von Borries, A K L; Verkes, R J; Bulten, B H; Cools, R; de Bruijn, E R A

    2013-12-01

    Optimal behavior depends on the ability to assess the predictive value of events and to adjust behavior accordingly. Outcome processing can be studied by using its electrophysiological signatures--that is, the feedback-related negativity (FRN) and the P300. A prominent reinforcement-learning model predicts an FRN on negative prediction errors, as well as implying a role for the FRN in learning and the adaptation of behavior. However, these predictions have recently been challenged. Notably, studies so far have used tasks in which the outcomes have been contingent on the response. In these paradigms, the need to adapt behavioral responses is present only for negative, not for positive feedback. The goal of the present study was to investigate the effects of positive as well as negative violations of expectancy on FRN amplitudes, without the usual confound of behavioral adjustments. A reversal-learning task was employed in which outcome value and outcome expectancy were orthogonalized; that is, both positive and negative outcomes were equally unexpected. The results revealed a double dissociation, with effects of valence but not expectancy on the FRN and, conversely, effects of expectancy but not valence on the P300. While FRN amplitudes were largest for negative-outcome trials, irrespective of outcome expectancy, P300 amplitudes were largest for unexpected-outcome trials, irrespective of outcome valence. These FRN effects were interpreted to reflect an evaluation along a good-bad dimension, rather than reflecting a negative prediction error or a role in behavioral adaptation. By contrast, the P300 reflects the updating of information relevant for behavior in a changing context.

  2. Wireless rake-receiver using adaptive filter with a family of partial update algorithms in noise cancellation applications

    NASA Astrophysics Data System (ADS)

    Fayadh, Rashid A.; Malek, F.; Fadhil, Hilal A.; Aldhaibani, Jaafar A.; Salman, M. K.; Abdullah, Farah Salwani

    2015-05-01

    For high data rate propagation in wireless ultra-wideband (UWB) communication systems, the inter-symbol interference (ISI), multiple-access interference (MAI), and multiple-users interference (MUI) are influencing the performance of the wireless systems. In this paper, the rake-receiver was presented with the spread signal by direct sequence spread spectrum (DS-SS) technique. The adaptive rake-receiver structure was shown with adjusting the receiver tap weights using least mean squares (LMS), normalized least mean squares (NLMS), and affine projection algorithms (APA) to support the weak signals by noise cancellation and mitigate the interferences. To minimize the data convergence speed and to reduce the computational complexity by the previous algorithms, a well-known approach of partial-updates (PU) adaptive filters were employed with algorithms, such as sequential-partial, periodic-partial, M-max-partial, and selective-partial updates (SPU) in the proposed system. The simulation results of bit error rate (BER) versus signal-to-noise ratio (SNR) are illustrated to show the performance of partial-update algorithms that have nearly comparable performance with the full update adaptive filters. Furthermore, the SPU-partial has closed performance to the full-NLMS and full-APA while the M-max-partial has closed performance to the full-LMS updates algorithms.

  3. A Global Model for Effective Use and Evaluation of e-Learning in Health

    PubMed Central

    Farrington, Conor; Brayne, Carol

    2013-01-01

    Abstract Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of “information overload” have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and “digital literacy” and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning. PMID:23472702

  4. Smoothing of cost function leads to faster convergence of neural network learning

    NASA Astrophysics Data System (ADS)

    Xu, Li-Qun; Hall, Trevor J.

    1994-03-01

    One of the major problems in supervised learning of neural networks is the inevitable local minima inherent in the cost function f(W,D). This often makes classic gradient-descent-based learning algorithms that calculate the weight updates for each iteration according to (Delta) W(t) equals -(eta) (DOT)$DELwf(W,D) powerless. In this paper we describe a new strategy to solve this problem, which, adaptively, changes the learning rate and manipulates the gradient estimator simultaneously. The idea is to implicitly convert the local- minima-laden cost function f((DOT)) into a sequence of its smoothed versions {f(beta t)}Ttequals1, which, subject to the parameter (beta) t, bears less details at time t equals 1 and gradually more later on, the learning is actually performed on this sequence of functionals. The corresponding smoothed global minima obtained in this way, {Wt}Ttequals1, thus progressively approximate W-the desired global minimum. Experimental results on a nonconvex function minimization problem and a typical neural network learning task are given, analyses and discussions of some important issues are provided.

  5. A global model for effective use and evaluation of e-learning in health.

    PubMed

    Ruggeri, Kai; Farrington, Conor; Brayne, Carol

    2013-04-01

    Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of "information overload" have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and "digital literacy" and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning.

  6. Effective Information Extraction Framework for Heterogeneous Clinical Reports Using Online Machine Learning and Controlled Vocabularies

    PubMed Central

    Zheng, Shuai; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A

    2017-01-01

    Background Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Objective Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. Methods A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Results Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports—each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. Conclusions IDEAL-X adopts a unique online machine learning–based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. PMID:28487265

  7. Functional Based Adaptive and Fuzzy Sliding Controller for Non-Autonomous Active Suspension System

    NASA Astrophysics Data System (ADS)

    Huang, Shiuh-Jer; Chen, Hung-Yi

    In this paper, an adaptive sliding controller is developed for controlling a vehicle active suspension system. The functional approximation technique is employed to substitute the unknown non-autonomous functions of the suspension system and release the model-based requirement of sliding mode control algorithm. In order to improve the control performance and reduce the implementation problem, a fuzzy strategy with online learning ability is added to compensate the functional approximation error. The update laws of the functional approximation coefficients and the fuzzy tuning parameters are derived from the Lyapunov theorem to guarantee the system stability. The proposed controller is implemented on a quarter-car hydraulic actuating active suspension system test-rig. The experimental results show that the proposed controller suppresses the oscillation amplitude of the suspension system effectively.

  8. Machine learning based Intelligent cognitive network using fog computing

    NASA Astrophysics Data System (ADS)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  9. A unified framework of image latent feature learning on Sina microblog

    NASA Astrophysics Data System (ADS)

    Wei, Jinjin; Jin, Zhigang; Zhou, Yuan; Zhang, Rui

    2015-10-01

    Large-scale user-contributed images with texts are rapidly increasing on the social media websites, such as Sina microblog. However, the noise and incomplete correspondence between the images and the texts give rise to the difficulty in precise image retrieval and ranking. In this paper, a hypergraph-based learning framework is proposed for image ranking, which simultaneously utilizes visual feature, textual content and social link information to estimate the relevance between images. Representing each image as a vertex in the hypergraph, complex relationship between images can be reflected exactly. Then updating the weight of hyperedges throughout the hypergraph learning process, the effect of different edges can be adaptively modulated in the constructed hypergraph. Furthermore, the popularity degree of the image is employed to re-rank the retrieval results. Comparative experiments on a large-scale Sina microblog data-set demonstrate the effectiveness of the proposed approach.

  10. A Novel Extreme Learning Control Framework of Unmanned Surface Vehicles.

    PubMed

    Wang, Ning; Sun, Jing-Chao; Er, Meng Joo; Liu, Yan-Cheng

    2016-05-01

    In this paper, an extreme learning control (ELC) framework using the single-hidden-layer feedforward network (SLFN) with random hidden nodes for tracking an unmanned surface vehicle suffering from unknown dynamics and external disturbances is proposed. By combining tracking errors with derivatives, an error surface and transformed states are defined to encapsulate unknown dynamics and disturbances into a lumped vector field of transformed states. The lumped nonlinearity is further identified accurately by an extreme-learning-machine-based SLFN approximator which does not require a priori system knowledge nor tuning input weights. Only output weights of the SLFN need to be updated by adaptive projection-based laws derived from the Lyapunov approach. Moreover, an error compensator is incorporated to suppress approximation residuals, and thereby contributing to the robustness and global asymptotic stability of the closed-loop ELC system. Simulation studies and comprehensive comparisons demonstrate that the ELC framework achieves high accuracy in both tracking and approximation.

  11. Object Recognition using Feature- and Color-Based Methods

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Duong, Vu; Stubberud, Allen

    2008-01-01

    An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.

  12. Using brain potentials to understand prism adaptation: the error-related negativity and the P300

    PubMed Central

    MacLean, Stephane J.; Hassall, Cameron D.; Ishigami, Yoko; Krigolson, Olav E.; Eskes, Gail A.

    2015-01-01

    Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)—a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN. PMID:26124715

  13. Using brain potentials to understand prism adaptation: the error-related negativity and the P300.

    PubMed

    MacLean, Stephane J; Hassall, Cameron D; Ishigami, Yoko; Krigolson, Olav E; Eskes, Gail A

    2015-01-01

    Prism adaptation (PA) is both a perceptual-motor learning task as well as a promising rehabilitation tool for visuo-spatial neglect (VSN)-a spatial attention disorder often experienced after stroke resulting in slowed and/or inaccurate motor responses to contralesional targets. During PA, individuals are exposed to prism-induced shifts of the visual-field while performing a visuo-guided reaching task. After adaptation, with goggles removed, visuomotor responding is shifted to the opposite direction of that initially induced by the prisms. This visuomotor aftereffect has been used to study visuomotor learning and adaptation and has been applied clinically to reduce VSN severity by improving motor responding to stimuli in contralesional (usually left-sided) space. In order to optimize PA's use for VSN patients, it is important to elucidate the neural and cognitive processes that alter visuomotor function during PA. In the present study, healthy young adults underwent PA while event-related potentials (ERPs) were recorded at the termination of each reach (screen-touch), then binned according to accuracy (hit vs. miss) and phase of exposure block (early, middle, late). Results show that two ERP components were evoked by screen-touch: an error-related negativity (ERN), and a P300. The ERN was consistently evoked on miss trials during adaptation, while the P300 amplitude was largest during the early phase of adaptation for both hit and miss trials. This study provides evidence of two neural signals sensitive to visual feedback during PA that may sub-serve changes in visuomotor responding. Prior ERP research suggests that the ERN reflects an error processing system in medial-frontal cortex, while the P300 is suggested to reflect a system for context updating and learning. Future research is needed to elucidate the role of these ERP components in improving visuomotor responses among individuals with VSN.

  14. Effective Information Extraction Framework for Heterogeneous Clinical Reports Using Online Machine Learning and Controlled Vocabularies.

    PubMed

    Zheng, Shuai; Lu, James J; Ghasemzadeh, Nima; Hayek, Salim S; Quyyumi, Arshed A; Wang, Fusheng

    2017-05-09

    Extracting structured data from narrated medical reports is challenged by the complexity of heterogeneous structures and vocabularies and often requires significant manual effort. Traditional machine-based approaches lack the capability to take user feedbacks for improving the extraction algorithm in real time. Our goal was to provide a generic information extraction framework that can support diverse clinical reports and enables a dynamic interaction between a human and a machine that produces highly accurate results. A clinical information extraction system IDEAL-X has been built on top of online machine learning. It processes one document at a time, and user interactions are recorded as feedbacks to update the learning model in real time. The updated model is used to predict values for extraction in subsequent documents. Once prediction accuracy reaches a user-acceptable threshold, the remaining documents may be batch processed. A customizable controlled vocabulary may be used to support extraction. Three datasets were used for experiments based on report styles: 100 cardiac catheterization procedure reports, 100 coronary angiographic reports, and 100 integrated reports-each combines history and physical report, discharge summary, outpatient clinic notes, outpatient clinic letter, and inpatient discharge medication report. Data extraction was performed by 3 methods: online machine learning, controlled vocabularies, and a combination of these. The system delivers results with F1 scores greater than 95%. IDEAL-X adopts a unique online machine learning-based approach combined with controlled vocabularies to support data extraction for clinical reports. The system can quickly learn and improve, thus it is highly adaptable. ©Shuai Zheng, James J Lu, Nima Ghasemzadeh, Salim S Hayek, Arshed A Quyyumi, Fusheng Wang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 09.05.2017.

  15. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram.

    PubMed

    Stovold, Elizabeth; Beecher, Deirdre; Foxlee, Ruth; Noel-Storr, Anna

    2014-05-29

    Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates.A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results.There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates.

  16. Pharmacological Fingerprints of Contextual Uncertainty

    PubMed Central

    Ruge, Diane; Stephan, Klaas E.

    2016-01-01

    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. PMID:27846219

  17. Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation

    PubMed Central

    Grossi, Giuliano; Lin, Jianyi

    2017-01-01

    In the sparse representation model, the design of overcomplete dictionaries plays a key role for the effectiveness and applicability in different domains. Recent research has produced several dictionary learning approaches, being proven that dictionaries learnt by data examples significantly outperform structured ones, e.g. wavelet transforms. In this context, learning consists in adapting the dictionary atoms to a set of training signals in order to promote a sparse representation that minimizes the reconstruction error. Finding the best fitting dictionary remains a very difficult task, leaving the question still open. A well-established heuristic method for tackling this problem is an iterative alternating scheme, adopted for instance in the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former promotes sparse coding of the training set and the latter adapts the dictionary to reduce the error. In this paper we present R-SVD, a new method that, while maintaining the alternating scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably arranged into groups. Comparative experiments on synthetic data prove the effectiveness of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method OSDL. Moreover, experiments on natural data such as ECG compression, EEG sparse representation, and image modeling confirm R-SVD’s robustness and wide applicability. PMID:28103283

  18. An Adaptive Pheromone Updation of the Ant-System using LMS Technique

    NASA Astrophysics Data System (ADS)

    Paul, Abhishek; Mukhopadhyay, Sumitra

    2010-10-01

    We propose a modified model of pheromone updation for Ant-System, entitled as Adaptive Ant System (AAS), using the properties of basic Adaptive Filters. Here, we have exploited the properties of Least Mean Square (LMS) algorithm for the pheromone updation to find out the best minimum tour for the Travelling Salesman Problem (TSP). TSP library has been used for the selection of benchmark problem and the proposed AAS determines the minimum tour length for the problems containing large number of cities. Our algorithm shows effective results and gives least tour length in most of the cases as compared to other existing approaches.

  19. Updating existing emotional memories involves the frontopolar/orbitofrontal cortex in ways that acquiring new emotional memories does not

    PubMed Central

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2011-01-01

    In life, we must often learn new associations to people, places, or things we already know. The current functional magnetic resonance imaging study investigated the neural mechanisms underlying emotional memory updating. Nineteen participants first viewed negative and neutral pictures and learned associations between those pictures and other neutral stimuli, such as neutral objects and encoding tasks. This initial learning phase was followed by a memory updating phase, during which participants learned picture-location associations for old pictures (i.e., pictures previously associated with other neutral stimuli) and new pictures (i.e., pictures not seen in the first phase). There was greater frontopolar/ orbitofrontal (OFC) activity when people learned picture-location associations for old negative pictures than for new negative pictures, but frontopolar OFC activity did not significantly differ during learning locations of old versus new neutral pictures. In addition, frontopolar activity was more negatively correlated with the amygdala when participants learned picture-location associations for old negative pictures than for new negative or old neutral pictures. Past studies revealed that the frontopolar OFC allows for updating the affective values of stimuli in reversal learning or extinction of conditioning (e.g., Izquierdo & Murray, 2005); our findings suggest that it plays a more general role in updating associations to emotional stimuli. PMID:21568639

  20. Specificity and timescales of cortical adaptation as inferences about natural movie statistics.

    PubMed

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-10-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation.

  1. Specificity and timescales of cortical adaptation as inferences about natural movie statistics

    PubMed Central

    Snow, Michoel; Coen-Cagli, Ruben; Schwartz, Odelia

    2016-01-01

    Adaptation is a phenomenological umbrella term under which a variety of temporal contextual effects are grouped. Previous models have shown that some aspects of visual adaptation reflect optimal processing of dynamic visual inputs, suggesting that adaptation should be tuned to the properties of natural visual inputs. However, the link between natural dynamic inputs and adaptation is poorly understood. Here, we extend a previously developed Bayesian modeling framework for spatial contextual effects to the temporal domain. The model learns temporal statistical regularities of natural movies and links these statistics to adaptation in primary visual cortex via divisive normalization, a ubiquitous neural computation. In particular, the model divisively normalizes the present visual input by the past visual inputs only to the degree that these are inferred to be statistically dependent. We show that this flexible form of normalization reproduces classical findings on how brief adaptation affects neuronal selectivity. Furthermore, prior knowledge acquired by the Bayesian model from natural movies can be modified by prolonged exposure to novel visual stimuli. We show that this updating can explain classical results on contrast adaptation. We also simulate the recent finding that adaptation maintains population homeostasis, namely, a balanced level of activity across a population of neurons with different orientation preferences. Consistent with previous disparate observations, our work further clarifies the influence of stimulus-specific and neuronal-specific normalization signals in adaptation. PMID:27699416

  2. On Using Exponential Parameter Estimators with an Adaptive Controller

    NASA Technical Reports Server (NTRS)

    Patre, Parag; Joshi, Suresh M.

    2011-01-01

    Typical adaptive controllers are restricted to using a specific update law to generate parameter estimates. This paper investigates the possibility of using any exponential parameter estimator with an adaptive controller such that the system tracks a desired trajectory. The goal is to provide flexibility in choosing any update law suitable for a given application. The development relies on a previously developed concept of controller/update law modularity in the adaptive control literature, and the use of a converse Lyapunov-like theorem. Stability analysis is presented to derive gain conditions under which this is possible, and inferences are made about the tracking error performance. The development is based on a class of Euler-Lagrange systems that are used to model various engineering systems including space robots and manipulators.

  3. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  4. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  5. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces

    PubMed Central

    Prins, Noeline W.; Sanchez, Justin C.; Prasad, Abhishek

    2014-01-01

    Brain-Machine Interfaces (BMIs) can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have presented challenges in transitioning the technology from research environments to activities of daily living (ADL). For BMIs to be seamlessly used in ADL, these issues should be handled with minimal external input thus reducing the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL) based BMIs are a good tool to be used when there is no external training signal and can provide an adaptive modality to train BMI decoders. However, RL based BMIs are sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback is provided by the critic and the overall system performance is limited by the critic accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in the critic feedback in an effort to produce more accurate RL based BMIs. We developed a confidence measure, which indicated how appropriate the feedback is for updating the decoding parameters of the actor. The results show that with the new update formulation, the critic accuracy is no longer a limiting factor for the overall performance. We tested and validated the system onthree different data sets: synthetic data generated by an Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data collected from a non-human primate engaged in a reaching task. All results indicated that the system with the critic confidence built in always outperformed the system without the critic confidence. Results of this study suggest the potential application of the technique in developing an autonomous BMI that does not need an external signal for training or extensive calibration. PMID:24904257

  6. Teaching Adaptability of Object-Oriented Programming Language Curriculum

    ERIC Educational Resources Information Center

    Zhu, Xiao-dong

    2012-01-01

    The evolution of object-oriented programming languages includes update of their own versions, update of development environments, and reform of new languages upon old languages. In this paper, the evolution analysis of object-oriented programming languages is presented in term of the characters and development. The notion of adaptive teaching upon…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less

  8. Effects of subconscious and conscious emotions on human cue–reward association learning

    PubMed Central

    Watanabe, Noriya; Haruno, Masahiko

    2015-01-01

    Life demands that we adapt our behaviour continuously in situations in which much of our incoming information is emotional and unrelated to our immediate behavioural goals. Such information is often processed without our consciousness. This poses an intriguing question of whether subconscious exposure to irrelevant emotional information (e.g. the surrounding social atmosphere) affects the way we learn. Here, we addressed this issue by examining whether the learning of cue-reward associations changes when an emotional facial expression is shown subconsciously or consciously prior to the presentation of a reward-predicting cue. We found that both subconscious (0.027 s and 0.033 s) and conscious (0.047 s) emotional signals increased the rate of learning, and this increase was smallest at the border of conscious duration (0.040 s). These data suggest not only that the subconscious and conscious processing of emotional signals enhances value-updating in cue–reward association learning, but also that the computational processes underlying the subconscious enhancement is at least partially dissociable from its conscious counterpart. PMID:25684237

  9. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  10. Study flow diagrams in Cochrane systematic review updates: an adapted PRISMA flow diagram

    PubMed Central

    2014-01-01

    Cochrane systematic reviews are conducted and reported according to rigorous standards. A study flow diagram must be included in a new review, and there is clear guidance from the PRISMA statement on how to do this. However, for a review update, there is currently no guidance on how study flow diagrams should be presented. To address this, a working group was formed to find a solution and produce guidance on how to use these diagrams in review updates. A number of different options were devised for how these flow diagrams could be used in review updates, and also in cases where multiple searches for a review or review update have been conducted. These options were circulated to the Cochrane information specialist community for consultation and feedback. Following the consultation period, the working group refined the guidance and made the recommendation that for review updates an adapted PRISMA flow diagram should be used, which includes an additional box with the number of previously included studies feeding into the total. Where multiple searches have been conducted, the results should be added together and treated as one set of results. There is no existing guidance for using study flow diagrams in review updates. Our adapted diagram is a simple and pragmatic solution for showing the flow of studies in review updates. PMID:24886533

  11. Generic skills in medical education: developing the tools for successful lifelong learning.

    PubMed

    Murdoch-Eaton, Deborah; Whittle, Sue

    2012-01-01

    Higher education has invested in defining the role of generic skills in developing effective, adaptable graduates fit for a changing workplace. Research confirms that the development of generic skills that underpin effectiveness and adaptability in graduates is highly context-dependent and is shaped by the discipline within which these skills are conceptualised, valued and taught. This places the responsibility for generic skills enhancement clearly within the remit of global medical education. Many factors will influence the skill set with which students begin their medical training and experience at entry needs to be taken into account. Learning and teaching environments enhance effective skill development through active learning, teaching for understanding, feedback, and teacher-student and student-student interaction. Medical curricula need to provide students with opportunities to practise and develop their generic skills in a range of discipline-specific contexts. Curricular design should include explicit and integrated generic skills objectives against which students' progress can be monitored. Assessment and feedback serve as valuable reinforcements of the professed importance of generic skills to both learner and teacher, and will encourage students to self-evaluate and take responsibility for their own skill development. The continual need for students to modify their practice in response to changes in their environment and the requirements of their roles will help students to develop the ability to transfer these skills at transition points in their training and future careers. If they are to take their place in an ever-changing profession, medical students need to be competent in the skills that underpin lifelong learning. Only then will the doctors of the future be well placed to adapt to changes in knowledge, update their practice in line with the changing evidence base, and continue to contribute effectively as societal needs change. © Blackwell Publishing Ltd 2012.

  12. Neural networks for function approximation in nonlinear control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  13. Adaptive fuzzy dynamic surface control of nonlinear systems with input saturation and time-varying output constraints

    NASA Astrophysics Data System (ADS)

    Edalati, L.; Khaki Sedigh, A.; Aliyari Shooredeli, M.; Moarefianpour, A.

    2018-02-01

    This paper deals with the design of adaptive fuzzy dynamic surface control for uncertain strict-feedback nonlinear systems with asymmetric time-varying output constraints in the presence of input saturation. To approximate the unknown nonlinear functions and overcome the problem of explosion of complexity, a Fuzzy logic system is combined with the dynamic surface control in the backstepping design technique. To ensure the output constraints satisfaction, an asymmetric time-varying Barrier Lyapunov Function (BLF) is used. Moreover, by applying the minimal learning parameter technique, the number of the online parameters update for each subsystem is reduced to 2. Hence, the semi-globally uniformly ultimately boundedness (SGUUB) of all the closed-loop signals with appropriate tracking error convergence is guaranteed. The effectiveness of the proposed control is demonstrated by two simulation examples.

  14. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  15. Cueing cognitive flexibility: Item-specific learning of switch readiness.

    PubMed

    Chiu, Yu-Chin; Egner, Tobias

    2017-12-01

    The rich behavioral repertoire of the human species derives from our ability to flexibly reconfigure processing strategies (task sets) in response to changing requirements. This updating of task sets is effortful, as reflected by longer response times when switching a task than repeating it (switch costs). However, some recent data suggest that switch costs can be reduced by cueing switch readiness bottom-up, by associating particular stimuli with frequent switch requirements. This type of "stimulus-control (S-C) learning" would be highly adaptive, as it combines the speed of automatic (bottom-up) processing with the flexibility and generalizability of controlled (top-down) processing. However, it is unclear whether S-C learning of switch readiness is truly possible, and what the underlying mechanisms are. Here we address these questions by pairing specific stimuli with a need to update task-sets either frequently or rarely. In all 3 experiments, we observe robust item-specific switch probability (ISSP) effects as revealed by smaller switch costs for frequent switch items than for rare switch items. By including a neutral condition, we also show that the ISSP effect is primarily driven by S-C learning reducing switch costs in frequent switch items. Furthermore, by employing 3 tasks in Experiment 3, we establish that the ISSP effect reflects an enhancement of general switch readiness, rather than of the readiness to switch to a specific alternate task. These results firmly establish that switch readiness is malleable by item-specific S-C learning processes, documenting that a generalizable state of cognitive flexibility can be primed by a bottom-up stimulus. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Scene-Aware Adaptive Updating for Visual Tracking via Correlation Filters

    PubMed Central

    Zhang, Sirou; Qiao, Xiaoya

    2017-01-01

    In recent years, visual object tracking has been widely used in military guidance, human-computer interaction, road traffic, scene monitoring and many other fields. The tracking algorithms based on correlation filters have shown good performance in terms of accuracy and tracking speed. However, their performance is not satisfactory in scenes with scale variation, deformation, and occlusion. In this paper, we propose a scene-aware adaptive updating mechanism for visual tracking via a kernel correlation filter (KCF). First, a low complexity scale estimation method is presented, in which the corresponding weight in five scales is employed to determine the final target scale. Then, the adaptive updating mechanism is presented based on the scene-classification. We classify the video scenes as four categories by video content analysis. According to the target scene, we exploit the adaptive updating mechanism to update the kernel correlation filter to improve the robustness of the tracker, especially in scenes with scale variation, deformation, and occlusion. We evaluate our tracker on the CVPR2013 benchmark. The experimental results obtained with the proposed algorithm are improved by 33.3%, 15%, 6%, 21.9% and 19.8% compared to those of the KCF tracker on the scene with scale variation, partial or long-time large-area occlusion, deformation, fast motion and out-of-view. PMID:29140311

  17. Online Multi-Modal Robust Non-Negative Dictionary Learning for Visual Tracking

    PubMed Central

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality. PMID:25961715

  18. Online multi-modal robust non-negative dictionary learning for visual tracking.

    PubMed

    Zhang, Xiang; Guan, Naiyang; Tao, Dacheng; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Dictionary learning is a method of acquiring a collection of atoms for subsequent signal representation. Due to its excellent representation ability, dictionary learning has been widely applied in multimedia and computer vision. However, conventional dictionary learning algorithms fail to deal with multi-modal datasets. In this paper, we propose an online multi-modal robust non-negative dictionary learning (OMRNDL) algorithm to overcome this deficiency. Notably, OMRNDL casts visual tracking as a dictionary learning problem under the particle filter framework and captures the intrinsic knowledge about the target from multiple visual modalities, e.g., pixel intensity and texture information. To this end, OMRNDL adaptively learns an individual dictionary, i.e., template, for each modality from available frames, and then represents new particles over all the learned dictionaries by minimizing the fitting loss of data based on M-estimation. The resultant representation coefficient can be viewed as the common semantic representation of particles across multiple modalities, and can be utilized to track the target. OMRNDL incrementally learns the dictionary and the coefficient of each particle by using multiplicative update rules to respectively guarantee their non-negativity constraints. Experimental results on a popular challenging video benchmark validate the effectiveness of OMRNDL for visual tracking in both quantity and quality.

  19. Generalization of vestibular learning to earth-fixed targets is possible but limited when the polarity of afferent vestibular information is changed.

    PubMed

    Mackrous, I; Simoneau, M

    2014-02-28

    To maintain perception of the world around us during body motion, the brain must update the spatial presentation of visual stimuli, known as space updating. Previous studies have demonstrated that vestibular signals contribute to space updating. Nonetheless, when being passively rotated in the dark, the ability to keep track of a memorized earth-fixed target (EFT) involves learning mechanism(s). We tested whether such learning generalizes across different EFT eccentricities. Furthermore, we ascertained whether learning transfers to similar target eccentricities but in the opposite direction. Participants were trained to predict the position of an EFT (located at 45° to their left) while being rotated counterclockwise (i.e., they press a push button when they perceived that their body midline have cross the position of the target). Overall, the results indicated that learning transferred to other target eccentricity (30° and 60°) for identical body rotation direction. In contrast, vestibular learning partly transferred to target location's matching body rotation but in the opposite rotation direction. Generalization of learning implies that participants do not adopt cognitive strategies to improve their performance during training. We argue that the brain learned to use vestibular signals for space updating. Generalization of learning while being rotated in the opposite direction implies that some parts of the neural networks involved in space updating is shared between trained and untrained direction. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Updating: Learning versus Supposing

    ERIC Educational Resources Information Center

    Zhao, Jiaying; Crupi, Vincenzo; Tentori, Katya; Fitelson, Branden; Osherson, Daniel

    2012-01-01

    Bayesian orthodoxy posits a tight relationship between conditional probability and updating. Namely, the probability of an event "A" after learning "B" should equal the conditional probability of "A" given "B" prior to learning "B". We examine whether ordinary judgment conforms to the orthodox view. In three experiments we found substantial…

  1. Machine learning with quantum relative entropy

    NASA Astrophysics Data System (ADS)

    Tsuda, Koji

    2009-12-01

    Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.

  2. Condition interference in rats performing a choice task with switched variable- and fixed-reward conditions.

    PubMed

    Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu

    2015-01-01

    Because humans and animals encounter various situations, the ability to adaptively decide upon responses to any situation is essential. To date, however, decision processes and the underlying neural substrates have been investigated under specific conditions; thus, little is known about how various conditions influence one another in these processes. In this study, we designed a binary choice task with variable- and fixed-reward conditions and investigated neural activities of the prelimbic cortex and dorsomedial striatum in rats. Variable- and fixed-reward conditions induced flexible and inflexible behaviors, respectively; one of the two conditions was randomly assigned in each trial for testing the possibility of condition interference. Rats were successfully conditioned such that they could find the better reward holes of variable-reward-condition and fixed-reward-condition trials. A learning interference model, which updated expected rewards (i.e., values) used in variable-reward-condition trials on the basis of combined experiences of both conditions, better fit choice behaviors than conventional models which updated values in each condition independently. Thus, although rats distinguished the trial condition, they updated values in a condition-interference manner. Our electrophysiological study suggests that this interfering value-updating is mediated by the prelimbic cortex and dorsomedial striatum. First, some prelimbic cortical and striatal neurons represented the action-reward associations irrespective of trial conditions. Second, the striatal neurons kept tracking the values of variable-reward condition even in fixed-reward-condition trials, such that values were possibly interferingly updated even in the fixed-reward condition.

  3. A novel data-driven learning method for radar target detection in nonstationary environments

    DOE PAGES

    Akcakaya, Murat; Nehorai, Arye; Sen, Satyabrata

    2016-04-12

    Most existing radar algorithms are developed under the assumption that the environment (clutter) is stationary. However, in practice, the characteristics of the clutter can vary enormously depending on the radar-operational scenarios. If unaccounted for, these nonstationary variabilities may drastically hinder the radar performance. Therefore, to overcome such shortcomings, we develop a data-driven method for target detection in nonstationary environments. In this method, the radar dynamically detects changes in the environment and adapts to these changes by learning the new statistical characteristics of the environment and by intelligibly updating its statistical detection algorithm. Specifically, we employ drift detection algorithms to detectmore » changes in the environment; incremental learning, particularly learning under concept drift algorithms, to learn the new statistical characteristics of the environment from the new radar data that become available in batches over a period of time. The newly learned environment characteristics are then integrated in the detection algorithm. Furthermore, we use Monte Carlo simulations to demonstrate that the developed method provides a significant improvement in the detection performance compared with detection techniques that are not aware of the environmental changes.« less

  4. Cross-domain active learning for video concept detection

    NASA Astrophysics Data System (ADS)

    Li, Huan; Li, Chao; Shi, Yuan; Xiong, Zhang; Hauptmann, Alexander G.

    2011-08-01

    As video data from a variety of different domains (e.g., news, documentaries, entertainment) have distinctive data distributions, cross-domain video concept detection becomes an important task, in which one can reuse the labeled data of one domain to benefit the learning task in another domain with insufficient labeled data. In this paper, we approach this problem by proposing a cross-domain active learning method which iteratively queries labels of the most informative samples in the target domain. Traditional active learning assumes that the training (source domain) and test data (target domain) are from the same distribution. However, it may fail when the two domains have different distributions because querying informative samples according to a base learner that initially learned from source domain may no longer be helpful for the target domain. In our paper, we use the Gaussian random field model as the base learner which has the advantage of exploring the distributions in both domains, and adopt uncertainty sampling as the query strategy. Additionally, we present an instance weighting trick to accelerate the adaptability of the base learner, and develop an efficient model updating method which can significantly speed up the active learning process. Experimental results on TRECVID collections highlight the effectiveness.

  5. Optimal updating magnitude in adaptive flat-distribution sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Drake, Justin A.; Ma, Jianpeng; Pettitt, B. Montgomery

    2017-11-01

    We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.

  6. Optimal updating magnitude in adaptive flat-distribution sampling.

    PubMed

    Zhang, Cheng; Drake, Justin A; Ma, Jianpeng; Pettitt, B Montgomery

    2017-11-07

    We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.

  7. Adaptive Optimal Control Using Frequency Selective Information of the System Uncertainty With Application to Unmanned Aircraft.

    PubMed

    Maity, Arnab; Hocht, Leonhard; Heise, Christian; Holzapfel, Florian

    2018-01-01

    A new efficient adaptive optimal control approach is presented in this paper based on the indirect model reference adaptive control (MRAC) architecture for improvement of adaptation and tracking performance of the uncertain system. The system accounts here for both matched and unmatched unknown uncertainties that can act as plant as well as input effectiveness failures or damages. For adaptation of the unknown parameters of these uncertainties, the frequency selective learning approach is used. Its idea is to compute a filtered expression of the system uncertainty using multiple filters based on online instantaneous information, which is used for augmentation of the update law. It is capable of adjusting a sudden change in system dynamics without depending on high adaptation gains and can satisfy exponential parameter error convergence under certain conditions in the presence of structured matched and unmatched uncertainties as well. Additionally, the controller of the MRAC system is designed using a new optimal control method. This method is a new linear quadratic regulator-based optimal control formulation for both output regulation and command tracking problems. It provides a closed-form control solution. The proposed overall approach is applied in a control of lateral dynamics of an unmanned aircraft problem to show its effectiveness.

  8. Secure VM for Monitoring Industrial Process Controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K

    2011-01-01

    In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicatedmore » host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.« less

  9. Full Gradient Solution to Adaptive Hybrid Control

    NASA Technical Reports Server (NTRS)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2017-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  10. Full Gradient Solution to Adaptive Hybrid Control

    NASA Technical Reports Server (NTRS)

    Bean, Jacob; Schiller, Noah H.; Fuller, Chris

    2016-01-01

    This paper focuses on the adaptation mechanisms in adaptive hybrid controllers. Most adaptive hybrid controllers update two filters individually according to the filtered-reference least mean squares (FxLMS) algorithm. Because this algorithm was derived for feedforward control, it does not take into account the presence of a feedback loop in the gradient calculation. This paper provides a derivation of the proper weight vector gradient for hybrid (or feedback) controllers that takes into account the presence of feedback. In this formulation, a single weight vector is updated rather than two individually. An internal model structure is assumed for the feedback part of the controller. The full gradient is equivalent to that used in the standard FxLMS algorithm with the addition of a recursive term that is a function of the modeling error. Some simulations are provided to highlight the advantages of using the full gradient in the weight vector update rather than the approximation.

  11. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    PubMed

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  12. Dynamic updating of hippocampal object representations reflects new conceptual knowledge

    PubMed Central

    Mack, Michael L.; Love, Bradley C.; Preston, Alison R.

    2016-01-01

    Concepts organize the relationship among individual stimuli or events by highlighting shared features. Often, new goals require updating conceptual knowledge to reflect relationships based on different goal-relevant features. Here, our aim is to determine how hippocampal (HPC) object representations are organized and updated to reflect changing conceptual knowledge. Participants learned two classification tasks in which successful learning required attention to different stimulus features, thus providing a means to index how representations of individual stimuli are reorganized according to changing task goals. We used a computational learning model to capture how people attended to goal-relevant features and organized object representations based on those features during learning. Using representational similarity analyses of functional magnetic resonance imaging data, we demonstrate that neural representations in left anterior HPC correspond with model predictions of concept organization. Moreover, we show that during early learning, when concept updating is most consequential, HPC is functionally coupled with prefrontal regions. Based on these findings, we propose that when task goals change, object representations in HPC can be organized in new ways, resulting in updated concepts that highlight the features most critical to the new goal. PMID:27803320

  13. Trust as commodity: social value orientation affects the neural substrates of learning to cooperate.

    PubMed

    Lambert, Bruno; Declerck, Carolyn H; Emonds, Griet; Boone, Christophe

    2017-04-01

    Individuals differ in their motives and strategies to cooperate in social dilemmas. These differences are reflected by an individual's social value orientation: proselfs are strategic and motivated to maximize self-interest, while prosocials are more trusting and value fairness. We hypothesize that when deciding whether or not to cooperate with a random member of a defined group, proselfs, more than prosocials, adapt their decisions based on past experiences: they 'learn' instrumentally to form a base-line expectation of reciprocity. We conducted an fMRI experiment where participants (19 proselfs and 19 prosocials) played 120 sequential prisoner's dilemmas against randomly selected, anonymous and returning partners who cooperated 60% of the time. Results indicate that cooperation levels increased over time, but that the rate of learning was steeper for proselfs than for prosocials. At the neural level, caudate and precuneus activation were more pronounced for proselfs relative to prosocials, indicating a stronger reliance on instrumental learning and self-referencing to update their trust in the cooperative strategy. © The Author (2017). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Model-Based Reinforcement Learning under Concurrent Schedules of Reinforcement in Rodents

    ERIC Educational Resources Information Center

    Huh, Namjung; Jo, Suhyun; Kim, Hoseok; Sul, Jung Hoon; Jung, Min Whan

    2009-01-01

    Reinforcement learning theories postulate that actions are chosen to maximize a long-term sum of positive outcomes based on value functions, which are subjective estimates of future rewards. In simple reinforcement learning algorithms, value functions are updated only by trial-and-error, whereas they are updated according to the decision-maker's…

  15. A Proposed Multimedia Cone of Abstraction: Updating a Classic Instructional Design Theory

    ERIC Educational Resources Information Center

    Baukal, Charles E.; Ausburn, Floyd B.; Ausburn, Lynna J.

    2013-01-01

    Advanced multimedia techniques offer significant learning potential for students. Dale (1946, 1954, 1969) developed a Cone of Experience (CoE) which is a hierarchy of learning experiences ranging from direct participation to abstract symbolic expression. This paper updates the CoE for today's technology and learning context, specifically focused…

  16. Updating and Not Shifting Predicts Learning Performance in Young and Middle-Aged Adults

    ERIC Educational Resources Information Center

    Gijselaers, Hieronymus J. M.; Meijs, Celeste; Neroni, Joyce; Kirschner, Paul A.; de Groot, Renate H. M.

    2017-01-01

    The goal of this study was to investigate whether single executive function (EF) tests were predictive for learning performance in mainly young and middle-aged adults. The tests measured shifting and updating. Processing speed was also measured. In an observational study, cognitive performance and learning performance were measured objectively in…

  17. Functional Equivalence of Spatial Images from Touch and Vision: Evidence from Spatial Updating in Blind and Sighted Individuals

    PubMed Central

    Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.

    2012-01-01

    This research examines whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In three experiments, participants learned four-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the maps from imagined perspectives that were either aligned or misaligned with the maps as represented in working memory. Results from Experiments 1 and 2 revealed a highly similar pattern of latencies and errors between visual and haptic conditions. These findings extend the well known alignment biases for visual map learning to haptic map learning, provide further evidence of haptic updating, and most importantly, show that learning from the two modalities yields very similar performance across all conditions. Experiment 3 found the same encoding biases and updating performance with blind individuals, demonstrating that functional equivalence cannot be due to visual recoding and is consistent with an amodal hypothesis of spatial images. PMID:21299331

  18. Fixation of competing strategies when interacting agents differ in the time scale of strategy updating

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Weissing, Franz J.; Cao, Ming

    2016-09-01

    A commonly used assumption in evolutionary game theory is that natural selection acts on individuals in the same time scale; e.g., players use the same frequency to update their strategies. Variation in learning rates within populations suggests that evolutionary game theory may not necessarily be restricted to uniform time scales associated with the game interaction and strategy adaption evolution. In this study, we remove this restricting assumption by dividing the population into fast and slow groups according to the players' strategy updating frequencies and investigate how different strategy compositions of one group influence the evolutionary outcome of the other's fixation probabilities of strategies within its own group. Analytical analysis and numerical calculations are performed to study the evolutionary dynamics of strategies in typical classes of two-player games (prisoner's dilemma game, snowdrift game, and stag-hunt game). The introduction of the heterogeneity in strategy-update time scales leads to substantial changes in the evolution dynamics of strategies. We provide an approximation formula for the fixation probability of mutant types in finite populations and study the outcome of strategy evolution under the weak selection. We find that although heterogeneity in time scales makes the collective evolutionary dynamics more complicated, the possible long-run evolutionary outcome can be effectively predicted under technical assumptions when knowing the population composition and payoff parameters.

  19. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  20. Object Tracking Using Adaptive Covariance Descriptor and Clustering-Based Model Updating for Visual Surveillance

    PubMed Central

    Qin, Lei; Snoussi, Hichem; Abdallah, Fahed

    2014-01-01

    We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883

  1. Machine learning in updating predictive models of planning and scheduling transportation projects

    DOT National Transportation Integrated Search

    1997-01-01

    A method combining machine learning and regression analysis to automatically and intelligently update predictive models used in the Kansas Department of Transportations (KDOTs) internal management system is presented. The predictive models used...

  2. Factor analysis of auto-associative neural networks with application in speaker verification.

    PubMed

    Garimella, Sri; Hermansky, Hynek

    2013-04-01

    Auto-associative neural network (AANN) is a fully connected feed-forward neural network, trained to reconstruct its input at its output through a hidden compression layer, which has fewer numbers of nodes than the dimensionality of input. AANNs are used to model speakers in speaker verification, where a speaker-specific AANN model is obtained by adapting (or retraining) the universal background model (UBM) AANN, an AANN trained on multiple held out speakers, using corresponding speaker data. When the amount of speaker data is limited, this adaptation procedure may lead to overfitting as all the parameters of UBM-AANN are adapted. In this paper, we introduce and develop the factor analysis theory of AANNs to alleviate this problem. We hypothesize that only the weight matrix connecting the last nonlinear hidden layer and the output layer is speaker-specific, and further restrict it to a common low-dimensional subspace during adaptation. The subspace is learned using large amounts of development data, and is held fixed during adaptation. Thus, only the coordinates in a subspace, also known as i-vector, need to be estimated using speaker-specific data. The update equations are derived for learning both the common low-dimensional subspace and the i-vectors corresponding to speakers in the subspace. The resultant i-vector representation is used as a feature for the probabilistic linear discriminant analysis model. The proposed system shows promising results on the NIST-08 speaker recognition evaluation (SRE), and yields a 23% relative improvement in equal error rate over the previously proposed weighted least squares-based subspace AANNs system. The experiments on NIST-10 SRE confirm that these improvements are consistent and generalize across datasets.

  3. Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.

    PubMed

    Zhou, Tao; Liu, Fanghui; Bhaskar, Harish; Yang, Jie

    2017-09-12

    In this paper, we propose a novel and robust tracking framework based on online discriminative and low-rank dictionary learning. The primary aim of this paper is to obtain compact and low-rank dictionaries that can provide good discriminative representations of both target and background. We accomplish this by exploiting the recovery ability of low-rank matrices. That is if we assume that the data from the same class are linearly correlated, then the corresponding basis vectors learned from the training set of each class shall render the dictionary to become approximately low-rank. The proposed dictionary learning technique incorporates a reconstruction error that improves the reliability of classification. Also, a multiconstraint objective function is designed to enable active learning of a discriminative and robust dictionary. Further, an optimal solution is obtained by iteratively computing the dictionary, coefficients, and by simultaneously learning the classifier parameters. Finally, a simple yet effective likelihood function is implemented to estimate the optimal state of the target during tracking. Moreover, to make the dictionary adaptive to the variations of the target and background during tracking, an online update criterion is employed while learning the new dictionary. Experimental results on a publicly available benchmark dataset have demonstrated that the proposed tracking algorithm performs better than other state-of-the-art trackers.

  4. Self-learning Monte Carlo method and cumulative update in fermion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Junwei; Shen, Huitao; Qi, Yang

    2017-06-07

    In this study, we develop the self-learning Monte Carlo (SLMC) method, a general-purpose numerical method recently introduced to simulate many-body systems, for studying interacting fermion systems. Our method uses a highly efficient update algorithm, which we design and dub “cumulative update”, to generate new candidate configurations in the Markov chain based on a self-learned bosonic effective model. From a general analysis and a numerical study of the double exchange model as an example, we find that the SLMC with cumulative update drastically reduces the computational cost of the simulation, while remaining statistically exact. Remarkably, its computational complexity is far lessmore » than the conventional algorithm with local updates.« less

  5. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students.

    PubMed

    Giraud, Stéphanie; Brock, Anke M; Macé, Marc J-M; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students' autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  6. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    PubMed

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  7. Comprehension priming as rational expectation for repetition: Evidence from syntactic processing.

    PubMed

    Myslín, Mark; Levy, Roger

    2016-02-01

    Why do comprehenders process repeated stimuli more rapidly than novel stimuli? We consider an adaptive explanation for why such facilitation may be beneficial: priming is a consequence of expectation for repetition due to rational adaptation to the environment. If occurrences of a stimulus cluster in time, given one occurrence it is rational to expect a second occurrence closely following. Leveraging such knowledge may be particularly useful in online processing of language, where pervasive clustering may help comprehenders negotiate the considerable challenge of continual expectation update at multiple levels of linguistic structure and environmental variability. We test this account in the domain of structural priming in syntax, making use of the sentential complement-direct object (SC-DO) ambiguity. We first show that sentences containing SC continuations cluster in natural language, motivating an expectation for repetition of this structure. Second, we show that comprehenders are indeed sensitive to the syntactic clustering properties of their current environment. In a series of between-groups self-paced reading studies, we find that participants who are exposed to clusters of SC sentences subsequently process repetitions of SC structure more rapidly than participants who are exposed to the same number of SCs spaced in time, and attribute the difference to the learned degree of expectation for repetition. We model this behavior through Bayesian belief update, showing that (the optimal degree of) sensitivity to clustering properties of syntactic structures is indeed learnable through experience. Comprehension priming effects are thus consistent with rational expectation for repetition based on adaptation to the linguistic environment. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Comprehension priming as rational expectation for repetition: Evidence from syntactic processing

    PubMed Central

    Levy, Roger

    2015-01-01

    Why do comprehenders process repeated stimuli more rapidly than novel stimuli? We consider an adaptive explanation for why such facilitation may be beneficial: priming is a consequence of expectation for repetition due to rational adaptation to the environment. If occurrences of a stimulus cluster in time, given one occurrence it is rational to expect a second occurrence closely following. Leveraging such knowledge may be particularly useful in online processing of language, where pervasive clustering may help comprehenders negotiate the considerable challenge of continual expectation update at multiple levels of linguistic structure and environmental variability. We test this account in the domain of structural priming in syntax, making use of the sentential complement-direct object (SC-DO) ambiguity. We first show that sentences containing SC continuations cluster in natural language, motivating an expectation for repetition of this structure. Second, we show that comprehenders are indeed sensitive to the syntactic clustering properties of their current environment. In a series of between-groups self-paced reading studies, we find that participants who are exposed to clusters of SC sentences subsequently process repetitions of SC structure more rapidly than participants who are exposed to the same number of SCs spaced in time, and attribute the difference to the learned degree of expectation for repetition. We model this behavior through Bayesian belief update, showing that (the optimal degree of) sensitivity to clustering properties of syntactic structures is indeed learnable through experience. Comprehension priming effects are thus consistent with rational expectation for repetition based on adaptation to the linguistic environment. PMID:26605963

  9. Update on Research and Application of Problem-Based Learning in Medical Science Education

    ERIC Educational Resources Information Center

    Fan, Chuifeng; Jiang, Biying; Shi, Xiuying; Wang, Enhua; Li, Qingchang

    2018-01-01

    Problem-based learning (PBL) is a unique form of pedagogy dedicated to developing students' self-learning and clinical practice skills. After several decades of development, although applications vary, PBL has been recognized all over the world and implemented by many medical schools. This review summarizes and updates the application and study of…

  10. Resolving occlusion and segmentation errors in multiple video object tracking

    NASA Astrophysics Data System (ADS)

    Cheng, Hsu-Yung; Hwang, Jenq-Neng

    2009-02-01

    In this work, we propose a method to integrate the Kalman filter and adaptive particle sampling for multiple video object tracking. The proposed framework is able to detect occlusion and segmentation error cases and perform adaptive particle sampling for accurate measurement selection. Compared with traditional particle filter based tracking methods, the proposed method generates particles only when necessary. With the concept of adaptive particle sampling, we can avoid degeneracy problem because the sampling position and range are dynamically determined by parameters that are updated by Kalman filters. There is no need to spend time on processing particles with very small weights. The adaptive appearance for the occluded object refers to the prediction results of Kalman filters to determine the region that should be updated and avoids the problem of using inadequate information to update the appearance under occlusion cases. The experimental results have shown that a small number of particles are sufficient to achieve high positioning and scaling accuracy. Also, the employment of adaptive appearance substantially improves the positioning and scaling accuracy on the tracking results.

  11. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  12. Designing the Architecture of Hierachical Neural Networks Model Attention, Learning and Goal-Oriented Behavior

    DTIC Science & Technology

    1993-12-31

    19,23,25,26,27,28,32,33,35,41]) - A new cost function is postulated and an algorithm that employs this cost function is proposed for the learning of...updates the controller parameters from time to time [53]. The learning control algorithm consist of updating the parameter estimates as used in the...proposed cost function with the other learning type algorithms , such as based upon learning of iterative tasks [Kawamura-85], variable structure

  13. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  14. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update.

    PubMed

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future.

  15. Adaptive optics scanning laser ophthalmoscopy in fundus imaging, a review and update

    PubMed Central

    Zhang, Bing; Li, Ni; Kang, Jie; He, Yi; Chen, Xiao-Ming

    2017-01-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has been a promising technique in funds imaging with growing popularity. This review firstly gives a brief history of adaptive optics (AO) and AO-SLO. Then it compares AO-SLO with conventional imaging methods (fundus fluorescein angiography, fundus autofluorescence, indocyanine green angiography and optical coherence tomography) and other AO techniques (adaptive optics flood-illumination ophthalmoscopy and adaptive optics optical coherence tomography). Furthermore, an update of current research situation in AO-SLO is made based on different fundus structures as photoreceptors (cones and rods), fundus vessels, retinal pigment epithelium layer, retinal nerve fiber layer, ganglion cell layer and lamina cribrosa. Finally, this review indicates possible research directions of AO-SLO in future. PMID:29181321

  16. Decision-making dynamics in parasitoids of Drosophila.

    PubMed

    Thiel, Andra; Hoffmeister, Thomas S

    2009-01-01

    Drosophilids and their associated parasitoids live in environments that vary in resource availability and quality within and between generations. The use of information to adapt behavior to the current environment is a key feature under such circumstances and Drosophila parasitic wasps are excellent model systems to study learning and information use. They are among the few parasitoid model species that have been tested in a wide array of situations. Moreover, several related species have been tested under similar conditions, allowing the analysis of within and between species variability, the effect of natural selection in a typical environment, the current physiological status, and previous experience of the individual. This holds for host habitat and host location as well as for host choice and search time allocation. Here, we review patterns of learning and memory, of information use and updating mechanisms, and we point out that information use itself is under strong selective pressure and thus, optimized by parasitic wasps.

  17. Model-Free Adaptive Control for Unknown Nonlinear Zero-Sum Differential Game.

    PubMed

    Zhong, Xiangnan; He, Haibo; Wang, Ding; Ni, Zhen

    2018-05-01

    In this paper, we present a new model-free globalized dual heuristic dynamic programming (GDHP) approach for the discrete-time nonlinear zero-sum game problems. First, the online learning algorithm is proposed based on the GDHP method to solve the Hamilton-Jacobi-Isaacs equation associated with optimal regulation control problem. By setting backward one step of the definition of performance index, the requirement of system dynamics, or an identifier is relaxed in the proposed method. Then, three neural networks are established to approximate the optimal saddle point feedback control law, the disturbance law, and the performance index, respectively. The explicit updating rules for these three neural networks are provided based on the data generated during the online learning along the system trajectories. The stability analysis in terms of the neural network approximation errors is discussed based on the Lyapunov approach. Finally, two simulation examples are provided to show the effectiveness of the proposed method.

  18. Adaptive classifier for steel strip surface defects

    NASA Astrophysics Data System (ADS)

    Jiang, Mingming; Li, Guangyao; Xie, Li; Xiao, Mang; Yi, Li

    2017-01-01

    Surface defects detection system has been receiving increased attention as its precision, speed and less cost. One of the most challenges is reacting to accuracy deterioration with time as aged equipment and changed processes. These variables will make a tiny change to the real world model but a big impact on the classification result. In this paper, we propose a new adaptive classifier with a Bayes kernel (BYEC) which update the model with small sample to it adaptive for accuracy deterioration. Firstly, abundant features were introduced to cover lots of information about the defects. Secondly, we constructed a series of SVMs with the random subspace of the features. Then, a Bayes classifier was trained as an evolutionary kernel to fuse the results from base SVMs. Finally, we proposed the method to update the Bayes evolutionary kernel. The proposed algorithm is experimentally compared with different algorithms, experimental results demonstrate that the proposed method can be updated with small sample and fit the changed model well. Robustness, low requirement for samples and adaptive is presented in the experiment.

  19. We're Born to Learn: Using the Brain's Natural Learning Process to Create Today's Curriculum. Second Edition

    ERIC Educational Resources Information Center

    Smilkstein, Rita

    2011-01-01

    This updated edition of the bestselling book on the brain's natural learning process brings new research results and applications in a power-packed teacher tool kit. Rita Smilkstein shows teachers how to create and deliver curricula that help students become the motivated, successful, and natural learners they were born to be. Updated features…

  20. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    PubMed

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  1. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model

    PubMed Central

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher

    2015-01-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106

  2. [Purity Detection Model Update of Maize Seeds Based on Active Learning].

    PubMed

    Tang, Jin-ya; Huang, Min; Zhu, Qi-bing

    2015-08-01

    Seed purity reflects the degree of seed varieties in typical consistent characteristics, so it is great important to improve the reliability and accuracy of seed purity detection to guarantee the quality of seeds. Hyperspectral imaging can reflect the internal and external characteristics of seeds at the same time, which has been widely used in nondestructive detection of agricultural products. The essence of nondestructive detection of agricultural products using hyperspectral imaging technique is to establish the mathematical model between the spectral information and the quality of agricultural products. Since the spectral information is easily affected by the sample growth environment, the stability and generalization of model would weaken when the test samples harvested from different origin and year. Active learning algorithm was investigated to add representative samples to expand the sample space for the original model, so as to implement the rapid update of the model's ability. Random selection (RS) and Kennard-Stone algorithm (KS) were performed to compare the model update effect with active learning algorithm. The experimental results indicated that in the division of different proportion of sample set (1:1, 3:1, 4:1), the updated purity detection model for maize seeds from 2010 year which was added 40 samples selected by active learning algorithm from 2011 year increased the prediction accuracy for 2011 new samples from 47%, 33.75%, 49% to 98.89%, 98.33%, 98.33%. For the updated purity detection model of 2011 year, its prediction accuracy for 2010 new samples increased by 50.83%, 54.58%, 53.75% to 94.57%, 94.02%, 94.57% after adding 56 new samples from 2010 year. Meanwhile the effect of model updated by active learning algorithm was better than that of RS and KS. Therefore, the update for purity detection model of maize seeds is feasible by active learning algorithm.

  3. Dual learning processes underlying human decision-making in reversal learning tasks: functional significance and evidence from the model fit to human behavior

    PubMed Central

    Bai, Yu; Katahira, Kentaro; Ohira, Hideki

    2014-01-01

    Humans are capable of correcting their actions based on actions performed in the past, and this ability enables them to adapt to a changing environment. The computational field of reinforcement learning (RL) has provided a powerful explanation for understanding such processes. Recently, the dual learning system, modeled as a hybrid model that incorporates value update based on reward-prediction error and learning rate modulation based on the surprise signal, has gained attention as a model for explaining various neural signals. However, the functional significance of the hybrid model has not been established. In the present study, we used computer simulation in a reversal learning task to address functional significance in a probabilistic reversal learning task. The hybrid model was found to perform better than the standard RL model in a large parameter setting. These results suggest that the hybrid model is more robust against the mistuning of parameters compared with the standard RL model when decision-makers continue to learn stimulus-reward contingencies, which can create abrupt changes. The parameter fitting results also indicated that the hybrid model fit better than the standard RL model for more than 50% of the participants, which suggests that the hybrid model has more explanatory power for the behavioral data than the standard RL model. PMID:25161635

  4. Linking actions and objects: Context-specific learning of novel weight priors.

    PubMed

    Trewartha, Kevin M; Flanagan, J Randall

    2017-06-01

    Distinct explicit and implicit memory processes support weight predictions used when lifting objects and making perceptual judgments about weight, respectively. The first time that an object is encountered weight is predicted on the basis of learned associations, or priors, linking size and material to weight. A fundamental question is whether the brain maintains a single, global representation of priors, or multiple representations that can be updated in a context specific way. A second key question is whether the updating of priors, or the ability to scale lifting forces when repeatedly lifting unusually weighted objects requires focused attention. To investigate these questions we compared the adaptability of weight predictions used when lifting objects and judging their weights in different groups of participants who experienced size-weight inverted objects passively (with the objects placed on the hands) or actively (where participants lift the objects) under full or divided attention. To assess weight judgments we measured the size-weight illusion after every 20 trials of experience with the inverted objects both passively and actively. The attenuation of the illusion that arises when lifting inverted object was found to be context-specific such that the attenuation was larger when the mode of interaction with the inverted objects matched the method of assessment of the illusion. Dividing attention during interaction with the inverted objects had no effect on attenuation of the illusion, but did slow the rate at which lifting forces were scaled to the weight inverted objects. These findings suggest that the brain stores multiple representations of priors that are context specific, and that focused attention is important for scaling lifting forces, but not for updating weight predictions used when judging object weight. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Citation Discovery Tools for Conducting Adaptive Meta-analyses to Update Systematic Reviews.

    PubMed

    Bae, Jong-Myon; Kim, Eun Hee

    2016-03-01

    The systematic review (SR) is a research methodology that aims to synthesize related evidence. Updating previously conducted SRs is necessary when new evidence has been produced, but no consensus has yet emerged on the appropriate update methodology. The authors have developed a new SR update method called 'adaptive meta-analysis' (AMA) using the 'cited by', 'similar articles', and 'related articles' citation discovery tools in the PubMed and Scopus databases. This study evaluates the usefulness of these citation discovery tools for updating SRs. Lists were constructed by applying the citation discovery tools in the two databases to the articles analyzed by a published SR. The degree of overlap between the lists and distribution of excluded results were evaluated. The articles ultimately selected for the SR update meta-analysis were found in the lists obtained from the 'cited by' and 'similar' tools in PubMed. Most of the selected articles appeared in both the 'cited by' lists in Scopus and PubMed. The Scopus 'related' tool did not identify the appropriate articles. The AMA, which involves using both citation discovery tools in PubMed, and optionally, the 'related' tool in Scopus, was found to be useful for updating an SR.

  6. Defense Management: DOD’s Conference Policy Is Generally Consistent with OMB’s Requirements

    DTIC Science & Technology

    2014-01-01

    of conference costs and updated it in November 2013, citing lessons learned from implementing the September 2012 policy, among other things. The...memorandum accompanying the November 2013 policy, updates were based upon lessons learned from implementation of the September 2012 policy, the budget...higher learning or professional licensure or certification, or other training entities. However, events are not exempt simply because they offer

  7. Teaching Kids with Learning Difficulties in Today's Classroom: How Every Teacher Can Help Struggling Students Succeed. Revised and Updated Third Edition

    ERIC Educational Resources Information Center

    Winebrenner, Susan

    2014-01-01

    A gold mine of practical, easy­-to-­use teaching methods, strategies, and tips to improve learning outcomes for students who score below proficiency levels. This fully revised and updated third edition provides information on integrated learning, problem solving, and critical thinking in line with Common Core State Standards and 21st-­century…

  8. OLIVER: an online library of images for veterinary education and research.

    PubMed

    McGreevy, Paul; Shaw, Tim; Burn, Daniel; Miller, Nick

    2007-01-01

    As part of a strategic move by the University of Sydney toward increased flexibility in learning, the Faculty of Veterinary Science undertook a number of developments involving Web-based teaching and assessment. OLIVER underpins them by providing a rich, durable repository for learning objects. To integrate Web-based learning, case studies, and didactic presentations for veterinary and animal science students, we established an online library of images and other learning objects for use by academics in the Faculties of Veterinary Science and Agriculture. The objectives of OLIVER were to maximize the use of the faculty's teaching resources by providing a stable archiving facility for graphic images and other multimedia learning objects that allows flexible and precise searching, integrating indexing standards, thesauri, pull-down lists of preferred terms, and linking of objects within cases. OLIVER offers a portable and expandable Web-based shell that facilitates ongoing storage of learning objects in a range of media. Learning objects can be downloaded in common, standardized formats so that they can be easily imported for use in a range of applications, including Microsoft PowerPoint, WebCT, and Microsoft Word. OLIVER now contains more than 9,000 images relating to many facets of veterinary science; these are annotated and supported by search engines that allow rapid access to both images and relevant information. The Web site is easily updated and adapted as required.

  9. A model-updating procedure to stimulate piezoelectric transducers accurately.

    PubMed

    Piranda, B; Ballandras, S; Steichen, W; Hecart, B

    2001-09-01

    The use of numerical calculations based on finite element methods (FEM) has yielded significant improvements in the simulation and design of piezoelectric transducers piezoelectric transducer utilized in acoustic imaging. However, the ultimate precision of such models is directly controlled by the accuracy of material characterization. The present work is dedicated to the development of a model-updating technique adapted to the problem of piezoelectric transducer. The updating process is applied using the experimental admittance of a given structure for which a finite element analysis is performed. The mathematical developments are reported and then applied to update the entries of a FEM of a two-layer structure (a PbZrTi-PZT-ridge glued on a backing) for which measurements were available. The efficiency of the proposed approach is demonstrated, yielding the definition of a new set of constants well adapted to predict the structure response accurately. Improvement of the proposed approach, consisting of the updating of material coefficients not only on the admittance but also on the impedance data, is finally discussed.

  10. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  11. Trust as commodity: social value orientation affects the neural substrates of learning to cooperate

    PubMed Central

    Declerck, Carolyn H.; Emonds, Griet; Boone, Christophe

    2017-01-01

    Abstract Individuals differ in their motives and strategies to cooperate in social dilemmas. These differences are reflected by an individual’s social value orientation: proselfs are strategic and motivated to maximize self-interest, while prosocials are more trusting and value fairness. We hypothesize that when deciding whether or not to cooperate with a random member of a defined group, proselfs, more than prosocials, adapt their decisions based on past experiences: they ‘learn’ instrumentally to form a base-line expectation of reciprocity. We conducted an fMRI experiment where participants (19 proselfs and 19 prosocials) played 120 sequential prisoner’s dilemmas against randomly selected, anonymous and returning partners who cooperated 60% of the time. Results indicate that cooperation levels increased over time, but that the rate of learning was steeper for proselfs than for prosocials. At the neural level, caudate and precuneus activation were more pronounced for proselfs relative to prosocials, indicating a stronger reliance on instrumental learning and self-referencing to update their trust in the cooperative strategy. PMID:28119509

  12. Improving the Critic Learning for Event-Based Nonlinear $H_{\\infty }$ Control Design.

    PubMed

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    In this paper, we aim at improving the critic learning criterion to cope with the event-based nonlinear H ∞ state feedback control design. First of all, the H ∞ control problem is regarded as a two-player zero-sum game and the adaptive critic mechanism is used to achieve the minimax optimization under event-based environment. Then, based on an improved updating rule, the event-based optimal control law and the time-based worst-case disturbance law are obtained approximately by training a single critic neural network. The initial stabilizing control is no longer required during the implementation process of the new algorithm. Next, the closed-loop system is formulated as an impulsive model and its stability issue is handled by incorporating the improved learning criterion. The infamous Zeno behavior of the present event-based design is also avoided through theoretical analysis on the lower bound of the minimal intersample time. Finally, the applications to an aircraft dynamics and a robot arm plant are carried out to verify the efficient performance of the present novel design method.

  13. Watch and Learn: Seeing Is Better than Doing when Acquiring Consecutive Motor Tasks

    PubMed Central

    Larssen, Beverley C.; Ong, Nicole T.; Hodges, Nicola J.

    2012-01-01

    During motor adaptation learning, consecutive physical practice of two different tasks compromises the retention of the first. However, there is evidence that observational practice, while still effectively aiding acquisition, will not lead to interference and hence prove to be a better practice method. Observers and Actors practised in a clockwise (Task A) followed by a counterclockwise (Task B) visually rotated environment, and retention was immediately assessed. An Observe-all and Act-all group were compared to two groups who both physically practised Task A, but then only observed (ObsB) or did not see or practice Task B (NoB). The two observer groups and the NoB control group better retained Task A than Actors, although importantly only the observer groups learnt Task B. RT data and explicit awareness of the rotation suggested that the observers had acquired their respective tasks in a more strategic manner than Actor and Control groups. We conclude that observational practice benefits learning of multiple tasks more than physical practice due to the lack of updating of implicit, internal models for aiming in the former. PMID:22723909

  14. Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning.

    PubMed

    Yang, Xiong; Liu, Derong; Wang, Ding; Wei, Qinglai

    2014-07-01

    In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded disturbances. We investigate multi-input-multi-output unknown nonaffine nonlinear DT systems and employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The weights of both the action NN and the critic NN are directly updated online instead of offline training. By utilizing Lyapunov's direct method, the closed-loop tracking errors and the NN estimated weights are demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the effectiveness of the present approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings.

    PubMed

    Tang, Yang; Gao, Huijun; Zou, Wei; Kurths, Jürgen

    2013-02-01

    In this paper, the distributed synchronization problem of networks of agent systems with controllers and nonlinearities subject to Bernoulli switchings is investigated. Controllers and adaptive updating laws injected in each vertex of networks depend on the state information of its neighborhood. Three sets of Bernoulli stochastic variables are introduced to describe the occurrence probabilities of distributed adaptive controllers, updating laws and nonlinearities, respectively. By the Lyapunov functions method, we show that the distributed synchronization of networks composed of agent systems with multiple randomly occurring nonlinearities, multiple randomly occurring controllers, and multiple randomly occurring updating laws can be achieved in mean square under certain criteria. The conditions derived in this paper can be solved by semi-definite programming. Moreover, by mathematical analysis, we find that the coupling strength, the probabilities of the Bernoulli stochastic variables, and the form of nonlinearities have great impacts on the convergence speed and the terminal control strength. The synchronization criteria and the observed phenomena are demonstrated by several numerical simulation examples. In addition, the advantage of distributed adaptive controllers over conventional adaptive controllers is illustrated.

  16. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students

    PubMed Central

    Giraud, Stéphanie; Brock, Anke M.; Macé, Marc J.-M.; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students’ autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs. PMID:28649209

  17. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  18. Self-learning Monte Carlo method

    DOE PAGES

    Liu, Junwei; Qi, Yang; Meng, Zi Yang; ...

    2017-01-04

    Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of a general and efficient update algorithm for large size systems close to the phase transition, for which local updates perform badly. In this Rapid Communication, we propose a general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. Lastly, we demonstrate the efficiency of SLMC in a spin model at the phasemore » transition point, achieving a 10–20 times speedup.« less

  19. Updating beliefs and combining evidence in adaptive forest management under climate change: a case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany.

    PubMed

    Yousefpour, Rasoul; Temperli, Christian; Bugmann, Harald; Elkin, Che; Hanewinkel, Marc; Meilby, Henrik; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark

    2013-06-15

    We study climate uncertainty and how managers' beliefs about climate change develop and influence their decisions. We develop an approach for updating knowledge and beliefs based on the observation of forest and climate variables and illustrate its application for the adaptive management of an even-aged Norway spruce (Picea abies L. Karst) forest in the Black Forest, Germany. We simulated forest development under a range of climate change scenarios and forest management alternatives. Our analysis used Bayesian updating and Dempster's rule of combination to simulate how observations of climate and forest variables may influence a decision maker's beliefs about climate development and thereby management decisions. While forest managers may be inclined to rely on observed forest variables to infer climate change and impacts, we found that observation of climate state, e.g. temperature or precipitation is superior for updating beliefs and supporting decision-making. However, with little conflict among information sources, the strongest evidence would be offered by a combination of at least two informative variables, e.g., temperature and precipitation. The success of adaptive forest management depends on when managers switch to forward-looking management schemes. Thus, robust climate adaptation policies may depend crucially on a better understanding of what factors influence managers' belief in climate change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Experiments on individual strategy updating in iterated snowdrift game under random rematching.

    PubMed

    Qi, Hang; Ma, Shoufeng; Jia, Ning; Wang, Guangchao

    2015-03-07

    How do people actually play the iterated snowdrift games, particularly under random rematching protocol is far from well explored. Two sets of laboratory experiments on snowdrift game were conducted to investigate human strategy updating rules. Four groups of subjects were modeled by experience-weighted attraction learning theory at individual-level. Three out of the four groups (75%) passed model validation. Substantial heterogeneity is observed among the players who update their strategies in four typical types, whereas rare people behave like belief-based learners even under fixed pairing. Most subjects (63.9%) adopt the reinforcement learning (or alike) rules; but, interestingly, the performance of averaged reinforcement learners suffered. It is observed that two factors seem to benefit players in competition, i.e., the sensitivity to their recent experiences and the overall consideration of forgone payoffs. Moreover, subjects with changing opponents tend to learn faster based on their own recent experience, and display more diverse strategy updating rules than they do with fixed opponent. These findings suggest that most of subjects do apply reinforcement learning alike updating rules even under random rematching, although these rules may not improve their performance. The findings help evolutionary biology researchers to understand sophisticated human behavioral strategies in social dilemmas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. AdOn HDP-HMM: An Adaptive Online Model for Segmentation and Classification of Sequential Data.

    PubMed

    Bargi, Ava; Xu, Richard Yi Da; Piccardi, Massimo

    2017-09-21

    Recent years have witnessed an increasing need for the automated classification of sequential data, such as activities of daily living, social media interactions, financial series, and others. With the continuous flow of new data, it is critical to classify the observations on-the-fly and without being limited by a predetermined number of classes. In addition, a model should be able to update its parameters in response to a possible evolution in the distributions of the classes. This compelling problem, however, does not seem to have been adequately addressed in the literature, since most studies focus on offline classification over predefined class sets. In this paper, we present a principled solution for this problem based on an adaptive online system leveraging Markov switching models and hierarchical Dirichlet process priors. This adaptive online approach is capable of classifying the sequential data over an unlimited number of classes while meeting the memory and delay constraints typical of streaming contexts. In this paper, we introduce an adaptive ''learning rate'' that is responsible for balancing the extent to which the model retains its previous parameters or adapts to new observations. Experimental results on stationary and evolving synthetic data and two video data sets, TUM Assistive Kitchen and collated Weizmann, show a remarkable performance in terms of segmentation and classification, particularly for sequences from evolutionary distributions and/or those containing previously unseen classes.

  2. Online adaptive neural control of a robotic lower limb prosthesis

    NASA Astrophysics Data System (ADS)

    Spanias, J. A.; Simon, A. M.; Finucane, S. B.; Perreault, E. J.; Hargrove, L. J.

    2018-02-01

    Objective. The purpose of this study was to develop and evaluate an adaptive intent recognition algorithm that continuously learns to incorporate a lower limb amputee’s neural information (acquired via electromyography (EMG)) as they ambulate with a robotic leg prosthesis. Approach. We present a powered lower limb prosthesis that was configured to acquire the user’s neural information and kinetic/kinematic information from embedded mechanical sensors, and identify and respond to the user’s intent. We conducted an experiment with eight transfemoral amputees over multiple days. EMG and mechanical sensor data were collected while subjects using a powered knee/ankle prosthesis completed various ambulation activities such as walking on level ground, stairs, and ramps. Our adaptive intent recognition algorithm automatically transitioned the prosthesis into the different locomotion modes and continuously updated the user’s model of neural data during ambulation. Main results. Our proposed algorithm accurately and consistently identified the user’s intent over multiple days, despite changing neural signals. The algorithm incorporated 96.31% [0.91%] (mean, [standard error]) of neural information across multiple experimental sessions, and outperformed non-adaptive versions of our algorithm—with a 6.66% [3.16%] relative decrease in error rate. Significance. This study demonstrates that our adaptive intent recognition algorithm enables incorporation of neural information over long periods of use, allowing assistive robotic devices to accurately respond to the user’s intent with low error rates.

  3. Vocabulary Instruction for Secondary Students with Reading Disabilities: An Updated Research Review

    ERIC Educational Resources Information Center

    Kuder, S. Jay

    2017-01-01

    This article presents an update and extension of the research on instructional methods for vocabulary learning by secondary-age students with learning disabilities. Seven studies that have been published since the last comprehensive review of the research were located. Four instructional methods were found to be the most effective: mnemonic…

  4. Building Resilience against Climate Effects—A Novel Framework to Facilitate Climate Readiness in Public Health Agencies

    PubMed Central

    Marinucci, Gino D.; Luber, George; Uejio, Christopher K.; Saha, Shubhayu; Hess, Jeremy J.

    2014-01-01

    Climate change is anticipated to have several adverse health impacts. Managing these risks to public health requires an iterative approach. As with many risk management strategies related to climate change, using modeling to project impacts, engaging a wide range of stakeholders, and regularly updating models and risk management plans with new information—hallmarks of adaptive management—are considered central tenets of effective public health adaptation. The Centers for Disease Control and Prevention has developed a framework, entitled Building Resilience Against Climate Effects, or BRACE, to facilitate this process for public health agencies. Its five steps are laid out here. Following the steps laid out in BRACE will enable an agency to use the best available science to project likely climate change health impacts in a given jurisdiction and prioritize interventions. Adopting BRACE will also reinforce public health’s established commitment to evidence-based practice and institutional learning, both of which will be central to successfully engaging the significant new challenges that climate change presents. PMID:24991665

  5. Promoting harmonization of BME education in Europe: the CRH-BME Tempus project.

    PubMed

    Pallikarakis, Nicolas; Bliznakov, Zhivko; Miklavcic, Damijan; Jarm, Tomaz; Magjarevic, Ratko; Lackovic, Igor; Pecchia, Leandro; Stagni, Rita; Jobaggy, Akos; Barbenel, Joseph

    2011-01-01

    Biomedical Engineers should be prepared to adapt to existing or forecasted needs. There is a strong pressure on education, training and life long learning programs to continuously adapt their objectives in order to face new requirements and challenges. The main objective of the TEMPUS IV, CRH-BME project is to update existing curricula in the field of Biomedical Engineering (BME) in order to meet recent and future developments in the area, address new emerging inter-disciplinary domains that appear as a result of the R&D progress and respond to the BME job market demands. The first step is to extensively review the curricula in the BME education field. In this paper, a proposal for a generic curriculum in the BME education is presented, in order to meet recent and future developments and respond to the demands of the BME job market. Adoption of the core program structure will facilitate harmonization of studies as well as student and staff exchange across Europe, thus promoting the European Higher Education Area.

  6. Age-differences in cognitive flexibility when overcoming a preexisting bias through feedback.

    PubMed

    Wilson, Cristina G; Nusbaum, Amy T; Whitney, Paul; Hinson, John M

    2018-08-01

    Older adults are often worse than younger adults at adapting to changing situational demands, and this difference is commonly attributed to an age-related decline in acquiring and updating information. Previous research on aging and cognitive flexibility has used measures that require adapting to novel associations learned during a laboratory task (e.g., choice X led to positive outcomes but now leads to negative outcomes). However, in everyday life people must frequently overcome associations based on preexisting beliefs and biases (e.g., you like to eat cake, but your doctor said to limit your sugar intake). The goal of the present study was to examine possible age-differences in overcoming a preexisting bias and determine whether age-related changes in the acquisition and updating of information influence this form of flexibility. Older (n = 20) and younger (n = 20) adults completed a novel task in which repeated choices were made between a sure option (gain or loss) and one of two risky options that were initially ambiguous. Optimal performance required overcoming a framing bias toward being risk seeking to avoid a sure loss and risk averse when offered a sure gain. Probe questions assessed knowledge of choice outcomes, while skin conductance assessed physiological reactions to choices and choice outcomes. Both older and younger adults demonstrated flexibility by reducing the impact of bias over trials, but younger adults had better performance overall. Age-differences were associated with distinct aspects of processing. Young adults had more precise knowledge of choice outcomes and developed skin conductance responses in anticipation of bad choices that were not apparent in older adults. Older adults showed significant improvement over trials in their ability to decrease bias-driven choices, but younger showed greater flexibility. Age-differences in task performance were based on differences in learning and corresponding representations of task-relevant information.

  7. Valence-Dependent Belief Updating: Computational Validation

    PubMed Central

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement learning was superior to the Bayesian approach. The computational validation of valence-dependent belief updating represents a novel support for a genuine optimism bias in human belief formation. Moreover, the precise control of relevant cognitive variables justifies the conclusion that the motivation to adopt the most favorable self-referential conclusions biases human judgments. PMID:28706499

  8. Valence-Dependent Belief Updating: Computational Validation.

    PubMed

    Kuzmanovic, Bojana; Rigoux, Lionel

    2017-01-01

    People tend to update beliefs about their future outcomes in a valence-dependent way: they are likely to incorporate good news and to neglect bad news. However, belief formation is a complex process which depends not only on motivational factors such as the desire for favorable conclusions, but also on multiple cognitive variables such as prior beliefs, knowledge about personal vulnerabilities and resources, and the size of the probabilities and estimation errors. Thus, we applied computational modeling in order to test for valence-induced biases in updating while formally controlling for relevant cognitive factors. We compared biased and unbiased Bayesian models of belief updating, and specified alternative models based on reinforcement learning. The experiment consisted of 80 trials with 80 different adverse future life events. In each trial, participants estimated the base rate of one of these events and estimated their own risk of experiencing the event before and after being confronted with the actual base rate. Belief updates corresponded to the difference between the two self-risk estimates. Valence-dependent updating was assessed by comparing trials with good news (better-than-expected base rates) with trials with bad news (worse-than-expected base rates). After receiving bad relative to good news, participants' updates were smaller and deviated more strongly from rational Bayesian predictions, indicating a valence-induced bias. Model comparison revealed that the biased (i.e., optimistic) Bayesian model of belief updating better accounted for data than the unbiased (i.e., rational) Bayesian model, confirming that the valence of the new information influenced the amount of updating. Moreover, alternative computational modeling based on reinforcement learning demonstrated higher learning rates for good than for bad news, as well as a moderating role of personal knowledge. Finally, in this specific experimental context, the approach based on reinforcement learning was superior to the Bayesian approach. The computational validation of valence-dependent belief updating represents a novel support for a genuine optimism bias in human belief formation. Moreover, the precise control of relevant cognitive variables justifies the conclusion that the motivation to adopt the most favorable self-referential conclusions biases human judgments.

  9. Adaptive reference update (ARU) algorithm. A stochastic search algorithm for efficient optimization of multi-drug cocktails

    PubMed Central

    2012-01-01

    Background Multi-target therapeutics has been shown to be effective for treating complex diseases, and currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic outcomes. However, considering the huge number of possible ways to mix multiple drugs at different concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing. Results In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm iteratively updates the drug combination to improve its response, where the update is made by comparing the response of the current combination with that of a reference combination, based on which the beneficial update direction is predicted. The reference combination is continuously updated based on the drug response values observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and compared it with existing algorithms. Conclusions Simulation results show that the ARU algorithm significantly outperforms existing stochastic search algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm well-suited for practical drug optimization applications. PMID:23134742

  10. Adaptive and perceptual learning technologies in medical education and training.

    PubMed

    Kellman, Philip J

    2013-10-01

    Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  11. Fast and Epsilon-Optimal Discretized Pursuit Learning Automata.

    PubMed

    Zhang, JunQi; Wang, Cheng; Zhou, MengChu

    2015-10-01

    Learning automata (LA) are powerful tools for reinforcement learning. A discretized pursuit LA is the most popular one among them. During an iteration its operation consists of three basic phases: 1) selecting the next action; 2) finding the optimal estimated action; and 3) updating the state probability. However, when the number of actions is large, the learning becomes extremely slow because there are too many updates to be made at each iteration. The increased updates are mostly from phases 1 and 3. A new fast discretized pursuit LA with assured ε -optimality is proposed to perform both phases 1 and 3 with the computational complexity independent of the number of actions. Apart from its low computational complexity, it achieves faster convergence speed than the classical one when operating in stationary environments. This paper can promote the applications of LA toward the large-scale-action oriented area that requires efficient reinforcement learning tools with assured ε -optimality, fast convergence speed, and low computational complexity for each iteration.

  12. Adaptive nearly optimal control for a class of continuous-time nonaffine nonlinear systems with inequality constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong

    2017-01-01

    The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Event-Based Robust Control for Uncertain Nonlinear Systems Using Adaptive Dynamic Programming.

    PubMed

    Zhang, Qichao; Zhao, Dongbin; Wang, Ding

    2018-01-01

    In this paper, the robust control problem for a class of continuous-time nonlinear system with unmatched uncertainties is investigated using an event-based control method. First, the robust control problem is transformed into a corresponding optimal control problem with an augmented control and an appropriate cost function. Under the event-based mechanism, we prove that the solution of the optimal control problem can asymptotically stabilize the uncertain system with an adaptive triggering condition. That is, the designed event-based controller is robust to the original uncertain system. Note that the event-based controller is updated only when the triggering condition is satisfied, which can save the communication resources between the plant and the controller. Then, a single network adaptive dynamic programming structure with experience replay technique is constructed to approach the optimal control policies. The stability of the closed-loop system with the event-based control policy and the augmented control policy is analyzed using the Lyapunov approach. Furthermore, we prove that the minimal intersample time is bounded by a nonzero positive constant, which excludes Zeno behavior during the learning process. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.

  14. What Do Context Aware Electronic Alerts from Virtual Learning Environments Tell Us about User Time & Location?

    ERIC Educational Resources Information Center

    Crane, Laura; Benachour, Phillip

    2013-01-01

    The paper describes the analysis of user location and time stamp information automatically logged when students receive and interact with electronic updates from the University's virtual learning environment. The electronic updates are sent to students' mobile devices using RSS feeds. The mobile reception of such information can be received in…

  15. Learning Difficulties and Ethnicity: Updating a Framework for Action

    ERIC Educational Resources Information Center

    Poxton, Richard

    2012-01-01

    This update of the Framework for Action highlights the continuing relevance of its message as well as those raised by Valuing People Now. People with learning difficulties and their families from Black and minority ethnic (BME) communities have been highlighted as a priority group by Valuing People since 2001 and remain a priority for better…

  16. Safe Surgery Trainer

    DTIC Science & Technology

    2014-11-15

    design, testing, and development. b) Prototype Development – Continue developing SST software, game -flow, and mechanics. Continue developing art...refined learning objectives into measurement outlines. Update IRB submissions, edit usability game play study, and update I/ITSEC IRB. Provide case...minimal or near zero. 9) Related Activities a) Presenting at the Design of Learning Games Community Workshop, at I/ITSEC, Wednesday, Dec 3 rd

  17. Assessment Update: Progress, Trends, and Practices in Higher Education. Volume 25, Issue 3, May-June 2013

    ERIC Educational Resources Information Center

    Banta, Trudy W., Ed.

    2013-01-01

    This issue of "Assessment Update" presents the following articles: (1) Launching E-Portfolios: An Organic Process; (2) Editor's Notes: Envisioning Learning; (3) Promoting Student Affairs Buy-In for Assessment: Lessons Learned; (4) Working at Assessment; (5) Making the Case for Formative Assessment: How It Improves Student Engagement and…

  18. Designing Adult Learning Strategies: The Case of South Eastern Europe

    ERIC Educational Resources Information Center

    Gunny, Madeleine; Viertel, Evelyn

    2006-01-01

    The importance of lifelong learning is generally well understood and few people today would query the need for adults to regularly update their skills in line with labour market needs, and for governments and social partners to provide an environment that supports skills acquisition and updating. However, it is clear when we look at data from the…

  19. Assessment Update: Progress, Trends, and Practices in Higher Education. Volume 29, Issue 5, September-October 2017

    ERIC Educational Resources Information Center

    Hundley, Stephen P., Ed.

    2017-01-01

    This issue of "Assessment Update" presents the following articles: (1) Using National Benchmarking Data to Improve Student Learning in Chemistry at Lebanon Valley College (Marc A. Harris); (2) Mutually Dependent Outcomes: Using Assessment to Improve First-Year Retention and Student Learning (Alan Bearman and Elaine Lewis); (3) Emergent…

  20. Updating Assessment Styles: Website Development Rather than Report Writing for Project Based Learning Courses

    ERIC Educational Resources Information Center

    Brown, Nicola

    2017-01-01

    While teaching methods tend to be updated frequently, the implementation of new innovative assessment tools is much slower. For example project based learning has become popular as a teaching technique, however, the assessment tends to be via traditional reports. This paper reports on the implementation and evaluation of using website development…

  1. Using assistive technology adaptations to include students with learning disabilities in cooperative learning activities.

    PubMed

    Bryant, D P; Bryant, B R

    1998-01-01

    Cooperative learning (CL) is a common instructional arrangement that is used by classroom teachers to foster academic achievement and social acceptance of students with and without learning disabilities. Cooperative learning is appealing to classroom teachers because it can provide an opportunity for more instruction and feedback by peers than can be provided by teachers to individual students who require extra assistance. Recent studies suggest that students with LD may need adaptations during cooperative learning activities. The use of assistive technology adaptations may be necessary to help some students with LD compensate for their specific learning difficulties so that they can engage more readily in cooperative learning activities. A process for integrating technology adaptations into cooperative learning activities is discussed in terms of three components: selecting adaptations, monitoring the use of the adaptations during cooperative learning activities, and evaluating the adaptations' effectiveness. The article concludes with comments regarding barriers to and support systems for technology integration, technology and effective instructional practices, and the need to consider technology adaptations for students who have learning disabilities.

  2. Efficient model learning methods for actor-critic control.

    PubMed

    Grondman, Ivo; Vaandrager, Maarten; Buşoniu, Lucian; Babuska, Robert; Schuitema, Erik

    2012-06-01

    We propose two new actor-critic algorithms for reinforcement learning. Both algorithms use local linear regression (LLR) to learn approximations of the functions involved. A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning. The first algorithm uses a novel model-based update rule for the actor parameters. The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model. The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm.

  3. Single-pass incremental force updates for adaptively restrained molecular dynamics.

    PubMed

    Singh, Krishna Kant; Redon, Stephane

    2018-03-30

    Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    PubMed

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  5. Adaptation, evaluation, and updating of guidelines: article 14 in Integrating and coordinating efforts in COPD guideline development. An official ATS/ERS workshop report.

    PubMed

    Burgers, Jako S; Anzueto, Antonio; Black, Peter N; Cruz, Alvaro A; Fervers, Béatrice; Graham, Ian D; Metersky, Mark; Woodhead, Mark; Yawn, Barbara P

    2012-12-01

    Professional societies, like many other organizations, have recognized the need to use more rigorous processes to ensure that health care recommendations are informed by the best available research evidence. This is the last of a series of 14 articles that methodologists and researchers from around the world have prepared to advise guideline developers in respiratory and other diseases on how to achieve this. We updated a review of the literature on guideline adaptation, evaluation, and updating, focusing on four key questions. In this review we addressed the following questions. (1) Which high-quality guidelines on chronic obstructive pulmonary disease (COPD) are available? (2) How should guidelines be adapted to the user's context and culture? (3) How should the use of guidelines be evaluated in clinical practice? and (4) How should guidelines be efficiently kept up-to-date? We did not conduct systematic reviews ourselves. We relied on a literature review published in 2006 and on a manual produced by the ADAPTE Collaboration to inform our judgments, as well as our collective experience and workshop discussions. Guideline adaptation can be seen as an alternative to de novo development and as part of an implementation process, taking into consideration the user's own context. A systematic approach should be followed to ensure high quality of the resulting guidance. On the topic of COPD, many guidelines are available. Guidelines of the Global Initiative for Chronic Obstructive Lung Disease and of the American Thoracic Society and European Respiratory Society are particularly well-suited for adaptation. The adaptation process includes (1) definition of specific questions that need to be answered by the guideline; (2) assessment of guideline quality; (3) assessment of the clinical content, validity, acceptability, applicability, and transferability of the recommendations; and (4) decisions about adoption or adaptation of the recommendations. The use of the guidelines in practice can be measured with performance indicators. Adverse effects of strict adherence to guideline recommendations should be prevented, in particular when the improvement of patient outcomes is unclear. COPD guidelines should be updated at least every 2 years. Collaboration between COPD guideline developers is recommended to prevent duplication of effort.

  6. Evolution of cooperation driven by incremental learning

    NASA Astrophysics Data System (ADS)

    Li, Pei; Duan, Haibin

    2015-02-01

    It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.

  7. The Study and Design of Adaptive Learning System Based on Fuzzy Set Theory

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Zhong, Shaochun; Zheng, Tianyang; Liu, Zhiyong

    Adaptive learning is an effective way to improve the learning outcomes, that is, the selection of learning content and presentation should be adapted to each learner's learning context, learning levels and learning ability. Adaptive Learning System (ALS) can provide effective support for adaptive learning. This paper proposes a new ALS based on fuzzy set theory. It can effectively estimate the learner's knowledge level by test according to learner's target. Then take the factors of learner's cognitive ability and preference into consideration to achieve self-organization and push plan of knowledge. This paper focuses on the design and implementation of domain model and user model in ALS. Experiments confirmed that the system providing adaptive content can effectively help learners to memory the content and improve their comprehension.

  8. An Adaptive Scaffolding E-Learning System for Middle School Students' Physics Learning

    ERIC Educational Resources Information Center

    Chen, Ching-Huei

    2014-01-01

    This study presents a framework that utilizes cognitive and motivational aspects of learning to design an adaptive scaffolding e-learning system. It addresses scaffolding processes and conditions for designing adaptive scaffolds. The features and effectiveness of this adaptive scaffolding e-learning system are discussed and evaluated. An…

  9. Investigating the Effect of an Adaptive Learning Intervention on Students' Learning

    ERIC Educational Resources Information Center

    Liu, Min; McKelroy, Emily; Corliss, Stephanie B.; Carrigan, Jamison

    2017-01-01

    Educators agree on the benefits of adaptive learning, but evidence-based research remains limited as the field of adaptive learning is still evolving within higher education. In this study, we investigated the impact of an adaptive learning intervention to provide remedial instruction in biology, chemistry, math, and information literacy to…

  10. A Model for an Adaptive e-Learning Hypermedia System

    ERIC Educational Resources Information Center

    Mahnane, Lamia; Tayeb, Laskri Mohamed; Trigano, Philippe

    2013-01-01

    Recent years have shown increasing awareness for the importance of adaptivity in e-learning. Since the learning style of each learner is different. Adaptive e-learning hypermedia system (AEHS) must fit different learner's needs. A number of AEHS have been developed to support learning styles as a source for adaptation. However, these systems…

  11. Functional Equivalence of Spatial Images from Touch and Vision: Evidence from Spatial Updating in Blind and Sighted Individuals

    ERIC Educational Resources Information Center

    Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.

    2011-01-01

    This research examined whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In 3 experiments, participants learned 4-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the…

  12. Updating Existing Emotional Memories Involves the Frontopolar/Orbito-frontal Cortex in Ways that Acquiring New Emotional Memories Does Not

    ERIC Educational Resources Information Center

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2011-01-01

    In life, we must often learn new associations to people, places, or things we already know. The current fMRI study investigated the neural mechanisms underlying emotional memory updating. Nineteen participants first viewed negative and neutral pictures and learned associations between those pictures and other neutral stimuli, such as neutral…

  13. Altered neural encoding of prediction errors in assault-related posttraumatic stress disorder.

    PubMed

    Ross, Marisa C; Lenow, Jennifer K; Kilts, Clinton D; Cisler, Josh M

    2018-05-12

    Posttraumatic stress disorder (PTSD) is widely associated with deficits in extinguishing learned fear responses, which relies on mechanisms of reinforcement learning (e.g., updating expectations based on prediction errors). However, the degree to which PTSD is associated with impairments in general reinforcement learning (i.e., outside of the context of fear stimuli) remains poorly understood. Here, we investigate brain and behavioral differences in general reinforcement learning between adult women with and without a current diagnosis of PTSD. 29 adult females (15 PTSD with exposure to assaultive violence, 14 controls) underwent a neutral reinforcement-learning task (i.e., two arm bandit task) during fMRI. We modeled participant behavior using different adaptations of the Rescorla-Wagner (RW) model and used Independent Component Analysis to identify timecourses for large-scale a priori brain networks. We found that an anticorrelated and risk sensitive RW model best fit participant behavior, with no differences in computational parameters between groups. Women in the PTSD group demonstrated significantly less neural encoding of prediction errors in both a ventral striatum/mPFC and anterior insula network compared to healthy controls. Weakened encoding of prediction errors in the ventral striatum/mPFC and anterior insula during a general reinforcement learning task, outside of the context of fear stimuli, suggests the possibility of a broader conceptualization of learning differences in PTSD than currently proposed in current neurocircuitry models of PTSD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Adaptive Learning Resources Sequencing in Educational Hypermedia Systems

    ERIC Educational Resources Information Center

    Karampiperis, Pythagoras; Sampson, Demetrios

    2005-01-01

    Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have…

  15. Children with Learning Disorders

    MedlinePlus

    ... for Families - Vietnamese Spanish Facts for Families Guide Learning Disorders No. 16; Updated August 2013 Parents are often ... failure, but a common one is a specific learning disorder. Children with learning disorders can have intelligence in ...

  16. OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support

    NASA Astrophysics Data System (ADS)

    Pedrazzoli, Attilio

    2010-06-01

    AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.

  17. Self-Learning Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Liu, Junwei; Qi, Yang; Meng, Zi Yang; Fu, Liang

    Monte Carlo simulation is an unbiased numerical tool for studying classical and quantum many-body systems. One of its bottlenecks is the lack of general and efficient update algorithm for large size systems close to phase transition or with strong frustrations, for which local updates perform badly. In this work, we propose a new general-purpose Monte Carlo method, dubbed self-learning Monte Carlo (SLMC), in which an efficient update algorithm is first learned from the training data generated in trial simulations and then used to speed up the actual simulation. We demonstrate the efficiency of SLMC in a spin model at the phase transition point, achieving a 10-20 times speedup. This work is supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526.

  18. Yet Another Adaptive Learning Management System Based on Felder and Silverman's Learning Styles and Mashup

    ERIC Educational Resources Information Center

    Chang, Yi-Hsing; Chen, Yen-Yi; Chen, Nian-Shing; Lu, You-Te; Fang, Rong-Jyue

    2016-01-01

    This study designs and implements an adaptive learning management system based on Felder and Silverman's Learning Style Model and the Mashup technology. In this system, Felder and Silverman's Learning Style model is used to assess students' learning styles, in order to provide adaptive learning to leverage learners' learning preferences.…

  19. Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.

    PubMed

    Mitsuto Nagase, Asako; Onoda, Keiichi; Clifford Foo, Jerome; Haji, Tomoki; Akaishi, Rei; Yamaguchi, Shuhei; Sakai, Katsuyuki; Morita, Kenji

    2018-02-05

    Humans tend to avoid mental effort. Previous studies have demonstrated this tendency using various demand-selection tasks; participants generally avoid options associated with higher cognitive demand. However, it remains unclear whether humans avoid mental effort adaptively in uncertain and non-stationary environments, and if so, what neural mechanisms underlie this learned avoidance and whether they remain the same irrespective of cognitive-demand types. We addressed these issues by developing novel demand-selection tasks where associations between choice options and cognitive-demand levels change over time, with two variations using mental arithmetic and spatial reasoning problems (29:4 and 18:2 males:females). Most participants showed avoidance, and their choices depended on the demand experienced on multiple preceding trials. We assumed that participants updated the expected cost of mental effort through experience, and fitted their choices by reinforcement learning models, comparing several possibilities. Model-based fMRI analyses revealed that activity in the dorsomedial and lateral frontal cortices was positively correlated with the trial-by-trial expected cost for the chosen option commonly across the different types of cognitive demand, and also revealed a trend of negative correlation in the ventromedial prefrontal cortex. We further identified correlates of cost-prediction-error at time of problem-presentation or answering the problem, the latter of which partially overlapped with or were proximal to the correlates of expected cost at time of choice-cue in the dorsomedial frontal cortex. These results suggest that humans adaptively learn to avoid mental effort, having neural mechanisms to represent expected cost and cost-prediction-error, and the same mechanisms operate for various types of cognitive demand. SIGNIFICANCE STATEMENT In daily life, humans encounter various cognitive demands, and tend to avoid high-demand options. However, it remains unclear whether humans avoid mental effort adaptively under dynamically changing environments, and if so, what are the underlying neural mechanisms and whether they operate irrespective of cognitive-demand types. To address these issues, we developed novel tasks, where participants could learn to avoid high-demand options under uncertain and non-stationary environments. Through model-based fMRI analyses, we found regions whose activity was correlated with the expected mental effort cost, or cost-prediction-error, regardless of demand-type, with overlap or adjacence in the dorsomedial frontal cortex. This finding contributes to clarifying the mechanisms for cognitive-demand avoidance, and provides empirical building blocks for the emerging computational theory of mental effort. Copyright © 2018 the authors.

  20. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  1. Adaptable, Personalised E-Learning Incorporating Learning Styles

    ERIC Educational Resources Information Center

    Peter, Sophie E.; Bacon, Elizabeth; Dastbaz, Mohammad

    2010-01-01

    Purpose: The purpose of this paper is to discuss how learning styles and theories are currently used within personalised adaptable e-learning adaptive systems. This paper then aims to describe the e-learning platform iLearn and how this platform is designed to incorporate learning styles as part of the personalisation offered by the system.…

  2. Update on optical design of adaptive optics system at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Bauman, Brian J.; Gavel, Donald T.; Waltjen, Kenneth E.; Freeze, Gary J.; Hurd, Randall L.; Gates, Elinor L.; Max, Claire E.; Olivier, Scot S.; Pennington, Deanna M.

    2002-02-01

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  3. Update on Optical Design of Adaptive Optics System at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, B J; Gavel, D T; Waltjen, K E

    2001-07-31

    In 1999, we presented our plan to upgrade the adaptive optics (AO) system on the Lick Observatory Shane telescope (3m) from a prototype instrument pressed into field service to a facility instrument. This paper updates the progress of that plan and details several important improvements in the alignment and calibration of the AO bench. The paper also includes a discussion of the problems seen in the original design of the tip/tilt (t/t) sensor used in laser guide star mode, and how these problems were corrected with excellent results.

  4. Improving Adaptive Learning Technology through the Use of Response Times

    ERIC Educational Resources Information Center

    Mettler, Everett; Massey, Christine M.; Kellman, Philip J.

    2011-01-01

    Adaptive learning techniques have typically scheduled practice using learners' accuracy and item presentation history. We describe an adaptive learning system (Adaptive Response Time Based Sequencing--ARTS) that uses both accuracy and response time (RT) as direct inputs into sequencing. Response times are used to assess learning strength and…

  5. Reduced adaptability, but no fundamental disruption, of norm-based face coding following early visual deprivation from congenital cataracts.

    PubMed

    Rhodes, Gillian; Nishimura, Mayu; de Heering, Adelaide; Jeffery, Linda; Maurer, Daphne

    2017-05-01

    Faces are adaptively coded relative to visual norms that are updated by experience, and this adaptive coding is linked to face recognition ability. Here we investigated whether adaptive coding of faces is disrupted in individuals (adolescents and adults) who experience face recognition difficulties following visual deprivation from congenital cataracts in infancy. We measured adaptive coding using face identity aftereffects, where smaller aftereffects indicate less adaptive updating of face-coding mechanisms by experience. We also examined whether the aftereffects increase with adaptor identity strength, consistent with norm-based coding of identity, as in typical populations, or whether they show a different pattern indicating some more fundamental disruption of face-coding mechanisms. Cataract-reversal patients showed significantly smaller face identity aftereffects than did controls (Experiments 1 and 2). However, their aftereffects increased significantly with adaptor strength, consistent with norm-based coding (Experiment 2). Thus we found reduced adaptability but no fundamental disruption of norm-based face-coding mechanisms in cataract-reversal patients. Our results suggest that early visual experience is important for the normal development of adaptive face-coding mechanisms. © 2016 John Wiley & Sons Ltd.

  6. Development of an Adaptive Learning System with Two Sources of Personalization Information

    ERIC Educational Resources Information Center

    Tseng, J. C. R.; Chu, H. C.; Hwang, G. J.; Tsai, C. C.

    2008-01-01

    Previous research of adaptive learning mainly focused on improving student learning achievements based only on single-source of personalization information, such as learning style, cognitive style or learning achievement. In this paper, an innovative adaptive learning approach is proposed by basing upon two main sources of personalization…

  7. Monoaminergic Modulation of Motor Cortex Function

    PubMed Central

    Vitrac, Clément; Benoit-Marand, Marianne

    2017-01-01

    Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274

  8. Design for a region-wide adaptive search for the ivorybilled woodpecker with the objective of estimating occupancy and related parameters

    USGS Publications Warehouse

    Cooper, R.J.; Mordecai, Rua S.; Mattsson, B.G.; Conroy, M.J.; Pacifici, K.; Peterson, J.T.; Moore, C.T.

    2008-01-01

    We describe a survey design and field protocol for the Ivory-billed Woodpecker (Campephilus principalis) search effort that will: (1) allow estimation of occupancy, use, and detection probability for habitats at two spatial scales within the bird?s former range, (2) assess relationships between occupancy, use, and habitat characteristics at those scales, (3) eventually allow the development of a population viability model that depends on patch occupancy instead of difficult-to-measure demographic parameters, and (4) be adaptive, allowing newly collected information to update the above models and search locations. The approach features random selection of patches to be searched from a sampling frame stratified and weighted by patch quality, and requires multiple visits per patch. It is adaptive within a season in that increased search activity is allowed in and around locations of strong visual and/or aural evidence, and adaptive among seasons in that habitat associations allow modification of stratum weights. This statistically rigorous approach is an improvement over simply visiting the ?best? habitat in an ad hoc fashion because we can learn from prior effort and modify the search accordingly. Results from the 2006-07 search season indicate weak relationships between occupancy and habitat (although we suggest modifications of habitat measurement protocols), and a very low detection probability, suggesting more visits per patch are required. Sample size requirements will be discussed.

  9. Learning during processing Word learning doesn’t wait for word recognition to finish

    PubMed Central

    Apfelbaum, Keith S.; McMurray, Bob

    2017-01-01

    Previous research on associative learning has uncovered detailed aspects of the process, including what types of things are learned, how they are learned, and where in the brain such learning occurs. However, perceptual processes, such as stimulus recognition and identification, take time to unfold. Previous studies of learning have not addressed when, during the course of these dynamic recognition processes, learned representations are formed and updated. If learned representations are formed and updated while recognition is ongoing, the result of learning may incorporate spurious, partial information. For example, during word recognition, words take time to be identified, and competing words are often active in parallel. If learning proceeds before this competition resolves, representations may be influenced by the preliminary activations present at the time of learning. In three experiments using word learning as a model domain, we provide evidence that learning reflects the ongoing dynamics of auditory and visual processing during a learning event. These results show that learning can occur before stimulus recognition processes are complete; learning does not wait for ongoing perceptual processing to complete. PMID:27471082

  10. Learning and adaptation in the management of waterfowl harvests

    USGS Publications Warehouse

    Johnson, Fred A.

    2011-01-01

    A formal framework for the adaptive management of waterfowl harvests was adopted by the U.S. Fish and Wildlife Service in 1995. The process admits competing models of waterfowl population dynamics and harvest impacts, and relies on model averaging to compute optimal strategies for regulating harvest. Model weights, reflecting the relative ability of the alternative models to predict changes in population size, are used in the model averaging and are updated each year based on a comparison of model predictions and observations of population size. Since its inception the adaptive harvest program has focused principally on mallards (Anas platyrhynchos), which constitute a large portion of the U.S. waterfowl harvest. Four competing models, derived from a combination of two survival and two reproductive hypotheses, were originally assigned equal weights. In the last year of available information (2007), model weights favored the weakly density-dependent reproductive hypothesis over the strongly density-dependent one, and the additive mortality hypothesis over the compensatory one. The change in model weights led to a more conservative harvesting policy than what was in effect in the early years of the program. Adaptive harvest management has been successful in many ways, but nonetheless has exposed the difficulties in defining management objectives, in predicting and regulating harvests, and in coping with the tradeoffs inherent in managing multiple waterfowl stocks exposed to a common harvest. The key challenge now facing managers is whether adaptive harvest management as an institution can be sufficiently adaptive, and whether the knowledge and experience gained from the process can be reflected in higher-level policy decisions.

  11. Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems.

    PubMed

    Li, Yuan-Xin; Yang, Guang-Hong

    2018-04-01

    This paper is concerned with the adaptive event-triggered control problem of nonlinear continuous-time systems in strict-feedback form. By using the event-sampled neural network (NN) to approximate the unknown nonlinear function, an adaptive model and an associated event-triggered controller are designed by exploiting the backstepping method. In the proposed method, the feedback signals and the NN weights are aperiodically updated only when the event-triggered condition is violated. A positive lower bound on the minimum intersample time is guaranteed to avoid accumulation point. The closed-loop stability of the resulting nonlinear impulsive dynamical system is rigorously proved via Lyapunov analysis under an adaptive event sampling condition. In comparing with the traditional adaptive backstepping design with a fixed sample period, the event-triggered method samples the state and updates the NN weights only when it is necessary. Therefore, the number of transmissions can be significantly reduced. Finally, two simulation examples are presented to show the effectiveness of the proposed control method.

  12. What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated.

    PubMed

    Kumaran, Dharshan; Hassabis, Demis; McClelland, James L

    2016-07-01

    We update complementary learning systems (CLS) theory, which holds that intelligent agents must possess two learning systems, instantiated in mammalians in neocortex and hippocampus. The first gradually acquires structured knowledge representations while the second quickly learns the specifics of individual experiences. We broaden the role of replay of hippocampal memories in the theory, noting that replay allows goal-dependent weighting of experience statistics. We also address recent challenges to the theory and extend it by showing that recurrent activation of hippocampal traces can support some forms of generalization and that neocortical learning can be rapid for information that is consistent with known structure. Finally, we note the relevance of the theory to the design of artificial intelligent agents, highlighting connections between neuroscience and machine learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Approach for Using Learner Satisfaction to Evaluate the Learning Adaptation Policy

    ERIC Educational Resources Information Center

    Jeghal, Adil; Oughdir, Lahcen; Tairi, Hamid; Radouane, Abdelhay

    2016-01-01

    The learning adaptation is a very important phase in a learning situation in human learning environments. This paper presents the authors' approach used to evaluate the effectiveness of learning adaptive systems. This approach is based on the analysis of learner satisfaction notices collected by a questionnaire on a learning situation; to analyze…

  14. Neuroprosthetic Decoder Training as Imitation Learning.

    PubMed

    Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P

    2016-05-01

    Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.

  15. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.

    PubMed

    Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J

    2016-05-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.

  16. A family of variable step-size affine projection adaptive filter algorithms using statistics of channel impulse response

    NASA Astrophysics Data System (ADS)

    Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar

    2011-12-01

    This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.

  17. Adaptive Output-Feedback Neural Control of Switched Uncertain Nonlinear Systems With Average Dwell Time.

    PubMed

    Long, Lijun; Zhao, Jun

    2015-07-01

    This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.

  18. Learners' Perceptions and Illusions of Adaptivity in Computer-Based Learning Environments

    ERIC Educational Resources Information Center

    Vandewaetere, Mieke; Vandercruysse, Sylke; Clarebout, Geraldine

    2012-01-01

    Research on computer-based adaptive learning environments has shown exemplary growth. Although the mechanisms of effective adaptive instruction are unraveled systematically, little is known about the relative effect of learners' perceptions of adaptivity in adaptive learning environments. As previous research has demonstrated that the learners'…

  19. Towards Adaptive Open Learning Environments: Evaluating the Precision of Identifying Learning Styles by Tracking Learners' Behaviours

    ERIC Educational Resources Information Center

    Fasihuddin, Heba; Skinner, Geoff; Athauda, Rukshan

    2017-01-01

    Open learning represents a new form of online learning where courses are provided freely online for large numbers of learners. MOOCs are examples of this form of learning. The authors see an opportunity for personalising open learning environments by adapting to learners' learning styles and providing adaptive support to meet individual learner…

  20. Coastal Adaptation Planning for Sea Level Rise and Extremes: A Global Model for Adaptation Decision-making at the Local Level Given Uncertain Climate Projections

    NASA Astrophysics Data System (ADS)

    Turner, D.

    2014-12-01

    Understanding the potential economic and physical impacts of climate change on coastal resources involves evaluating a number of distinct adaptive responses. This paper presents a tool for such analysis, a spatially-disaggregated optimization model for adaptation to sea level rise (SLR) and storm surge, the Coastal Impact and Adaptation Model (CIAM). This decision-making framework fills a gap between very detailed studies of specific locations and overly aggregate global analyses. While CIAM is global in scope, the optimal adaptation strategy is determined at the local level, evaluating over 12,000 coastal segments as described in the DIVA database (Vafeidis et al. 2006). The decision to pursue a given adaptation measure depends on local socioeconomic factors like income, population, and land values and how they develop over time, relative to the magnitude of potential coastal impacts, based on geophysical attributes like inundation zones and storm surge. For example, the model's decision to protect or retreat considers the costs of constructing and maintaining coastal defenses versus those of relocating people and capital to minimize damages from land inundation and coastal storms. Uncertain storm surge events are modeled with a generalized extreme value distribution calibrated to data on local surge extremes. Adaptation is optimized for the near-term outlook, in an "act then learn then act" framework that is repeated over the model time horizon. This framework allows the adaptation strategy to be flexibly updated, reflecting the process of iterative risk management. CIAM provides new estimates of the economic costs of SLR; moreover, these detailed results can be compactly represented in a set of adaptation and damage functions for use in integrated assessment models. Alongside the optimal result, CIAM evaluates suboptimal cases and finds that global costs could increase by an order of magnitude, illustrating the importance of adaptive capacity and coastal policy.

  1. The neural basis of reversal learning: An updated perspective

    PubMed Central

    Izquierdo, Alicia; Brigman, Jonathan L.; Radke, Anna K.; Rudebeck, Peter H.; Holmes, Andrew

    2016-01-01

    Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as an heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principle neurotransmitter systems involved. PMID:26979052

  2. An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection.

    PubMed

    Wang, Xingmei; Hao, Wenqian; Li, Qiming

    2017-12-18

    This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.

  3. Adaptive Reception for Underwater Communications

    DTIC Science & Technology

    2011-06-01

    Experimental results prove the effectiveness of the receiver. 14. SUBJECT TERMS Underwater acoustic communications, adaptive algorithms , Kalman filter...the update algorithm design and the value of the spatial diversity are addressed. In this research, an adaptive multichannel equalizer made up of a...for the time-varying nature of the channel is to use an Adaptive Decision Feedback Equalizer based on either the RLS or LMS algorithm . Although this

  4. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning

    PubMed Central

    Raza, Meher; Ivry, Richard B.

    2016-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611

  5. Adaptive Management and the Value of Information: Learning Via Intervention in Epidemiology

    PubMed Central

    Shea, Katriona; Tildesley, Michael J.; Runge, Michael C.; Fonnesbeck, Christopher J.; Ferrari, Matthew J.

    2014-01-01

    Optimal intervention for disease outbreaks is often impeded by severe scientific uncertainty. Adaptive management (AM), long-used in natural resource management, is a structured decision-making approach to solving dynamic problems that accounts for the value of resolving uncertainty via real-time evaluation of alternative models. We propose an AM approach to design and evaluate intervention strategies in epidemiology, using real-time surveillance to resolve model uncertainty as management proceeds, with foot-and-mouth disease (FMD) culling and measles vaccination as case studies. We use simulations of alternative intervention strategies under competing models to quantify the effect of model uncertainty on decision making, in terms of the value of information, and quantify the benefit of adaptive versus static intervention strategies. Culling decisions during the 2001 UK FMD outbreak were contentious due to uncertainty about the spatial scale of transmission. The expected benefit of resolving this uncertainty prior to a new outbreak on a UK-like landscape would be £45–£60 million relative to the strategy that minimizes livestock losses averaged over alternate transmission models. AM during the outbreak would be expected to recover up to £20.1 million of this expected benefit. AM would also recommend a more conservative initial approach (culling of infected premises and dangerous contact farms) than would a fixed strategy (which would additionally require culling of contiguous premises). For optimal targeting of measles vaccination, based on an outbreak in Malawi in 2010, AM allows better distribution of resources across the affected region; its utility depends on uncertainty about both the at-risk population and logistical capacity. When daily vaccination rates are highly constrained, the optimal initial strategy is to conduct a small, quick campaign; a reduction in expected burden of approximately 10,000 cases could result if campaign targets can be updated on the basis of the true susceptible population. Formal incorporation of a policy to update future management actions in response to information gained in the course of an outbreak can change the optimal initial response and result in significant cost savings. AM provides a framework for using multiple models to facilitate public-health decision making and an objective basis for updating management actions in response to improved scientific understanding. PMID:25333371

  6. Adaptive management and the value of information: learning via intervention in epidemiology

    USGS Publications Warehouse

    Shea, Katriona; Tildesley, Michael J.; Runge, Michael C.; Fonnesbeck, Christopher J.; Ferrari, Matthew J.

    2014-01-01

    Optimal intervention for disease outbreaks is often impeded by severe scientific uncertainty. Adaptive management (AM), long-used in natural resource management, is a structured decision-making approach to solving dynamic problems that accounts for the value of resolving uncertainty via real-time evaluation of alternative models. We propose an AM approach to design and evaluate intervention strategies in epidemiology, using real-time surveillance to resolve model uncertainty as management proceeds, with foot-and-mouth disease (FMD) culling and measles vaccination as case studies. We use simulations of alternative intervention strategies under competing models to quantify the effect of model uncertainty on decision making, in terms of the value of information, and quantify the benefit of adaptive versus static intervention strategies. Culling decisions during the 2001 UK FMD outbreak were contentious due to uncertainty about the spatial scale of transmission. The expected benefit of resolving this uncertainty prior to a new outbreak on a UK-like landscape would be £45–£60 million relative to the strategy that minimizes livestock losses averaged over alternate transmission models. AM during the outbreak would be expected to recover up to £20.1 million of this expected benefit. AM would also recommend a more conservative initial approach (culling of infected premises and dangerous contact farms) than would a fixed strategy (which would additionally require culling of contiguous premises). For optimal targeting of measles vaccination, based on an outbreak in Malawi in 2010, AM allows better distribution of resources across the affected region; its utility depends on uncertainty about both the at-risk population and logistical capacity. When daily vaccination rates are highly constrained, the optimal initial strategy is to conduct a small, quick campaign; a reduction in expected burden of approximately 10,000 cases could result if campaign targets can be updated on the basis of the true susceptible population. Formal incorporation of a policy to update future management actions in response to information gained in the course of an outbreak can change the optimal initial response and result in significant cost savings. AM provides a framework for using multiple models to facilitate public-health decision making and an objective basis for updating management actions in response to improved scientific understanding.

  7. How to Represent Adaptation in e-Learning with IMS Learning Design

    ERIC Educational Resources Information Center

    Burgos, Daniel; Tattersall, Colin; Koper, Rob

    2007-01-01

    Adaptation in e-learning has been an important research topic for the last few decades in computer-based education. In adaptivity the behaviour of the user triggers some actions in the system that guides the learning process. In adaptability, the user makes changes and takes decisions. Progressing from computer-based training and adaptive…

  8. Probabilistic co-adaptive brain-computer interfacing

    NASA Astrophysics Data System (ADS)

    Bryan, Matthew J.; Martin, Stefan A.; Cheung, Willy; Rao, Rajesh P. N.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) are confronted with two fundamental challenges: (a) the uncertainty associated with decoding noisy brain signals, and (b) the need for co-adaptation between the brain and the interface so as to cooperatively achieve a common goal in a task. We seek to mitigate these challenges. Approach. We introduce a new approach to brain-computer interfacing based on partially observable Markov decision processes (POMDPs). POMDPs provide a principled approach to handling uncertainty and achieving co-adaptation in the following manner: (1) Bayesian inference is used to compute posterior probability distributions (‘beliefs’) over brain and environment state, and (2) actions are selected based on entire belief distributions in order to maximize total expected reward; by employing methods from reinforcement learning, the POMDP’s reward function can be updated over time to allow for co-adaptive behaviour. Main results. We illustrate our approach using a simple non-invasive BCI which optimizes the speed-accuracy trade-off for individual subjects based on the signal-to-noise characteristics of their brain signals. We additionally demonstrate that the POMDP BCI can automatically detect changes in the user’s control strategy and can co-adaptively switch control strategies on-the-fly to maximize expected reward. Significance. Our results suggest that the framework of POMDPs offers a promising approach for designing BCIs that can handle uncertainty in neural signals and co-adapt with the user on an ongoing basis. The fact that the POMDP BCI maintains a probability distribution over the user’s brain state allows a much more powerful form of decision making than traditional BCI approaches, which have typically been based on the output of classifiers or regression techniques. Furthermore, the co-adaptation of the system allows the BCI to make online improvements to its behaviour, adjusting itself automatically to the user’s changing circumstances.

  9. Back-to-School Guide: Jump-Start Learning with New Media. Updated with New Tools and Resources for 2010-11

    ERIC Educational Resources Information Center

    George Lucas Educational Foundation, 2010

    2010-01-01

    To help teachers get off to a good start, this paper presents the updated "Back-to-School Guide" that is brimming with new-media ideas and resources. It outlines ten tips, along with easy-to-use tools, that will help teachers build their classroom community, survey students to bring out their ideas, and make learning more collaborative. Links to…

  10. Forecasting daily streamflow using online sequential extreme learning machines

    NASA Astrophysics Data System (ADS)

    Lima, Aranildo R.; Cannon, Alex J.; Hsieh, William W.

    2016-06-01

    While nonlinear machine methods have been widely used in environmental forecasting, in situations where new data arrive continually, the need to make frequent model updates can become cumbersome and computationally costly. To alleviate this problem, an online sequential learning algorithm for single hidden layer feedforward neural networks - the online sequential extreme learning machine (OSELM) - is automatically updated inexpensively as new data arrive (and the new data can then be discarded). OSELM was applied to forecast daily streamflow at two small watersheds in British Columbia, Canada, at lead times of 1-3 days. Predictors used were weather forecast data generated by the NOAA Global Ensemble Forecasting System (GEFS), and local hydro-meteorological observations. OSELM forecasts were tested with daily, monthly or yearly model updates. More frequent updating gave smaller forecast errors, including errors for data above the 90th percentile. Larger datasets used in the initial training of OSELM helped to find better parameters (number of hidden nodes) for the model, yielding better predictions. With the online sequential multiple linear regression (OSMLR) as benchmark, we concluded that OSELM is an attractive approach as it easily outperformed OSMLR in forecast accuracy.

  11. Dual Systems for Spatial Updating in Immediate and Retrieved Environments: Evidence from Bias Analysis.

    PubMed

    Liu, Chuanjun; Xiao, Chengli

    2018-01-01

    The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one.

  12. Dual Systems for Spatial Updating in Immediate and Retrieved Environments: Evidence from Bias Analysis

    PubMed Central

    Liu, Chuanjun; Xiao, Chengli

    2018-01-01

    The spatial updating and memory systems are employed during updating in both the immediate and retrieved environments. However, these dual systems seem to work differently, as the difference of pointing latency and absolute error between the two systems vary across environments. To verify this issue, the present study employed the bias analysis of signed errors based on the hypothesis that the transformed representation will bias toward the original one. Participants learned a spatial layout and then either stayed in the learning location or were transferred to a neighboring room directly or after being disoriented. After that, they performed spatial judgments from perspectives aligned with the learning direction, aligned with the direction they faced during the test, or a novel direction misaligned with the two above-mentioned directions. The patterns of signed error bias were consistent across environments. Responses for memory aligned perspectives were unbiased, whereas responses for sensorimotor aligned perspectives were biased away from the memory aligned perspective, and responses for misaligned perspectives were biased toward sensorimotor aligned perspectives. These findings indicate that the spatial updating system is consistently independent of the spatial memory system regardless of the environments, but the updating system becomes less accessible as the environment changes from immediate to a retrieved one. PMID:29467698

  13. Spatial features of synaptic adaptation affecting learning performance.

    PubMed

    Berger, Damian L; de Arcangelis, Lucilla; Herrmann, Hans J

    2017-09-08

    Recent studies have proposed that the diffusion of messenger molecules, such as monoamines, can mediate the plastic adaptation of synapses in supervised learning of neural networks. Based on these findings we developed a model for neural learning, where the signal for plastic adaptation is assumed to propagate through the extracellular space. We investigate the conditions allowing learning of Boolean rules in a neural network. Even fully excitatory networks show very good learning performances. Moreover, the investigation of the plastic adaptation features optimizing the performance suggests that learning is very sensitive to the extent of the plastic adaptation and the spatial range of synaptic connections.

  14. Recursive Bayesian recurrent neural networks for time-series modeling.

    PubMed

    Mirikitani, Derrick T; Nikolaev, Nikolay

    2010-02-01

    This paper develops a probabilistic approach to recursive second-order training of recurrent neural networks (RNNs) for improved time-series modeling. A general recursive Bayesian Levenberg-Marquardt algorithm is derived to sequentially update the weights and the covariance (Hessian) matrix. The main strengths of the approach are a principled handling of the regularization hyperparameters that leads to better generalization, and stable numerical performance. The framework involves the adaptation of a noise hyperparameter and local weight prior hyperparameters, which represent the noise in the data and the uncertainties in the model parameters. Experimental investigations using artificial and real-world data sets show that RNNs equipped with the proposed approach outperform standard real-time recurrent learning and extended Kalman training algorithms for recurrent networks, as well as other contemporary nonlinear neural models, on time-series modeling.

  15. UAS Applications for Hurricane Science, Hurrican and Severe Storm Sentinel (HS3)

    NASA Technical Reports Server (NTRS)

    Braun, Scott

    2014-01-01

    Earth Science Industry Update: UAS Applications for Hurricane Science Unmanned systems can significantly transform hurricane observations and monitoring, improving our knowledge about and ability to forecast storm formation, track, and intensity change. NASA's use of the Global Hawk has demonstrated the scientific value of this platform and provided a proof-of-concept for operational applications. However, science flight operations face several challenges and constraints. In this session, learn about how NASA adapted the Global Hawk to do science; How NASA conducts its hurricane missions, and some of the challenges and constraints they face; Science results from NASA's recent hurricane field campaigns using the Global Hawk. How assimilation of dropsonde and radar data into weather prediction models may improve forecast accuracy; Other Earth science problems that could be addressed with Global Hawks.

  16. The AstroHDF Effort

    NASA Astrophysics Data System (ADS)

    Masters, J.; Alexov, A.; Folk, M.; Hanisch, R.; Heber, G.; Wise, M.

    2012-09-01

    Here we update the astronomy community on our effort to deal with the demands of ever-increasing astronomical data size and complexity, using the Hierarchical Data Format, version 5 (HDF5) format (Wise et al. 2011). NRAO, LOFAR and VAO have joined forces with The HDF Group to write an NSF grant, requesting funding to assist in the effort. This paper briefly summarizes our motivation for the proposed project, an outline of the project itself, and some of the material discussed at the ADASS Birds of a Feather (BoF) discussion. Topics of discussion included: community experiences with HDF5 and other file formats; toolsets which exist and/or can be adapted for HDF5; a call for development towards visualizing large (> 1 TB) image cubes; and, general lessons learned from working with large and complex data.

  17. Learning to Control Actions: Transfer Effects following a Procedural Cognitive Control Computerized Training

    PubMed Central

    Shahar, Nitzan; Meiran, Nachshon

    2015-01-01

    Few studies have addressed action control training. In the current study, participants were trained over 19 days in an adaptive training task that demanded constant switching, maintenance and updating of novel action rules. Participants completed an executive functions battery before and after training that estimated processing speed, working memory updating, set-shifting, response inhibition and fluid intelligence. Participants in the training group showed greater improvement than a no-contact control group in processing speed, indicated by reduced reaction times in speeded classification tasks. No other systematic group differences were found across the different pre-post measurements. Ex-Gaussian fitting of the reaction-time distribution revealed that the reaction time reduction observed among trained participants was restricted to the right tail of the distribution, previously shown to be related to working memory. Furthermore, training effects were only found in classification tasks that required participants to maintain novel stimulus-response rules in mind, supporting the notion that the training improved working memory abilities. Training benefits were maintained in a 10-month follow-up, indicating relatively long-lasting effects. The authors conclude that training improved action-related working memory abilities. PMID:25799443

  18. Validation and sensitivity of the FINE Bayesian network for forecasting aquatic exposure to nano-silver.

    PubMed

    Money, Eric S; Barton, Lauren E; Dawson, Joseph; Reckhow, Kenneth H; Wiesner, Mark R

    2014-03-01

    The adaptive nature of the Forecasting the Impacts of Nanomaterials in the Environment (FINE) Bayesian network is explored. We create an updated FINE model (FINEAgNP-2) for predicting aquatic exposure concentrations of silver nanoparticles (AgNP) by combining the expert-based parameters from the baseline model established in previous work with literature data related to particle behavior, exposure, and nano-ecotoxicology via parameter learning. We validate the AgNP forecast from the updated model using mesocosm-scale field data and determine the sensitivity of several key variables to changes in environmental conditions, particle characteristics, and particle fate. Results show that the prediction accuracy of the FINEAgNP-2 model increased approximately 70% over the baseline model, with an error rate of only 20%, suggesting that FINE is a reliable tool to predict aquatic concentrations of nano-silver. Sensitivity analysis suggests that fractal dimension, particle diameter, conductivity, time, and particle fate have the most influence on aquatic exposure given the current knowledge; however, numerous knowledge gaps can be identified to suggest further research efforts that will reduce the uncertainty in subsequent exposure and risk forecasts. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. An Unsupervised Deep Hyperspectral Anomaly Detector

    PubMed Central

    Ma, Ning; Peng, Yu; Wang, Shaojun

    2018-01-01

    Hyperspectral image (HSI) based detection has attracted considerable attention recently in agriculture, environmental protection and military applications as different wavelengths of light can be advantageously used to discriminate different types of objects. Unfortunately, estimating the background distribution and the detection of interesting local objects is not straightforward, and anomaly detectors may give false alarms. In this paper, a Deep Belief Network (DBN) based anomaly detector is proposed. The high-level features and reconstruction errors are learned through the network in a manner which is not affected by previous background distribution assumption. To reduce contamination by local anomalies, adaptive weights are constructed from reconstruction errors and statistical information. By using the code image which is generated during the inference of DBN and modified by adaptively updated weights, a local Euclidean distance between under test pixels and their neighboring pixels is used to determine the anomaly targets. Experimental results on synthetic and recorded HSI datasets show the performance of proposed method outperforms the classic global Reed-Xiaoli detector (RXD), local RX detector (LRXD) and the-state-of-the-art Collaborative Representation detector (CRD). PMID:29495410

  20. A hybrid neural network model for noisy data regression.

    PubMed

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  1. Enabling Incremental Query Re-Optimization.

    PubMed

    Liu, Mengmeng; Ives, Zachary G; Loo, Boon Thau

    2016-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs , and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries ; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations.

  2. Enabling Incremental Query Re-Optimization

    PubMed Central

    Liu, Mengmeng; Ives, Zachary G.; Loo, Boon Thau

    2017-01-01

    As declarative query processing techniques expand to the Web, data streams, network routers, and cloud platforms, there is an increasing need to re-plan execution in the presence of unanticipated performance changes. New runtime information may affect which query plan we prefer to run. Adaptive techniques require innovation both in terms of the algorithms used to estimate costs, and in terms of the search algorithm that finds the best plan. We investigate how to build a cost-based optimizer that recomputes the optimal plan incrementally given new cost information, much as a stream engine constantly updates its outputs given new data. Our implementation especially shows benefits for stream processing workloads. It lays the foundations upon which a variety of novel adaptive optimization algorithms can be built. We start by leveraging the recently proposed approach of formulating query plan enumeration as a set of recursive datalog queries; we develop a variety of novel optimization approaches to ensure effective pruning in both static and incremental cases. We further show that the lessons learned in the declarative implementation can be equally applied to more traditional optimizer implementations. PMID:28659658

  3. Autonomous learning based on cost assumptions: theoretical studies and experiments in robot control.

    PubMed

    Ribeiro, C H; Hemerly, E M

    2000-02-01

    Autonomous learning techniques are based on experience acquisition. In most realistic applications, experience is time-consuming: it implies sensor reading, actuator control and algorithmic update, constrained by the learning system dynamics. The information crudeness upon which classical learning algorithms operate make such problems too difficult and unrealistic. Nonetheless, additional information for facilitating the learning process ideally should be embedded in such a way that the structural, well-studied characteristics of these fundamental algorithms are maintained. We investigate in this article a more general formulation of the Q-learning method that allows for a spreading of information derived from single updates towards a neighbourhood of the instantly visited state and converges to optimality. We show how this new formulation can be used as a mechanism to safely embed prior knowledge about the structure of the state space, and demonstrate it in a modified implementation of a reinforcement learning algorithm in a real robot navigation task.

  4. A New Approach for Constructing the Concept Map

    ERIC Educational Resources Information Center

    Tseng, Shian-Shyong; Sue, Pei-Chi; Su, Jun-Ming; Weng, Jui-Feng; Tsai, Wen-Nung

    2007-01-01

    In recent years, e-learning system has become more and more popular and many adaptive learning environments have been proposed to offer learners customized courses in accordance with their aptitudes and learning results. For achieving the adaptive learning, a predefined concept map of a course is often used to provide adaptive learning guidance…

  5. Using Data to Understand How to Better Design Adaptive Learning

    ERIC Educational Resources Information Center

    Liu, Min; Kang, Jina; Zou, Wenting; Lee, Hyeyeon; Pan, Zilong; Corliss, Stephanie

    2017-01-01

    There is much enthusiasm in higher education about the benefits of adaptive learning and using big data to investigate learning processes to make data-informed educational decisions. The benefits of adaptive learning to achieve personalized learning are obvious. Yet, there lacks evidence-based research to understand how data such as user behavior…

  6. A Context-Adaptive Teacher Training Model in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Chen, Min; Chiang, Feng Kuang; Jiang, Ya Na; Yu, Sheng Quan

    2017-01-01

    In view of the discrepancies in teacher training and teaching practice, this paper put forward a context-adaptive teacher training model in a ubiquitous learning (u-learning) environment. The innovative model provides teachers of different subjects with adaptive and personalized learning content in a u-learning environment, implements intra- and…

  7. The Construct of Adaptive Behavior: Its Conceptualization, Measurement, and Use in the Field of Intellectual Disability

    ERIC Educational Resources Information Center

    Tasse, Marc J.; Schalock, Robert L.; Balboni, Giulia; Bersani, Hank, Jr.; Borthwick-Duffy, Sharon A.; Spreat, Scott; Thissen, David; Widaman, Keith F.; Zhang, Dalun

    2012-01-01

    This article updates the current conceptualization, measurement, and use of the adaptive behavior construct. Major sections of the article address an understanding of the construct, the current approaches to its measurement, four assessment issues and challenges related to the use of adaptive behavior information for the diagnosis of intellectual…

  8. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation

    PubMed Central

    Gilman, R. Tucker; Kozak, Genevieve M.

    2015-01-01

    Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual‐based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795

  9. Diverse strategy-learning styles promote cooperation in evolutionary spatial prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Liu, Run-Ran; Jia, Chun-Xiao; Rong, Zhihai

    2015-11-01

    Observational learning and practice learning are two important learning styles and play important roles in our information acquisition. In this paper, we study a spacial evolutionary prisoner's dilemma game, where players can choose the observational learning rule or the practice learning rule when updating their strategies. In the proposed model, we use a parameter p controlling the preference of players choosing the observational learning rule, and found that there exists an optimal value of p leading to the highest cooperation level, which indicates that the cooperation can be promoted by these two learning rules collaboratively and one single learning rule is not favor the promotion of cooperation. By analysing the dynamical behavior of the system, we find that the observational learning rule can make the players residing on cooperative clusters more easily realize the bad sequence of mutual defection. However, a too high observational learning probability suppresses the players to form compact cooperative clusters. Our results highlight the importance of a strategy-updating rule, more importantly, the observational learning rule in the evolutionary cooperation.

  10. Concept Based Approach for Adaptive Personalized Course Learning System

    ERIC Educational Resources Information Center

    Salahli, Mehmet Ali; Özdemir, Muzaffer; Yasar, Cumali

    2013-01-01

    One of the most important factors for improving the personalization aspects of learning systems is to enable adaptive properties to them. The aim of the adaptive personalized learning system is to offer the most appropriate learning path and learning materials to learners by taking into account their profiles. In this paper, a new approach to…

  11. Designing a Semantic Bliki System to Support Different Types of Knowledge and Adaptive Learning

    ERIC Educational Resources Information Center

    Huang, Shiu-Li; Yang, Chia-Wei

    2009-01-01

    Though blogs and wikis have been used to support knowledge management and e-learning, existing blogs and wikis cannot support different types of knowledge and adaptive learning. A case in point, types of knowledge vary greatly in category and viewpoints. Additionally, adaptive learning is crucial to improving one's learning performance. This study…

  12. Development of an Adaptive Learning System with Multiple Perspectives based on Students' Learning Styles and Cognitive Styles

    ERIC Educational Resources Information Center

    Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen Jen-Hwa

    2013-01-01

    In this study, an adaptive learning system is developed by taking multiple dimensions of personalized features into account. A personalized presentation module is proposed for developing adaptive learning systems based on the field dependent/independent cognitive style model and the eight dimensions of Felder-Silverman's learning style. An…

  13. State of Learning in Canada: A Year in Review, 2009-2010

    ERIC Educational Resources Information Center

    Canadian Council on Learning, 2010

    2010-01-01

    The 2009-2010 "State of Learning in Canada" provides the most current information on the Canadian learning landscape, contributing to a comprehensive understanding of how Canadians are faring as lifelong learners. As in previous "State of Learning" reports, this update reflects the Canadian Council on Learning's (CCL's) vision…

  14. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.

    PubMed

    Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B

    2017-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.

  15. Adaptive Units of Learning and Educational Videogames

    ERIC Educational Resources Information Center

    Moreno-Ger, Pablo; Thomas, Pilar Sancho; Martinez-Ortiz, Ivan; Sierra, Jose Luis; Fernandez-Manjon, Baltasar

    2007-01-01

    In this paper, we propose three different ways of using IMS Learning Design to support online adaptive learning modules that include educational videogames. The first approach relies on IMS LD to support adaptation procedures where the educational games are considered as Learning Objects. These games can be included instead of traditional content…

  16. Adapting the Speed of Reproduction of Audio Content and Using Text Reinforcement for Maximizing the Learning Outcome though Mobile Phones

    ERIC Educational Resources Information Center

    Munoz-Organero, M.; Munoz-Merino, P. J.; Kloos, Carlos Delgado

    2011-01-01

    The use of technology in learning environments should be targeted at improving the learning outcome of the process. Several technology enhanced techniques can be used for maximizing the learning gain of particular students when having access to learning resources. One of them is content adaptation. Adapting content is especially important when…

  17. Adaptivity in Game-Based Learning: A New Perspective on Story

    NASA Astrophysics Data System (ADS)

    Berger, Florian; Müller, Wolfgang

    Game-based learning as a novel form of e-learning still has issues in fundamental questions, the lack of a general model for adaptivity being one of them. Since adaptive techniques in traditional e-learning applications bear close similarity to certain interactive storytelling approaches, we propose a new notion of story as the joining element of arbitraty learning paths.

  18. Motor Learning in Childhood Reveals Distinct Mechanisms for Memory Retention and Re-Learning

    ERIC Educational Resources Information Center

    Musselman, Kristin E.; Roemmich, Ryan T.; Garrett, Ben; Bastian, Amy J.

    2016-01-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted…

  19. Enhancing Learning Performance and Adaptability for Complex Tasks

    DTIC Science & Technology

    2005-03-30

    development of active learning interventions and techniques that influence the focus and quality of learner regulatory activity (Kozlowski Toney et al...what are the effects of these goal representations on learning strategies, performance, and adaptability? Can active learning inductions, that influence...and mindful process - active learning - are generally associated with improved skill acquisition and adaptability for complex tasks (Smith et al

  20. Updating Rhode Island’s strategic highway safety plan (SHSP).

    DOT National Transportation Integrated Search

    2012-05-01

    This report summarizes the peer exchange sponsored by the Rhode Island Department of Transportation (RIDOT) that focused on Rhode Islands SHSP update. Rhode Islands goals for the peer exchange included learning from other States experiences ...

  1. Age-related differences in strategy knowledge updating: blocked testing produces greater improvements in metacognitive accuracy for younger than older adults.

    PubMed

    Price, Jodi; Hertzog, Christopher; Dunlosky, John

    2008-09-01

    Age-related differences in updating knowledge about strategy effectiveness after task experience have not been consistently found, perhaps because the magnitude of observed knowledge updating has been rather meager for both age groups. We examined whether creating homogeneous blocks of recall tests based on two strategies used at encoding (imagery and repetition) would enhance people's learning about strategy effects on recall. Younger and older adults demonstrated greater knowledge updating (as measured by questionnaire ratings of strategy effectiveness and by global judgments of performance) with blocked (versus random) testing. The benefit of blocked testing for absolute accuracy of global predictions was smaller for older than younger adults. However, individual differences in correlations of strategy effectiveness ratings and postdictions showed similar upgrades for both age groups. Older adults learn about imagery's superior effectiveness but do not accurately estimate the magnitude of its benefit, even after blocked testing.

  2. Towards adaptation in e-learning 2.0

    NASA Astrophysics Data System (ADS)

    Cristea, Alexandra I.; Ghali, Fawaz

    2011-04-01

    This paper presents several essential steps from an overall study on shaping new ways of learning and teaching, by using the synergetic merger of three different fields: Web 2.0, e-learning and adaptation (in particular, personalisation to the learner). These novel teaching and learning ways-the latter focus of this paper-are reflected in and finally adding to various versions of the My Online Teacher 2.0 adaptive system. In particular, this paper focuses on a study of how to more effectively use and combine the recommendation of peers and content adaptation to enhance the learning outcome in e-learning systems based on Web 2.0. In order to better isolate and examine the effects of peer recommendation and adaptive content presentation, we designed experiments inspecting collaboration between individuals based on recommendation of peers who have greater knowledge, and compare this to adaptive content recommendation, as well as to "simple" learning in a system with a minimum of Web 2.0 support. Overall, the results of adding peer recommendation and adaptive content presentation were encouraging, and are further discussed in detail in this paper.

  3. Path integration of head direction: updating a packet of neural activity at the correct speed using neuronal time constants.

    PubMed

    Walters, D M; Stringer, S M

    2010-07-01

    A key question in understanding the neural basis of path integration is how individual, spatially responsive, neurons may self-organize into networks that can, through learning, integrate velocity signals to update a continuous representation of location within an environment. It is of vital importance that this internal representation of position is updated at the correct speed, and in real time, to accurately reflect the motion of the animal. In this article, we present a biologically plausible model of velocity path integration of head direction that can solve this problem using neuronal time constants to effect natural time delays, over which associations can be learned through associative Hebbian learning rules. The model comprises a linked continuous attractor network and competitive network. In simulation, we show that the same model is able to learn two different speeds of rotation when implemented with two different values for the time constant, and without the need to alter any other model parameters. The proposed model could be extended to path integration of place in the environment, and path integration of spatial view.

  4. Real-time probabilistic covariance tracking with efficient model update.

    PubMed

    Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li

    2012-05-01

    The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.

  5. Explicit instructions and consolidation promote rewiring of automatic behaviors in the human mind.

    PubMed

    Szegedi-Hallgató, Emese; Janacsek, Karolina; Vékony, Teodóra; Tasi, Lia Andrea; Kerepes, Leila; Hompoth, Emőke Adrienn; Bálint, Anna; Németh, Dezső

    2017-06-29

    One major challenge in human behavior and brain sciences is to understand how we can rewire already existing perceptual, motor, cognitive, and social skills or habits. Here we aimed to characterize one aspect of rewiring, namely, how we can update our knowledge of sequential/statistical regularities when they change. The dynamics of rewiring was explored from learning to consolidation using a unique experimental design which is suitable to capture the effect of implicit and explicit processing and the proactive and retroactive interference. Our results indicate that humans can rewire their knowledge of such regularities incidentally, and consolidation has a critical role in this process. Moreover, old and new knowledge can coexist, leading to effective adaptivity of the human mind in the changing environment, although the execution of the recently acquired knowledge may be more fluent than the execution of the previously learned one. These findings can contribute to a better understanding of the cognitive processes underlying behavior change, and can provide insights into how we can boost behavior change in various contexts, such as sports, educational settings or psychotherapy.

  6. Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus.

    PubMed

    Voss, Joel L; Warren, David E; Gonsalves, Brian D; Federmeier, Kara D; Tranel, Dan; Cohen, Neal J

    2011-08-02

    Effective exploratory behaviors involve continuous updating of sensory sampling to optimize the efficacy of information gathering. Despite some work on this issue in animals, little information exists regarding the cognitive or neural mechanisms for this sort of behavioral optimization in humans. Here we examined a visual exploration phenomenon that occurred when human subjects studying an array of objects spontaneously looked "backward" in their scanning paths to view recently seen objects again. This "spontaneous revisitation" of recently viewed objects was associated with enhanced hippocampal activity and superior subsequent memory performance in healthy participants, but occurred only rarely in amnesic patients with severe damage to the hippocampus. These findings demonstrate the necessity of the hippocampus not just in the aspects of long-term memory with which it has been associated previously, but also in the short-term adaptive control of behavior. Functional neuroimaging showed hippocampal engagement occurring in conjunction with frontocerebellar circuits, thereby revealing some of the larger brain circuitry essential for the strategic deployment of information-seeking behaviors that optimize learning.

  7. Online Solution of Two-Player Zero-Sum Games for Continuous-Time Nonlinear Systems With Completely Unknown Dynamics.

    PubMed

    Fu, Yue; Chai, Tianyou

    2016-12-01

    Regarding two-player zero-sum games of continuous-time nonlinear systems with completely unknown dynamics, this paper presents an online adaptive algorithm for learning the Nash equilibrium solution, i.e., the optimal policy pair. First, for known systems, the simultaneous policy updating algorithm (SPUA) is reviewed. A new analytical method to prove the convergence is presented. Then, based on the SPUA, without using a priori knowledge of any system dynamics, an online algorithm is proposed to simultaneously learn in real time either the minimal nonnegative solution of the Hamilton-Jacobi-Isaacs (HJI) equation or the generalized algebraic Riccati equation for linear systems as a special case, along with the optimal policy pair. The approximate solution to the HJI equation and the admissible policy pair is reexpressed by the approximation theorem. The unknown constants or weights of each are identified simultaneously by resorting to the recursive least square method. The convergence of the online algorithm to the optimal solutions is provided. A practical online algorithm is also developed. Simulation results illustrate the effectiveness of the proposed method.

  8. An Update on Transformative Learning.

    ERIC Educational Resources Information Center

    Baumgartner, Lisa M.

    2001-01-01

    Transformative learning can be conceptualized in emancipatory, cognitive-rational, developmental, and spiritual approaches. Current research is examining transformative learning in groups and organizations, ways to foster it in learners, and ethical considerations for adult educators. (Contains 41 references.) (SK)

  9. A Development of Learning Widget on M-Learning and E-Learning Environments

    ERIC Educational Resources Information Center

    Kim, SooHwan; Kim, HyeonCheol; Han, SeonKwan

    2013-01-01

    This article describes the development of learning widget on m-learning and e-learning environments. A widget is a small, simple and useful application supporting user-oriented contents. The user may select and install widgets that are convenient as well as an auto-updating application including weather or calendar. These widgets are especially…

  10. Neuroprosthetic Decoder Training as Imitation Learning

    PubMed Central

    Merel, Josh; Paninski, Liam; Cunningham, John P.

    2016-01-01

    Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user’s intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user’s intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector. PMID:27191387

  11. Learner-Adaptive Educational Technology for Simulation in Healthcare: Foundations and Opportunities.

    PubMed

    Lineberry, Matthew; Dev, Parvati; Lane, H Chad; Talbot, Thomas B

    2018-06-01

    Despite evidence that learners vary greatly in their learning needs, practical constraints tend to favor ''one-size-fits-all'' educational approaches, in simulation-based education as elsewhere. Adaptive educational technologies - devices and/or software applications that capture and analyze relevant data about learners to select and present individually tailored learning stimuli - are a promising aid in learners' and educators' efforts to provide learning experiences that meet individual needs. In this article, we summarize and build upon the 2017 Society for Simulation in Healthcare Research Summit panel discussion on adaptive learning. First, we consider the role of adaptivity in learning broadly. We then outline the basic functions that adaptive learning technologies must implement and the unique affordances and challenges of technology-based approaches for those functions, sharing an illustrative example from healthcare simulation. Finally, we consider future directions for accelerating research, development, and deployment of effective adaptive educational technology and techniques in healthcare simulation.

  12. Scale-adaptive compressive tracking with feature integration

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Jicheng; Chen, Xiao; Li, Shuxin

    2016-05-01

    Numerous tracking-by-detection methods have been proposed for robust visual tracking, among which compressive tracking (CT) has obtained some promising results. A scale-adaptive CT method based on multifeature integration is presented to improve the robustness and accuracy of CT. We introduce a keypoint-based model to achieve the accurate scale estimation, which can additionally give a prior location of the target. Furthermore, by the high efficiency of data-independent random projection matrix, multiple features are integrated into an effective appearance model to construct the naïve Bayes classifier. At last, an adaptive update scheme is proposed to update the classifier conservatively. Experiments on various challenging sequences demonstrate substantial improvements by our proposed tracker over CT and other state-of-the-art trackers in terms of dealing with scale variation, abrupt motion, deformation, and illumination changes.

  13. Adaptive particle filter for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Dai, Jianghua; Yu, Shengsheng; Sun, Weiping; Chen, Xiaoping; Xiang, Jinhai

    2009-10-01

    Object tracking plays a key role in the field of computer vision. Particle filter has been widely used for visual tracking under nonlinear and/or non-Gaussian circumstances. In particle filter, the state transition model for predicting the next location of tracked object assumes the object motion is invariable, which cannot well approximate the varying dynamics of the motion changes. In addition, the state estimate calculated by the mean of all the weighted particles is coarse or inaccurate due to various noise disturbances. Both these two factors may degrade tracking performance greatly. In this work, an adaptive particle filter (APF) with a velocity-updating based transition model (VTM) and an adaptive state estimate approach (ASEA) is proposed to improve object tracking. In APF, the motion velocity embedded into the state transition model is updated continuously by a recursive equation, and the state estimate is obtained adaptively according to the state posterior distribution. The experiment results show that the APF can increase the tracking accuracy and efficiency in complex environments.

  14. State of Learning in Canada: A Year in Review, 2009-2010. Executive Summary

    ERIC Educational Resources Information Center

    Canadian Council on Learning, 2010

    2010-01-01

    The 2009-2010 "State of Learning in Canada" provides the most current information on the Canadian learning landscape, contributing to a comprehensive understanding of how Canadians are faring as lifelong learners. As in previous "State of Learning" reports, this update reflects CCL's vision of learning as a lifelong process.…

  15. Becoming an Educable Lifelong Learning Subject: Adult Graduates' Transitions in Education and Working Life

    ERIC Educational Resources Information Center

    Siivonen, Päivi

    2016-01-01

    Continuous learning and updating one's competences and abilities have become requirements for staying "up-to-date" and "at the top of one's game". Lifelong learning policy has been persuasive in its emphasis on equal learning opportunities for all: everyone has endless possibilities and capabilities to learn according to…

  16. Adaptable Iterative and Recursive Kalman Filter Schemes

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  17. Moving vehicles segmentation based on Gaussian motion model

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Fang, Xiang Z.; Lin, Wei Y.

    2005-07-01

    Moving objects segmentation is a challenge in computer vision. This paper focuses on the segmentation of moving vehicles in dynamic scene. We analyses the psychology of human vision and present a framework for segmenting moving vehicles in the highway. The proposed framework consists of two parts. Firstly, we propose an adaptive background update method in which the background is updated according to the change of illumination conditions and thus can adapt to the change of illumination sensitively. Secondly, we construct a Gaussian motion model to segment moving vehicles, in which the motion vectors of the moving pixels are modeled as a Gaussian model and an on-line EM algorithm is used to update the model. The Gaussian distribution of the adaptive model is elevated to determine which moving vectors result from moving vehicles and which from other moving objects such as waving trees. Finally, the pixels with motion vector result from the moving vehicles are segmented. Experimental results of several typical scenes show that the proposed model can detect the moving vehicles correctly and is immune from influence of the moving objects caused by the waving trees and the vibration of camera.

  18. The Influence of Student Characteristics on the Use of Adaptive E-Learning Material

    ERIC Educational Resources Information Center

    van Seters, J. R.; Ossevoort, M. A.; Tramper, J.; Goedhart, M. J.

    2012-01-01

    Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive e-learning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting…

  19. How Language Supports Adaptive Teaching through a Responsive Learning Culture

    ERIC Educational Resources Information Center

    Johnston, Peter; Dozier, Cheryl; Smit, Julie

    2016-01-01

    For students to learn optimally, teachers must design classrooms that are responsive to the full range of student development. The teacher must be adaptive, but so must each student and the learning culture itself. In other words, adaptive teaching means constructing a responsive learning culture that accommodates and even capitalizes on diversity…

  20. Performance & Emotion--A Study on Adaptive E-Learning Based on Visual/Verbal Learning Styles

    ERIC Educational Resources Information Center

    Beckmann, Jennifer; Bertel, Sven; Zander, Steffi

    2015-01-01

    Adaptive e-Learning systems are able to adjust to a user's learning needs, usually by user modeling or tracking progress. Such learner-adaptive behavior has rapidly become a hot topic for e-Learning, furthered in part by the recent rapid increase in the use of MOOCs (Massive Open Online Courses). A lack of general, individual, and situational data…

  1. Evolutionary perspectives on learning: conceptual and methodological issues in the study of adaptive specializations.

    PubMed

    Krause, Mark A

    2015-07-01

    Inquiry into evolutionary adaptations has flourished since the modern synthesis of evolutionary biology. Comparative methods, genetic techniques, and various experimental and modeling approaches are used to test adaptive hypotheses. In psychology, the concept of adaptation is broadly applied and is central to comparative psychology and cognition. The concept of an adaptive specialization of learning is a proposed account for exceptions to general learning processes, as seen in studies of Pavlovian conditioning of taste aversions, sexual responses, and fear. The evidence generally consists of selective associations forming between biologically relevant conditioned and unconditioned stimuli, with conditioned responses differing in magnitude, persistence, or other measures relative to non-biologically relevant stimuli. Selective associations for biologically relevant stimuli may suggest adaptive specializations of learning, but do not necessarily confirm adaptive hypotheses as conceived of in evolutionary biology. Exceptions to general learning processes do not necessarily default to an adaptive specialization explanation, even if experimental results "make biological sense". This paper examines the degree to which hypotheses of adaptive specializations of learning in sexual and fear response systems have been tested using methodologies developed in evolutionary biology (e.g., comparative methods, quantitative and molecular genetics, survival experiments). A broader aim is to offer perspectives from evolutionary biology for testing adaptive hypotheses in psychological science.

  2. Individual differences in learning predict the return of fear.

    PubMed

    Gershman, Samuel J; Hartley, Catherine A

    2015-09-01

    Using a laboratory analogue of learned fear (Pavlovian fear conditioning), we show that there is substantial heterogeneity across individuals in spontaneous recovery of fear following extinction training. We propose that this heterogeneity might stem from qualitative individual differences in the nature of extinction learning. Whereas some individuals tend to form a new memory during extinction, leaving their fear memory intact, others update the original threat association with new safety information, effectively unlearning the fear memory. We formalize this account in a computational model of fear learning and show that individuals who, according to the model, are more likely to form new extinction memories tend to show greater spontaneous recovery compared to individuals who appear to only update a single memory. This qualitative variation in fear and extinction learning may have important implications for understanding vulnerability and resilience to fear-related psychiatric disorders.

  3. Updating the Vision for Marine Education.

    ERIC Educational Resources Information Center

    Klemm, E. Barbara

    1988-01-01

    Discusses the need to update the content, philosophical stance, and pedagogy of marine education to reflect recent advances in these areas. Cites some developments in oceanography and ocean engineering. Proposes ways teachers can learn about and utilize this knowledge. (RT)

  4. Adaptive management for improving species conservation across the captive-wild spectrum

    USGS Publications Warehouse

    Canessa, Stefano; Guillera-Arroita, Gurutzeta; Lahoz-Monfort, José J.; Southwell, Darren M; Armstrong, Doug P.; Chadès, Iadine; Lacy, Robert C; Converse, Sarah J.

    2016-01-01

    Conservation of endangered species increasingly envisages complex strategies that integrate captive and wild management actions. Management decisions in this context must be made in the face of uncertainty, often with limited capacity to collect information. Adaptive management (AM) combines management and monitoring, with the aim of updating knowledge and improving decision-making over time. We provide a guide for managers who may realize the potential of AM, but are unsure where to start. The urgent need for iterative management decisions, the existence of uncertainty, and the opportunity for learning offered by often highly-controlled captive environments create favorable conditions for AM. However, experiments and monitoring may be complicated by small sample sizes, and the ability to control the system, including stochasticity and observability, may be limited toward the wild end of the spectrum. We illustrate the key steps to implementing AM in threatened species management using four case studies, including the management of captive programs for cheetah (Acinonyx jubatus) and whooping cranes (Grus americana), of a translocation protocol for Arizona cliffroses Purshia subintegra and of ongoing supplementary feeding of reintroduced hihi (Notiomystis cincta) populations. For each case study, we explain (1) how to clarify whether the decision can be improved by learning (i.e. it is iterative and complicated by uncertainty) and what the management objectives are; (2) how to articulate uncertainty via alternative, testable hypotheses such as competing models or parameter distributions; (3) how to formally define how additional information can be collected and incorporated in future management decisions.

  5. Cooperative Learning Groups and the Evolution of Human Adaptability : (Another Reason) Why Hermits Are Rare in Tonga and Elsewhere.

    PubMed

    Bell, Adrian Viliami; Hernandez, Daniel

    2017-03-01

    Understanding the prevalence of adaptive culture in part requires understanding the dynamics of learning. Here we explore the adaptive value of social learning in groups and how formal social groups function as effective mediums of information exchange. We discuss the education literature on Cooperative Learning Groups (CLGs), which outlines the potential of group learning for enhancing learning outcomes. Four qualities appear essential for CLGs to enhance learning: (1) extended conversations, (2) regular interactions, (3) gathering of experts, and (4) incentives for sharing knowledge. We analyze these four qualities within the context of a small-scale agricultural society using data we collected in 2010 and 2012. Through an analysis of surveys, interviews, and observations in the Tongan islands, we describe the role CLGs likely plays in facilitating individuals' learning of adaptive information. Our analysis of group affiliation, membership, and topics of conversation suggest that the first three CLG qualities reflect conditions for adaptive learning in groups. We utilize ethnographic anecdotes to suggest the fourth quality is also conducive to adaptive group learning. Using an evolutionary model, we further explore the scope for CLGs outside the Tongan socioecological context. Model analysis shows that environmental volatility and migration rates among human groups mediate the scope for CLGs. We call for wider attention to how group structure facilitates learning in informal settings, which may be key to assessing the contribution of groups to the evolution of complex, adaptive culture.

  6. Does Visuomotor Adaptation Proceed in Stages? An Examination of the Learning Model by Chein and Schneider (2012).

    PubMed

    Simon, Anja; Bock, Otmar

    2015-01-01

    A new 3-stage model based on neuroimaging evidence is proposed by Chein and Schneider (2012). Each stage is associated with different brain regions, and draws on cognitive abilities: the first stage on creativity, the second on selective attention, and the third on automatic processing. The purpose of the present study was to scrutinize the validity of this model for 1 popular learning paradigm, visuomotor adaptation. Participants completed tests for creativity, selective attention and automated processing before attending in a pointing task with adaptation to a 60° rotation of visual feedback. To examine the relationship between cognitive abilities and motor learning at different times of practice, associations between cognitive and adaptation scores were calculated repeatedly throughout adaptation. The authors found no benefit of high creativity for adaptive performance. High levels of selective attention were positively associated with early adaptation, but hardly with late adaptation and de-adaptation. High levels of automated execution were beneficial for late adaptation, but hardly for early and de-adaptation. From this we conclude that Chein and Schneider's first learning stage is difficult to confirm by research on visuomotor adaptation, and that the other 2 learning stages rather relate to workaround strategies than to actual adaptive recalibration.

  7. A Continuous Square Root in Formation Filter-Swoother with Discrete Data Update

    NASA Technical Reports Server (NTRS)

    Miller, J. K.

    1994-01-01

    A differential equation for the square root information matrix is derived and adapted to the problems of filtering and smoothing. The resulting continuous square root information filter (SRIF) performs the mapping of state and process noise by numerical integration of the SRIF matrix and admits data via a discrete least square update.

  8. Signaling Task Awareness in Think-Aloud Protocols from Students Selecting Relevant Information from Text

    ERIC Educational Resources Information Center

    Schellings, Gonny L. M.; Broekkamp, Hein

    2011-01-01

    Self-regulated learning has been described as an adaptive process: students adapt their learning strategies for attaining different learning goals. In order to be adaptive, students must have a clear notion of what the task requirements consist of. Both trace data and questionnaire data indicate that students adapt study strategies in limited ways…

  9. Towards Motivation-Based Adaptation of Difficulty in E-Learning Programs

    ERIC Educational Resources Information Center

    Endler, Anke; Rey, Gunter Daniel; Butz, Martin V.

    2012-01-01

    The objective of this study was to investigate if an e-learning environment may use measurements of the user's current motivation to adapt the level of task difficulty for more effective learning. In the reported study, motivation-based adaptation was applied randomly to collect a wide range of data for different adaptations in a variety of…

  10. Adaptable Learning Pathway Generation with Ant Colony Optimization

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2009-01-01

    One of the new major directions in research on web-based educational systems is the notion of adaptability: the educational system adapts itself to the learning profile, preferences and ability of the student. In this paper, we look into the issues of providing adaptability with respect to learning pathways. We explore the state of the art with…

  11. Network mechanisms of intentional learning

    PubMed Central

    Hampshire, Adam; Hellyer, Peter J.; Parkin, Beth; Hiebert, Nole; MacDonald, Penny; Owen, Adrian M.; Leech, Robert; Rowe, James

    2016-01-01

    The ability to learn new tasks rapidly is a prominent characteristic of human behaviour. This ability relies on flexible cognitive systems that adapt in order to encode temporary programs for processing non-automated tasks. Previous functional imaging studies have revealed distinct roles for the lateral frontal cortices (LFCs) and the ventral striatum in intentional learning processes. However, the human LFCs are complex; they house multiple distinct sub-regions, each of which co-activates with a different functional network. It remains unclear how these LFC networks differ in their functions and how they coordinate with each other, and the ventral striatum, to support intentional learning. Here, we apply a suite of fMRI connectivity methods to determine how LFC networks activate and interact at different stages of two novel tasks, in which arbitrary stimulus-response rules are learnt either from explicit instruction or by trial-and-error. We report that the networks activate en masse and in synchrony when novel rules are being learnt from instruction. However, these networks are not homogeneous in their functions; instead, the directed connectivities between them vary asymmetrically across the learning timecourse and they disengage from the task sequentially along a rostro-caudal axis. Furthermore, when negative feedback indicates the need to switch to alternative stimulus–response rules, there is additional input to the LFC networks from the ventral striatum. These results support the hypotheses that LFC networks interact as a hierarchical system during intentional learning and that signals from the ventral striatum have a driving influence on this system when the internal program for processing the task is updated. PMID:26658925

  12. Adaptation of clinical prediction models for application in local settings.

    PubMed

    Kappen, Teus H; Vergouwe, Yvonne; van Klei, Wilton A; van Wolfswinkel, Leo; Kalkman, Cor J; Moons, Karel G M

    2012-01-01

    When planning to use a validated prediction model in new patients, adequate performance is not guaranteed. For example, changes in clinical practice over time or a different case mix than the original validation population may result in inaccurate risk predictions. To demonstrate how clinical information can direct updating a prediction model and development of a strategy for handling missing predictor values in clinical practice. A previously derived and validated prediction model for postoperative nausea and vomiting was updated using a data set of 1847 patients. The update consisted of 1) changing the definition of an existing predictor, 2) reestimating the regression coefficient of a predictor, and 3) adding a new predictor to the model. The updated model was then validated in a new series of 3822 patients. Furthermore, several imputation models were considered to handle real-time missing values, so that possible missing predictor values could be anticipated during actual model use. Differences in clinical practice between our local population and the original derivation population guided the update strategy of the prediction model. The predictive accuracy of the updated model was better (c statistic, 0.68; calibration slope, 1.0) than the original model (c statistic, 0.62; calibration slope, 0.57). Inclusion of logistical variables in the imputation models, besides observed patient characteristics, contributed to a strategy to deal with missing predictor values at the time of risk calculation. Extensive knowledge of local, clinical processes provides crucial information to guide the process of adapting a prediction model to new clinical practices.

  13. Testing the disgust conditioning theory of food-avoidance in adolescents with recent onset anorexia nervosa.

    PubMed

    Hildebrandt, Tom; Grotzinger, Andrew; Reddan, Marianne; Greif, Rebecca; Levy, Ifat; Goodman, Wayne; Schiller, Daniela

    2015-08-01

    Anorexia nervosa is characterized by chronic food avoidance that is resistant to change. Disgust conditioning offers one potential unexplored mechanism for explaining this behavioral disturbance because of its specific role in facilitating food avoidance in adaptive situations. A food based reversal learning paradigm was used to study response flexibility in 14 adolescent females with restricting subtype anorexia nervosa (AN-R) and 15 healthy control (HC) participants. Expectancy ratings were coded as a behavioral measure of flexibility and electromyography recordings from the levator labii (disgust), zygomaticus major (pleasure), and corrugator (general negative affect) provided psychophysiological measures of emotion. Response inflexibility was higher for participants with AN-R, as evidenced by lower extinction and updated expectancy ratings during reversal. EMG responses to food stimuli were predictive of both extinction and new learning. Among AN-R patients, disgust specific responses to food were associated with impaired extinction, as were elevated pleasure responses to the cued absence of food. Disgust conditioning appears to influence food learning in acutely ill patients with AN-R and may be maintained by counter-regulatory acquisition of a pleasure response to food avoidance and an aversive response to food presence. Developing strategies to target disgust may improve existing interventions for patients with AN. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. TH-E-201-00: Teaching Radiology Residents: What, How, and Expectation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  15. Distance Learning in Higher Education. CHEA Update Number 3.

    ERIC Educational Resources Information Center

    Council for Higher Education Accreditation, Washington, DC.

    This report discusses issues related to distance learning in higher education. Section 1, "The Expanding Universe of Distance Learning," examines: data from a new national survey on higher education distance learning; Internet access in elementary and secondary schools; the 1999 national survey of information technology in higher…

  16. Collaborative Language Learning for Professional Adults

    ERIC Educational Resources Information Center

    Mesh, Linda Joy

    2010-01-01

    Institutions of higher education realise the importance of the role of learning organisations in terms of providing personnel training and updating. Yet further consideration should be given to flexible and accessible means for meeting the growing request for continuous learning. Jason Hughes describes an organization's capability to "learn how to…

  17. [Families Involved in Learning.

    ERIC Educational Resources Information Center

    Ashby, Nicole, Ed.

    2001-01-01

    This issue of "Community Update" focuses on families involved in learning. The first article briefly discusses the "Ready to Read, Ready to Learn" White House summit that highlighted new research on early childhood learning. The center spread of this issue offers "Priming the Primary Educator: A Look at L. A. County's Parent Involvement Programs"…

  18. One Decade Later: KF Canadian Adaptation Scheme.

    ERIC Educational Resources Information Center

    Rashid, H.

    1984-01-01

    Provides background and rationale for formulation and use of the KF Canadian Adaptation Scheme in Canadian law libraries and describes methodological approaches and applications of the scheme to diverse and specific situations. Recent developments in its maintenance and updating and suggestions for its potential use are highlighted. (EJS)

  19. Face Adaptation and Attractiveness Aftereffects in 8-Year-Olds and Adults

    ERIC Educational Resources Information Center

    Anzures, Gizelle; Mondloch, Catherine J.; Lackner, Christine

    2009-01-01

    A novel method was used to investigate developmental changes in face processing: attractiveness aftereffects. Consistent with the norm-based coding model, viewing consistently distorted faces shifts adults' attractiveness preferences toward the adapting stimuli. Thus, adults' attractiveness judgments are influenced by a continuously updated face…

  20. Authoring Adaptive 3D Virtual Learning Environments

    ERIC Educational Resources Information Center

    Ewais, Ahmed; De Troyer, Olga

    2014-01-01

    The use of 3D and Virtual Reality is gaining interest in the context of academic discussions on E-learning technologies. However, the use of 3D for learning environments also has drawbacks. One way to overcome these drawbacks is by having an adaptive learning environment, i.e., an environment that dynamically adapts to the learner and the…

  1. Learning, Realizability and Games in Classical Arithmetic

    NASA Astrophysics Data System (ADS)

    Aschieri, Federico

    2010-12-01

    In this dissertation we provide mathematical evidence that the concept of learning can be used to give a new and intuitive computational semantics of classical proofs in various fragments of Predicative Arithmetic. First, we extend Kreisel modified realizability to a classical fragment of first order Arithmetic, Heyting Arithmetic plus EM1 (Excluded middle axiom restricted to Sigma^0_1 formulas). We introduce a new realizability semantics we call "Interactive Learning-Based Realizability". Our realizers are self-correcting programs, which learn from their errors and evolve through time. Secondly, we extend the class of learning based realizers to a classical version PCFclass of PCF and, then, compare the resulting notion of realizability with Coquand game semantics and prove a full soundness and completeness result. In particular, we show there is a one-to-one correspondence between realizers and recursive winning strategies in the 1-Backtracking version of Tarski games. Third, we provide a complete and fully detailed constructive analysis of learning as it arises in learning based realizability for HA+EM1, Avigad's update procedures and epsilon substitution method for Peano Arithmetic PA. We present new constructive techniques to bound the length of learning processes and we apply them to reprove - by means of our theory - the classic result of Godel that provably total functions of PA can be represented in Godel's system T. Last, we give an axiomatization of the kind of learning that is needed to computationally interpret Predicative classical second order Arithmetic. Our work is an extension of Avigad's and generalizes the concept of update procedure to the transfinite case. Transfinite update procedures have to learn values of transfinite sequences of non computable functions in order to extract witnesses from classical proofs.

  2. Optimization of internet content filtering-Combined with KNN and OCAT algorithms

    NASA Astrophysics Data System (ADS)

    Guo, Tianze; Wu, Lingjing; Liu, Jiaming

    2018-04-01

    The face of the status quo that rampant illegal content in the Internet, the result of traditional way to filter information, keyword recognition and manual screening, is getting worse. Based on this, this paper uses OCAT algorithm nested by KNN classification algorithm to construct a corpus training library that can dynamically learn and update, which can be improved on the filter corpus for constantly updated illegal content of the network, including text and pictures, and thus can better filter and investigate illegal content and its source. After that, the research direction will focus on the simplified updating of recognition and comparison algorithms and the optimization of the corpus learning ability in order to improve the efficiency of filtering, save time and resources.

  3. Brief Report: Adaptive Behavior and Cognitive Skills for Toddlers on the Autism Spectrum

    ERIC Educational Resources Information Center

    Ray-Subramanian, Corey E.; Huai, Nan; Weismer, Susan Ellis

    2011-01-01

    This study examined adaptive behavior and cognitive skills for 125 toddlers on the autism spectrum using the recently updated Vineland-II and Bayley-III. Delays in adaptive skills were apparent at 2 years of age. As a group, toddlers on the autism spectrum had a profile of Vineland-II standard scores in which Motor Skills greater than Daily Living…

  4. Does Artificial Tutoring Foster Inquiry Based Learning?

    ERIC Educational Resources Information Center

    Schmoelz, Alexander; Swertz, Christian; Forstner, Alexandra; Barberi, Alessandro

    2014-01-01

    This contribution looks at the Intelligent Tutoring Interface for Technology Enhanced Learning, which integrates multistage-learning and inquiry-based learning in an adaptive e-learning system. Based on a common pedagogical ontology, adaptive e-learning systems can be enabled to recommend learning objects and activities, which follow inquiry-based…

  5. Single-Trial Event-Related Potential Correlates of Belief Updating

    PubMed Central

    Murawski, Carsten; Bode, Stefan

    2015-01-01

    Abstract Belief updating—the process by which an agent alters an internal model of its environment—is a core function of the CNS. Recent theory has proposed broad principles by which belief updating might operate, but more precise details of its implementation in the human brain remain unclear. In order to address this question, we studied how two components of the human event-related potential encoded different aspects of belief updating. Participants completed a novel perceptual learning task while electroencephalography was recorded. Participants learned the mapping between the contrast of a dynamic visual stimulus and a monetary reward and updated their beliefs about a target contrast on each trial. A Bayesian computational model was formulated to estimate belief states at each trial and was used to quantify the following two variables: belief update size and belief uncertainty. Robust single-trial regression was used to assess how these model-derived variables were related to the amplitudes of the P3 and the stimulus-preceding negativity (SPN), respectively. Results showed a positive relationship between belief update size and P3 amplitude at one fronto-central electrode, and a negative relationship between SPN amplitude and belief uncertainty at a left central and a right parietal electrode. These results provide evidence that belief update size and belief uncertainty have distinct neural signatures that can be tracked in single trials in specific ERP components. This, in turn, provides evidence that the cognitive mechanisms underlying belief updating in humans can be described well within a Bayesian framework. PMID:26473170

  6. Evolving learning rules and emergence of cooperation in spatial prisoner's dilemma.

    PubMed

    Moyano, Luis G; Sánchez, Angel

    2009-07-07

    In the evolutionary Prisoner's dilemma (PD) game, agents play with each other and update their strategies in every generation according to some microscopic dynamical rule. In its spatial version, agents do not play with every other but, instead, interact only with their neighbours, thus mimicking the existing of a social or contact network that defines who interacts with whom. In this work, we explore evolutionary, spatial PD systems consisting of two types of agents, each with a certain update (reproduction, learning) rule. We investigate two different scenarios: in the first case, update rules remain fixed for the entire evolution of the system; in the second case, agents update both strategy and update rule in every generation. We show that in a well-mixed population the evolutionary outcome is always full defection. We subsequently focus on two-strategy competition with nearest-neighbour interactions on the contact network and synchronised update of strategies. Our results show that, for an important range of the parameters of the game, the final state of the system is largely different from that arising from the usual setup of a single, fixed dynamical rule. Furthermore, the results are also very different if update rules are fixed or evolve with the strategies. In these respect, we have studied representative update rules, finding that some of them may become extinct while others prevail. We describe the new and rich variety of final outcomes that arise from this co-evolutionary dynamics. We include examples of other neighbourhoods and asynchronous updating that confirm the robustness of our conclusions. Our results pave the way to an evolutionary rationale for modelling social interactions through game theory with a preferred set of update rules.

  7. Rapid e-Learning Tools Selection Process for Cognitive and Psychomotor Learning Objectives

    ERIC Educational Resources Information Center

    Ku, David Tawei; Huang, Yung-Hsin

    2012-01-01

    This study developed a decision making process for the selection of rapid e-learning tools that could match different learning domains. With the development of the Internet, the speed of information updates has become faster than ever. E-learning has rapidly become the mainstream for corporate training and academic instruction. In order to reduce…

  8. Learning in Adulthood: A Comprehensive Guide, 3rd Edition

    ERIC Educational Resources Information Center

    Merriam, Sharan B.; Caffarella, Rosemary S.; Baumgartner, Lisa M.

    2006-01-01

    In this updated landmark book, the authors have gathered the seminal work and most current thinking on adult learning into one volume. This book addresses a wide range of topics including: Who are adult learners? How do adults learn? Why are adults involved in learning activities? How does the social context shape the learning that adults are…

  9. Does swarming cause honey bees to update their solar ephemerides?

    PubMed

    Towne, William F; Baer, Christopher M; Fabiny, Sarah J; Shinn, Lisa M

    2005-11-01

    Spatial orientation in the social insects offers several examples of specialized learning mechanisms that underlie complex learning tasks. Here we study one of these systems: the processes by which honey bees update, or fail to update, their memories of the sun's daily pattern of movement (the solar ephemeris function) in relation to the landscape. Specifically, we ask whether bees that have initially learned the solar ephemeris function relative to a conspicuous treeline at their natal site can later realign the ephemeris to a differently oriented treeline. We first confirm and clarify an earlier finding that bees transplanted passively (by being carried) do not re-learn the solar ephemeris in relation to the new treeline. When they cannot detect the sun directly, as on overcast days, these transplanted bees use a solar ephemeris function appropriate for their natal site, despite days or weeks of experience at the new site. We then ask whether bees put through a swarming process as they are transplanted are induced to re-learn the solar ephemeris function at the new site, as swarming is a natural process wherein bees transplant themselves. Most of the swarmed bees failed to re-learn, even though they did extensive learning flights (in comparison with those of non-swarmed controls) as they first emerged from the hive at the new site. We hypothesize that the bees' representation of the solar ephemeris function is stored in an encapsulated cognitive module in which the ephemeris is inextricably linked to the reference landscape in which it was learned.

  10. A visual tracking method based on improved online multiple instance learning

    NASA Astrophysics Data System (ADS)

    He, Xianhui; Wei, Yuxing

    2016-09-01

    Visual tracking is an active research topic in the field of computer vision and has been well studied in the last decades. The method based on multiple instance learning (MIL) was recently introduced into the tracking task, which can solve the problem that template drift well. However, MIL method has relatively poor performance in running efficiency and accuracy, due to its strong classifiers updating strategy is complicated, and the speed of the classifiers update is not always same with the change of the targets' appearance. In this paper, we present a novel online effective MIL (EMIL) tracker. A new update strategy for strong classifier was proposed to improve the running efficiency of MIL method. In addition, to improve the t racking accuracy and stability of the MIL method, a new dynamic mechanism for learning rate renewal of the classifier and variable search window were proposed. Experimental results show that our method performs good performance under the complex scenes, with strong stability and high efficiency.

  11. Memory-updating abrogates extinction of learned immunosuppression.

    PubMed

    Hadamitzky, Martin; Bösche, Katharina; Wirth, Timo; Buck, Benjamin; Beetz, Oliver; Christians, Uwe; Schniedewind, Björn; Lückemann, Laura; Güntürkün, Onur; Engler, Harald; Schedlowski, Manfred

    2016-02-01

    When memories are recalled, they enter a transient labile phase in which they can be impaired or enhanced followed by a new stabilization process termed reconsolidation. It is unknown, however, whether reconsolidation is restricted to neurocognitive processes such as fear memories or can be extended to peripheral physiological functions as well. Here, we show in a paradigm of behaviorally conditioned taste aversion in rats memory-updating in learned immunosuppression. The administration of sub-therapeutic doses of the immunosuppressant cyclosporin A together with the conditioned stimulus (CS/saccharin) during retrieval blocked extinction of conditioned taste aversion and learned suppression of T cell cytokine (interleukin-2; interferon-γ) production. This conditioned immunosuppression is of clinical relevance since it significantly prolonged the survival time of heterotopically transplanted heart allografts in rats. Collectively, these findings demonstrate that memories can be updated on both neural and behavioral levels as well as on the level of peripheral physiological systems such as immune functioning. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Dynamic Observation of Brain-Like Learning in a Ferroelectric Synapse Device

    NASA Astrophysics Data System (ADS)

    Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito; Fujii, Eiji; Tsujimura, Ayumu

    2013-04-01

    A brain-like learning function was implemented in an electronic synapse device using a ferroelectric-gate field effect transistor (FeFET). The FeFET was a bottom-gate type FET with a ZnO channel and a ferroelectric Pb(Zr,Ti)O3 (PZT) gate insulator. The synaptic weight, which is represented by the channel conductance of the FeFET, is updated by applying a gate voltage through a change in the ferroelectric polarization in the PZT. A learning function based on the symmetric spike-timing dependent synaptic plasticity was implemented in the synapse device using the multilevel weight update by applying a pulse gate voltage. The dynamic weighting and learning behavior in the synapse device was observed as a change in the membrane potential in a spiking neuron circuit.

  13. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  14. Link Climate Effects to Surface Water Quality and Drinking Water Plant Adaptation - A Update on Hydroclimatic Province and WTP-ccam Model

    EPA Science Inventory

    Key points in this presentation are: (1) How and why hydroclimatic province can help precipitation projection for water program engineering and management, (2) Implications of initial research results and planned further monitoring / research activities, (3) Five adaptation t...

  15. 76 FR 584 - Glen Canyon Dam Adaptive Management Program Work Group (AMWG)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... 2010 expenditures, (2) updates on High Flow Experimental Protocol and the Non-native Fish Control... Group (AMWG) AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The... committee, the Adaptive Management Work Group (AMWG), a technical work group (TWG), a Grand Canyon...

  16. Development of Adaptive Kanji Learning System for Mobile Phone

    ERIC Educational Resources Information Center

    Li, Mengmeng; Ogata, Hiroaki; Hou, Bin; Hashimoto, Satoshi; Liu, Yuqin; Uosaki, Noriko; Yano, Yoneo

    2010-01-01

    This paper describes an adaptive learning system based on mobile phone email to support the study of Japanese Kanji. In this study, the main emphasis is on using the adaptive learning to resolve one common problem of the mobile-based email or SMS language learning systems. To achieve this goal, the authors main efforts focus on three aspects:…

  17. An adaptive deep Q-learning strategy for handwritten digit recognition.

    PubMed

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min

    2018-02-22

    Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Motor learning and consolidation: the case of visuomotor rotation.

    PubMed

    Krakauer, John W

    2009-01-01

    Adaptation to visuomotor rotation is a particular form of motor learning distinct from force-field adaptation, sequence learning, and skill learning. Nevertheless, study of adaptation to visuomotor rotation has yielded a number of findings and principles that are likely of general importance to procedural learning and memory. First, rotation learning is implicit and appears to proceed through reduction in a visual prediction error generated by a forward model, such implicit adaptation occurs even when it is in conflict with an explicit task goal. Second, rotation learning is subject to different forms of interference: retrograde, anterograde through aftereffects, and contextual blocking of retrieval. Third, opposite rotations can be recalled within a short time interval without interference if implicit contextual cues (effector change) rather than explicit cues (color change) are used. Fourth, rotation learning consolidates both over time and with increased initial training (saturation learning).

  19. Causal Learning with Local Computations

    ERIC Educational Resources Information Center

    Fernbach, Philip M.; Sloman, Steven A.

    2009-01-01

    The authors proposed and tested a psychological theory of causal structure learning based on local computations. Local computations simplify complex learning problems via cues available on individual trials to update a single causal structure hypothesis. Structural inferences from local computations make minimal demands on memory, require…

  20. Postretrieval new learning does not reliably induce human memory updating via reconsolidation.

    PubMed

    Hardwicke, Tom E; Taqi, Mahdi; Shanks, David R

    2016-05-10

    Reconsolidation theory proposes that retrieval can destabilize an existing memory trace, opening a time-dependent window during which that trace is amenable to modification. Support for the theory is largely drawn from nonhuman animal studies that use invasive pharmacological or electroconvulsive interventions to disrupt a putative postretrieval restabilization ("reconsolidation") process. In human reconsolidation studies, however, it is often claimed that postretrieval new learning can be used as a means of "updating" or "rewriting" existing memory traces. This proposal warrants close scrutiny because the ability to modify information stored in the memory system has profound theoretical, clinical, and ethical implications. The present study aimed to replicate and extend a prominent 3-day motor-sequence learning study [Walker MP, Brakefield T, Hobson JA, Stickgold R (2003) Nature 425(6958):616-620] that is widely cited as a convincing demonstration of human reconsolidation. However, in four direct replication attempts (n = 64), we did not observe the critical impairment effect that has previously been taken to indicate disruption of an existing motor memory trace. In three additional conceptual replications (n = 48), we explored the broader validity of reconsolidation-updating theory by using a declarative recall task and sequences similar to phone numbers or computer passwords. Rather than inducing vulnerability to interference, memory retrieval appeared to aid the preservation of existing sequence knowledge relative to a no-retrieval control group. These findings suggest that memory retrieval followed by new learning does not reliably induce human memory updating via reconsolidation.

  1. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  2. Applying Learning Analytics to Investigate Timed Release in Online Learning

    ERIC Educational Resources Information Center

    Martin, Florence; Whitmer, John C.

    2016-01-01

    Adaptive learning gives learners control of context, pace, and scope of their learning experience. This strategy can be implemented in online learning by using the "Adaptive Release" feature in learning management systems. The purpose of this study was to use learning analytics research methods to explore the extent to which the adaptive…

  3. MEAT: An Authoring Tool for Generating Adaptable Learning Resources

    ERIC Educational Resources Information Center

    Kuo, Yen-Hung; Huang, Yueh-Min

    2009-01-01

    Mobile learning (m-learning) is a new trend in the e-learning field. The learning services in m-learning environments are supported by fundamental functions, especially the content and assessment services, which need an authoring tool to rapidly generate adaptable learning resources. To fulfill the imperious demand, this study proposes an…

  4. Alternating prism exposure causes dual adaptation and generalization to a novel displacement

    NASA Technical Reports Server (NTRS)

    Welch, Robert B.; Bridgeman, Bruce; Anand, Sulekha; Browman, Kaitlin E.

    1993-01-01

    In two experiments, we examined the hypothesis that repeatedly adapting and readapting to two mutually conflicting sensory environments fosters the development of a separate adaptation to each situation (dual adaptation) as well as an increased ability to adapt to a novel displacement (adaptive generalization). In the preliminary study, subjects alternated between adapting their visuomotor coordination to 30-diopter prismatic displacement and readapting to normal vision. Dual adaptation was observed by the end of 10 alternation cycles. However, an unconfounded test of adaptive generalization was prevented by an unexpected prism-adaptive shift in preexposure baselines for the dual-adapted subjects. In the primary experiment, the subjects adapted and readapted to opposite 15-diopter displacements for a total of 12 cycles. Both dual adaptation and adaptive generalization to a 30-diopter displacement were obtained. These findings may be understood in terms of serial reversal learning and 'learning to learn'.

  5. The Future of Adaptive Learning: Does the Crowd Hold the Key?

    ERIC Educational Resources Information Center

    Heffernan, Neil T.; Ostrow, Korinn S.; Kelly, Kim; Selent, Douglas; Van Inwegen, Eric G.; Xiong, Xiaolu; Williams, Joseph Jay

    2016-01-01

    Due to substantial scientific and practical progress, learning technologies can effectively adapt to the characteristics and needs of students. This article considers how learning technologies can adapt over time by crowdsourcing contributions from teachers and students--explanations, feedback, and other pedagogical interactions. Considering the…

  6. Statistical Inference in the Learning of Novel Phonetic Categories

    ERIC Educational Resources Information Center

    Zhao, Yuan

    2010-01-01

    Learning a phonetic category (or any linguistic category) requires integrating different sources of information. A crucial unsolved problem for phonetic learning is how this integration occurs: how can we update our previous knowledge about a phonetic category as we hear new exemplars of the category? One model of learning is Bayesian Inference,…

  7. An Update on the Learning Transfer System

    ERIC Educational Resources Information Center

    Choi, Myungweon; Ruona, Wendy E. A.

    2008-01-01

    Learning transfer in organizations is a central issue in HRD. Much of the research of the 1980-1990's informed the development of the learning transfer system inventory (Holton, Bates, & Ruona, 2000). However, it's vitally important to continually enhance our understanding of the learning transfer system. In this paper, we reviewed the new…

  8. Adding Learning to Knowledge-Based Systems: Taking the "Artificial" Out of AI

    Treesearch

    Daniel L. Schmoldt

    1997-01-01

    Both, knowledge-based systems (KBS) development and maintenance require time-consuming analysis of domain knowledge. Where example cases exist, KBS can be built, and later updated, by incorporating learning capabilities into their architecture. This applies to both supervised and unsupervised learning scenarios. In this paper, the important issues for learning systems-...

  9. Tensor Dictionary Learning for Positive Definite Matrices.

    PubMed

    Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2015-11-01

    Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.

  10. Discrete-Time Deterministic $Q$ -Learning: A Novel Convergence Analysis.

    PubMed

    Wei, Qinglai; Lewis, Frank L; Sun, Qiuye; Yan, Pengfei; Song, Ruizhuo

    2017-05-01

    In this paper, a novel discrete-time deterministic Q -learning algorithm is developed. In each iteration of the developed Q -learning algorithm, the iterative Q function is updated for all the state and control spaces, instead of updating for a single state and a single control in traditional Q -learning algorithm. A new convergence criterion is established to guarantee that the iterative Q function converges to the optimum, where the convergence criterion of the learning rates for traditional Q -learning algorithms is simplified. During the convergence analysis, the upper and lower bounds of the iterative Q function are analyzed to obtain the convergence criterion, instead of analyzing the iterative Q function itself. For convenience of analysis, the convergence properties for undiscounted case of the deterministic Q -learning algorithm are first developed. Then, considering the discounted factor, the convergence criterion for the discounted case is established. Neural networks are used to approximate the iterative Q function and compute the iterative control law, respectively, for facilitating the implementation of the deterministic Q -learning algorithm. Finally, simulation results and comparisons are given to illustrate the performance of the developed algorithm.

  11. Dynamic Learner Profiling and Automatic Learner Classification for Adaptive E-Learning Environment

    ERIC Educational Resources Information Center

    Premlatha, K. R.; Dharani, B.; Geetha, T. V.

    2016-01-01

    E-learning allows learners individually to learn "anywhere, anytime" and offers immediate access to specific information. However, learners have different behaviors, learning styles, attitudes, and aptitudes, which affect their learning process, and therefore learning environments need to adapt according to these differences, so as to…

  12. The Framework of Intervention Engine Based on Learning Analytics

    ERIC Educational Resources Information Center

    Sahin, Muhittin; Yurdugül, Halil

    2017-01-01

    Learning analytics primarily deals with the optimization of learning environments and the ultimate goal of learning analytics is to improve learning and teaching efficiency. Studies on learning analytics seem to have been made in the form of adaptation engine and intervention engine. Adaptation engine studies are quite widespread, but intervention…

  13. Impact of learning adaptability and time management disposition on study engagement among Chinese baccalaureate nursing students.

    PubMed

    Liu, Jing-Ying; Liu, Yan-Hui; Yang, Ji-Peng

    2014-01-01

    The aim of this study was to explore the relationships among study engagement, learning adaptability, and time management disposition in a sample of Chinese baccalaureate nursing students. A convenient sample of 467 baccalaureate nursing students was surveyed in two universities in Tianjin, China. Students completed a questionnaire that included their demographic information, Chinese Utrecht Work Engagement Scale-Student Questionnaire, Learning Adaptability Scale, and Adolescence Time Management Disposition Scale. One-way analysis of variance tests were used to assess the relationship between certain characteristics of baccalaureate nursing students. Pearson correlation was performed to test the correlation among study engagement, learning adaptability, and time management disposition. Hierarchical linear regression analyses were performed to explore the mediating role of time management disposition. The results revealed that study engagement (F = 7.20, P < .01) and learning adaptability (F = 4.41, P < .01) differed across grade groups. Learning adaptability (r = 0.382, P < .01) and time management disposition (r = 0.741, P < .01) were positively related with study engagement. Time management disposition had a partially mediating effect on the relationship between study engagement and learning adaptability. The findings implicate that educators should not only promote interventions to increase engagement of baccalaureate nursing students but also focus on development, investment in adaptability, and time management. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. First Update of the Criteria for Certification of Chest Pain Units in Germany: Facelift or New Model?

    PubMed

    Breuckmann, Frank; Rassaf, Tienush

    2016-03-01

    In an effort to provide a systematic and specific standard-of-care for patients with acute chest pain, the German Cardiac Society introduced criteria for certification of specialized chest pain units (CPUs) in 2008, which have been replaced by a recent update published in 2015. We reviewed the development of CPU establishment in Germany during the past 7 years and compared and commented the current update of the certification criteria. As of October 2015, 228 CPUs in Germany have been successfully certified by the German Cardiac Society; 300 CPUs are needed for full coverage closing gaps in rural regions. Current changes of the criteria mainly affect guideline-adherent adaptions of diagnostic work-ups, therapeutic strategies, risk stratification, in-hospital timing and education, and quality measures, whereas the overall structure remained unchanged. Benchmarking by participation within the German CPU registry is encouraged. Even though the history is short, the concept of certified CPUs in Germany is accepted and successful underlined by its recent implementation in national and international guidelines. First registry data demonstrated a high standard of quality-of-care. The current update provides rational adaptions to new guidelines and developments without raising the level for successful certifications. A periodic release of fast-track updates with shorter time frames and an increase of minimum requirements should be considered.

  15. Fast Deep Tracking via Semi-Online Domain Adaptation

    NASA Astrophysics Data System (ADS)

    Li, Xiaoping; Luo, Wenbing; Zhu, Yi; Li, Hanxi; Wang, Mingwen

    2018-04-01

    Deep tracking has been illustrating overwhelming superiorities over the shallow methods. Unfortunately, it also suffers from low FPS rates. To alleviate the problem, a number of real-time deep trackers have been proposed via removing the online updating procedure on the CNN model. However, the absent of the online update leads to a significant drop on tracking accuracy. In this work, we propose to perform the domain adaptation for visual tracking in two stages for transferring the information from the visual tracking domain and the instance domain respectively. In this way, the proposed visual tracker achieves comparable tracking accuracy to the state-of-the-art trackers and runs at real-time speed on an average consuming GPU.

  16. Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links.

    PubMed

    Sardi, Shira; Vardi, Roni; Goldental, Amir; Sheinin, Anton; Uzan, Herut; Kanter, Ido

    2018-03-23

    Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses. It represents a non-local learning rule, where effectively many incoming links to a node concurrently undergo the same adaptation. The network dynamics is now counterintuitively governed by the weak links, which previously were assumed to be insignificant. This cooperative nonlinear dynamic adaptation presents a self-controlled mechanism to prevent divergence or vanishing of the learning parameters, as opposed to learning by links, and also supports self-oscillations of the effective learning parameters. It hints on a hierarchical computational complexity of nodes, following their number of anisotropic inputs and opens new horizons for advanced deep learning algorithms and artificial intelligence based applications, as well as a new mechanism for enhanced and fast learning by neural networks.

  17. Development of a 30 m Spatial Resolution Land Cover of Canada: Contribution to the Harmonized North America Land Cover Dataset

    NASA Astrophysics Data System (ADS)

    Pouliot, D.; Latifovic, R.; Olthof, I.

    2017-12-01

    Land cover is needed for a large range of environmental applications regarding climate impacts and adaption, emergency response, wildlife habitat, air quality, water yield, etc. In Canada a 2008 user survey revealed that the most practical scale for provision of land cover data is 30 m, nationwide, with an update frequency of five years (Ball, 2008). In response to this need the Canada Centre for Remote Sensing has generated a 30 m land cover of Canada for the base year 2010 as part of a planned series of maps at the recommended five year update frequency. This land cover is the Canadian contribution to the North American Land Change Monitoring System initiative, which seeks to provide harmonized land cover across Canada, the United States, and Mexico. The methodology developed in this research utilized a combination of unsupervised and machine learning techniques to map land cover, blend results between mapping units, locally optimize results, and process some thematic attributes with specific features sets. Accuracy assessment with available field data shows it was on average 75% for the five study areas assessed. In this presentation an overview of the unique processing aspects, example results, and initial accuracy assessment will be discussed.

  18. A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae

    PubMed Central

    Jouary, Adrien; Haudrechy, Mathieu; Candelier, Raphaël; Sumbre, German

    2016-01-01

    Animals continuously rely on sensory feedback to adjust motor commands. In order to study the role of visual feedback in goal-driven navigation, we developed a 2D visual virtual reality system for zebrafish larvae. The visual feedback can be set to be similar to what the animal experiences in natural conditions. Alternatively, modification of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, we first generated a library of free-swimming behaviors from which we learned the relationship between the trajectory of the larva and the shape of its tail. Then, we used this technique to infer the intended displacements of head-fixed larvae, and updated the visual environment accordingly. Under these conditions, larvae were capable of aligning and swimming in the direction of a whole-field moving stimulus and produced the fine changes in orientation and position required to capture virtual prey. We demonstrate the sensitivity of larvae to visual feedback by updating the visual world in real-time or only at the end of the discrete swimming episodes. This visual feedback perturbation caused impaired performance of prey-capture behavior, suggesting that larvae rely on continuous visual feedback during swimming. PMID:27659496

  19. Adaptive filter design using recurrent cerebellar model articulation controller.

    PubMed

    Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S

    2010-07-01

    A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.

  20. Development and Evaluation of an E-Learning Course for Deaf and Hard of Hearing Based on the Advanced Adapted Pedagogical Index Method

    ERIC Educational Resources Information Center

    Debevc, Matjaž; Stjepanovic, Zoran; Holzinger, Andreas

    2014-01-01

    Web-based and adapted e-learning materials provide alternative methods of learning to those used in a traditional classroom. Within the study described in this article, deaf and hard of hearing people used an adaptive e-learning environment to improve their computer literacy. This environment included streaming video with sign language interpreter…

  1. Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment.

    PubMed

    Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Gerjets, Peter; Spüler, Martin

    2017-01-01

    In this paper, we demonstrate a closed-loop EEG-based learning environment, that adapts instructional learning material online, to improve learning success in students during arithmetic learning. The amount of cognitive workload during learning is crucial for successful learning and should be held in the optimal range for each learner. Based on EEG data from 10 subjects, we created a prediction model that estimates the learner's workload to obtain an unobtrusive workload measure. Furthermore, we developed an interactive learning environment that uses the prediction model to estimate the learner's workload online based on the EEG data and adapt the difficulty of the learning material to keep the learner's workload in an optimal range. The EEG-based learning environment was used by 13 subjects to learn arithmetic addition in the octal number system, leading to a significant learning effect. The results suggest that it is feasible to use EEG as an unobtrusive measure of cognitive workload to adapt the learning content. Further it demonstrates that a promptly workload prediction is possible using a generalized prediction model without the need for a user-specific calibration.

  2. Investigating Work and Learning through Complex Adaptive Organisations

    ERIC Educational Resources Information Center

    Lizier, Amanda Louise

    2017-01-01

    Purpose: The purpose of this paper is to outline an empirical study of how professionals experience work and learning in complex adaptive organisations. The study uses a complex adaptive systems approach, which forms the basis of a specifically developed conceptual framework for explaining professionals' experiences of work and learning.…

  3. Examining the Relationship between Learning Organization Characteristics and Change Adaptation, Innovation, and Organizational Performance

    ERIC Educational Resources Information Center

    Kontoghiorghes, Constantine; Awbre, Susan M.; Feurig, Pamela L.

    2005-01-01

    The main purpose of this exploratory study was to examine the relationship between certain learning organization characteristics and change adaptation, innovation, and bottom-line organizational performance. The following learning organization characteristics were found to be the strongest predictors of rapid change adaptation, quick product or…

  4. Evolution of social learning does not explain the origin of human cumulative culture.

    PubMed

    Enquist, Magnus; Ghirlanda, Stefano

    2007-05-07

    Because culture requires transmission of information between individuals, thinking about the origin of culture has mainly focused on the genetic evolution of abilities for social learning. Current theory considers how social learning affects the adaptiveness of a single cultural trait, yet human culture consists of the accumulation of very many traits. Here we introduce a new modeling strategy that tracks the adaptive value of many cultural traits, showing that genetic evolution favors only limited social learning owing to the accumulation of maladaptive as well as adaptive culture. We further show that culture can be adaptive, and refined social learning can evolve, if individuals can identify and discard maladaptive culture. This suggests that the evolution of such "adaptive filtering" mechanisms may have been crucial for the birth of human culture.

  5. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction.

    PubMed

    Chen, C P; Wan, J Z

    1999-01-01

    A fast learning algorithm is proposed to find an optimal weights of the flat neural networks (especially, the functional-link network). Although the flat networks are used for nonlinear function approximation, they can be formulated as linear systems. Thus, the weights of the networks can be solved easily using a linear least-square method. This formulation makes it easier to update the weights instantly for both a new added pattern and a new added enhancement node. A dynamic stepwise updating algorithm is proposed to update the weights of the system on-the-fly. The model is tested on several time-series data including an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a nonlinear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the proposed model is very attractive to real-time processes.

  6. Neural and computational processes underlying dynamic changes in self-esteem

    PubMed Central

    Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-01-01

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an ‘interpersonal vulnerability’ dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability. PMID:29061228

  7. Neural and computational processes underlying dynamic changes in self-esteem.

    PubMed

    Will, Geert-Jan; Rutledge, Robb B; Moutoussis, Michael; Dolan, Raymond J

    2017-10-24

    Self-esteem is shaped by the appraisals we receive from others. Here, we characterize neural and computational mechanisms underlying this form of social influence. We introduce a computational model that captures fluctuations in self-esteem engendered by prediction errors that quantify the difference between expected and received social feedback. Using functional MRI, we show these social prediction errors correlate with activity in ventral striatum/subgenual anterior cingulate cortex, while updates in self-esteem resulting from these errors co-varied with activity in ventromedial prefrontal cortex (vmPFC). We linked computational parameters to psychiatric symptoms using canonical correlation analysis to identify an 'interpersonal vulnerability' dimension. Vulnerability modulated the expression of prediction error responses in anterior insula and insula-vmPFC connectivity during self-esteem updates. Our findings indicate that updating of self-evaluative beliefs relies on learning mechanisms akin to those used in learning about others. Enhanced insula-vmPFC connectivity during updating of those beliefs may represent a marker for psychiatric vulnerability.

  8. Changing viewer perspectives reveals constraints to implicit visual statistical learning.

    PubMed

    Jiang, Yuhong V; Swallow, Khena M

    2014-10-07

    Statistical learning-learning environmental regularities to guide behavior-likely plays an important role in natural human behavior. One potential use is in search for valuable items. Because visual statistical learning can be acquired quickly and without intention or awareness, it could optimize search and thereby conserve energy. For this to be true, however, visual statistical learning needs to be viewpoint invariant, facilitating search even when people walk around. To test whether implicit visual statistical learning of spatial information is viewpoint independent, we asked participants to perform a visual search task from variable locations around a monitor placed flat on a stand. Unbeknownst to participants, the target was more often in some locations than others. In contrast to previous research on stationary observers, visual statistical learning failed to produce a search advantage for targets in high-probable regions that were stable within the environment but variable relative to the viewer. This failure was observed even when conditions for spatial updating were optimized. However, learning was successful when the rich locations were referenced relative to the viewer. We conclude that changing viewer perspective disrupts implicit learning of the target's location probability. This form of learning shows limited integration with spatial updating or spatiotopic representations. © 2014 ARVO.

  9. Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala

    PubMed Central

    Atlas, Lauren Y; Doll, Bradley B; Li, Jian; Daw, Nathaniel D; Phelps, Elizabeth A

    2016-01-01

    Socially-conveyed rules and instructions strongly shape expectations and emotions. Yet most neuroscientific studies of learning consider reinforcement history alone, irrespective of knowledge acquired through other means. We examined fear conditioning and reversal in humans to test whether instructed knowledge modulates the neural mechanisms of feedback-driven learning. One group was informed about contingencies and reversals. A second group learned only from reinforcement. We combined quantitative models with functional magnetic resonance imaging and found that instructions induced dissociations in the neural systems of aversive learning. Responses in striatum and orbitofrontal cortex updated with instructions and correlated with prefrontal responses to instructions. Amygdala responses were influenced by reinforcement similarly in both groups and did not update with instructions. Results extend work on instructed reward learning and reveal novel dissociations that have not been observed with punishments or rewards. Findings support theories of specialized threat-detection and may have implications for fear maintenance in anxiety. DOI: http://dx.doi.org/10.7554/eLife.15192.001 PMID:27171199

  10. Adaptation Criteria for the Personalised Delivery of Learning Materials: A Multi-Stage Empirical Investigation

    ERIC Educational Resources Information Center

    Thalmann, Stefan

    2014-01-01

    Personalised e-Learning represents a major step-change from the one-size-fits-all approach of traditional learning platforms to a more customised and interactive provision of learning materials. Adaptive learning can support the learning process by tailoring learning materials to individual needs. However, this requires the initial preparation of…

  11. Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility

    PubMed Central

    Jin, Yichao; Vural, Serdar; Gluhak, Alexander; Moessner, Klaus

    2013-01-01

    This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines. PMID:24135992

  12. A recursive Bayesian updating model of haptic stiffness perception.

    PubMed

    Wu, Bing; Klatzky, Roberta L

    2018-06-01

    Stiffness of many materials follows Hooke's Law, but the mechanism underlying the haptic perception of stiffness is not as simple as it seems in the physical definition. The present experiments support a model by which stiffness perception is adaptively updated during dynamic interaction. Participants actively explored virtual springs and estimated their stiffness relative to a reference. The stimuli were simulations of linear springs or nonlinear springs created by modulating a linear counterpart with low-amplitude, half-cycle (Experiment 1) or full-cycle (Experiment 2) sinusoidal force. Experiment 1 showed that subjective stiffness increased (decreased) as a linear spring was positively (negatively) modulated by a half-sinewave force. In Experiment 2, an opposite pattern was observed for full-sinewave modulations. Modeling showed that the results were best described by an adaptive process that sequentially and recursively updated an estimate of stiffness using the force and displacement information sampled over trajectory and time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. [An update of the obstetrics hemorrhage treatment protocol].

    PubMed

    Morillas-Ramírez, F; Ortiz-Gómez, J R; Palacio-Abizanda, F J; Fornet-Ruiz, I; Pérez-Lucas, R; Bermejo-Albares, L

    2014-04-01

    Obstetric hemorrhage is still a major cause of maternal and fetal morbimortality in developed countries. This is an underestimated problem, which usually appears unpredictably. A high proportion of the morbidity of obstetric hemorrhage is considered to be preventable if adequately managed. The major international clinical guidelines recommend producing consensus management protocols, adapted to local characteristics and keep them updated in the light of experience and new scientific publications. We present a protocol updated, according to the latest recommendations, and our own experience, in order to be used as a basis for those anesthesiologists who wish to use and adapt it locally to their daily work. This last aspect is very important to be effective, and is a task to be performed at each center, according to the availability of resources, personnel and architectural features. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  14. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning.

    PubMed

    Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J; Nomura, Toshihiro; Stauffer, Shaun R; Lindsley, Craig W; Conn, P Jeffrey; Contractor, Anis

    2013-07-18

    Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility.

  15. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning

    PubMed Central

    Xu, Jian; Zhu, Yongling; Kraniotis, Stephen; He, Qionger; Marshall, John J.; Nomura, Toshihiro; Stauffer, Shaun R.; Lindsley, Craig W.; Conn, P. Jeffrey; Contractor, Anis

    2013-01-01

    Metabotropic glutamate receptor 5 (mGluR5) plays important roles in modulating neural activity and plasticity and has been associated with several neuropathological disorders. Previous work has shown that genetic ablation or pharmacological inhibition of mGluR5 disrupts fear extinction and spatial reversal learning, suggesting that mGluR5 signaling is required for different forms of adaptive learning. Here, we tested whether ADX47273, a selective positive allosteric modulator (PAM) of mGluR5, can enhance adaptive learning in mice. We found that systemic administration of the ADX47273 enhanced reversal learning in the Morris Water Maze, an adaptive task. In addition, we found that ADX47273 had no effect on single-session and multi-session extinction, but administration of ADX47273 after a single retrieval trial enhanced subsequent fear extinction learning. Together these results demonstrate a role for mGluR5 signaling in adaptive learning, and suggest that mGluR5 PAMs represent a viable strategy for treatment of maladaptive learning and for improving behavioral flexibility. PMID:23869026

  16. Human Machine Learning Symbiosis

    ERIC Educational Resources Information Center

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  17. Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress.

    PubMed

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara; Timón-Gómez, Alba; Proft, Markus

    2018-02-01

    Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.

  18. Adaptation and Assimilation: US Business Responses to Linguistic Diversity in the Workplace.

    ERIC Educational Resources Information Center

    Dicker, Susan J.

    1998-01-01

    Provides a historical overview of attitudes toward immigrants and their languages in the United States, gives an update of the Official English movement, and analyzes recent articles in business-related journals. Discussion centers on how businesses have adapted to a multilingual workforce and on the connection between the Official English…

  19. Integrating Linguistic, Motor, and Perceptual Information in Language Production

    ERIC Educational Resources Information Center

    Frank, Austin F.

    2011-01-01

    Speakers show remarkable adaptability in updating and correcting their utterances in response to changes in the environment. When an interlocutor raises an eyebrow or the AC kicks on and introduces ambient noise, it seems that speakers are able to quickly integrate this information into their speech plans and adapt appropriately. This ability to…

  20. Low complexity adaptive equalizers for underwater acoustic communications

    NASA Astrophysics Data System (ADS)

    Soflaei, Masoumeh; Azmi, Paeiz

    2014-08-01

    Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA, SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA, SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.

  1. Handling Qualities Evaluations of Low Complexity Model Reference Adaptive Controllers for Reduced Pitch and Roll Damping Scenarios

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Schaefer, Jacob; Burken, John J.; Johnson, Marcus; Nguyen, Nhan

    2011-01-01

    National Aeronautics and Space Administration (NASA) researchers have conducted a series of flight experiments designed to study the effects of varying levels of adaptive controller complexity on the performance and handling qualities of an aircraft under various simulated failure or damage conditions. A baseline, nonlinear dynamic inversion controller was augmented with three variations of a model reference adaptive control design. The simplest design consisted of a single adaptive parameter in each of the pitch and roll axes computed using a basic gradient-based update law. A second design was built upon the first by increasing the complexity of the update law. The third and most complex design added an additional adaptive parameter to each axis. Flight tests were conducted using NASA s Full-scale Advanced Systems Testbed, a highly modified F-18 aircraft that contains a research flight control system capable of housing advanced flight controls experiments. Each controller was evaluated against a suite of simulated failures and damage ranging from destabilization of the pitch and roll axes to significant coupling between the axes. Two pilots evaluated the three adaptive controllers as well as the non-adaptive baseline controller in a variety of dynamic maneuvers and precision flying tasks designed to uncover potential deficiencies in the handling qualities of the aircraft, and adverse interactions between the pilot and the adaptive controllers. The work was completed as part of the Integrated Resilient Aircraft Control Project under NASA s Aviation Safety Program.

  2. Visual learning with reduced adaptation is eccentricity-specific.

    PubMed

    Harris, Hila; Sagi, Dov

    2018-01-12

    Visual learning is known to be specific to the trained target location, showing little transfer to untrained locations. Recently, learning was shown to transfer across equal-eccentricity retinal-locations when sensory adaptation due to repetitive stimulation was minimized. It was suggested that learning transfers to previously untrained locations when the learned representation is location invariant, with sensory adaptation introducing location-dependent representations, thus preventing transfer. Spatial invariance may also fail when the trained and tested locations are at different distance from the center of gaze (different retinal eccentricities), due to differences in the corresponding low-level cortical representations (e.g. allocated cortical area decreases with eccentricity). Thus, if learning improves performance by better classifying target-dependent early visual representations, generalization is predicted to fail when locations of different retinal eccentricities are trained and tested in the absence sensory adaptation. Here, using the texture discrimination task, we show specificity of learning across different retinal eccentricities (4-8°) using reduced adaptation training. The existence of generalization across equal-eccentricity locations but not across different eccentricities demonstrates that learning accesses visual representations preceding location independent representations, with specificity of learning explained by inhomogeneous sensory representation.

  3. The Logic of Data-Sense: Thinking through Learning Personalisation

    ERIC Educational Resources Information Center

    Thompson, Greg; Cook, Ian

    2017-01-01

    Big Data and Learning Analytics' promise to revolutionise educational institutions, endeavours, and actions through more and better data is now compelling. Multiple, and continually updating, data sets produce a new sense of "personalised learning." A crucial attribute of the datafication, and subsequent profiling, of learner behaviour…

  4. Evaluating a multispecies adaptive management framework: Must uncertainty impede effective decision-making?

    USGS Publications Warehouse

    Smith, David R.; McGowan, Conor P.; Daily, Jonathan P.; Nichols, James D.; Sweka, John A.; Lyons, James E.

    2013-01-01

    Application of adaptive management to complex natural resource systems requires careful evaluation to ensure that the process leads to improved decision-making. As part of that evaluation, adaptive policies can be compared with alternative nonadaptive management scenarios. Also, the value of reducing structural (ecological) uncertainty to achieving management objectives can be quantified.A multispecies adaptive management framework was recently adopted by the Atlantic States Marine Fisheries Commission for sustainable harvest of Delaware Bay horseshoe crabs Limulus polyphemus, while maintaining adequate stopover habitat for migrating red knots Calidris canutus rufa, the focal shorebird species. The predictive model set encompassed the structural uncertainty in the relationships between horseshoe crab spawning, red knot weight gain and red knot vital rates. Stochastic dynamic programming was used to generate a state-dependent strategy for harvest decisions given that uncertainty. In this paper, we employed a management strategy evaluation approach to evaluate the performance of this adaptive management framework. Active adaptive management was used by including model weights as state variables in the optimization and reducing structural uncertainty by model weight updating.We found that the value of information for reducing structural uncertainty is expected to be low, because the uncertainty does not appear to impede effective management. Harvest policy responded to abundance levels of both species regardless of uncertainty in the specific relationship that generated those abundances. Thus, the expected horseshoe crab harvest and red knot abundance were similar when the population generating model was uncertain or known, and harvest policy was robust to structural uncertainty as specified.Synthesis and applications. The combination of management strategy evaluation with state-dependent strategies from stochastic dynamic programming was an informative approach to evaluate adaptive management performance and value of learning. Although natural resource decisions are characterized by uncertainty, not all uncertainty will cause decisions to be altered substantially, as we found in this case. It is important to incorporate uncertainty into the decision framing and evaluate the effect of reducing that uncertainty on achieving the desired outcomes

  5. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  6. Examining the Role of Emotional Intelligence between Organizational Learning and Adaptive Performance in Indian Manufacturing Industries

    ERIC Educational Resources Information Center

    Pradhan, Rabindra Kumar; Jena, Lalatendu Kesari; Singh, Sanjay Kumar

    2017-01-01

    Purpose: The purpose of this study is to examine the relationship between organisational learning and adaptive performance. Furthermore, the study investigates the moderating role of emotional intelligence in the perspective of organisational learning for addressing adaptive performance of executives employed in manufacturing organisations.…

  7. Adaptive Synchronization of Semantically Compressed Instructional Videos for Collaborative Distance Learning

    ERIC Educational Resources Information Center

    Phung, Dan; Valetto, Giuseppe; Kaiser, Gail E.; Liu, Tiecheng; Kender, John R.

    2007-01-01

    The increasing popularity of online courses has highlighted the need for collaborative learning tools for student groups. In this article, we present an e-Learning architecture and adaptation model called AI2TV (Adaptive Interactive Internet Team Video), which allows groups of students to collaboratively view instructional videos in synchrony.…

  8. Individualization of Foreign Language Teaching through Adaptive eLearning

    ERIC Educational Resources Information Center

    Kostolanyova, Katerina; Nedbalova, Stepanka

    2017-01-01

    Lifelong learning has become an essential part of each profession. For this reason, personalized and adaptive learning has been drawing attention of professionals in the field of formal as well as informal education in the last few years. The effort has been made to design adaptive study supports regarding students' requirements, abilities and…

  9. Effectiveness of Adaptive Assessment versus Learner Control in a Multimedia Learning System

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Chang, Shu-Wei

    2015-01-01

    The purpose of this study was to explore the effectiveness of adaptive assessment versus learner control in a multimedia learning system designed to help secondary students learn science. Unlike other systems, this paper presents a workflow of adaptive assessment following instructional materials that better align with learners' cognitive…

  10. The Effects of Rapid Assessments and Adaptive Restudy Prompts in Multimedia Learning

    ERIC Educational Resources Information Center

    Renkl, Alexander; Skuballa, Irene T.; Schwonke, Rolf; Harr, Nora; Leber, Jasmin

    2015-01-01

    We investigated the effects of rapid assessment tasks and different adaptive restudy prompts in multimedia learning. The adaptivity was based on rapid assessment tasks that were interspersed throughout a multimedia learning environment. In Experiment 1 (N = 52 university students), we analyzed to which extent rapid assessment tasks were reactive…

  11. Exploring Adaptability through Learning Layers and Learning Loops

    ERIC Educational Resources Information Center

    Lof, Annette

    2010-01-01

    Adaptability in social-ecological systems results from individual and collective action, and multi-level interactions. It can be understood in a dual sense as a system's ability to adapt to disturbance and change, and to navigate system transformation. Inherent in this conception, as found in resilience thinking, are the concepts of learning and…

  12. Teacher-Led Design of an Adaptive Learning Environment

    ERIC Educational Resources Information Center

    Mavroudi, Anna; Hadzilacos, Thanasis; Kalles, Dimitris; Gregoriades, Andreas

    2016-01-01

    This paper discusses a requirements engineering process that exemplifies teacher-led design in the case of an envisioned system for adaptive learning. Such a design poses various challenges and still remains an open research issue in the field of adaptive learning. Starting from a scenario-based elicitation method, the whole process was highly…

  13. An Adaptive Approach to Managing Knowledge Development in a Project-Based Learning Environment

    ERIC Educational Resources Information Center

    Tilchin, Oleg; Kittany, Mohamed

    2016-01-01

    In this paper we propose an adaptive approach to managing the development of students' knowledge in the comprehensive project-based learning (PBL) environment. Subject study is realized by two-stage PBL. It shapes adaptive knowledge management (KM) process and promotes the correct balance between personalized and collaborative learning. The…

  14. Studying the Effectiveness of an Online Language Learning Platform in China

    ERIC Educational Resources Information Center

    Baker, Ryan; Wang, Feng; Ma, Zhenjun; Ma, Wei; Zheng, Shiyue

    2018-01-01

    In this paper we evaluate the effectiveness of an adaptive online learning platform, designed to support Chinese students in learning the English language. The adaptive platform is studied in three studies, where the experimental platform is compared to an alternate, non-adaptive platform, with random assignment to conditions (the adaptive…

  15. Recasting Transfer as a Socio-Personal Process of Adaptable Learning

    ERIC Educational Resources Information Center

    Billett, Stephen

    2013-01-01

    Transfer is usually cast as an educational, rather than learning, problem. Yet, seeking to adapt what individuals know from one circumstance to another is a process more helpfully associated with learning, than a hybrid one called transfer. Adaptability comprises individuals construing what they experience, then aligning and reconciling with what…

  16. Adaptation and Retention of a Perceptual-Motor Task in Children: Effects of a Single Bout of Intense Endurance Exercise.

    PubMed

    Ferrer-Uris, Blai; Busquets, Albert; Angulo-Barroso, Rosa

    2018-02-01

    We assessed the effect of an acute intense exercise bout on the adaptation and consolidation of a visuomotor adaptation task in children. We also sought to assess if exercise and learning task presentation order could affect task consolidation. Thirty-three children were randomly assigned to one of three groups: (a) exercise before the learning task, (b) exercise after the learning task, and (c) only learning task. Baseline performance was assessed by practicing the learning task in a 0° rotation condition. Afterward, a 60° rotation-adaptation set was applied followed by three rotated retention sets after 1 hr, 24 hr, and 7 days. For the exercise groups, exercise was presented before or after the motor adaptation. Results showed no group differences during the motor adaptation while exercise seemed to enhance motor consolidation. Greater consolidation enhancement was found in participants who exercised before the learning task. Our data support the importance of exercise to improve motor-memory consolidation in children.

  17. Stuttering Thoughts: Negative Self-Referent Thinking Is Less Sensitive to Aversive Outcomes in People with Higher Levels of Depressive Symptoms

    PubMed Central

    Iijima, Yudai; Takano, Keisuke; Boddez, Yannick; Raes, Filip; Tanno, Yoshihiko

    2017-01-01

    Learning theories of depression have proposed that depressive cognitions, such as negative thoughts with reference to oneself, can develop through a reinforcement learning mechanism. This negative self-reference is considered to be positively reinforced by rewarding experiences such as genuine support from others after negative self-disclosure, and negatively reinforced by avoidance of potential aversive situations. The learning account additionally predicts that negative self-reference would be maintained by an inability to adjust one’s behavior when negative self-reference no longer leads to such reward. To test this prediction, we designed an adapted version of the reversal-learning task. In this task, participants were reinforced to choose and engage in either negative or positive self-reference by probabilistic economic reward and punishment. Although participants were initially trained to choose negative self-reference, the stimulus-reward contingencies were reversed to prompt a shift toward positive self-reference (Study 1) and a further shift toward negative self-reference (Study 2). Model-based computational analyses showed that depressive symptoms were associated with a low learning rate of negative self-reference, indicating a high level of reward expectancy for negative self-reference even after the contingency reversal. Furthermore, the difficulty in updating outcome predictions of negative self-reference was significantly associated with the extent to which one possesses negative self-images. These results suggest that difficulty in adjusting action-outcome estimates for negative self-reference increases the chance to be faced with negative aspects of self, which may result in depressive symptoms. PMID:28824511

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthias C. M. Troffaes; Gero Walter; Dana Kelly

    In a standard Bayesian approach to the alpha-factor model for common-cause failure, a precise Dirichlet prior distribution models epistemic uncertainty in the alpha-factors. This Dirichlet prior is then updated with observed data to obtain a posterior distribution, which forms the basis for further inferences. In this paper, we adapt the imprecise Dirichlet model of Walley to represent epistemic uncertainty in the alpha-factors. In this approach, epistemic uncertainty is expressed more cautiously via lower and upper expectations for each alpha-factor, along with a learning parameter which determines how quickly the model learns from observed data. For this application, we focus onmore » elicitation of the learning parameter, and find that values in the range of 1 to 10 seem reasonable. The approach is compared with Kelly and Atwood's minimally informative Dirichlet prior for the alpha-factor model, which incorporated precise mean values for the alpha-factors, but which was otherwise quite diffuse. Next, we explore the use of a set of Gamma priors to model epistemic uncertainty in the marginal failure rate, expressed via a lower and upper expectation for this rate, again along with a learning parameter. As zero counts are generally less of an issue here, we find that the choice of this learning parameter is less crucial. Finally, we demonstrate how both epistemic uncertainty models can be combined to arrive at lower and upper expectations for all common-cause failure rates. Thereby, we effectively provide a full sensitivity analysis of common-cause failure rates, properly reflecting epistemic uncertainty of the analyst on all levels of the common-cause failure model.« less

  19. Learning in the Machine: Random Backpropagation and the Deep Learning Channel.

    PubMed

    Baldi, Pierre; Sadowski, Peter; Lu, Zhiqin

    2018-07-01

    Random backpropagation (RBP) is a variant of the backpropagation algorithm for training neural networks, where the transpose of the forward matrices are replaced by fixed random matrices in the calculation of the weight updates. It is remarkable both because of its effectiveness, in spite of using random matrices to communicate error information, and because it completely removes the taxing requirement of maintaining symmetric weights in a physical neural system. To better understand random backpropagation, we first connect it to the notions of local learning and learning channels. Through this connection, we derive several alternatives to RBP, including skipped RBP (SRPB), adaptive RBP (ARBP), sparse RBP, and their combinations (e.g. ASRBP) and analyze their computational complexity. We then study their behavior through simulations using the MNIST and CIFAR-10 bechnmark datasets. These simulations show that most of these variants work robustly, almost as well as backpropagation, and that multiplication by the derivatives of the activation functions is important. As a follow-up, we study also the low-end of the number of bits required to communicate error information over the learning channel. We then provide partial intuitive explanations for some of the remarkable properties of RBP and its variations. Finally, we prove several mathematical results, including the convergence to fixed points of linear chains of arbitrary length, the convergence to fixed points of linear autoencoders with decorrelated data, the long-term existence of solutions for linear systems with a single hidden layer and convergence in special cases, and the convergence to fixed points of non-linear chains, when the derivative of the activation functions is included.

  20. Stuttering Thoughts: Negative Self-Referent Thinking Is Less Sensitive to Aversive Outcomes in People with Higher Levels of Depressive Symptoms.

    PubMed

    Iijima, Yudai; Takano, Keisuke; Boddez, Yannick; Raes, Filip; Tanno, Yoshihiko

    2017-01-01

    Learning theories of depression have proposed that depressive cognitions, such as negative thoughts with reference to oneself, can develop through a reinforcement learning mechanism. This negative self-reference is considered to be positively reinforced by rewarding experiences such as genuine support from others after negative self-disclosure, and negatively reinforced by avoidance of potential aversive situations. The learning account additionally predicts that negative self-reference would be maintained by an inability to adjust one's behavior when negative self-reference no longer leads to such reward. To test this prediction, we designed an adapted version of the reversal-learning task. In this task, participants were reinforced to choose and engage in either negative or positive self-reference by probabilistic economic reward and punishment. Although participants were initially trained to choose negative self-reference, the stimulus-reward contingencies were reversed to prompt a shift toward positive self-reference (Study 1) and a further shift toward negative self-reference (Study 2). Model-based computational analyses showed that depressive symptoms were associated with a low learning rate of negative self-reference, indicating a high level of reward expectancy for negative self-reference even after the contingency reversal. Furthermore, the difficulty in updating outcome predictions of negative self-reference was significantly associated with the extent to which one possesses negative self-images. These results suggest that difficulty in adjusting action-outcome estimates for negative self-reference increases the chance to be faced with negative aspects of self, which may result in depressive symptoms.

  1. An Adaptive E-Learning System Based on Students' Learning Styles: An Empirical Study

    ERIC Educational Resources Information Center

    Drissi, Samia; Amirat, Abdelkrim

    2016-01-01

    Personalized e-learning implementation is recognized as one of the most interesting research areas in the distance web-based education. Since the learning style of each learner is different one must fit e-learning with the different needs of learners. This paper presents an approach to integrate learning styles into adaptive e-learning hypermedia.…

  2. Revealing Adaptive Management of Environmental Flows

    NASA Astrophysics Data System (ADS)

    Allan, Catherine; Watts, Robyn J.

    2018-03-01

    Managers of land, water, and biodiversity are working with increasingly complex social ecological systems with high uncertainty. Adaptive management (learning from doing) is an ideal approach for working with this complexity. The competing social and environmental demands for water have prompted interest in freshwater adaptive management, but its success and uptake appear to be slow. Some of the perceived "failure" of adaptive management may reflect the way success is conceived and measured; learning, rarely used as an indicator of success, is narrowly defined when it is. In this paper, we document the process of adaptive flow management in the Edward-Wakool system in the southern Murray-Darling Basin, Australia. Data are from interviews with environmental water managers, document review, and the authors' structured reflection on their experiences of adaptive management and environmental flows. Substantial learning occurred in relation to the management of environmental flows in the Edward-Wakool system, with evidence found in planning documents, water-use reports, technical reports, stakeholder committee minutes, and refereed papers, while other evidence was anecdotal. Based on this case, we suggest it may be difficult for external observers to perceive the success of large adaptive management projects because evidence of learning is dispersed across multiple documents, and learning is not necessarily considered a measure of success. We suggest that documentation and sharing of new insights, and of the processes of learning, should be resourced to facilitate social learning within the water management sector, and to help demonstrate the successes of adaptive management.

  3. Revealing Adaptive Management of Environmental Flows.

    PubMed

    Allan, Catherine; Watts, Robyn J

    2018-03-01

    Managers of land, water, and biodiversity are working with increasingly complex social ecological systems with high uncertainty. Adaptive management (learning from doing) is an ideal approach for working with this complexity. The competing social and environmental demands for water have prompted interest in freshwater adaptive management, but its success and uptake appear to be slow. Some of the perceived "failure" of adaptive management may reflect the way success is conceived and measured; learning, rarely used as an indicator of success, is narrowly defined when it is. In this paper, we document the process of adaptive flow management in the Edward-Wakool system in the southern Murray-Darling Basin, Australia. Data are from interviews with environmental water managers, document review, and the authors' structured reflection on their experiences of adaptive management and environmental flows. Substantial learning occurred in relation to the management of environmental flows in the Edward-Wakool system, with evidence found in planning documents, water-use reports, technical reports, stakeholder committee minutes, and refereed papers, while other evidence was anecdotal. Based on this case, we suggest it may be difficult for external observers to perceive the success of large adaptive management projects because evidence of learning is dispersed across multiple documents, and learning is not necessarily considered a measure of success. We suggest that documentation and sharing of new insights, and of the processes of learning, should be resourced to facilitate social learning within the water management sector, and to help demonstrate the successes of adaptive management.

  4. Stochastic model predicts evolving preferences in the Iowa gambling task

    PubMed Central

    Fuentes, Miguel A.; Lavín, Claudio; Contreras-Huerta, L. Sebastián; Miguel, Hernan; Rosales Jubal, Eduardo

    2014-01-01

    Learning under uncertainty is a common task that people face in their daily life. This process relies on the cognitive ability to adjust behavior to environmental demands. Although the biological underpinnings of those cognitive processes have been extensively studied, there has been little work in formal models seeking to capture the fundamental dynamic of learning under uncertainty. In the present work, we aimed to understand the basic cognitive mechanisms of outcome processing involved in decisions under uncertainty and to evaluate the relevance of previous experiences in enhancing learning processes within such uncertain context. We propose a formal model that emulates the behavior of people playing a well established paradigm (Iowa Gambling Task - IGT) and compare its outcome with a behavioral experiment. We further explored whether it was possible to emulate maladaptive behavior observed in clinical samples by modifying the model parameter which controls the update of expected outcomes distributions. Results showed that the performance of the model resembles the observed participant performance as well as IGT performance by healthy subjects described in the literature. Interestingly, the model converges faster than some subjects on the decks with higher net expected outcome. Furthermore, the modified version of the model replicated the trend observed in clinical samples performing the task. We argue that the basic cognitive component underlying learning under uncertainty can be represented as a differential equation that considers the outcomes of previous decisions for guiding the agent to an adaptive strategy. PMID:25566043

  5. Stochastic model predicts evolving preferences in the Iowa gambling task.

    PubMed

    Fuentes, Miguel A; Lavín, Claudio; Contreras-Huerta, L Sebastián; Miguel, Hernan; Rosales Jubal, Eduardo

    2014-01-01

    Learning under uncertainty is a common task that people face in their daily life. This process relies on the cognitive ability to adjust behavior to environmental demands. Although the biological underpinnings of those cognitive processes have been extensively studied, there has been little work in formal models seeking to capture the fundamental dynamic of learning under uncertainty. In the present work, we aimed to understand the basic cognitive mechanisms of outcome processing involved in decisions under uncertainty and to evaluate the relevance of previous experiences in enhancing learning processes within such uncertain context. We propose a formal model that emulates the behavior of people playing a well established paradigm (Iowa Gambling Task - IGT) and compare its outcome with a behavioral experiment. We further explored whether it was possible to emulate maladaptive behavior observed in clinical samples by modifying the model parameter which controls the update of expected outcomes distributions. Results showed that the performance of the model resembles the observed participant performance as well as IGT performance by healthy subjects described in the literature. Interestingly, the model converges faster than some subjects on the decks with higher net expected outcome. Furthermore, the modified version of the model replicated the trend observed in clinical samples performing the task. We argue that the basic cognitive component underlying learning under uncertainty can be represented as a differential equation that considers the outcomes of previous decisions for guiding the agent to an adaptive strategy.

  6. Social E-Learning in Topolor: A Case Study

    ERIC Educational Resources Information Center

    Shi, Lei; Al Qudah, Dana; Cristea, Alexandra I.

    2013-01-01

    Social e-learning is a process through which learners achieve their learning goals via social interactions with each other by sharing knowledge, skills, abilities and educational materials. Adaptive e-learning enables adaptation and personalization of the learning process, based on learner needs, knowledge, preferences and other characteristics.…

  7. Scaffolding and Integrated Assessment in Computer Assisted Learning (CAL) for Children with Learning Disabilities

    ERIC Educational Resources Information Center

    Beale, Ivan L.

    2005-01-01

    Computer assisted learning (CAL) can involve a computerised intelligent learning environment, defined as an environment capable of automatically, dynamically and continuously adapting to the learning context. One aspect of this adaptive capability involves automatic adjustment of instructional procedures in response to each learner's performance,…

  8. The Construction of an Ontology-Based Ubiquitous Learning Grid

    ERIC Educational Resources Information Center

    Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David

    2009-01-01

    The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…

  9. Dual-thread parallel control strategy for ophthalmic adaptive optics.

    PubMed

    Yu, Yongxin; Zhang, Yuhua

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope.

  10. Dual-thread parallel control strategy for ophthalmic adaptive optics

    PubMed Central

    Yu, Yongxin; Zhang, Yuhua

    2015-01-01

    To improve ophthalmic adaptive optics speed and compensate for ocular wavefront aberration of high temporal frequency, the adaptive optics wavefront correction has been implemented with a control scheme including 2 parallel threads; one is dedicated to wavefront detection and the other conducts wavefront reconstruction and compensation. With a custom Shack-Hartmann wavefront sensor that measures the ocular wave aberration with 193 subapertures across the pupil, adaptive optics has achieved a closed loop updating frequency up to 110 Hz, and demonstrated robust compensation for ocular wave aberration up to 50 Hz in an adaptive optics scanning laser ophthalmoscope. PMID:25866498

  11. On the adaptive daily forecasting of seismic aftershock hazard

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Hossein; Jalayer, Fatemeh; Asprone, Domenico; Lombardi, Anna Maria; Marzocchi, Warner; Prota, Andrea; Manfredi, Gaetano

    2013-04-01

    Post-earthquake ground motion hazard assessment is a fundamental initial step towards time-dependent seismic risk assessment for buildings in a post main-shock environment. Therefore, operative forecasting of seismic aftershock hazard forms a viable support basis for decision-making regarding search and rescue, inspection, repair, and re-occupation in a post main-shock environment. Arguably, an adaptive procedure for integrating the aftershock occurrence rate together with suitable ground motion prediction relations is key to Probabilistic Seismic Aftershock Hazard Assessment (PSAHA). In the short-term, the seismic hazard may vary significantly (Jordan et al., 2011), particularly after the occurrence of a high magnitude earthquake. Hence, PSAHA requires a reliable model that is able to track the time evolution of the earthquake occurrence rates together with suitable ground motion prediction relations. This work focuses on providing adaptive daily forecasts of the mean daily rate of exceeding various spectral acceleration values (the aftershock hazard). Two well-established earthquake occurrence models suitable for daily seismicity forecasts associated with the evolution of an aftershock sequence, namely, the modified Omori's aftershock model and the Epidemic Type Aftershock Sequence (ETAS) are adopted. The parameters of the modified Omori model are updated on a daily basis using Bayesian updating and based on the data provided by the ongoing aftershock sequence based on the methodology originally proposed by Jalayer et al. (2011). The Bayesian updating is used also to provide sequence-based parameter estimates for a given ground motion prediction model, i.e. the aftershock events in an ongoing sequence are exploited in order to update in an adaptive manner the parameters of an existing ground motion prediction model. As a numerical example, the mean daily rates of exceeding specific spectral acceleration values are estimated adaptively for the L'Aquila 2009 aftershock catalog. The parameters of the modified Omori model are estimated in an adaptive manner using the Bayesian updating based on the aftershock events that had already taken place at each day elapsed and using the Italian generic sequence (Lolli and Gasperini 2003) as prior information. For the ETAS model, the real-time daily forecast of the spatio-temporal evolution of the L'Aquila sequence provided for the Italian Civil Protection for managing the emergency (Marzocchi and Lombardi, 2009) is utilized. Moreover, the parameters of the ground motion prediction relation proposed by Sabetta and Pugliese (1996) are updated adaptively and on a daily basis using Bayesian updating based on the ongoing aftershock sequence. Finally, the forecasted daily rates of exceeding (first-mode) spectral acceleration values are compared with observed rates of exceedance calculated based on the wave-forms that have actually taken place. References Jalayer, F., Asprone, D., Prota, A., Manfredi, G. (2011). A decision support system for post-earthquake reliability assessment of structures subjected to after-shocks: an application to L'Aquila earthquake, 2009. Bull. Earthquake Eng. 9(4) 997-1014. Jordan, T.H., Chen Y-T., Gasparini P., Madariaga R., Main I., Marzocchi W., Papadopoulos G., Sobolev G., Yamaoka K., and J. Zschau (2011). Operational earthquake forecasting: State of knowledge and guidelines for implementation, Ann. Geophys. 54(4) 315-391, doi 10.4401/ag-5350. Lolli, B., and P. Gasperini (2003). Aftershocks hazard in Italy part I: estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence. Journal of Seismology 7(2) 235-257. Marzocchi, W., and A.M. Lombardi (2009). Real-time forecasting following a damaging earthquake, Geophys. Res. Lett. 36, L21302, doi: 10.1029/2009GL040233. Sabetta F., A. Pugliese (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86(2) 337-352.

  12. Learning Experiences Reuse Based on an Ontology Modeling to Improve Adaptation in E-Learning Systems

    ERIC Educational Resources Information Center

    Hadj M'tir, Riadh; Rumpler, Béatrice; Jeribi, Lobna; Ben Ghezala, Henda

    2014-01-01

    Current trends in e-Learning focus mainly on personalizing and adapting the learning environment and learning process. Although their increasingly number, theses researches often ignore the concepts of capitalization and reuse of learner experiences which can be exploited later by other learners. Thus, the major challenge of distance learning is…

  13. An Intelligent E-Learning System Based on Learner Profiling and Learning Resources Adaptation

    ERIC Educational Resources Information Center

    Tzouveli, Paraskevi; Mylonas, Phivos; Kollias, Stefanos

    2008-01-01

    Taking advantage of the continuously improving, web-based learning systems plays an important role for self-learning, especially in the case of working people. Nevertheless, learning systems do not generally adapt to learners' profiles. Learners have to spend a lot of time before reaching the learning goal that is compatible with their knowledge…

  14. Static and Dynamic Model Update of an Inflatable/Rigidizable Torus Structure

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, mercedes C.

    2006-01-01

    The present work addresses the development of an experimental and computational procedure for validating finite element models. A torus structure, part of an inflatable/rigidizable Hexapod, is used to demonstrate the approach. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with optimization is used to modify key model parameters. Static test results are used to update stiffness parameters and dynamic test results are used to update the mass distribution. Updated parameters are computed using gradient and non-gradient based optimization algorithms. Results show significant improvements in model predictions after parameters are updated. Lessons learned in the areas of test procedures, modeling approaches, and uncertainties quantification are presented.

  15. Guide of good practices for occupational radiological protection in plutonium facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TSmore » replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.« less

  16. The token economy for schizophrenia: review of the literature and recommendations for future research.

    PubMed

    Dickerson, Faith B; Tenhula, Wendy N; Green-Paden, Lisa D

    2005-06-15

    The token economy is a treatment intervention based on principles of operant conditioning and social learning. Developed in the 1950s and 1960s for long-stay hospital patients, the token economy has fallen out of favor since that time. The current review was undertaken as part of the 2003 update of the schizophrenia treatment recommendations of the Patient Outcomes Research Team (PORT). A total of 13 controlled studies of the token economy were reviewed. As a group, the studies provide evidence of the token economy's effectiveness in increasing the adaptive behaviors of patients with schizophrenia. Most of the studies are limited, however, by methodological shortcomings and by the historical context in which they were performed. More research is needed to determine the specific benefits of the token economy when administered in combination with contemporary psychosocial and psychopharmacological treatments.

  17. Towards Contextualized Learning Services

    NASA Astrophysics Data System (ADS)

    Specht, Marcus

    Personalization of feedback and instruction has often been considered as a key feature in learning support. The adaptations of the instructional process to the individual and its different aspects have been investigated from different research perspectives as learner modelling, intelligent tutoring systems, adaptive hypermedia, adaptive instruction and others. Already in the 1950s first commercial systems for adaptive instruction for trainings of keyboard skills have been developed utilizing adaptive configuration of feedback based on user performance and interaction footprints (Pask 1964). Around adaptive instruction there is a variety of research issues bringing together interdisciplinary research from computer science, engineering, psychology, psychotherapy, cybernetics, system dynamics, instructional design, and empirical research on technology enhanced learning. When classifying best practices of adaptive instruction different parameters of the instructional process have been identified which are adapted to the learner, as: sequence and size of task difficulty, time of feedback, pace of learning speed, reinforcement plan and others these are often referred to the adaptation target. Furthermore Aptitude Treatment Interaction studies explored the effect of adapting instructional parameters to different characteristics of the learner (Tennyson and Christensen 1988) as task performance, personality characteristics, or cognitive abilities, this is information is referred to as adaptation mean.

  18. Fifty-sixth Christmas Bird Count. 147. Southern Dorchester County, Md

    USGS Publications Warehouse

    Johnson, F.A.; Williams, B.K.; Nichols, J.D.; Hines, J.E.; Kendall, W.L.; Smith, G.W.; Caithamer, David F.

    1956-01-01

    Summary and Recommendations: We suggest that managers are approaching the limits of their ability to improve waterfowl harvest management, primarily because the information needed to make better decisions is being sacrificed by the current approach to setting regulations. We propose an actively adaptive management strategy in which regulatory decisions play a dominant role in reducing uncertainty about population dynamics. The proposed strategy recognizes 'value' in acquiring knowledge only to the extent that it contributes to the objective of optimizing harvests. To implement this strategy, managers will need: (1) a set of regulatory options, with possible constraints on their use; (2) quantifiable harvest management objectives; (3) a set of models that represent an array of meaningful hypotheses about the effects of regulations on populations; and (4) a measure of credibility (or likelihood) for each model, which can be updated regularly using information from waterfowl monitoring programs. Adaptive optimization is an iterative process in which the harvest-management policy converges over time to one that maximizes harvest under the most appropriate model. At each time step, an optimal regulatory decision is identified based on the state of the system and the model likelihoods. In the next time step, predicted population changes from the alternative models are compared with the actual changes provided by the monitoring program, The likelihoods are increased or decreased to the extent that predicted and actual population changes correspond. These updated likelihoods then are used in setting regulations in the next cycle and the process begins again. This iterative process produces the most informative regulations when uncertainty is prevalent and produces maximum sustainable yields as uncertainty is eliminated. We see no major obstacles to implementing this adaptive strategy, although there are a number of practical considerations. First and foremost, managers should assess the 'value' of learning. Only when there is a high degree of uncertainty about the effects of hunting regulations on population dynamics will the merit of our proposed strategy be evident. We suggest that this almost always will be true given our current understanding of the relationship between annual regulations, survival and population growth in waterfowl. Nonetheless, careful consideration should be given to formulating the set of alternative models. There is no value in distinguishing between models which differ in their mathematical formulation or biological realism, but which suggest similar harvest strategies. We suspect that 'mechanistic' models (i.e., those that attempt to capture the essence of biological processes) will make better candidates for model sets than so-called 'phenomenological' models. Assuming that all model sets include a good approximation of reality, learning rates will be dependent on the quality of monitoring programs. Fortunately, a variety of high-quality monitoring plans for many duck and goose populations of North America, when used with our adaptive approach, should provide new knowledge about population dynamics and response to hunting, and, thus, lead to improved management.

  19. Interfering Effects of Retrieval in Learning New Information

    ERIC Educational Resources Information Center

    Finn, Bridgid; Roediger, Henry L., III

    2013-01-01

    In 7 experiments, we explored the role of retrieval in associative updating, that is, in incorporating new information into an associative memory. We tested the hypothesis that retrieval would facilitate incorporating a new contextual detail into a learned association. Participants learned 3 pieces of information--a person's face, name, and…

  20. The Future Revisited: Can Global Learning Still Save the World?

    ERIC Educational Resources Information Center

    Van Hook, Steven R.

    2018-01-01

    This article provides a twelve-year review of my "OJDLA" article ("Online Journal of Distance Learning Administration," University of West Georgia) on the future of global learning, and updates related to issues such as societal need, technologies, course design, administration affairs, faculty support, and student service.

  1. Face-to-Face or Distance Training? Two Different Approaches To Motivate SMEs To Learn--An Update.

    ERIC Educational Resources Information Center

    Allan, John; O'Dwyer, Michele; Ryan, Eamon; Lawless, Naomi

    2001-01-01

    Two projects attempted to assess and meet small and medium-sized enterprises' training needs. Britain's Learning support for Small Businesses delivery methods included paper, CD-ROM, and the Internet. The University of Limerick, Ireland, offered face-to-face learning for microenterprises. (SK)

  2. Learning Objects Update: Review and Critical Approach to Content Aggregation

    ERIC Educational Resources Information Center

    Balatsoukas, Panos; Morris, Anne; O'Brien, Ann

    2008-01-01

    The structure and composite nature of a learning object is still open to interpretation. Although several theoretical studies advocate integrated approaches to the structure and aggregation level of learning objects, in practice, many content specifications, such as SCORM, IMS Content Packaging, and course authoring tools, do not explicitly state…

  3. Traffic Flow Management: Data Mining Update

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.

    2012-01-01

    This presentation provides an update on recent data mining efforts that have been designed to (1) identify like/similar days in the national airspace system, (2) cluster/aggregate national-level rerouting data and (3) apply machine learning techniques to predict when Ground Delay Programs are required at a weather-impacted airport

  4. Updated Meta-Analysis of Learner Control within Educational Technology

    ERIC Educational Resources Information Center

    Karich, Abbey C.; Burns, Matthew K.; Maki, Kathrin E.

    2014-01-01

    Giving a student control over their learning has theoretical and intuitive appeal, but its effects are neither powerful nor consistent in the empirical literature base. This meta-analysis updated previous meta-analytic research by Niemiec, Sikorski, and Walberg by studying the overall effectiveness of providing learner control within educational…

  5. M-Learning: Implications in Learning Domain Specificities, Adaptive Learning, Feedback, Augmented Reality, and the Future of Online Learning

    ERIC Educational Resources Information Center

    Squires, David R.

    2014-01-01

    The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…

  6. The dissociable effects of punishment and reward on motor learning.

    PubMed

    Galea, Joseph M; Mallia, Elizabeth; Rothwell, John; Diedrichsen, Jörn

    2015-04-01

    A common assumption regarding error-based motor learning (motor adaptation) in humans is that its underlying mechanism is automatic and insensitive to reward- or punishment-based feedback. Contrary to this hypothesis, we show in a double dissociation that the two have independent effects on the learning and retention components of motor adaptation. Negative feedback, whether graded or binary, accelerated learning. While it was not necessary for the negative feedback to be coupled to monetary loss, it had to be clearly related to the actual performance on the preceding movement. Positive feedback did not speed up learning, but it increased retention of the motor memory when performance feedback was withdrawn. These findings reinforce the view that independent mechanisms underpin learning and retention in motor adaptation, reject the assumption that motor adaptation is independent of motivational feedback, and raise new questions regarding the neural basis of negative and positive motivational feedback in motor learning.

  7. A Context-Aware Self-Adaptive Fractal Based Generalized Pedagogical Agent Framework for Mobile Learning

    ERIC Educational Resources Information Center

    Boulehouache, Soufiane; Maamri, Ramdane; Sahnoun, Zaidi

    2015-01-01

    The Pedagogical Agents (PAs) for Mobile Learning (m-learning) must be able not only to adapt the teaching to the learner knowledge level and profile but also to ensure the pedagogical efficiency within unpredictable changing runtime contexts. Therefore, to deal with this issue, this paper proposes a Context-aware Self-Adaptive Fractal Component…

  8. Exploring the Effects of Intercultural Learning on Cross-Cultural Adaptation in a Study Abroad Context

    ERIC Educational Resources Information Center

    Tsai, Yau

    2011-01-01

    This study targets Asian students studying abroad and explores the effects of intercultural learning on their cross-cultural adaptation by drawing upon a questionnaire survey. On the one hand, the results of this study find that under the influence of intercultural learning, students respond differently in their cross-cultural adaptation and no…

  9. Adaptation of Conceptions of Learning Science Questionnaire into Turkish and Science Teacher Candidates' Conceptions of Learning Science

    ERIC Educational Resources Information Center

    Bahçivan, Eralp; Kapucu, Serkan

    2014-01-01

    The purposes of this study were to (1) adapt an instrument "The Conceptions of Learning Science (COLS) questionnaire" into Turkish, and (2) to determine Turkish science teacher candidates' COLS. Adapting the instrument four steps were followed. Firstly, COLS questionnaire was translated into Turkish. Secondly, COLS questionnaire was…

  10. Swarm Intelligence: New Techniques for Adaptive Systems to Provide Learning Support

    ERIC Educational Resources Information Center

    Wong, Lung-Hsiang; Looi, Chee-Kit

    2012-01-01

    The notion of a system adapting itself to provide support for learning has always been an important issue of research for technology-enabled learning. One approach to provide adaptivity is to use social navigation approaches and techniques which involve analysing data of what was previously selected by a cluster of users or what worked for…

  11. Using Adaptive Learning Technologies to Personalize Instruction to Student Interests: The Impact of Relevant Contexts on Performance and Learning Outcomes

    ERIC Educational Resources Information Center

    Walkington, Candace A.

    2013-01-01

    Adaptive learning technologies are emerging in educational settings as a means to customize instruction to learners' background, experiences, and prior knowledge. Here, a technology-based personalization intervention within an intelligent tutoring system (ITS) for secondary mathematics was used to adapt instruction to students' personal interests.…

  12. Next Day Building Load Predictions based on Limited Input Features Using an On-Line Laterally Primed Adaptive Resonance Theory Artificial Neural Network.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Christian Birk; Robinson, Matt; Yasaei, Yasser

    Optimal integration of thermal energy storage within commercial building applications requires accurate load predictions. Several methods exist that provide an estimate of a buildings future needs. Methods include component-based models and data-driven algorithms. This work implemented a previously untested algorithm for this application that is called a Laterally Primed Adaptive Resonance Theory (LAPART) artificial neural network (ANN). The LAPART algorithm provided accurate results over a two month period where minimal historical data and a small amount of input types were available. These results are significant, because common practice has often overlooked the implementation of an ANN. ANN have often beenmore » perceived to be too complex and require large amounts of data to provide accurate results. The LAPART neural network was implemented in an on-line learning manner. On-line learning refers to the continuous updating of training data as time occurs. For this experiment, training began with a singe day and grew to two months of data. This approach provides a platform for immediate implementation that requires minimal time and effort. The results from the LAPART algorithm were compared with statistical regression and a component-based model. The comparison was based on the predictions linear relationship with the measured data, mean squared error, mean bias error, and cost savings achieved by the respective prediction techniques. The results show that the LAPART algorithm provided a reliable and cost effective means to predict the building load for the next day.« less

  13. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.

    PubMed

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2010-12-15

    Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.

  14. Integrating Model-Driven and Data-Driven Techniques for Analyzing Learning Behaviors in Open-Ended Learning Environments

    ERIC Educational Resources Information Center

    Kinnebrew, John S.; Segedy, James R.; Biswas, Gautam

    2017-01-01

    Research in computer-based learning environments has long recognized the vital role of adaptivity in promoting effective, individualized learning among students. Adaptive scaffolding capabilities are particularly important in open-ended learning environments, which provide students with opportunities for solving authentic and complex problems, and…

  15. Applying a Framework for Student Modeling in Exploratory Learning Environments: Comparing Data Representation Granularity to Handle Environment Complexity

    ERIC Educational Resources Information Center

    Fratamico, Lauren; Conati, Cristina; Kardan, Samad; Roll, Ido

    2017-01-01

    Interactive simulations can facilitate inquiry learning. However, similarly to other Exploratory Learning Environments, students may not always learn effectively in these unstructured environments. Thus, providing adaptive support has great potential to help improve student learning with these rich activities. Providing adaptive support requires a…

  16. Adaptive Learning Systems: Beyond Teaching Machines

    ERIC Educational Resources Information Center

    Kara, Nuri; Sevim, Nese

    2013-01-01

    Since 1950s, teaching machines have changed a lot. Today, we have different ideas about how people learn, what instructor should do to help students during their learning process. We have adaptive learning technologies that can create much more student oriented learning environments. The purpose of this article is to present these changes and its…

  17. Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning

    PubMed Central

    Auchter, Allison M.; Shumake, Jason; Gonzalez-Lima, Francisco; Monfils, Marie H.

    2017-01-01

    Many factors account for how well individuals extinguish conditioned fears, such as genetic variability, learning capacity and conditions under which extinction training is administered. We predicted that memory-based interventions would be more effective to reduce the reinstatement of fear in subjects genetically predisposed to display more extinction learning. We tested this hypothesis in rats genetically selected for differences in fear extinction using two strategies: (1) attenuation of fear memory using post-retrieval extinction training, and (2) pharmacological enhancement of the extinction memory after extinction training by low-dose USP methylene blue (MB). Subjects selectively bred for divergent extinction phenotypes were fear conditioned to a tone stimulus and administered either standard extinction training or retrieval + extinction. Following extinction, subjects received injections of saline or MB. Both reconsolidation updating and MB administration showed beneficial effects in preventing fear reinstatement, but differed in the groups they targeted. Reconsolidation updating showed an overall effect in reducing fear reinstatement, whereas pharmacological memory enhancement using MB was an effective strategy, but only for individuals who were responsive to extinction. PMID:28397861

  18. Confidence level estimation in multi-target classification problems

    NASA Astrophysics Data System (ADS)

    Chang, Shi; Isaacs, Jason; Fu, Bo; Shin, Jaejeong; Zhu, Pingping; Ferrari, Silvia

    2018-04-01

    This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix. The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled data, and recursively updated as additional images become available. Based on the learned joint probability mass function, the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori, i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels and ensure that all targets are classified with satisfactory confidence after the path is executed.

  19. A Learning Style Perspective to Investigate the Necessity of Developing Adaptive Learning Systems

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Sung, Han-Yu; Hung, Chun-Ming; Huang, Iwen

    2013-01-01

    Learning styles are considered to be one of the factors that need to be taken into account in developing adaptive learning systems. However, few studies have been conducted to investigate if students have the ability to choose the best-fit e-learning systems or content presentation styles for themselves in terms of learning style perspective. In…

  20. The lifecycle of e-learning course in the adaptive educational environment

    NASA Astrophysics Data System (ADS)

    Gustun, O. N.; Budaragin, N. V.

    2017-01-01

    In the article we have considered the lifecycle model of the e-learning course in the electronic educational environment. This model consists of three stages and nine phases. In order to implement the adaptive control of the learning process we have determined the actions which are necessary to undertake at different phases of the e-learning course lifecycle. The general characteristics of the SPACEL-technology is given for creating adaptive educational environments of the next generation.

  1. The Determinants of Students' Perceived Learning Outcomes and Satisfaction in University Online Education: An Update

    ERIC Educational Resources Information Center

    Eom, Sean B.; Ashill, Nicholas

    2016-01-01

    A stream of research over the past decade that identifies predictors of e-learning success suggests that there are several critical success factors (CSFs) that must be managed effectively to fully realize promise for e-learning. Grounded in constructivist learning theories, this study advances previous work on CSFs in university online education.…

  2. The evolutionary basis of human social learning

    PubMed Central

    Morgan, T. J. H.; Rendell, L. E.; Ehn, M.; Hoppitt, W.; Laland, K. N.

    2012-01-01

    Humans are characterized by an extreme dependence on culturally transmitted information. Such dependence requires the complex integration of social and asocial information to generate effective learning and decision making. Recent formal theory predicts that natural selection should favour adaptive learning strategies, but relevant empirical work is scarce and rarely examines multiple strategies or tasks. We tested nine hypotheses derived from theoretical models, running a series of experiments investigating factors affecting when and how humans use social information, and whether such behaviour is adaptive, across several computer-based tasks. The number of demonstrators, consensus among demonstrators, confidence of subjects, task difficulty, number of sessions, cost of asocial learning, subject performance and demonstrator performance all influenced subjects' use of social information, and did so adaptively. Our analysis provides strong support for the hypothesis that human social learning is regulated by adaptive learning rules. PMID:21795267

  3. The evolutionary basis of human social learning.

    PubMed

    Morgan, T J H; Rendell, L E; Ehn, M; Hoppitt, W; Laland, K N

    2012-02-22

    Humans are characterized by an extreme dependence on culturally transmitted information. Such dependence requires the complex integration of social and asocial information to generate effective learning and decision making. Recent formal theory predicts that natural selection should favour adaptive learning strategies, but relevant empirical work is scarce and rarely examines multiple strategies or tasks. We tested nine hypotheses derived from theoretical models, running a series of experiments investigating factors affecting when and how humans use social information, and whether such behaviour is adaptive, across several computer-based tasks. The number of demonstrators, consensus among demonstrators, confidence of subjects, task difficulty, number of sessions, cost of asocial learning, subject performance and demonstrator performance all influenced subjects' use of social information, and did so adaptively. Our analysis provides strong support for the hypothesis that human social learning is regulated by adaptive learning rules.

  4. Learning and knowing technology as lived experience in people with Alzheimer's disease: a phenomenological study.

    PubMed

    Rosenberg, Lena; Nygård, Louise

    2017-12-01

    Most research on learning in the field of dementia has studied teaching approaches, while little is known about learning as experienced and enacted by the people with dementia. The aim was to explore the lived experience of learning and maintaining knowledge related to technology among people with mild to moderate stage dementia. Seven persons with dementia were interviewed in-depth, and data were analyzed with a phenomenological approach. The participants positioned themselves on a continuum from 'Updating and expanding is not for me' to 'Updating and expanding is really for me'. They used different ways of learning in their everyday life - relying on one's habituated repertoire of actions, on other people or on technology itself, or belonging to a learning context. We have much to gain from better understanding of how people with dementia strive to learn and maintain their skills and knowledge related to technology. This is particularly important as they seem to use other approaches than those employed in current teaching methods. The necessity of learning stands out particularly when it comes to the interaction with the current multitude and ever-changing designs of technologies, including assistive technologies developed specifically to support people with dementia.

  5. Social Cognition as Reinforcement Learning: Feedback Modulates Emotion Inference.

    PubMed

    Zaki, Jamil; Kallman, Seth; Wimmer, G Elliott; Ochsner, Kevin; Shohamy, Daphna

    2016-09-01

    Neuroscientific studies of social cognition typically employ paradigms in which perceivers draw single-shot inferences about the internal states of strangers. Real-world social inference features much different parameters: People often encounter and learn about particular social targets (e.g., friends) over time and receive feedback about whether their inferences are correct or incorrect. Here, we examined this process and, more broadly, the intersection between social cognition and reinforcement learning. Perceivers were scanned using fMRI while repeatedly encountering three social targets who produced conflicting visual and verbal emotional cues. Perceivers guessed how targets felt and received feedback about whether they had guessed correctly. Visual cues reliably predicted one target's emotion, verbal cues predicted a second target's emotion, and neither reliably predicted the third target's emotion. Perceivers successfully used this information to update their judgments over time. Furthermore, trial-by-trial learning signals-estimated using two reinforcement learning models-tracked activity in ventral striatum and ventromedial pFC, structures associated with reinforcement learning, and regions associated with updating social impressions, including TPJ. These data suggest that learning about others' emotions, like other forms of feedback learning, relies on domain-general reinforcement mechanisms as well as domain-specific social information processing.

  6. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  7. Ten Tips for Engaging the Millennial Learner and Moving an Emergency Medicine Residency Curriculum into the 21st Century

    PubMed Central

    Toohey, Shannon L.; Wray, Alisa; Wiechmann, Warren; Lin, Michelle; Boysen-Osborn, Megan

    2016-01-01

    Introduction Millennial learners are changing the face of residency education because they place emphasis on technology with new styles and means of learning. While research on the most effective way to teach the millennial learner is lacking, programs should consider incorporating educational theories and multimedia design principles to update the curriculum for these new learners. The purpose of the study is to discuss strategies for updating an emergency medicine (EM) residency program’s curriculum to accommodate the modern learner. Discussion These 10 tips provide detailed examples and approaches to incorporate technology and learning theories into an EM curriculum to potentially enhance learning and engagement by residents. Conclusion While it is unclear whether technologies actually promote or enhance learning, millennials use these technologies. Identifying best practice, grounded by theory and active learning principles, may help learners receive quality, high-yield education. Future studies will need to evaluate the efficacy of these techniques to fully delineate best practices. PMID:27330668

  8. Ten Tips for Engaging the Millennial Learner and Moving an Emergency Medicine Residency Curriculum into the 21st Century.

    PubMed

    Toohey, Shannon L; Wray, Alisa; Wiechmann, Warren; Lin, Michelle; Boysen-Osborn, Megan

    2016-05-01

    Millennial learners are changing the face of residency education because they place emphasis on technology with new styles and means of learning. While research on the most effective way to teach the millennial learner is lacking, programs should consider incorporating educational theories and multimedia design principles to update the curriculum for these new learners. The purpose of the study is to discuss strategies for updating an emergency medicine (EM) residency program's curriculum to accommodate the modern learner. These 10 tips provide detailed examples and approaches to incorporate technology and learning theories into an EM curriculum to potentially enhance learning and engagement by residents. While it is unclear whether technologies actually promote or enhance learning, millennials use these technologies. Identifying best practice, grounded by theory and active learning principles, may help learners receive quality, high-yield education. Future studies will need to evaluate the efficacy of these techniques to fully delineate best practices.

  9. Predictive codes of familiarity and context during the perceptual learning of facial identities

    NASA Astrophysics Data System (ADS)

    Apps, Matthew A. J.; Tsakiris, Manos

    2013-11-01

    Face recognition is a key component of successful social behaviour. However, the computational processes that underpin perceptual learning and recognition as faces transition from unfamiliar to familiar are poorly understood. In predictive coding, learning occurs through prediction errors that update stimulus familiarity, but recognition is a function of both stimulus and contextual familiarity. Here we show that behavioural responses on a two-option face recognition task can be predicted by the level of contextual and facial familiarity in a computational model derived from predictive-coding principles. Using fMRI, we show that activity in the superior temporal sulcus varies with the contextual familiarity in the model, whereas activity in the fusiform face area covaries with the prediction error parameter that updated facial familiarity. Our results characterize the key computations underpinning the perceptual learning of faces, highlighting that the functional properties of face-processing areas conform to the principles of predictive coding.

  10. Closed-form expressions of some stochastic adapting equations for nonlinear adaptive activation function neurons.

    PubMed

    Fiori, Simone

    2003-12-01

    In recent work, we introduced nonlinear adaptive activation function (FAN) artificial neuron models, which learn their activation functions in an unsupervised way by information-theoretic adapting rules. We also applied networks of these neurons to some blind signal processing problems, such as independent component analysis and blind deconvolution. The aim of this letter is to study some fundamental aspects of FAN units' learning by investigating the properties of the associated learning differential equation systems.

  11. Frequencies of decision making and monitoring in adaptive resource management

    PubMed Central

    Johnson, Fred A.

    2017-01-01

    Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both). There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and discuss management implications and extensions. PMID:28800591

  12. Frequencies of decision making and monitoring in adaptive resource management

    USGS Publications Warehouse

    Williams, Byron K.; Johnson, Fred A.

    2017-01-01

    Adaptive management involves learning-oriented decision making in the presence of uncertainty about the responses of a resource system to management. It is implemented through an iterative sequence of decision making, monitoring and assessment of system responses, and incorporating what is learned into future decision making. Decision making at each point is informed by a value or objective function, for example total harvest anticipated over some time frame. The value function expresses the value associated with decisions, and it is influenced by system status as updated through monitoring. Often, decision making follows shortly after a monitoring event. However, it is certainly possible for the cadence of decision making to differ from that of monitoring. In this paper we consider different combinations of annual and biennial decision making, along with annual and biennial monitoring. With biennial decision making decisions are changed only every other year; with biennial monitoring field data are collected only every other year. Different cadences of decision making combine with annual and biennial monitoring to define 4 scenarios. Under each scenario we describe optimal valuations for active and passive adaptive decision making. We highlight patterns in valuation among scenarios, depending on the occurrence of monitoring and decision making events. Differences between years are tied to the fact that every other year a new decision can be made no matter what the scenario, and state information is available to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a decision is repeated or monitoring does not occur (or both). There are substantive differences in optimal values among the scenarios, as well as the optimal policies producing those values. Especially noteworthy is the influence of monitoring cadence on valuation in some years. We highlight patterns in policy and valuation among the scenarios, and discuss management implications and extensions.

  13. Diminished Neural Adaptation during Implicit Learning in Autism

    PubMed Central

    Schipul, Sarah E.; Just, Marcel Adam

    2015-01-01

    Neuroimaging studies have shown evidence of disrupted neural adaptation during learning in individuals with autism spectrum disorder (ASD) in several types of tasks, potentially stemming from frontal-posterior cortical underconnectivity (Schipul et al., 2012). The aim of the current study was to examine neural adaptations in an implicit learning task that entails participation of frontal and posterior regions. Sixteen high-functioning adults with ASD and sixteen neurotypical control participants were trained on and performed an implicit dot pattern prototype learning task in a functional magnetic resonance imaging (fMRI) session. During the preliminary exposure to the type of implicit prototype learning task later to be used in the scanner, the ASD participants took longer than the neurotypical group to learn the task, demonstrating altered implicit learning in ASD. After equating task structure learning, the two groups’ brain activation differed during their learning of a new prototype in the subsequent scanning session. The main findings indicated that neural adaptations in a distributed task network were reduced in the ASD group, relative to the neurotypical group, and were related to ASD symptom severity. Functional connectivity was reduced and did not change as much during learning for the ASD group, and was related to ASD symptom severity. These findings suggest that individuals with ASD show altered neural adaptations during learning, as seen in both activation and functional connectivity measures. This finding suggests why many real-world implicit learning situations may pose special challenges for ASD. PMID:26484826

  14. TH-E-201-02: Hands-On Physics Teaching of Residents in Diagnostic Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  15. TH-E-201-03: A Radiology Resident’s Perspectives of Physics Teaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, A.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  16. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.

    PubMed

    Mahmoudi, Babak; Pohlmeyer, Eric A; Prins, Noeline W; Geng, Shijia; Sanchez, Justin C

    2013-12-01

    Our goal was to design an adaptive neuroprosthetic controller that could learn the mapping from neural states to prosthetic actions and automatically adjust adaptation using only a binary evaluative feedback as a measure of desirability/undesirability of performance. Hebbian reinforcement learning (HRL) in a connectionist network was used for the design of the adaptive controller. The method combines the efficiency of supervised learning with the generality of reinforcement learning. The convergence properties of this approach were studied using both closed-loop control simulations and open-loop simulations that used primate neural data from robot-assisted reaching tasks. The HRL controller was able to perform classification and regression tasks using its episodic and sequential learning modes, respectively. In our experiments, the HRL controller quickly achieved convergence to an effective control policy, followed by robust performance. The controller also automatically stopped adapting the parameters after converging to a satisfactory control policy. Additionally, when the input neural vector was reorganized, the controller resumed adaptation to maintain performance. By estimating an evaluative feedback directly from the user, the HRL control algorithm may provide an efficient method for autonomous adaptation of neuroprosthetic systems. This method may enable the user to teach the controller the desired behavior using only a simple feedback signal.

  17. Cytopathology whole slide images and adaptive tutorials for postgraduate pathology trainees: a randomized crossover trial.

    PubMed

    Van Es, Simone L; Kumar, Rakesh K; Pryor, Wendy M; Salisbury, Elizabeth L; Velan, Gary M

    2015-09-01

    To determine whether cytopathology whole slide images and virtual microscopy adaptive tutorials aid learning by postgraduate trainees, we designed a randomized crossover trial to evaluate the quantitative and qualitative impact of whole slide images and virtual microscopy adaptive tutorials compared with traditional glass slide and textbook methods of learning cytopathology. Forty-three anatomical pathology registrars were recruited from Australia, New Zealand, and Malaysia. Online assessments were used to determine efficacy, whereas user experience and perceptions of efficiency were evaluated using online Likert scales and open-ended questions. Outcomes of online assessments indicated that, with respect to performance, learning with whole slide images and virtual microscopy adaptive tutorials was equivalent to using traditional methods. High-impact learning, efficiency, and equity of learning from virtual microscopy adaptive tutorials were strong themes identified in open-ended responses. Participants raised concern about the lack of z-axis capability in the cytopathology whole slide images, suggesting that delivery of z-stacked whole slide images online may be important for future educational development. In this trial, learning cytopathology with whole slide images and virtual microscopy adaptive tutorials was found to be as effective as and perceived as more efficient than learning from glass slides and textbooks. The use of whole slide images and virtual microscopy adaptive tutorials has the potential to provide equitable access to effective learning from teaching material of consistently high quality. It also has broader implications for continuing professional development and maintenance of competence and quality assurance in specialist practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Beyond adaptive-critic creative learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Liao, Xiaoqun; Cao, Ming; Hall, Ernest L.

    2001-10-01

    Intelligent industrial and mobile robots may be considered proven technology in structured environments. Teach programming and supervised learning methods permit solutions to a variety of applications. However, we believe that to extend the operation of these machines to more unstructured environments requires a new learning method. Both unsupervised learning and reinforcement learning are potential candidates for these new tasks. The adaptive critic method has been shown to provide useful approximations or even optimal control policies to non-linear systems. The purpose of this paper is to explore the use of new learning methods that goes beyond the adaptive critic method for unstructured environments. The adaptive critic is a form of reinforcement learning. A critic element provides only high level grading corrections to a cognition module that controls the action module. In the proposed system the critic's grades are modeled and forecasted, so that an anticipated set of sub-grades are available to the cognition model. The forecasting grades are interpolated and are available on the time scale needed by the action model. The success of the system is highly dependent on the accuracy of the forecasted grades and adaptability of the action module. Examples from the guidance of a mobile robot are provided to illustrate the method for simple line following and for the more complex navigation and control in an unstructured environment. The theory presented that is beyond the adaptive critic may be called creative theory. Creative theory is a form of learning that models the highest level of human learning - imagination. The application of the creative theory appears to not only be to mobile robots but also to many other forms of human endeavor such as educational learning and business forecasting. Reinforcement learning such as the adaptive critic may be applied to known problems to aid in the discovery of their solutions. The significance of creative theory is that it permits the discovery of the unknown problems, ones that are not yet recognized but may be critical to survival or success.

  19. Perceptual Learning of Time-Compressed Speech: More than Rapid Adaptation

    PubMed Central

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Background Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Methodology/Principal Findings Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10–14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Conclusions/Significance Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with the predictions of the Reverse Hierarchy Theory of perceptual learning and suggest constraints on the use of perceptual-learning regimens during second language acquisition. PMID:23056592

  20. Adaptive functioning in children with epilepsy and learning problems.

    PubMed

    Buelow, Janice M; Perkins, Susan M; Johnson, Cynthia S; Byars, Anna W; Fastenau, Philip S; Dunn, David W; Austin, Joan K

    2012-10-01

    In the study we describe adaptive functioning in children with epilepsy whose primary caregivers identified them as having learning problems. This was a cross-sectional study of 50 children with epilepsy and learning problems. Caregivers supplied information regarding the child's adaptive functioning and behavior problems. Children rated their self-concept and completed a battery of neuropsychological tests. Mean estimated IQ (PPVT-III) in the participant children was 72.8 (SD = 18.3). On average, children scored 2 standard deviations below the norm on the Vineland Adaptive Behavior Scale-II and this was true even for children with epilepsy who had estimated IQ in the normal range. In conclusion, children with epilepsy and learning problems had relatively low adaptive functioning scores and substantial neuropsychological and mental health problems. In epilepsy, adaptive behavior screening can be very informative and guide further evaluation and intervention, even in those children whose IQ is in the normal range.

Top