Science.gov

Sample records for upland peat soils

  1. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: spatial variation in DOC productivity.

    PubMed

    Yallop, A R; Clutterbuck, B

    2009-06-01

    The importance of soil storage in global carbon cycling is well recognised and factors leading to increased losses from this pool may act as a positive feedback mechanism in global warming. Upland peat soils are usually assumed to serve as carbon sinks, there is however increasing evidence of carbon loss from upland peat soils, and DOC concentrations in UK rivers have increased markedly over the past three decades. A number of drivers for increasing DOC release from peat soils have been proposed although many of these would not explain fine-scale variations in DOC release observed in many catchments. We examined the effect of land use and management on DOC production in upland peat catchments at two spatial scales within the UK. DOC concentration was measured in streams draining 50 small-scale catchments (b3 km2) in three discrete regions of the south Pennines and one area in the North Yorkshire Moors. Annual mean DOC concentration was also derived from water colour data recorded at water treatment works for seven larger scale catchments (1.5-20 km2) in the south Pennines. Soil type and land use/management in all catchments were characterised from NSRI digital soil data and ortho-corrected colour aerial imagery. Of the factors assessed, representing all combinations of soil type and land use together with catchment slope and area, the proportion of exposed peat surface resulting from new heather burning was consistently identified as the most significant predictor of variation in DOC concentration. This relationship held across all blanket peat catchments and scales. We propose that management activities are driving changes in edaphic conditions in upland peat to those more favourable for aerobic microbial activity and thus enhance peat decomposition leading to increased losses of carbon from these environments.

  2. Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects

    SciTech Connect

    Skyllberg, U.; Xia, K.; Bloom, P.R.; Nater, E.A.; Bleam, W.F.

    2000-06-01

    The binding of Hg{sup 2+} in organic matter of soils and waters controls the transport and transformations of Hg in terrestrial and aquatic ecosystems. The authors developed a competitive complexation method using the strong complexation of Hg{sup 2+} by Br{sup {minus}} for determining the Hg{sup 2+} binding strength in organic soils at native and elevated Hg concentrations. The distribution coefficients determined in KBr suspensions for sorption of native HG{sup 2+} to soil organic carbon (SOC) (K{sub soc}) are in the range of 10{sup 22} to 10{sup 23}. The K{sub soc} significantly decreased with increased additions of Hg{sup 2+} and with decreasing pH. Using data for reduced organic S concentrations determined by x-ray absorption near-edge structure spectroscopy (XANES), the authors calculated surface complex formation constants on the order of 10{sup 32} for a model site having acidity constants of mercaptoacetic acid. This value is in fair agreement with the tabulated value of 10{sup 345} for Hg{sup 2+} binding in mercaptoacetic acid. At native Hg concentrations, formation constants and K{sub soc} values were similar for different types of soil organic matter along transects from uplands into wetlands, despite varying concentration of Hg and reduced organic S. Their adsorption data are consistent with the conclusions from their previous extended x-ray absorption fine structure spectroscopy (EXAFS) study that in a humic acid and soil, Hg{sup 2+} ions bond in two-fold coordination involving one reduced S and one O or N.

  3. The effects of burning and sheep-grazing on water table depth and soil water quality in a upland peat

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Armstrong, A.; Adamson, J. K.

    2007-06-01

    SummaryRotational burning of heather to improve grazing and grouse breeding is a common management practice for upland catchments in the UK. However, the effects of such practices on hydrology and water quality are not well understood because the timescale of burning rotation is typically between 7 and 20 years thus requiring long-term experiments in order to resolve the effects. Furthermore, land management, such as changes in burning or grazing practices, has been proposed as a possible strategy for the remediation of the widespread increases in dissolved organic carbon (DOC) observed across the northern hemisphere. This study is based on a long-term experiment on the effect of different rotational burning cycles and grazing intensities on upland vegetation and aims to understand the effects of these management strategies on hydrology and water quality. The main outcomes are: The depth to water table in the soil showed significant differences between different burning rotations and grazing intensities. Depth to water table was greatest on plots where burning did not occur or for longer burning cycles where livestock had been excluded. The pH and conductivity of sampled soil water showed no significant difference between grazing treatments, with the presence of burning being the most important factor (frequency of the burning cycle was not important). The DOC content showed no significant difference between grazing treatments but showed a significant decrease with the presence of burning, though no direct relationship with the depth to water table could be found. Burn management explains only a small proportion of the variance in the composition of the DOC, rather the variation is dominated by the differences between days of sampling and seasonal variation. Therefore, this study suggests that land management controls hydrology and water quality through controlling the development of vegetation.

  4. Link between DOC in near surface peat and stream water in an upland catchment.

    PubMed

    Clark, Joanna M; Lane, Stuart N; Chapman, Pippa J; Adamson, John K

    2008-10-15

    Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

  5. The role of common upland vegetation on gaseous carbon cycling on UK blanket peat bogs

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Rowson, James; Worrall, Fred

    2010-05-01

    The most important control upon the carbon dynamics of any peatland is vegetation. However there is a gap in the literature with respect to comparative, in-situ studies of common upland vegetation types on peat bogs from a carbon cycling perspective. Where studies exist they tend to be narrowly focused (i.e. on one or two species or a small geographical area) or are laboratory manipulation studies. This study set out to compare gaseous CO2 exchange, in situ, across a broad (geographic) range of sites dominated by differing, common, upland vegetation types. The vegetation types studied were; Calluna vulgaris, Sphagnum spp., Eriophorum (E. angustifolium + E. vaginatum), Molinia caerulea and areas revegetated with a lawn grass mixture that was used for restoration (Festuca spp, Deschampsia spp. and Agrostis spp.).The primary aim of the study was to assess the carbon cycling potential of the common upland vegetation types, in order to produce clearer evidence as to which upland species produce the most efficient carbon sinks. The study was carried out in the South Pennines and Peak District of England. All readings were taken from upland-blanket peat bogs, as this type of bog accounts for 87% of the UK's peatlands, and therefore the results of this study can have the widest possible applicability to the rest of the UK's peat reserves. NEE and NER measurements were taken with a PP Systems EMG-4 infra-red gas analyzer. PAR and air temperature readings were taken along side water table and soil pore water samples from every site. Each site was visited monthly for at least 12 months and between 3-9 replicates were recorded per site. The results of this study will deal with the effects vegetation has on NER, GPP and NEE, focusing on which vegetation types make the most efficient gaseous carbon sinks. Moreover the effect of vegetation on water table levels and water quality will be discussed. Finally a consideration of how the age of Calluna vulgaris affects the parameters

  6. Linking pulses of atmospheric deposition to DOC release in an upland peat-covered catchment

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Burt, T. P.; Adamson, J. K.

    2008-12-01

    Changes in atmospheric deposition have been proposed as one possible explanation of the widespread increase in DOC concentration observed in many Northern Hemisphere catchments. This study uses detailed, long-term, monthly monitoring records of pH, conductivity SO4, and DOC in precipitation, soil water, and runoff chemistry from an upland peat-covered catchment in northern England. By deriving impulse transfer functions this study explores whether changes in deposition lead to significant changes in the occurrence of each component in the soil and runoff water; especially significant changes in DOC. The study shows that (1) impulses in the deposition of acidity have no significant effect upon pH or DOC in soil water or runoff. (2) DOC in soil water and runoff is responsive to impulses in SO4 and conductivity, but only when those impulses are changes in soil water chemistry and not when they are in atmospheric deposition. (3) The effects of changes in SO4 and/or conductivity can easily be overemphasized if memory effects are not accounted for, and their effect is limited to only 1 or 2 months after a severe drought. This study can support the view that changes in ionic strength can result in changes in DOC concentration in soil water or runoff, but the system studied is unresponsive to changes in atmospheric deposition. Impulses in soil water SO4 do not lead to increases in DOC concentrations, and so this mechanism does not provide an explanation for DOC increases.

  7. Degradation of drained peat soils in Belarus

    NASA Astrophysics Data System (ADS)

    Bambalov, N. N.

    2009-04-01

    According to Belarusian classification, the drained peat soils with peat layer less then 30 cm and containing organic substance less then 50% are degraded soils. Degraded peat soils made up 190.2 thousand hectares in 2001 from a total area of 1062,2 thousand hectares of drained peat soils for agriculture in Belarus, but the process of degradation is prolonging now and it is expected, that their area will be extended additionally on 12 % till 2020. The degradation of peat soils is most widespread in the region of Polesie, where the area of degraded soils makes up already several thousand hectares in some administrative districts. The degradation of peat soils takes place jet locally on the comparatively not big plots but on the very many places. There is the threat of joining up of the existing now spots of degraded soils in the near future, and the new spots of degraded soils will appear in a very big amount as well. The large tracts of land will appear in the nearest 20-30 years and may be earlier. The degradation of drained peat soils proceeds step by step, and three morphological groups of new soils are forming depending on degree of humification of organic matter, namely: raw humic, humus-fibrous and humus peat soils. The complicated soil complexes with many alternating soil plots containing organic substance both more than 50 % and from 2 till 50 % are forming within one field in result of degradation. For the reason given above a rather not uniform structure of soil cover with unsatisfactory micro relief, big differences of aquatic, thermal and nutritious regimes is forming on agricultural fields, that leads to the substantial decrease of their productivity. In this connection big expanses will require to the rearrangement of drainage systems and leveling of soil fertility within every such field. A fertility of drained peat soils with the depth of peat layer more then 1 m has been estimated as 69 points, with the depth of peat layer 0.3-0.5 m as 62 points

  8. Peat

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article looks at the U.S. peat market as of July 2013. Peat is produced from deposits of plant organic materials in wetlands and includes varieties such as reed-sedge, sphagnum moss, and humus. Use for peat include horticultural soil additives, filtration, and adsorbents. Other topics include effects of environmental protection regulations on peat extraction, competition from products such as coir, composted organic waste, and wood products, and peatland carbon sinks.

  9. Peat soil organic matter composition depth profiles - is the diplotelmic model real?

    NASA Astrophysics Data System (ADS)

    Boothroyd, Ian; Clay, Gareth; Moody, Catherine; Archer, Elaine; Dixon, Simon; Worrall, Fred

    2016-04-01

    Measures of bulk density and organic matter composition provide important insights into peat formation, degradation and hydrology as well as carbon and nutrient cycles, and indeed underpin the diplotelmic model of peat formation. This study presents soil core data from 23 upland and lowland peat sites across the United Kingdom. A series of soil cores up to ~3m depth were analysed for bulk density, gross heat value (energy content) and carbon, hydrogen, nitrogen and oxygen composition. Atomic ratios of C/N, H/C and O/C were used as indicators of the origin and quality of soil organic matter. Results show no consistent soil depth profiles evident across multiple sites, this challenges whether historical interpretations of peat soil formation and structure are appropriate.

  10. Complexity Analysis of Peat Soil Density Distribution

    NASA Astrophysics Data System (ADS)

    Sampurno, Joko; Diah Faryuni, Irfana; Dzar Eljabbar Latief, Fourier; Srigutomo, Wahyu

    2016-08-01

    The distributions of peat soil density have been identified using fractal analysis method. The study was conducted on 5 peat soil samples taken from a ground field in Pontianak, West Kalimantan, at the coordinates (0 ° 4 '2:27 "S, 109 ° 18' 48.59" E). In this study, we used micro computerized tomography (pCT Scanner) at 9.41 micro meter per pixel resolution under peat soil samples to provide 2-D high-resolution images L1-L5 (200 200 pixels) that were used to detect the distribution of peat soil density. The method for determining the fractal dimension and intercept was the 2-D Fourier analysis method. The method was used to obtain the log log-plot of magnitude with frequency. Fractal dimension was obtained from the straight regression line that interpolated the points in the interval with the largest coefficient determination. Intercept defined by the point of intersection on the -axis. The conclusion was that the distributions of peat soil density showing the fractal behaviour with the heterogeneity of the samples from the highest to the lowest were L5, L1, L4, L3 and L2. Meanwhile, the range of density values of the samples from the highest to the lowest was L3, L2, L4, L5 and L1. The study also concluded that the behaviour of the distribution of peat soil density was a weakly anisotropic.

  11. Influence of peat-bog fire on physical properties of peat-mull soils

    NASA Astrophysics Data System (ADS)

    Stabryla, J.; Lipka, K.

    2009-04-01

    In recent years in Poland disseminated the curse of grassland (either peat meadows) burning. Peat-bogs drained long time ago, where peat-mull soils occur are subjected on fire in particular, because they are often dried. After burned peat remain pits various depth and land irregularity. The aim of the work is morphological characteristics of soil profiles and comparison of chosen physical properties of peat-mull soils on former fire and adjacent area. Research was carried out on the mid-forest peat-bog Wielkie Bloto in Puszcza Niepolomicka. The method used in the work is routinely accepted in soil science. The results show that values of ash content, density and moisture are higher than the ones for soils of adjacent areas. In top stratum of post fire soils bulk density is lower in comparison with upper layers of adjacent soils. Contractility of soils degraded by fire is lower than for soils of adjacent areas.

  12. Correspondence between vegetation and soils in wetlands and nearby uplands

    USGS Publications Warehouse

    Scott, Michael L.; Slauson, William L.; Segelquist, Charles A.; Auble, Gregor T.

    1989-01-01

    The association between vegetation and soils from a geographically broad sampling of wetlands and adjoining uplands is reported for 38 hydric and 26 nonhydric soils, as recognized in the hydric soils list of the Soil Conservation Service. Wetlands represented in the study include estuaries, pitcher plant bogs, prairie depressional wetlands, and western riparian lands. The agreement between vegetation and soils is clear with few exceptions. In general, hydric soils support hydrophytic plant communities, and nonhydric soils support upland communities. Only 10% of the hydric soils sampled support upland communities and only 15% of the nonhydric soils support wetland communities. Exceptions to the correspondence between vegetation and soils are discussed; local hydrology, the transitional nature of some soils, and other determinants of wetland vegetation structure (e.g., salinity, disturbance) seem to account for many of the observed discrepancies. A method that simplifies the complexity of soils and vegetation cannot be expected to represent accurately all details of their interrelations.

  13. Metatranscriptomic analysis of arctic peat soil microbiota.

    PubMed

    Tveit, Alexander T; Urich, Tim; Svenning, Mette M

    2014-09-01

    Recent advances in meta-omics and particularly metatranscriptomic approaches have enabled detailed studies of the structure and function of microbial communities in many ecosystems. Molecular analyses of peat soils, ecosystems important to the global carbon balance, are still challenging due to the presence of coextracted substances that inhibit enzymes used in downstream applications. We sampled layers at different depths from two high-Arctic peat soils in Svalbard for metatranscriptome preparation. Here we show that enzyme inhibition in the preparation of metatranscriptomic libraries can be circumvented by linear amplification of diluted template RNA. A comparative analysis of mRNA-enriched and nonenriched metatranscriptomes showed that mRNA enrichment resulted in a 2-fold increase in the relative abundance of mRNA but biased the relative distribution of mRNA. The relative abundance of transcripts for cellulose degradation decreased with depth, while the transcripts for hemicellulose debranching increased, indicating that the polysaccharide composition of the peat was different in the deeper and older layers. Taxonomic annotation revealed that Actinobacteria and Bacteroidetes were the dominating polysaccharide decomposers. The relative abundances of 16S rRNA and mRNA transcripts of methanogenic Archaea increased substantially with depth. Acetoclastic methanogenesis was the dominating pathway, followed by methanogenesis from formate. The relative abundances of 16S rRNA and mRNA assigned to the methanotrophic Methylococcaceae, primarily Methylobacter, increased with depth. In conclusion, linear amplification of total RNA and deep sequencing constituted the preferred method for metatranscriptomic preparation to enable high-resolution functional and taxonomic analyses of the active microbiota in Arctic peat soil.

  14. Climate mitigation scenarios of drained peat soils

    NASA Astrophysics Data System (ADS)

    Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna

    2014-05-01

    The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC

  15. Aerobic and microaerophilic actinomycetes of typical agropeat and peat soils

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Gryadunova, A. A.; Pozdnyakov, A. I.; Zvyagintsev, D. G.

    2008-02-01

    A high number (from tens of thousands to millions of CFU/g of soil) of actinomycetes and a high diversity of genera were found in typical peat and agropeat soils. Agricultural use increases the number and diversity of the actinomycete complexes of the peat soils. In the peat soils, the actinomycete complex is represented by eight genera: Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, Saccharopolyspora, Saccharomonospora, and Microtetraspora. A considerable share of sporangial forms in the actinomycete complex of the peat soils not characteristic of the zonal soils was revealed. The number of actinomycetes that develop under aerobic conditions is smaller by 10-100 times than that of aerobic forms in the peat soils. Among the soil actinomycetes of the genera Streptomyces, Micromonospora, Streptosporangium, Actinomadura, Microbispora, and Microtetraspora, the microaerophilic forms were found; among the Saccharopolyspora and Saccharomonospora, no microaerophilic representatives were revealed.

  16. DOC export from an upland peat catchment in the Flow Country, northern Scotland

    NASA Astrophysics Data System (ADS)

    Vinjili, Shailaja; Robinson Robinson, Ruth; Arn Teh, Yit; Waldron, Susan; Singer, Michael

    2010-05-01

    Flow Country blanket bogs in northern Scotland are the most expansive in Europe covering an area of ~4000 km2, and they significantly impact the global carbon cycle because of their high rates of carbon production and storage, as well as their role in the transfer of carbon to oceans through rivers or greenhouse gas exchange (Moore et al., 1998). These upland areas are highly susceptible to climatic and landuse changes, and currently, large areas of previously drained and forested peatlands are being felled and blocked to increase the water table level and rejuvenate the peatlands (LIFE Peatlands Project 2001-2006; Holden et al., 2004). This study is examining the event-based export of dissolved and particulate organic carbon (DOC and POC) from one of the main upland Flow Country catchments that drains into the north-draining Halladale River. For a time-series of summer rainfall events, we have focussed particularly on a comparison of DOC/POC exports from three different land use areas in the catchment: forested plots, felled to waste (restoration) plots (felled between 2005-2007), and near-pristine bog sites. DOC concentrations have been measured using a combination of methods including TOC and EA analyses, and in situ absorbance measurements using a spectrophotometer (Thurman, 1985; Worrall et al., 2002). Our results show that the stream water draining the felled to waste site records the highest levels of DOC concentration (and DOC variability), and the near-pristine site has the lowest export rate of DOC (and lowest variability). All sites exhibit positive DOC responses to the flood hydrograph, and the near-pristine and forested sites have a similar maximum concentrations of DOC. The felled site concentrations are about 2times greater than the near-pristine and forested sites, and the non-linear response to flow reflects the hydrophobic nature of peats after a period of drought, and the lag time required for them to saturate. The integrated downstream DOC

  17. Methane emissions from upland forest soils and vegetation.

    PubMed

    Megonigal, J Patrick; Guenther, Alex B

    2008-04-01

    Most work on methane (CH(4)) emissions from natural ecosystems has focused on wetlands because they are hotspots of CH(4) production. Less attention has been directed toward upland ecosystems that cover far larger areas, but are assumed to be too dry to emit CH(4). Here we review CH(4) production and emissions in upland ecosystems, with attention to the influence of plant physiology on these processes in forests. Upland ecosystems are normally net sinks for atmospheric CH(4) because rates of CH(4) consumption exceed CH(4) production. Production of CH(4) in upland soils occurs in microsites and may be common in upland forest soils. Some forests switch from being CH(4) sinks to CH(4) sources depending on soil water content. Plant physiology influences CH(4) cycling by modifying the availability of electron donors and acceptors in forest soils. Plants are the ultimate source of organic carbon (electron donor) that microbes process into CH(4). The availability of O(2) (electron acceptor) is sensitive to changes in soil water content, and therefore, to transpiration rates. Recently, abiotic production of CH(4) from aerobic plant tissue was proposed, but has not yet been verified with independent data. If confirmed, this new source is likely to be a minor term in the global CH(4) budget, but important to quantify for purposes of greenhouse gas accounting. A variety of observations suggest that our understanding of CH(4) sources in upland systems is incomplete, particularly in tropical forests which are stronger sources then expected.

  18. Greenhouse Gas Fluxes from Forested Wetland and Upland Soils

    NASA Astrophysics Data System (ADS)

    Savage, K. E.; Davidson, E. A.

    2015-12-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important greenhouse gases. Soils are the dominant natural source of N2O, and have been shown to be a small sink under N-limited conditions. Wetlands are a significant natural source of CH4, and dry upland soils a natural CH4 sink. Soils release CO2 produced by both autotrophic (root) and heterotrophic (microbial) respiration processes. Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling soil aeration, and hence the balance between aerobic (predominantly CO2 producing) and anaerobic (both CO2 and CH4 producing) respiration. The production and consumption of N2O is also highly dependent on spatial and temporal variation in soil moisture. Howland forest, ME is a mosaic of well drained upland, wetland and small transitional upland/wetland soils which makes for a unique and challenging environment to measure the effects of soil moisture on the net exchange of these important greenhouse gases. To quantify the flux of CO2, CH4 and N2O from the Howland forest soils, we utilized a previously developed automated chamber system for measuring CO2 efflux (Licor 6252 IRGA) from soils, and configured it to run in-line with a new model quantum cascade laser (QCL) system which measures N2O and CH4 (Aerodyne model QC-TILDAS-CS). This system allowed for simultaneous, high frequency, continuous measurement of all three greenhouse gases. Fourteen sampling chambers were deployed in an upland soil (8), nearby wetland (3) and a transitional upland/wetland (3). Each chamber was measured every 90 minutes. Upland soils were consistent sources of CO2 and sinks for CH4, however the N2O fluxes were transient between sources and sinks. The wetland soils were consistent sources of high CH4 emissions, low CO2 emissions and a consistently small N2O sink. The transitional upland/wetland soil was a consistent source of CO2 but was much more transient between CH4 and N2O sources and

  19. Organic matter loss from cultivated peat soils in Sweden

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  20. The Influence of Dam Removal on Upland Soils

    NASA Astrophysics Data System (ADS)

    Lafrenz, M. D.; Bean, R. A.; Uthman, D.

    2011-12-01

    Driven largely by anadromous fish passage issues, several dams have been removed in the Pacific Northwest and several more are slated to be removed there and in other regions of North America. While much effort has gone into modeling and monitoring the geomorphic and ecologic response of stream channels to dam removal, little research has investigated changes in upland soils following inundation resulting from dam construction, and none had evaluated how these upland soils would respond to dewatering following dam removal. The removal of a relatively large dam - Marmot Dam on the Sandy River in Northwest Oregon, presented an opportunity to evaluate the effect of dewatering on what were formerly upland rather than floodplain soils. We compared the dewatered soils to downstream upland soils that had not been inundated and modified a "ripening" index, which had been developed to characterize dewatered estuary soils in Dutch polders, in order to evaluate the physical and chemical changes taking place in these soils. Two years following dam removal, the previously inundated soils have higher organic matter percentage, cation exchange capacity, and nitrogen levels than downstream soils that were not inundated; yet, this new riparian area is largely devoid of vegetation while the downstream soils maintain a thick (10 cm) O horizon. The carbon to nitrogen ratios (C:N) of upstream surface horizons are low (13:1) and increase markedly with soil depth (54:1); the C:N ratios of downstream soils are typical of other forested soils in this region (28:1 at the surface and 26:1 at depth). Prior to dam removal, it is likely that all upstream, inundated soils had high C:N ratios due to the persistent anaerobic conditions under the reservoir. Following dam removal, soil microbes needing to supplement their nitrogen consumption with soluble nitrogen likely out-competed higher plants for plant available nitrogen. The C:N ratio should have dropped to an equilibrium; this was not

  1. Paenibacillus alba nov., isolated from peat soil.

    PubMed

    Kim, Hyun-Sook; Srinivasan, Sathiyaraj; Lee, Sang-Seob

    2015-06-01

    A white-colored bacterial strain designated J20-6(T) was isolated from peat soil collected in Russia. Based on the 16S rRNA gene sequence similarities, the strain J20-6(T) belonged to the genus Paenibacillus, and the closest relatives were Paenibacillus frigoriresistens YIM 016(T) (98.2 %), Paenibacillus alginolyticus DSM 5050T(T) (97.9 %), Paenibacillus chondroitinus DSM 5051(T) (97.4 %), Paenibacillus pocheonensis Gsoil 1138(T) (96.9 %), and Paenibacillus pectinilyticus RCB-08(T) (96.6 %). Cells are gram-positive, motile, facultative aerobic, endospore forming, and rod shaped. The cell wall contains MK-7 as the predominant menaquinone and meso-diaminopimelic acid as the diagnostic diamino acid. The major fatty acid is anteiso-C15:0, and the major polar lipids are diphosphatidylglycerol and phosphatidyl-ethanolamine. The DNA G+C content of the strain J20-6(T) was 49.9 mol %. The phenotypic, chemotaxonomic, and phylogenetic data clearly suggest that the strain J20-6(T) belongs to the novel member of the genus Paenibacillus, for which the name Paenibacillus alba sp. nov., is proposed. The type strain is J20-6(T) (=KEMC 7302-005(T) = JCM 18165(T)).

  2. Peat

    USGS Publications Warehouse

    Jasinski, S.M.

    2006-01-01

    In 2005, peat was harvested in 15 US states. Florida, Michigan and Minnesota accounted for more than 80% of the US production. Reed-sedge was the dominant variety of peat harvested in the United States. More than 56% of all peat used in the US was imported from Canada. With the growing interest in gardening, landscaping related to home construction and golf courses, peat usage is expected to remain near current levels during the next several years.

  3. Thermal properties of degraded lowland peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Gnatowski, Tomasz

    2016-04-01

    Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat

  4. Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition.

    PubMed

    Turner, Benjamin L; Baxter, Robert; Whitton, Brian A

    2002-01-01

    Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (micromol para-nitrophenol g(-1) soil dry wt. h(-1)) ranged between 83.9 and 307 in a blanket peat (total carbon 318 mg g(-1). pH 3.9), 45.2-86.4 in an acid organic grassland soil (total carbon 354 mg g(-1), pH 3.7) and 10.4-21.1 in a calcareous grassland soil (total carbon 140 mg g(-1) pH 7.3). These are amongst the highest reported soil phosphomonoesterase activities and confirm the strong biological phosphorus limitation in this environment.

  5. Genesis of peat-bog soils in the northern taiga spruce forests of the Kola Peninsula

    SciTech Connect

    Nikonov, V.V.

    1981-01-01

    The characteristics of soil formation processes in the Peat-Bog soils of waterlogged spruce phytocenoses on the Kola Peninsula are investigated. It is found that the ash composition of the peat layer is determined primarily by the composition of the buried plant residues. The effect of the chemical composition of water feeding the peat bogs is determined. (Refs. 7).

  6. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci

  7. Effects of soil moisture content on upland nitrogen loss

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Xu, Xueting; Hao, Zengchao; Gao, Xiang

    2017-03-01

    In recent years, nitrogen (N) loss from upland fields has become one of the most important sources for agricultural nonpoint source (NPS) pollution. Understanding the relationships between soil hydrological processes and N loss in NPS pollution is vital for controlling the agricultural NPS pollution in upland fields. The objective of this study was to analyze the interaction of N loss with different moisture conditions in the freeze-thaw zone. The semi-distributed hydrologic model Soil and Water Assessment Tool (SWAT) was used in this study to simulate runoff and different forms of N loss, which provided a basis for analyzing characteristics of N loss in the study region. Results showed that the soil moisture content was an important factor affecting N loss in the study region. Different forms of N loss were also analyzed and it was found that N loss occurred primarily in the form of organic-N, which is likely due to the dominant role of erosion-induced pollution. This study provides useful information for preventing NPS pollution within the study region.

  8. Biological activity and biodegradation of organic matter in sandy peat soils

    SciTech Connect

    Zimenko, T.G.; Bambalov, N.N.; Belkovskii, V.I.; Gavrilkina, N V.

    1986-11-01

    Various techniques for sandy reclaimed peat soils act differently on the microbiochemical processes responsible for peat biodegradation. Mixing the upper layer of peat with sand increases its biogenicity and intensifies biodegradation. These processes are greatly inhibited by creating a mineral screen (sand without mixing) on the surface of the peat soil. Deep reclamational tilling of thin peatbogs, which produces from the underlying mineral substrate a thicker (20-25 cm) organic-mineral plowed layer, ensures a high biological activity and fertility of the new soil. Mixing the peat layer into the soil profile by tilling promotes its preservation from rapid biodegradation.

  9. Influence of fertilizers applied to a paddy-upland rotation on characteristics of soil organic carbon and humic acids.

    PubMed

    Chang Chien, S W; Wang, M C; Hsu, J H; Seshaiah, K

    2006-09-06

    The qualitative and quantitative characteristics of soil organic carbon (SOC) and related humic acids (HAs) extracted from the soils of field plots were investigated after 8 years of annual paddy (Oryza sativa L.) and upland maize (Zea mays L.) rotation with various fertilizations. Seven fertilization treatments were selected: Ck (no inputs); Chem (chemical fertilizer of NPK); Comp (swine compost); Comp + 33% of Chem N rate; Comp + 67% of Chem N rate; GM (legume green manure) + 33% of Chem N rate; and peat + 33% of Chem N rate. Organic and inorganic nitrogen inputs of six treatments were equivalent with respect of nitrogen content, but Comp, GM, and peat treatments were complemented with various amounts of inorganic N. After harvest of the eighth paddy crop, surface soil samples collected from the plots were subjected to soil characterizations and extraction of humic substances, which were used for chemical, spectroscopic (FTIR, 13C NMR, ESR, X-ray diffractometry), delta13C, and 14C dating analyses. The yields of HAs extracted from the seven treatments were significantly different. Treatment containing persistent organic compound such as the peat + 33% N treatment increased the humification process in topsoils and produced higher yield of HA. Spectroscopic analyses revealed that fertilization treatments changed the functional groups, alkyl C, crystalline characteristics, and delta13C ratios of HAs and turnover rate of SOC considerably. The SOC of the peat + 33% N treatment had the highest mean residence time of 3100 years. Various fertilizer treatments are correlated with turnover rate of SOC and related HAs, which are associated with concerned carbon sequestration as well as mitigation of CO2 emission in the soil environment.

  10. Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar.

    PubMed

    Park, Jin Hee; Lee, Seul-Ji; Lee, Myoung-Eun; Chung, Jae Woo

    2016-04-01

    There have been contradictory viewpoints whether soil amendments immobilize or mobilize heavy metals. Therefore, this study evaluated the mobility and bioavailability of Pb, Cu, and Cd in contaminated soil (1218 mg Pb per kg, 63.2 mg Cu per kg, 2.8 mg Cd per kg) amended with peat moss (0.22, 0.43, and 1.29% carbon ratio) and peat moss-derived biochar (0.38, 0.75, and 2.26% carbon ratio) at 0.5, 1, 3% levels. The more peat moss added, the stronger both mobility and bioavailability of Pb, Cu, and Cd would be. In contrast, the addition of peat moss-derived biochar significantly reduced both mobility and bioavailability of heavy metals through the coordination of metal electrons to C[double bond, length as m-dash]C (π-electron) bonds and increased pH. Maximum immobilization was observed in 3% peat moss-derived biochar treatment after 10 days of incubation, which was measured at 97.8%, 100%, and 77.2% for Pb, Cu, and Cd, respectively. Since peat moss and peat moss-derived biochar showed conflicting effectiveness in mobility and bioavailability of heavy metals, soil amendments should be carefully applied to soils for remediation purposes.

  11. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    PubMed

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  12. Hydrological modeling in swelling/shrinking peat soils

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Ferraris, S.; Putti, M.; Salandin, P.; Teatini, P.

    2006-06-01

    Peatlands respond to natural hydrologic cycles of precipitation and evapotranspiration with reversible deformations due to variations of water content in both the unsaturated and saturated zone. This phenomenon results in short-term vertical displacements of the soil surface that superimpose to the irreversible long-term subsidence naturally occurring in drained cropped peatlands because of bio-oxidation of the organic matter. These processes cause changes in the peat structure, in particular, soil density and void ratio. The consequential changes in the hydrological parameters need to be incorporated in water flow dynamical models. In this paper, we present a new constitutive relationship for the soil shrinkage characteristic (SSC) in peats by describing the variation of porosity with moisture content. This model, based on simple physical considerations, is valid for both anisotropic and isotropic three-dimensional peat deformations. The capability of the proposed SSC to accurately describe the deformation dynamics has been assessed by comparison against a set of laboratory experimental results recently published. The constitutive relationship has been implemented into a Richards' equation-based numerical code and applied for the simulation of the peat soil dynamics as observed in a peatland south of the Venice Lagoon, Italy, in an ad hoc field experiment where the relevant parameters are continuously measured. The modeling results match well a large set of field data encompassing a period of more than 50 days and demonstrate that the proposed approach allows for a reliable reproduction of the soil vertical displacement dynamics as well as the hydrological behavior in terms of, for example, water flow, moisture content, and suction.

  13. Uncertainty of upland soil carbon sink estimate for Finland

    NASA Astrophysics Data System (ADS)

    Lehtonen, Aleksi; Heikkinen, Juha

    2016-04-01

    Changes in the soil carbon stock of Finnish upland soils were quantified using forest inventory data, forest statistics, biomass models, litter turnover rates, and the Yasso07 soil model. Uncertainty in the estimated stock changes was assessed by combining model and sampling errors associated with the various data sources into variance-covariance matrices that allowed computationally efficient error propagation in the context of Yasso07 simulations. In sensitivity analysis, we found that the uncertainty increased drastically as a result of adding random year-to-year variation to the litter input. Such variation is smoothed out when using periodic inventory data with constant biomass models and turnover rates. Model errors (biomass, litter, understorey vegetation) and the systematic error of total drain had a marginal effect on the uncertainty regarding soil carbon stock change. Most of the uncertainty appears to be related to uncaptured annual variation in litter amounts. This is due to fact that variation in the slopes of litter input trends dictates the uncertainty of soil carbon stock change. If we assume that there is annual variation only in foliage and fine root litter rates and that this variation is less than 10% from year to year, then we can claim that Finnish upland forest soils have accumulated carbon during the first Kyoto period (2008-2012). The results of the study underline superiority of permanent sample plots compared to temporary ones, when soil model litter input trends have been estimated from forest inventory data. In addition, we also found that the use of IPCC guidelines leads to underestimation of the uncertainty of soil carbon stock change. This underestimation of the error results from the guidance to remove inter-annual variation from the model inputs, here illustrated with constant litter life spans. Model assumptions and model input estimation should be evaluated critically, when GHG-inventory results are used for policy planning

  14. Characterization of Soil Organic Matter in Peat Soil with Different Humification Levels using FTIR

    NASA Astrophysics Data System (ADS)

    Teong, I. T.; Felix, N. L. L.; Mohd, S.; Sulaeman, A.

    2016-07-01

    Peat soil is defined as an accumulation of the debris and vegetative under the water logging condition. Soil organic matter of peat soil was affected by the environmental, weather, types of vegetative. Peat soil was normally classified based on its level of humification. Humification can be defined as the transformation of numerous group of substances (proteins, carbohydrates, lipids, etc.) and individual molecules present in living organic matter into group of substances with similar properties (humic substances). During the peat transformation process, content of soil organic matter also will change. Hence, that is important to determine out the types of the organic compound. FTIR (Fourier Transform Infrared) is a machine which is used to differential soil organic matter by using infrared. Infrared is a types of low energy which can determine the organic minerals. Hence, FTIR can be suitable as an indicator on its level of humification. The main objective of this study is to identify an optimized method to characterization of the soil organic content in different level of humification. The case study areas which had been chosen for this study are Parit Sulong, Batu Pahat and UCTS, Sibu. Peat soil samples were taken by every 0.5 m depth until it reached the clay layer. However, the soil organic matter in different humification levels is not significant. FTIR is an indicator which is used to determine the types of soil, but it is unable to differentiate the soil organic matter in peat soil FTIR can determine different types of the soil based on different wave length. Generally, soil organic matter was found that it is not significant to the level of humification.

  15. Peat soil composition as indicator of plants growth environment

    NASA Astrophysics Data System (ADS)

    Noormets, M.; Tonutare, T.; Kauer, K.; Szajdak, L.; Kolli, R.

    2009-04-01

    Exhausted milled peat areas have been left behind as a result of decades-lasting intensive peat production in Estonia and Europe. According to different data there in Estonia is 10 000 - 15 000 ha of exhausted milled peat areas that should be vegetated. Restoration using Sphagnum species is most advantageous, as it creates ecological conditions closest to the natural succession towards a natural bog area. It is also thought that the large scale translocation of vegetation from intact bogs, as used in some Canadian restoration trials, is not applicable in most of European sites due to limited availability of suitable donor areas. Another possibility to reduce the CO2 emission in these areas is their use for cultivation of species that requires minimum agrotechnical measures exploitation. It is found by experiments that it is possible to establish on Vaccinium species for revegetation of exhausted milled peat areas. Several physiological activity of the plant is regulated by the number of phytohormones. These substances in low quantities move within the plant from a site of production to a site of action. Phytohormone, indole-3-acetic acid (IAA) is formed in soils from tryptophane by enzymatic conversion. This compound seems to play an important function in nature as result to its influence in regulation of plant growth and development. A principal feature of IAA is its ability to affect growth, development and health of plants. This compound activates root morphology and metabolic changes in the host plant. The physiological impact of this substance is involved in cell elongation, apical dominance, root initiation, parthenocarpy, abscission, callus formation and the respiration. The investigation areas are located in the county of Tartu (58˚ 22' N, 26˚ 43' E), in the southern part of Estonia. The soil of the experimental fields belongs according to the WRB soil classification, to the soils subgroups of Fibri-Dystric Histosols. The investigation areas were

  16. Is the blocking of drainage channels in upland peats an effective means of reducing DOC loss at the catchment scale?

    NASA Astrophysics Data System (ADS)

    Turner, Kate; Worrall, Fred

    2010-05-01

    Only 3% of the earths land surface is covered by peatland yet boreal and subarctic peatlands store approximately 15-30% of the World's soil carbon as peat (Limpens et al. 2008). In comparison British bogs store carbon equivalent to 20 years worth of national emissions. The loss of carbon from these areas in the form of dissolved organic carbon (DOC) is increasing and it is expected to have grown by up to 40% by 2018. Extensive drainage of UK peatlands has been associated with dehydration of the peat, an increase in water colour and a loss of carbon storage. It has been considered that the blocking of these drainage channels represents a means of peat restoration and a way of reducing DOC loss. This study aims to assess the effectiveness of this drain blocking at both an individual drain scale and at a larger catchment scale. Gibson et al. (2009) considered the effects of blocking at a solely individual drain scale finding that a 20% drop in DOC export was recorded post blocking however this decrease was due to a reduction in water yield rather than a reduction in DOC concentration with the concentration record showing no significant reduction. The effect of external parameters become more pronounced as the DOC record is examined at larger scales. The catchment is an open system and water chemistry will be influence by mixing with water from other sources. Also it is likely that at some point the drains will cut across slope leading to the flow of any highly coloured water down slope, bypassing the blockages, and entering the surface waters downstream. Degradation of DOC will occur naturally downstream due to the effects of light and microbial activity. There is, consequently, a need to examine the wider effects of drain blocking at a catchment scale to ensure that what is observed for one drain transfers to the whole catchment. A series of blocked and unblocked catchments were studied in Upper Teesdale, Northern England. Drain water samples were taken at least

  17. Peat

    USGS Publications Warehouse

    Apodaca, L.E.

    2011-01-01

    In 2010, domestic production of peat, excluding Alaska, was estimated to be 612 kt (674,600 st), compared with 609 kt (671,300 st) in 2009. In 2010, imports increased to 947 kt (1.04 million st), compared with 906 kt (998,600 st) in 2009. Exports were estimated to have decreased to 69 kt (76,000 st) in 2010. U.S. apparent consumption for 2010 was estimated to have increased to 1.5 Mt (1.65 million st). World production was estimated to be about 23 Mt (25 million st) in 2010, which is 8 percent lower than in 2009.

  18. Peat

    USGS Publications Warehouse

    Apodaca, L.E.

    2013-01-01

    In 2012, domestic production of peat, excluding Alaska, was estimated to be 560 kt (617,000 st), compared with 568 kt (626,000 st) in 2011. In 2012, imports decreased to 940 kt (1 million st) compared with 982 kt (1.1 million st) in 2011, and exports were estimated to have increased to 75 kt (82,600 st) in 2012. U.S. apparent consumption for 2012 was estimated to have remained the same as that of 2011. World production was estimated to be about 27 Mt (30 million st) in 2012, which was slightly higher than 2011.

  19. Peat

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    In 2011, domestic production of peat, excluding Alaska, was estimated to be 605 kt (667,000 st), compared with 628 kt (629,000 st) in 2010. In 2011, imports increased to 1.1. Mt (1.2 million st) compared with 947 kt (1 million st) in 2010, and exports were estimated to have decreased to 39 kt (43,000 st) in 2011. U.S. apparent consumption for 2011 was estimated to have increased to 1.6 Mt (1.7 million st). World production was estimated to be about 22 Mt (24 million st) in 2011, which was 6 percent lower than 2010.

  20. Peat

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    In 2009, domestic production of peat, excluding Alaska, was estimated to be 610 kt (672,000 st), compared with 615 kt (678,000 st) in 2008. In 2009, imports decreased to 906 kt (999,000 st) compared with 936 kt (1 million st) in 2008, and exports were estimated to have increased to 77 kt (85,000 st) in 2009. U.S. apparent consumption for 2009 was estimated to be about the same as in 2008. World production was estimated to be about 25 Mt (27.5 million st) in 2009, which is about the same as 2008.

  1. [Extraction of Cd by ramie from soils as affected by applications of chelators and peat].

    PubMed

    Shen, Li-Ping; Zong, Liang-Gang; Jiang, Pei; Liu, Wei-Xing; Jiang, Bo; Chen, Ya-Hua

    2009-09-15

    Pot experiments were performed to study the effectiveness of chelators (EDTA, citric acid) and peat in enhancing phyremediation of heavy metal Cd by ramie. The results showed that peat increased the ramie's biomass by improving soil's physical and chemical properties, and the relative yields of peat alone, chelators(EDTA, citric acid) combined with peat were 1.23, 1.13 and 1.41 respectively. So the combination of citric acid and peat was more useful for growth of the ramie. As far as improving Cd uptake was concerned, it seemed that the combination of chelators with peat significantly promoted Cd uptake by the plant, and the percent of changeable Cd in soil were 61.6% and 58.3% . In addition, it had better bioaccumulation effects to combine with chelators and peat, of which Cd bioaccumulation coefficients were 1.33 and 1.32, compared to 1.11, 1.11 and 1.05 in application of peat, EDTA and citric acid respectively. What's more, cadmium removal rates in soil were up to 1.13% and 1.22% respectively in applications of two kinds of chleators (EDTA, citric acid) combined with peat. Therefore, it had better effects of phytoremediation to accumulate more cadmium amounts by combining with citric acid and peat because of more biomass. In conclusion, the phytoremediation by ramie can be more effective when chelators and peat were combined and added to soils.

  2. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  3. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils

    NASA Astrophysics Data System (ADS)

    Ge, Tida; Wu, Xiaohong; Chen, Xiaojuan; Yuan, Hongzhao; Zou, Ziying; Li, Baozhen; Zhou, Ping; Liu, Shoulong; Tong, Chengli; Brookes, Phil; Wu, Jinshui

    2013-07-01

    Autotrophic microorganisms, which can fix atmospheric CO2 to synthesize organic carbon, are numerous and widespread in soils. However, the extent and the mechanism of CO2 fixation in soils remain poorly understood. We incubated five upland and five paddy soils from subtropical China in an enclosed, continuously 14CO2-labeled, atmosphere and measured 14CO2 incorporated into soil organic matter (SOC14) and microbial biomass (MBC14) after 110 days. The five upland soils supported dominant crops soils (maize, wheat, sweet potato, and rapeseed) in the region, while all paddy soils were cultivated in a regime consisting of permanently-flooded double-cropping rice cultivation. The upland and paddy soils represented typical soil types (fluvisols and ultisols) and three landforms (upland, hill, and low mountain), ranging in total carbon from low (<10 g kg-1 soil organic carbon) to medium (10-20 g kg-1) to high (>20 g kg-1). Substantial amounts of 14CO2 were fixed into SOC14 (mean 20.1 ± 7.1 mg C kg-1 in upland soil, 121.1 ± 6.4 mg C kg-1 in paddy soil) in illuminated soils (12 h light/12 h dark), whereas no 14C was fixed in soils incubated in continuous darkness. We concluded that the microbial CO2 fixation was almost entirely phototrophic rather than chemotrophic. The rate of SOC14 synthesis was significantly higher in paddy soils than in upland soils. The SOC14 comprised means of 0.15 ± 0.01% (upland) and 0.65 ± 0.03% (paddy) of SOC. The extent of 14C immobilized as MBC14 and that present as dissolved organic C (DOC14) differed between soil types, accounting for 15.69-38.76% and 5.54-18.37% in upland soils and 15.57-40.03% and 3.67-7.17% of SOC14 in paddy soils, respectively. The MBC14/MBC and DOC14/DOC were 1.76-5.70% and 1.69-5.17% in the upland soils and 4.23-28.73% and 5.65-14.30% in the paddy soils, respectively. Thus, the newly-incorporated C stimulated the dynamics of DOC and MBC more than the dynamics of SOC. The SOC14 and MBC14 concentrations were highly

  4. Legacy mercury and stoichiometry with C, N, and S in soil, pore water, and stream water across the upland-wetland interface: The influence of hydrogeologic setting

    NASA Astrophysics Data System (ADS)

    Demers, Jason D.; Yavitt, Joseph B.; Driscoll, Charles T.; Montesdeoca, Mario R.

    2013-06-01

    Mechanisms influencing retention, biogeochemical cycling, and release of legacy mercury within soils of forests and wetlands remain poorly understood. We quantified mercury pool size and stoichiometry with carbon, nitrogen, and sulfur across forest-wetland transects and among wetlands of different hydrogeologic settings in the Adirondack region of New York State. Average total mercury pool size in soils (to 50 cm depth) was greater in forests (17.5 mg/m2) than in wetlands (6.1 mg/m2; p < 0.010). The average mercury pool size (to 50 cm depth) in shallow-peat riparian wetlands (9.3 mg/m2) was greater than in deep-peat riparian (5.4 mg/m2; p = 0.099) or headwater wetlands (3.6 mg/m2; p = 0.046). Accumulation of mercury was enhanced at the forest-wetland interface. In mineral horizons of the forest soil and in shallow-peat riparian wetlands, mercury was positively correlated with carbon (r2 = 0.73-0.96) and nitrogen (r2 = 0.82-0.93), but not sulfur. In contrast, mercury and sulfur were strongly correlated in headwater wetland peat (r2 = 0.73). Dissolved mercury was correlated with dissolved organic carbon (DOC) in pore water and stream water of deep-peat and shallow-peat riparian wetlands (r2 = 0.46-0.73), but not in headwater wetland pore water. In headwater outlet streams, dissolved mercury was correlated with DOC (r2 = 0.62), but the slope was only one third that in riparian streams. Hydrogeologic setting influences decomposition processes, biogeochemical cycling of mercury, and hydrologic transport that in turn, govern the size and stoichiometry of mercury pools across the upland-wetland interface and among different wetland types. Ultimately, mobilization of legacy mercury into aquatic ecosystems from forest soils and wetlands likely depends upon decomposition dynamics and hydrologic flow paths.

  5. Global Change Simulations Affect Potential Methane Oxidation in Upland Soils

    NASA Astrophysics Data System (ADS)

    Blankinship, J. C.; Hungate, B. A.

    2004-12-01

    Atmospheric concentrations of methane (CH4) are higher now than they have ever been during the past 420,000 years. However, concentrations have remained stable since 1999. Emissions associated with livestock husbandry are unlikely to have changed, so some combination of reduced production in wetlands, more efficient capture by landfills, or increased consumption by biological CH4 oxidation in upland soils may be responsible. Methane oxidizing bacteria are ubiquitous in upland soils and little is known about how these bacteria respond to anthropogenic global change, and how they will influence - or already are influencing - the radiative balance of the atmosphere. Might ongoing and future global changes increase biological CH4 oxidation? Soils were sampled from two field experiments to assess changes in rates of CH4 oxidation in response to global change simulations. Potential activities of CH4 oxidizing bacterial communities were measured through laboratory incubations under optimal temperature, soil moisture, and atmospheric CH4 concentrations (~18 ppm, or 10x ambient). The ongoing 6-year multifactorial Jasper Ridge Global Change Experiment (JRGCE) simulates warming, elevated precipitation, elevated atmospheric CO2, elevated atmospheric N deposition, and increased wildfire frequency in an annual grassland in a Mediterranean-type climate in central California. The ongoing 1-year multifactorial Merriam Climate Change Experiment (MCCE) simulates warming, elevated precipitation, and reduced precipitation in four different types of ecosystems along an elevational gradient in a semi-arid climate in northern Arizona. The high desert grassland, pinyon-juniper woodland, ponderosa pine forest, and mixed conifer forest ecosystems range in annual precipitation from 100 to 1000 mm yr-1, and from productivity being strongly water limited to strongly temperature limited. Among JRGCE soils, elevated atmospheric CO2 increased potential CH4 oxidation rates (p=0.052) and wildfire

  6. Effects of peat fires on the characteristics of humic acid extracted from peat soil in Central Kalimantan, Indonesia.

    PubMed

    Yustiawati; Kihara, Yusuke; Sazawa, Kazuto; Kuramitz, Hideki; Kurasaki, Masaaki; Saito, Takeshi; Hosokawa, Toshiyuki; Syawal, M Suhaemi; Wulandari, Linda; Hendri I; Tanaka, Shunitz

    2015-02-01

    When peat forest fires happen, it leads to burn soil and also humic acids as a dominant organic matter contained in peat soil as well as the forest. The structure and properties of humic acids vary depending on their origin and environment, therefore the transformation of humic acid is also diverse. The impacts of the peat fires on peat soil from Central Kalimantan, Indonesia were investigated through the characterization of humic acids, extracted from soil in burnt and unburnt sites. The characterization of humic acids was performed by elemental composition, functional groups, molecular weight by HPSEC, pyrolysate compounds by pyrolysis-GC/MS, fluorescence spectrum by 3DEEM spectrofluorometer, and thermogravimetry. The elemental composition of each humic substance indicated that the value of H/C and O/C of humic acids from burnt sites were lower than that from unburnt sites. The molecular weight of humic acids from burnt sites was also lower than that from unburnt sites. Pyrolysate compounds of humic acids from unburnt sites differed from those of humic acids from burnt soil. The heating experiment showed that burning process caused the significant change in the properties of humic acids such as increasing the aromaticity and decreasing the molecular weight.

  7. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review

    PubMed Central

    Lv, Teng-Fei; Chen, Yong; Westby, Anthony P.; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  8. Actinomycetal complexes in drained peat soils of the taiga zone upon pyrogenic succession

    NASA Astrophysics Data System (ADS)

    Zenova, G. M.; Glushkova, N. A.; Bannikov, M. V.; Shvarov, A. P.; Pozdnyakov, A. I.; Zvyagintsev, D. G.

    2008-04-01

    The number and diversity of actinomycetes in peat soils vary in dependence on the stage of pyrogenic succession. In the cultivated peat soil, the number of actinomycetes after fires decreases by three-four times, mainly at the expense of acidophilic and neutrophilic groups. An increase in the number of mycelial prokaryotes (at the expense of alkaliphilic forms) is seen on the fifth year of functioning of the pyrogenic peat soil. The species diversity of streptomycetes in peat soils also decreases after fires. An increase in the range of streptomycetal species at the expense of neutrophilic and alkaliphilic forms takes place on the fifth year of the pyrogenic succession. Parameters of the actinomycetal complex—the population density, species composition, and ecological features—are the criteria whose changes allow us to judge the state of peat soils in the course of their pyrogenic succession.

  9. Dissolved organic carbon in soil solution of peat-moorsh soils on Kuwasy Mire

    NASA Astrophysics Data System (ADS)

    Jaszczyński, J.; Sapek, A.

    2009-04-01

    Key words: peat-moorsh soils, soil solution, dissolved organic carbon (DOC), temperature of soil, redox potential. The objective this study was the dissolved organic carbon concentration (DOC) in soil solution on the background of soil temperature, moisture and redox potential. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Research point was placed on a low peat soil of 110 cm depth managed as extensive grassland. The soil was recognized as peat-moorsh with the second degree of the moorshing process (with 20 cm of moorsh layer). The ceramic suction cups were installed in three replications at 30 cm depth of soil profile. The soil solution was continuously sampled by pomp of the automatic field station. The successive samples comprised of solution collected at the intervals of 21 days. Simultaneously, at the 20, 30 and 40 cm soil depths the measurements of temperature and determination of soil moisture and redox potential were made automatically. The mean twenty-four hours data were collected. The concentrations of DOC were determined by means of the flow colorimeter using the Skalar standard methods. Presented observations were made in 2001-2006. Mean DOC concentration in soil solution was 66 mg.dm-3 within all research period. A significant positive correlation between studied compound concentration and temperature of soil at 30 cm depth was observed; (correlation coefficient - r=0.55, number of samples - n=87). The highest DOC concentrations were observed during the season from July to October, when also a lower ground water level occurred. The DOC concentration in soil solution showed as well a significant correlation with the soil redox potential at 20 cm level. On this depth of describing soil profile a frontier layer between moorshing layer and peat has been existed. This layer is the potentially most active in the respect to

  10. Correlations Between Chemical Weathering and Soil Production in Soil-Mantled, Upland Landscapes, Central California

    NASA Astrophysics Data System (ADS)

    Burke, B. C.

    2002-12-01

    Quantifying and understanding the coupling between chemical and mechanical weathering in soil-mantled, upland hillslope development is an area of active research. Recent work on hillslope development from soil-mantled, upland landscapes has observed that maximal soil production from bedrock occurs within a narrow range of soil depths. Here we present initial results from an extensive field and laboratory investigation seeking to quantitatively link the degree of chemical weathering in bedrock-derived soils and underlying saprolite to the rate of soil production from the same saprolite. We dug twenty-three soil pits of varying depths into a convex hillslope near Mount Vision, Point Reyes National Seashore, California. Pits were dug manually to refusal or to the saprolite-soil interfaces. We sampled soil at regular intervals for short-lived isotope analyses and saprolite from just below the soil-saprolite interface. The saprolite samples underwent analyses for trace metals and labile oxides by inductively coupled plasma-optical emissions spectrometry and x-ray diffraction. A high-resolution topographic survey and previous work quantifying soil production rates with cosmogenic nuclides allows us to connect transport processes with chemical weathering rates. Saprolite bulk density and other field parameters were measured for volumetric strain analysis. We used the Chemical Index of Alteration (CIA) (Kirkwood and Nesbitt, 1992) to quantify the degree of chemical weathering in both unweathering bedrock and weathered saprolite. Initial results indicate relative enrichment of resistant trace metals such as zircon at shallow sample depths. We find that zirconium at the soil-saprolite boundary is on average 35% less weathered than the saprolite in the 150 cm. beneath the boundary. Weathering at the soil-saprolite boundary as defined by the CIA is 50% more weathered than the parent material. CIA values for unweathered and weathered material agree well with previous published

  11. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Utami, S. R.; Marxen, A.; Mangelsdorf, K.; Bauersachs, T.; Schwark, L.

    2015-10-01

    Insufficient knowledge of the composition and variation of isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) in agricultural soils exists, despite of the potential effect of different management types (e.g. soil/water and redox conditions, cultivated plants) on GDGT distribution. Here, we determined the influence of different soil management types on the GDGT composition in paddy (flooded) and adjacent upland (non-flooded) soils, and if available also forest, bushland and marsh soils. To compare the local effects on GDGT distribution patterns, we collected comparable soil samples in various locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general upland soil had higher crenarchaeol contents than paddy soil, which on the contrary was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio was 3-27 times higher in paddy soil and indicates the enhanced presence of methanogenic archaea, which were additionally linked to the number of rice cultivation cycles per year (higher number of cycles was coupled with an increase in the ratio). The TEX86 values were 1.3 times higher in upland, bushland and forest soils than in paddy soils. In all soils brGDGT predominated over iGDGTs, with the relative abundance of brGDGTs increasing from subtropical to tropical soils. Higher BIT values in paddy soils compared to upland soils together with higher BIT values in soil from subtropical climates indicate effects on the amounts of brGDGT through differences in management as well as climatic zones. In acidic soil CBT values correlated well with soil pH. In neutral to alkaline soils, however, no apparent correlation but an offset between paddy and upland managed soils was detected, which may suggest that soil

  12. Changes in Flow and Transport Patterns in Fen Peat as a Result of Soil Degradation

    NASA Astrophysics Data System (ADS)

    Liu, Haojie; Janssen, Manon; Lennartz, Bernd

    2016-04-01

    The preferential movement of water and transport of substances play an important role in soils and are not yet fully understood especially in degraded peat soils. In this study, we aimed at deducing changes in flow and transport patterns in the course of soil degradation as resulting from peat drainage, using titanium dioxide (TiO2) as a dye tracer. The dye tracer experiments were conducted on columns of eight types of differently degraded peat soils from three sites taken both in vertical and horizontal directions. The titanium dioxide suspension (average particle size of 0.3 μm; 10 g l-1) was applied in a pulse of 40 mm to each soil core. Twenty-four hours after the application of the tracer, cross sections of the soil cores were prepared for photo documentation. In addition, the saturated hydraulic conductivity (Ks) was determined. Preferential flow occurred in all investigated peat types. From the stained soil structural elements, we concluded that undecomposed plant remains are the major preferential flow pathways in less degraded peat. For more strongly degraded peat, bio-pores, such as root and earthworm channels, operated as the major transport domain. Results show that Ks and the effective pore network in less degraded peat soils are anisotropic. With increasing peat degradation, the Ks and cross section of effective pore network decreased. The results also indicate a strong positive relationship between Ks and number of macropores as well as pore continuity. Hence, we conclude that changes in flow and transport pathways as well as Ks with an increasing peat degradation are due to the disintegration of the peat forming plant material and decrement of number and continuity of macropores after drainage.

  13. Effect of soil properties and hydrology on archaeal community composition in three temperate grasslands on peat.

    PubMed

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-08-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4 ) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark. We used terminal restriction fragment length polymorphism (T-RFLP) fingerprinting and clone libraries to characterize the soils' archaeal community composition to gain a better understanding of relationships between peat properties and land use, respectively, and CH4 dynamics. Samples were taken at three different depths and at four different seasons. Archaeal community composition varied considerably between the three peatlands and, to a certain degree, also with peat depth, but seemed to be quite stable at individual sampling depths throughout the year. Archaeal community composition was mainly linked to soil pH. No methanogens were detected at one fen site with soil pH ranging from 3.2 to 4.4. The methanogenic community of the bog (soil pH 3.9-4.6) was dominated by hydrogenotrophs, whereas the second fen site (soil pH 5.0-5.3) comprised both aceticlastic and hydrogenotrophic methanogens. Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling.

  14. [Effect of long-term fertilization on crop yield and soil fertility of upland red soil].

    PubMed

    Kong, Hongmin; He, Yuanqiu; Wu, Dafu; Li, Chengliang

    2004-05-01

    The studies on the influence of long-term fertilization on crop yield and soil fertility of upland red soil showed that P was the most deficient in this soil, and hence, phosphorus fertilizer had the best effect on crop yield. Applying lime and microelements could not significantly increase the crop yield. The concentration of P and K in peanut could be increased if fertilizer was applied, indicating that the supply level of soil nutrients decided the nutrient concentration in plants. The reconstructive efficiency of soil available nutrient pool was dependent on the surplus or deficit of soil nutrients. When the surplus of nutrients was 1 kg x hm(-2), N was increased by 0.6-6.2 mg x kg(-1), P was increased by 0.20-0.28 mg x kg(-1), and K was increased by 1.1-8.5 mg x kg(-1). The changing in results was due to the loss of N and K from soil. The nutrient bupplying capability of soil was the quantity of the nutrients which soil could provide by weathering to satisfy the plant growth. The amount of P fixed by soil was 43.5 kg x hm(-2) x yr(-1), and that of N and K provided by soil was 40.5 and 55 x kg x hm(-2) x yr(-1), respectively.

  15. Effect of Soil Stratification on the Development and Migration of Headcuts in Upland Concentrated Flows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to examine the effect of vertical stratification in soil erodibility on the development and migration of steady-state headcut scour holes in upland concentrated flows typical of agricultural fields. Packed soil beds with a pre-formed step were subjected to identical simul...

  16. Analysing flow patterns in degraded peat soils using TiO2 dye

    NASA Astrophysics Data System (ADS)

    Liu, Haojie; Lennartz, Bernd

    2014-05-01

    Dye tracing is a valuable method for studying the flow patterns in soils. However, limited information is available on water flow and solute transport pathways in dark colored peat soils because the frequently used Brilliant Blue FCF dye does not visibly stain the soil. In this study, we were aiming at testing the suitability of Titanium dioxide (TiO2) as a dye tracer for dark peat soils. The objectives were to quantify the physical properties of different degraded peat soils and visualize the flow patterns. Soil samples were collected from two low-lying fen sites, where the top soil was highly degraded, while lower horizons were less decomposed. Dye tracer experiments were conducted at both sites by applying a TiO2 suspension (10 g/l) with a pulse of 40 mm. Soil profiles were prepared for photo documentation the following day. It was found that the physical and hydraulic properties of peat were significantly influenced by the degree of peat decomposition and degradation. Higher decomposed and degraded peat soils had a higher bulk density, lower organic matter content and lower porosity. Moreover, higher decomposition and degradation resulted in a lower saturated hydraulic conductivity as long as investigated samples originated from the same site. In addition, degraded peat soils showed less anisotropy than un-degraded peat. It turned out that TiO2 is a suitable dye tracer to visualize the flow paths in peat soils. Although dye patterns differed within the same plot and between different plots, most of the flow patterns indicated a preferential flow situation. The distribution of TiO2 in the soil profile, as analyzed from 5 by 5 cm grid cells, compared to the distribution of bromide, which was applied along with the dye confirming the suitability of the dye tracer. Un-decomposed plant structures, such as wood branches and leaves, were identified as the major preferential flow path in un-degraded peat. For degraded peat, bio-pores, such as root and earthworm

  17. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    NASA Astrophysics Data System (ADS)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  18. Dynamics of organic carbon stock of Estonian arable and grassland peat soils

    NASA Astrophysics Data System (ADS)

    Kauer, Karin; Tammik, Kerttu; Penu, Priit

    2016-04-01

    Peat soils represent globally a major reserve of soil organic carbon (SOC). Estimation of changes in SOC stocks is important for understanding soil carbon sequestration and dynamics of greenhouse gas emissions. The aim of this study was to estimate the SOC stock of Estonian agricultural peat soils and SOC stock change depending on land use type (arable land and long-term grasslands (over 5 years)). The soils were classified as Histosols according to WRB classification. Generally the arable land was used for growing cereals, oilseed rape, legumes and used as ley in crop rotation. The main technique of soil cultivation was ploughing. During 2002-2015 the soil samples of 0-20 cm soil layer (one average soil sample per 1-5 ha) were collected. The SOC content was measured by NIRS method. The SOC stock was calculated by assuming that soil mean bulk density is 0.3 g cm-3. The SOC stock change in arable land was estimated during 3-13 years (N=91) and in grassland 4-13 year (N=163). The average SOC content of peat soils varied from 150.6 to 549.0 mg g-1. The initial SOC stock of arable land was 271.3 t ha-1 and of grassland 269.3 t ha-1. The SOC stock declined in arable peat soils faster (-2.57 t ha-1 y-1) compared to the changes in grassland peat soils (-0.67 t ha-1 y-1). According to the length of the study period the SOC stock change per year varied from -5.14 to 6.64 t ha-1 y-1 in grasslands and from -14.78 to 0.83 t ha-1 y-1 in arable land, although there was no clear relationship between the SOC stock change and the length of the study period. More detailed information about the properties of agricultural land and land use history is needed to analyse the causes of the SOC stock changes in agricultural peat soils. However, from the current research we can conclude that the SOC stock of arable and grassland peat soils is declining during the cultivation. These decreases are important to specify when considering the role of peat soils in atmospheric greenhouse gas

  19. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes.

    PubMed

    Chen, Yanhui; Xie, Tuanhui; Liang, Qiaofeng; Liu, Mengjiao; Zhao, Mingliu; Wang, Mingkuang; Wang, Guo

    2016-04-01

    In paddy soils, amendments and moisture play important role in the immobilization of cadmium (Cd). The effects of applying lime, peat, and a combination of both on soil Eh, pH, and Cd availability in contaminated soils were investigated under wetted (80 ± 5 % of water holding capacity) and flooded (completely submerged) conditions. In wetted soils, there was little change in Eh, compared to flooded soils where Eh reduced rapidly. Amendments of lime only or in a mixture with peat increased soil pH to different degrees, depending on the lime application rate. However, peat addition only slightly affected soil pH. The decreased Cd availability in flooded soils was related to submergence duration and was significantly lower than that in wetted soils after 14 days. Liming wetted and flooded soils decreased exchangeable Cd and increased carbonates or Fe-Mn oxides bound fractions, while peat addition transformed Cd from carbonates to organic matter bound fractions. The combined application of peat and lime generally showed better inhibitory effects on the availability of Cd than separately application of lime or peat. Higher application rates of lime, peat, or their mixture were more effective at reducing Cd contamination in flooded soil. This indicates that application of peat and lime mixture under flooded conditions was most effective for in situ remediation of Cd-contaminated soils. Further studies are required to assess the long-term effectiveness of the peat and lime mixture on Cd availability in paddy soils.

  20. Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang

    PubMed Central

    Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah

    2016-01-01

    Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species. PMID:27019679

  1. Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang.

    PubMed

    Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah

    2016-02-01

    Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species.

  2. Fate of 14C-labeled dissolved organic matter in paddy and upland soils in responding to moisture.

    PubMed

    Chen, Xiangbi; Wang, Aihua; Li, Yang; Hu, Lening; Zheng, Hua; He, Xunyang; Ge, Tida; Wu, Jinshui; Kuzyakov, Yakov; Su, Yirong

    2014-08-01

    Soil organic matter (SOM) content in paddy soils is higher than that in upland soils in tropical and subtropical China. The dissolved organic matter (DOM) concentration, however, is lower in paddy soils. We hypothesize that soil moisture strongly controls the fate of DOM, and thereby leads to differences between the two agricultural soils under contrasting management regimens. A 100-day incubation experiment was conducted to trace the fate and biodegradability of DOM in paddy and upland soils under three moisture levels: 45%, 75%, and 105% of the water holding capacity (WHC). (14)C labeled DOM, extracted from the (14)C labeled rice plant material, was incubated in paddy and upland soils, and the mineralization to (14)CO2 and incorporation into microbial biomass were analyzed. Labile and refractory components of the initial (14)C labeled DOM and their respective half-lives were calculated by a double exponential model. During incubation, the mineralization of the initial (14)C labeled DOM in the paddy soils was more affected by moisture than in the upland soils. The amount of (14)C incorporated into the microbial biomass (2.4-11.0% of the initial DOM-(14)C activity) was less affected by moisture in the paddy soils than in the upland soils. At any of the moisture levels, 1) the mineralization of DOM to (14)CO2 within 100 days was 1.2-2.1-fold higher in the paddy soils (41.9-60.0% of the initial DOM-(14)C activity) than in the upland soils (28.7-35.7%), 2) (14)C activity remaining in solution was significantly lower in the paddy soils than in the upland soils, and 3) (14)C activity remaining in the same agricultural soil solution was not significantly different among the three moisture levels after 20 days. Therefore, moisture strongly controls DOM fate, but moisture was not the key factor in determining the lower DOM in the paddy soils than in the upland soils. The UV absorbance of DOM at 280 nm indicates less aromaticity of DOM from the paddy soils than from the

  3. Soil carbon dioxide emissions from a rubber plantation on tropical peat.

    PubMed

    Wakhid, Nur; Hirano, Takashi; Okimoto, Yosuke; Nurzakiah, Siti; Nursyamsi, Dedi

    2017-03-01

    Land-use change in tropical peatland potentially results in a large amount of carbon dioxide (CO2) emissions owing to drainage, which lowers groundwater level (GWL) and consequently enhances oxidative peat decomposition. However, field information on carbon balance is lacking for rubber plantations, which are expanding into Indonesia's peatlands. To assess soil CO2 emissions from an eight-year-old rubber plantation established on peat after compaction, soil CO2 efflux was measured monthly using a closed chamber system from December 2014 to December 2015, in which a strong El Niño event occurred, and consequently GWL lowered deeply. Total soil respiration (SR) and oxidative peat decomposition (PD) were separately quantified by trenching. In addition, peat surface elevation was measured to determine annual subsidence along with GWL. With GWL, SR showed a negative logarithmic relationship (p<0.01), whereas PD showed a strong negative linearity (p<0.001). Using the significant relationships, annual SR and PD were calculated from hourly GWL data to be 3293±1039 and 1408±214gCm(-2)yr(-1) (mean±1 standard deviation), respectively. PD accounted for 43% of SR on an annual basis. SR showed no significant difference between near and far positions from rubber trees (p>0.05). Peat surface elevation varied seasonally in almost parallel with GWL. After correcting for GWL difference, annual total subsidence was determined at 5.64±3.20 and 5.96±0.43cmyr(-1) outside and inside the trenching, respectively. Annual subsidence only through peat oxidation that was calculated from the annual PD, peat bulk density and peat carbon content was 1.50cmyr(-1). As a result, oxidative peat decomposition accounted for 25% of total subsidence (5.96cmyr(-1)) on average on an annual basis. The contribution of peat oxidation was lower than those of previous studies probably because of compaction through land preparation.

  4. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    NASA Astrophysics Data System (ADS)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  5. Variations in soil microbial community structure induced by the conversion from paddy fields to upland fields

    NASA Astrophysics Data System (ADS)

    Dai, X.

    2015-12-01

    Land-use conversion is an important factor influencing the carbon and nitrogen gas exchange between land and atmosphere, and soil microorganisms is main driver of soil carbon and nitrogen gas production. Understanding the effect of land-use conversion on soil microbial communities and its influencing factor is important for greenhouse gas emission reduction and soil organic carbon and nitrogen sequestration and stability. The influence of land use conversion on soil process was undergoing a dynamic change, but little research has been done to understand the effect on soil microbial communities during the initial years after land conversion. In the study, the influences of land-use conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems on soil physical and chemical properties, and microbial community structure was studied after two years of the conversion in southern China. The results showed that land use conversion significantly changed soil properties, microbial communities and biomass. Soil pH significantly decreased by 0.50 and 0.52 after conversion to MM and SP, respectively. Soil TN and NH4-N also significantly decreased by 9%-15% and 60% after conversion to upland fields, respectively. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly. The ng g-1 soil concentration of monounsaturated chain PLFAs 16:1ω7c and 18:1ω9t were significantly higher at paddy fields than at upland fields. No significant differences in soil properties, microbial communities and biomass were found between conversed MM and SP. Our results indicated that land use conversion, not crop type conversed had a significant effects on soil properties and microbial communities at the initial of land conversion. And soil pH was the key factor regulating the variations in soil microbial community structure after land use conversion from paddy to upland fields.

  6. Macronutrient concentration in plant parts of cotton fertilized with broiler Litter in a marginal upland Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effectiveness of surface-applied unincorporated litter relative to conventional inorganic fertilizers under no-till or conventional-till cotton (Gossypium hirsutum L.) production systems and the magnitude of litter benefit reduction associated with lack of incorporation in the upland soils of the so...

  7. Nutrient dynamics from broiler litter applied to no-till cotton in an upland soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface-applying broiler litter to a no-till cotton field increases the potential for loss of manure nutrients from the fields in runoff events and volitization of the NH4-N. An experiment was conducted on an upland Atwood silt loam soil (fine-silty, mixed, thermic Typic Paleududalfs) at the Pontoto...

  8. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    Rice paddies constitute almost a fifth of global cropland and provide more than half of the world's population with staple food. At the same time, they are a major source of methane and therewith significantly contribute to the current warming of Earth's atmosphere. Despite their apparent importance in the cycling of carbon and other elements, however, the microorganisms thriving in rice paddies are insufficiently characterized with respect to their biomolecules. Hardly any information exists on human-induced alteration of biomolecules from natural microbial communities in paddy soils through varying management types (affecting, e.g., soil or water redox conditions, cultivated plants). Here, we determined the influence of different land use types on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs), which serve as molecular indicators for microbial community structures, in rice paddy (periodically flooded) and adjacent upland (non-flooded) soils and, for further comparison, forest, bushland and marsh soils. To differentiate local effects on GDGT distribution patterns, we collected soil samples in locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general, upland soil had higher crenarchaeol contents than paddy soil, which by contrast was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio, indicating the enhanced presence of methanogenic archaea, was 3-27 times higher in paddy soils compared to other soils and increased with the number of rice cultivation cycles per year. The index of tetraethers consisting of 86 carbons (TEX86) values were 1.3 times higher in upland, bushland and forest soils than in paddy soils, potentially due to differences in soil temperature. In all soils br

  9. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation.

    PubMed

    Sangok, Faustina E; Maie, Nagamitsu; Melling, Lulie; Watanabe, Akira

    2017-06-01

    To understand the variations in the decomposability of tropical peat soil following deforestation for an oil palm plantation, a field incubation experiment was conducted in Sarawak, Malaysia. Peat soils collected from three types of primary forest, namely Mixed Peat Swamp (MPS; Gonystylus-Dactylocladus-Neoscrotechinia association), Alan Batu (ABt; Shorea albida-Gonstylus-Strenonurus association), and Alan Bunga (ABg; Shorea albida association), were packed in polyvinyl chloride pipes and installed in an oil palm plantation. Carbon dioxide (CO2) and methane (CH4) fluxes from soil were monthly measured for 3years. Environmental variables including soil temperature, soil moisture content, and groundwater table were also monitored. The pH, loss on ignition, and total carbon (C) content were similar among the three soils, while total N content was larger in the MPS than in the ABg soils. Based on (13)C nuclear magnetic resonance (NMR) spectroscopy, C composition of the MPS and ABg soils was characterized by the largest proportion of C present as alkyl C and O-alkyl C, respectively. The C composition of the ABt soil was intermediate between the MPS and ABg soils. The CO2 fluxes from the three soils ranged from 78 to 625mgCm(-2)h(-1) with a negative correlation to groundwater level. The CH4 fluxes ranged from -67 to 653μgCm(-2)h(-1). Both total CO2 and CH4 fluxes were larger in the order ABg>ABt>MPS (P<0.05). Annual rate of peat decomposition as was estimated from cumulative C loss differed up to 2 times, and the rate constant in exponential decay model was 0.033y(-1) for the MPS soil and 0.066y(-1) for the ABg soil. The field incubation results of the three forest peat soils seem to reflect the difference in the labile organic matter content, represented by polysaccharides.

  10. Field-tracing approach to determine flow velocity and hydraulic conductivity in saturated peat soils

    SciTech Connect

    Gafni, A.

    1986-01-01

    A tracing methodology based on the point dilution concept was developed to quantify groundwater velocities in saturated peat soils. Groundwater velocity was measured in four different peatlands. The steepest hydraulic gradient and the dominant direction of groundwater flow were determined for each peatland. The hydraulic conductivity (K) of selected peat layers was estimated from measured groundwater velocity and hydraulic gradient using Darcy's equation. The effective porosity of three peat layers was determined using the pressure plate technique. The estimated hydraulic parameters of one of the bags were further evaluated by analyzing a rainfall-runoff event that exhibited groundwater discharge.

  11. Predicting the impact of anaerobic microsites on soil organic matter mineralization rates in upland soils

    NASA Astrophysics Data System (ADS)

    Gee, K. E.; Keiluweit, M.; Denney, A.; Fendorf, S. E.

    2015-12-01

    Soils are a crucial component of the global carbon (C) cycle, representing a highly dynamic and large reservoir of C stored as soil organic matter (SOM). An important control on SOM residence time is microbial mineralization. While the impact of climactic and site-specific constraints on SOM mineralization rates are recognized, the role of oxygen limitations remains elusive. If oxygen consumption (via heterotrophic respiration) outpaces supply (via diffusion), anaerobic microsites can occur even within seemingly well-aerated upland soils. Under anaerobic conditions, SOM mineralization rates are expected to be slower due to metabolic constraints on microbial C oxidation. Process-based C cycling models have begun to incorporate the inhibiting effect of oxygen limitations by estimating anaerobic pore volume. However, such model predictions still lack experimental validation and research on environmental controls thus far has largely been focused on soil moisture. Here we aimed to determine the extent of anaerobic microsites within seemingly well-aerated upland soils experimentally and identify whether texture, SOM content, and microbial biomass can act as useful predictors in modeling frameworks. To this end, we monitored oxygen dynamics in soils spanning natural and artificial gradients in texture, SOM content and microbial biomass. Anaerobic microsites was visualized using a planar optode imaging system. Oxygen consumption rates were determined using gas chromatography, while oxygen diffusion rates were estimated based on porosity and pore-size distribution quantified by x-ray microtomography. Our results show that bulk oxygen concentrations ranged from 70% to as low as 20% saturation. However, all soils showed substantial micro-scale variability in oxygen concentrations, leading to the formation of anaerobic microsites even at modest moisture content. The extent of anaerobic microsites correlated with an overall reduction in SOM mineralization rates, and depended

  12. Actinomadura rayongensis sp. nov., isolated from peat swamp forest soil.

    PubMed

    Phongsopitanun, Wongsakorn; Tanasupawat, Somboon; Suwanborirux, Khanit; Ohkuma, Moriya; Kudo, Takuji

    2015-03-01

    A novel actinomycete strain RY35-68(T), isolated from a peat swamp forest soil sample in Rayong Province, Thailand, was characterized using a polyphasic approach. The strain belonged to the genus Actinomadura based on morphological and chemotaxonomic characteristics. Cell-wall analysis revealed the presence of meso-diaminopimelic acid and N-acetylmuramic acid in the peptidoglycan layer. The diagnostic sugar in whole-cell hydrolysates was identified as madurose. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The major cellular fatty acids were C16 : 0 and iso-C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. The genomic DNA G+C content was 73.7 mol%. On the basis of 16S rRNA gene sequence similarity analysis, strain RY35-68(T) was closely related to the species Actinomadura atramentaria JCM 6250(T) (97.5 %). The value of DNA-DNA relatedness between strain RY35-68(T) and A. atramentaria JCM 6250(T) was 37.6-42.6 %. On the basis of its phenotypic characteristics and these results mentioned, this strain could be distinguished from the closely related type strain and represents a novel species of the genus Actinomadura, for which the name Actinomadura rayongensis sp. nov. (type strain RY35-68(T) = JCM 19830(T) = TISTR 2211(T) = PCU 332(T)) is proposed.

  13. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    PubMed

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  14. Carbon leaching from tropical peat soils and consequences for carbon balances

    NASA Astrophysics Data System (ADS)

    Rixen, Tim; Baum, Antje; Wit, Francisca; Samiaji, Joko

    2016-07-01

    Drainage and deforestation turned Southeast (SE) Asian peat soils into a globally important CO2 source, because both processes accelerate peat decomposition. Carbon losses through soil leaching have so far not been quantified and the underlying processes have hardly been studied. In this study, we use results derived from nine expeditions to six Sumatran rivers and a mixing model to determine leaching processes in tropical peat soils, which are heavily disturbed by drainage and deforestation. Here we show that a reduced evapotranspiration and the resulting increased freshwater discharge in addition to the supply of labile leaf litter produced by re-growing secondary forests increase leaching of carbon by ~200%. Enhanced freshwater fluxes and leaching of labile leaf litter from secondary vegetation appear to contribute 38% and 62% to the total increase, respectively. Decomposition of leached labile DOC can lead to hypoxic conditions in rivers draining disturbed peatlands. Leaching of the more refractory DOC from peat is an irrecoverable loss of soil that threatens the stability of peat-fringed coasts in SE Asia.

  15. Soil water flow dynamics in a managed cutover peat field, Quebec: Field and laboratory investigations

    NASA Astrophysics Data System (ADS)

    Schlotzhauer, Susanne M.; Price, Jonathan S.

    1999-12-01

    In this paper concerned with soil water dynamics in a managed cutover peat field, the microscale hydrological processes and parameters governing water flow and storage through variably saturated peat are investigated. An open water ditch-reservoir enhanced wetting of adjacent cutover peat, maintaining the water table depth above 43 cm during the summer, surface soil moisture above 45%, and water tension in the surface layer above -45 mbar. Desaturation of pores was noted in the -2 and -10 cm depths, but at -30 and -50 cm a decrease in moisture content of several percent was associated with compression of the peat as the water table dropped. Air entry occurred only at pressures below -15 mbar. Seasonal subsidence resulted in cumulative vertical displacement in excess of 10 cm during the study period. Typical settlements in the peat ranged between 11 and 23% of the lowering of the water table. Considerable hysteresis was observed, and vertical displacement was 5 times greater in response to water loss, compared to rewetting. The specific storage (Ss) in the 180 cm thick deposit averaged 9.4 × 10-4 cm-1 during drying periods but averaged only 2.6 × 10-4 cm-1 on rewetting.Ss was more important than specific yield (Sy) in the overall aquifer storativity. Transient hydraulic properties resulted from the shifting soil structure. The increase in peat bulk density caused by drying increased the water retention capacity and decreased hydraulic conductivity. Mean saturated hydraulic conductivity was 15 cm d-1 and decreased 2 orders of magnitude as the degree of saturation dropped from 1 to 0.4. The horizontal/vertical anisotropy ratio was 4. The changing surface elevation in response to seasonal subsidence had a profound influence on the nature of the storage changes and hydraulic parameters of the peat soil.

  16. Soil quality assessment for peat-mineral mix cover soil used in oil sands reclamation.

    PubMed

    Ojekanmi, A A; Chang, S X

    2014-09-01

    A soil quality (SQ) assessment and rating framework that is quantitative, iterative, and adaptable, with justifiable weighting for quality scores, is required for evaluating site-specific SQ at land reclamation sites. Such a framework needs to identify the minimum dataset that reflects the current knowledge regarding relationships between SQ indicators and relevant measures of ecosystem performance. Our objective was to develop nonlinear scoring functions for assessing the impact on SQ of peat-mineral mix (PMM) used as a cover soil at land reclamation sites. Soil functional indicators affected by PMM were extracted from existing databases and correlated with soil organic carbon (SOC). Based on defined objectives for SQ assessment, indicators with significant correlation ( < 0.05) to SOC were selected, normalized, and fitted to sigmoid functions using nonlinear regression procedure to establish SQ functions (SQFs) that can analyze changes in field capacity, permanent wilting point, soil nitrogen, and cation exchange capacity of PMM using SOC as input parameter. Application of the SQFs to an independent dataset produced ratings with mean differences similar to the treatment effects of mixing three levels of peat and mineral soil. These results show that derived ratings and weighing factors using SOC reflect the relationship between PMM treatment and other SQ indicators. Applying the developed SQFs to a long-term soil monitoring dataset shows that an increase or decrease in SOC from 10 to 20 g kg causes a significant change in SQ. This identifies the need for further nutrient and moisture management of PMM to support long-term SQ development in land reclamation.

  17. [Influences of biochar and nitrogen fertilizer on soil nematode assemblage of upland red soil].

    PubMed

    Lu, Yan-yan; Wang, Ming-wei; Chen, Xiao-vun; Liu, Man-qiang; Chen, Xiao-min; Cheng, Yan-hong; Huang, Qian-ru; Hu, Feng

    2016-01-01

    The use of biochar as soil remediation amendment has received more and more concerns, but little attention has been paid to its effect on soil fauna. Based on the field experiment in an upland red soil, we studied the influences of different application rates of biochar (0, 10, 20, 30, 40 t · hm⁻²) and nitrogen fertilizer (60, 90, 120 kg N · hm⁻²) on soil basic properties and nematode assemblages during drought and wet periods. Our results showed that the biochar amendment significantly affect soil moisture and pH regardless of drought or wet period. With the increasing of biochar application, soil pH significantly increased, while soil moisture increased first and then decreased. Soil microbial properties (microbial biomass C, microbial biomass N, microbial biomass C/N, basal respiration) were also significantly affected by the application of biochar and N fertilizer. Low doses of biochar could stimulate the microbial activity, while high doses depressed microbial activity. For example, averaged across different N application rates, biochar amendment at less than 30 t · hm⁻² could increase microbial activity in the drought and wet periods. Besides, the effects of biochar also depended on wet or drought period. When the biochar application rate higher than 30 t · hm⁻², the microbial biomass C was significantly higher in the drought period than the control, but no differences were observed in the wet period. On the contrary, microbial biomass N showed a reverse pattern. Dissolved organic matter and mineral N were affected by biochar and N fertilizer significantly in the drought period, however, in the wet period they were only affected by N fertilizer rather than biochar. There was significant interaction between biochar and N fertilizer on soil nematode abundance and nematode trophic composition independent of sampling period. Combined high doses of both biochar and N fertilization promoted soil nematode abundance. Moreover, the biochar amendment

  18. Soil erosion on upland areas by rainfall and overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion in agricultural watersheds is a systemic problem that has plagued mankind ever since the practice of agriculture began some 9,000 years ago. It is a worldwide problem, the severity of which varies from location to location depending on weather, soil type, topography, cropping practices,...

  19. Letter from Galo Jackson Final Comments on November 2012 Draft ofthe Remedial Investigation Report fpr Operable Unit 3-Upland Soils

    EPA Pesticide Factsheets

    Letter from Galo Jackson contains the Final Comments on November 2012 Draft ofthe Remedial Investigation Report for Operable Unit 3-Upland Soils: LCP Chemical National Priorities List Site, Brunswick, Glynn County, GA.

  20. The effects of soil horizons and faunal excrement on bacterial distribution in an upland grassland soil.

    PubMed

    Bruneau, Patricia M C; Davidson, Donald A; Grieve, Ian C; Young, Iain M; Nunan, Naoise

    2005-03-01

    The density and spatial location of bacteria were investigated within different horizons of an upland grassland soil before and after a liming treatment to increase the numbers of large soil fauna. Bacterial cells were located by image analysis of stained thin sections and densities calculated from these data. Excrement from macro- and meso-fauna was identified using micromorphology and the densities of bacteria on specific areas of excrement measured by image analysis. There were significant differences among horizons in the density of bacterial cells, with the minimum density found in the horizon with least evidence of earthworm activity, but no difference in density between the organic H and organo-mineral Ah horizons. Soil improvement by liming significantly increased bacterial densities in all three horizons, with the greatest increase found in the horizon with the smallest density before liming. There were no differences in bacterial density between areas dominated by excrement from earthworms and excrement from enchytraeids, although densities in both areas were significantly increased by liming. Variability in bacterial density at spatial scales of less than 1 mm was linked to the occurrence of excrement. Bacterial densities within areas of both types of excrement were significantly greater than those in the surrounding soil. However, the frequency distribution of the ratios of density in excrement to that in the soil was bimodal, with a majority of occurrences having a ratio near 1 and only some 20-30% having a much larger ratio. These variations can probably be explained by variations in the age of the excrement and its suitability as a substrate.

  1. High Potential for Iron Reduction in Upland Soils from Diverse Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Yang, W. H.; Liptzin, D.

    2014-12-01

    Changes in the redox state of iron (Fe) can be coupled to the biogeochemical cycling of carbon (C), nitrogen, and phosphorus. The importance of Fe in catalyzing redox-driven biogeochemical cycling has been underappreciated in terrestrial ecosystems because they are not typically thought of as anaerobic environments. However, upland soils can experience anaerobic conditions following rainfall events or in microsites of high biological oxygen consumption. Measurements of Fe reduction rates in soils are difficult to compare among studies from different ecosystems, so we used the same assay to quantify potential Fe reduction in soils from upland environments (annual grassland, drained peatland pasture, and a rainforest) that varied in poorly crystalline Fe and total C. We slurried the soils and incubated them in a glovebox with a dinitrogen headspace. To evaluate the role of C availability in potential Fe reduction, we added sodium acetate daily at rates up to 0.6 mg C/g soil/d. We measured methane (CH4) production, acid- extractable Fe(II), citrate-ascorbate extractable Fe oxides, and pH over 5 days to determine the timing and magnitude of Fe reduction. In relatively dry soils (< 20 % gravimetric soil moisture), Fe reduction began after one day of anaerobic incubation as slurries, but all of the soils demonstrated high Fe reduction potential. On day 3, Fe reduction rates for the 0.05 mg C/g soil/d treatment were 1535 ± 51 μg Fe(III) g-1 d-1 in the annual grassland soil, 1205 ± 42 μg Fe(III) g-1 d-1 in the drained peatland soil, and 826 ± 54 μg Fe(III) g-1 d-1 in the rainforest soil. This contrasts with the trend in poorly crystalline Fe oxide pools across the sites: 3.87 ± 0.06 μg Fe(III) g-1 in the annual grassland, 7.49 μg Fe(III) g-1 in the drained peatland, and 20.84 ± 0.19 μg Fe(III) g-1 in the rainforest soil. Across all sites, small C additions (< 0.05 mg C/g soil/day) increased Fe reduction rates while larger C additions decreased Fe reduction. Iron

  2. Gamma ray attenuation in the soils of Northern Ireland, with special reference to peat.

    PubMed

    Beamish, David

    2013-01-01

    This study considers gamma ray attenuation in relation to the soils and bedrock of Northern Ireland using simple theory and data from a high resolution airborne survey. The bedrock is considered as a source of radiogenic material acting as parent to the soil. Attenuation in the near-surface is then controlled by water content in conjunction with the porosity and density of the soil cover. The Total Count radiometric data together with 1:250 k mapping of the soils and bedrock of Northern Ireland are used to perform statistical analyses emphasising the nature of the low count behaviour. Estimations of the bedrock response characteristics are improved by excluding areas covered by low count soils (organic/humic). Equally, estimations of soil response characteristics are improved by excluding areas underlain by low count bedrock (basalt). When the spatial characteristics of the soil-classified data are examined in detail, the low values form spatially-coherent zones (natural clusters) that can potentially be interpreted as areas of increased water content for each soil type. As predicted by theory, the highest attenuation factors are associated with the three organic soil types studied here. Peat, in particular, is remarkably skewed to low count behaviour in its radiometric response. Two detailed studies of blanket bogs reveal the extent to which peat may be mapped by its radiometric response while the intra-peat variations in the observed response may indicate areas of thin cover together with areas of increased water content.

  3. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms.

    PubMed

    Tveit, Alexander; Schwacke, Rainer; Svenning, Mette M; Urich, Tim

    2013-02-01

    A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH(4) and CO(2) in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH(4)-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO(2) sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH(4) emissions will critically depend on the response of the methanotrophic bacteria.

  4. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms

    PubMed Central

    Tveit, Alexander; Schwacke, Rainer; Svenning, Mette M; Urich, Tim

    2013-01-01

    A substantial part of the Earths' soil organic carbon (SOC) is stored in Arctic permafrost peatlands, which represent large potential sources for increased emissions of the greenhouse gases CH4 and CO2 in a warming climate. The microbial communities and their genetic repertoire involved in the breakdown and mineralisation of SOC in these soils are, however, poorly understood. In this study, we applied a combined metagenomic and metatranscriptomic approach on two Arctic peat soils to investigate the identity and the gene pool of the microbiota driving the SOC degradation in the seasonally thawed active layers. A large and diverse set of genes encoding plant polymer-degrading enzymes was found, comparable to microbiotas from temperate and subtropical soils. This indicates that the metabolic potential for SOC degradation in Arctic peat is not different from that of other climatic zones. The majority of these genes were assigned to three bacterial phyla, Actinobacteria, Verrucomicrobia and Bacteroidetes. Anaerobic metabolic pathways and the fraction of methanogenic archaea increased with peat depth, evident for a gradual transition from aerobic to anaerobic lifestyles. A population of CH4-oxidising bacteria closely related to Methylobacter tundripaludum was the dominating active group of methanotrophs. Based on the in-depth characterisation of the microbes and their genes, we conclude that these Arctic peat soils will turn into CO2 sources owing to increased active layer depth and prolonged growing season. However, the extent of future CH4 emissions will critically depend on the response of the methanotrophic bacteria. PMID:22955232

  5. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.

    PubMed

    Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo

    2015-01-01

    The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils.

  6. Impact of drainage on wettability of fen peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Szatyłowicz, J.; Brandyk, T.

    2009-04-01

    High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat

  7. Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario

    NASA Astrophysics Data System (ADS)

    Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.

    2010-05-01

    Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the

  8. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra.

    PubMed

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-05-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3-4) in the Russian discontinuous permafrost tundra are nitrate-rich 'hotspots' of nitrous oxide (N(2)O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N(2)O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N(2)O production of both soils in anoxic microcosms, indicating denitrification as the source of N(2)O. Up to 500 and 10 μM nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N(2)O g(DW)(-1) h(-1), for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N(2)O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK(-1) copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N(2)O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities.

  9. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra

    PubMed Central

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-01-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities. PMID:22134649

  10. Effects of copper and aluminum on the adsorption of sulfathiazole and tylosin on peat and soil.

    PubMed

    Pei, Zhiguo; Yang, Shuang; Li, Lingyun; Li, Chunmei; Zhang, Shuzhen; Shan, Xiao-quan; Wen, Bei; Guo, Baoyuan

    2014-01-01

    Effects of copper (Cu) and aluminum (Al) on the adsorption of sulfathiazole (STZ) and tylosin (T) to peat and soil were investigated using a batch equilibration method. Results show that Cu suppressed STZ adsorption onto peat and soil at pH < 5.0 because of the electrostatic competition, while increased STZ adsorption at pH > 5.0 due to the formation of STZ-Cu complexes and/or Cu bridge. In contrast, Al only decreased STZ adsorption at pH < 6.0, and exerted slight effect on STZ adsorption at >6.0. As for T, both Cu and Al suppressed its adsorption over the entire pH range owing to three reasons: 1) electrostatic competition between Cu/Al and T(+); 2) Cu/Al adsorption made the soil and peat surface less negatively charged, which was unfavorable for T(+) adsorption; 3) the shrunken pore size of peat and soil retarded the diffusion of large-sized T into these pores.

  11. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota

    EPA Science Inventory

    We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; an...

  12. Applied K fertilizer use efficiency in pineapples grown on a tropical peat soil under residues removal.

    PubMed

    Ahmed, Osumanu H; Ahmad, Husni M H; Musa, Hanafi M; Rahim, Anuar A; Rastan, Syed Omar S

    2005-01-21

    In Malaysia, pineapples are grown on peat soils, but most K fertilizer recommendations do not take into account K loss through leaching. The objective of this study was to determine applied K use efficiency under a conventionally recommended fertilization regime in pineapple cultivation with residues removal. Results showed that K recovery from applied K fertilizer in pineapple cultivation on tropical peat soil was low, estimated at 28%. At a depth of 0-10 cm, there was a sharp decrease of soil total K, exchangeable K, and soil solution K days after planting (DAP) for plots with K fertilizer. This decline continued until the end of the study. Soil total, exchangeable, and solution K at the end of the study were generally lower than prior values before the study. There was no significant accumulation of K at depths of 10-25 and 25-45 cm. However, K concentrations throughout the study period were generally lower or equal to their initial status in the soil indicating leaching of the applied K and partly explained the low K recovery. Potassium losses through leaching in pineapple cultivation on tropical peat soils need to be considered in fertilizer recommendations for efficient recovery of applied K.

  13. Estimating soil moisture in gullies from adjacent upland measurements through different observation operators

    NASA Astrophysics Data System (ADS)

    Gao, X.; Wu, P.; Zhao, X.; Zhou, X.; Zhang, B.; Shi, Y.; Wang, J.

    2013-04-01

    SummarySoil moisture datasets in large gullies are rare due to the difficulty of direct sampling in such landform. This study attempted to estimate spatial soil moisture averages in gullies from measurements of adjacent uplands by using observation operators, based on three-year soil moisture datasets in a gully catchment of the Loess Plateau. Soil moisture datasets in 2010 and 2011 were used for developing observation operators and those in 2012 were used for validation. Several nonlinear and linear methods including cumulative distribution function (CDF) matching method, linear regression (LRG) method, mean relative difference (MRD) method and linear rescaling (LRS) method were used to define observation operators. The results showed observation operators significantly improved the predictions compared to when using spatial averages of uplands as the direct surrogates for gullies. Among different methods, the CDF matching method performed best in estimating soil moisture in gullies followed by the LRG, LRS and MRD methods. Validation analysis showed that the linear observation operators such as LRS, MRD and LRG had better temporal transferability than the nonlinear operators. The MRD observation operators for various layers could successfully transfer in time whereas temporal transferability only succeeds to a limited extent for other observation operators. Furthermore, the MRD, LRG and LRS methods exhibited better vertical transferability than the CDF matching method. However, the transferability of observation operators across the whole root zone layers was not successful.

  14. Sorption of anionic metsulfuron-methyl and cationic difenzoquat on peat and soil as affected by copper.

    PubMed

    Pei, Zhiguo; Shan, Xiao-quan; Wen, Bei; He, Bo; Liu, Tao; Xie, Yaning; Owens, Gary

    2008-09-15

    The effect of cationic copper (Cu2+) on the sorption of anionic metsulfuron-methyl (Me) and cationic difenzoquat (DZ) to peat and soil was studied using a batch equilibration method. The results showed that Cu2+ increased the sorption of Me but diminished the sorption of DZ. The adsorption of Cu2+ on the surface of peat and soil neutralizes the negative charge, making the zeta potential (zeta) of peat and soil less negative, consequently decreasing the repulsion between the surface of peat or soil and Me and increasing the sorption of Me. Cu2+ may additionally form Cu-Me complexes in aqueous solution, which was preferentially sorbed to peat and soil over the anionic Me. In contrast, the decreased negative surface charge of soil and peat does not favor the sorption of cationic DZ. Fourier transform infrared showed that DZ may be sorbed through interaction with -OH or -COOH groups of peat and soil and that surface complexes of Cu2+ may form through these groups. A competitive sorption between Cu2t and DZ for the same sorption sites is indicated, leading to mutual sorption inhibition of both cations.

  15. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    PubMed Central

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  16. Assessing the Impact of Land Management on Organic Matter Composition in Peat Soils

    NASA Astrophysics Data System (ADS)

    Savage, A.; Holden, J.; Wainwright, J.

    2010-05-01

    Peatlands are seen as important stores of terrestrial carbon, accounting for up to one-third of global soil carbon stocks. In some cases peatlands are shown to be emitters of carbon, in other cases carbon sinks depending on the site conditions and nature of degradation. However, carbon budget calculations carried out to date have a number of uncertainties associated with them and the composition of the carbon is generally not considered when determining carbon budgets. Carbon cycling in peat is driven by four key factors (Laiho, 2006):, environmental conditions (e.g. temperature, water table level), substrate quality (e.g. how recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesis the carbon stocks) and microbial community (e.g. are the microbes present able to utilise the available substrate). Land management is also recognised as an additional driver, but the impacts of many types of management are poorly understood. Among the four drivers listed by Laiho (2006) substrate quality is seen as the most significant. To date, little work has been carried out to characterise the quality of organic matter in peat soils; rather crude estimates have been made as to the quantity of carbon that is stored in peatlands, yet without understanding the composition of the peat, limitations are imposed on calculations of rates of carbon loss from peatlands. This work seeks to examine how variations in the chemical composition of organic matter in peat varies with land use. The method published by Wieder and Starr (1998) was followed to determine eight fractions: soluble fats and waxes, hot water soluble, hollocellulose, cellulose, soluble phenolics, acid insoluble carbohydrates, water soluble carbohydrates and lignin. Samples were taken from burnt, grazed, drained, afforested and undisturbed sites at the Moor House UNESCO Biosphere Reserve in Northern England. The method was used to identify if differences were present in the recalcitrance of the peat and linked

  17. Continuous measurements of CO2 emission from cultivated peat soil - effect of tillage intensity

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2014-05-01

    Peatlands process and transfer significant quantities of greenhouse gases (GHG) such as CO2, CH4 and N2O. Most natural water-saturated peatlands sequester large amounts of CO2 from the atmosphere and emit CH4. Drainage and cultivation of peat soils increase soil aeration and reverse the carbon flux into net CO2 emissions, while CH4 emissions decrease and cultivated peat soils may even act as sinks for CH4. Fertile peat soils are potential sources of N2O when drained. In this investigation we used automatic dark chambers (ADC BioScientific Ltd) to measure CO2 emissions from plots with different soil tillage intensities. The field trial is located on the island Gotland east of the Swedish main land (57.584825N 18.47691E) and the soil is a peat soil with high pH (7.5) and organic content of 46.4 % (loss on ignition). The set-up was 4 treatments repeated in 4 blocks. Each plot was 18 by 25 meters and the following treatments were tested: A. Ploughing every year B. Ploughing 1 out of 4 years C. Only stubble cultivation D. Permanent ley One chamber was put in each plot and connected to a master control unit to create a network with 16 chambers. Measurements were made every hour during most of 2012 (17/4- 6/11 with some gaps) and every second hour during 2013 (22/4-27/6). Higher emissions could be observed just after cultivation and that effect lasted for about one day. The average emission was highest from treatment D during 2012 (4.53 μmol m-2 s-1) and treatment C and D during 2013 (3.85 μmol m-2 s-1).

  18. A process-based model of methane consumption by upland soils

    NASA Astrophysics Data System (ADS)

    Sabrekov, A. F.; Glagolev, M. V.; Alekseychik, P. K.; Smolentsev, B. A.; Terentieva, I. E.; Krivenok, L. A.; Maksyutov, S. S.

    2016-07-01

    This study combines a literature survey and field observation data in an ad initio attempt to construct a process-based model of methane sink in upland soils including both the biological and physical aspects of the process. Comparison is drawn between the predicted sink rates and chamber measurements in several forest and grassland sites in the southern part of West Siberia. CH4 flux, total respiration, air and soil temperature, soil moisture, pH, organic content, bulk density and solid phase density were measured during a field campaign in summer 2014. Two datasets from literature were also used for model validation. The modeled sink rates were found to be in relatively good correspondence with the values obtained in the field. Introduction of the rhizospheric methanotrophy significantly improves the match between the model and the observations. The Q10 values of methane sink observed in the field were 1.2-1.4, which is in good agreement with the experimental results from the other studies. Based on modeling results, we also conclude that soil oxygen concentration is not a limiting factor for methane sink in upland forest and grassland ecosystems.

  19. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil.

    PubMed

    Griffiths, B S; Kuan, H L; Ritz, K; Glover, L A; McCaig, A E; Fenwick, C

    2004-01-01

    Soil collected from an upland pasture was manipulated experimentally in ways shown previously to alter microbial community structure. One set of soil was subjected to chloroform fumigation for 0, 0.5, 2, or 24 h and the other was sterilised by gamma-irradiation and inoculated with a 10(-2), 10(-4), 10(-6), or 10(-8) dilution of a soil suspension prepared from unsterilized soil. Following incubation for 8 months, to allow for the stabilization of microbial biomass and activity, the resulting microbial community structure (determined by PCR-DGGE of bacterial specific amplification products of total soil DNA) was assessed. In addition, the functional stability (defined here as the resistance and resilience of short-term decomposition of plant residues to a transient heat or a persistent copper perturbation) was determined. Changes in the active bacterial population following perturbation (determined by RT-PCR-DGGE of total soil RNA) were also monitored. The manipulations resulted in distinct shifts in microbial community structure as shown by PCR-DGGE profiles, but no significant decreases in the number of bands. These shifts in microbial community structure were associated with a reduction in functional stability. The clear correlation between altered microbial community structure and functional stability observed in this upland pasture soil was not evident when the same protocols were applied to soils in other studies. RT-PCR-DGGE profiles only detected a shift in the active bacterial population following heat, but not copper, perturbation. We conclude that the functional stability of decomposition is related to specific components of the microbial community.

  20. Screening of herbaceous plants for peat-enhanced rehabilitation of contaminated soil with oily sludge.

    PubMed

    Wang, Shijie; Zhang, Chao; Lu, Guilan; Li, Fasheng; Guo, Guanlin

    2016-01-01

    A batch pot experiment using nine herbaceous species were conducted for peat enhanced rehabilitation of contaminated soil with oily sludge in the initial contents of 0%, 1.3%, 7.4%, and 12.2%, respectively. The results showed that petroleum hydrocarbons removal, plant growth indices and enzyme activities varied depending on plant species and oil contents. Cotton, ryegrass and tall fescue were effective in the rehabilitation of oily sludge contaminated soils. The total petroleum hydrocarbon (TPH) removal ranged from 30.0% to 40.0% after 170 days of treatment. Plant biomass was shown to be the preferred indicator for screening phytoremediation plant because it was closely correlated with TPH removal and enzyme activities. Peat-enhanced plant rehabilitation could be a good strategy for the treatment of oily sludge contaminated saline soils.

  1. Prevalence and Contribution of Anaerobic Microsites to Carbon Mineralization in Upland Soils

    NASA Astrophysics Data System (ADS)

    Fendorf, S. E.; Keiluweit, M.; Gee, K. E.; Kleber, M.; Wanzek, T.; Nico, P. S.

    2015-12-01

    Soil organic matter (SOM) storage, or residence time, is dominantly controlled by the mineralization (oxidation) rate, which is affected by climatic factors (particularly temperature and rainfall) influencing microbial metabolic rates as well as SOM chemistry, mineral-organic associations, and physical protection. Variation in anaerobic respiratory pathways can further, and dramatically, impact carbon oxidation rates. Within the aggregated structure of soils, steep chemical gradients arise from the supply of oxygen and nutrients along macropores that are rapidly consumed (relative to supply) within the micropore domains of aggregate interiors. As a consequence of demand exceeding oxygen supply within soil aggregates and peds, an appreciable fraction of the soil volume may persist in an anaerobic state within upland, agriculturally productive system. Factors limiting oxygen diffusion and availability such as soil texture, soil moisture content, organic matter input, and aggregate size (soil structure) provide central controls on microbial carbon mineralization rates. Here, we combine laboratory studies with manipulations of field samples and in-field measurements to illustrate how soil structure and carbon availability interact to impose anaerobic conditions and associated respiratory constraints on organic matter mineralization rates and thus storage within soils.

  2. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

    NASA Astrophysics Data System (ADS)

    Comas, X.; Terry, N.; Slater, L.; Warren, M.; Kolka, R.; Kristiyono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T.

    2015-05-01

    Current estimates of carbon (C) storage in peatland systems worldwide indicate that tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness, volume and C content. We combined a set of indirect geophysical methods (ground-penetrating radar, GPR, and electrical resistivity imaging, ERI) with direct observations using core sampling and C analysis to determine how geophysical imaging may enhance traditional coring methods for estimating peat thickness and C storage in a tropical peatland system in West Kalimantan, Indonesia. Both GPR and ERI methods demonstrated their capability to estimate peat thickness in tropical peat soils at a spatial resolution not feasible with traditional coring methods. GPR is able to capture peat thickness variability at centimeter-scale vertical resolution, although peat thickness determination was difficult for peat columns exceeding 5 m in the areas studied, due to signal attenuation associated with thick clay-rich transitional horizons at the peat-mineral soil interface. ERI methods were more successful for imaging deeper peatlands with thick organomineral layers between peat and underlying mineral soil. Results obtained using GPR methods indicate less than 3% variation in peat thickness (when compared to coring methods) over low peat-mineral soil interface gradients (i.e., below 0.02°) and show substantial impacts in C storage estimates (i.e., up to 37 MgC ha-1 even for transects showing a difference between GPR and coring estimates of 0.07 m in average peat thickness). The geophysical data also provide information on peat matrix attributes such as thickness of organomineral horizons between peat and underlying substrate, the presence of buried wood, buttressed trees or tip-up pools and soil type. The use of GPR and ERI methods to image peat profiles at high resolution can be used to further constrain quantification of peat C pools and

  3. Distribution of radiocesium in the soil-plant systems of upland areas of Europe

    SciTech Connect

    Livens, F.R.; Horrill, A.D.; Singleton, D.L. )

    1991-04-01

    The distribution and behavior of Cs in the soil-plant systems at some upland sites in Northeastern Italy, Scotland, and Norway have been investigated. From the limited range of samples taken, there appears to be no dominant physicochemical control on the plant availability of Cs. The presence of micaceous minerals or illitic clays does not significantly inhibit Cs uptake, either because of recycling in the organic surface horizons or because of clay-organic complex formation. Lower plants (bryophytes and lichens) show the highest Cs accumulation. Of the higher plants, ericaceous species take up Cs more than the others.

  4. Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils.

    PubMed

    Stanislawska-Glubiak, Ewa; Korzeniowska, Jolanta; Kocon, Anna

    2015-03-01

    Incorporation of organic materials into soil improves the soil sorption capacity, while limiting the mobility of metals in soil and their availability to plants. These effects can be taken advantage for remediation of soils polluted with heavy metals. The objective of this study is to assess the remediatory potential of peat applied to soils with concomitant pollution with Cd, Pb, and Zn. Two 1-year experiments were run in microplots in which maize was grown as the test plant. The following treatments were compared on two soils (sandy soil and loess): (1) control, (2) heavy metals (HM), (3) HM + peat in a single dose, and (4) HM + peat in a double dose. Maize was harvested in the maturity stage; the biomass of roots and aerial parts, including grain and cobs, was measured. Besides, concentration of metals in all those plant parts and the net photosynthetic rate and transpiration rate were determined. The approach of using peat in soil remediation led to satisfactory results on sandy soil only. The application of peat to sandy soil caused significant changes in the accumulation of the metals and their translocation from roots to other parts of plants, which resulted in a higher intensity of photosynthesis and an increase in the maize biomass compared to the HM treatment.

  5. Prediction of Soil Erosion from Uplands under Climate Change Scenarios in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kyeong; Ko, Byong-Gu; Hur, Seung-Oh; Kim, Min-Young; Lee, Deog-Bae

    2010-05-01

    Major impacts of climate change expect that soil erosion rate may increase during the 21st century. This study was conducted to assess the potential impacts of climate change on soil erosion by water in Korea. The soil loss was estimated for regions with the potential risk of soil erosion on a national scale. For computation, Universal soil loss equation (USLE) with rainfall and runoff erosivity factors (R), cover management factors (C), support practice factors (P) and revised USLE with soil erodibility factors (K) and topographic factors (LS) were used. RUSLE, the revised version of USLE, was modified for Korean conditions and re-evaluated to estimate the national-scale of soil loss based on the digital soil maps for Korea. The changes of precipitation for 2010 to 2090s were predicted under A1B scenarios made by National Institute of Meteorological Research in Korea. Future soil loss was predicted based on a change of R factor. As results, the predicted precipitations were increased by 6.7% for 2010 to 2030, 9.5% for 2040 to 2060s and 190% for 2070 to 2090s, respectively. The total soil loss from uplands in 2005 was estimated approximately 28ⅹ106 ton. Total soil losses were estimated as 31ⅹ106 ton in 2010 to 2030s, 31ⅹ106 ton in 2040 to 2060s and 33ⅹ106 ton in 2070 to 2090s, respectively. As precipitation increased by 17% in the end of 21st century, the total soil loss was increased by 12.9%. Overall, these results emphasize the significance of precipitation. However, it should be noted that when precipitation becomes insignificant, the results may turn out to be complex due to the large interaction among plant biomass, runoff and erosion. This may cause increase or decrease the overall erosion.

  6. Delineating Climatic Regions Where Upland Soil Iron Reduction Is Potentially Important At The Ecosystem Scale

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Hodges, C. A.; Chadwick, O.

    2015-12-01

    Microbial iron(III) reduction is often coupled to carbon mineralization, resulting in net CO2 efflux from the soil profile. Recent reports of iron reduction in upland ecosystems suggests this process is not limited to flooded soils and sediments. However, quantifying ecosystem-scale iron reduction rates is challenging because the intermittent anoxia (low-oxygen) that facilitates iron reduction varies spatially throughout the landscape. To approach this challenge, we have measured the soil iron reduction potential using localized passive redox sensors across four climate gradients ranging from <600 mm y-1 to >4000 mm y-1 rainfall on soils derived from Hawaiian basalt aged 0.3 to 4,100 ky. At each site we installed ten iron metal-rods with a uniform surface coating of Fe(III)-oxyhydroxide. The rods were pushed into the soil to a depth of 90 cm and left in place for 14 d. Extracted rods were washed and imaged to quantify the fraction of Fe(III)-oxyhydroxide coating that was dissolved. In addition, we have characterized the iron mineral composition from surface and sub-surface horizons at similar sites using Mössbauer spectroscopy. Our results suggest that when annual rainfall exceeds 1800 - 2000 mm y-1, iron reduction is a common feature within the soil profile, regardless of soil age. In addition, we find that the pedogenesis of iron minerals proceeds along distinct trajectories above and below this iron reduction threshold.

  7. [Distribution characteristics of soil profile nitrous oxide concentration in paddy fields with different rice-upland crop rotation systems].

    PubMed

    Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang

    2011-09-01

    To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P < 0.01), and there existed significant correlations in the N2O concentration among the four soil depths during the whole observation period (P < 0.01). In the growth seasons of winter wheat and oilseed rape under drainage condition and with or without N application, the N2O concentrations at the soil depths 30 cm and 50 cm were significantly higher than those at the soil depths 7 cm and 15 cm; whereas in the early rice growth season under flooding condition and without N application, the N2O concentrations at the soil depth 7 cm and 15 cm were significantly higher than those at the soil depths 30 cm and 50 cm (P < 0.05). No significant differences were observed in the N2O concentrations at the test soil depths among the other rice cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.

  8. The total phosphorus budget of a peat-covered catchment

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine S.; Clay, Gareth D.; Burt, Tim P.; Rose, Rob

    2016-07-01

    Although many studies have considered the carbon or greenhouse gas budgets of peat ecosystems, only a few have considered the nutrient budget of peat soils, and this, in turn, has limited the ability of studies to consider the impact of changes in climate and atmospheric deposition on the phosphorus budget of a peat soil. This study considered the total phosphorus (P) budget of an upland peat-covered catchment over the period 1993 to 2012. The study has shown (i) total atmospheric deposition of phosphorus varied from 62 to 175 kg P/km2/yr; (ii) the carbon:phosphorus ratio of the peat profile declines significantly from values in the litter layer (C:P = 1326) to approximately constant at 30 cm depth (C:P = 4240); (iii) the total fluvial flux of phosphorus varied from 49 to 111 kg P/km2/yr, of which between 45 and 77% was dissolved P; and (iv) the total phosphorus sink varied from -5.6 to +71.7 kg P/km2/yr with a median of +29.4 kg P/km2/yr, which is within the range of the estimated long-term accumulation rate of phosphorus in the peat profile of between 3 and 32 kg P/km2/yr. The phosphorus budget of the peat ecosystem relies on rapid recycling near the soil surface, and this means that any vegetation management may critically deprive the ecosystem of this nutrient.

  9. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    USGS Publications Warehouse

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  10. A cost-efficient method to assess carbon stocks in tropical peat soil

    NASA Astrophysics Data System (ADS)

    Warren, M. W.; Kauffman, J. B.; Murdiyarso, D.; Anshari, G.; Hergoualc'h, K.; Kurnianto, S.; Purbopuspito, J.; Gusmayanti, E.; Afifudin, M.; Rahajoe, J.; Alhamd, L.; Limin, S.; Iswandi, A.

    2012-11-01

    Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m-3; Cd) as a function of bulk density (gC cm-3; Bd), which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151) for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm-3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  11. Mississippi Basin Carbon Project; upland soil database for sites in Yazoo Basin, northern Mississippi

    USGS Publications Warehouse

    Harden, J.W.; Fries, T.L.; Huntington, T.G.

    1999-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton et al, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or 'decomposition enhancement', and global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal et al (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that if eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil. Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney et al, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor et al, 1993; Rhoton and Tyler, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth, it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well.

  12. Mississippi Basin Carbon Project: upland soil database for sites in Nishnabotna River basin, Iowa

    USGS Publications Warehouse

    Harden, J.W.; Fries, T.L.; Haughy, R.; Kramer, L.; Zheng, Shuhui

    2001-01-01

    The conversion of land from its native state to an agricultural use commonly results in a significant loss of soil carbon (Mann, 1985; Davidson and Ackerman, 1993). Globally, this loss is estimated to account for as much as 1/3 of the net CO2 emissions for the period of 1850 to 1980 (Houghton and others, 1983). Roughly 20 to 40 percent of original soil carbon is estimated to be lost as CO2 as a result of agricultural conversion, or "decomposition enhancement". Global models use this estimate along with land conversion data to provide agricultural contributions of CO2 emissions for global carbon budgets (Houghton and others, 1983; Schimel, 1995). Soil erosion rates are significantly (10X) higher on croplands than on their undisturbed equivalents (Dabney and others, 1997). Most of the concern over erosion is related to diminished productivity of the uplands (Stallings, 1957; McGregor and others, 1969; Rhoton, 1990) or to increased hazards and navigability of the lowlands in the late 1800's to early 1900's. Yet because soil carbon is concentrated at the soil surface, with an exponential decline in concentration with depth (Harden et al, 1999), it is clear that changes in erosion rates seen on croplands must also impact soil carbon storage and terrestrial carbon budgets as well. As yet, erosional losses of carbon are not included in global carbon budgets explicitly as a factor in land conversion nor implicitly as a portion of the decomposition enhancement. However, recent work by Lal and others (1995) and by Stallard (1998) suggests that significant amounts of eroded soil may be stored in man-made reservoirs and depositional environments as a result of agricultural conversion. Moreover, Stallard points out that eroding soils have the potential for replacing part of the carbon trapped in man-made reservoirs. If true, then the global carbon budget may grossly underestimate or ignore a significant sink term resulting from the burial of eroded soil.

  13. Innovative biocatalytic production of soil substrate from green waste compost as a sustainable peat substitute.

    PubMed

    Kazamias, Georgios; Roulia, Maria; Kapsimali, Ioanna; Chassapis, Konstantinos

    2016-08-02

    In the present work, a new simple and quick eco-friendly method is discussed to handle effectively the green wastes and produce a sustainable peat substitute of high quality on the large scale. Principal physicochemical parameters, i.e., temperature, moisture, specific weight, pH, electrical conductivity and, also, microorganisms, organic matter, humic substances, total Kjeldahl nitrogen and total organic carbon, C/N ratio, ash, metal content and phytotoxicity, were monitored systematically. Humic substances content values were interrelated to both C/N ratio and pH values and, similarly, bulk density, TOC, TKN, C/N, GI, ash and organic matter were found interconnected to each other. A novel biocatalyst, extremely rich in soil microorganisms, prepared from compost extracts and peaty lignite, accelerated the biotransformation. Zeolite was also employed. The compost does not demonstrate any phytotoxicity throughout the entire biotransformation process and has increased humic substances content. Both humic substances content and germination index can be employed as maturation indices of the compost. Addition of compost, processed for 60 days only, in cultivations of grass plants led to a significant increase in the stem mass and root size, annotating the significant contribution of the compost to both growth and germination. The product obtained is comparable to peat humus, useful as peat substitute and can be classified as a first class soil conditioner suitable for organic farming.

  14. Fire effects on peat and organo-mineral soils of Meshchera plain

    NASA Astrophysics Data System (ADS)

    Tsibart, Anna; Koshovskii, Timur; Gamova, Natalia; Kovach, Roman

    2015-04-01

    The fire effects the soil properties depend on soil type and on their vulnerability to fires. The most of available data is devoted to changes in organo-mineral soils. But the peat fires can cause deeper changes in soil profiles, especially in case of drained peat soils. Now the lack of information exists in the sphere of the comparison of these fire types on soil cover. Meshchera plain (Moscow and Ryazan Regions, Russia) has different soil types. Moreover peatlands were partly drained, and the plain was affected by numerous fires of different time. So there is a need of detailed post-fire soil investigations in this region. During current research the soils Meshchera plain subjected by wildfires of 2002, 2007, 2010 and 2012 were studied. A total of 32 profiles including background and post-fire histosols, histic and sod podzols were investigated. Moreover the detailed description of vegetation cover was conducted. The samples were taken from genetic horizons. The morfological properties of soil profiles were sudied and the samples were analysed on organic carbon, pH, macroelements, magnetic susceptibility. After the wildfires changes in morfological and physico-chemical properties of soils were detected in most cases. The formation of ash and charry horizons was observed only in cases of peat soils affecetd by intense fires, and all post-fire drained peat soils had thick ash horizons even after 10 years after the fires. The significant loss of organic matter took place after burning. But almost immediately after the fires new stage of humus formation usually started. For instance, in post-fire histosols in 2 years after the burning the content of organic carbon reached to 10-12 % in upper horizons. ph values in background histosols were approximately 4-5. After the fire pH increased in these soil type to 8, and two years after the fire event pH decreased to 6-7. In podzols pH values returned to the pre-fire level 4-5 in two years. The magnetic susceptibility of

  15. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.

    PubMed

    Aristilde, Ludmilla; Sposito, Garrison

    2013-07-01

    Natural organic matter (NOM) is implicated in the binding of antibiotics by particles in soils and waters. The authors' previous computational study revealed structural rearrangement of both hydrophilic and hydrophobic moieties of NOM to favor H-bonding and other intermolecular interactions, as well as both competition with ion-exchange reactions and bridging interactions by NOM-bound divalent cations. The importance of these interactions was investigated using fluorescence-quenching spectroscopy to study the adsorption of ciprofloxacin (Cipro), a fluoroquinolone antibiotic, on 4 reference humic substances (HSs): Elliott soil humic acid (HA), Pahokee peat HA, and Suwannee river HA and fulvic acid. A simple affinity spectrum HS model was developed to characterize the cation-exchange capacity and the amount of H-bond donor moieties as a function of pH. The adsorption results stress the influence of both pH conditions and the type of HS: both soil HA and peat HA exhibited up to 3 times higher sorption capacity than the aquatic HS at pH ≥ 6, normalizing to the aromatic C content accounted for the differences among the terrestrial HS, and increasing the concentration of divalent cations led to a decrease in adsorption on aquatic HA but not on soil HA. In addition, the pH-dependent speciation models of the Cipro-HS complexes illustrate an increase in complexation due to an increase in deprotonation of HS ligands with increasing pH and, at circumneutral and alkaline pH, enhanced complexation of zwitterionic Cipro only in the presence of soil HA and peat HA. The findings of the present study imply that, in addition to electrostatic interactions, van der Waals interactions as facilitated by aromatic structures and H-bond donating moieties in terrestrial HS may facilitate a favorable binding environment. Environ Toxicol Chem 2013;32:1467-1478. © 2013 SETAC.

  16. Biochar as a Substitute for Peat in Greenhouse Growing Media: Soil Water Characteristics and Carbon Leaching Dynamics

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Hilbert, I.; Jollymore, A. J.

    2012-12-01

    Biochar (charcoal derived from waste biomass via pyrolysis) has the potential to be used as part of regional scale carbon sequestration strategies. By providing a stable form of carbon that is resistant to decay in soils, biochar can be utilized in a wide range of applications to improve the sustainability of land use management practices. Due to its high water holding capacity, surface area and charge density, it could provide a substitute for peat that is widely used in horticultural activities. Globally, peat production in 2010 amounted to 23.4 Mt, with more than a third of this used for horticulture. In Canada, essentially all peat produced is used for horticulture, with each ton of peat extracted also contributing about 0.7 t CO2e in combined greenhouse gas emissions related to production, transportation and use of peat. We evaluated biochar produced on farm from red alder as a peat substitute in terms of soil water characteristics and carbon leaching in greenhouse growing media (e.g. potting mix). Biochar mixing ratios of 10% (v/v) and greater provided water holding capacity equivalent to peat-based potting mixes. We also present results from a laboratory wetting experiment in which we characterized leachate for dissolved organic carbon (DOC) concentration and DOC characteristics using spectral methods (uV-Vis and fluorescence spectroscopy).

  17. Emissions of N2O from peat soils under different cropping systems

    NASA Astrophysics Data System (ADS)

    Norberg, Lisbet; Berglund, Örjan; Berglund, Kerstin

    2016-04-01

    Drainage of peatlands for agriculture use leads to an increase in nitrogen turnover rate causing emissions of N2O to the atmosphere. Agriculture contributes to a substantial part of the anthropogenic emissions of N2O therefore mitigation options for the farmers are important. Here we present a field study with the aim to investigate if the choice of cropping system can mitigate the emission of N2O from cultivated organic soils. The sites used in the study represent fen peat soils with a range of different soil properties located in different parts of southern Sweden. All sites are on active farms with good drainage. N2O emissions from the soil under two different crops grown on the same field, with the same soil type, drainage intensity and weather conditions, are compared by gas sampling. The crops included are oat, barley, carrot, potato and grassland. Three or four sampling occasions during the growing season in 2010 were carried out with static chambers. The N2O emission is calculated from the linear increase of gas concentration in the chamber headspace during the incubation time of 40 minutes. Parallel to the gas sampling soil temperature and soil moisture are measured and some soil properties determined. The result from the gas sampling and measurements show no significant difference in seasonal average N2O emission between the compared crops at any site. There are significant differences in N2O emissions between the compared crops at some of the single sampling occasions but the result vary and no crop can be pointed out as a mitigation option. The seasonal average N2O emissions varies from 16±17 to 1319±1971 μg N2O/m2/h with peaks up to 3317 μg N2O/m2/h. The N2O emission rate from peat soils are determined by other factors than the type of crops grown on the field. The emission rates vary during the season and especially between sites. Although all sites are fen peat soil the soil properties are different, e.g. carbon content varies between 27-43% and

  18. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  19. Substrate Geochemistry and Soil Development in Boreal Forest and Tundra Ecosystems in the Yukon-Tanana Upland and Seward Peninsula, Alaska

    USGS Publications Warehouse

    Gough, L.P.; Crock, J.G.; Wang, B.; Day, W.C.; Eberl, D.D.; Sanzolone, R.F.; Lamothe, P.J.

    2008-01-01

    We report on soil development as a function of bedrock type and the presence of loess in two high latitude ecosystems (boreal forest and tundra) and from two regions in Alaska?the Yukon-Tanana Upland (YTU, east-central Alaska) and the Seward Peninsula (SP, far-west coastal Alaska). This approach to the study of 'cold soils' is fundamental to the quantification of regional geochemical landscape patterns. Of the five state factors in this study, bedrock and biota (ecosystem; vegetation zone) vary whereas climate (within each area) and topography are controlled. The influence of time is assumed to be controlled, as these soils are thousands of years old (late Quaternary to Holocene). The primary minerals in soils from YTU, developed over loess and crystalline bedrock (metamorphic and intrusive), are quartz, plagioclase, and 2:1 clays; whereas in the SP, where loess and metasedimentary bedrock (schist and quartzite) predominate, they are quartz and muscovite. The A horizon of both regions is rich in peat. Examination of the ratio of mobile (K2O, CaO, and Fe2O3) to immobile (TiO2) major oxides, within each region, shows that very little difference exists in the chemical weathering of soils developed between the two ecosystems examined. Differences were observed between tundra soils developed in the two regions. These differences are most probably due to the dissimilarity in the geochemical importance of both loess and bedrock. A minimal loss of cadmium with soil depth is seen for soils developed over YTU crystalline bedrock in the boreal forest environments. This trend is related to the mobility of cadmium in these soils as well as to its biogenic cycling. Major differences were observed in the proportion of cadmium and zinc among the A, B, and C horizon material sequestered in various soil fractions as measured by sequential soil extractions. These trends followed such variables as the decrease with depth in organic matter, the change in clay minerals, and the change

  20. EVALUATION OF ENHANCED VOC REMOVAL WITH SOIL FRACTURING IN THE SRS UPLAND UNIT

    SciTech Connect

    Riha, B

    2005-10-31

    The Environmental Restoration Technology Section (ERTS) of the Savannah River National Laboratory (SRNL) conducted pilot scale testing to evaluate the effectiveness of using hydraulic fracturing as a means to improve soil vapor extraction (SVE) system performance. Laboratory and field research has shown that significant amounts of solvents can be entrapped in low permeability zones by capillary forces and removal by SVE can be severely limited due to low flow rates, mass transfer resistance of the hydrophobic compounds by trapped interparticle water, and diffusion resistance. Introducing sand-filled fractures into these tight zones improves the performance of SVE by (1) increasing the overall permeability of the formation and thereby increasing SVE flow rates, (2) shortening diffusion pathways, and (3) increasing air permeability by improving pore water removal. The synergistic effect of the fracture well completion methods, fracture and flow geometry, and pore water removal appears to increase the rate of solvent mass removal over that of increasing flow rate alone. A field test was conducted where a conventional well in the SRS Upland Unit was tested before and after hydraulic fracturing. ERTS teamed with Clemson University through the South Carolina University and Education Foundation (SCUREF) program utilizing their expertise in fracturing and fracture modeling. The goals of the fracturing pilot testing were to evaluate the following: (1) The effect of hydraulic fractures on the performance of a conventional well. This was the most reliable way to remove the effects of spatial variations in permeability and contaminant distribution on relative well performance. It also provided data on the option of improving the performance of existing wells using hydraulic fractures. (2) The relative performance of a conventional SVE well and isolated hydraulic fractures. This was the most reliable indicator of the performance of hydraulic fractures that could be created in a

  1. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations

    NASA Astrophysics Data System (ADS)

    Carlson, Kimberly M.; Goodman, Lael K.; May-Tobin, Calen C.

    2015-07-01

    Plantation-associated drainage of Southeast Asian peatlands has accelerated in recent years. Draining exposes the upper peat layer to oxygen, leading to elevated decomposition rates and net soil carbon losses. Empirical studies indicate positive relationships between long-term water table (WT) depth and soil carbon loss rate in peatlands. These correlations potentially enable using WT depth as a proxy for soil carbon losses from peatland plantations. Here, we compile data from published research assessing WT depth and carbon balance in tropical plantations on peat. We model net carbon loss from subsidence studies, as well as soil respiration (heterotrophic and total) from closed chamber studies, as a function of WT depth. WT depth across all 12 studies and 59 sites is 67 ± 20 cm (mean ± standard deviation). Mean WT depth is positively related to net carbon loss, as well as soil respiration rate. Our models explain 45% of net carbon loss variation and 45-63% of soil respiration variation. At a 70 cm WT depth, the subsidence model suggests net carbon loss of 20 tC ha-1 yr-1 (95% confidence interval (CI) 18-22 tC ha-1 yr-1) for plantations drained for >2 yr. Closed chamber-measured total soil respiration at this depth is 20 tC-CO2 ha-1 yr-1 (CI 17-24 tC-CO2 ha-1 yr-1) while heterotrophic respiration is 17 tC-CO2 ha-1 yr-1 (CI 14-20 tC-CO2 ha-1 yr-1), ˜82% of total respiration. While land use is not a significant predictor of soil respiration, WT depths are greater at acacia (75 ± 16 cm) than oil palm (59 ± 15 cm) sample sites. Improved spatio-temporal sampling of the full suite of peat soil carbon fluxes—including fluvial carbon export and organic fertilizer inputs—will clarify multiple mechanisms leading to carbon loss and gain, supporting refined assessments of the global warming potential of peatland drainage.

  2. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  3. Permafrost controls on soil C storage and turnover in upland black spruce ecosystems of interior Alaska

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. A.; Harden, J. W.; Romanovsky, V. E.; Kanevskiy, M. Z.; Jorgenson, T.; Xu, X.; Ewing, S. A.; McGuire, D.; Shur, Y.

    2009-12-01

    Permafrost soils in northern latitudes have functioned as important reservoirs for organic carbon (OC) since the last glacial maximum. In particular, the formation of permafrost through syngenetic processes (e.g. aeolian loess deposition) allows for high rates of OC burial and stabilization. Recent warming at northern latitudes has resulted in warming and thawing of permafrost in many regions, which may mobilize OC stocks from deep soil reservoirs via decomposition, leaching or erosion. Furthermore, in the boreal region, increased wildfire frequency and severity may promote rapid permafrost thaw and soil OC loss from forested ecosystems. Release of OC stocks from permafrost as carbon dioxide or methane may function as a strong positive feedback to atmospheric warming. Here, we examine patterns of OC storage in active layer and permafrost soils across a fire chronosequence of upland black spruce stands near Hess Creek, interior Alaska. Our research objective was to evaluate how post-fire changes in organic horizon thickness and consequently, changes in active layer thickness, influence rates of OC turnover in deep mineral soil. We used a finite-difference numerical model (GIPL2) to simulate permafrost dynamics and a steady-state radiocarbon model to estimate carbon turnover. To calibrate the permafrost model, we monitored soil temperature, soil moisture, snow depth, and active layer thickness at four sites across the fire chronosequence. To evaluate soil carbon dynamics, we measured OC stocks and radiocarbon inventories from zero to two meters below the ground surface across the chronosequence. Preliminary results from field observations and model runs indicate that active layer thickness was closely linked to fire severity, as reflected by organic horizon thickness. Total carbon storage to two meters averaged 35 ± 6 kg m-2 across the chronosequence, with between 42 and 67 % of these stocks below the permafrost table. Radiocarbon ages of soil OC at two meters

  4. Isolation of humic acid from peat soil and its application as an adsorbent for AuCl4- in solution

    NASA Astrophysics Data System (ADS)

    Lestari, Puji

    2017-03-01

    Humic acid (HA) has been isolated from South Kalimantan (Indonesia) peat soil using alkali extraction method. The isolated HA then was applied on the adsorption process of AuCl4- in solution. Parameters investigated in the adsorption process consisted of the effect of initial pH, adsorption rate constant (k) and the adsorption capacity of AuCl4- on peat soil HA. The adsorption rate constant was determined according to the kinetic model proposed by Santosa (2007). The adsorption of AuCl4- on peat soil HA was optimum at pH 2. The adsorption rate constant (k) was 1.11 × 10-3 min-1. Adsorption of AuCl4- on peat soil HA fitted the Langmuir isotherm with the adsorption capacity of 90.91 mg.g-1. The adsorption of AuCl4- on peat soil HA was accompanied by the reduction of AuCl4- to Au(0), clarified by the existence of several peaks belonging to Au(0) in the XRD pattern of HA after the adsorption process.

  5. Spatial Heterogeneity in the Properties of High-Moor Peat Soils under Local Pyrogenesis in Northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Brekhov, P. T.

    2016-02-01

    The structure and properties of oligotrophic peat, oligotrophic peat gley, and pyrogenic oligotrophic peat soils identified on a plot 0.5 km2 in area in the northeast of Sakhalin Island have been studied. The vertical distributions of physicochemical, chemical, and ecotoxicological parameters in the profiles of some bog soil groups have been considered. An increase in ash content, a less acid reaction, and a deficit of available nitrogen and potassium have been revealed in the upper horizons of pyrogenic soils. No accumulation of mobile heavy metals is manifested in the pyrogenic horizons of peat soils. Statistical parameters of the spatial variation in pHKCl and total acidity, as well as the contents of ash, available phosphorus, exchangeable potassium, ammonium and nitrate nitrogen, mobile heavy metals (Cr, Ni, Cu, Zn, Cd, Pb), and benzo[ a]pyrene, have been calculated for the moss and sublitter horizons. The variation coefficients are 30-100% for most of the studied parameters and reach 100-200% for available phosphorus; ammonium nitrogen; and mobile Ni, Cu, Zn, and Cd. An increase in the content of benzo[ a]pyrene, although without MPC exceedance, is noted in the moss of pyrogenic soils and the peat horizons untouched by fires.

  6. The influence of different types of grassland on soil quality in upland areas of Czech Republic.

    PubMed

    Sarapatka, B; Cizkova, S

    2014-05-01

    The diversity of grassland in upland areas of Czech Republic was studied on selected soil characteristics of these biotopes. In the first phase, 44 soil characteristics were studied and mutual correlations were found between many of them. In the following phase characteristics were chosen which correlated most with other soil characteristics and, at the same time, were easy to evaluate in practise. A great number of correlations were also evidenced between many soil characteristics and the content of humus and nitrogen, which are closely linked to organic matter in soil. In studying these characteristics on selected areas with different types of grassland and consequential cluster analysis and further evaluation, the grassland plots were divided into three groups, from newly established vegetation to species-rich communities. Non-parametric analysis was carried out on the results and a statistically significant difference was proved between the species rich and poorvegetation and carbon and nitrogen content of the soil. Slightly different humus quality (higher amount of HA) was also found under richer vegetation. These results show that at 0-20 cm layer, 58.9 tonnes of carbon ha⁻¹ was measured under species-poor pastureland and 106.1 tonnes of carbon ha under species-rich vegetation. The results showed that besides supporting species diversity, the described quality change can also be important for carbon sequestration. The difference of about 40-50 tonnes of carbon ha and converting 10% of grassland in the Czech Republic to species-rich vegetation would mean sequestration of about 3.9 Mt carbon. If only agroenvironmentally subsidized areas are converted, carbon sequestration in such vegetation could amountto 1.7 Mt.

  7. [Effects of combined application of biochar and inorganic fertilizers on the available phosphorus content of upland red soil].

    PubMed

    Jing, Yan; Chen, Xiao-min; Liu, Zu-xiang; Huang, Qian-ru; LiI, Qiu-xia; Chen, Chen; Lu, Shao-shan

    2013-04-01

    Aiming at the low content of available phosphorus in upland red soil of Southern China, this paper studied the effects of combined application of biochar and inorganic fertilizers on the available phosphorus and organic carbon contents and the pH of this soil. With the combined application of biochar and inorganic fertilizers, the soil physical and chemical properties improved to different degrees. As compared with the control, the soil pH and the soil organic carbon and available phosphorus contents at different growth stages of oil rape after the combined application of biochar and inorganic fertilizers all had an improvement, with the increments at bolting stage, flowering stage, and ripening stage being 16%, 24% and 26%, 23%, 34% and 38%, and 100%, 191% and 317% , respectively. The soil pH and the soil organic carbon and available phosphorus contents were increased with the increasing amount of applied biochar. Under-the application of biochar, the soil available phosphorus had a significant correlation with the soil pH and soil organic carbon content. This study could provide scientific basis to improve the phosphorus deficiency and the physical and chemical properties of upland red soil.

  8. The Dependence of Peat Soil Hydraulic Conductivity on Dominant Vegetation Type in Mountain Fens

    NASA Astrophysics Data System (ADS)

    Crockett, A. C.; Ronayne, M. J.; Cooper, D. J.

    2014-12-01

    The peat soil within fen wetlands provides water storage that can substantially influence the hydrology of mountain watersheds. In this study, we investigated the relationship between hydraulic conductivity and vegetation type for fens occurring in Rocky Mountain National Park (RMNP), Colorado, USA. Vegetation in RMNP fens can be dominated by woody plants and shrubs, such as willows; by mosses; or by herbaceous plants such as sedges. Fens dominated by each vegetation type were selected for study. Six fens were investigated, all of which are in the Colorado River watershed on the west side of RMNP. For each site, soil hydraulic conductivity was measured at multiple locations using a single-ring infiltrometer. As a result of the shallow water table in these fens (the water table was always within 10 cm of the surface), horizontal hydraulic gradients were produced during the field tests. The measured infiltration rates were analyzed using the numerical model HYDRUS. In order to determine the hydraulic conductivity, a parameter estimation problem was solved using HYDRUS as the forward simulator. Horizontal flow was explicitly accounted for in the model. This approach produced more accurate estimates of hydraulic conductivity than would be obtained using an analytical solution that assumes strictly vertical flow. Significant differences in hydraulic properties between fens appear to result at least in part from the effects of different dominant vegetation types on peat soil formation.

  9. In-situ molecular-level elucidation of organofluorine binding sites in a whole peat soil.

    PubMed

    Longstaffe, James G; Courtier-Murias, Denis; Soong, Ronald; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Hutchins, Howard; Krishnamurthy, Sridevi; Struppe, Jochem; Alaee, Mehran; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Simpson, André J

    2012-10-02

    The chemical nature of xenobiotic binding sites in soils is of vital importance to environmental biogeochemistry. Interactions between xenobiotics and the naturally occurring organic constituents of soils are strongly correlated to environmental persistence, bioaccessibility, and ecotoxicity. Nevertheless, because of the complex structural and chemical heterogeneity of soils, studies of these interactions are most commonly performed indirectly, using correlative methods, fractionation, or chemical modification. Here we identify the organic components of an unmodified peat soil where some organofluorine xenobiotic compounds interact using direct molecular-level methods. Using (19)F→(1)H cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, the (19)F nuclei of organofluorine compounds are used to induce observable transverse magnetization in the (1)H nuclei of organic components of the soil with which they interact after sorption. The observed (19)F→(1)H CP-MAS spectra and dynamics are compared to those produced using model soil organic compounds, lignin and albumin. It is found that lignin-like components can account for the interactions observed in this soil for heptafluoronaphthol (HFNap) while protein structures can account for the interactions observed for perfluorooctanoic acid (PFOA). This study employs novel comprehensive multi-phase (CMP) NMR technology that permits the application of solution-, gel-, and solid-state NMR experiments on intact soil samples in their swollen state.

  10. High emissions of greenhouse gases from grasslands on peat and other organic soils.

    PubMed

    Tiemeyer, Bärbel; Albiac Borraz, Elisa; Augustin, Jürgen; Bechtold, Michel; Beetz, Sascha; Beyer, Colja; Drösler, Matthias; Ebli, Martin; Eickenscheidt, Tim; Fiedler, Sabine; Förster, Christoph; Freibauer, Annette; Giebels, Michael; Glatzel, Stephan; Heinichen, Jan; Hoffmann, Mathias; Höper, Heinrich; Jurasinski, Gerald; Leiber-Sauheitl, Katharina; Peichl-Brak, Mandy; Roßkopf, Niko; Sommer, Michael; Zeitz, Jutta

    2016-12-01

    Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site-averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2 -eq. ha(-1)  yr(-1) ) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2  ha(-1)  yr(-1) ) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2 O-N ha(-1)  yr(-1) ) and methane emissions (30.8 ± 69.8 kg CH4 -C ha(-1)  yr(-1) ) were lower than expected except for CH4 emissions from nutrient-poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair ) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2 O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.

  11. The effect of peat and iron supplements on the severity of potato common scab and bacterial community in tuberosphere soil.

    PubMed

    Sarikhani, Ensyeh; Sagova-Mareckova, Marketa; Omelka, Marek; Kopecky, Jan

    2017-01-01

    The control of common scab (CS) of potatoes includes resistant cultivars, specific fertilization, increase of soil moisture and chemical treatments. Yet, these management practices do not have common or reproducible results at differing sites. In order to determine the effects of soil organic matter, iron and pH on CS development, peat and DTPA-chelated iron were supplemented to pots filled with soil conducive for CS. All results were compared with the same data obtained for a suppressive soil, which has naturally low severity of CS and occurs nearby. Bacteria, Actinobacteria and the txtB genes from the biosynthetic cluster of thaxtomin, which is responsible for the disease development, were quantified by qPCR in tuberosphere soil and potato periderm. Illumina amplicon sequencing of bacterial 16S rRNA genes was performed for tuberosphere soils. Both peat and iron supplements controlled potato scab, and the combination of the two supplements reduced CS most effectively. The bacterial community was modified by all treatments but the highest number of operational taxonomic units (OTUs) changed towards the suppressive soil after the combined peat and iron treatment. It seemed that iron supplement supported plant defense while both iron and peat additions changed the bacterial community in favor of CS suppression.

  12. [Responses of soil nematode communities to long-term application of inorganic fertilizers in upland red soil].

    PubMed

    Zhang, Wei; Liu, Man-Qiang; He, Yuan-Qiu; Fan, Jian-Bo; Chen, Yan

    2014-08-01

    Soil biota plays a key role in ecosystem functioning of red soil. Based on the long-term inorganic fertilization field experiment (25-year) in an upland red soil, the impacts of different inorganic fertilization managements, including NPK (nitrogen, phosphorus and potassium fertilizers), NPKCaS (NPK plus gypsum fertilizers), NP (nitrogen and phosphorus fertilizers), NK (nitrogen and potassium fertilizers) and PK (phosphorus and potassium fertilizers), on the assemblage of soil nematodes during the growing period of peanut were investigated. Significant differences among the treatments were observed for total nematode abundance, trophic groups and ecological indices (P < 0.01). The total nematode abundance decreased in the order of PK > NPKCaS > NPK > NP > NK. The total number of nematodes was significantly higher in NPKCaS and PK than in NPK, NP and NK except in May. Plant parasitic nematodes were the dominant trophic group in all treatments excepted in NPKCaS, and their proportion ranged between 38% and 65%. The dominant trophic group in NPKCaS was bacterivores and represented 42.1%. Furthermore, the higher values of maturity index, Wasilewska index and structure index in NPKCaS indicated that the combined application of NPK and gypsum could remarkably relieve soil acidification, resulting in a more mature and stable soil food web structure. While, that of the NK had the opposite effect. In conclusion, our study suggested that the application of both gypsum and phosphate is an effective practice to improve soil quality. Moreover, the analysis of nematode assemblage is relevant to reflect the impact of different inorganic fertilizer on the red soil ecosystem.

  13. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  14. Strategies to mitigate diffuse phosphorus pollution during rewetting of fen peat soils.

    PubMed

    Meissner, R; Rupp, H; Seeger, J; Leinweber, P

    2010-01-01

    The cultivation of fen peat soils (Eutric Histosols) for agricultural purposes, started in Europe about 250 years ago, resulting in decreased soil fertility, increased oxidation of peat and corresponding greenhouse gas fluxes to the atmosphere, nutrient transfer to aquatic ecosystems and losses in total area of the former native wetlands. To prevent these negative environmental effects set-aside programs and rewetting measures were promoted in recent years. Literature results and practical experiences showed that large scale rewetting of intensively used agricultural Histosols may result in mobilisation of phosphorus (P), its transport to adjacent surface waters and an accelerated eutrophication. The paper summarises results from an international European Community sponsored research project and demonstrates how results obtained at different scales and from different scientific disciplines were compiled to derive a strategy to carry out rewetting measures. Based on this findings a simple decision support system (DSS) for a hydrologically sensitive area in the Droemling catchment in north-eastern Germany was developed and since 2005 practically used to prevent freshwater resources from non point P pollution.

  15. Assessing the probability of carbon and greenhouse gas benefit from the management of peat soils.

    PubMed

    Worrall, F; Bell, M J; Bhogal, A

    2010-06-01

    This study proposes a method for assessing the probability that land management interventions will lead to an improvement in the carbon sink represented by peat soils. The method is able to: combine studies of different carbon uptake and release pathways in order to assess changes on the overall carbon or greenhouse gas budget; calculate the probability of the management or restoration leading to an improvement in the budget; calculate the uncertainty in that probability estimate; estimate the equivalent number of complete budgets available from the combination of the literature; test the difference in the outcome of different land management interventions; and provide a method for updating the predicted probabilities as new studies become available. Using this methodology, this study considered the impact of: afforestation, managed burning, drainage, drain-blocking, grazing removal; and revegetation, on the carbon budget of peat soils in the UK. The study showed that afforestation, drain-blocking, revegetation, grazing removal and cessation of managed burning would bring a carbon benefit, whereas deforestation, managed burning and drainage would bring a disbenefit. The predicted probabilities of a benefit are often equivocal as each management type or restoration often leads to increase in uptake in one pathway while increasing losses in another.

  16. Ground-based structure from motion - multi view stereo (SFM-MVS) for upland soil erosion assessment.

    NASA Astrophysics Data System (ADS)

    McShane, Gareth; James, Mike; Quniton, John; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Morgan, David; Evans, Martin; Anderson, Karen; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Timothy; Benaud, Pia; Brazier, Richard

    2016-04-01

    In upland environments, quantifying soil loss through erosion processes at a high resolution can be time consuming, costly and logistically difficult. In this pilot study 'A cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we evaluate the use of annually repeated ground-based photography surveys, processed using structure-from-motion and multi-view stereo (SfM-MVS) 3-D reconstruction software (Agisoft Photoscan). The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, in order to quantify dynamic processes, such as erosion and mass movement. The evaluation of the SfM-MVS technique is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. We present results from 5 upland sites across the UK, acquired over a 2-year period. Erosion features of varying width (3 m to 35 m) and length (20 m to 60 m), representing a range of spatial scales (from 100 m2 to 1000 m2) were surveyed, in upland habitats including bogs, peatland, upland grassland and moorland. For each feature, around 150 to 600 ground-based photographs were taken at oblique angles over a 10 to 20 minute period, using an uncalibrated Canon 600D SLR camera with a 28 mm lens (focal length set to infinity). Camera settings varied based upon light conditions (exposure 100-400 ISO, aperture F4.5 to F8, shutter speed 1/100 to 1/250 second). For inter-survey comparisons, models were geo-referenced using 20 to 30 ground control points (numbered black markers with a white target) placed around and within the feature, with their co-ordinates measured by survey-grade differential GNSS (Trimble R4). Volumetric estimates of soil loss were quantified using digital surface models (DSMs) derived from the repeat survey data and subtracted from a

  17. Mycotrophy of crops in rotation and soil amendment with peat influence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field soil.

    PubMed

    Vestberg, M; Saari, K; Kukkonen, S; Hurme, T

    2005-09-01

    Mycotrophy of previous crops has been shown to have an impact on arbuscular mycorrhizal fungi (AMF), and the growth and productivity of succeeding crops. We studied the impact of 3 years of cultivation of eight crops with different degrees of mycotrophy, including mycorrhizal (strawberry, rye, timothy, onion, caraway) and non-mycorrhizal (turnip rape, buckwheat, fiddleneck) hosts, as well as the impact of peat amendment, on the effectiveness, amount and diversity of indigenous AMF. A field experiment having a split-plot design with peat amendment as the main plot, crop cultivation as a sub-plot and three replications, was carried out on silt clay mineral soil in 1999-2001. A well-humified dark peat was applied immediately before establishment of the field experiment. Each year, the relative mycorrhizal effectiveness of soil collected in September, in terms of shoot dry weight (RME(DW)), was determined in a bioassay. In the 3rd year of the experiment, AMF spores were also extracted and identified from the field soil. Expressed as the mean of 3 years of cropping in unamended soil, the mycorrhizal crops strawberry and caraway maintained RME(DW) most effectively, while the values were lower in the non-host crops buckwheat, turnip rape and fiddleneck. In addition, the numbers of AM spores detected in soil were considerably greater during 3 years of strawberry cultivation. In soil under caraway, there were high numbers of AM spores compared to the other crops. In soil amended with peat, the situation was in some cases opposite of that of unamended soil; RME(DW) was highest in rye and onion and lowest in strawberry and caraway. The reasons behind the negative impact of peat on mycorrhizal effectiveness in strawberry soil may be due to the microbiological properties of peat. The importance of including mycotrophic species in crop rotations for maintaining high soil quality and for increasing yields of subsequent crops is discussed.

  18. Soil-to-soybean transfer of (99)Tc and its underground distribution in differently contaminated upland soils.

    PubMed

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Kim, Byung-Ho; Keum, Dong-Kwon; Kim, In-Gyu

    2014-06-01

    Pot experiments were performed in a greenhouse to investigate the soil-to-soybean transfer of (99)Tc in two different upland soils labeled with (99)TcO4(-) in two contrasting ways. One was to mix the soil with a (99)TcO4(-) solution 26 d before sowing (pre-sowing deposition: PSD), and the other was to apply the solution onto the soil surface 44 d after sowing (growing-period deposition: GPD). The soil-to-plant transfer was quantified with the transfer factor (TF, ratio of the plant concentration to the average of at-planting and at-harvest soil concentrations) or the aggregated transfer factor (TFag, ratio of the plant concentration to the deposition density). For both the depositions, the transfer of (99)Tc to aerial parts decreased in the order of leaf > stem > pod > seed. TF values (dimensionless) from the PSD were 0.22 and 0.27 (no statistically significant difference) for mature dry seeds in the respective soils, whereas a 600-fold higher value occurred for dry leaves. The post-harvest concentrations of the PSD (99)Tc in the top 20 cm soils as a whole were about half the initial concentrations. Around 25% of the total applied activity remained in the GPD soils after the harvest. The post-harvest depth profiles of the GPD (99)Tc in the two soils showed similar patterns of logarithmic activity decrease with increasing soil depths. Only 1.5-4.3% of the total applied activity was removed through the harvested biomass (seeds, pods and stems), and it was estimated that a great part of the total pant uptake returned to the soil through the fallen leaves. TFag values (m(2) kg(-1)) were about 2-4 times higher for the GPD than for the PSD. This finding and generally high root uptake of Tc may indicate that the use of empirical deposition time-dependent TFag data is particularly important for predicting the plant concentrations of Tc after its growing-period deposition.

  19. Effects of Organic Matter Heterogeneity on Sorption and Desorption of Hydrophobic Organic Chemicals (HOCs) by Pakokee Peat Soil

    SciTech Connect

    Huang, Weilin; Yu, Zhiqiang; Song, Jianzhing; Peng, Pingan

    2004-03-31

    Previous studies have shown that isotherm nonlinearity, varied sorption capacity and sorption-desorption hystersis relate primarily to the heterogeneity of soil organic matter (SOM). A comprehensive wet chemical isolation procedure was used to isolate and quantify into four fractions from Pahokee peat soil: (1) demineralized pahokee peat soil, (2) humic acids + kerogen + BC (HKB), (3) kerogen and (4) humic acid (HA). The major physical and chemical properties of each fraction were characterized using different techniques, such as Scanning Electron Microscopy, 13C-Nuclear Magnetic Resonance Spectroscopy, etc. The impact of SOM heterogeneity on sorption and desorption equilibria by isolated fractions and original soil was conducted using phenanthrene, naphthalene, 1,2-dichlorobenzene and 1,3,5-trichlorobenzene as sorbates. The data indicated that isolated HKB and kerogen fractions exhibit more nonlinear isotherms, greater sorption capacities and desorption hysteresis than that of HA and their original soil. The role of HA to the overall sorption by soil is less significant compared to HKB and kerogen. The sorption capacity and nonlinearity of demineralized Pahokee Peat soil is greater than original soil which suggested that SOM particle may enwrap up by the inorganic and clay materials, therefore sorbate molecules are not accessible to the surface of SOM particle. The results suggested that kerogen and BC may dominate the overall nonlinear sorption by soil and sediments. The contribution of HA in the overall sorption is different from previous studies. It may be caused by different chemical isolation procedures and needs further investigation.

  20. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment.

    PubMed

    Stopnisek, Nejc; Gubry-Rangin, Cécile; Höfferle, Spela; Nicol, Graeme W; Mandic-Mulec, Ines; Prosser, James I

    2010-11-01

    Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils in which mineralization is the major source of ammonia. To test this hypothesis, thaumarchaeal and bacterial ammonia oxidizers were investigated during nitrification in microcosms containing an organic, acidic forest peat soil (pH 4.1) with a low ammonium concentration but high potential for ammonia release during mineralization. Net nitrification rates were high but were not influenced by addition of ammonium. Bacterial amoA genes could not be detected, presumably because of low abundance of bacterial ammonia oxidizers. Phylogenetic analysis of thaumarchaeal 16S rRNA gene sequences indicated that dominant populations belonged to group 1.1c, 1.3, and "deep peat" lineages, while known amo-containing lineages (groups 1.1a and 1.1b) comprised only a small proportion of the total community. Growth of thaumarchaeal ammonia oxidizers was indicated by increased abundance of amoA genes during nitrification but was unaffected by addition of ammonium. Similarly, denaturing gradient gel electrophoresis analysis of amoA gene transcripts demonstrated small temporal changes in thaumarchaeal ammonia oxidizer communities but no effect of ammonium amendment. Thaumarchaea therefore appeared to dominate ammonia oxidation in this soil and oxidized ammonia arising from mineralization of organic matter rather than added inorganic nitrogen.

  1. The influence of aeration and temperature on the structure of bacterial complexes in high-moor peat soil

    NASA Astrophysics Data System (ADS)

    Kukharenko, O. S.; Pavlova, N. S.; Dobrovol'Skaya, T. G.; Golovchenko, A. V.; Pochatkova, T. N.; Zenova, G. M.; Zvyagintsev, D. G.

    2010-05-01

    The number and taxonomic structure of the heterotrophic block of aerobic and facultative anaerobic bacteria were studied in monoliths from a high-moor peat (stored at room temperature and in a refrigerator) and in the peat horizons mixed in laboratory vessels. The monitoring lasted for a year. In the T0 horizon, spirilla predominated at room and low temperatures; in the T1 and T2 horizons, bacilli were the dominants. The continuous mixing of the peat layers increased the oxygen concentration and the peat decomposition; hence, the shares of actinomycetes and bacilli (bacteria of the hydrolytic complex) increased. In the peat studied, the bacilli were in the active state; i.e., vegetative cells predominated, whose amount ranged from 65 to 90%. The representatives of the main species of bacilli (the facultative anaerobic forms prevailed) hydrolyzed starch, pectin, and carboxymethylcellulose. Thus, precisely sporiferous bacteria can actively participate in the decomposition of plant polysaccharides in high-moor peat soils that are characterized by low temperatures and an oxygen deficit. The development of actinomycetes is inhibited by low temperatures; they can develop only under elevated temperature and better aeration.

  2. Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in marsh soils.

    PubMed

    Davey, Earl; Wigand, Cathleen; Johnson, Roxanne; Sundberg, Karen; Morris, James; Roman, Charles T

    2011-09-01

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, New York) and mineral (North Inlet, South Carolina) Spartina alterniflora soils. Image analysis software was coupled with the CT images to measure abundance and diameter of the coarse roots and rhizomes in marsh soils. Previously, examination of marsh roots and rhizomes was limited to various hand-sieving methods that were often time-consuming, tedious, and error prone. CT imaging can discern the coarse roots, rhizomes, and peat based on their varying particle densities. Calibration rods composed of materials with standard densities (i.e., air, water, colloidal silica, and glass) were used to operationally define the specific x-ray attenuations of the coarse roots, rhizomes, and peat in the marsh cores. Significant regression relationships were found between the CT-determined wet mass of the coarse roots and rhizomes and the hand-sieved dry mass of the coarse roots and rhizomes in both the organic-rich and mineral marsh soils. There was also a significant relationship between the soil percentage organic matter and the CT-determined peat particle density among organic-rich and mineral soils. In only the mineral soils, there was a significant relationship between the soil percentage organic matter and the CT-determined peat wet mass. Using CT imaging, significant positive nitrogen fertilization effects on the wet masses of the coarse roots, rhizomes, and peat, and the abundance and diameter of rhizomes were measured in the mineral soils. In contrast, a deteriorating salt marsh island in Jamaica Bay had significantly less mass of coarse roots and rhizomes at depth (10-20 cm), and a significantly lower abundance of roots and rhizomes compared with a stable marsh. However, the

  3. CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS

    EPA Science Inventory

    Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...

  4. Biogenic Gas Dynamics in Peat Soil Blocks using Ground Penetrating Radar: a Comparative Study in the Laboratory between Peat Soils from the Everglades and from two Northern Peatlands in Minnesota and Maine

    NASA Astrophysics Data System (ADS)

    Cabolova, Anastasija

    Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane ( CH4) and carbon dioxide (CO 2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH 4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change.

  5. Nitrogen Turnover Processes in Low Temperatures in an Agricultural Peat Soil

    NASA Astrophysics Data System (ADS)

    Silvennoinen, H. M.; Hämäläinen, R.; Koponen, H. T.; Martikainen, P. J.

    2009-12-01

    Nitrogen (N) cycling in agricultural soils has a key impact on the environment. Agricultural ecosystems are the most important sources of nitrous oxide (N2O), an important greenhouse gas, to the atmosphere. Additionally N fertilizers used to improve plant growth lead to enhanced N leaching and thereby to eutrophication of surrounding aquatic ecosystems. Microbial processes are normally enhanced by increase in temperature. Several recent studies have shown that although N2O emissions from agricultural soils are of microbiological origin, produced mainly in microbial reduction of nitrate (NO3-) via nitric oxide (NO) and N2O to molecular nitrogen (N2) (denitrification), the temperature response of N2O emissions is greatly variable and there is a lot of evidence of high emissions during cold periods (Koponen et al. 2006). Denitrification is, however, regulated by availability of inorganic N and therefore dependant not only on N fertilization but also on N turnover processes in soil. These processes include mineralization of organic N to ammonium (NH4+), oxidation of NH4+ to nitrite and NO3- (nitrification). These processes and their regulation especially in low temperatures are yet poorly understood. In this experiment, gross rates of N mineralization and nitrification and carbon dioxide production were studied in various temperatures ranging from -1.5 to 15 °C. Soil samples were taken from grassland on peat soil in Southern Finland (60o49’N, 23o30’E) on September 8th 2008 from depths of 0-10 cm. Temperature responses of N gross mineralization and nitrification and of microbial respiration were measured in a laboratory experiment. The incubation temperatures used for experiments were 15, 5, 2.5, 1.5, 0.5, 0, -0.5 and -1.5 °C. After 7 d temperature-specific incubation, gross rates of N mineralization and nitrification were determined with pool dilution technique in a 24 h incubation experiment. This study showed that N turnover processes in agricultural peat soil

  6. Simulation of N2O peak emissions on peat soils with SWAP-ANIMO

    NASA Astrophysics Data System (ADS)

    Stolk, P. C.; Hendriks, R. H. A.; Jacobs, C. M. J.; Weststrate, H.; Duyzer, J.

    2009-04-01

    Nitrous oxide (N2O) is a very strong greenhouse gas, with agricultural soils as its main anthropogenic source. Various management practices, like fertilization or tillage, can give rise to pulses of N2O emissions. In spite of their short duration, in the order of a couple of days to weeks, these pulses can constitute major part of total annual nitrous oxide emission. Understanding, predicting and ultimately mitigating these pulses poses a considerable challenge. N2O is mainly produced by nitrifiers and denitrifiers. These require different conditions with respect to aerobicity and available mineral N. Simulation models offer a promising tool to test and further develop process knowledge on N2O production and -emission. SWAP-ANIMO is a process oriented biogeochemical model, originally developed for the simulation of nitrate leaching, that has recently been extended with an N2O module. It includes production and consumption of N2O by denitrification, production of N2O by nitrification and transport by diffusion and convection in the soil water and soil air. Here we present the validation of N2O surface flux simulations, with daily measurements of fluxes from grassland on peat in The Netherlands. As a first step to evaluate the simulation of the processes in the soil, we compare observed and simulated soil N2O concentration profiles.

  7. Heavy metals uptake from contaminated soils as affected by peat, lime, and chelates

    SciTech Connect

    Albasel, N.; Cottenie, A.

    1985-01-01

    Heavy metal contamination of soils may reduce yields as well as the suitability for consumption of crop growth (Keeney et al., Leeper). In an effort to find possible ways to counter this danger, the effect of lime, chelating agents, and peat applied to Zn-, Cu- and Pb-contaminated soils on the uptake of metal ions were studied. Pot experiments with barley (Hordeum vulgare L.), perennial ryegrass (Lolium perenne) and Italian ryegrass (Lolium multiflorum) plants and soils, humic podzols (haplohumads) contaminated with Zn (3030 mg kg/sup -1/) and with Pb, Zn and Cu (110, 630, and 40 mg kg/sup -//sub 1/, respectively) were carried out. The concentration of the acid extracts of soils and plants were determined with the aid of the simultaneous direct reading spectrograph and atomic absorption. In all cases, raising the pH of the soil by liming appeared to be the most efficient method for reducing plant absorption of toxic micronutrients and heavy metals. However, the uptake of Fe and Mn was more markedly dependent on pH than that of Zn and Cu.

  8. Effects of temperature on microbial C metabolism in peat and mineral soil

    NASA Astrophysics Data System (ADS)

    Hagerty, S.; Dijkstra, P.; Miller, E.; Schwartz, E.; KOCH, G. W.; Hungate, B. A.

    2013-12-01

    Microbial metabolism, the main mechanism responsible for soil CO2 emissions, plays an important role in the global C cycle. Increased temperature generally stimulates decomposition and respiration, indicative of increased microbial C metabolism and possibly greater energy demand by microbes for growth and maintenance. Changes in microbial metabolism with temperature may manifest differently in microbial communities from soils with different C availability because it is generally expected that when more organic C is present, carbon use efficiency (CUE) will be lower and more CO2 will be released per unit C assimilated by microbes than when less C substrate is available. In this study we examined the effect of temperature on C processing in peat and mineral soil from the Marcel Experimental Forest in Minnesota. Samples were incubated for 7 days at 5, 10, 15, and 20°C. We used position-specific 13C-labeled tracers to model C flux through the central C metabolic network (i.e. glycolysis, pentose phosphate pathway, and the citric acid cycle) and to asses the CUE of microbial communities. We also measured total CO2 production and microbial biomass, and we calculated the metabolic quotient (qCO2), which is the rate of CO2, respired per unit of microbial biomass. We found that temperature and soil type did not affect CUE and patterns of C flow through the central C metabolic network. Increased temperature stimulated respiration and decreased qCO2 in peat more than the mineral soil. These results suggest temperature affects rate of C cycling, but does not alter the relative demand for energy production and biosynthesis per unit substrate-C. This implies, in contrast to expectations that at higher temperatures more substrate will be used to offset greater demand for maintenance energy, warmer temperatures will not alter the balance of growth and maintenance energy by soil microbes. Moreover, substrate availability did not result in ';wasteful' C use, but increased C cycling

  9. Use of Computer-Aided Tomography (CT) Imaging for Quantifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...

  10. Time-scales of hydrological forcing on the geochemistry and bacterial community structure of temperate peat soils.

    PubMed

    Nunes, Flavia L D; Aquilina, Luc; de Ridder, Jo; Francez, André-Jean; Quaiser, Achim; Caudal, Jean-Pierre; Vandenkoornhuyse, Philippe; Dufresne, Alexis

    2015-10-06

    Peatlands are an important global carbon reservoir. The continued accumulation of carbon in peatlands depends on the persistence of anoxic conditions, in part induced by water saturation, which prevents oxidation of organic matter, and slows down decomposition. Here we investigate how and over what time scales the hydrological regime impacts the geochemistry and the bacterial community structure of temperate peat soils. Peat cores from two sites having contrasting groundwater budgets were subjected to four controlled drought-rewetting cycles. Pore water geochemistry and metagenomic profiling of bacterial communities showed that frequent water table drawdown induced lower concentrations of dissolved carbon, higher concentrations of sulfate and iron and reduced bacterial richness and diversity in the peat soil and water. Short-term drought cycles (3-9 day frequency) resulted in different communities from continuously saturated environments. Furthermore, the site that has more frequently experienced water table drawdown during the last two decades presented the most striking shifts in bacterial community structure, altering biogeochemical functioning of peat soils. Our results suggest that the increase in frequency and duration of drought conditions under changing climatic conditions or water resource use can induce profound changes in bacterial communities, with potentially severe consequences for carbon storage in temperate peatlands.

  11. Time-scales of hydrological forcing on the geochemistry and bacterial community structure of temperate peat soils

    PubMed Central

    Nunes, Flavia L. D.; Aquilina, Luc; de Ridder, Jo; Francez, André-Jean; Quaiser, Achim; Caudal, Jean-Pierre; Vandenkoornhuyse, Philippe; Dufresne, Alexis

    2015-01-01

    Peatlands are an important global carbon reservoir. The continued accumulation of carbon in peatlands depends on the persistence of anoxic conditions, in part induced by water saturation, which prevents oxidation of organic matter, and slows down decomposition. Here we investigate how and over what time scales the hydrological regime impacts the geochemistry and the bacterial community structure of temperate peat soils. Peat cores from two sites having contrasting groundwater budgets were subjected to four controlled drought-rewetting cycles. Pore water geochemistry and metagenomic profiling of bacterial communities showed that frequent water table drawdown induced lower concentrations of dissolved carbon, higher concentrations of sulfate and iron and reduced bacterial richness and diversity in the peat soil and water. Short-term drought cycles (3–9 day frequency) resulted in different communities from continuously saturated environments. Furthermore, the site that has more frequently experienced water table drawdown during the last two decades presented the most striking shifts in bacterial community structure, altering biogeochemical functioning of peat soils. Our results suggest that the increase in frequency and duration of drought conditions under changing climatic conditions or water resource use can induce profound changes in bacterial communities, with potentially severe consequences for carbon storage in temperate peatlands. PMID:26440376

  12. A new soil mechanics approach to quantify and predict land subsidence by peat compression

    NASA Astrophysics Data System (ADS)

    Koster, Kay; Erkens, Gilles; Zwanenburg, Cor

    2016-10-01

    Land subsidence threatens many coastal areas. Quantifying current and predicting future subsidence are essential to sustain the viability of these areas with respect to rising sea levels. Despite its scale and severity, methods to quantify subsidence are scarce. In peat-rich subsidence hot spots, subsidence is often caused by peat compression. We introduce the standard Cone Penetration Test (CPT) as a technique to quantify subsidence due to compression of peat. In a test in the Holland coastal plain, the Netherlands, we found a strong relationship between thickness reduction of peat and cone resistance, due to an increase in peat stiffness after compression. We use these results to quantify subsidence of peat in subsiding areas of Sacramento-San Joaquin delta and Kalimantan, and found values corresponding with previously made observations. These results open the door for CPT as a new method to document past and predict future subsidence due to peat compression over large areas.

  13. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    NASA Astrophysics Data System (ADS)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  14. Water-soluble organic acids in cryomorphic peat soils of the southeastern Bol'shezemel'skaya tundra

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Kaverin, D. A.; Pastukhov, A. V.; Lapteva, E. M.; Kubik, O. S.; Punegov, V. V.

    2015-03-01

    The composition of the water extracts, the pH, and the weight concentrations of the total organic carbon and low-molecular-weight organic acids in seasonally thawed and perennially frozen horizons of cryomorphic peat soils have been determined. The quantitative analysis of the acids converted to trimethylsilyl derivatives has been performed by gas chromatography and chromato-mass spectroscopy. Hydroxypropanoic, propanoic, and hydroxyethanoic acids are the prevailing acids (30-50, 10-20, and 10% of the total acids, respectively). Malic, glyceric, hexadionic, trihydroxybutanoic, ribonic, and other acids have also been detected. It has been shown that the differences in the genesis of the peat deposits significantly affect the composition and content of water-soluble organic compounds in soils on the soil-profile and landscape levels.

  15. Imaging tropical peatlands in Indonesia using ground penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization

    NASA Astrophysics Data System (ADS)

    Comas, X.; Terry, N.; Slater, L.; Warren, M.; Kolka, R.; Kristijono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T.

    2015-01-01

    Current estimates of carbon (C) storage in peatland systems worldwide indicate tropical peatlands comprise about 15% of the global peat carbon pool. Such estimates are uncertain due to data gaps regarding organic peat soil thickness and C content. Indonesian peatlands are considered the largest pool of tropical peat carbon (C), accounting for an estimated 65% of all tropical peat while being the largest source of carbon dioxide emissions from degrading peat worldwide, posing a major concern regarding long-term sources of greenhouse gases to the atmosphere. We combined a set of indirect geophysical methods (ground penetrating radar, GPR, and electrical resistivity imaging, ERI) with direct observations from core samples (including C analysis) to better understand peatland thickness in West Kalimantan (Indonesia) and determine how geophysical imaging may enhance traditional coring methods for estimating C storage in peatland systems. Peatland thicknesses estimated from GPR and ERI and confirmed by coring indicated variation by less than 3% even for small peat-mineral soil interface gradients (i.e. below 0.02°). The geophysical data also provide information on peat matrix attributes such as thickness of organomineral horizons between peat and underlying substrate, the presence of wood layers, buttressed trees and soil type. These attributes could further constrain quantification of C content and aid responsible peatland management in Indonesia.

  16. Carbon dioxide and methane fluxes from drained peat soils, southern Quebec

    NASA Astrophysics Data System (ADS)

    Glenn, Shannon; Heyes, Andrew; Moore, Tim

    1993-06-01

    Fluxes of CO2 and CH4 were determined by a static chamber technique at eight drained swamp peatland sites, with crop and forest covers. Over a 6- month period (May - October, 1991), CH4fluxes ranged from -5 to 7 mg CH4 m-2 d-1 and were not correlated with either soil temperature or water table position. Integrated seasonal emissions were -0.40 to 0.04 g CH4 m-2 over 147 days; the sites with a forest or grass cover were a small sink of CH4 whereas the sites with horticultural crops showed no significant flux. Laboratory incubations showed that the highest CH4 consumption rates (3 to 9 μg CH4 g-1 d-1) occurred in the least disturbed soils. The results, when compared with CH4 fluxes from nearby swamps which have been unaffected by drainage, suggest that drainage of temperate peatlands has reduced emissions of CH4 to the atmosphere by 0.6 - 1 × 1012g CH4 yr-1. CO2 fluxes ranged from 0 to 16 g CO2 m-2 d-1 and were correlated with the seasonal pattern of temperature in the upper part of the soil profile. Integrated seasonal fluxes for the sites in which root respiration was an unimportant contribution were 0.6 - 0.8 kg CO2 m-2 over 181 days. Aerobic laboratory incubations revealed CO2 production rates of 0.2 - 1.4 mg CO2 g-1 d-1, an average of 5 times the rate under anaerobic conditions. Using bulk density and loss-on-ignition data, we found that the seasonal CO2 fluxes translate into surface lowering of the peat of about 2 mm yr-1, whereas the commonly observed lowering in these cultivated peatlands is 20 mm yr-1. These data suggest that processes other than direct oxidation, such as shrinkage and aeolian erosion, are the major contributor to the surface lowering of the peat.

  17. Influence of oil and stratal water contamination on the ash composition of oligotrophic peat soils in the oil-production area (the Ob' region)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Avetov, N. A.; Savichev, A. T.; Trofimov, S. Ya.; Shishkonakova, E. A.

    2013-10-01

    The mineral contamination of peat soils in the oil-production area differs considerably in the places of oil or stratal water spills. The time elapsed since the spill occurred is also an important factor of the changes in the chemical composition of the peat ash. The ash content rises drastically in the oil-contaminated peat, and the peat ash becomes rich in heavy metals (Mn, Ni, and Sr) and lanthanides (La and Ce). The content of K and Fe decreases, and that of P, S, Mg, Ca, Ni, and Pb increases with time at the site of old oil contamination. In the course of the self-rehabilitation of oil-contaminated peat, the content of Cl decreases more intensely than that of the heavier halogen Br. The ash content rises to a lesser extent in the peat contaminated with stratal water. The ash of the salinized peat is enriched in heavy alkaline-earth elements, i.e., Ba and Sr. Although most of the elements are leached with time, the content of Ba and Sr still remains 4-6 times higher than the background one even after long-term (more than 10 years) leaching. The concentrations of halogens rise considerably in the salinized peat, that of Cl in the peat ash decreases by 10 times, and the content of Ba virtually remains the same.

  18. Nitrous Oxide (N2O) Production and Consumption after the Rewetting of Soils in Isolated Wetlands and Surrounding Pasture Upland

    NASA Astrophysics Data System (ADS)

    Hu, J.; Inglett, K.; Inglett, P.; Clark, M.; Reddy, R.

    2012-12-01

    Nitrous oxide (N2O) is one of the most potent greenhouse gases and the highest N2O emissions from pasture lands are always found after the rewetting of soils which is caused by events, such as rainfall and irrigation. The N2O emission peaks are attributed to denitrification because of the anaerobic condition in the soil created by rewetting and the accumulated substrates (nitrate and labile organic carbon) during the drying period. Therefore, the N2O emissions after rewetting represent the difference between N2O production and N2O consumption by denitrification. Isolated wetlands, which have no surface water connectivity with nearby water bodies, are common feature in many pasture ecosystems. They act as water and nutrient storage systems at landscape scale and have distinct biogeochemical features with the surrounding pasture uplands. An isolated wetland located in cow-grazing pasture was selected as our study site. Study area has been stratified into three zones according to the vegetative communities and basin morphology: wetland center zone (Center), transient edge zone (Edge) and pasture upland zone (Upland). Six transects extended from the center of wetland to surrounding pasture upland have been set up, in which 3 transects have been fenced aiming for excluding the cow and calf grazing. Soil samples (0-10 cm) were collected in each zone along each transects. Soil biogeochemical properties were characterized on soil subsamples. A laboratory incubation study was performed to quantify N2O production and consumption rates of the rewetted soils. Our results indicated that the N2O production process normally had a biphasic pattern, with a low production rates in 6 h after rewetting, followed by a faster production rate between 6 h to the time when accumulated N2O began to be consumed. In the first 6 h after rewetting, soils from Edge had the highest production rates because of the relative higher nitrate content. Nitrous oxide production rates were significantly

  19. Uncertainties in peat volume and soil carbon estimated using ground penetrating radar and probing

    SciTech Connect

    Parsekian, Andrew D.; Slater, Lee; Ntarlagiannis, Dimitrios; Nolan, James; Sebestyen, Stephen D; Kolka, Randall K; Hanson, Paul J

    2012-01-01

    We evaluate the uncertainty in calculations of peat basin volume using high-resolution data . to resolve the three-dimensional structure of a peat basin using both direct (push probes) and indirect geophysical (ground penetrating radar) measurements. We compared volumetric estimates from both approaches with values from literature. We identified subsurface features that can introduce uncertainties into direct peat thickness measurements including the presence of woody peat and soft clay or gyttja. We demonstrate that a simple geophysical technique that is easily scalable to larger peatlands can be used to rapidly and cost effectively obtain more accurate and less uncertain estimates of peat basin volumes critical to improving understanding of the total terrestrial carbon pool in peatlands.

  20. Baseline of Trace Elements in Soils from the Tarragona and Barcelona Coastal Area and Central Uplands of Barcelona , Catalonia (Spain) .

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Tume, Pedro; Roca, Nuria; Reverter, Ferrán; Sanchez, Pedro; Rustullet, Joana

    2013-04-01

    A study was conducted to determine the baseline of total contents (XRF) of Ba, Cu, Ga, Ni, Pb, Rb, Sn, Sr, V, and Zn in soils from the Tarragona and Barcelona coastal area and Central Uplands of Barcelona, Catalonia, NE Spain, and to establish relationships between heavy metals and some soil properties. A total of 94 samples (47 soil plots) were collected from topsoils and subsurface soils in the main soil types. The median concentrations (mg kg-1) obtained were Ba 412 (range 113-954 mg kg-1), Cu 19.4 (5-91 mg kg-1), Ga 12.5 (5-21.7 mg kg-1 ), Ni 24 (7-56.5 mg kg-1 ), Pb 25 (9-100 mg kg-1), Rb 79 (34-140 mg kg-1 ), Sn 2 (1-8 mg kg-1 ), Sr 102 (43-401 mg kg-1 ), V 68.5 (22-170 mg kg-1 ), and Zn 66 (20-137 mg kg-1 ). The concentrations of trace elements in Catalonia were similar to those given by other authors from different countries of the Mediterranean regions. In terms of soil properties, the results of this study suggest that in these soils trace elements adsorption and retention are influenced by several properties such as clay minerals and pH. Almost all element concentrations were positively correlated with clay content and negatively correlated with carbonates. The very strong positive correlations between V, Ni, V, and Ga point to their natural origin.

  1. Effect of peat characteristics on P, N and DOC mobilization from re-wetted peat soils - a laboratory column study for the impacts of restoration on forestry-drained peatlands

    NASA Astrophysics Data System (ADS)

    Koskinen, Markku; Kaila, Annu; Asam, Zaki; Uusitalo, Risto; Smolander, Aino; Kiikkilä, Oili; Sarkkola, Sakari; Kitunen, Veikko; Fritze, Hannu; Nousiainen, Hannu; Tervahauta, Arja; Xiao, Liwen; Nieminen, Mika

    2016-04-01

    Peatlands are an integral part of the hydrological cycle in the boreal and temperate zones, providing ecosystem services such as water filtering. From the mid to late 1900's, over 15 ha of peatlands and wetlands were drained for forestry in the temperate and boreal zones, causing deterioration of biodiversity and loss of ecosystem services. They are now being restored in order to reverse this development. Restoration of pealands has been found to cause leaching of DOC and nutrients after water level rise and expansion of reducing conditions in the peat. A molar ratio between redox-sensitive Fe and P in the peat of < 10 has been previously suggested as a limit value indicating risk of high P export. The ratio, however, does not predict the level of P release well when the value is < 10. It has also been suggested that redox-sensitive Fe is involved in the export of DOC via consumption of protons during reduction reactions of Fe, which reduces the soil positive charge and makes the DOC molecules more electronegative, which makes them repeal each other. An incubation experiment was conducted to study factors affecting P, N and DOC release from inundated peat from forestry-drained peatlands of several fertility classes. It was discovered that in addition to Fe, a high ratio of Al to P in the peat reduces P export under reducing conditions. High peat Fe content was also found to predict high DOC export, suggesting that minerotrophic sites are susceptible to post-restoration DOC leaching due to the Fe in their peat. Microbial biomass and mineralization potential of the peat were not found to be important for the export of DOC or P. High NO3 content in the peat predicted high export of NH4 under reducing conditions.

  2. Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance.

    PubMed

    Yang, Yu; Shu, Liang; Wang, Xilong; Xing, Baoshan; Tao, Shu

    2012-07-01

    The organic matter-mineral complex plays an important role in regulating the fate of hydrophobic organic compounds (HOCs) in the environment. In the present study, the authors investigated the microbial bioavailability of phenanthrene (PHE) sorbed on the original and demineralized humic acids (HAs) and humin (HM) that were sequentially extracted from a peat soil. Demineralization treatment dramatically decreased the 720-h mineralized percentage of HM-sorbed PHE from 42.5 ± 2.6% to 3.4 ± 1.3%, whereas the influence of this treatment on the biodegradability of HA-associated PHE was much lower. Degradation kinetics of HA- and HM-sorbed PHE showed that its initial degradation rate was negatively correlated with the aromatic carbon content of humic substances (p<0.05). This was attributed to the strong interactions between PHE and the aromatic components of humic substances, which hampered its release and subsequent biodegradation. The 720-h mineralized percentage of PHE was inversely correlated with the estimated thickness of the organic matter layer at the surfaces of HAs and HMs. Therefore, in a relatively long term, diffusion of PHE within the organic matter layer could be an important factor that may limit the bioavailability of PHE to bacteria. Results of the present study highlight the molecular-scaled mechanisms governing bioavailability of PHE sorbed on humic substances.

  3. Suspending multi-walled carbon nanotubes by humic acids from a peat soil.

    PubMed

    Zhou, Xinzhe; Shu, Liang; Zhao, Huibin; Guo, Xiaoying; Wang, Xilong; Tao, Shu; Xing, Baoshan

    2012-04-03

    Suspension of the pristine and COOH-substituted multi-walled carbon nanotubes (P- and C-MWCNTs) with different outer diameters (ODs) by humic acids (HAs) from a peat soil was examined. Under shaking condition, MWCNTs were not suspended within 5 d. Without HAs, C-MWCNTs were slightly suspended by sonication within 16 h, but no suspension was observed for the pristine ones (P-MWCNTs). HAs greatly enhanced suspension of both P- and C-MWCNTs. The suspension enhancement was attributed to HA sorption, which increased electrostatic repulsion and steric hindrance between individual MWCNTs. Introduction of O-containing hydrophilic moieties to MWCNTs via HA sorption enhanced the interactions of their surfaces with water through H-bonding. Suspending capability of various MWCNTs on suspended mass concentration basis by four HAs showed inconsistent orders with the increasing or decreasing trend of their ODs. However, the suspended surface area concentrations of both P- and C-MWCNTs by individual HAs consistently followed an order of P8 > P30 > P50, and C8 > C30 > C50 (P and C, respectively, refer to P- and C-MWCNTs, and the numbers represent their ODs). These data implied that MWCNTs with smaller OD could be more strongly suspended by a given HA relative to those with larger OD under sonication condition.

  4. Identification and characterization of lipolytic enzymes from a peat-swamp forest soil metagenome.

    PubMed

    Bunterngsook, Benjarat; Kanokratana, Pattanop; Thongaram, Taksawan; Tanapongpipat, Sutipa; Uengwetwanit, Tanaporn; Rachdawong, Sansanalak; Vichitsoonthonkul, Taweerat; Eurwilaichitr, Lily

    2010-01-01

    In this work, a metagenomic library was generated from peat-swamp forest soil obtained from Narathiwat Province, Thailand. From a fosmid library of approximately 15,000 clones, six independent clones were found to possess lipolytic activity at acidic pH. Analysis of pyrosequencing data revealed six ORFs, which exhibited 34-71% protein similarity to known lipases/esterases. A fosmid clone, designated LP8, which demonstrated the highest level of lipolytic activity under acidic conditions and demonstrated extracellular activity, was subsequently subcloned and sequenced. The full-length lipase/esterase gene, estPS2, was identified. Its deduced amino acid was closely related to a lipolytic enzyme of an uncultured bacterium, and contained the highly conserved motif of a hormone-sensitive family IV lipase. The EstPS2 enzyme exhibited highest activity toward p-nitrophenyl butyrate (C⁴) at 37 °C at pH 5, indicating that it was an esterase with activity and secretion characteristics suitable for commercial development.

  5. Dactylosporangium sucinum sp. nov., isolated from Thai peat swamp forest soil.

    PubMed

    Phongsopitanun, Wongsakorn; Kudo, Takuji; Ohkuma, Moriya; Suwanborirux, Khanit; Tanasupawat, Somboon

    2015-06-01

    The actinomycete strain RY35-23(T) was isolated from peat swamp forest soil in Thailand. The taxonomic position of this strain was determined using polyphasic approach. Strain RY35-23(T) showed typical morphology and chemical properties similar to the members in the genus Dactylosporangium. On the basis of 16S ribosomal RNA gene analysis, this strain was closely related to Dactylosporangium fulvum JCM 5631(T) (98.94%), D. roseum JCM 3364(T) (98.87%) and D. darangshiense JCM 17441(T) (98.86%). The DNA-DNA relatedness between strain RY35-23(T) and its closely related species was lower than 70%, the cutoff level for assigning strains to the same species. On the basis of these results mentioned, the strain RY35-23(T) could be distinguished from its closely related type strains and represents a novel species of the genus Dactylosporangium, for which the name Dactylosporangium sucinum (type strain RY35-23(T)=JCM 19831(T)=TISTR 2212(T)=PCU 333(T)) is proposed.

  6. Streptomyces actinomycinicus sp. nov., isolated from soil of a peat swamp forest.

    PubMed

    Tanasupawat, Somboon; Phongsopitanun, Wongsakorn; Suwanborirux, Khanit; Ohkuma, Moriya; Kudo, Takuji

    2016-01-01

    A novel actinomycete, strain RCU-197T, was isolated from soil of a peat swamp forest in Rayong Province, Thailand. Using a polyphasic approach, the strain was classified in the genus Streptomyces. It contained ll-diaminopimelic acid in the cell-wall peptidoglycan. No diagnostic sugars were detected in whole-cell hydrolysates and there was a lack of mycolic acids. The major menaquinones were MK-9(H6) and MK-9(H8). The predominant cellular fatty acids were iso-C14 : 0, iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. The polar lipids profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and phosphatidylinositol mannoside, an unknown aminolipid and two unknown phospholipids. Phylogenetic analysis of 16S rRNA gene sequences showed the strain formed distinct clade within the genus Streptomyces and was closely related to Streptomyces echinatus NBRC 12763T (98.78 % 16S rRNA gene sequence similarity). According to the polyphasic approach as well as DNA-DNA relatedness, the strain could be clearly differentiated from closely related species and represents a novel species of the genus Streptomyces, for which the name Streptomyces actinomycinicus sp. nov. is proposed. The type strain is RCU-197T ( = JCM 30864T = TISTR 2208T = PCU 342T).

  7. Biogeochemistry of Metalliferous Peats: Sulfur Speciation and Depth Distributions of dsrAB Genes and Cd, Fe, Mn, S, and Zn in Soil Cores

    SciTech Connect

    Martinez,C.; Yanez, C.; Yoon, S.; Bruns, M.

    2007-01-01

    Spatial relationships between concentrations of Cd, Fe, Mn, S, and Zn and bacterial genes for dissimilatory sulfate reduction were studied in soils of the Manning peatland region in western New York. Peat cores were collected within a field exhibiting areas of Zn phytotoxicity, and pH and elemental concentrations were determined with depth. The oxidation states of S were estimated using S-XANES spectroscopy. Soil microbial community DNA was extracted from peat soils for ribosomal RNA intergenic spacer analysis (RISA) of diversity profiles with depth. To assess the presence of sulfate-reducing microorganisms (SRM), DNA extracts were also used as templates for PCR detection of dsrAB genes coding for dissimilatory (bi)sulfite reductase. Elemental distributions, S redox speciation, and detection of dsrAB genes varied with depth and water content. The pH of peat soils increased with depth. The highest concentrations of Zn, Cd, and S occurred at intermediate depths, whereas Mn concentrations were highest in the topmost peat layers. Iron showed a relatively uniform distribution with depth. Concentrations of redox sensitive elements, S and Mn, but not Fe, seemed to respond to variations in water content and indicated vertical redox stratification in peat cores where topmost peats were typically acidic and oxidizing and deeper peats were typically circumneutral and reducing. Even then, S-XANES analyses showed that surface peats contained >50% of the total S in reduced forms while deep peats contained generally <5% of the total S in oxidized forms. While bacterial RISA profiles of the peats were diverse, dsrAB gene detection followed redox stratification chemistry closely. For the most part, dsrAB genes were detected in deeper peats, where S accumulation was evident, while they were not detected in topmost peat layers where Mn accumulation indicated oxic conditions. Combined chemical, spectroscopic, and microbiological analyses indicated that prolonged exposure to dry

  8. Biogeochemistry of carbon and related major and trace elements in peat bog soils of the middle taiga of Western Siberia (Russia).

    NASA Astrophysics Data System (ADS)

    Stepanova, V. A.; Mironycheva-Tokareva, N. P.; Pokrovsky, O. S.

    2012-04-01

    Global climate changes impact the status of wetland ecosystems shifting the balances of the carbon, macro-, and microelements cycles. This study aims to establish the features of accumulation and distribution of major- and trace elements in the organic layer of peat bog soils, belonging to different ecosystems of the oligotrophic bog complex located in the middle taiga of Western Siberia (Khanty-Mansiysk region, Russia). Key areas which are selected for this study include the following bog conjugate elementary ecosystems: higher ryam, lower ryam, ridge-hollow complex, and oligotrophic poor fen as characterized previously [1]. We have sampled various peat types along the entire length of the soil column (every 10 cm down to 3 m). Peat samples were analyzed for a wide range of macro- and microelements using an ICP-MS technique following full acid digestion in a microwave oven. These measurements allowed quantitative estimates of major- and trace elements in the peat deposits within the whole bog complex and individual elementary landscapes. Based on the data obtained, the lateral and radial geochemical structures of the bog landscapes were determined and clarified for the first time for middle taiga of the West Siberian plain. The similar regime of mineral nutrition during the complete bog landscape formation was detected for the peat deposits based on the measurements of some major- and trace elements (Ca, Fe, Mg, etc.). The vertical distribution of some major and some trace elements along the profile of peat column is rather uniform with relatively strong increase in the bottom organic layers. This strongly suggests the similarity of the processes of element accumulation in the peat and relatively weak post depositional redistribution of elements within the peat soil profile. Overall, obtained corroborate the existing view on chemical composition of peats being determined by botanical peat's components (which forms this peat deposit), atmospheric precipitation

  9. Biogeochemistry of metalliferous peats: sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores.

    PubMed

    Martínez, Carmen Enid; Yáñez, Carolina; Yoon, Soh-Joung; Bruns, Mary Ann

    2007-08-01

    Spatial relationships between concentrations of Cd, Fe, Mn, S, and Zn and bacterial genes for dissimilatory sulfate reduction were studied in soils of the Manning peatland region in western New York. Peat cores were collected within a field exhibiting areas of Zn phytotoxicity, and pH and elemental concentrations were determined with depth. The oxidation states of S were estimated using S-XANES spectroscopy. Soil microbial community DNA was extracted from peat soils for ribosomal RNA intergenic spacer analysis (RISA) of diversity profiles with depth. To assess the presence of sulfate-reducing microorganisms (SRM), DNA extracts were also used as templates for PCR detection of dsrAB genes coding for dissimilatory (bi)-sulfite reductase. Elemental distributions, S redox speciation, and detection of dsrAB genes varied with depth and water content. The pH of peat soils increased with depth. The highest concentrations of Zn, Cd, and S occurred at intermediate depths, whereas Mn concentrations were highest in the topmost peat layers. Iron showed a relatively uniform distribution with depth. Concentrations of redox sensitive elements, S and Mn, but not Fe, seemed to respond to variations in water content and indicated vertical redox stratification in peat cores where topmost peats were typically acidic and oxidizing and deeper peats were typically circumneutral and reducing. Even then, S-XANES analyses showed that surface peats contained >50% of the total S in reduced forms while deep peats contained generally <5% of the total S in oxidized forms. While bacterial RISA profiles of the peats were diverse, dsrAB gene detection followed redox stratification chemistry closely. For the most part, dsrAB genes were detected in deeper peats, where S accumulation was evident, while they were not detected in topmost peat layers where Mn accumulation indicated oxic conditions. Combined chemical, spectroscopic, and microbiological analyses indicated that prolonged exposure to dry

  10. Kinetics of peat soil dissolved organic carbon release to surface water. Part 2. A chemodynamic process model.

    PubMed

    Thibodeaux, L J; Aguilar, L

    2005-09-01

    Temporary water reservoirs built upon peat soil may exhibit water quality impairment from elevated dissolved organic carbon (DOC). Microbiological decay of the organic carbon in the bed with subsequent release produces "tea" colored water which may require treatment prior to use. This paper contains a process-based mathematical model that quantifies the DOC release from the bed and its build-up in the water column. The model elements are based on microbial DOC production rates and bed sediment transport kinetics describing its' release from the organic soil systems. It relies on laboratory data obtained from an experimental study, Part 1, designed to simulate the DOC chemodynamics of aquatic reservoirs built upon peat soils. A two-step DOC release process was structured based on the experimental findings. The model mechanism assumes a quick release fraction that characterizes the upper soil surface layers as a "tea bag" type release process. This is followed by a fraction that is continuously produced and then released at a constant rate overtime by on-going microbial processes within the upper soil layers. The depth of the active layer, selected as h* = 0.3 cm, is the single adjustable parameter in the model. Concentration predictions of the are consistent with the laboratory simulations and field observations. Measured vs. model-calculated DOC concentrations for both in the microcosm bed and water column are used to test critical features of the proposed model. As conceived and structured it appears to be a realistic first step in quantifying the DOC release consequences for the water column of a reservoir sited upon a peat-soil bed. The development ends with an application to a hypothetical reservoir in order to illustrate model strengths and uncertainties.

  11. The effect of anaerobicity and temperature on N2 and N2O dynamics in forestry drained boreal peat soils

    NASA Astrophysics Data System (ADS)

    Pihlatie, Mari; Hongisto, Isto; Dannenmann, Michael; Georg, Willibald; Rainer, Gasche; Klaus, Butterbach-Bahl

    2013-04-01

    Molecular nitrogen (N2) is the dominant end-product of microbial denitrification in soils; however, due to difficulties in measuring N2 exchange, the emissions of N2 from terrestrial ecosystems are largely unknown. In boreal peatland soils, the combination of high soil carbon and nitrogen contents, fluctuating water-table and high decomposition activity of the peat make these soils potentially large emitters of N gases via microbial denitrification processes. This motivated us to quantify the N2 and nitrous oxide (N2O) losses from boreal drained peat soils varying in fertility status. Soil samples were collected from two drained peatland forests: a nutrient-rich (Lettosuo) and a nutrient-poor (Kalevansuo) site, both located in the boreal zone of Southern Finland. N2 and N2O emissions from intact soil cores were measured using the helium gas flow soil core method. Two incubation experiments were conducted focusing on the effects of anaerobicity and temperature on N2 and N2O dynamics of the top-soil (experiment 1), and the effect of anaerobicity on N2 and N2O dynamics in the peat profile (experiment 2). Soil samples in experiment 1 were incubated under 1) cold (2° C) aerobic (20% O2, 80% He), 2) cold (2° C) anaerobic (0% O2, 100% He), and 3) warm (15° C) anaerobic conditions, while those in experiment 2 were incubated under 1) warm aerobic and 2) warm anaerobic conditions. Dynamics of N2 and N2O fluxes for each incubation condition were followed until fluxes stabilized. In general, the N2 and N2O fluxes in the nutrient-rich Lettosuo peat were higher and more variable than those at the nutrient-poor Kalevansuo peat. In the nutrient-rich Lettosuo, both the N2 and N2O emissions increased dramatically after the change from aerobic to anaerobic conditions, and again after the temperature rise from 2 to 15° C. This latter peak in emissions was followed by a switch from N2O production to N2O consumption and a simultaneous sharp decrease in N2 emissions. Although, the N2

  12. Restoration of Upland Hardwood Tree Species on the Formerly Cultivated Soils in the Coastal Plain of South Carolina

    SciTech Connect

    Jones, R.H.; Waldrop, T.A.

    2001-08-03

    The authors studied various approaches to restore upland hardwood species to formerly cultivated soils at the SRS. Studies with direct seedling were largely a failure and resulted in very low rates of establishment. Failure was a result of predation and drought. Growth and survival of planted oaks, dogwood and pine did not vary between hardwood overstory and pine overstory conditions. Soil trenching in a forty year old loblolly stand demonstrated dramatic increases in growth of planted oaks and dogwood. When compared, survival is similar if not slightly better when seedlings are planted in the understory of canopies vs. clearcuts. However, growth is better in recent clearcuts for dogwood and white oaks. Hickory does better underplanted.

  13. Coevolution of topography, soils, and vegetation in upland landscapes: Using cinder cones to elucidate ecohydrogeomorphic feedback mechanisms

    NASA Astrophysics Data System (ADS)

    McGuire, L.; Pelletier, J. D.; Rasmussen, C.

    2013-12-01

    The study of landscape evolution in upland environments requires analysis of complex interactions among topography, soil development, and vegetation cover under changing climatic conditions. Earth surface scientists lack a comprehensive understanding of these interactions in part due to their interdisciplinary nature, our limited ability to reconstruct the progression of landscape states through time, and the limited spatially-distributed data available for paleoclimate conditions. In this study, we investigate the interactions and feedbacks among topography, soil development, and vegetation cover in upland environments using remote sensing, geochemistry, and numerical modeling. We focus on quantifying the evolution of late Quaternary cinder cones within several volcanic fields, spanning a range of climates, as a function of age and microclimate, which varies with elevation and slope aspect. Cinder cones are excellent natural laboratories for studying the evolution of upland landscapes because they begin their evolution at a known time in the past (i.e. many cinder cones have been radiometrically dated) and because they often have unusually uniform initial conditions (i.e. they form close to the angle of repose and are comprised of well-sorted volcaniclastic parent materials). As such, cinder cones of different ages with similar size and climatic history can provide an approximate time progression illustrating how a dated hillslope has evolved over geologic time scales. Data suggest that rates of soil development and fluvial erosion are low on younger cones, which have surfaces consisting mostly of permeable cinders, but increase significantly after eolian deposits reduce the permeability of the cone surface. Further, data demonstrate that microclimatic differences between north and south facing slopes lead to systematic variations in biomass. Additionally, north-facing slopes on cinder cones are found to be steeper than corresponding south-facing slopes. The

  14. Holocene Landscape Dynamics in the Ammer Rv. Catchment (Bavarian Alps) - Influence of extreme weather events and land use on soil erosion using peat bogs as geoarchives

    NASA Astrophysics Data System (ADS)

    Schwindt, Daniel; Manthe, Pierre; Völkel, Jörg

    2016-04-01

    Soil degradation and the loss of soil organic carbon (SOC) induced by erosion events significantly influence soils and fertility as parts of the ecosystem services and play an important role with regard to global carbon dynamics. Soil erosion is strongly correlated with anthropogenic land use since the Neolithic Revolution around 8.000 BP. Likewise the effect of extreme weather events on soil erosion is of great interest with regard to the recent climate change debate, predicting a strong increase of extreme weather events. Aim of this study is the reconstruction of the Holocene landscape dynamic as influenced by land use and climate conditions. In this study peat bogs containing layers of colluvial sediments directly correlated to soil erosion were used as geoarchives for landscape dynamics. A temporal classification of extreme erosion events was established by dating organic material via 14C within both, colluvial layers as well as their direct peat surroundings. Detection and characterization of peat bogs containing colluvial sediments was based on geomorphological mapping, the application of geophysical methods (ERT - electrical resistivity tomography, GPR - ground penetrating radar) and core soundings. Laboratory analysis included the analysis of particle sizes and the content of organic material. We investigated 16 peat bogs following the altitudinal gradient of the Ammer River from alpine and subalpine towards lowland environments. A deposition of colluvial material could be detected in 4 peat bogs, all situated in the lower parts of the catchment. The minerogenic entry into peat bogs occurred throughout the Holocene as revealed by radiocarbon dating. A distinct cluster of erosional events e.g. during the little ice age could not be detected. Therefore, soil erosion dynamics and the appearance of colluvial sediments within peat bogs must rather be regarded as an effect of land use, actually farming and crop cultivation, or small-scale morphodynamic like

  15. Effect of long-term paddy-upland yearly rotations on rice (Oryza sativa) yield, soil properties, and bacteria community diversity.

    PubMed

    Chen, Song; Zheng, Xi; Wang, Dangying; Chen, Liping; Xu, Chunmei; Zhang, Xiufu

    2012-01-01

    A 10-year-long field trial (between 2001 and 2010) was conducted to investigate the effect of paddy-upland rotation on rice yield, soil properties, and bacteria community diversity. Six types of paddy-upland crop rotations were evaluated: rice-fallow (control; CK), rice-rye grass (RR), rice-potato with rice straw mulches (RP), rice-rapeseed with straw incorporated into soil at flowering (ROF), rice-rapeseed incorporated in soil after harvest (ROM), and rice-Chinese milk vetch (RC). Analysis of terminal restriction fragment length polymorphism (T-RFLP) was used to determine microbial diversity among rotations. Rice yield increased for upland crops planted during the winter. RC had the highest average yield of 7.74 t/ha, followed by RR, RP, ROM, and ROF. Soil quality differences among rotations were found. RC and RP improved the soil mean weight diameter (MWD), which suggested that rice rotated with milk vetch and potato might improve the paddy soil structure. Improved total nitrogen (TN) and soil organic matter (SOM) were also found in RC and RP. The positive relationship between yield and TN/SOM might provide evidence for the effect of RC rotation on rice yield. A strong time dependency of soil bacterial community diversity was also found.

  16. Effect of Long-Term Paddy-Upland Yearly Rotations on Rice (Oryza sativa) Yield, Soil Properties, and Bacteria Community Diversity

    PubMed Central

    Chen, Song; Zheng, Xi; Wang, Dangying; Chen, Liping; Xu, Chunmei; Zhang, Xiufu

    2012-01-01

    A 10-year-long field trial (between 2001 and 2010) was conducted to investigate the effect of paddy-upland rotation on rice yield, soil properties, and bacteria community diversity. Six types of paddy-upland crop rotations were evaluated: rice-fallow (control; CK), rice-rye grass (RR), rice-potato with rice straw mulches (RP), rice-rapeseed with straw incorporated into soil at flowering (ROF), rice-rapeseed incorporated in soil after harvest (ROM), and rice-Chinese milk vetch (RC). Analysis of terminal restriction fragment length polymorphism (T-RFLP) was used to determine microbial diversity among rotations. Rice yield increased for upland crops planted during the winter. RC had the highest average yield of 7.74 t/ha, followed by RR, RP, ROM, and ROF. Soil quality differences among rotations were found. RC and RP improved the soil mean weight diameter (MWD), which suggested that rice rotated with milk vetch and potato might improve the paddy soil structure. Improved total nitrogen (TN) and soil organic matter (SOM) were also found in RC and RP. The positive relationship between yield and TN/SOM might provide evidence for the effect of RC rotation on rice yield. A strong time dependency of soil bacterial community diversity was also found. PMID:22919301

  17. Nocardia rayongensis sp. nov., isolated from Thai peat swamp forest soil.

    PubMed

    Tanasupawat, Somboon; Phongsopitanun, Wongsakorn; Suwanborirux, Khanit; Ohkuma, Moriya; Kudo, Takuji

    2016-05-01

    An actinomycete strain, RY45-3T, isolated from a peat swamp forest soil in Rayong Province, Thailand, was characterized using a polyphasic approach. The strain belonged to the genus Nocardia on the basis of morphological, physiological, biochemical and chemotaxonomic properties. Cell-wall peptidoglycan contained meso-diaminopimelic acid. The N-acyl group of muramic acid in the cell wall was glycolyl type. The diagnostic sugars in whole-cell hydrolysates were galactose and arabinose. MK-8 (H4ω-cycl) was the major menaquinone. The major fatty acids were C16 : 0 and C18 : 1ω9c. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The genomic DNA G+C content was 71 mol%. On the basis of 16S rRNA gene sequence similarity analysis, strain RY45-3T was closely related to Nocardia jiangxiensis JCM 12861T (98.9 %), Nocardia nova JCM 6044T (98.8 %) and Nocardia pseudobrasiliensis JCM 9894T (98.6 %). The strain showed low levels of DNA-DNA relatedness with N. jiangxiensis JCM 12861T, N. nova JCM 6044T and N. pseudobrasiliensis JCM 9894T (range from 3.6 to 55.3 %). On the basis of the phenotypic characteristics and the results mentioned, this strain could be differentiated from closely related type strains and represents a novel species of the genus Nocardia, for which the name Nocardia rayongensis sp. nov. (type strain RY45-3T = JCM 19832T = TISTR 2213T = PCU 334T) is proposed.

  18. Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and physical framework mapping in cotton (Gossypium spp.) were used to discover putative gene sequences involved in resistance to common soil-borne pathogens. Chromosome (Chr) 11 and its homoeologous Chr 21 of Upland cotton (G. hirsutum) is a focus for discovery of resistance (R) or pathoge...

  19. Stable Isotope Probing of Peat and Forest Floor Amendments

    NASA Astrophysics Data System (ADS)

    Quideau, Sylvie; Béasse, Mark

    2013-04-01

    In Alberta, Canada, land reclamation efforts utilize peat as an organic amendment to help reclaim decommissioned oil sands mine sites to upland boreal forests. This study investigates the rhizosphere microbial communities of two pioneer species, aspen (Populus tremuloides Michx.), a species not known for strong associations with the soil microbial community, and alder (Alnus crispa Ait.), a species well known for mutualism with actinomycetes. Specifically, the objective was to determine how different organic amendments (peat versus forest floor) influenced the rhizosphere microbial communities and how this could be linked to plant growth. Seedlings were grown for 20 weeks in forest floor material, peat, and a combination of both. They were pulse labelled with 13CO2 (g) and subsequently harvested for plant growth measurements. While analysis of plant growth attributes did not indicate any effect of the organic amendment on aspen growth, alder reported significantly less growth in peat treatments. The rhizosphere soils were extracted for compound-specific analysis of δ13C in microbial phospholipid fatty acids. Stable isotope probing showed greater carbon flow between trees and their rhizosphere communities when seedlings were grown in forest floor material.

  20. Exploring the potential of the permanganate oxidation method as a tool to monitor soil quality in agricultural upland systems of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hepp, Catherine M.; Bruun, Thilde Bech; de Neergaard, Andreas

    2014-05-01

    The transition to more intensified upland systems is having an impact on the soil quality, defined as the ability of a soil to both provide and maintain essential services to an ecosystem. As many tropical upland soils are inherently low in quality, it is essential that impacts be monitored. Soil quality is assessed by using a combination of parameters that serve as indicators and cover the soil chemical, biological and physical properties. An ideal indicator should be sensitive to changes in the environment and management practices and should be widely accessible, meaning low resource requirement (i.e. time and equipment). Total organic carbon (TOC) content is a commonly used indicator of soil quality as it is linked to many soil functions and processes; however analysis is costly and requires access to advanced instrumental facilities, rendering it unsuited for many developing countries. An alternative indicator is the soil fraction dominated by easily decomposable carbon; this may be measured by treating soil samples with 0.2M potassium permanganate (KMnO4), an oxidizing agent which is thought to mimic the enzymes released by the soil microbial community. The advantage of this method is that it is accessible: it is fast, requires little resource input and is field appropriate. There is no consensus however as to which soil carbon fraction the method targets. Furthermore Skjemstad et al. (2006) has indicated that KMnO4 may oxidise charcoal, a component of the non-labile carbon pool; this has implications for the suitability of the method when used for soils of shifting cultivation systems. The purpose of this study was to investigate the potential of permanganate oxidizable carbon (Pox C) as a reliable indicator of soil quality in agricultural upland systems in Northern Lao PDR. Focus was placed on the relations between Pox C and other soil quality parameters (bulk density, pH, CEC, TOC, total N, exchangeable K, plant available P) and upland rice yields. The

  1. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA.

    PubMed

    Lau, Evan; Iv, Edward J Nolan; Dillard, Zachary W; Dague, Ryan D; Semple, Amanda L; Wentzell, Wendi L

    2015-04-02

    Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute <2% of microbiota in these environments, with the Methylocystaceae one to two orders of magnitude more abundant than the Methylococcaceae in all environments sampled. The Methylococcaceae are also less diverse in forest soil compared to the other two habitats. Nonmetric multidimensional scaling analyses indicated that the majority of methanotrophs from the Methylococcaceae and Methylocystaceae tend to occur in one habitat only (peat or Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography.

  2. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA

    PubMed Central

    Lau, Evan; Nolan, Edward J.; Dillard, Zachary W.; Dague, Ryan D.; Semple, Amanda L.; Wentzell, Wendi L.

    2015-01-01

    Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute <2% of microbiota in these environments, with the Methylocystaceae one to two orders of magnitude more abundant than the Methylococcaceae in all environments sampled. The Methylococcaceae are also less diverse in forest soil compared to the other two habitats. Nonmetric multidimensional scaling analyses indicated that the majority of methanotrophs from the Methylococcaceae and Methylocystaceae tend to occur in one habitat only (peat or Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography. PMID:27682082

  3. Soil evolution and climate dynamics in dry steppes of the Privolzhskaya Upland during the last 3500 years

    NASA Astrophysics Data System (ADS)

    Demkin, V. A.; Demkina, T. S.; Khomutova, T. E.; El'tsov, M. V.

    2012-12-01

    The investigation of paleosols of different ages buried under archaeological monuments of the Bronze (16th-15th centuries BC), Early Iron (2nd-3rd centuries AD), and Medieval (14th century AD) ages demonstrated that the evolution of chestnut soils and solonetzes in the dry steppes of the southern part of the Privolzhskaya Upland during the past 3500 years manifested itself at the level of the genus and species characteristics of the soils, such as the degree of the solonetzicity, the humus content, and the content and composition of the soluble salts. The revealed regularities of the variations of the morphological, chemical, and microbiological soil properties in time allowed reconstructing the secular dynamics of the climatic humidity in the region. It was found that the humidization of the climate with a decrease in the degree of the climatic continentality took place in the middle of the second millennium BC. The Late Sarmatian Time (2nd-3rd centuries AD) was characterized by arid climatic conditions, whereas the Golden Horde time (13th-14th centuries AD) was marked by the general humidization of the climate. A gradual aridization of the climate began in the second half of the 14th century and continued in the 15th century AD.

  4. Methane Emissions from Upland Forests

    NASA Astrophysics Data System (ADS)

    Megonigal, Patrick; Pitz, Scott; Wang, Zhi-Ping

    2016-04-01

    Global budgets ascribe 4-10% of atmospheric methane sinks to upland soils and assume that soils are the sole surface for methane exchange between upland forests and the atmosphere. The dogma that upland forests are uniformly atmospheric methane sinks was challenged a decade ago by the discovery of abiotic methane production from plant tissue. Subsequently a variety of relatively cryptic microbial and non-microbial methane sources have been proposed that have the potential to emit methane in upland forests. Despite the accumulating evidence of potential methane sources, there are few data demonstrating actual emissions of methane from a plant surface in an upland forest. We report direct observations of methane emissions from upland tree stems in two temperate forests. Stem methane emissions were observed from several tree species that dominate a forest located on the mid-Atlantic coast of North America (Maryland, USA). Stem emissions occurred throughout the growing season while soils adjacent to the trees simultaneously consumed methane. Scaling fluxes by stem surface area suggested the forest was a net methane source during a wet period in June, and that stem emissions offset 5% of the soil methane sink on an annual basis. High frequency measurements revealed diurnal cycles in stem methane emission rates, pointing to soils as the methane source and transpiration as the most likely pathway for gas transport. Similar observations were made in an upland forest in Beijing, China. However, in this case the evidence suggested the methane was not produced in soils, but in the heartwood by microbial or non-microbial processes. These data challenge the concept that forests are uniform sinks of methane, and suggest that upland forests are smaller methane sinks than previously estimated due to stem emissions. Tree emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration.

  5. Effects of soils and grazing on breeding birds of uncultivated upland grasslands of the Northern Great Plains

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1982-01-01

    The principal use of uncultivated upland grasslands in the northern Great Plains is for livestock production. However, on lands set aside for wildlife or for scientific or recreational use, grazing by livestock may be used as a management measure to enhance populations of game species or to create conditions that increase the diversity of plant or animal species. To determine the effects of grazing on the avifauna of various types of Great Plains grasslands, we conducted bird censuses and plant surveys during 1974-78 on 615 plots of lightly, moderately, or heavily grazed native rangeland.Numbers of horned lark (Eremophila alpestris), western meadowlark (Sturnella neglecta), lark bunting (Calamospiza melanocorys), and chestnut-collared longspur (Calcarius ornatus) accounted for 65-75% of the total bird population, regardless of grazing intensity. For the entire area sampled (600,000 km2), horned lark, western meadowlark, and chestnut-collared longspur were the dominant birds. Major differences in composition of the dominant species and species richness occurred among the major soils. Increased mean annual soil temperature seemingly had a greater negative influence on avian species richness than did decreased soil moisture or organic matter content. Differences in total bird density were not significant among soils and among grazing intensities within most soils. For the area as a whole, light or moderate grazing resulted in increased species richness. Of the 29 species studied, 2 responded significantly to grazing for the area as a whole and 6 others to grazing on the soil in which peak densities occurred. Response of several other species to grazing effects evidently varied among strata.A list of plants with mean cover values of more than 1% in any of the 18 combinations of soils and grazing intensities contained less than 25 species, attesting to the relative simplicity of the grassland vegetation in the northern Great Plains. Agropyron spp. and Bouteloua gracilis

  6. Coevolution of soil and vegetation in the South Eastern Australian uplands with variable climate and fire regimes

    NASA Astrophysics Data System (ADS)

    Inbar, Assaf; Petter, Nyman; Patrick, Lane; Gary, Sheridan

    2016-04-01

    The south east Australian forested uplands are characterized by complex and inter-correlated spatial patterns in forest types, soil depths and fire regimes, even within areas with similar sedimentary geology and catenary position. The ecohydrology of these system-state combinations varies markedly, and is difficult to predict. Here we present preliminary results from a soil and vegetation co-evolutionary framework that represents the key feedbacks that have resulted in the current quasi-equilibrium system states of standing biomass, soil depth and fire frequency. The model is based on a modification of an existing mechanistic model, and includes an ecohydrological engine that drives a vegetation dynamics and a geomorphic submodels. Five sites with similar parent material and slope along a rainfall gradient and opposing aspects were chosen to test the model outputs: soil depth and above-ground biomass. In three of the sites, microclimate conditions were extensively monitored in a clear ridge-top (Open), and North and South facing aspects. The data was used to calibrate and test the ecohydrology modelling according to landscape position. Geomorphic processes that control soil depth were modeled using existing transport functions which varied with climate and forest type, and fire regime was set to be a function of biomass state and water deficit. In the next step, the model will have the potential to be incorporated into a 2D landscape evolution model in order to route sediment and water in a dynamic landscape. Using this model allows us to explore how, and in what rate, did each of the different systems evolve into their current state, and what is the unique and combined part of climate and fire regimes in the coevolution process, and predict the response of the current systems to change in a changing climate.

  7. Upland Reticulate Mottling Reveals Soil Biophysical Processes across Scales: Development of Structured Heterogeneity in a Marine Terrace Chronosequence

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Schulz, M. S.; Lawrence, C. R.; Bullen, T. D.; Fitzpatrick, J.; Kyker-Snowman, E.; Manning, J. E.; Mnich, M.

    2015-12-01

    Soils of the Santa Cruz (California, USA) marine terrace chronosequence display an evolving sequence of reticulate mottling from the youngest soil (65 ka) without mottles to the oldest soil (225 ka) with well-developed mottles. Mottles develop in soils forming from relatively uniform shoreline sediments, below the depth of bioturbation. Mottles consist of an interconnected network of low-chroma clay-and-carbon enriched central regions (gray; 2.5Y 6/1) bordered by bleached parent material (white; 2.5Y 8/1) within a diminishing matrix of high-chroma oxidized parent material (orange; 7.5YR 5/8). To explore the nature of mottle development, physical and chemical characteristics of mottle separates (orange, gray, and white) were compared through the deep time represented by the chronosequence. Mineralogical, isotopic, and surface-area differences among mottle separates indicate that centimeter-scale mass-transfer acting across millennia is an integral part of pedogenesis, weathering-front propagation, and carbon and nutrient transfer. Elemental analysis, electron microscopy, and iron-isotope systematics indicate that mottle development is driven by deep roots together with their fungal and microbial symbionts. The current work extends the known realm of upland mottling and shows that such features may be more common than previously recognized in semi-humid to arid regions. Deep soil horizons on old stable landforms develop reticulate mottling as the long-term imprint of rhizospheric processes that control pedogenesis, plant-community sustenance, and sequestration of carbon at depth in unsaturated zones.

  8. Peat Processing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Humics, Inc. already had patented their process for separating wet peat into components and processing it when they consulted NERAC regarding possible applications. The NERAC search revealed numerous uses for humic acid extracted from peat. The product improves seed germination, stimulates root development, and improves crop yields. There are also potential applications in sewage disposal and horticultural peat, etc.

  9. Impact of Heterobasidion root-rot on fine root morphology and associated fungi in Picea abies stands on peat soils.

    PubMed

    Gaitnieks, Talis; Klavina, Darta; Muiznieks, Indrikis; Pennanen, Taina; Velmala, Sannakajsa; Vasaitis, Rimvydas; Menkis, Audrius

    2016-07-01

    We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils.

  10. Peat bogs and their organic soils: Archives of atmospheric change and global environmentalsignificance (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Shotyk, William

    2013-04-01

    A bog is much more than a waterlogged ecosystem where organic matter accumulates as peat. Peatlands such as bogs represent a critical link between the atmosphere, hydrosphere, and biosphere. Plants growing at the surface of ombrotrophic bogs receive nutrients exclusively from the atmosphere. Despite the variations in redox status caused by seasonal fluctuations in depth to water table, the low pHof the waters, and abundance of dissolved organic matter, bogs preserve a remarkably reproducible history of atmospheric pollution, climate change, landscape evolution and human history. For example, peat cores from bogs in Europe and North America have provided detailed reconstructions of the changing rates and sources of Ag, Cd, Hg, Pb, Sb, and Tl, providing new insights into the geochemical cycles of these elements, including the massive perturbations induced by human activities beginning many thousands of years ago. Despite the low pH, and perhaps because of the abundance of dissolved organic matter, bogs preserve many silicate and aluminosilicate minerals which renders them valuable archives of atmospheric dust deposition and the climate changes which drive them. In the deeper, basal peat layers of the bog, in the minerotrophic zone where pore waters are affected bymineral-water interactions in the underlying and surrounding soils and sediments, peat serves as animportant link to the hydrosphere, efficiently removing from the imbibed groundwaters such trace elements as As, Cu, Mo, Ni, Se, V, and U. These removal processes, while incompletely understood, are so effective that measuring the dissolved fraction of trace elements in the pore waters becomes a considerable challenge even for the most sophisticated analytical laboratories. While the trace elements listed above are removed from groundwaters (along with P and S), elements such as Fe and Mn are added to the waters because of reductive dissolution, an important first step in the formation of lacustrine Fe and Mn

  11. [Effects of different tillage measures on upland soil respiration in Loess Plateau].

    PubMed

    Sun, Xiao-hua; Zhang, Ren-zhi; Cai, Li-qun; Chen, Qiang-qiang

    2009-09-01

    A field experiment was conducted in Lijiabu Town of Dingxi City, Gansu Province to study the soil respiration and its relations with the canopy temperature and soil moisture content in a rotation system with spring wheat and pea under effects of different tillage measures. Six treatments were installed, i.e., tillage with no straw- or plastic mulch (conventional tillage, T), tillage with straw mulch (TS), tillage with plastic mulch (TP), no-tillage (NT), no-tillage with straw mulch (NTS), and no-tillage with plastic mulch (NTP). During the growth periods of spring wheat and pea, soil respiration had different change patterns, with the peaks appeared at the early jointing, grain-filling, and maturing stages of spring wheat, and at the 5-leaf, silking, flowering and poding, in spring wheat field between treatments NTS and T, and the soil respiration rate was significantlyand maturing stages of pea. There was an obvious difference in the diurnal change of soil respiration lower in NTS than in T; while the soil respiration in pea field had less diurnal chan ge. Soil respiration rate had a significant linear relationship with the canopy temperature of both spring wheat andpea, the correlation coefficient being the highest at booting stage of spring wheat and at flowering and poding stage of pea, followed by at grain-filling stage of spring wheat and at branching stage of pea. There was also a significant parabola relationship between soil respiration rate and soil moisture content, the correlation coefficient being higher under conservation tillage than under conventional tillage, with the highest under NTS. The moisture content in 10-30 cm soil layer of spring wheat field and that in 5-10 cm soil layer of pea field had the greatest effects on soil respiration. Comparing with conventional tillage, all the five conservation tillage measures decreased soil respiration, with the best effects of no-tillage with straw mulch.

  12. Soil-vegetation correlations in selected wetlands and uplands of North-Central Florida

    USGS Publications Warehouse

    Best, G. Ronnie; Wolfe, Charlotte; Segal, Debra S.

    1990-01-01

    Vegetation on four hydric and two nonhydric soils series in north-central Florida was sampled as part of a national study examining the correspondence between wetland vegetation and soils. The wetland character of the vegetation was estimated by weighted average calculations using published wetland indicator values for individual plant species. The weighted averages produced an ordering of plant communities in general agreement with the hydric character of the soils. However, the two nonhydric soils has weighted average scores slightly below 3, normally considered the lowest end of the range of nonhydric vegetation. There was no clear or consistent effect of fire management on the weighted average scores. Vegetation strata (herbaceous, low shrub, tall shrub, and trees) were generally similar in weighted average values, with the wettest of the hydric soils tending to be low in all strata and the nonhydric soils tending to be high in all strata. However, strata differed considerably in the specific values for a single soil and in the specific rank ordering of soils in different strata.

  13. ERODIBILITY OF A SOIL DRAINAGE SEQUENCE IN THE LOESS UPLANDS OF MISSISSIPPI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The susceptibility of loess soils in the lower Mississippi to runoff and erosion losses varies as a function of landscape position and mapping units. This study was conducted to determine the effects of soil drainage on physical and chemical properties that influence erodibility through their contr...

  14. Comparing terrestrial laser scanning with ground and UAV-based imaging for national-level assessment of upland soil erosion

    NASA Astrophysics Data System (ADS)

    McShane, Gareth; Farrow, Luke; Morgan, David; Glendell, Miriam; James, Mike; Quinton, John; Evans, Martin; Anderson, Karen; Rawlins, Barry; Quine, Timothy; Debell, Leon; Benaud, Pia; Jones, Lee; Kirkham, Matthew; Lark, Murray; Rickson, Jane; Brazier, Richard

    2015-04-01

    Quantifying soil loss through erosion processes at a high resolution can be a time consuming and costly undertaking. In this pilot study 'a cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we compare methods for collecting suitable topographic measurements via remote sensing. The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, to quantify dynamic processes, such as erosion and mass movement. The techniques assessed are terrestrial laser scanning (TLS), and unmanned aerial vehicle (UAV) photography and ground-based photography, both processed using structure-from-motion (SfM) 3D reconstruction software. Compared to other established techniques, such as expensive TLS, SfM offers a potentially low-cost alternative for the reconstruction of 3D high-resolution micro-topographic models from photographs taken with consumer grade cameras. However, whilst an increasing number of research papers examine the relative merits of these novel versus more established survey techniques, no study to date has compared both ground-based and aerial SfM photogrammetry with TLS scanning across a range of scales (from m2 to 16ha). The evaluation of these novel low cost techniques is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. Volumetric estimates of soil loss are quantified using the digital surface models (DSMs) derived from the data from each technique and subtracted from a modelled pre-erosion surface. The results from each technique are compared. The UAV was able to capture information over a wide area, a range of altitudes and angles over the study area. Combined with automated SfM-based processing, this technique was able to produce rapid orthophotos to support ground-based data

  15. The sensitivity of peat soil and peatland vegetation to drought: release of dissolved organic carbon (DOC) on rewetting

    NASA Astrophysics Data System (ADS)

    Ritson, Jonathan; Graham, Nigel; Templeton, Michael; Freeman, Christopher; Clark, Joanna

    2015-04-01

    Organic rich peat soils are a major store of carbon worldwide. Their existence is predicated on high year-round water tables which create an anoxic environment, thus limiting decay, and also to the recalcitrance of plant litter (dead plant material) commonly found in peatland areas. Climate change threatens the stability of peat soils by altering the biogeochemical cycles which control plant decay, lowering water tables so that oxic degradation can occur and by changing habitat niches such that less recalcitrant species can thrive in peatlands. One of the major fluxes of carbon from peatlands is through dissolved organic carbon (DOC) in surface waters. As peatland areas in the UK are often used as source waters for drinking water supply this presents a problem to water utilities as DOC must be effectively removed to limit colour, odour and the formation of potentially carcinogenic by-products on disinfection. Changes in catchment vegetation may occur due to climate change, nutrient deposition and changing bioclimatic envelopes. How different peatland vegetation contribute to DOC flux and how this may change in the future is therefore of interest. A six week laboratory simulation was performed on typical peatland litter (Sphagnum spp., Calluna vulgaris, Molinea caerulea, Juncus effusus) and a peat soil collected from Exmoor National Park, UK. The simulation monitored DOC flux from the decaying litter/soil and considered the impact of different drought severities using the 50th, 25th, 10th and 5th percentiles of the mean July/August monthly rainfall for Exmoor. On rewetting following the drought, all sources produced significantly different amounts of DOC (Tukey HSD p<0.05) in the order Molinia>Juncus>Calluna>Sphagnum>peat. The source also had a significant (ANOVA p<0.001) effect on coagulation removal efficiency, a typical method of removing DOC during drinking water treatment, with Juncus DOC proving the easiest to remove whilst Sphagnum DOC was the most difficult

  16. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.

    2000-01-01

    The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.

  17. Interannual, seasonal, and diel variation in soil respiration relative to ecosystem respiration at a wetland to upland slope at Harvard Forest

    NASA Astrophysics Data System (ADS)

    Phillips, Stephen C.; Varner, Ruth K.; Frolking, Steve; Munger, J. William; Bubier, Jill L.; Wofsy, Steven C.; Crill, Patrick M.

    2010-06-01

    Soil carbon dioxide efflux (soil respiration, SR) was measured with eight autochambers at two locations along a wetland to upland slope at Harvard Forest over a 4 year period, 2003-2007. SR was consistently higher in the upland plots than at the wetland margin during the late summer/early fall. Seasonal and diel hystereses with respect to soil temperatures were of sufficient magnitude to prevent quantification of the influence of soil moisture, although apparent short-term responses of SR to precipitation occurred. Calculations of annual cumulative SR illustrated a decreasing trend in SR over the 5 year period, which were correlated with decreasing springtime mean soil temperatures. Spring soil temperatures decreased despite rising air temperatures over the same period, possibly as an effect of earlier leaf expansion and shading. The synchronous decrease in spring soil temperatures and SR during regional warming of air temperatures may represent a negative feedback on a warming climate by reducing CO2 production from soils. SR reached a maximum later in the year than total ecosystem respiration (ER) measured at a nearby eddy covariance flux tower, and the seasonality of their temperature response patterns were roughly opposite. SR, particularly in the upland, exceeded ER in the late summer/early fall in each year, suggesting that areas of lower efflux such as the wetland may be significant in the flux tower footprint or that long-term bias in either estimate may create a mismatch. Annual estimates of ER decreased over the same period and were highly correlated with SR.

  18. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    PubMed

    Harris, A R

    1989-04-01

    Lakes and streams are acidified by direct precipitation and water channeled through nearby soils, but water in low base-saturation soils can produce highly acidic percolate after prolonged contact and subsequent degassing in surface waters. Theories advanced by Reuss (1983), Reuss and Johnson (1985), and Seip and Rustad (1984) suggest that soils with less than 15% base saturation are susceptible to soil-water pH depression of up to 0.4 unit, which is sufficient to cause negative alkalinity in soil solutions. High concentrations of mobile anions (notably sulfate) are responsible for the negative alkalinity and these solutions on CO2 degassing in surface waters can retain acidities equivalent to a pH value of 5.0 or less. This mechanism purports to explain why some lakes acidify when they are surrounded by acid soils and cation leaching is not required.Ambient precipitation set to pH 5.4 and pH 4.2 was applied to columns of low base-saturated, sand, soils, starting in 1985. The columns (15 cm diameter and 150 cm long) were collected from soils with base saturations falling into one of three groups (0-10, 10-20, and 20-40%) from national forests in the Superior Uplands area (includes Boundary Waters Canoe Area, Rainbow Lakes, Sylvania, Moquah Barrens, and other Wilderness and Natural areas). The soils were Haplorthods and Udipsamments mainly from outwash plains.The soil columns were instrumented and reburied around a subterranean structure used to collect leachate water and to maintain natural temperature, air, and light conditions. Three humus treatments were applied to soil column (none, northern hardwood, and jack pine) to measure the effect of natural acidification compared to acidification by acid precipitation. The cores were treated with precipitation buffered to pH 5.4 to simulate natural rain and pH 4.2 to simulate acid rain.Columns were treated in 1985 and 1986 with approximately 200 cm of buffered precipitation each year over the frost-free season. Data is

  19. [Isolation and characterization of nitrogen-fixing bacteria of the genus Azospirillum from the soil of a Sphagnum peat bog].

    PubMed

    Doroshenko, E V; Bulygina, E S; Spiridonova, E M; Turova, T P; Kravchenko, I K

    2007-01-01

    The presence of nitrogen-fixing bacteria of the genus Azospirillum in the soils of acidic raised Sphagnum bogs is revealed for the first time. Three Azospirillum strains, B2, B21, and B22, were isolated as a component of methane-oxidizing enrichment cultures, whereas attempts to isolate them directly from peat samples have failed. The results of comparative analysis of the nucleotide sequences of 16S rRNA genes, DNA-DNA hybridization, and the analysis of the sequences of the functional genes encoding nitrogenase and ribulose-1, 5-bisphosphate carboxylase reveal that all the newly obtained strains can be classified as Azospirillum lipoferum. Yet, unlike A. lipoferum. the isolates do not require biotin and utilize sucrose, inositol, and glycerol for growth. The cell morphology of strain B2 differs from that of the type strain and strains B21 and B22. The results obtained indicate the variability of morphological, physiological, and biochemical properties in closely related Azospirillum strains and suggest the existence of metabolic relationships between methanotrophic bacteria and the representatives of the genus Azospirillum under peat bog conditions.

  20. Liming effects on cadmium stabilization in upland soil affected by gold mining activity.

    PubMed

    Hong, Chang Oh; Lee, Do Kyoung; Chung, Doug Young; Kim, Pil Joo

    2007-05-01

    To reduce cadmium (Cd) uptake of plants cultivated in heavy metal-contaminated soil, the best liming material was selected in the incubation test. The effect of the selected material was evaluated in the field. In the incubation experimentation, CaCO(3), Ca(OH)(2), CaSO(4).2H(2)O, and oyster shell meal were mixed with soil at rates corresponding to 0, 400, 800, 1600, 3200 mg Ca kg(-1). The limed soil was moistened to 70% of field moisture capacity, and incubated at 25 degrees C for 4 weeks. Ca(OH)(2) was found to be more efficient on reducing soil NH(4)OAc extractable Cd concentration, due to pH increase induced net negative charge. The selected Ca(OH)(2) was applied at rates 0, 2, 4, 8 Mg ha(-1) and then cultivated radish (Raphanus sativa L.) in the field. NH(4)OAc extractable Cd concentration of soil and plant Cd concentration decreased significantly with increasing Ca(OH)(2) rate, since alkaline-liming material markedly increased net negative charge of soil induced by pH increase, and decreased bioavailable Cd fractions (exchangeable + acidic and reducible Cd fraction) during radish cultivation. Cadmium uptake of radish could be reduced by about 50% by amending with about 5 Mg ha(-1) Ca(OH)(2) without adverse effect on radish yield and growth. The increase of net negative charge of soil by Ca(OH)(2) application may suppress Cd uptake and the competition between Ca(2+) and Cd(2+) may additionally affect the suppression of Cd uptake.

  1. Microbial activity and dissolved organic carbon production in drained and rewetted blanket peat

    NASA Astrophysics Data System (ADS)

    Wallage, Z. E.; Holden, J.; Jones, T.; McDonald, A. T.

    2009-04-01

    Heightened levels of degradation in response to environmental change have resulted in an increased loss of dissolved organic carbon (DOC) in the drainage waters of many peatland catchments across Europe and North America. One significant threat to peatland sustainability has been the installation of artificial drainage ditches, and although recent restoration schemes have pursued drain blocking as a possible strategy for reducing degradation and fluvial carbon losses, little is known about how such processes influence the intimate biological systems operating within these soils. This paper investigates how disturbance, in the form of drainage and drain blocking, influences the rate of microbial activity within a peat soil, and the subsequent impact this has on DOC production potential. Peat samples were extracted from three treatment sites (intact peat, drained peat and drain-blocked peat) in an upland blanket peat catchment in the UK. Microbial activity was measured via laboratory experimentation that incorporated the use of an INT-Formazan dehydrogenase enzyme assay to assess the level of electron transport system (ETS) activity occurring within each treatment. Drainage significantly lowered the height of the water table relative to the intact peat, whilst drain blocking successfully rewetted the peat, having raised the height of the water table relative to the drained site. Mean microbial activity rates at the drained site were found to be 33 % greater than the undisturbed intact peat and almost double that of the restored, drain-blocked site. These results correspond well with previously published data observing significantly greater DOC concentrations in the pore waters of the drained site and significantly lower concentrations at the blocked site, relative to the intact peat. Data from the drain-blocked treatment also provides evidence contrary to the commonly quoted hypothesis that an enzyme-latch reaction may be sustained in drained peat, even once it has

  2. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms.

    PubMed

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; Tringe, Susannah G; Glavina Del Rio, Tijana; Loy, Alexander; Pester, Michael

    2016-10-01

    Dissimilatory sulfate reduction in peatlands is sustained by a cryptic sulfur cycle and effectively competes with methanogenic degradation pathways. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16-174 nmol cm(-3) per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (⩾0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. Most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.

  3. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    SciTech Connect

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; Tringe, Susannah G.; Glavina del Rio, Tijana; Loy, Alexander; Pester, Michael

    2016-03-25

    A cryptic sulfur cycle and effectively competes with methanogenic degradation pathways sustains dissimilatory sulfate reduction in peatlands. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm–3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (greater than or equal to0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. The most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.

  4. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    DOE PAGES

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; ...

    2016-03-25

    A cryptic sulfur cycle and effectively competes with methanogenic degradation pathways sustains dissimilatory sulfate reduction in peatlands. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm–3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (greater than or equal to0.1%more » estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. The most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems.« less

  5. Consortia of low-abundance bacteria drive sulfate reduction-dependent degradation of fermentation products in peat soil microcosms

    PubMed Central

    Hausmann, Bela; Knorr, Klaus-Holger; Schreck, Katharina; Tringe, Susannah G; Glavina del Rio, Tijana; Loy, Alexander; Pester, Michael

    2016-01-01

    Dissimilatory sulfate reduction in peatlands is sustained by a cryptic sulfur cycle and effectively competes with methanogenic degradation pathways. In a series of peat soil microcosms incubated over 50 days, we identified bacterial consortia that responded to small, periodic additions of individual fermentation products (formate, acetate, propionate, lactate or butyrate) in the presence or absence of sulfate. Under sulfate supplementation, net sulfate turnover (ST) steadily increased to 16–174 nmol cm–3 per day and almost completely blocked methanogenesis. 16S rRNA gene and cDNA amplicon sequencing identified microorganisms whose increases in ribosome numbers strongly correlated to ST. Natively abundant (⩾0.1% estimated genome abundance) species-level operational taxonomic units (OTUs) showed no significant response to sulfate. In contrast, low-abundance OTUs responded significantly to sulfate in incubations with propionate, lactate and butyrate. These OTUs included members of recognized sulfate-reducing taxa (Desulfosporosinus, Desulfopila, Desulfomonile, Desulfovibrio) and also members of taxa that are either yet unknown sulfate reducers or metabolic interaction partners thereof. Most responsive OTUs markedly increased their ribosome content but only weakly increased in abundance. Responsive Desulfosporosinus OTUs even maintained a constantly low population size throughout 50 days, which suggests a novel strategy of rare biosphere members to display activity. Interestingly, two OTUs of the non-sulfate-reducing genus Telmatospirillum (Alphaproteobacteria) showed strongly contrasting preferences towards sulfate in butyrate-amended microcosms, corroborating that closely related microorganisms are not necessarily ecologically coherent. We show that diverse consortia of low-abundance microorganisms can perform peat soil sulfate reduction, a process that exerts control on methane production in these climate-relevant ecosystems. PMID:27015005

  6. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions

    NASA Astrophysics Data System (ADS)

    Dettmann, Ullrich; Bechtold, Michel; Frahm, Enrico; Tiemeyer, Bärbel

    2014-07-01

    Soil moisture is one of the key parameters controlling biogeochemical processes in peat and other organic soils. To understand and accurately model soil moisture dynamics and peatland hydrological functioning in general, knowledge about soil hydraulic properties is crucial. As peat differs in several aspects from mineral soils, the applicability of standard hydraulic functions (e.g. van Genuchten-Mualem model) developed for mineral soils to peat soil moisture dynamics might be questionable. In this study, the hydraulic properties of five types of peat and other organic soils from different German peatlands have been investigated by laboratory evaporation experiments. Soil hydraulic parameters of the commonly-applied van Genuchten-Mualem model and the bimodal model by Durner (1994) were inversely estimated using HYDRUS-1D and global optimization. The objective function included measured pressure heads and cumulative evaporation. The performance of eight model set-ups differing in the degree of complexity and the choice of fitting parameters were evaluated. Depending on the model set-up, botanical origin and degree of peat decomposition, the quality of the model results differed strongly. We show that fitted ‘tortuosity’ parameters τ of the van Genuchten-Mualem model can deviate very much from the default value of 0.5 that is frequently applied to mineral soils. Results indicate a rather small decrease of the hydraulic conductivity with increasing suction compared to mineral soils. Optimizing τ did therefore strongly reduce the model error at dry conditions when high pressure head gradients occurred. As strongly negative pressure heads in the investigated peatlands rarely occur, we also reduced the range of pressure heads in the inversion to a ‘wet range’ from 0 to -200 cm. For the ‘wet range’ model performance was highly dependent on the inclusion of macropores. Here, fitting only the macropore fraction of the bimodal model as immediately drainable

  7. Application of soil magnetometry on peat-bogs and soils in areas affected by historical and prehistoric ore mining and smelting.

    NASA Astrophysics Data System (ADS)

    Magiera, Tadeusz; Mendakiewicz, Maria; Szuszkiewicz, Marcin; Chrost, Leszak

    2015-04-01

    The valleys of upper Brynica and Stoła located in northern part of Upper Silesia were areas of historical human activities since prehistoric times. Historically confirmed mining and smelting of iron, silver and lead ores on this areas has been dated back to early Middle Ages, however recently some geochemical and radiometric analyses suggest even prehistoric time of such activities. The aim of this study was to check if it is possible to find any magnetic signal suggesting such activities in peat-bogs and soils of this area. This magnetic properties would be a result of presence of historical Technogenic Magnetic Particles (TMPs) arisen during the primitive smelting processes in the past. Many different types of TMPs were separated from the depth of 15-30 cm of soil profiles and also were present in deeper parts of peat-bogs accompanied by fine charcoal particles. The peat-bog horizons dated by radiocarbon (C14) for 2000 BC were contaminated by some heavy metals (Cu, Zn, Cd, Ag, Pb, Mn, Fe, Sr, Sc) and slightly increased magnetic susceptibility signal was also observed. On the base of soil surface magnetic measurement using MS2D Bartington sensor complemented by magnetic gradiometer system Grad 601-02 for the deeper soil penetration, some local magnetic anomalies were detected. In areas of local 'hot spots', the vertical cores up to 30 cm in depth were collected using the HUMAX core sampler. Vertical distribution of magnetic susceptibility along the cores was measured in the laboratory using the MS2C Bartington core sensor. The core section with increased susceptibility values were analyzed and TMPs were separated using a hand magnet. The separation of fine fraction of TMPs was carried out in an ultrasonic bath from the fine soil material suspended in isopropanol to avoid their coagulation. Irregular ceramic particles, ash and ore particles, as well as strong magnetic particles of metallic iron; all with diameter up to 10 mm and almost regular shape and rounded

  8. Contemporary Subsoil Carbon Accumulation During Reforestation is Conditioned by Long-term, Coupled C-Fe Cycling in Upland Soils

    NASA Astrophysics Data System (ADS)

    Bacon, A. R.; Richter, D., Jr.; Heckman, K. A.; Veverica, T. J.; Nave, L. E.

    2014-12-01

    To understand deep soil carbon stabilization and change during reforestation we sampled bulk subsoils and individual redoximorphic features from a network of two meter deep soil pits along a gentle catena (3% slope) in the Southern Piedmont of North Carolina, USA. Until 1910, the catena was under cultivation. Since then, half of the soils we excavated have supported deeply rooted pine forests while the other half have continued to support relatively shallow rooted grasses and forbs. Across the catena, accordant with the divergent rooting regimes, subsoil roots were three times more abundant under forest than grass, and Δ14C in bulk subsoil samples was enriched by an average of 123‰ under forest relative to grass (p=0.0267). Bulk subsoils, however, were extremely heterogeneous and contained three well-defined redoximorphic feature microsites. Over the lifetime of these upland soils, coupled carbon-iron cycling during transient oxygen limitation created the microsites and thereby imparted subsoils with steep biogeochemical gradients millimeters to centimeters apart. Concentration of operationally defined crystalline iron-oxyhydroxides was on average ten times higher in Fe-enriched microsites (30.1 ± 2.5 mg/g, mean ± 1 SE) than Fe-depleted microsites (2.9 ± 0.3 mg/g) and gley microsites (3.3 ± 0.4 mg/g) across the catena. Under the deeply rooted forest Δ14C in gley microsites and Fe-depleted microsites was enriched by an average of 73‰ (p=0.0194) and 94‰ (p=0.0416), respectively relative to the same microsites under grass. Meanwhile, Δ14C in Fe-enriched microsites was unchanged by the divergent rooting regimes (p=0.1936). These microsite dependent patterns of radiocarbon enrichment indicate that subsoil C stabilization during reforestation of the catena was spatially conditioned by historic coupled carbon-iron cycling. We detail the mechanisms of this conditioning, and argue that similar long-term biogeochemical processes influence contemporary subsoil C

  9. Peat surface GHG fluxes related to peat hydrology in various tropical peat land uses

    NASA Astrophysics Data System (ADS)

    Jauhiainen, Jyrki; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2010-05-01

    It is generally accepted that the gradual increase in the mean temperature of the Earth's surface is primarily due to rising concentrations of greenhouse gases (GHG), especially carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the atmosphere. Tropical peatlands are an important component of the global peatland resource, contributing to terrestrial carbon storage in both their above-ground biomass (peat swamp forest) and underlying thick deposits of peat, which both participate soil-atmosphere carbon exchange processes. In their natural state, these forests have the ability to sequester carbon from the atmosphere during photosynthesis, retain this in plant biomass and store part of it in the peat. This process occurs mainly because of the frequent waterlogged condition of the peat, which reduces organic matter decomposition significantly and this causes the rate of organic matter production to exceed its breakdown. Peatland development, however, requires drainage, brings about changes in the vegetation type C-sequestration capacity and leads to changes in peat organic matter dynamics. Drainage promotes the depth of oxic conditions deeper in peat profile and thus speeds up peat stored organic matter mineralization. Aerobic conditions and high redox potentials created by drainage are known to favour microbial activity, which can enhance C and N losses by peat mineralization. Large areas of tropical peat have been drained, resulting in an abrupt and permanent shift in the ecosystem carbon balance from sink to source. Discussion of the current role of tropical peatlands in regional and global climate change processes is based mostly on circumstantial and secondary evidence, largely because total ecosystem carbon balance studies are very few and unsatisfactory. Peat surface GHG flux data are spatially very fragmented and have not usually been collected over entire diurnal or seasonal cycles. Interpretation of the impact of biophysical factors of tropical

  10. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method.

  11. The effects of ecological restoration, on soil-pore water quality and DOC concentrations, on a British upland blanket bog.

    NASA Astrophysics Data System (ADS)

    Qassim, Suzane; Dixon, Simon; Rowson, James; Worrall, Fred; Evans, Martin

    2013-04-01

    Polluted by past atmospheric deposition, eroded and burnt, the Bleaklow plateau (Peak district National Park, UK) has long been degraded. Peatlands are important carbon reservoirs and can act as sources or sinks of carbon. Dissolved organic carbon (DOC) is carbon lost from peatlands via the fluvial pathway and as the major component of water colour it is costly to remove during water treatment processes. The Bleaklow Summit peatlands, were subjected to a large wildfire in 2003 devegetating 5.5km2. This fire prompted stakeholders to initiate a large-scale programme of restoration of the plateau. This study considered restoration techniques across four sites: all four sites were seeded with lawn grass, limed and fertilised; to raise the pH and allow establishment of vegetation. In addition to these interventions, one site also had a mulch of Calluna vulgaris applied to the surface to allow soil stabilisation and promote vegetation establishment and another site had biodegradable geojute textile mesh installed, to stabilize the steep gully surfaces. Another site had a gully block installed, to reduce peat desiccation and erosion. This study will compare the four restored sites to two types of comparators: bare soil sites where no restoration was undertaken and a naturally vegetated site unaffected by the 2003 wildfire. Each site had six replicate dipwells, installed in two groups of three. The depth to the water table was monitored and soil water samples collected for analysis, monthly for 5 years, from Nov 2006 - Jan 2012. No significant difference in DOC concentration was found between control and treated sites. There was, however, a significant difference in DOC composition between sites and over the 5 year period of monitoring. UV-vis absorbance of the samples is used to quantify the fulvic to humic components of DOC. The vegetated control was not significantly different to the bare sites; however the vegetated control had a significantly greater humic fraction of

  12. Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions. 1: Field evaluation

    SciTech Connect

    Galbraith, H.; LeJeune, K.; Lipton, J.

    1995-11-01

    Concentrations of arsenic and metals in soils surrounding a smelter in southwest Montana were correlated with vegetative community structure and composition and wildlife habitat quality. Soils in the uplands surrounding the smelter were highly enriched with arsenic and metals. Concentrations of these analytes decreased with distance from the smelter and with soil depth, suggesting that the smelter is the source of the enrichment. In enriched areas, marked modifications to the native vegetation community structure and composition were observed. These included replacement of evergreen forest with bare unvegetated ground; species impoverishment and increased dominance by weed species in grasslands; and reductions in the vertical complexity of the habitat. Significant negative correlations existed between soil arsenic and metals concentrations and the extent of vegetative cover and the vertical diversity of plant communities. Loss of vegetative cover in the affected areas has been accompanied by reductions in their capacity to support indigenous wildlife populations.

  13. The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash.

    PubMed

    Klavina, Darta; Pennanen, Taina; Gaitnieks, Talis; Velmala, Sannakajsa; Lazdins, Andis; Lazdina, Dagnija; Menkis, Audrius

    2016-02-01

    We studied long-term effects of fertilization with wood ash on biomass, vitality and mycorrhizal colonization of fine roots in three conifer forest stands growing in Vacciniosa turf. mel. (V), Myrtillosa turf. mel. (M) and Myrtillosa turf. mel./Caricoso-phragmitosa (MC) forest types on peat soils. Fertilization trials amounting 5 kg/m(2) of wood ash were established 12 years prior to this study. A total of 63 soil samples with roots were collected and analysed. Ectomycorrhizal (ECM) fungi in roots were identified by morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region. In all forest types, fine root biomass was higher in fertilized plots than in control plots. In M forest type, proportion of living fine roots was greater in fertilized plots than in control plots, while in V and MC, the result was opposite. Fifty ECM species were identified, of which eight were common to both fertilized and control plots. Species richness and Shannon diversity index were generally higher in fertilized plots than in control plots. The most common species in fertilized plots were Amphinema byssoides (17.8%) and Tuber cf. anniae (12.2%), while in control plots, it was Tylospora asterophora (18.5%) and Lactarius tabidus (20.3%). Our results showed that forest fertilization with wood ash has long-lasting effect on diversity and composition of ECM fungal communities.

  14. Is it clean or contaminated soil? Using petrogenic versus biogenic GC-FID chromatogram patterns to mathematically resolve false petroleum hydrocarbon detections in clean organic soils: a crude oil-spiked peat microcosm experiment.

    PubMed

    Kelly-Hooper, Francine; Farwell, Andrea J; Pike, Glenna; Kennedy, Jocelyn; Wang, Zhendi; Grunsky, Eric C; Dixon, D George

    2013-10-01

    The Canadian Council of Ministers of the Environment (CCME) reference method for the Canada-wide standard (CWS) for petroleum hydrocarbon (PHC) in soil provides chemistry analysis standards and guidelines for the management of contaminated sites. However, these methods can coextract natural biogenic organic compounds (BOCs) from organic soils, causing false exceedences of toxicity guidelines. The present 300-d microcosm experiment used CWS PHC tier 1 soil extraction and gas chromatography-flame ionization detector (GC-FID) analysis to develop a new tier 2 mathematical approach to resolving this problem. Carbon fractions F2 (C10-C16), F3 (C16-C34), and F4 (>C34) as well as subfractions F3a (C16-C22) and F3b (C22-C34) were studied in peat and sand spiked once with Federated crude oil. These carbon ranges were also studied in 14 light to heavy crude oils. The F3 range in the clean peat was dominated by F3b, whereas the crude oils had approximately equal F3a and F3b distributions. The F2 was nondetectable in the clean peat but was a significant component in crude oil. The crude oil–spiked peat had elevated F2 and F3a distributions. The BOC-adjusted PHC F3 calculation estimated the true PHC concentrations in the spiked peat. The F2:F3b ratio of less than 0.10 indicated PHC absence in the clean peat, and the ratio of greater than or equal to 0.10 indicated PHC presence in the spiked peat and sand. Validation studies are required to confirm whether this new tier 2 approach is applicable to real-case scenarios. Potential adoption of this approach could minimize unnecessary ecological disruptions of thousands of peatlands throughout Canada while also saving millions of dollars in management costs.

  15. The peats of Costa Rica

    SciTech Connect

    Obando A, L.; Malavassi R, L.; Ramirez E, O. ); Cohen, A. . Dept. of Geological Sciences); Raymond, R. Jr.; Thayer, G.R. )

    1991-04-01

    The objectives of this investigation were: (1) to locate potential peat deposits in Costa Rica; (2) to estimate as closely as possible by representative sampling the amount of peat present in each deposit, and (3) to make a preliminary evaluation of the quality of the peat in each deposit. With information from soil maps and a 3-week survey of Costa Rica, it is estimated that a potential area of about 1000 km{sup 2} is covered by peat. Most of the peat area (about 830 km{sup 2}) is in northeastern Costa Rica in the Tortuguero area. An aerial survey identified the potential peat areas by the exclusive presence of the Yolillo palm. The next largest potential area of peat (about 175 km{sup 2}) is in the cloud-covered areas of the Talamanca Mountains. Some reconnaissance has been done in the Talamanca Mountains, and samples of the peat indicate that it is very similar to the sphagnum peat moss found in Canada and the northern US. Smaller bogs have been discovered at Medio Queso, El Cairo, Moin, and the Limon airport. Two bogs of immediate interest are Medio Queso and El Cairo. The Medio Queso bog has been extensively sampled and contains about 182,000 metric tons (dry) of highly decomposed peat, which is being used as a carrier for nitrogen-fixing bacteria. The El Cairo bog is sparsely sampled and contains about 1,300,000 metric tons of slightly decomposed dry peat. Plans are to use this peat in horticultural applications on nearby farms. 10 refs., 11 figs., 7 tabs.

  16. Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California; implications for drinking-water quality

    USGS Publications Warehouse

    Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.

    1998-01-01

    Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions

  17. Modelling the effect of aggregates on N2O emission from denitrification in an agricultural peat soil

    NASA Astrophysics Data System (ADS)

    Stolk, P. C.; Hendriks, R. F. A.; Jacobs, C. M. J.; Moors, E. J.; Kabat, P.

    2011-09-01

    Nitrous oxide (N2O) emissions are highly variable in time, with high peak emissions lasting a few days to several weeks and low background emissions. This temporal variability is poorly understood which hampers the simulation of daily N2O emissions. In structured soils, like clay and peat, aggregates hamper the diffusion of oxygen, which leads to anaerobic microsites in the soil, favourable for denitrification. Diffusion of N2O out of the aggregates is also hampered, which leads to delayed emissions and increased reduction of N2O to N2. In this model simulation study we investigate the effect of aggregates in soils on the N2O emissions. We present a parameterization to simulate the effects of aggregates on N2O production by denitrification and on N2O reduction. The parameterization is based on the mobile-immobile model concept. It was implemented in a field-scale hydrological-biogeochemical model combination. We compared the simulated fluxes with observed fluxes from a fertilized and drained peat soil under grass. The results of this study show that aggregates strongly affect the simulated N2O emissions: peak emissions are lower, whereas the background emissions are slightly higher. Including the effect of aggregates caused a 40% decrease in the simulated annual emissions relative to the simulations without accounting for the effects of aggregates. The new parameterization significantly improved the model performance regarding simulation of observed daily N2O fluxes; r2 and RMSE improved from 0.11 and 198 g N2O-N ha-1 d-1 to 0.41 and 40 g N2O-N ha-1 d-1, respectively. Our analyses of the model results show that aggregates have a larger impact on the reduction than on the production of N2O. Reduction of N2O is more sensitive to changes in the drivers than production of N2O and is in that sense the key to understanding N2O emissions from denitrification. The effects of changing environmental conditions on reduction of N2O relative to N2O production strongly depend on

  18. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians).

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Mateusz

    2016-04-01

    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works

  19. Peat humic substances enriched with nutrients for agricultural applications: competition between nutrients and non-essential metals present in tropical soils.

    PubMed

    Botero, Wander Gustavo; de Oliveira, Luciana Camargo; Rocha, Julio Cesar; Rosa, Andre Henrique; Dos Santos, Ademir

    2010-05-15

    Improved agricultural productivity, and reduction of environmental impacts, require studies of the interactions between different soil components. Fertilizers marketed as "organic" or "natural", such as peats or humic substances (HS) extracted from peats, are enriched with macro and micronutrients that, according to the manufacturers, are released to the plant in accordance with its needs. This work investigates the complexation capacity of HS for macro and micronutrient metal species, considering the competition, for HS complexation sites, between non-essential metals (aluminium and lead), present in the soil, and the nutrients. Humic substances were found to possess strong affinities for Pb(II) and Al(III), forming stable complexes, with concomitant release of complexed nutrients. Although HS are already used commercially as organic fertilizers, further studies of methods of HS enrichment, aimed at avoiding losses, are highly desirable from environmental and economic perspectives.

  20. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils

    NASA Astrophysics Data System (ADS)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.

    2015-12-01

    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R

  1. Measurement of Entrapped Biogenic Gas Bubbles in Northern Peat Soils: Application of Resistivity and X-ray Computed Tomography.

    NASA Astrophysics Data System (ADS)

    Kettridge, N.; Binley, A.; Baird, A.

    2008-05-01

    Peatlands are the largest natural source per annum of CH4 emissions to the atmosphere. CH4 is lost from peatlands via diffusion or active transport through vascular plants, and as bubbles moving to the peatland surface - ebullition. The build up and ebullition of biogenic gas bubbles within northern peatlands is spatially variable and depends on the rate of CH4 production, the transport of dissolved CH4 to bubbles through pore water, and the physical properties of the peat. Recent measurements suggest a threshold bubble volume must be reached to trigger episodic or cyclic ebullition, which is assumed to be dependent on peat type. However, this threshold theory lacks a secure physical basis and therefore cannot be applied to simulate methane ebullition from northern peatlands with any confidence. We develop an approach to examine the structural attributes of the peat that cause and promote the trapping and release of bubbles by combining resistivity and X-ray computed tomography (CT). The spatial and temporal variation in the biogenic gas content of peat cores are identified from resistivity measurements. Areas of high and low entrapped gas content are subsequently correlated with the pore structure of the peat samples, characterised using CT. The CT images of the peat structure are vectorised to allow them to be analysed for metrics which relate to the ability of the peat to trap bubbles: e.g. stem length and width, number of branches, angle of branches. Difficulties applying these approaches within northern peatlands are examined. The low pore water conductivity of poorly decomposed near surface peat can hamper resistivity measurements at the laboratory scale, and electrolytic reactions induce the development of artificial gas bubbles. The similarity in linear attenuations between poorly decomposed Sphagnum and pore water also makes the peat structure indistinguishable from the pore water within standard CT scans. The peat samples must, therefore, first be doped

  2. Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia

    NASA Astrophysics Data System (ADS)

    Bernardi, Tony

    2014-05-01

    Influence of geology, regolith and soil on fluid flow pathways in an upland catchment in central NSW, Australia. Tony Bernardi and Leah Moore Dryland Salinity Hazard Mitigation Program (DSHMP), University of Canberra, ACT 2601, AUSTRALIA The diversity of salt expression in central NSW has defied classification because salt expression, mobilisation and transport is highly variable and is typically site specific. Hydrological models are extensively used to simulate possible outcomes for a range of land use changes to mitigate the mobilisation and transport of salt into the streams or across the land surface. The ability of these models to mimic reality can be variable thereby reducing the confidence in the models outputs and uptake of strategic management changes by the community. This study focuses on a 250 ha semi-arid sub-catchment of Little River catchment in central west NSW in the Murray-Darling Basin, Australia. We propose that an understanding the structure of the landforms and configuration of rock, regolith and soil materials at the study site influences fluid flow pathways in the landscape and can be related to observed variations in the chemical composition and salinity of surface and aquifer water. Preliminary geological mapping of the site identified the dominant rock type as a pink and grey dacite and in localised mid-slope areas, a coarsely crystalline biotite-phyric granodiorite. Samples were taken at regular intervals from natural exposures in eroded stream banks and in excavations made during the installation of neutron moisture meter tubes. In order to establish mineral weathering pathways, samples were taken from the relatively unweathered core to the outer weathered 'onion skins' of corestones on both substrates, and then up through the regolith profile, including the soil zone, to the land surface. X-ray diffraction (XRD) analysis and X-ray fluorescence (XRF) was conducted on the rock and soil/saprock samples. Electromagnetic induction (EMI

  3. Impact of electromagnetic microwaves on the germination of spores of Streptomyces xanthochromogenes in a peat soil and in a liquid nutrient medium

    NASA Astrophysics Data System (ADS)

    Komarova, A. S.; Likhacheva, A. A.; Lapygina, E. V.; Maksimova, I. A.; Pozdnyakov, A. I.

    2010-01-01

    The impact of microwaves on the germination of spores of Streptomyces xanthochromogenes in a liquid nutrient medium and in a peat soil was studied. The treatment of inoculums with microwave radiation affected the development of the microorganisms from the stage of spore germination to the stage of the formation of microcolonies of actinomycetes upon the spore cultivation in the liquid medium. Typical hypnum-herbaceous peat was used to study the rate of germination of the actinomycetal spores in soil. The study of the dynamics of the Streptomyces xanthochromogenes population in the control soil (without treatment with microwaves) showed that the most active development of the culture took place in the soil moistened to 60% of the maximum water capacity. When the soil was moistened to the minimum adsorption capacity, the streptomyces did not complete their full cycle of development. The stimulation of the spore germination and mycelium growth with microwaves in the soil medium required a longer period in comparison with that for the liquid medium. The stimulation of the spore germination was observed in the liquid nutrient medium in the case of 30-s treatment and in the soil in the case of 60-s treatment.

  4. Reducing Soil CO2 Emission and Improving Upland Rice Yield with no-Tillage, Straw Mulch and Nitrogen Fertilization in Northern Benin

    NASA Astrophysics Data System (ADS)

    Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.

    2015-12-01

    To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.

  5. Copper tolerance of the biomass crops Elephant grass (Pennisetum purpureum Schumach), Vetiver grass (Vetiveria zizanioides) and the upland reed (Phragmites australis) in soil culture.

    PubMed

    Liu, Xinghua; Shen, Yixing; Lou, Laiqing; Ding, Chenglong; Cai, Qingsheng

    2009-01-01

    Pot trials were conducted to study the influence of copper (Cu) on the growth and biomass of Elephant grass (EG, Pennisetum purpureum Schumach), Vetiver grass (VG, Vetiveria zizanioides) and the upland reed (UR, Phragmites australis). Cu toxicity in EG, VG and UR was positively correlated with the total and bioavailable Cu concentrations in the soil. Based on the EC50, dry weights, Cu contents, chlorophyll contents and photosynthesis rates, the Cu tolerance of the three species followed the trend EGNVGNUR. There were no significant differences in the unit calorific values among the different plants, though the total calorific values of EG were higher than those of VG and UR due to its higher biomass. The addition of KH2PO4 to the soil decreased the bioavailability of Cu and the Cu uptake by plants. EG could therefore be a good candidate for growth on Cu-contaminated soils, especially those improved by phosphate.

  6. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system.

    PubMed

    Lin, Hui; Sun, Wanchun; Zhang, Zulin; Chapman, Stephen J; Freitag, Thomas E; Fu, Jianrong; Zhang, Xin; Ma, Junwei

    2016-04-01

    This work investigated the responses of antibiotic resistance genes (ARGs) and the soil microbial community in a paddy-upland rotation system to mineral fertilizer (NPK) and different application dosages of manure combined with NPK. The occurrence of five tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), two sulfonamide ARGs (sul1 and sul2) and one genetic element (IntI1) was quantified. NPK application showed only slight or no impact on soil ARGs abundances compared with the control without fertilizer. Soil ARGs abundances could be increased by manure-NPK application but was related to manure dosage (2250-9000 kg ha(-1)). Principal component analysis (PCA) showed that the soil ARG profile of the treatment with 9000 kg ha(-1) manure separated clearly from the other treatments; the ARGs that contributed most to the discrimination of this treatment were tetA, tetG, tetW, sul1, sul2 and IntI1. Community level physiological profile (CLPP) analysis showed that increasing manure dosage from 4500 kg ha(-1) to 9000 kg ha(-1) induced a sharp increase in almost all of the detected ARGs but would not change the microbial community at large. However, 9000 kg ha(-1) manure application produced a decline in soil microbial activity. Determination of antibiotics and heavy metals in soils suggested that the observed bloom of soil ARGs might associate closely with the accumulation of copper and zinc in soil.

  7. Adsorption of carbon monoxide by samples of soils and peat-sand mixtures

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Sadovnikova, N. B.; Mazanova, V. S.; Dolzhich, A. R.

    2009-11-01

    The adsorption of carbon monoxide (CO) by loose samples of natural soils and artificial organomineral mixtures depending on the water content was studied in laboratory experiments. The highest adsorption of CO was found for the samples of 100% organic soil modifier and its 80% mixture with sand (200 µg of CO/kg per hour and more). The lowest CO adsorption (10-15 µg of CO/kg per hour) was observed for an Arenosol. The addition of 5 wt % of the modifier to the desert sand increased the adsorption of CO to 50-55 µg of CO/kg per hour, as was typical for the chernozem and soddy-podzolic soil. The adsorption of CO as depending on the water content in the samples was a unimodal function, and the adsorption levels corresponded to the optimum soil water content (about 0.4-0.6 of the maximum water capacity). On the basis of the results, the Arid Grow soil modifier was recommended as a highly efficient agent for the regulation of the gas function of soils in urban areas subjected to increased CO emissions from vehicles and industrial enterprises.

  8. [Oribatid mites (Acariformes, Oribatei) as an index of postpyrogenous changes in podzol and peat soils of boreal forests].

    PubMed

    Kudriasheva, I V; Laskova, L M

    2002-01-01

    Population changes of oribatid mites were studied in a bilberry-moss spruce stand and shrub-peat moss pine stand caused by ground fire. The fire resulted in a drop of population density and changes in the species composition of mites in both forest types. In the case of the spruce stand, the restoration of species composition proceeded parallel to the formation of a bilberry-moss cover and litter and became distinct four years after the fire. In the case of pine stand, the fire enveloped only the peripheral region. After the sphagnum cover burned out, the moor dehydration began and the mineralized organogenic substrate emerged. Here, the oribatid complex was significantly rearranged and the previously dominating moisture-loving species were replaced by the mesophilous-xerophilous species typical predominantly for mineralized soils. This explains why the oribatid species composition in the burned pine stand is more similar to that in the control spruce stand than to that in the control pine stand.

  9. Upland Impact

    NASA Technical Reports Server (NTRS)

    2006-01-01

    24 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a relatively fresh crater with dark, rayed ejecta on an upland plain above one of the many depressions in the eastern Labyrinthus Noctis region. The presence of the dark rays emanating from the crater suggests that the impact was a relatively recent event compared to other craters of similar diameter in the scene. Over time, the dark ejecta will fade and blend in with its surroundings, owing to settling of dust from the atmosphere.

    Location near: 9.7oS, 94.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  10. Soil data from fire and permafrost-thaw chronosequences in upland Picea mariana stands near Hess Creek and Tok, interior Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre; Kanevskiy, Mikhail; Xu, Xiaomei

    2013-01-01

    Soils of the Northern Circumpolar Permafrost region harbor 1,672 petagrams (Pg) (1 Pg = 1,000,000,000 kilograms) of organic carbon (OC), nearly 50 percent of the global belowground OC pool (Tarnocai and others, 2009). Of that soil OC, nearly 88 percent is presently stored in perennially frozen ground. Recent climate warming at northern latitudes has resulted in warming and thawing of permafrost in many regions (Osterkamp, 2007), which might mobilize OC stocks from associated soil reservoirs via decomposition, leaching, or erosion. Warming also has increased the magnitude and severity of wildfires in the boreal region (Turetsky and others, 2011), which might exacerbate rates of permafrost degradation relative to warming alone. Given the size and vulnerability of the soil OC pool in permafrost soils, permafrost thaw will likely function as a strong positive feedback to the climate system (Koven and others, 2011; Schaefer and others, 2011). In this report, we report soil OC inventories from two upland fire chronosequences located near Hess Creek and Tok in Interior Alaska. We sampled organic and mineral soils in the top 2 meters (m) across a range of stand ages to evaluate the effects of wildfire and permafrost thaw on soil C dynamics. These data were used to parameterize a simple process-based fire-permafrost-carbon model, which is described in detail by O’Donnell and others (2011a, b). Model simulations examine long-term changes in soil OC storage in response to fire, permafrost thaw, and climate change. These data also have been used in other papers, including Harden and others (2012), which examines C recovery post-fire, and Johnson and others (2011), which synthesizes data within the Alaska Soil Carbon Database. Findings from these studies highlight the importance of climate and disturbance (wildfire, permafrost thaw) on soil C storage, and loss of soil C from high-latitude ecosystems.

  11. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes

    USGS Publications Warehouse

    Jorgenson, M. Torre; Harden, Jennifer; Kanevskiy, Mikhail; O'Donnell, Jonathan; Wickland, Kim; Ewing, Stephanie; Manies, Kristen; Zhuang, Qianlai; Shur, Yuri; Striegl, Robert; Koch, Josh

    2013-01-01

    The diversity of ecosystems across boreal landscapes, successional changes after disturbance and complicated permafrost histories, present enormous challenges for assessing how vegetation, water and soil carbon may respond to climate change in boreal regions. To address this complexity, we used a chronosequence approach to assess changes in vegetation composition, water storage and soil organic carbon (SOC) stocks along successional gradients within four landscapes: (1) rocky uplands on ice-poor hillside colluvium, (2) silty uplands on extremely ice-rich loess, (3) gravelly–sandy lowlands on ice-poor eolian sand and (4) peaty–silty lowlands on thick ice-rich peat deposits over reworked lowland loess. In rocky uplands, after fire permafrost thawed rapidly due to low ice contents, soils became well drained and SOC stocks decreased slightly. In silty uplands, after fire permafrost persisted, soils remained saturated and SOC decreased slightly. In gravelly–sandy lowlands where permafrost persisted in drier forest soils, loss of deeper permafrost around lakes has allowed recent widespread drainage of lakes that has exposed limnic material with high SOC to aerobic decomposition. In peaty–silty lowlands, 2–4 m of thaw settlement led to fragmented drainage patterns in isolated thermokarst bogs and flooding of soils, and surface soils accumulated new bog peat. We were not able to detect SOC changes in deeper soils, however, due to high variability. Complicated soil stratigraphy revealed that permafrost has repeatedly aggraded and degraded in all landscapes during the Holocene, although in silty uplands only the upper permafrost was affected. Overall, permafrost thaw has led to the reorganization of vegetation, water storage and flow paths, and patterns of SOC accumulation. However, changes have occurred over different timescales among landscapes: over decades in rocky uplands and gravelly–sandy lowlands in response to fire and lake drainage, over decades to

  12. Evidence for an eolian origin for the silt-enriched soil mantles on the glaciated uplands of eastern Upper Michigan, USA

    USGS Publications Warehouse

    Schaetzl, R.J.; Loope, W.L.

    2008-01-01

    We provide textural, geochemical, and mineralogical data on a thin, silty deposit that unconformably mantles glaciated uplands in the eastern Upper Peninsula of Michigan. Previous research on this deposit, which we hypothesize to be loess, is nonexistent. The uplands were islands or narrow peninsulas within one or more glacial lakes. We compare the distribution, likely source and nature of the 20-60??cm thick silty mantle by using the loess formation model of Mason et al. [Mason, J.A., Nater, E.A., Zanner, C.W., Bell, J.C., 1999. A new model of topographic effects on the distribution of loess. Geomorphology 28, 223-236], which focuses on the generation of eolian silt by saltating sand across upwind, barren surfaces. Parabolic dunes, with arms open to the NW, are common on former lake floors upwind of the silt-mantled uplands, attesting to the strength and direction of paleowinds. The abrupt termination of the dunes at the footslopes of the uplands, associated with silt deposition on upland soil surfaces in downwind locations, are both consistent with the model of Mason et al. [Mason, J.A., Nater, E.A., Zanner, C.W., Bell, J.C., 1999. A new model of topographic effects on the distribution of loess. Geomorphology 28, 223-236]. Sediments on former lake floors contain abundant strata of fine/medium sand and silt, and thus are likely sources for the silt and dune sand. The cap, dune and lake sediments are similar along many different geochemical axes, whereas the substrate sediment, i.e., the drift below the cap, is unique. Cap sediments, normally containing roughly 30% silt, are enriched in quartz and depleted in Ti and Zr, relative to dune sediment. The dune sediment, a more residual eolian deposit, is enriched in Ti and Zr, relative to the cap, probably due to its greater abundance of heavy minerals. Therefore, we conclude that the silty cap is loess that was deflated from abandoned lake floors after nearby glacial lakes drained, probably contemporaneously with dune

  13. Chemically enhanced mixed region vapor stripping of TCE-contaminated saturated peat and silty clay soils

    SciTech Connect

    West, O.R.; Cameron, P.A.; Lucero, A.J.; Koran, L.J. Jr.

    1996-01-01

    The objective of this study was to conduct further testing of MRVS, chemically enhanced with calcium oxide conditioning, on field- contaminated soils collected from beneath the NASA Michoud Rinsewater Impoundment. In this study, residual soil VOC levels as a function of vapor stripping time were measured to quantify VOC removal rates. Physical and chemical soil parameters expected to affect MRVS efficiency were measures. The effects of varying the calcium oxide loadings as well as varying the vapor stripping flow rates on VOC removal were also evaluated. The results of this study will be used to determine whether acceptable removals can be achieved within reasonable treatment times, remediation costs being directly proportional to the latter. The purpose of this report is to document the experimental results of this study, as well as to address issues that were raised after completion of the previous Michoud treatability work.

  14. Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions. 2: Laboratory phytotoxicity studies

    SciTech Connect

    Kapustka, L.A.; Lipton, J.; Galbraith, H.; Cacela, D.; LeJeune, K.

    1995-11-01

    Vegetation communities on metal- and arsenic-contaminated uplands surrounding a smelter in southwest Montana have been eliminated or highly modified. Laboratory toxicity tests were performed using site soils from the impacted areas to determine whether the soils limit the ability of plants to establish and grow. The germination and growth of alfalfa, lettuce, and wheat in impacted area soils was compared to germination and growth of the three species in reference soils. The degree of phytotoxicity was quantified using a species-endpoint toxicity score calculated on the magnitude of difference between germination and growth of plants in impacted and reference soils. The impacted soils exhibited substantial toxicity to plants: 5% of the sites were severely phytotoxic, 55% were highly phytotoxic, 10% were moderately phytotoxic, 20% were mildly phytotoxic, and 10% were nontoxic. Root growth was consistently the most affected endpoint (18 of 20 impacted soils) and reduction in root length and mass was observed. Correlation and partial correlation analysis was used to evaluate the causes of phytotoxicity. Concentrations of As, Cu, and Zn and, to a lesser extent, Pb and Cd were found to be positively correlated with phytotoxicity.

  15. Effects of the Application of Digestates from Wet and Dry Anaerobic Fermentation to Japanese Paddy and Upland Soils on Short-Term Nitrification

    PubMed Central

    Sawada, Kozue; Toyota, Koki

    2015-01-01

    Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers. PMID:25740173

  16. Effects of the application of digestates from wet and dry anaerobic fermentation to Japanese paddy and upland soils on short-term nitrification.

    PubMed

    Sawada, Kozue; Toyota, Koki

    2015-01-01

    Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers.

  17. Methane Emissions from Upland Trees

    NASA Astrophysics Data System (ADS)

    Pitz, S.; Megonigal, P.; Schile, L. M.; Szlavecz, K. A.; King, K.

    2013-12-01

    Most work on methane (CH4) emissions from natural ecosystems has focused on wetlands and wetland soils because they are predictable emitters and relatively simple to quantify. Less attention has been directed toward upland ecosystems that cover far larger areas, but are assumed to be too dry to emit CH4. There is abundant evidence that upland ecosystems emit small amounts of CH4 during hot moments that collectively constitute a significant source in the global budget of this potent greenhouse gas. We have established two transects across natural moisture gradients in two forests near Annapolis, Maryland. Both tree and soil methane fluxes were measured using chamber methods. Each tree chamber was custom fit to the stem near the base. In addition, porewater methane concentrations were collected at multiple depths near trees. Abiotic parameters such as soil temperature, soil moisture, water potential, and depth to groundwater were monitored using a wireless sensor network. Upland emissions from tree stems were as high as 14.6 umoles CH4 m-2 hr-1 while the soil uptake was -1.5 umoles CH4 m-2 hr-1. These results demonstrate that tree methane emissions and soil methane uptake can occur simultaneously in a mesic forest. Factors controlling methane emissions were soil temperature, soil moisture, and depth to groundwater. Based on our preliminary data, tree mediated methane emissions may be offsetting the soil methane sink of upland forests by 20 to 30%. Future methane budgets and climate models will need to include tree fluxes and the parameters that control methane emissions for accurate accounting and predictions.

  18. High Temporal Resolution Measurements to Investigate Carbon Dynamics in Subtropical Peat Soils Using Automated Ground Penetrating Radar (GPR) Measurements at the Laboratory Scale

    NASA Astrophysics Data System (ADS)

    McClellan, M. D.; Wright, W. J.; Job, M. J.; Comas, X.

    2015-12-01

    Peatlands have the capability to produce and release significant amounts of free phase biogenic gasses (CO2, CH4) into the atmosphere and are thus regarded as key contributors of greenhouse gases into the atmosphere. Many studies throughout the past two decades have investigated gas flux dynamics in peat soils; however a high resolution temporal understanding in the variability of these fluxes (particularly at the matrix scale) is still lacking. This study implements an array of hydrogeophysical methods to investigate the temporal variability in biogenic gas accumulation and release in high resolution for a large 0.073 m3 peat monolith from the Blue Cypress Preserve in central Florida. An autonomous rail system was constructed in order to estimate gas content variability (i.e. build-up and release) within the peat matrix using a series of continuous, uninterrupted ground penetrating radar (GPR) transects along the sample. This system ran non-stop implementing a 0.01 m shot interval using high frequency (1.2 GHz) antennas. GPR measurements were constrained with an array of 6 gas traps fitted with time-lapse cameras in order to capture gas releases at 15 minute intervals. A gas chromatograph was used to determine CH4 and CO2 content of the gas collected in the gas traps. The aim of this study is to investigate the temporal variability in the accumulation and release of biogenic gases in subtropical peat soils at the lab scale at a high resolution. This work has implications for better understanding carbon dynamics in subtropical freshwater peatlands and how climate change may alter such dynamics.

  19. The decomposition of vegetation and soil in marginal peat-forming landscapes: climate simulations to quantify gaseous and dissolved carbon fluxes and the effects on peat accumulation and drinking water treatment

    NASA Astrophysics Data System (ADS)

    Ritson, J.; Bell, M.; Clark, J. M.; Graham, N.; Templeton, M.; Brazier, R.; Verhoef, A.; Freeman, C.

    2013-12-01

    Peatlands in the UK represent a large proportion of the soil carbon store, however there is concern that some systems may be switching from sinks to sources of carbon. The accumulation of organic material in peatlands results from the slow rates of decomposition typically occurring in these regions. Climate change may lead to faster decomposition which, if not matched by an equivalent increase in net primary productivity and litter fall, may tip the balance between source and sink. Recent trends have seen a greater flux of dissolved organic matter (DOM) from peatlands to surface waters and a change in DOM character, presenting challenges to water treatment, for example in terms of increased production of disinfectant by-products (DBPs). Peat systems border a large proportion of reservoirs in the UK so uncertainty regarding DOM quantity and quality is a concern for water utilities. This study considered five peatland vegetation types (Sphagnum spp., Calluna vulgaris, Molinea caerulea, peat soil and mixed litter) collected from the Exmoor National Park, UK where it is hypothesised that peat formation may be strongly affected by future changes to climate. A factorial experiment design to simulate climate was used, considering vegetation type, temperature and rainfall amount using a current baseline and predictions from the UKCP09 model. Gaseous fluxes of carbon were monitored over a two month period to quantify the effect on carbon mineralisation rates while 13C NMR analysis was employed to track which classes of compounds decayed preferentially. The DOM collected was characterised using UV and fluorescence techniques before being subject to standard drinking water treatment processes (coagulation/flocculation followed by chlorination). The effect of the experimental factors on DOM amenability to removal and propensity to form DBPs was then considered, with both trihalomethane (THM) and haloacetonitrile (HAN) DBP classes monitored. Initial results have shown a

  20. Understanding barite and gypsum precipitation in upland acid-sulfate soils: An example from a Lufkin Series toposequence, south-central Texas, USA

    NASA Astrophysics Data System (ADS)

    Jennings, Debra S.; Driese, Steven G.

    2014-01-01

    Although low-temperature barite precipitation has been previously documented in soils and paleosols, pedogenic barite precipitation remains poorly understood. This study characterizes the micromorphology, elemental trends, and stable isotope geochemistry of sulfates in a barite-bearing soil (Lufkin Series) toposequence using optical microscopy, XRD, ICP-MS, and stable S and O isotope data. Synthesized data indicate that fluctuating redox processes and microbial activity resulting from epiaquatic and evaporative conditions lead to the precipitation of sulfates in the Lufkin soils. Stable sulfur and oxygen isotopes indicate that the primary source of sulfur is the partial dissolution of jarosite during microbial sulfate reduction. Barium-rich parent material provides adequate barium for barite precipitation. Barium is mobilized and concentrated in Btg horizons ~ 100-160 cm below the surface. The presence of humic acids in profiles lower on the landscape prevents barite precipitation and drives the precipitation of gypsum between saturated, anoxic conditions (November to May) and drier, more oxic conditions (May to November). Barite precipitation is a slow, punctuated process. Micromorphological data reveal that barite precipitates first along evacuated macropores and then in the adjacent matrix. In general, optimal conditions for pedogenic barite precipitation in upland wetland acid-sulfate soils are: 1) warm soil temperature that supports active sulfur-reducing and sulfur oxidizing microbes; 2) distinct wet/dry seasons that allow alternating redox conditions; 3) low-gradient landscape; 4) parent material that contains barium- and sulfur-rich constituents; and 5) a long-lived, stable landscape.

  1. Development of a nitrate ion-selective electrode based on an Urushi matrix membrane and its application to the direct measurement of nitrate-nitrogen in upland soils.

    PubMed

    Ito, S; Baba, K; Asano, Y; Takesako, H; Wada, H

    1996-11-01

    A solid-state nitrate ion-selective electrode based on an Urushi matrix membrane was developed. Urushi, a natural oriental lacquer, has excellent mechanical strength and binding affinity for metal electrodes. Using the same technique for a dip-coating ion-selective electrode, an electrode was prepared by coating and hardening a sensing membrane on the metal base. The effects of the metal electrode on the electrode potential stability, the liquid-membrane components and the oven temperature for hardening of membrane were studied. The sensing membrane, consisting of 27.5 wt.% of o-nitrophenyl octyl ether. 27.5 wt.% of tri-n-octylmethylammonium nitrate and 45 wt.% of raw Urushi latex, was coated with a thickness of 0.5 mm on a silver disc which was plated with Ag/AgCl, then plated with copper and hardened in the oven at 80 degrees C for 50 h. A semi-logarithmic calibration curve of potential versus nitrate ion concentration was obtained over the range 6-60 000 mg l(-1) NO(3)(poststaggered-). The slope of the linear part of the curve was -56 mV per decade change in NO(3)(poststaggered-) concentration. Compared with a PVC matrix nitrate ion-selective electrode, the Urushi matrix nitrate ion-selective electrode was superior in terms of hardness and mechanical strength of the membrane, short response time and long life. The combination of an Urushi matrix nitrate ion-selective electrode with a porous PTFE junction reference electrode, air-tight structured KCl solution chamber and a temperature sensor was applied to field measurements of nitrate-nitrogen concentrations in upland soils. The values obtained for upland soils containing 30-50% of water were good agreement with those for soil solution.

  2. Contaminated lead environments of man: reviewing the lead isotopic evidence in sediments, peat, and soils for the temporal and spatial patterns of atmospheric lead pollution in Sweden.

    PubMed

    Bindler, Richard

    2011-08-01

    Clair Patterson and colleagues demonstrated already four decades ago that the lead cycle was greatly altered on a global scale by humans. Moreover, this change occurred long before the implementation of monitoring programs designed to study lead and other trace metals. Patterson and colleagues also developed stable lead isotope analyses as a tool to differentiate between natural and pollution-derived lead. Since then, stable isotope analyses of sediment, peat, herbaria collections, soils, and forest plants have given us new insights into lead biogeochemical cycling in space and time. Three important conclusions from our studies of lead in the Swedish environment conducted over the past 15 years, which are well supported by extensive results from elsewhere in Europe and in North America, are: (1) lead deposition rates at sites removed from major point sources during the twentieth century were about 1,000 times higher than natural background deposition rates a few thousand years ago (~10 mg Pb m(-2) year(-1) vs. 0.01 mg Pb m(-2) year(-1)), and even today (~1 mg Pb m(-2) year(-1)) are still almost 100 times greater than natural rates. This increase from natural background to maximum fluxes is similar to estimated changes in body burdens of lead from ancient times to the twentieth century. (2) Stable lead isotopes ((206)Pb/(207)Pb ratios shown in this paper) are an effective tool to distinguish anthropogenic lead from the natural lead present in sediments, peat, and soils for both the majority of sites receiving diffuse inputs from long range and regional sources and for sites in close proximity to point sources. In sediments >3,500 years and in the parent soil material of the C-horizon, (206)Pb/(207)Pb ratios are higher, 1.3 to >2.0, whereas pollution sources and surface soils and peat have lower ratios that have been in the range 1.14-1.18. (3) Using stable lead isotopes, we have estimated that in southern Sweden the cumulative anthropogenic burden of

  3. What are the mechanisms controlling carbon flux from peat soils across slopes?

    NASA Astrophysics Data System (ADS)

    Boothroyd, I.; Worrall, F.; Allott, T.

    2012-04-01

    Peatlands are a globally important terrestrial carbon stock but carbon budget models need further improvement. The use of empirical observations to increase the accuracy of process based models has helped to constrain the error involved in accounting for peatland carbon balances, yet our understanding of peatland function needs to improve still further. Hydrology and topography are important controls on the carbon balance of peatlands. The hydrology of hillslopes has been studied, with runoff mechanisms and flow pathways dependent upon the topographic position. Topslope plateau areas have been observed to promote a large degree of surface runoff, acting as a shedding area delivering water downslope. Midslopes may experience fewer saturation runoff events due to the greater hydraulic gradient, with lower water tables likely to cause subsurface throughflow that is delivered downslope at the accumulation area at the bottom of the slope. This can help to maintain higher water tables at the foot of the slope and attenuate saturation runoff events (Holden and Burt 2003). The different hydrological mechanisms studied across the hillslope have not until recently been studied in the context of carbon cycling as well. The author has presented results elsewhere on the role that hillslope position has on carbon flux, finding that with water table drawdown observed on the midslopes, there is a concurrent increase in the rates of ecosystem respiration dependent upon the changing depth of the water table. There is also a decrease in the concentration of dissolved organic carbon concentration downslope. This poster presents preliminary results looking to constrain the explanations for the changing levels of respiration and dissolved organic carbon content across the slope. One metre deep soil cores were taken from an intact and an eroded hillslope in the Peak District, UK, across four hillslope positions: topslope, upper midslope, lower midslope and bottomslope. The cores were

  4. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

    NASA Astrophysics Data System (ADS)

    Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

    2014-12-01

    Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

  5. Comparisons of soil nitrogen mass balances for an ...

    EPA Pesticide Factsheets

    We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; and surface, mid-layer and deep soil and peat horizons. Bog and fen area were derived from a wetland boundary GIS data layer, and bog and fen volumes were calculated as the interpolated product of area and depth of peat. Atmospheric N deposition to the bog and fen were based on measurements from a station located 2km north of the bog watershed and 0.5km from the fen watershed. Precipitation was analyzed for nitrate (NO3-), ammonium (NH4+), and total N (TN), and aggregated to annual values. Outflow water samples from the bog and fen were collected as surface grab samples on each of the May-October sampling dates over the 2010-2013 study, and were analyzed and aggregated annually as for atmospheric N. Soil and peat samples were analyzed for N content, and for net ammonification (AM), nitrification (NT), and ambient (DN) and potential (DEA) denitrification rates. Nitrogen mass balances are based on mean annual atmospheric deposition and outflow; soil and peat standing stocks of N, and mean annual estimates of DN, weighted for contributions of the uplands, lagg or transition zone, and bog or fen hollows and hummocks, and accounting for soil depth effects. Annual deposition of N species was: N

  6. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    NASA Astrophysics Data System (ADS)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  7. Cryptic Methane Emissions from Upland Forest Ecosystems

    SciTech Connect

    Megonigal, Patrick; Pitz, Scott

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  8. Effects of Winter Flooding Peat Soils on Greenhouse Gas Emissions in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Anderson, F. E.; Pellerin, B. A.; Bergamaschi, B. A.; Sturtevant, C. S.; Verfaillie, J. G.; Knox, S. H.; Baldocchi, D. D.; Fujii, R.

    2013-12-01

    Harvested cornfields make up nearly 80% of cropland intentionally flooded during the winter (October through February) in the Sacramento-San Joaquin Delta to support waterfowl migration along the Pacific Flyway. This area is characterized by peat-rich islands that when flooded have the potential to be a source of methane production and emission, while reducing carbon dioxide respiration. Given the extent of winter flooding in the Delta, we evaluated the greenhouse gas emissions during this period and compared it to conventional winter fallow management. We constructed two eddy covariance towers on Staten Island, one in a cornfield flooded during the winter and the other one in a reference cornfield that remains fallow. Each tower included measurements of carbon dioxide, latent, sensible, and ground heat fluxes, as well as a suite of radiation measurements. A LI-COR Open Path Methane Analyzer (LI-7700) was initially installed at the flooded site and then alternated between the two sites every three to four weeks throughout the study. A second LI-7700 was deployed for continuous measurements at both towers in the winter of 2012/2013. Both fields have been under the same management for growing corn in the summer for the past twenty-five years. After harvest, the residual corn is chopped and then tilled into the soil before the winter season. Methane emissions slowly increased during the winter flooded period in 2011-2012, with maximum emissions (~234 mg-C m-2 day-1) occurring immediately following field drainage in mid-February. Methane emissions during the second winter period (e.g. 2012-2013) were similar to the first season in magnitude and timing, but showed two distinct events where emissions slowly increased followed by a maximum emission pulse and then a rapid decrease. Preliminary data analysis suggests the influence of strong Pacific storms occurring in the beginning of the second flooded season as a source of disturbance and agitating mechanism leading to

  9. Use of Computed Tomography Imaging for Qualifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to successfully quantify wet mass of coarse roots, rhizomes, and peat in cores collected from...

  10. Instrumenting an upland research catchment in Canterbury, New Zealand to study controls on variability of soil moisture, shallow groundwater and streamflow

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Srinivasan, Ms

    2015-04-01

    Hydrologists recognise the importance of vertical drainage and deep flow paths in runoff generation, even in headwater catchments. Both soil and groundwater stores are highly variable over multiple scales, and the distribution of water has a strong control on flow rates and timing. In this study, we instrumented an upland headwater catchment in New Zealand to measure the temporal and spatial variation in unsaturated and saturated-zone responses. In NZ, upland catchments are the source of much of the water used in lowland agriculture, but the hydrology of such catchments and their role in water partitioning, storage and transport is poorly understood. The study area is the Langs Gully catchment in the North Branch of the Waipara River, Canterbury: this catchment was chosen to be representative of the foothills environment, with lightly managed dryland pasture and native Matagouri shrub vegetation cover. Over a period of 16 months we measured continuous soil moisture at 32 locations and near-surface water table (< 2 m) at 14 locations, as well as measuring flow at 3 stream gauges. The distributed measurement sites were located to allow comparisons between North and South facing locations, near-stream versus hillslope locations, and convergent versus divergent hillslopes. We found that temporal variability is strongly controlled by the climatic seasonal cycle, for both soil moisture and water table, and for both the mean and extremes of their distributions. Groundwater is a larger water storage component than soil moisture, and the difference increases with catchment wetness. The spatial standard deviation of both soil moisture and groundwater is larger in winter than in summer. It peaks during rainfall events due to partial saturation of the catchment, and also rises in spring as different locations dry out at different rates. The most important controls on spatial variability are aspect and distance from stream. South-facing and near-stream locations have higher

  11. The Late Quaternary peat, vegetation and climate history of the Southern Oceanic Islands of New Zealand

    NASA Astrophysics Data System (ADS)

    McGlone, M. S.

    2002-02-01

    Seven oceanic island groups (Chatham, Bounty, Snares, Antipodes, Auckland, Campbell and Macquarie) lie to the south and east of the southern New Zealand mainland between the Subtropical Convergence and the Antarctic Convergence. They are highly oceanic, experiencing moist, cool, cloudy and windy climates. Deep peat soils cover most of the islands, except for steep slopes and exposed high altitude sites. The three large island groups (Chatham, Auckland and Campbell) support forest and tall scrub in the lowlands, in the latter two grading with altitude through shrubland and grassland to upland tundra. Macrophyllous forbs create luxuriant herbfields in nutrient-rich coastal sites and also, as stunted forms, dominate upland tundra associations. The southernmost island, Macquarie has no woody species, and is covered with tussock grassland, herbfield and tundra. Vegetation cover is highly sensitive to soil saturation and exposure to the strong westerly winds of this region. Extensive oligotrophic bogs occur where drainage is poor and exposure high, and forest and tall scrub are abundant only in sheltered, well-drained lowland sites. Glacial cirque levels indicate mean annual temperatures fell by 5-6°C during the Last Glacial Maximum. A depression of 6-10°C in sea surface temperatures is suggested by deep-sea core analyses, but this seems incompatible with terrestrial evidence. Auckland and Campbell Islands were extensively glaciated, and grassland, herbfield and tundra landscapes prevailed. Glaciers retreated by 15,000 yr BP, and landscapes had stabilised and peat soils begun forming by 12,000 yr BP. By the beginning of the Holocene, oligotrophic bog, grassland and shrubland were dominant. Scrub and low forest spread slowly during the early Holocene in the Chatham, Auckland and Campbell Islands, inhibited by cloudy, moist climates, low insolation and wet soils. Maximum extent of forest and scrub occurred between 6000 and 2000 yr BP, most probably linked with a drying

  12. Sequence composition of BAC clones and SSR markers mapped to Upland cotton chromosomes 11 and 21 targeting resistance to soil-borne pathogens

    PubMed Central

    Wang, Congli; Ulloa, Mauricio; Shi, Xinyi; Yuan, Xiaohui; Saski, Christopher; Yu, John Z.; Roberts, Philip A.

    2015-01-01

    Genetic and physical framework mapping in cotton (Gossypium spp.) were used to discover putative gene sequences involved in resistance to common soil-borne pathogens. Chromosome (Chr) 11 and its homoeologous Chr 21 of Upland cotton (G. hirsutum) are foci for discovery of resistance (R) or pathogen-induced R (PR) genes underlying QTLs involved in response to root-knot nematode (Meloidogyne incognita), reniform nematode (Rotylenchulus reniformis), Fusarium wilt (Fusarium oxysporum f.sp. vasinfectum), Verticillium wilt (Verticillium dahliae), and black root rot (Thielaviopsis basicola). Simple sequence repeat (SSR) markers and bacterial artificial chromosome (BAC) clones from a BAC library developed from the Upland cotton Acala Maxxa were mapped on Chr 11 and Chr 21. DNA sequence through Gene Ontology (GO) of 99 of 256 Chr 11 and 109 of 239 Chr 21 previously mapped SSRs revealed response elements to internal and external stimulus, stress, signaling process, and cell death. The reconciliation between genetic and physical mapping of gene annotations from new DNA sequences of 20 BAC clones revealed 467 (Chr 11) and 285 (Chr 21) G. hirsutum putative coding sequences, plus 146 (Chr 11) and 98 (Chr 21) predicted genes. GO functional profiling of Unigenes uncovered genes involved in different metabolic functions and stress response elements (SRE). Our results revealed that Chrs 11 and 21 harbor resistance gene rich genomic regions. Sequence comparisons with the ancestral diploid D5 (G. raimondii), A2 (G. arboreum) and domesticated tetraploid TM-1 AD1 (G. hirsutum) genomes revealed abundance of transposable elements and confirmed the richness of resistance gene motifs in these chromosomes. The sequence information of SSR markers and BAC clones and the genetic mapping of BAC clones provide enhanced genetic and physical frameworks of resistance gene-rich regions of the cotton genome, thereby aiding discovery of R and PR genes and breeding for resistance to cotton diseases. PMID

  13. Diagnostics of hydromorphism in soils of autonomous positions on the Severo-Sos'vinsk Upland (Western Siberia)

    NASA Astrophysics Data System (ADS)

    Avetov, N. A.; Sopova, E. O.; Golovleva, Yu. A.; Kiryushin, A. V.; Krasilnikov, P. V.

    2014-11-01

    The complex studies of hydromorphism features in taiga weakly differentiated soils using morphological (color), chemical (iron content in different extracts, indicators of reducing conditions (IRIS)), and geobotanic (using the Ramenskii scale) methods have led to ambiguous conclusions. In all the soils, surface gleying was manifested. According to the results obtained by different methods, the maximum reduction processes were related to either the sublitter or the next deeper horizon. The Schwertmann coefficient, the criterion of Bodegom, and the Ramenskii scale indicated an increase of hydromorphism in the soils studied in the following sequence: the lower part of the ridge slopes drained by the small gullies < the middle part of the slopes < the flat tops of the ridges < the depression between the ridges. The morphological diagnostics of gleying proved to be a less sensitive method, which can recognize only the most contrasting hydromorphic soils. The lower horizons in some taiga soils have a bluish gray color probably not related to the recent soil hydromorphism.

  14. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system

  15. Nitrate turnover in a peat soil under drained and rewetted conditions: results from a [(15)N]nitrate-bromide double-tracer study.

    PubMed

    Russow, Rolf; Tauchnitz, Nadine; Spott, Oliver; Mothes, Sibylle; Bernsdorf, Sabine; Meissner, Ralph

    2013-01-01

    Under natural conditions, peatlands are generally nitrate-limited. However, recent concerns about an additional N input into peatlands by atmospheric N deposition have highlighted the risk of an increased denitrification activity and hence the likelihood of a rise of emissions of the greenhouse gas nitrous oxide. Therefore, the aim of the present study was to investigate the turnover of added nitrate in a drained and a rewetted peatland using a [(15)N]nitrate-bromide double-tracer method. The double-tracer method allows a separation between physical effects (dilution, dispersion and dislocation) and microbial and chemical nitrate transformation by comparing with the conservative Br(-) tracer. In the drained peat site, low NO3(-) consumption rates have been observed. In contrast, NO3(-) consumption at the rewetted peat site rises rapidly to about 100% within 4 days after tracer application. Concomitantly, the (15)N abundances of nitrite and ammonium in soil water increased and lead to the conclusion that, besides commonly known NO3(-) reduction to nitrite (i.e. denitrification), a dissimilatory nitrate reduction to ammonium has simultaneously taken place. The present study reveals that increasing NO3(-) inputs into rewetted peatlands via atmospheric deposition results in a rapid NO3(-) consumption, which could lead to an increase in N2O emissions into the atmosphere.

  16. Fiber Effects on Compressibility of Peat

    NASA Astrophysics Data System (ADS)

    Johari, N. N.; Bakar, I.; Razali, S. N. M.; Wahab, N.

    2016-07-01

    Fibers found in the soil, especially in peaty soil play an important role in the determination of soil compressibility. Peat soils are the results from the decomposition of organic matter and the type of peat can be classified based on the fibrous material in the soil. In the engineering field, peat soil was mostly known as soils that has a serious settlement with high compressibility index. From the previous research, fibers in the soil were influenced in compressibility in terms of size, shape, fibric, soil arrangement and etc. Hence, this study attempts the determination of fibers effects on the compressibility of peat using a 1-D oedometer consolidation test. The reconstituted peat samples of different particle sizes were used to determine the consolidation parameters and the results obtained from reconstituted samples were also compared with the undisturbed sample. 1-D oedometer consolidation tests were performed on the samples by using the load increment method. The results shows, the higher particle size (R3.35), give higher moisture content (w = 401.20%) and higher initial void ratio (eo = 5.74). In settlement prediction, the higher the fiber content will results the higher the compression index, therefore, it will cause high of settlement.

  17. The effect of geocryological conditions and soil properties on the spatial variation in the CO2 emission from flat-topped peat mounds in the isolated permafrost zone of Western Siberia

    NASA Astrophysics Data System (ADS)

    Bobrik, A. A.; Goncharova, O. Yu.; Matyshak, G. V.; Ryzhova, I. M.; Makarov, M. I.

    2016-12-01

    The active layer thickness, CO2 emission, and contents of organic substances (including the total organic carbon, labile carbon, and the carbon of microbial biomass) in the soils of flat-topped peat mounds in the area of the Nadym Experimental Station in the north of Western Siberia (experimental site CALM R1) are characterized by considerable spatial variability. The low values of the CO2 emission are confined to the microelevations on the peatland surface. The high values of the emission (>200 mg CO2/(m2 h)) are typical of the soils with the highest content of the carbon of microbial biomass and the lowest content of the labile organic carbon. The soils of elevated flat-topped peat mounds statistically differ from the soils of waterlogged mires in the contents of total, labile, and microbial carbon and in the CO2 emission values. Though the soils of elevated flat-topped peat mounds are characterized by the high content of the carbon of microbial biomass (4260 ± 880 mg C/kg soil), the CO2 emission from them is low (158 ± 23 mg CO2/(m2 h)), which is explained by the structure of microbial communities in the cryogenic soils and by the effect of specific hydrothermic conditions.

  18. Properties and structure of raised bog peat humic acids

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-10-01

    Humic substances form most of the organic components of soil, peat and natural waters, and their structure and properties differ very much depending on their source. The aims of this study are to characterize humic acids (HAs) from raised bog peat, to evaluate the homogeneity of peat HAs within peat profiles, and to study peat humification impact on properties of HAs. A major impact on the structure of peat HAs have lignin-free raised bog biota (dominantly represented by bryophytes of different origin). On diagenesis scale, peat HAs have an intermediate position between the living organic matter and coal organic matter, and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, while thermodynamically more stable aromatic and polyaromatic structures emerge as a result of abiotic synthesis. However, in comparison with soil, aquatic and other HAs, aromaticity of peat HAs is much lower. Comparatively, the raised bog peat HAs are at the beginning of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups change depending on the peat age and decomposition degree from where HAs have been isolated, and carboxylic acidity of peat HAs increases with peat depth and humification degree.

  19. Rouxiella badensis sp. nov. and Rouxiella silvae sp. nov. isolated from peat bog soil in Germany and emendation of the genus description.

    PubMed

    LE Fleche-Mateos, Anne; Kugler, Johannes H; Hansen, Silla H; Syldatk, Christoph; Hausmann, Rudolf; Lomprez, Fabienne; Vandenbogaert, Mathias; Manuguerra, Jean-Claude; Grimont, Patrick A D

    2017-01-16

    Four bacterial strains isolated from peat bog soil or swampy meadow in Baden-Württemberg (Germany) and found to have rrs sequences close to that of Rouxiella chamberiensis were compared to this species by multi-locus sequence analysis and phenotypic tests. The four strains constituted two discrete groups (referred to as Baden and Silva groups) belonging to the genus Rouxiella. These groups differed in the ability to grow at 37°C, reduce nitrate into nitrite, and produce acid from several carbohydrates. Two new species are therefore proposed, Rouxiella badensis sp. nov. for the Baden group (type strain, 323T = CIP 111153T = DSM 100043T) and Rouxiella silvae for the Silva group (type strain, 213T = CIP 111154T = DSM 103735T ). The definition of the genus Rouxiella is emended to take the new species into account.

  20. Time-Lapse Geophysical Measurements targeting Spatial and Temporal Variability in Biogenic Gas Production from Peat Soils in a Hydrologically Controlled Wetland in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Wright, W. J.; Shahan, T.; Sharp, N.; Comas, X.

    2015-12-01

    Peat soils are known to release globally significant amounts of methane (CH4) and carbon dioxide (CO2) to the atmosphere. However, uncertainties still remain regarding the spatio-temporal distribution of gas accumulations and triggering mechanisms of gas releasing events. Furthermore, most research on peatland gas dynamics has traditionally been focused on high latitude peatlands. Therefore, understanding gas dynamics in low-latitude peatlands (e.g. the Florida Everglades) is key to global climate research. Recent studies in the Everglades have demonstrated that biogenic gas flux values may vary when considering different temporal and spatial scales of measurements. The work presented here targets spatial variability in gas production and release at the plot scale in an approximately 85 m2 area, and targets temporal variability with data collected during the spring months of two different years. This study is located in the Loxahatchee Impoundment Landscape Assessment (LILA), a hydrologically controlled, landscape scale (30 Ha) model of the Florida Everglades. Ground penetrating radar (GPR) has been used in the past to investigate biogenic gas dynamics in peat soils, and is used in this study to monitor changes of in situ gas storage. Each year, a grid of GPR profiles was collected to image changes in gas distribution in 2d on a weekly basis, and several flux chambers outfitted with time-lapse cameras captured high resolution (hourly) gas flux measurements inside the GPR grid. Combining these methods allows us to use a mass balance approach to estimate spatial variability in gas production rates, and capture temporal variability in gas flux rates.

  1. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  2. Will blocking historical drainage ditches increase carbon sequestration in upland blanket mires of Southwest England?

    NASA Astrophysics Data System (ADS)

    Le Feuvre, N.; Hartley, I.; Anderson, K.; Luscombe, D.; Grand-Clement, E.; Smith, D.; Brazier, R.

    2012-04-01

    Peat soils in the United Kingdom are estimated to store a minimum of 3,121Mt C (Lindsay, 2010). Despite being such a large carbon store the annual imbalance between uptake and release is small and susceptible to change in response to land management, atmospheric deposition and climate change. The upland blanket mires of Southwest England have been subject to extensive drainage and are particularly vulnerable to climate change as they lie at the lower edge of the peatland climatic envelope. The Mires-on-the-Moors project, funded by South West Water will restore over 2000 hectares of drained mire by April 2015. Herein, we question whether this restoration, which will block historical drainage ditches will allow the blanket bogs of Exmoor and Dartmoor National Parks to recover their ecohydrological functionality. We hypothesise that such mire restoration will increase the resilience of these ecosystems to climate change and will return these upland mires to peat forming/carbon sequestering systems. A method is proposed which aims to understand the processes driving gaseous carbon exchange and peat formation in an upland blanket bog and quantifies the effect restoration has on these processes. We propose to measure the spatial variation in gas fluxes with respect to structural features of the mire; drainage ditches and nanotopes. The role of vegetation; the community composition, phenology and health will be explored as well as environmental variables such as water table depths, temperature and photosynthetically active radiation. Importantly, the experiment will partition below ground respiration to assess the environmental controls and effect of restoration on autotrophic and heterotrophic respiration separately. Unusually, it will be possible to collect both pre- and post-restoration data for two experimental sites with existing intensive hydrological monitoring (baseline monitoring of water table depths at 15 minute timesteps has been in place for > 1 year at ca

  3. Changes in vegetation, peat properties and peat accumulation in Swedish peatlands as revealed by archive data.

    NASA Astrophysics Data System (ADS)

    Schoning, Kristian; Sohlenius, Gustav

    2016-04-01

    In this investigation we have studied patterns in peat accumulation and changes in mire status since the early 1900s for two areas in Sweden. In the early 1900s the Geological Survey of Sweden collected a vast amount of peat and peatland data, including information on vegetation and land-use. We have used this archive data to evaluate changes in mire vegetation, mire wetness and surface peat properties, rates of peat accumulation, succession in young wetlands and the effects of cultivation on peatlands. In total 156 mires in an uplift area of eastern middle Sweden were included in the data-set, including both pristine mires and peatlands used for agricultural purposes. In this area new peatlands have continuously been formed during the past 7 000 years making it possible to evaluate changes in peat accumulation over time. The other study area is situated in the south Swedish Uplands where we have revisited some larger bogs. The results from our investigation show that many of the peatlands have underwent major changes since the early 1900s. In most of the small peatlands we have found important changes in vegetation where mire vegetation has been replaced by nutrient demanding and/or dry species flora while the tree stand on large mires in south Sweden have increased. In some mires humification has increased in the uppermost peat-layers and the mire surface have become drier compared to the early 1900s. In eastern middle Sweden there are indications that the peat accumulation is lower 0,5 mm/year in older peatlands compared with younger ones 1,2 mm/year, although the mire vegetation in the older peatlands is dominated by sphagnum. The peat depth of the cultivated mires in this area shows a mean decrease of 40 cm since the early 1900s.

  4. [Variation characteristics of maize yield and fertilizer utilization rate on an upland yellow soil under long term fertilization].

    PubMed

    Luo, Long-Zao; Li, Yu; Zhang, Wen-An; Xiao, Hou-Jun; Jiang, Tai-Ming

    2013-10-01

    An analysis was made on the 16-year experimental data from the long term fertilization, experiment of maize on a yellow soil in Guizhou of Southwest China. Four treatments, i. e. , no fertilization (CK), chemical fertilization (165 kg N x hm(-2), 82.5 kg P2O5 x hm(-2), and 82.5 kg K2O x hm(-2), NPK), organic manure (30555 kg x hm(-2), M), and combined applicatioin of chemical fertilizers and organic manure (NPKM), were selected to analyze the variation trends of maize yield and fertilizer use efficiency on yellow soil under effects of different long term fertilization modes, aimed to provide references for evaluating and establishing long term fertilization mode and promote the sustainable development of crop production. Overall, the maize yield under long term fertilization had an increasing trend, with a large annual variation. Treatment NPKM had the best yield-increasing effect, with the maize yield increased by 4075.71 kg x hm(-2) and the increment being up to 139.2%. Long term fertilization increased the fertilizer utilization efficiency of maize. In treatment M, the nitrogen and phosphorus utilization rates were increased significantly by 35.4% and 18.8%, respectively. Treatment NPK had obvious effect in improving potassium utilization rate, with an increment of 20% and being far higher than that in treatments M (8.7%) and NPKM (9.2%). The results showed that long term fertilization, especially the combined application of chemical fertilizers and organic manure, was of great importance in increasing crop yield and fertilizer use efficiency.

  5. Chromate reduction on humic acid derived from a peat soil--exploration of the activated sites on HAs for chromate removal.

    PubMed

    Huang, S W; Chiang, P N; Liu, J C; Hung, J T; Kuan, W H; Tzou, Y M; Wang, S L; Huang, J H; Chen, C C; Wang, M K; Loeppert, R H

    2012-05-01

    Humic substances are a major component of soil organic matter that influence the behavior and fate of heavy metals such as Cr(VI), a toxic and carcinogenic element. In the study, a repetitive extraction technique was used to fractionate humic acids (HAs) from a peat soil into three fractions (denoted as F1, F2, and F3), and the relative importance of O-containing aromatic and aliphatic domains in humic substances for scavenging Cr(VI) was addressed at pH 1. Spectroscopic analyses indicated that the concentrations of aromatic C and O-containing functional groups decreased with a progressive extraction as follows: F1>F2>F3. Cr(VI) removal by HA proceeded slowly, but it was enhanced when light was applied due to the production of efficient reductants, such as superoxide radical and H(2)O(2), for Cr(VI). Higher aromatic- and O-containing F1 fraction exhibited a greater efficiency for Cr(VI) reduction (with a removal rate of ca. 2.89 mmol g(-1) HA under illumination for 3 h). (13)C NMR and FTIR spectra further demonstrated that the carboxyl groups were primarily responsible for Cr(VI) reduction. This study implied the mobility and fate of Cr(VI) would be greatly inhibited in the environments containing such organic groups.

  6. Newly Isolated Paenibacillus tyrfis sp. nov., from Malaysian Tropical Peat Swamp Soil with Broad Spectrum Antimicrobial Activity.

    PubMed

    Aw, Yoong-Kit; Ong, Kuan-Shion; Lee, Learn-Han; Cheow, Yuen-Lin; Yule, Catherine M; Lee, Sui-Mae

    2016-01-01

    Emergence of antimicrobial resistance coupled with the slowdown in discovery of new antimicrobial compounds points to serious consequences for human health. Therefore, scientists are looking for new antimicrobial compounds from unique and understudied ecosystems such as tropical peat swamp forests. Over the course of isolating antimicrobial producing bacteria from North Selangor tropical peat swamp forest, Malaysia, a Gram variable, rod shaped, endospore forming, facultative anaerobic novel strain MSt1(T) that exerts potent and broad spectrum antimicrobial activity was isolated. Phylogenetic analysis using 16S rRNA gene sequences showed that strain MSt1(T) belonged to the genus Paenibacillus with the highest similarity to Paenibacillus elgii SD17(T) (99.5%). Whole genome comparison between strain MSt1(T) with its closely related species using average nucleotide identity (ANI) revealed that similarity between strain MSt1(T) with P. elgii B69 (93.45%) and Paenibacillus ehimensis A2 (90.42%) was below the recommended threshold of 95%. Further analysis using in silico pairwise DDH also showed that similarity between strain MSt1(T) with P. elgii B69 (55.4%) and P. ehimensis A2 (43.7%) was below the recommended threshold of 70%. Strain MSt1(T) contained meso-diaminopilemic acid in the cell wall and MK-7 as the major menaquinone. The major fatty acids of strain MSt1(T) were anteiso-C15:0 (48.2%) and C16:0 (29.0%) whereas the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unknown lipid, two unknown glycolipids, and one unknown phospholipid. Total DNA G+C content of strain MSt1(T) was 51.5 mol%. The extract from strain MSt1(T) exerted strong antimicrobial activity against Escherichia coli ATCC 25922 (MIC = 1.5 μg/mL), MRSA ATCC 700699 (MIC = 25 μg/mL) and Candida albicans IMR (MIC = 12.5 μg/mL). Partially purified active fraction exerted a strong effect against E. coli ATCC 25922 resulting in cell rupture when

  7. Newly Isolated Paenibacillus tyrfis sp. nov., from Malaysian Tropical Peat Swamp Soil with Broad Spectrum Antimicrobial Activity

    PubMed Central

    Aw, Yoong-Kit; Ong, Kuan-Shion; Lee, Learn-Han; Cheow, Yuen-Lin; Yule, Catherine M.; Lee, Sui-Mae

    2016-01-01

    Emergence of antimicrobial resistance coupled with the slowdown in discovery of new antimicrobial compounds points to serious consequences for human health. Therefore, scientists are looking for new antimicrobial compounds from unique and understudied ecosystems such as tropical peat swamp forests. Over the course of isolating antimicrobial producing bacteria from North Selangor tropical peat swamp forest, Malaysia, a Gram variable, rod shaped, endospore forming, facultative anaerobic novel strain MSt1T that exerts potent and broad spectrum antimicrobial activity was isolated. Phylogenetic analysis using 16S rRNA gene sequences showed that strain MSt1T belonged to the genus Paenibacillus with the highest similarity to Paenibacillus elgii SD17T (99.5%). Whole genome comparison between strain MSt1T with its closely related species using average nucleotide identity (ANI) revealed that similarity between strain MSt1T with P. elgii B69 (93.45%) and Paenibacillus ehimensis A2 (90.42%) was below the recommended threshold of 95%. Further analysis using in silico pairwise DDH also showed that similarity between strain MSt1T with P. elgii B69 (55.4%) and P. ehimensis A2 (43.7%) was below the recommended threshold of 70%. Strain MSt1T contained meso-diaminopilemic acid in the cell wall and MK-7 as the major menaquinone. The major fatty acids of strain MSt1T were anteiso-C15:0 (48.2%) and C16:0 (29.0%) whereas the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unknown lipid, two unknown glycolipids, and one unknown phospholipid. Total DNA G+C content of strain MSt1T was 51.5 mol%. The extract from strain MSt1T exerted strong antimicrobial activity against Escherichia coli ATCC 25922 (MIC = 1.5 μg/mL), MRSA ATCC 700699 (MIC = 25 μg/mL) and Candida albicans IMR (MIC = 12.5 μg/mL). Partially purified active fraction exerted a strong effect against E. coli ATCC 25922 resulting in cell rupture when viewed with SEM

  8. Inorganic contents of peats

    SciTech Connect

    Raymond, R. Jr.; Bish, D.L.; Cohen, A.D.

    1988-02-01

    Peat, the precursor of coal, is composed primarily of plant components and secondarily of inorganic matter derived from a variety of sources. The elemental, mineralogic, and petrographic composition of a peat is controlled by a combination of both its botanical and depositional environment. Inorganic contents of peats can vary greatly between geographically separated peat bogs as well as vertially and horizontally within an individual bog. Predicting the form and distribution of inorganic matter in a coal deposit requires understanding the distribution and preservation of inorganic matter in peat-forming environments and diagenetic alterations affecting such material during late-stage peatification and coalification processes. 43 refs., 4 figs., 3 tabs.

  9. Changes of the content of oil products in the oil-polluted peat soil of a high-moor bog in a field experiment with application of lime and fertilizers

    NASA Astrophysics Data System (ADS)

    Erkenova, M. I.; Tolpeshta, I. I.; Trofimov, S. Ya.; Aptikaev, R. S.; Lazarev, A. S.

    2016-11-01

    A field model experiment on stimulating the activity of native oil microorganisms-decomposers was performed on an oil-polluted area in a high-moor bog under its total flooding in the northern taiga (Western Siberia). For two summer months, the doses of lime and nitrogen, phosphorus, and potassium fertilizers applied have caused a decrease in the oil products (OP) content by 54% relative to their initial amount. The decrease of the OP content in the soil profiles was nonuniform, and at the depth of 30-50 cm it was accompanied by the acidification of peat. The stimulation of the activity of aboriginal microorganisms by applying lime and mineral fertilizers led to the development of migration processes with the participation of oil and products of its transformation. These processes differed from those in the soil without application of lime and fertilizers. An original technology of applying lime and fertilizers providing minimal disturbances the upper 50-cm peat layer is suggested.

  10. Hydrological connectivity of soil pipes

    NASA Astrophysics Data System (ADS)

    Holden, J.

    2003-04-01

    Natural soil pipes are common in many parts of the world and particularly in blanket peat uplands yet there are problems in finding and defining soil pipe networks which are often located deep within the peat. Pipeflow can contribute a large proportion of runoff to the river systems in these upland environments and may significantly influence catchment sediment and solute yield. Ground penetrating radar (GPR) technology has recently been developed for non-destructive identification and mapping of soil pipes in peat catchments. While GPR can identify subsurface cavities, it cannot alone determine hydrological connectivity between one cavity and another. This poster presents results from an experiment to test the ability of GPR to establish hydrological connectivity between pipes through use of a tracer solution. Tracers such as sodium chloride were injected at a constant rate into an open pipe cavity. The GPR was moved across the test area downslope. The resultant radargrams were analysed and significantly increased reflectance was observed from a selection of cavities downslope. It was thus possible to determine hydrological connectivity of soil pipes within a dense pipe network across a hillslope without ground disturbance. In addition, tracers were added to the peat surface upslope of known pipe networks. It was possible to then trace the movement of water across and through the hillslope by using GPR to establish the connectivity of a range of flowpaths. Often pipe networks were supplied with water from overland flow entering through cracks and openings where the soil pipe was near the peat surface. Downslope, pipeflow contributed not only directly to streamflow but also to overland flow and near-surface throughflow on the hillslope. The same water that was within a pipe network at four metres depth could become near-surface throughflow outside of the pipe network a few metres down slope. These data allow the first three-dimensional picture of subsurface

  11. Geochemical and Hydrological limitation of carbon sequestration and methane release in anoxic peat soil from the Luther Marsh, Canada

    NASA Astrophysics Data System (ADS)

    Bonaiuti, Simona; Blodau, Christian

    2015-04-01

    In deep peat layers, anaerobic respiration showed a slow-down due to the lack of solute transport which causes an accumulation of metabolic end products (i.e. DIC and CH4). This accumulation can lower the Gibbs free energy levels available to the terminal respiration processes, potentially leading to an inhibition in the decomposition. In particular, this state can affect the methanogenesis, acetogenesis and fermentation processes which occur near thermodynamic minimum energy levels. We conducted a column experiments with an ombrothrophic bog peat over a period of 300 days at 20° C, to test the hypothesis that alteration in solute and gas transport rates can remove this biogeochemical inactivation of DIC and methane turnover rates. To this end, we tested a i) control treatment with no gas and solute transport, ii) advective flow treatment with a flow water of 10 mm d-1, iii) ebullition treatment with methane removal by conduit transport as surrogate for bubbling, and iv) an O2-free atmosphere treatment to test the effect of remote transport of electron on anaerobic decomposition, in absence of oxygen compared to the other treatment. We determined detailed concentration depth profiles of dissolved inorganic carbon (DIC), methane (CH4) and relevant decomposition intermediates (i.e. H2, Fe, nitrate, acetate, formiate and propionate), every 15 days at the beginning and every ca. 2 months after 75 days. CO2 and CH4 fluxes were measured using a static chamber approach. Net turnover of DIC and CH4 in depth layers was calculated for individual depth intervals from mass balance approach based on diffusive mass fluxes between adjacent depth layers and change in storage over time. Thermodynamic energy levels of relevant electron accepting processes were calculated over time. In the initial phase of the experiments, DIC and CH4 concentrations increased mostly below the water table level at 10 cm depth and over time in all treatments. After 45 days of incubation, CH4

  12. Impact of fire on macropore flow and the hydraulic conductivity of near-surface blanket peat

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Wearing, Catherine; Palmer, Sheila; Jackson, Benjamin; Johnston, Kerrylyn; Brown, Lee

    2013-04-01

    Peatlands can be subject to wildfire or deliberate burning in many locations. Wildfires are known to impact soil properties and runoff production in most soil types but relatively little work has been conducted on peatlands. Furthermore in large parts of the UK uplands prescribed vegetation burning on peat has taken place at regular intervals (e.g. every 8-25 years) on patches of around 300-900 sq. metres over the past century to support increased grouse populations for sport shooting. However, there have been few studies on how these prescribed fires influence near-surface hydrology. It is known that macropores transport a large proportion of flow in near-surface peat layers and we investigated their role in flow transport for fire sites using tension infiltrometers. Measurements were performed, at replicated hillslope positions to control for slope position effects, on unburnt peat (U) and where prescribed burning had taken place two years (P2), four years (P4) and >15 years (P15+) prior to sampling. For the prescribed burning plots, vegetation burning had also occurred at around a 15-20 year interval for most of the past century. We also sampled a nearby wildfire site (W) with the same sampling design where wildfire had occurred four months prior to sampling. Both the contribution of macropore flow to overall infiltration, and the saturated hydraulic conductivity, were significantly lower in the recently burnt sites (W, P2, P4), compared to P15+ and U. There was no significant difference in macropore flow contributions, effective macroporosity and saturated hydraulic conductivity between P15+ and U. The results suggest fire influences the near-surface hydrological functioning of peatlands but that 'recovery' for some hydrological processes to prescribed vegetation burning may be possible within two decades if there are no further fires.

  13. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  14. Evaluating the spatial variation of total mercury in young-of-year yellow perch (Perca flavescens), surface water and upland soil for watershed-lake systems within the southern Boreal Shield

    USGS Publications Warehouse

    Gabriel, M.C.; Kolka, R.; Wickman, T.; Nater, E.; Woodruff, L.

    2009-01-01

    The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue concentration and a total of 45 watershed and water chemistry parameters were evaluated for two separate years: 2005 and 2006. Results show agreement with other studies where watershed area, lake water pH, nutrient levels (specifically dissolved NO3--N) and dissolved iron are important factors controlling and/or predicting fish THg level. Exceeding all was the strong dependence of yellow perch THg level on soil A-horizon THg and, in particular, soil O-horizon THg concentrations (Spearman ?? = 0.81). Soil B-horizon THg concentration was significantly correlated (Pearson r = 0.75) with lake water THg concentration. Lakes surrounded by a greater percentage of shrub wetlands (peatlands) had higher fish tissue THg levels, thus it is highly possible that these wetlands are main locations for mercury methylation. Stepwise regression was used to develop empirical models for the purpose of predicting the spatial variation in yellow perch THg over the studied region. The 2005 regression model demonstrates it is possible to obtain good prediction (up to 60% variance description) of resident yellow perch THg level using upland soil O-horizon THg as the only independent variable. The 2006 model shows even greater prediction (r2 = 0.73, with an overall 10??ng/g [tissue, wet weight] margin of error), using lake water dissolved iron and watershed area as the only model independent variables. The developed regression models in this study can help with interpreting THg concentrations in low trophic level fish species for untested lakes of the greater Superior National Forest and surrounding Boreal ecosystem. ?? 2009 Elsevier B.V.

  15. Chlorinated hydrocarbons in peat

    SciTech Connect

    Rapaport, R.A.

    1985-01-01

    Concentrations (ng/g), accumulation rates (ug/m/sup 2/=yr) and burdens were determined for DDT (1,1,1-trichlorophenyl2-2'bis(p-chlorophenyl)ethane), polychlorinated biphenyls. Toxaphene, hexachlorobenzene (HCB) and a,b,g-hexachlorocyclohexanes (HCHs) in peat cores taken across the mid-latitudes of North America. Because peat bogs are ombrotrophic, thereby receiving all contaminant inputs from the atmosphere and because peat cores were dated, atmospheric input functions were constructed for all of the compounds listed above excepting the HCHs. Compound inventories (burdens) in peat cores of PCBs, HCB, HCHs, Toxaphene, DDT, Pb and Zn were compared, indicating a strong influence from areas proximate to industrial sources and the atmospheric transport from source regions. Untransformed parent DDT (p,p' and o,p'-DDT) in surface peat and in precipitation provides evidence for the long range transport of DDT from neighboring countries where use has increased over the past 10-15 years. Present accumulation rates of DDT in peat are about 10-20% of maximum levels associated with peak use in the US around 1960. The DDT input function that was developed can be used to date peat cores. Transformations of DDT and PCBs were also examined in peat cores. First order transformation rates of DDT (p,p' and o,p') to DDD in anaerobic peat core environments ranged from 0.03 to 0.09 yr/sup -1/ with differences related to temperature. Aerobic transformation of PCB congeners in peat cores and microcosms was rapid for 2,3 and several 4 chlorinated congeners (T/sub 1/2 less than or equal to 0.2 to 3 years) and declined with increasing chlorine number.

  16. Oxidative ratio (OR) of UK peats

    NASA Astrophysics Data System (ADS)

    Clay, G. D.; Worrall, F.; Masiello, C. A.

    2012-04-01

    The oxidative ratio (OR) is the amount of CO2 sequestered in the terrestrial biosphere for each mol of O2 produced. The OR governs the effectiveness of a terrestrial biome to mitigate the impact of anthropogenic CO2 emissions and it has been used to calculate the balance of terrestrial and oceanic carbon sinks across the globe. However, few studies have investigated the controls of the variability in OR. What factors affect OR - climate? Soil type? Vegetation type? N deposition? Land use? Land use change? Small shifts in OR could have important implications in the global partitioning of CO2 between the atmosphere, biosphere, and oceans. This study looks at peat soils (Histosols) from a series of sites representing a climatic transect across the UK. Duplicate peat cores were taken, along with samples of above-ground vegetation and litter, from sites in northern Scotland (Forsinard), southern Scotland (Auchencorth), northern England (Moor House; Thorne Moor) through the Welsh borders (Whixhall Moss) and Somerset levels (Westhay Moor) to Dartmoor and Bodmin Moor in the south west of England. Sub-samples of the cores were analysed for their CHNO concentrations using a Costech ECS 4010 Elemental combustion system. Using the method of Masiello et al. (2008), OR values could be calculated from these elemental concentrations. Initial results show that OR values of UK peats varied between 0.94 and 1.1 with a median value of 1.05 which similar to the median value of World soils but the range is at the more reduced end. There was significant variation between peat cores, even between peat cores on the same site and the peat showed significant reduction in OR with depth in the core.

  17. [Carbon accumulation in soils of forest and bog ecosystems of southern Valdai in the Holocene].

    PubMed

    Minaeva, T Iu; Trofimov, S Ia; Chichagova, O A; Dorofeeva, E I; Sirin, A A; Glushkov, I V; Mikhaĭlov, I D; Kromer, B

    2008-01-01

    Carbon stocks and accumulation rates in humus and peat horizons of the contiguous soil series of forest and bog ecosystems have been studied in the Central Forest State Biosphere Reserve (CFSBR, Tver region). Upland soil types (soddy podzolic, brown, and white podzolic) have been compared to waterlogged (peaty gley podzolic and peaty gley) and bog soils differing in trophic status, including those of raised, transitional, and lowland bogs. The results show that carbon stocks in mineral soils are many times smaller than in waterlogged soils and an order of magnitude smaller than in bog soils. Mineral and bog soils are characterized by similar rates of carbon accumulation averaged over the entire period of their existence. The highest rate of carbon accumulation has been noted for the soils of waterlogged habitats, although this process may be periodically disturbed by fires and other stress influences.

  18. Nitrous oxide emission from uplands in Northern China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For uplands with high pH, low groundwater table and low dissolved organic carbon content, such as the Northern China, nitrification may play an important role in soil N2O emission. The microbial mechanisms and controls seem to be different in soils with high groundwater table, e.g., the Nort...

  19. Recovery of soil physical properties and microbiology in foresty drained peatlands from the impact of forest machinery

    NASA Astrophysics Data System (ADS)

    Lepilin, Dmitrii; Kimura, Bryn; Uusitalo, Jori; Laiho, Raija; Fritze, Hannu; Lauren, Ari; Tuittila, Eeva-Stiina

    2016-04-01

    Forestry-drained peatlands occupy approximately 5.7 million ha and represent almost one fourth of the total forest surface in Finland. They are subjected to the same silvicultural harvesting operations as upland forests. However, although the potential of timber harvesting to cause detrimental effects on soil is well documented in upland forests, the knowledge on environmental impact of harvesting machinery on peat soils is still lacking. To assess the impact of harvesting machines on peat physical properties and biology we collected soil samples from six peatland forests that were harvested by commonly employed Harvester and Forwarder. Samples were taken from trails formed by harvesting machinery (treatment plots) and outside of trails (control plots unaffected by machinery traffic) to a depth of 15 cm. To adders the recovery of soil properties after disturbance we sampled sites that form a chronosequence in respect to time since harvesting: 1 month (class I), 3-4 years (class II) and 14-15 years (class III). The physical and microbiological properties of soil samples were analyzed in laboratory. Harvesting operations with heavy machinery appeared to significantly increase the bulk density of peat in the machines' trails at recently harvested sites in comparison to control plots. Following change in bulk density there was change of pore size distribution with decreasing macrospores quantity. This led to slight decrease of total porosity and decrease of air filled porosity. Water retention capacity increased with increasing bulk density. CO2 evolution increased in the trails of class I site with where dissolved organic carbon concurrently decreased. While there was not impact of harvesting on microbial biomass or carbon, PLFA analysis indicated that machinery traffic caused a shift in microbial community structure. Results of class II and class III sites showed a recovery of physical properties within 16 years: treatment plots and control plots started to resemble

  20. Burkholderia paludis sp. nov., an Antibiotic-Siderophore Producing Novel Burkholderia cepacia Complex Species, Isolated from Malaysian Tropical Peat Swamp Soil.

    PubMed

    Ong, Kuan Shion; Aw, Yoong Kit; Lee, Learn Han; Yule, Catherine M; Cheow, Yuen Lin; Lee, Sui Mae

    2016-01-01

    A novel Gram negative rod-shaped bacterium, designated strain MSh1(T), was isolated from Southeast Pahang tropical peat swamp forest soil in Malaysia and characterized using a polyphasic taxonomy approach. The predominant cellular fatty acids (>10.0%) were C16:0 (31.7%), C17:0 cyclo (26.6%), and C19:0 cyclo ω8c (16.1%). The polar lipids detected were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant ubiquinone was Q-8. This revealed that strain MSh1(T) belongs to the genus Burkholderia. The type strain MSh1(T) can be differentiated from other Burkholderia cepacia complex (Bcc) species by phylogenetic analysis of 16S rRNA gene sequence, multilocus sequence analysis (MLSA), average nucleotide identity (ANI) and biochemical tests. DNA-DNA relatedness values between strain MSh1(T) and closely related type strains were below the 70% threshold value. Based on this polyphasic study of MSh1(T), it can be concluded that this strain represents a novel species within the Bcc, for which the name Burkholderia paludis sp. nov. is proposed. The type strain is MSh1(T) (= DSM 100703(T) = MCCC 1K01245(T)). The dichloromethane extract of MSh1(T) exhibited antimicrobial activity against four Gram positive bacteria (Enterococcus faecalis ATCC 29212, E. faecalis ATCC 700802, Staphylococcus aureus ATCC 29213, S. aureus ATCC 700699) and a Gram negative bacteria (Escherichia coli ATCC 25922). Further purification work has led to the isolation of Compound 1, pyochelin. Pyochelin demonstrated antimicrobial activity against four S. aureus strains and three E. faecalis strains with MIC-values of 3.13 μg/ml and 6.26 μg/ml, respectively. SEM analysis showed that the cellular morphology of E. faecalis ATCC 700802 was not affected by pyochelin; suggesting that it might target the intracellular components. Pyochelin, a siderophore with antimicrobial activity might be useful in treating bacterial infections caused by S. aureus and E. faecalis, however

  1. Burkholderia paludis sp. nov., an Antibiotic-Siderophore Producing Novel Burkholderia cepacia Complex Species, Isolated from Malaysian Tropical Peat Swamp Soil

    PubMed Central

    Ong, Kuan Shion; Aw, Yoong Kit; Lee, Learn Han; Yule, Catherine M.; Cheow, Yuen Lin; Lee, Sui Mae

    2016-01-01

    A novel Gram negative rod-shaped bacterium, designated strain MSh1T, was isolated from Southeast Pahang tropical peat swamp forest soil in Malaysia and characterized using a polyphasic taxonomy approach. The predominant cellular fatty acids (>10.0%) were C16:0 (31.7%), C17:0 cyclo (26.6%), and C19:0 cyclo ω8c (16.1%). The polar lipids detected were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant ubiquinone was Q-8. This revealed that strain MSh1T belongs to the genus Burkholderia. The type strain MSh1T can be differentiated from other Burkholderia cepacia complex (Bcc) species by phylogenetic analysis of 16S rRNA gene sequence, multilocus sequence analysis (MLSA), average nucleotide identity (ANI) and biochemical tests. DNA–DNA relatedness values between strain MSh1T and closely related type strains were below the 70% threshold value. Based on this polyphasic study of MSh1T, it can be concluded that this strain represents a novel species within the Bcc, for which the name Burkholderia paludis sp. nov. is proposed. The type strain is MSh1T (= DSM 100703T = MCCC 1K01245T). The dichloromethane extract of MSh1T exhibited antimicrobial activity against four Gram positive bacteria (Enterococcus faecalis ATCC 29212, E. faecalis ATCC 700802, Staphylococcus aureus ATCC 29213, S. aureus ATCC 700699) and a Gram negative bacteria (Escherichia coli ATCC 25922). Further purification work has led to the isolation of Compound 1, pyochelin. Pyochelin demonstrated antimicrobial activity against four S. aureus strains and three E. faecalis strains with MIC-values of 3.13 μg/ml and 6.26 μg/ml, respectively. SEM analysis showed that the cellular morphology of E. faecalis ATCC 700802 was not affected by pyochelin; suggesting that it might target the intracellular components. Pyochelin, a siderophore with antimicrobial activity might be useful in treating bacterial infections caused by S. aureus and E. faecalis, however further work has to

  2. Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.

    2016-11-01

    Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.

  3. CHUM: a hydrochemical model for upland catchments

    NASA Astrophysics Data System (ADS)

    Tipping, Edward

    1996-01-01

    CHUM (CHemistry of the Uplands Model) simulates soil-water chemical interactions and water flows in upland catchments with acid soils. The chemical interactions are described with the equilibrium speciation code WHAM, which emphasises the interactions of inorganic chemical species with solid-phase and dissolved organic matter, and also considers inorganic solution speciation and sorption reactions of fulvic acid. Of special significance is the treatment of aluminium chemistry; control of dissolved aluminium concentrations is assumed to be due primarily to complexation reactions with solid phase organic matter, whereas previous models have postulated equilibrium with mineral phases or simple ion-exchange. In addition, CHUM takes nitrogen transformations and weathering (dissolution) reactions into account. The catchment is conceptualised as a series of columns consisting of two soil horizons and an underlying permeable or fractured bedrock zone. Water flows are described with a hydrological submodel that distinguishes immobile water present in soil micropores (which is in chemical equilibrium with the soil solids) from mobile drainage water. The mobile water can move vertically from one horizon to another, from one column to the column immediately downslope, or as outflow from a column adjacent to a stream or lake. Solutes exchange between the mobile and immobile compartments. The model runs on a daily time-step. The fundamentals of the model are given, together with a description of its application to a site in the English Lake District.

  4. The effects of salinization on aerobic and anaerobic decomposition and mineralization in peat meadows: the roles of peat type and land use.

    PubMed

    Brouns, Karlijn; Verhoeven, Jos T A; Hefting, Mariet M

    2014-10-01

    Peat soils comprise a large part of the western and northern Netherlands. Drainage for agriculture has caused increased soil aeration which has stimulated decomposition and, hence, soil subsidence, currently amounting to 1-2 cm/yr. River water is supplied to these peat areas in summer to prevent drying out of the peat soils. Saltwater intrusion and evaporation make this surface water slightly brackish during drought periods. In addition, brackish seepage can surface more easily during such dry periods. We performed an incubation experiment in which the effects of salinization on aerobic decomposition and mineralization of shallow peat samples and anaerobic decomposition and mineralization of deep peat samples were studied. We considered four different types of peat samples: peat sampled in agricultural peat meadows and in nature reserves, originally formed under either eutrophic or oligotrophic conditions. The aerobic decomposition was approximately reduced by 50% after salinization, whereas the anaerobic decomposition rates remained unchanged. Remarkably, the response to salinization did not differ between the peat types and land uses. Ammonium concentrations increased while nitrate concentrations decreased after salinization, probably as a result of reduced nitrification. Especially in the oligotrophic peat, ammonium concentrations increased substantially. Phosphate concentrations increased, possibly caused by changes in desorption and adsorption processes due to higher ion concentrations. DOC concentrations decreased in the brackish samples due to precipitation. Furthermore, the eutrophic peat samples showed increasing sulfate concentrations, both in oxic and anoxic incubations, which was attributed to pyrite oxidation. Independently of salinization, nitrification rates were higher in the agricultural, fertilized, peat soils. In conclusion, while salinization might reduce subsidence rates, it will have adverse effects on water quality.

  5. Short period of oxygenation releases latch on peat decomposition.

    PubMed

    Brouns, Karlijn; Verhoeven, Jos T A; Hefting, Mariet M

    2014-05-15

    Extreme summer droughts are expected to occur more often in the future in NW Europe due to climate change. These droughts might accelerate the rate of peat oxidation in drained peat areas, with impacts on soil subsidence, GHG emission and water quality. This study aimed at providing more insight in the oxidation of deep peat layers that had not previously been exposed to air, the so-called secondary decomposition. We incubated two types of peat (eutrophic and oligotrophic), sampled from permanently anoxic peat layers from nature reserves and agricultural peat meadows. Peat samples were incubated for thirteen weeks under anoxic conditions, but were exposed to air for one to eight weeks. The production of CO2 and CH4 was quantified as a proxy for decomposition; concentrations of soluble nutrients and phenolic compounds were also measured. The results showed that oxygenation led to a steep increase in the rate of decomposition, indicated by higher carbon loss rates during and after oxygenation compared to non-oxygenated samples. Carbon loss rates increased more for eutrophic peat (agricultural area: 352%, nature reserve: 182%) than for oligotrophic peat (83% and 159% respectively). Most peat samples investigated showed higher post-oxygenation CO2 and/or CH4 production compared to the anoxic pre-oxygenation period. This indicates that oxygenation stimulates decomposition, even after anoxic conditions have returned. Contrary to the enzymic latch theory, no effects of oxygenation on the concentrations of soluble or condensed phenolic compounds were detected. Soluble nutrient concentrations did not change due to oxygenation either. Noteworthy is the occurrence of pyrite mineralization and associated acidification in eutrophic peat. Thus, low summer water levels, for example due to climate change, should be avoided in order to limit exceptionally high decomposition rates and associated problems such as increasing subsidence rates, greenhouse gas emission, sulfate release

  6. Third technical contractors' conference on peat

    SciTech Connect

    Not Available

    1981-01-01

    The conference dealt with the estimation of US peat reserves, methods for the gasification of peat, including biogasification, techniques for dewatering peat, and the harvesting of peat. Separate abstracts were prepared for the individual papers. (CKK)

  7. Assessment of wetland/upland vegetation communities and evaluation of soil-plant contamination by polycyclic aromatic hydrocarbons and trace metals in regions near oil sands mining in Alberta.

    PubMed

    Boutin, C; Carpenter, D J

    2017-01-15

    Oil sands mining in Alberta, Canada, has been steadily increasing over the last 50years. The extent to which the surrounding vegetation has been altered/contaminated by pollutants released during bitumen extraction has not been a focus of oil sands environmental monitoring efforts. The objectives of this study were to assess plant species richness and composition in wetlands and uplands in the vicinity of oil sands mining areas and to measure levels of contamination of trace metals and polycyclic aromatic hydrocarbons (PAHs) in soils and plants. Twenty-two sites were selected in three locations: near to (OS, n=7), West (n=7), and East (n=8) of oil sands mining operations. Aboveground plant species were inventoried and soil was collected for a seedbank study. Soils and plants were collected for analyses of 28 metals and 40 parent and alkylated PAHs. Plant species richness and composition differed significantly among locations. More species were found in the OS sites, many of them being non-native, than in East and West sites, which contained almost exclusively native perennials. PAH levels were significantly higher in OS sites, and were mostly comprised of alkylated PAHs. Patterns of PAH distribution indicated contamination from bitumen/petroleum in four sites; other combustion types may have affected five additional sites at different levels. Metals were also elevated in OS sites. Metal levels were significantly correlated with distance to upgrader facilities. Ratios of some metals in soil vs. above- and belowground plant parts were significantly higher in West and East than in OS sites, likely due in part to pH as soil was acidic at the East and West locations but alkaline at OS sites. This study showed that sites located near oil sands mining operations were contaminated with PAHs and metals, and that the vegetation composition at these sites greatly differed from less disturbed areas.

  8. Denitrification in upland of China: Magnitude and influencing factors

    NASA Astrophysics Data System (ADS)

    Wang, Jinyang; Yan, Xiaoyuan

    2016-12-01

    A better understanding of influencing factors and accurate estimate of soil denitrification is a global concern. Here we present a synthesis of 300 observations of denitrification in Chinese upland soils from 39 field and laboratory studies using the acetylene inhibition technique. The results of a linear mixed model analysis showed that the rates of soil denitrification were significantly affected by crop type, soil organic carbon, soil pH, the measurement period, and the rate of N application. The emission factor (EF) and N2O/(N2O + N2) ratio for soil denitrification were on average 2.11 ± 0.17% and 0.508 ± 0.020, respectively. Our meta-analysis indicated that N fertilization increased soil denitrification by 311% (95% CI: 279-346%) and 112% (95% CI: 66-171%) in the field and laboratory studies, respectively. Substantial interactive effects between soil properties and N fertilization on soil denitrification were found. Although the highest values of both the rate of denitrification and the EF were found in vegetable fields, the size of the stimulating effect of N fertilization on soil denitrification was lower in vegetable fields than in maize and wheat fields. These results suggest that the crop-specific effect is important and that vegetable fields are potential hot spots of denitrification in Chinese uplands. Based on either the EF or the N2O/(N2O + N2) ratio obtained, the estimated amount of total denitrification from the upland soils was an order of magnitude lower than that from budget calculations, suggesting that the acetylene inhibition technique may significantly underestimate denitrification in Chinese upland soils.

  9. Oak-black bear relationships in southeastern uplands

    USGS Publications Warehouse

    Clark, Joseph D.; Spetich, Martin A.

    2004-01-01

    Bears (Ursus americanus) primarily occur in upland habitats in the Southeast because uplands were the last to be developed for agriculture and were more likely to become publicly owned. National parks and forests created in the early to mid-1900s served as sources to supply surrounding uplands with bears. Bears could not survive in southeastern uplands without oak mast. Bear reproductive and mortality rates in the region have been shown to be directly linked with acorn production. Masting is thought to be an adaptation by oaks to satiate predators during good acorn years, thus ensuring that the remainder will germinate. Acorn predator populations, however, cannot respond numerically to increased acorn production because the masting is episodic and synchronous. Consequently, bears have developed physiological, behavioral, and ecological adaptations to cope with such food shortages. Despite such adaptations, upland hardwood forests in the Southeast are of lower quality than they once were. The loss of the American chestnut (Castanea dentata), higrading, and soil degradation have markedly decreased the carrying capacity for bears and other wildlife. Other changes such as recent forest management practices, forest fragmentation, invasion by the gypsy moth (Lymantria dispar), and oak decline threaten to further degrade the capability of southeastern uplands to support bears.

  10. Fourth technical contractors' conference on peat

    SciTech Connect

    Not Available

    1981-01-01

    This conference reported the status of the US Department of Energy Peat Program. The papers presented dealt with peat dewatering, international peat programs, environmental and socio-economic factors, peat gasification, peat harvesting, and the state peat surveys for 14 states. Separate abstracts were prepared for the individual papers. (CKK)

  11. Spatial analysis of soil subsidence in peat meadow areas in Friesland in relation to land and water management, climate change, and adaptation.

    PubMed

    Brouns, Karlijn; Eikelboom, Tessa; Jansen, Peter C; Janssen, Ron; Kwakernaak, Cees; van den Akker, Jan J H; Verhoeven, Jos T A

    2015-02-01

    Dutch peatlands have been subsiding due to peat decomposition, shrinkage and compression, since their reclamation in the 11th century. Currently, subsidence amounts to 1-2 cm/year. Water management in these areas is complex and costly, greenhouse gases are being emitted, and surface water quality is relatively poor. Regional and local authorities and landowners responsible for peatland management have recognized these problems. In addition, the Netherlands Royal Meteorological Institute predicts higher temperatures and drier summers, which both are expected to enhance peat decomposition. Stakeholder workshops have been organized in three case study areas in the province of Friesland to exchange knowledge on subsidence and explore future subsidence rates and the effects of land use and management changes on subsidence rates. Subsidence rates were up to 3 cm/year in deeply drained parcels and increased when we included climate change in the modeling exercises. This means that the relatively thin peat layers in this province (ca 1 m) would shrink or even disappear by the end of the century when current practices continue. Adaptation measures were explored, such as extensive dairy farming and the production of new crops in wetter conditions, but little experience has been gained on best practices. The workshops have resulted in useful exchange of ideas on possible measures and their consequences for land use and water management in the three case study areas. The province and the regional water board will use the results to develop land use and water management policies for the next decades.

  12. Spatial Analysis of Soil Subsidence in Peat Meadow Areas in Friesland in Relation to Land and Water Management, Climate Change, and Adaptation

    NASA Astrophysics Data System (ADS)

    Brouns, Karlijn; Eikelboom, Tessa; Jansen, Peter C.; Janssen, Ron; Kwakernaak, Cees; van den Akker, Jan J. H.; Verhoeven, Jos T. A.

    2015-02-01

    Dutch peatlands have been subsiding due to peat decomposition, shrinkage and compression, since their reclamation in the 11th century. Currently, subsidence amounts to 1-2 cm/year. Water management in these areas is complex and costly, greenhouse gases are being emitted, and surface water quality is relatively poor. Regional and local authorities and landowners responsible for peatland management have recognized these problems. In addition, the Netherlands Royal Meteorological Institute predicts higher temperatures and drier summers, which both are expected to enhance peat decomposition. Stakeholder workshops have been organized in three case study areas in the province of Friesland to exchange knowledge on subsidence and explore future subsidence rates and the effects of land use and management changes on subsidence rates. Subsidence rates were up to 3 cm/year in deeply drained parcels and increased when we included climate change in the modeling exercises. This means that the relatively thin peat layers in this province (ca 1 m) would shrink or even disappear by the end of the century when current practices continue. Adaptation measures were explored, such as extensive dairy farming and the production of new crops in wetter conditions, but little experience has been gained on best practices. The workshops have resulted in useful exchange of ideas on possible measures and their consequences for land use and water management in the three case study areas. The province and the regional water board will use the results to develop land use and water management policies for the next decades.

  13. First Genome Data from Uncultured Upland Soil Cluster Alpha Methanotrophs Provide Further Evidence for a Close Phylogenetic Relationship to Methylocapsa acidiphila B2 and for High-Affinity Methanotrophy Involving Particulate Methane Monooxygenase

    PubMed Central

    Ricke, Peter; Kube, Michael; Nakagawa, Satoshi; Erkel, Christoph; Reinhardt, Richard; Liesack, Werner

    2005-01-01

    Members of upland soil cluster alpha (USCα) are assumed to be methanotrophic bacteria (MB) adapted to the trace level of atmospheric methane. So far, these MB have eluded all cultivation attempts. While the 16S rRNA phylogeny of USCα members is still not known, phylogenies constructed for the active-site polypeptide (encoded by pmoA) of particulate methane monooxygenase (pMMO) placed USCα next to the alphaproteobacterial Methylocapsa acidiphila B2. To assess whether the pmoA tree reflects the evolutionary identity of USCα, a 42-kb genomic contig of a USCα representative was obtained from acidic forest soil by screening a metagenomic fosmid library of 250,000 clones using pmoA-targeted PCR. For comparison, a 101-kb genomic contig from M. acidiphila was analyzed, including the pmo operon. The following three lines of evidence confirmed a close phylogenetic relationship between USCα and M. acidiphila: (i) tetranucleotide frequency patterns of 5-kb genomic subfragments, (ii) annotation and comparative analysis of the genomic fragments against all completely sequenced genomes available in public domain databases, and (iii) three single gene phylogenies constructed using the deduced amino acid sequences of a putative prephenate dehydratase, a staphylococcal-like nuclease, and a putative zinc metalloprotease. A comparative analysis of the pmo operons of USCα and M. acidiphila corroborated previous reports that both the pmo operon structure and the predicted secondary structure of deduced pMMO are highly conserved among all MB. PMID:16269789

  14. Chemical properties of peat used in balneology

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Hładoń, T.

    2009-04-01

    The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends

  15. Anthropogenic transformation of soils in the northern Ergeni Upland (studies at the first experimental plot of the Arshan'-Zelmen Research Station)

    NASA Astrophysics Data System (ADS)

    Novikova, A. F.; Konyushkova, M. V.

    2013-03-01

    The results of soil studies performed in 2005-2009 at the first experimental plot of the Arshan'-Zelmen Research Station of the Institute of Forest Science of the Russian Academy of Sciences are discussed. The post-reclamation state (about 55 years after reclamation) of the soils under forest shelterbelts and adjacent croplands in the rainfed agriculture was studied. The long-term efficiency of forest reclamation and crop-growing technologies developed in the 1950s by the Dokuchaev Soil Science Institute and the Institute of Forest to reclaim strongly saline solonetzic soils was proved. In 55 years, strongly saline sodic solonetzes with sulfate-chloride and chloride-sulfate composition of salts were replaced by agrogenic soils with new properties. Under forest shelterbelts, where deep (40-60 cm) plowing was performed, the soils were transformed into slightly saline solonetzic agrozems with slight soda salinization in the upper meter and with dealkalized plowed and turbated horizons (0-20(40) cm). Under the adjacent cropland subjected to the influence of the shelterbelts on the soil water regime, strongly saline solonetzes were transformed into solonchakous agrosolonetzes with slight soda salinization in the upper 50 cm. In the plow layer, the content of exchangeable sodium decreased to 4-12% of the sum of exchangeable cations. An increased alkalinity and the presence of soda were found in the middle-profile horizons of the anthropogenically transformed soils.

  16. Peat resource estimation in South Carolina. Second quarterly report (year 2)

    SciTech Connect

    Cohen, Dr., A. D.; Tisdale, M.; Andrejko, M.; Corvinus, D.; Knight, Richard A.; Olsen, N. K.; Vigerstad, Dr., T. J.

    1981-04-01

    The objectives of this program are to assess the magnitude of the resources and locate areas of highest potential for peat deposits in South Carolina. The energy potential of these peat resources is also being evaluated. This report presents the results of progress made during the last quarter in: assessing data and prioritizing peat areas to be surveyed; procurement of equipment and supplies; and preliminary peat resource assessment. A summary of the results of all new field surveys conducted during the quarter is included. Approximate locations of potential major peat deposits have been identified. Preliminary sampling studies indicate that Pigeon Bay may have the thickest and best quality peat in Berkeley County. Probes indicate peats up to 12 feet thick are located near the Black River in Georgetown County. Samples from areas designated as organic soils by the USDA were analyzed for moisture, organic, and ash content. (DMC)

  17. Inter-specific competition, but not different soil microbial communities, affects N chemical forms uptake by competing graminoids of upland grasslands.

    PubMed

    Medina-Roldán, Eduardo; Bardgett, Richard D

    2012-01-01

    Evidence that plants differ in their ability to take up both organic (ON) and inorganic (IN) forms of nitrogen (N) has increased ecologists' interest on resource-based plant competition. However, whether plant uptake of IN and ON responds to differences in soil microbial community composition and/or functioning has not yet been explored, despite soil microbes playing a key role in N cycling. Here, we report results from a competition experiment testing the hypothesis that soil microbial communities differing in metabolic activity as a result of long-term differences to grazing exposure could modify N uptake of Eriophorum vaginatum L. and Nardus stricta L. These graminoids co-occur on nutrient-poor, mountain grasslands where E. vaginatum decreases and N. stricta increases in response to long-term grazing. We inoculated sterilised soil with soil microbial communities from continuously grazed and ungrazed grasslands and planted soils with both E. vaginatum and N. stricta, and then tracked uptake of isotopically labelled NH(4) (+) (IN) and glycine (ON) into plant tissues. The metabolically different microbial communities had no effect on N uptake by either of the graminoids, which might suggest functional equivalence of soil microbes in their impacts on plant N uptake. Consistent with its dominance in soils with greater concentrations of ON relative to IN in the soluble N pool, Eriophorum vaginatum took up more glycine than N. stricta. Nardus stricta reduced the glycine proportion taken up by E. vaginatum, thus increasing niche overlap in N usage between these species. Local abundances of these species in mountain grasslands are principally controlled by grazing and soil moisture, although our results suggest that changes in the relative availability of ON to IN can also play a role. Our results also suggest that coexistence of these species in mountain grasslands is likely based on non-equilibrium mechanisms such as disturbance and/or soil heterogeneity.

  18. Substrate quality and nutrient availability influence CO2 production from tropical peat decomposition

    NASA Astrophysics Data System (ADS)

    Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.

    2015-12-01

    In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.

  19. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats.

    PubMed

    Treat, C C; Wollheim, W M; Varner, R K; Grandy, A S; Talbot, J; Frolking, S

    2014-08-01

    Controls on the fate of ~277 Pg of soil organic carbon (C) stored in permafrost peatland soils remain poorly understood despite the potential for a significant positive feedback to climate change. Our objective was to quantify the temperature, moisture, organic matter, and microbial controls on soil organic carbon (SOC) losses following permafrost thaw in peat soils across Alaska. We compared the carbon dioxide (CO2 ) and methane (CH4 ) emissions from peat samples collected at active layer and permafrost depths when incubated aerobically and anaerobically at -5, -0.5, +4, and +20 °C. Temperature had a strong, positive effect on C emissions; global warming potential (GWP) was >3× larger at 20 °C than at 4 °C. Anaerobic conditions significantly reduced CO2 emissions and GWP by 47% at 20 °C but did not have a significant effect at -0.5 °C. Net anaerobic CH4 production over 30 days was 7.1 ± 2.8 μg CH4 -C gC(-1) at 20 °C. Cumulative CO2 emissions were related to organic matter chemistry and best predicted by the relative abundance of polysaccharides and proteins (R(2) = 0.81) in SOC. Carbon emissions (CO2 -C + CH4 -C) from the active layer depth peat ranged from 77% larger to not significantly different than permafrost depths and varied depending on the peat type and peat decomposition stage rather than thermal state. Potential SOC losses with warming depend not only on the magnitude of temperature increase and hydrology but also organic matter quality, permafrost history, and vegetation dynamics, which will ultimately determine net radiative forcing due to permafrost thaw.

  20. The effects of ecological restoration on CO2 fluxes from a climatically marginal upland blanket bog

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Qassim, Suzane; Rowson, James; Worrall, Fred; Evans, Martin

    2013-04-01

    A legacy of gully incision, deposition of industrially-derived aerial pollutants, inappropriate management and wildfire has left large expanses of the topographic Bleaklow Plateau (Peak District National Park, England, UK) bare of vegetation and susceptible to massive erosion of the peat soils. The consequence of such degradation has been to decrease the capacity of the peatland on the plateau to provide important ecosystem services including; loss of net C sink function, discolouration of surface waters, mobilisation to surface waters of stored heavy metals and infilling of upland reservoirs with peat-derived sediment. In response to on-going and worsening degradation a programme of ecological restoration has been undertaken. Restoration methods include: seeding with a lawn grass mix; liming; fertilisation; slope stabilisation; and gully blocking. This talk will present data from a five-year, observational-study of CO2 fluxes from eight sites, with four sites sampling different restoration treatments and four sampling bare and least disturbed areas. The results of the analysis reveal that sites with revegetation alongside slope stabilisation were most productive and were the largest net (daylight hours) sinks of CO2. Unrestored, bare sites, while having relatively low gross fluxes of CO2 were the largest net sources of CO2. Revegetation without slope stabilisation took longer (~18 months) to show an impact on CO2 flux in comparison to the sites with slope stabilisation. Binary logistic regression indicated that a ten centimetre increase in water table depth decreases the odds of observing a net CO2 sink, on a given site, by up to 30%. Sites with slope stabilisation were between 5-8x more likely to be net CO2 sinks than the bare sites. Sites without slope stabilisation were only 2-2.3x more likely to be net CO2 sinks compared to the bare sites. The most important conclusion of this research is that revegetation appears to be effective at increasing the likelihood

  1. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils.

    PubMed

    Kwak, Jin-Hyeob; Chang, Scott X; Naeth, M Anne; Schaaf, Wolfgang

    2015-01-01

    Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining.

  2. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    USGS Publications Warehouse

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  3. Persistent high temperature and low precipitation reduce peat carbon accumulation.

    PubMed

    Bragazza, Luca; Buttler, Alexandre; Robroek, Bjorn J M; Albrecht, Remy; Zaccone, Claudio; Jassey, Vincent E J; Signarbieux, Constant

    2016-12-01

    Extreme climate events are predicted to become more frequent and intense. Their ecological impacts, particularly on carbon cycling, can differ in relation to ecosystem sensitivity. Peatlands, being characterized by peat accumulation under waterlogged conditions, can be particularly sensitive to climate extremes if the climate event increases soil oxygenation. However, a mechanistic understanding of peatland responses to persistent climate extremes is still lacking, particularly in terms of aboveground-belowground feedback. Here, we present the results of a transplantation experiment of peat mesocosms from high to low altitude in order to simulate, during 3 years, a mean annual temperature c. 5 °C higher and a mean annual precipitation c. 60% lower. Specifically, we aim at understanding the intensity of changes for a set of biogeochemical processes and their feedback on carbon accumulation. In the transplanted mesocosms, plant productivity showed a species-specific response depending on plant growth forms, with a significant decrease (c. 60%) in peat moss productivity. Soil respiration almost doubled and Q10 halved in the transplanted mesocosms in combination with an increase in activity of soil enzymes. Spectroscopic characterization of peat chemistry in the transplanted mesocosms confirmed the deepening of soil oxygenation which, in turn, stimulated microbial decomposition. After 3 years, soil carbon stock increased only in the control mesocosms whereas a reduction in mean annual carbon accumulation of c. 30% was observed in the transplanted mesocosms. Based on the above information, a structural equation model was built to provide a mechanistic understanding of the causal connections between peat moisture, vegetation response, soil respiration and carbon accumulation. This study identifies, in the feedback between plant and microbial responses, the primary pathways explaining the reduction in carbon accumulation in response to recurring climate extremes in

  4. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis.

    PubMed

    Hales, B A; Edwards, C; Ritchie, D A; Hall, G; Pickup, R W; Saunders, J R

    1996-02-01

    The presence of methanogenic bacteria was assessed in peat and soil cores taken from upland moors. The sampling area was largely covered by blanket bog peat together with small areas of red-brown limestone and peaty gley. A 30-cm-deep core of each soil type was taken, and DNA was extracted from 5-cm transverse sections. Purified DNA was subjected to PCR amplification with primers IAf and 1100Ar, which specifically amplify 1.1 kb of the archaeal 16S rRNA gene, and ME1 and ME2, which were designed to amplify a 0.75-kb region of the alpha-subunit gene for methyl coenzyme M reductase (MCR). Amplification with both primer pairs was obtained only with DNA extracted from the two deepest sections of the blanket bog peat core. This is consistent with the notion that anaerobiosis is required for activity and survival of the methanogen population. PCR products from both amplifications were cloned, and the resulting transformants were screened with specific oligonucleotide probes internal to the MCR or archaeal 16S rRNA PCR product. Plasmid DNA was extracted from probe-positive clones of both types and the insert was sequenced. The DNA sequences of 8 MCR clones were identical, as were those of 16 of the 17 16S rRNA clones. One clone showed marked variation from the remainder in specific regions of the sequence. From a comparison of these two different 16S rRNA sequences, an oligonucleotide was synthesized that was 100% homologous to a sequence region of the first 16 clones but had six mismatches with the variant. This probe was used to screen primary populations of PCR clones, and all of those that were probe negative were checked for the presence of inserts, which were then sequenced. By using this strategy, further novel methanogen 16S rRNA variants were identified and analyzed. The sequences recovered from the peat formed two clusters on the end of long branches within the methanogen radiation that are distinct from each other. These cannot be placed directly with sequences

  5. Alfred P. Dachnowski and the scientific study of peats

    USGS Publications Warehouse

    Landa, E.R.; Cohen, K.M.

    2011-01-01

    Botanist Alfred Paul Dachnowski (1875–1949) was a major contributor to efforts at mapping organic soils in the United States during the early 20th century. He began his career at The Ohio State University, and spent most of his professional life at the U.S. Department of Agriculture in Washington, DC. His work spanned a diversity of topics, including bog ecology and the ecosystem services provided by wetlands, the mapping and chemical characterization of peat, and the commercial applications of peat. We present a biography and overview of his work. Dachnowski is best known today for the peat sampler that bears his name. The details of its operation are described here, and its place in modern peat studies is discussed.

  6. The peats of Costa Rica

    SciTech Connect

    Thayer, G.R.

    1991-01-01

    Peat has been identified in Cost Rica, and an economic analysis of energy applications for peat has been done. About 1000 km{sup 2} of Cost Rica has the potential of being covered by peat. The Talamanca Mountains and the northeastern plains contain most of the Costa Rican peat. Specific bogs have been identified by the Medio Queso River in north-central Costa Rica and near El Cairo, Moin, and the Limon airport in northeastern Costa Rica. The Medio Queso bog, which is supplying peat for use as a carrier for nitrogen-fixing bacteria, and the El Cairo bog, which has been identified as a source of horticultural peat for nearby ornamental plant farms, are of special interest. The economics of three energy applications of peat were examined -- as a fuel in large boilers, as a fuel in small boilers, and as an oil substitute in a cement plant. A facility using coal would have the same total costs as one using peat if coal prices were $45 and $30 per metric ton (used for large boilers and a cement plant, respectively). A facility using Bunker C or diesel would have the same total cost as one using peat if oil prices were $0.11, $0.08, and $0.06 per liter (used for large boilers, small boilers, and a cement plant, respectively). In all three cases, the costs for peat were comparable or less than the costs for coal and oil at 1987 prices. 6 refs., 8 figs.

  7. Development of a Site Comparison Index: Southeast Upland Forests

    DTIC Science & Technology

    2007-05-01

    ER D C/ CE R L TR -0 7 -1 2 Strategic Environmental Research and Development Program Development of a Site Comparison Index : Southeast...Development of a Site Comparison Index : Southeast Upland Forests Anthony J. Krzysik Prescott College 220 Grove Avenue Prescott, AZ 86301 Harold E...jective site comparison index (SCI), a combination of metrics: soil A- horizon depth, soil compaction, ground cover, canopy cover, basal area, remote

  8. Strength Matters: Resisting Erosion Across Upland Landscapes

    NASA Astrophysics Data System (ADS)

    Heimsath, A. M.

    2012-12-01

    Soil-covered upland landscapes comprise a critical part of the habitable world and our understanding of their evolution as a function of different climatic, tectonic, and geologic regimes is important across a wide range of disciplines. Erosion laws, which help direct our study and drive our models of Earth surface processes are based on little field data. Soil production and transport play essential roles in controlling the spatial variation of soil depth and therefore hillslope hydrological processes, vegetation, and soil biological activity. Field-based confirmation of the hypothesized relationship between soil thickness and soil production is recent, however, and here we quantify the first direct physical explanation of variable soil production across landscapes. We report clear empirical linkages between the mechanical strength of the parent material (erodability), soil production rates determined from the same material, and the routing of water on hillslopes. Specifically, soil production rates determined from in situ produced 10Be and 26Al decrease exponentially with increasing shear strength of parent material across three very different field sites, all underlain by granitic bedrock: The Point Reyes Peninsular and The San Gabriel Mountains in California and the Nunnock River, Australia field site used for extensive previous work. At the same field sites, we use fallout radionuclide profiles to show how the flux of water across the soil-saprolite boundary changes significantly along the hillslope profile. Specifically, we quantify the transition from creep dominated bioturbation on the upper parts of the hillslopes to overland flow dominated surficial erosion towards the axis of the unchannelled swales. Our field-based data, collected across a full range of erosion and soil production rates and topographic settings, help explain more clearly the linkages between biota, weathering, hillslope hydrology, and the evolution of the Earth's surface.

  9. Characterisation of VOC, SVOC, and PM emissions from peat burnt in laboratory simulations

    EPA Science Inventory

    Peat, or organic soil, is a vast store of organic carbon, widely distributed from polar temperate to equatorial regions. Drainage for agriculture and drought are drying vast areas of peat, exposing it to increasing fire risk, which may be exacerbated by climate change. This has ...

  10. Isotope evidence for N2-fixation in Sphagnum peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Jackova, Ivana; Buzek, Frantisek; Stepanova, Marketa; Veselovsky, Frantisek; Curik, Jan; Prechova, Eva

    2016-04-01

    Waterlogged organic soils store as much as 30 % of the world's soil carbon (C), and 15 % of the world's soil nitrogen (N). In the era of climate change, wetlands are vulnerable to increasing temperatures and prolonged periods of low rainfall. Higher rates of microbial processes and/or changing availability of oxygen may lead to peat thinning and elevated emissions of greenhouse gases (mostly CO2, but also CH4 and N2O). Biogeochemical cycling of C and N in peat bogs is coupled. Under low levels of pollution by reactive nitrogen (NO3-, NH4+), increasing N inputs may positively affect C storage in peat. Recent studies in North America and Scandinavia have suggested that pristine bogs are characterized by significant rates of microbial N2 fixation that augments C storage in the peat substrate. We present a nitrogen isotope study aimed at corroborating these findings. We conducted an isotope inventory of N fluxes and pools at two Sphagnum-dominated ombrotrophic peat bogs in the Czech Republic (Central Europe). For the first time, we present a time-series of del15N values of atmospheric input at the same locations as del15N values of living Sphagnum and peat. The mean del15N values systematically increased in the order: input NH4+ (-10.0 ‰) < input NO3- (-7.9 ‰) < peat porewater (-5.6 ‰) < Sphagnum (-5.0 ‰) < shallow peat (-4.2 ‰) < deep peat (-2.2 ‰) < runoff (-1.4 ‰) < porewater N2O (1.4 ‰). Importantly, N of Sphagnum was isotopically heavier than N of the atmospheric input (p < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N from atmospheric N2 (del15N N2 = 0 ‰). We conlude that the N isotope systematics at the two Czech sites is consistent with the concept of significant N2 fixation

  11. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.

    PubMed

    Min, Jee-Eun; Kim, Meejeong; Pardue, John H; Park, Jae-Woo

    2008-02-01

    The feasibility of using zero-valent iron (ZVI) and peat mixture as in situ barriers for contaminated sediments and groundwater was investigated. Trichloroethylene (TCE) and nitrate (NO(3)(-)), redox sensitive contaminants were reduced by ZVI and peat soil mixture under anaerobic condition. Peat was used to support the sorption of TCE, microbial activity for biodegradation of TCE and denitrification while TCE and nitrate were reduced by ZVI. Decreases in TCE concentrations were mainly due to ZVI, while peat supported denitrifying microbes and further affected the sorption of TCE. Due to the competition of electrons, nitrate reduction was inhibited by TCE, while TCE reduction was not affected by nitrate. From the results of peat and sterilized peat, it can be concluded that peat was involved in both dechlorination and denitrification but biological reduction of TCE was negligible compared to that of nitrate. The results from hydrogen and methane gas analyses confirmed that hydrogen utilization by microbes and methanogenic process had occurred in the ZVI-peat system. Even though effect of the peat on TCE reduction were quantitatively small, ZVI and peat contributed to the removal of TCE and nitrate independently. The 16S rRNA analysis revealed that viable bacterial diversity was narrow and the most frequently observed genera were Bacillus and Staphylococcus spp.

  12. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity--description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room.

    PubMed

    Behrendt, Undine; Schumann, Peter; Stieglmeier, Michaela; Pukall, Rüdiger; Augustin, Jürgen; Spröer, Cathrin; Schwendner, Petra; Moissl-Eichinger, Christine; Ulrich, Andreas

    2010-10-01

    In the course of studying the influence of N-fertilization on N(2) and N(2)O flux rates in relation to soil bacterial community composition of a long-term fertilization experiment in fen peat grassland, a strain group was isolated that was related to a strain isolated from a spacecraft assembly clean room during diversity studies of microorganisms, which withstood cleaning and bioburden reduction strategies. Both the fen soil isolates and the clean room strain revealed versatile physiological capacities in N-transformation processes by performing heterotrophic nitrification, respiratory ammonification and denitrification activity. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the investigated isolates belonged to the genus Paenibacillus. Sequence similarities lower than 97% in comparison to established species indicated a separate species position. Except for the peptidoglycan type (A4alpha L-Lys-D-Asp), chemotaxonomic features of the isolates matched the genus description, but differences in several physiological characteristics separated them from related species and supported their novel species status. Despite a high 16S rRNA gene sequence similarity between the clean room isolate ES_MS17(T) and the representative fen soil isolate N3/975(T), DNA-DNA hybridization studies revealed genetic differences at the species level. These differences were substantiated by MALDI-TOF MS analysis, ribotyping and several distinct physiological characteristics. On the basis of these results, it was concluded that the fen soil isolates and the clean room isolate ES_MS17(T) represented two novel species for which the names Paenibacillus uliginis sp. nov. (type strain N3/975(T)=DSM 21861(T)=LMG 24790(T)) and Paenibacillus purispatii sp. nov. (type strain ES_MS17(T)=DSM 22991(T)=CIP 110057(T)) are proposed.

  13. Biochemical processes of oligotrophic peat deposits of Vasyugan Mire

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Sergeeva, M. A.

    2009-04-01

    spores are observed in all deposit layers, mycelium of mushrooms deepens into the peat deposit (to 2 meters) within the limits of aerobic (meter) zone and only in particular months of dry years. The existence of seasonal dynamics of eukaryotic cells, and also capability of yeast and other groups of micromycetes for growth, testifies about vital activity of a number of eukaryotic cells at a depth of 2 meters. Researched peat deposits are biochemically active along the whole profile. But they are different in a microflora number of individual physiological groups either in items of the landscape, or in deposit depth. The largest quantity of aerobic cellulose-fermenting microorganisms is marked during dry years. Anaerobic cellulose-fermenting microorganisms dominate during wet years. The quantity of microbe biomass increases in bottom lifts of peat deposits. This fact testifies about viable condition of microbe complex at depth. The formation process of carbon dioxide in peat deposits of Vasyugan Mire actively occurs during dry years and is defined by hydrothermic conditions of a meter layer of peat deposit. The intensity of CO2 isolation for certain correlates with the temperature in horizon of 0 - 50 sm. and with bog waters level. The study of gas composition for the three years showed that the largest concentration of carbon dioxide in peat soils is marked along the whole profile during a dryer year (0.08 - 2.65 millimole/l), increasing other years' level in about 1.5 0 2 times. Emission of carbon dioxide in peat

  14. The legacy of wetland drainage on the remaining peat in the Sacramento San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, J.Z.; De Fontaine, C. S.; Deverel, S.J.

    2009-01-01

    Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 5580 of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 29005700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface. ?? 2009 The Society of Wetland Scientists.

  15. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Christian S. de Fontaine,; Steven J. Deverel,

    2009-01-01

    Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to landsurface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900-5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.

  16. Quantitative trait locus analysis of Verticillium wilt resistance in an introgressed recombinant inbred population of Upland cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt (VW) of Upland cotton (Gossypium hirsutum L.) is caused by the soil-borne fungal pathogen Verticillium dahlia Kleb. The availability of VW-resistant cultivars is vital for control of this economically important disease, but there is a paucity of Upland cotton breeding lines and cul...

  17. 7 CFR 1205.13 - Upland cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Upland cotton. 1205.13 Section 1205.13 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Procedures for Conduct of Sign-up Period Definitions § 1205.13 Upland cotton. The term Upland cotton...

  18. 7 CFR 1205.13 - Upland cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Upland cotton. 1205.13 Section 1205.13 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Procedures for Conduct of Sign-up Period Definitions § 1205.13 Upland cotton. The term Upland cotton...

  19. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all...

  20. 7 CFR 1205.13 - Upland cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Upland cotton. 1205.13 Section 1205.13 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Procedures for Conduct of Sign-up Period Definitions § 1205.13 Upland cotton. The term Upland cotton...

  1. 7 CFR 1205.13 - Upland cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Upland cotton. 1205.13 Section 1205.13 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Procedures for Conduct of Sign-up Period Definitions § 1205.13 Upland cotton. The term Upland cotton...

  2. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all...

  3. 7 CFR 1205.13 - Upland cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Upland cotton. 1205.13 Section 1205.13 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Procedures for Conduct of Sign-up Period Definitions § 1205.13 Upland cotton. The term Upland cotton...

  4. 77 FR 19925 - Upland Cotton Base Quality

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Corporation 7 CFR Part 1427 RIN 0560-AI16 Upland Cotton Base Quality AGENCY: Commodity Credit Corporation and... Commodity Credit Corporation (CCC) upland cotton marketing assistance loan (MAL) regulations to revise... further specification. CCC uses base quality to calculate upland cotton loan rates, Adjusted World...

  5. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all...

  6. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all...

  7. 7 CFR 1205.305 - Upland cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all...

  8. Carbon stocks and soil sequestration rates of riverine mangroves and freshwater wetlands

    NASA Astrophysics Data System (ADS)

    Adame, M. F.; Santini, N. S.; Tovilla, C.; Vázquez-Lule, A.; Castro, L.

    2015-01-01

    Deforestation and degradation of wetlands are important causes of carbon dioxide emissions to the atmosphere. Accurate measurements of carbon (C) stocks and sequestration rates are needed for incorporating wetlands into conservation and restoration programs with the aim for preventing carbon emissions. Here, we assessed whole ecosystem C stocks (trees, soil and downed wood) and soil N stocks of riverine wetlands (mangroves, marshes and peat swamps) within La Encrucijada Biosphere Reserve in the Pacific coast of Mexico. We also estimated soil C sequestration rates of mangroves on the basis of soil accumulation. We hypothesized that riverine wetlands have large C stocks, and that upland mangroves have larger C and soil N stocks compared to lowland mangroves. Riverine wetlands had large C stocks with a mean of 784.5 ± 73.5 Mg C ha-1 for mangroves, 722.2 ± 83.4 Mg C ha-1 for peat swamps, and 336.5 ± 38.3 Mg C ha-1 for marshes. C stocks and soil N stocks were in general larger for upland (833.0 ± 7.2 Mg C ha-1; 26.4 ± 0.5 Mg N ha-1) compared to lowland mangroves (659.5 ± 18.6 Mg C ha-1; 13.8 ± 2.0 Mg N ha-1). Soil C sequestration values were 1.3 ± 0.2 Mg C ha-1 yr-1. The Reserve stores 32.5 Mtons of C or 119.3 Mtons of CO2, with mangroves sequestering (via soil accumulation) 27 762 ± 0.5 Mg C ha-1 every year.

  9. 46 CFR 148.290 - Peat moss.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Peat moss. 148.290 Section 148.290 Shipping COAST GUARD... SPECIAL HANDLING Special Requirements for Certain Materials § 148.290 Peat moss. (a) Before shipment, peat... handling or coming into contact with peat moss must wear gloves, a dust mask, and goggles....

  10. 46 CFR 148.290 - Peat moss.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Peat moss. 148.290 Section 148.290 Shipping COAST GUARD... SPECIAL HANDLING Special Requirements for Certain Materials § 148.290 Peat moss. (a) Before shipment, peat... handling or coming into contact with peat moss must wear gloves, a dust mask, and goggles....

  11. 46 CFR 148.290 - Peat moss.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Peat moss. 148.290 Section 148.290 Shipping COAST GUARD... SPECIAL HANDLING Special Requirements for Certain Materials § 148.290 Peat moss. (a) Before shipment, peat... handling or coming into contact with peat moss must wear gloves, a dust mask, and goggles....

  12. 46 CFR 148.290 - Peat moss.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Peat moss. 148.290 Section 148.290 Shipping COAST GUARD... SPECIAL HANDLING Special Requirements for Certain Materials § 148.290 Peat moss. (a) Before shipment, peat... handling or coming into contact with peat moss must wear gloves, a dust mask, and goggles....

  13. Second technical contractors' conference on peat

    SciTech Connect

    Not Available

    1980-01-01

    This conference reported the status of the US Department of Energy Peat Program. The program includes peat resource surveys of eleven states, peat gasification process and equipment studies, dewatering studies, and environmental and socioeconomic factors in the development of peat technology. Separate abstracts were prepared for selected papers. (CKK)

  14. Modelling uncertainty of carbon stocks changes in peats.

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Gimona, Alessandro; Aalders, Inge; Morrice, Jane; Hough, Rupert

    2015-04-01

    Global warming might change the hydrology of upland blanket peats in Scotland with increased risk of release of the stored carbon. It is therefore important to model the loss of carbon in peat areas with estimation of the damage potential. The presented approach has the potential to provide important information for the assessment of carbon stocks over large areas, but also in case of changes of land use, such as construction of wind farms. The provided spatial uncertainty is important for including the results in further environmental and climate-change models and for decision making in order to provide alternatives and prioritisation. In this study, main peat properties (i.e. depth, water content, bulk density and carbon content) were modelled using a hybrid GAM-geostatistical 3D approach that allows full uncertainty propagation. The approach used involves 1) modelling the trend with full 3D spatial correlation, i.e., exploiting the values of the neighbouring pixels in 3D-space, and 2) 3D kriging as spatial component. The uncertainty of the approach is assessed with iterations in both steps of the process. We studied the difference between local estimates obtained with the present method and local estimates obtained assuming the global average value across the test area for Carbon content and bulk density. To this end, virtual pits with a surface area of 30x30 m were excavated for the whole peat depth at randomly selected locations. Calculated uncertainty was used to estimate credible intervals of C loss. In this case the estimates obtained with the proposed approach are higher that what would be obtained by assuming spatial homogeneity and using just average values across the area. This has implications for environmental decision making and planning as, in this case, it is likely that more carbon would be lost than estimated using traditional approaches.

  15. Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration.

    PubMed

    Zak, Dominik; Wagner, Carola; Payer, Brian; Augustin, Jürgen; Gelbrecht, Jörg

    2010-07-01

    Rewetting of drained fens is necessary to stop further soil degradation and to reestablish important ecological functions. However, substantial changes of peat characteristics in the upper soil layers, due to drainage and land use, could counteract their recovery as nutrient-poor systems for an unknown period. We assessed the importance of altered peat properties, such as the degree of peat decomposition and the amount of redox-sensitive phosphorus (P) compounds, for P mobilization in different degraded fens. An experimental design involving 63 intact peat cores from fens with varying drainage and land-use histories was developed to quantify the mobilization of P, as well as that of iron (Fe), ammonium, carbon dioxide, and methane, all indicators of organic-matter decomposition and/or P-releasing processes. We found that net P release rates in peat cores with highly decomposed peat (range: 0.1-52.3 mg P x m(-2) x d(-1)) were significantly correlated to the amount of P bound to redox-sensitive compounds and the molar Fe:P as well as Al:P ratios of peat. We conclude that the following general rules apply for P mobilization in rewetted fens: (1) elevated levels of P release rates and P concentrations in pore water up to three orders of magnitude larger than under natural reference conditions can only be expected for rewetted fens whose surface soil layers consist of highly decomposed peat; (2) peat characteristics, such as the amount of P bound to redox-sensitive Fe(III) compounds (positive correlation) and molar ratios of Fe:P or Al:P (negative correlations), explain the high range of P release rates; and (3) a critical P export to adjacent lakes or rivers can only be expected if molar Fe:P ratios of highly decomposed peat are less than 10.

  16. Age Determination of the Remaining Peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Knifong, Donna L.

    2007-01-01

    Introduction The Sacramento-San Joaquin Delta of California was once a 1,400 square kilometer (km2) tidal marsh, which contained a vast layer of peat ranging up to 15 meters (m) thick (Atwater and Belknap, 1980). Because of its favorable climate and highly fertile peat soils, the majority of the Delta was drained and reclaimed for agriculture during the late 1800s and early 1900s. Drainage of the peat soils changed the conditions in the surface layers of peat from anaerobic (having no free oxygen present) to aerobic (exposed to the atmosphere). This change in conditions greatly increased the decomposition rate of the peat, which consists largely of organic (plant) matter. Thus began the process of land-surface subsidence, which initially was a result of peat shrinkage and compaction, and later largely was a result of oxidation by which organic carbon in the peat essentially vaporized to carbon dioxide (Deverel and others, 1998; Ingebritsen and Ikehara, 1999). Because of subsidence, the land-surface elevation on farmed islands in the Delta has decreased from a few meters to as much as 8 m below local mean sea level (California Department of Water Resources, 1995; Steve Deverel, Hydrofocus, Inc., written commun., 2007). The USGS, in collaboration with the University of California at Davis, and Hydrofocus Inc. of Davis, California, has been studying the formation of the Delta and the impact of wetland reclamation on the peat column as part of a project called Rates and Evolution of Peat Accretion through Time (REPEAT). The purpose of this report is to provide results on the age of the remaining peat soils on four farmed islands in the Delta.

  17. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation.

  18. Peat as an energy alternative

    SciTech Connect

    Punwani, D.V.

    1980-07-01

    The importance of developing alternative energy sources to augment supplies of fossil fuels is growing all over the world. Coal, oil shale, tar sands, biomass, solar, geothermal, nuclear, and hydroelectric power have received considerable attention as alternative energy sources. One large energy resource, however, has received little attention until recently. That resource is peat. Although peat is used as an energy source in some countries such as Russia, Ireland, and Finland, it is virtually unexploited in many countries including the United States. This paper provides an understanding of peat: its varieties, abundance, and distribution; its value as an energy alternative; its current and future role as an energy alternative; and the environmental and socioeconomic impacts of large-scale peat utilization.

  19. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  20. What controls the oxidative ratio of UK peats? A multi-site study of elemental CHNO concentrations in peat cores

    NASA Astrophysics Data System (ADS)

    Clay, Gareth; Worrall, Fred; Masiello, Carrie

    2013-04-01

    The oxidative ratio (OR) is the amount of CO2 sequestered in the terrestrial biosphere for each mol of O2 produced. The OR governs the effectiveness of a terrestrial biome to mitigate the impact of anthropogenic CO2 emissions and it has been used to calculate the balance of terrestrial and oceanic carbon sinks across the globe. However, few studies have investigated the controls of the variability in OR. What factors affect OR - climate? Soil type? Vegetation type? N deposition? Land use? Land use change? Small shifts in OR could have important implications in the global partitioning of CO2 between the atmosphere, biosphere, and oceans. This study looks at peat soils from a series of sites representing a climatic transect across the UK. Duplicate peat cores were taken, along with samples of above-ground vegetation and litter, from sites in northern Scotland (Forsinard), southern Scotland (Auchencorth), northern England (Moor House; Thorne Moor) through the Welsh borders (Whixhall Moss) and Somerset levels (Westhay Moor) to Dartmoor and Bodmin Moor in the south west of England. Sub-samples of the cores were analysed for their CHNO concentrations using a Costech ECS 4010 Elemental combustion system. Using the method of Masiello et al. (2008), OR values could be calculated from these elemental concentrations. Results show that OR values of UK peats varied between 0.82 and 1.27 with a median value of 1.08 which is within the range of world soils. There were significant differences in OR of the peat between sites with the data falling into two broad groupings - Group 1: Forsinard, Auchencorth, Dartmoor and Bodmin Moor; Group 2: Moor House, Thorne Moor, Westhay Moor, Whixhall Moss. Whilst there were significant changes (p < 0.05) in elemental ratios with increasing peat depth (increasing C:N ratio and decreasing O:C ratio) there was no significant difference overall in OR with depth. This paper will explore some of the possible controlling factors on these ratios. Local

  1. Understanding fine sediment and phosphorous delivery in upland catchments

    NASA Astrophysics Data System (ADS)

    Perks, M. T.; Reaney, S. M.

    2013-12-01

    The uplands of UK are heavily impacted by land management including; farming and forestry operations, moorland burning, peat extraction, metal mining, artificial drainage and channelisation. It has been demonstrated that such land management activity may modify hillslope processes, resulting in enhanced runoff generation and changing the spatial distribution and magnitude of erosion. Resultantly, few upland river systems of the UK are operating in a natural state, with land management activity often resulting in increased fluxes of suspended sediment (< 2 mm) and associated pollutants (such as phosphorous). Most recent Environment Agency (EA) data reveals that 60% of monitored water bodies within upland areas of the UK are currently at risk of failing the Water Framework Directive (WFD) due to poor ecological status. In order to prevent the continual degradation of many upland catchments, riverine systems and their diverse ecosystems, a range of measures to control diffuse pollution will need to be implemented. Future mitigation options and measures in the UK may be tested and targeted through the EA's catchment pilot scheme; DEFRA's Demonstration Test Catchment (DTC) programmes and through the catchment restoration fund. However, restoring the physical and biological processes of past conditions in inherently sensitive upland environments is extremely challenging requiring the development of a solid evidence base to determine the effectiveness of resource allocation and to enable reliable and transparent decisions to be made about future catchment operations. Such evidence is rarely collected, with post-implementation assessments often neglected. This paper presents research conducted in the Morland sub-catchment of the River Eden within Cumbria; UK. 80% of this headwater catchment is in upland areas and is dominated by improved grassland and rough grazing. The catchment is heavily instrumented with a range of hydro-meteorological equipment. A high-tech monitoring

  2. Control of Submarine Groundwater Flow and Chemistry by Onshore and Offshore Buried Peat Along a Developed Long Island Shoreline

    NASA Astrophysics Data System (ADS)

    Bratton, J. F.; Kroeger, K. D.; Crusius, J.; Schubert, C.; Paulsen, R.; Green, A. C.; Wanlass, J.; Baldwin, S.; Abbene, I. J.; Young, C.

    2010-12-01

    Submarine groundwater discharge (SGD) along the north shore of Long Island’s Great South Bay estuary was investigated to characterize and quantify nutrient delivery to the bay from groundwater. Recent field activities included onshore and offshore piezometer and well sampling, sediment coring, stationary resistivity profiling, and surveys of in situ porewater conductivity. Groundwater and surface water were sampled for analysis of nutrients, water quality parameters (conductivity, temperature, pH, ORP, dissolved oxygen), and age tracers. Results from detailed study at Patchogue Bay sites showed shallow plumes of low-salinity groundwater (salinity <3.5) located within 0.5 m of the estuary floor that decreased in thickness along one transect from approximately 4.5 m near shore to <1 m at 90 m offshore. Sediment cores collected near shore recovered buried submarine peat layers up to 49 cm thick that isolated low-salinity (salinity = 2-4) porewater below from brackish porewater above. In situ measurements of porewater conductivity and temperature in the upper 0.7 m of the sediment at one site verified the presence and extent of the peat layer there, as well as the isolation of terrestrially-derived groundwater beneath the layer extending offshore about 100 meters. Stationary electrical resistivity measurements also revealed the presence of high-resistivity (low-salinity) groundwater beneath the peat layer and more conductive porewater above the peat layer. Peat was found adjacent to existing or filled tidal creeks but was absent in cores collected offshore of the ends of peninsulas between tidal creeks. Much of the natural shoreline of the bay was developed in the 1950s and 1960s after construction of bulkheads and filling of tidal marshes with dredged or dumped fill material. Recharge of groundwater through buried peats and organic-rich soils in developed filled areas results in adjacent submarine groundwater plumes that are anoxic and ammonium-rich (average = 255

  3. Impacts of forestry planting on primary production in upland lakes from north-west Ireland.

    PubMed

    Stevenson, Mark A; McGowan, Suzanne; Anderson, N John; Foy, Robert H; Leavitt, Peter R; McElarney, Yvonne R; Engstrom, Daniel R; Pla-Rabés, Sergi

    2016-04-01

    Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north-west of Ireland subject to different extents of forest plantation cover (4-64% of catchment area). (210)Pb-dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ(13)C) and nitrogen (δ(15)N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two- to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39-116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β-carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance.

  4. Properties and structure of peat humic acids depending on humification and precursor biota in bogs

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2013-04-01

    Humic substances form most of the organic component of soil, peat and natural waters, but their structure and properties very much differs depending on their source. The aim of this study is to characterize humic acids from raised bog peat profiles to evaluate the homogeneity of humic acids isolated from the bog bodies and study peat humification impact on properties of humic acids. A major impact on the structure of peat humic acids have raised bog biota (dominantly represented by bryophytes of different origin) void of lignin. For characterization of peat humic acids their elemental (CHNOS), functional (-COOH, phenolic OH) analysis, spectroscopic characterization (UV, fluorescence, FTIR, 1H NMR, CP/MAS 13C NMR, ESR) and degradation studies (Py-GC/MS) were done. Peat humic acids (HA) have an intermediate position between the living organic matter and coal organic matter and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, but thermodynamically more stable aromatic and polyaromatic structures emerge. Comparatively, the studied peat HAs are at the start of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups changes depending on the depth of peat from which HAs have been isolated: and carboxylic acidity is increasing with depth of peat location and the humification degree. The ability to influence the surface tension of peat humic acids isolated from a well-characterized bog profile demonstrates dependence on age and humification degree. With increase of the humification degree and age of humic acids, their molecular complexity and ability to influence surface tension decreases; even so, the impact of the biological precursor (peat-forming bryophytes and plants) can be identified.

  5. Revegetation processes and environmental conditions in abandoned peat production fields in Estonia

    NASA Astrophysics Data System (ADS)

    Orru, M.; Orru, H.

    2009-04-01

    As a result of peat extraction, peat production has been finished in Estonia at different times in 154 peat production areas and 9,500 ha (~1% of peatlands) are abandoned, although the peat reserves are not exhausted yet; besides, several areas are not properly recultivated. In addition 12,000 ha of fens (oligotrophic peat layers) are drained and used as grasslands. If the abandoned and non-recultivated peat production areas are not vegetated, their CO2 emission is considerable and peat mineralises in such areas. The aim of the study was to find out specific ecological and geological factors, which affect recovering of peatlands and influence the recultivation. During the revision the amount and quality of the remained reserves, as well as the state of water regime, drainage network and revegetation was assessed in all 154 abandoned peat production areas. The study showed that the state of them is very variable. Some of them are covered with forest, prevailingly with birches at former drainage ditches, later supplemented by pine trees. In the others predominate grasses among plants, and various species of moss (Cladonia rei, Bryum caespiticum, Sphagnum ripariuma, Sphagnum squarrosum) occur as well. Besides, some abandoned areas are completely overgrown with cotton grass. Open abandoned peat areas, which are not covered by vegetation, are much rarer. We found out, that water regime among the factors plays most important role. Moreover abandoned peat production fields, where the environmental conditions have changed - are appropriate for growth of several moss species, which cannot inhabit the areas already occupied by other species. The most interesting discovers were: second growing site of Polia elongata in West-Estonia and Ephemerum serratum, last found in Estonia in the middle of the 19th century, was identified in central Estonia. Also Campylopus introflexus, what was unknown in Estonia. However, the changes in environmental conditions influence the peat layers

  6. Evapotranspiration of tropical peat swamp forests.

    PubMed

    Hirano, Takashi; Kusin, Kitso; Limin, Suwido; Osaki, Mitsuru

    2015-05-01

    In Southeast Asia, peatland is widely distributed and has accumulated a massive amount of soil carbon, coexisting with peat swamp forest (PSF). The peatland, however, has been rapidly degraded by deforestation, fires, and drainage for the last two decades. Such disturbances change hydrological conditions, typically groundwater level (GWL), and accelerate oxidative peat decomposition. Evapotranspiration (ET) is a major determinant of GWL, whereas information on the ET of PSF is limited. Therefore, we measured ET using the eddy covariance technique for 4-6 years between 2002 and 2009, including El Niño and La Niña events, at three sites in Central Kalimantan, Indonesia. The sites were different in disturbance degree: a PSF with little drainage (UF), a heavily drained PSF (DF), and a drained burnt ex-PSF (DB); GWL was significantly lowered at DF, especially in the dry season. The ET showed a clear seasonal variation with a peak in the mid-dry season and a large decrease in the late dry season, mainly following seasonal variation in net radiation (Rn ). The Rn drastically decreased with dense smoke from peat fires in the late dry season. Annual ET forced to close energy balance for 4 years was 1636 ± 53, 1553 ± 117, and 1374 ± 75 mm yr(-1) (mean ± 1 standard deviation), respectively, at UF, DF, and DB. The undrained PSF (UF) had high and rather stable annual ET, independently of El Niño and La Niña events, in comparison with other tropical rainforests. The minimum monthly-mean GWL explained 80% of interannual variation in ET for the forest sites (UF and DF); the positive relationship between ET and GWL indicates that drainage by a canal decreased ET at DF through lowering GWL. In addition, ET was decreased by 16% at DB in comparison with UF chiefly because of vegetation loss through fires.

  7. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    PubMed

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.

  8. Structured heterogeneity in a marine terrace chronosequence: Upland mottling

    USGS Publications Warehouse

    Schulz, Marjorie S.; Stonestrom, David A.; Lawrence, Corey R.; Bullen, Thomas D.; Fitzpatrick, John; Kyker-Snowman, Emily; Manning, Jane; Mnich, Meagan

    2016-01-01

    Soil mottles generally are interpreted as a product of reducing conditions during periods of water saturation. The upland soils of the Santa Cruz, CA, marine terrace chronosequence display an evolving sequence of reticulate mottling from the youngest soil (65 ka) without mottles to the oldest soil (225 ka) with well-developed mottles. The mottles consist of an interconnected network of clay and C-enriched regions (gray, 2.5Y 6/1) bordered by leached parent material (white, 2.5Y 8/1) within a diminishing matrix of oxidized parent material (orange, 7.5YR 5/8). The mottles develop in soils that formed from relatively uniform nearshore sediments and occur below the depth of soil bioturbation. To explore how a presumably wetland feature occurs in an unsaturated upland soil, physical and chemical characteristics of mottle separates (orange, gray, and white) were compared through the deep time represented by the soil chronosequence. Mineralogical, isotopic, and surface-area differences among mottle separates indicate that rhizogenic centimeter-scale mass transfer acting across millennia is an integral part of weathering, pedogenesis, and C and nutrient transfer. Elemental analysis, electron microscopy, and Fe-isotope systematics indicate that mottle development is driven by deep roots together with their fungal and microbial symbionts. Taken together, these data suggest that deep soil horizons on old stable landforms can develop reticulate mottling as the long-term imprint of rhizospheric processes. The processes of rhizogenic mottle formation appear to regulate pedogenesis, nutrients, and C sequestration at depth in unsaturated zones.

  9. Transport and fate of trifluoroacetate in upland forest and wetland ecosystems

    SciTech Connect

    Likens, G.E.; Tartowski, S.L.; Berger, T.W.

    1997-04-29

    Although trifluoroacetate (TFA), a breakdown product of chlorofluorocarbon replacements, is being dispersed widely within the biosphere, its ecological fate is largely unknown. TFA was added experimentally to an upland, northern hardwood forest and to a small forest wetland ecosystem within the Hubbard Brook Experimental Forest in New Hampshire. Inputs of TFA were not transported conservatively through these ecosystems; instead, significant amounts of TFA were retained within the vegetation and soil compartments. More TFA was retained by the wetland ecosystem than by the upland forest ecosystem. Using simulation modeling, TFA concentrations were predicted for soil and drainage water until the year 2040. 32 refs., 5 figs., 1 tab.

  10. Mitigating Settlement of Structures founded on Peat

    NASA Astrophysics Data System (ADS)

    Wijeyesekera, D. C.; Numbikannu, L.; Ismail, T. N. H. T.; Bakar, I.

    2016-07-01

    Observations made of two common failures of structures founded on peat/organic soil in Johor, Malaysia is presented. Critical evaluation of current lightweight fill technology to mitigate such settlement is also discussed. Lightweight technology, such as Expanded Polystyrene (EPS), has been used in construction on soft yielding ground for decades. Regrettably, some published information of EPS failures to perform on construction sites are also cited in this paper. This paper outlines some concepts leading to the development of an alternative innovative lightweight fill is that the idealised cellular structure of the GCM permit free flow of water and complemented by the mat structure which evens out any differential settlement A further highlight of this paper is the monitoring of the field performance of this lightweight fill (GCM) as a feasible alternative to fill weight reduction on yielding ground.. Hence, a prime research objective was to compare the fill settlements observed with 1m high fill of surcharge loading on peat ground (comparison of the case of using a partial 0.6m high GCM and that of a total of 1m of conventional sand backfill).

  11. Artificial radioactivity in fuel peat and peat ash in Finland after the Chernobyl accident

    SciTech Connect

    Mustonen, R.A.; Reponen, A.R.; Jantunen, M.J.

    1989-04-01

    The accident at the Chernobyl nuclear power plant in April 1986 caused very uneven deposition of radionuclides in Finland. The deposited radionuclides were found in relatively high concentrations in fuel peat and especially in peat ash because a thin surface layer of peat-production bogs was extracted as fuel peat soon after the fallout occurred. Concentrations of artificial radionuclides in fuel peat and peat ash were measured at six peat-fired power plants in Finland throughout the heating season 1986-87. Concentrations of /sup 137/Cs in composite peat samples varied between 30 and 3600 Bq kg-1 dry weight and in ash samples between 600 and 68,000 Bq kg-1. High concentrations in peat ash caused some restrictions to the utilization of peat ash for various purposes.

  12. Inventory of peat resources, Koochiching County, Minnesota

    SciTech Connect

    Severson, L.S.; Mooers, H.D.; Malterer, T.J.

    1980-01-01

    The subject of this report is the reconnaissance-level peatland survey of Koochiching County, Minnesota. Discussed are: geological setting; peat formation; and peat properties and classification. Included are maps and a list of selected DOE sampling sites. Distribution, tonnages, and energy value analysis of peat are described. (DMC)

  13. Strong Wavelength Dependence of Aerosol Light Absorption from Peat Combustion

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Chakrabarty, R. K.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Knue, J.; Samburova, V.; Watts, A.; Moosmüller, H.; Arnott, W. P.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Globally, organic soils and peats may store as much as 600 Gt of terrestrial carbon, representing 20 - 30% of the planet's terrestrial organic carbon mass. This is approximately the same carbon mass as that contained in Earth's atmosphere, despite peatlands occupying only 3% of its surface. Effects of fires in these ecosystems are of global concern due to their potential for enormous carbon release into the atmosphere. The implications for contributions of peat fires to the global carbon cycle and radiative forcing scenarios are significant. Combustion of peat mostly takes place in the low temperature, smoldering phase of a fire. It consumes carbon that may have accumulated over a period of hundreds to thousands of years. In comparison, combustion of aboveground biomass fuels releases carbon that has accumulated much more recently, generally over a period of years or decades. Here, we report our findings on characterization of emissions from laboratory combustion of peat soils from three locations representing the biomes in which these soils occur. Peat samples from Alaska and Florida (USA) and Siberia (Russia) were burned at two different fuel moisture levels. Burns were conducted in an 8-m3 volume combustion chamber located at the Desert Research Institute, Reno, NV, USA. We report significant brown carbon production from combustion of all three peat soils. We used a multispectral (405, 532, 781 nm) photoacoustic instrument equipped with integrating nephelometer to measure the wavelength-dependent aerosol light absorption and scattering. Absorption Ångström exponents (between 405 and 532 nm) as high as ten were observed, revealing strongly enhanced aerosol light absorption in the violet and blue wavelengths. Single scattering albedos (SSA) of 0.94 and 0.99 were observed at 405 and 532 nm, respectively, for the same sample. Variability of these optical parameters will be discussed as a function of fuel and combustion conditions. Other real-time measurements

  14. Ecological study of peat landforms in Canada and Alaska

    NASA Technical Reports Server (NTRS)

    Glaser, Paul H.

    1989-01-01

    Over 20 percent of the land surface of Canada and Alaska is covered by peatlands, which may be defined as any waterlogged ecosystem with a minimum thickness of 20 cm of organic matter in the soil. Past investigations have demonstrated the value of aerial photographs in identifying the major vegetation types and analyzing the biotic and hydrogeologic processes that control the development of these peatlands. In the present study, LANDSAT TM imagery was used in conjunction with field studies to determine the utility of this satellite sensor for detecting these important processes. Although the vegetation landforms within these major peat basins are visible on aerial photographs, LANDSAT TM imagery provides essential new evidence for their analysis. Spectral data from the LANDSAT TM system provides: (1) synoptic views of the patterns across large portions of these peat basins, indicating important physiographic controls on peatland development, (2) more sensitive detection of the major vegetation types, allowing rapid quantitative estimates to be made of their distribution and aerial extent, (3) discrimination of bog areas with potentially rapid or slow rates of peat accumulation, (4) identification of discharge zones for groundwater, which apparently represents the most important source of alkalinity in these peat basins, and (5) detection of flow patterns in water tracks that appear nearly uniform on standard aerial photographs.

  15. Experimental evidence for mobility/immobility of metals in peat.

    PubMed

    Novak, Martin; Zemanova, Leona; Voldrichova, Petra; Stepanova, Marketa; Adamova, Marie; Pacherova, Petra; Komarek, Arnost; Krachler, Michael; Prechova, Eva

    2011-09-01

    The biogeochemical cycles of most toxic metals have been significantly altered by anthropogenic activities. Anaerobic, rain-fed organic soils are believed to record historical changes in atmospheric pollution. Suspected postdepositional mobility of trace elements, however, hinders the usefulness of peat bogs as pollution archives. To lower this uncertainty, we quantified the mobility of six trace metals in peat during an 18-month field manipulation. A replicated, reciprocal peat transplant experiment was conducted between a heavily polluted and a relatively unpolluted peatland, located 200 km apart in the Czech Republic (Central Europe). Both peatlands were Sphagnum-derived, lawn-dominated, and had water table close to the surface. A strikingly different behavior was observed for two groups of elements. Elements of group I, Fe and Mn, adjusted their abundances and vertical patterns to the host site, showing an extremely high degree of mobility. In contrast, elements of group II, Pb, Cu, Zn, and Ti, preserved their original vertical patterns at the host site, showing a high degree of immobility. Our experimental results suggest that not just lead, but also copper and zinc concentration profiles in peat are a reliable archive of temporal pollution changes within a wide pH range (2.5-5.8).

  16. Classifying and mapping wetlands and peat resources using digital cartography

    USGS Publications Warehouse

    Cameron, Cornelia C.; Emery, David A.

    1992-01-01

    Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.

  17. Peat Depth Assessment Using Airborne Geophysical Data for Carbon Stock Modelling

    NASA Astrophysics Data System (ADS)

    Keaney, Antoinette; McKinley, Jennifer; Ruffell, Alastair; Robinson, Martin; Graham, Conor; Hodgson, Jim; Desissa, Mohammednur

    2013-04-01

    The Kyoto Agreement demands that all signatory countries have an inventory of their carbon stock, plus possible future changes to this store. This is particularly important for Ireland, where some 16% of the surface is covered by peat bog. Estimates of soil carbon stores are a key component of the required annual returns made by the Irish and UK governments to the Intergovernmental Panel on Climate Change. Saturated peat attenuates gamma-radiation from underlying rocks. This effect can be used to estimate the thickness of peat, within certain limits. This project examines this relationship between peat depth and gamma-radiation using airborne geophysical data generated by the Tellus Survey and newly acquired data collected as part of the EU-funded Tellus Border project, together encompassing Northern Ireland and the border area of the Republic of Ireland. Selected peat bog sites are used to ground truth and evaluate the use of airborne geophysical (radiometric and electromagnetic) data and validate modelled estimates of soil carbon, peat volume and depth to bedrock. Data from two test line sites are presented: one in Bundoran, County Donegal and a second line in Sliabh Beagh, County Monaghan. The plane flew over these areas at different times of the year and at a series of different elevations allowing the data to be assessed temporally with different soil/peat saturation levels. On the ground these flight test lines cover varying surface land use zones allowing future extrapolation of data from the sites. This research applies spatial statistical techniques, including uncertainty estimation in geostatistical prediction and simulation, to investigate and model the use of airborne geophysical data to examine the relationship between reduced radioactivity and peat depth. Ground truthing at test line locations and selected peat bog sites involves use of ground penetrating radar, terrestrial LiDAR, peat depth probing, magnetometry, resistivity, handheld gamma

  18. Catchment and in-stream influences on iron-deposit chemistry, algal-bacterial biomass and invertebrate richness in upland streams, Northern Ireland.

    NASA Astrophysics Data System (ADS)

    Macintosh, Katrina Ann; Griffiths, David

    2013-04-01

    The density and composition of upland stream bed iron-deposits is affected by physical, chemical and biological processes. The basic chemical processes producing ochre deposits are well known. Mobilisation of iron and manganese is influenced by bedrock weathering, the presence of acidic and/or reducing conditions and the concentration of dissolved organic carbon. Ferromanganese-depositing bacteria are significant biogenic agents and can cause/enhance the deposition of metals in streams as (hydr)oxides. Metal concentrations from stream waters in two geological blocks in Northern Ireland were compared to determine the contributions of catchment characteristics and in-stream conditions. One block is composed of metamorphosed schist and unconsolidated glacial drift, with peat or peaty podzol (mainly humic) soils, while the other block consists of tertiary basalt with brown earth and gley soils. Water samples were collected from 52 stream sites and analysed for iron, manganese and aluminium as well as a range of other chemical determinands known to affect metal solubility. Stone deposit material was analysed for metal concentrations, organic matter content and epilithic algae, chlorophyll a concentration. Invertebrates were collected by area-standardised kick samples and animals identified to family and numbers counted. Higher conductivities and concentrations of bicarbonate, alkalinity, calcium and magnesium occurred on basalt than on schist. Despite higher iron and manganese oxide concentrations in basalt-derived non-humic soils, stream water concentrations were much lower and stone deposit concentrations only one third of those occurring on schist overlain by humic soils. Peat-generated acidity and the limited acid neutralising capacity of base-poor metamorphosed schist has resulted in elevated concentrations of metals and ochre deposit in surface waters. Algal biomass was determined by catchment level factors whereas in-stream conditions affected bacterial biomass

  19. Characterizing peat palm forest degradation in the Peruvian Amazon from space and on the ground

    NASA Astrophysics Data System (ADS)

    Hergoualc'h, Kristell; Gutierrez-Velez, Victor Hugo; van Lent, Jeffrey; Verchot, Louis Vincent

    2016-04-01

    Peru has the second largest area of peatlands in the Tropics however little is known on how the biogeochemical cycle of its peat forests can be affected through anthropogenic intervention. The most representative land cover on peat is a Mauritia flexuosa-dominated palm swamp forest which has been under human pressure over decades due the high demand for the M. flexuosa fruit often collected by cutting down the entire palm. Degradation of these carbon-dense forests can severely affect emissions of greenhouse gases and contribute to climate change. The objectives of this research were to assess the impacts on soil trace gas fluxes and biomass carbon stocks of peat palm swamp forest degradation and to explore the potential of remote sensing methods combined with field measurements to map the distribution of peat palm swamp forest according degradation levels. Results suggest a shift in forest composition from palm- to woody-tree dominated forest following degradation. We also found that human intervention in peat palm swamp forest can translate into substantial reductions in tree carbon stocks with a decrease in initial biomass (above and below-ground) stocks (118.3 ± 1.1 Mg C ha-1) by 26 and 44% following medium and high degradation. Preliminary results suggest high and low soil CH4 and CO2 emission rates on average, as compared to Southeast Asian peat swamp forests whereas N2O emissions are of the same magnitude. Degradation seems to disrupt soil respiration mainly through micro-climatic changes induced by reduced canopy cover. The analysis indicates a good potential to discriminate areas of peat palm swamp forest with different levels of degradation from other land covers, suggesting the feasibility of monitoring peat palm swamp forest degradation using remote sensing analyses.

  20. Sewage sludge sugarcane trash based compost and synthetic aggregates as peat substitutes in containerized media for crop production.

    PubMed

    Jayasinghe, G Y; Tokashiki, Yoshihiro; Arachchi, I D Liyana; Arakaki, Mika

    2010-02-15

    Effect of partial substitution of peat in growth media by sewage sludge sugarcane trash based compost (SSC) and synthetic aggregates (SA) on the physical and chemical characteristics of the growth media and on the growth and nutrition of lettuce (Lactuca sativa L.) grown in the substituted media was investigated under this study. SSC was produced from sugarcane trash and sewage sludge. Unconventional SA were produced by low productive acidic red soil with paper waste and starch waste. The treatments assayed were: SSC (40%)+Peat (60%), SA (40%)+Peat (60%), SSC (60%)+SA (40%), SSC (40%)+SA (20%)+Peat (40%) and SSC (40%)+SA (40%)+Peat (20%). Peat only was used as the control. The physical and chemical properties of all growing media were analyzed. SSC-SA based substrates showed adequate physical and chemical properties compared to peat for their use as growing media in horticulture. In relation to the plant growth in peat control, plants grown in the SSC-SA based substrates reached better growth and nutrition. The concentration of trace elements in plant tissues was far lower than the ranges considered phytotoxic for plants. Utilization of SSC and SA can be considered as an alternative media component to substitute the widely using expensive peat in horticulture.

  1. Application of SPARROW modeling to understanding contaminant fate and transport from uplands to streams

    USGS Publications Warehouse

    Ator, Scott; Garcia, Ana Maria.

    2016-01-01

    Understanding spatial variability in contaminant fate and transport is critical to efficient regional water-quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.

  2. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota.

    PubMed

    Hill, Brian H; Jicha, Terri M; Lehto, LaRae L P; Elonen, Colleen M; Sebestyen, Stephen D; Kolka, Randall K

    2016-04-15

    We compared nitrogen (N) storage and flux in soils from an ombrotrophic bog with that of a minerotrophic fen to quantify the differences in N cycling between these two peatlands types in northern Minnesota (USA). Precipitation, atmospheric deposition, and bog and fen outflows were analyzed for nitrogen species. Upland and peatland soil samples were analyzed for N content, and for ambient (DN) and potential (DEA) denitrification rates. Annual atmospheric deposition was: 0.88-3.07kg NH4(+)ha(-1)y(-1); 1.37-1.42kg NO3(-)ha(-1)y(-1); 2.79-4.69kg TNha(-1)y(-1). Annual N outflows were: bog-0.01-0.04kg NH4(+)ha(-1)y(-1), NO3(-) 0.01-0.06kgha(-1)y(-1), and TN 0.11-0.69kgha(-1)y(-1); fen-NH4(+) 0.01-0.16kgha(-1)y(-1), NO3(-) 0.29-0.48kgha(-1)y(-1), and TN 1.14-1.61kgha(-1)y(-1). Soil N content depended on location within the bog or fen, and on soil depth. DN and DEA rates were low throughout the uplands and peatlands, and were correlated with atmospheric N deposition, soil N storage, and N outflow. DEA was significantly greater than DN indicating C or N limitation of the denitrification process. We highlight differences between the bog and fen, between the upland mineral soils and peat, and the importance of biogeochemical hotspots within the peatlands. We point out the importance of organic N storage, as a source of N for denitrification, and propose a plausible link between organic N storage, denitrification and N export from peatlands. Finally, we considered the interactions of microbial metabolism with nutrient availability and stoichiometry, and how N dynamics might be affected by climate change in peatland ecosystems.

  3. Carbon and Water Cycles in a New Zealand Peat Bog

    NASA Astrophysics Data System (ADS)

    Campbell, D.; Smith, J.

    2001-12-01

    Peat soils represent globally significant stores of carbon and an understanding of carbon exchange processes between peat wetland ecosystems and the atmosphere is important for understanding the effects of, and impacts upon, global climate change. Eddy covariance measurements of CO2, water vapour and energy fluxes were made during 1999 and 2000 at a remnant oligotrophic raised peat bog in North Island, New Zealand. The bog's hydrology has been modified by drainage of surrounding agricultural land, so that the water table is relatively deep compared to that of unmodified bogs in the region. Vegetation is dominated by two indigenous species of rush-like vascular plants belonging to the Southern hemisphere family Restionaceae. Maximum daytime CO2 fluxes were commonly -9 {μ }mol m-2 s-1 and averaged -1.3 {μ }mol m-2 s-1 over the 24-hour period in summertime. The ecosystem was a sink of atmospheric carbon for most of the year, with wintertime characterised by 12--15 weeks of carbon neutrality or slight carbon loss. Average carbon uptake by the ecosystem was 196 gC m-2 yr-1 for the two-year period. Modelling suggests that the key factor determining inter-annual variability of the carbon budget is seasonal soil temperature, whereas ecosystem respiration is relatively insensitive to the position of the lowered water table. The bog vegetation acts as a major control over water vapour loss and energy partitioning favors sensible heat production with mean summertime Bowen ratios of approximately 2.0. Water use efficiency was highest in the morning, indicating that the vegetation maximizes CO2 assimilation while the saturation vapour pressure deficit and transpiration rates are low. The dense canopy structure also restricts penetration of solar radiation to the peat surface, which minimizes evaporation and soil respiration.

  4. 77 FR 33985 - Proposed Establishment of the Indiana Uplands Viticultural Area and Modification of the Ohio...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... greater incidence of heavy rains than in other areas of the state; and (3) poor farming practices in the... and good vineyard management practices are needed in this area. The erosion rate of the soils in the... of the Indiana Uplands region are not suited to most types of farming without liming, deep...

  5. Runoff water quality from a sierran upland forest, transition ecotone, and riparian wet meadow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High concentrations of inorganic N, P, and S have been reported in overland and litter interflow within forested uplands of the Tahoe basin and surrounding watersheds. In this study we compared runoff nutrient concentration and load as well as soil nutrient fluxes at three watershed locations; an up...

  6. Utilization of peat as a fuel

    SciTech Connect

    Clemens, D.F.; Evans, G.O. II; Whitehurst, B.M.

    1981-10-01

    This work has dealt primarily with the development and evaluation of peat/No. 2 fuel oil mixtures (POM) and peat/methanol mixtures (PAM). POM and PAM slurries with varied peat loadings, peat moisture contents, and peat particle sizes have been studied by measuring slurry sedimentation ratios in jacketed glass tubes and slurry drain times from the tubes along with the slurry viscosities. The peat moisture content was found to be especially critical in forming stable slurries. Also, in both the PAM and POM systems, it was found that use of the more finely ground peat led to significantly higher sedimentation ratios than the use of coarse peat. Numerous additives selected to improve slurry suspension and flow characteristics have been evaluated. Cab-O-Sil M-5 and Cab-O-Sil PTG were most effective in the POM systems while Attagel X-2059 and Bentone 27 were most effective in the PAM systems. Viscosities have been measured for slurries of varied particle size and modified by selected additives. Viscosities in the PAM system were lower using the coarser peat with higher moisture content while viscosities in the POM system seemed to be lower using the finer, drier peat. Calorimetric studies of powdered peat as well as PAM and POM slurries, with and without additives, were completed. Combustion tests of POM and PAM slurries were carried out using a salamander type shop heater. Successful burns of the POM slurry were accomplished when the slurries were heated to reduce viscosities and the peat was prescreened to remove large wood fibers to avoid plugging of the small burner nozzle. Since the toxicity and low flash point of methanol precluded heating of the PAM slurries, plugging of the small burner routinely occurred. It was also demonstrated that ground peat could be burned by using an eductor connector to a compressed air line.

  7. Liquefaction Potential of Adiyaman Peat

    NASA Astrophysics Data System (ADS)

    Karaca, Huseyin; Depci, Tolga; Karta, Mesut; Coskun, M. Ali

    2016-10-01

    In the present study, liquefaction potential of Adiyaman peat was studied by direct liquefaction technique to obtain oil as a fuel purposes due to its high carbon and hydrogen content and low sulphur ratio. The peat and liquefaction products, named char, asphaltene, preasphaltene and oil, were characterized by XRD, FTIR, SEM, DTA/TG and elemental analysis. The compositions of the obtained oil were also identified by GC/MS. The results indicated that the obtained oil was paraffinic-low waxy oil with 21.73 MJ/kg of calorific value and 0.93 g/cm3 density and it was composed of naphthalene and phenolic groups. The oil conversion ratio was found to be 29 %.

  8. PwC's 3-Peat

    ERIC Educational Resources Information Center

    Freifeld, Lorri

    2010-01-01

    PricewaterhouseCoopers (PwC) is giving the Chicago Bulls a run for their money when it comes to three-peats. The professional services firm scored the top spot on the Training Top 125 for a record third year in a row. So, just how did PwC nail No. 1 again? For starters, it met and exceeded a hefty challenge in fiscal year 2009: cutting training…

  9. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils

    PubMed Central

    Kwak, Jin-Hyeob; Chang, Scott X.; Naeth, M. Anne; Schaaf, Wolfgang

    2015-01-01

    Forest floor mineral soil mix (FMM) and peat mineral soil mix (PMM) are cover soils commonly used for upland reclamation post open-pit oil sands mining in northern Alberta, Canada. Coarse woody debris (CWD) can be used to regulate soil temperature and water content, to increase organic matter content, and to create microsites for the establishment of microorganisms and vegetation in upland reclamation. We studied the effects of CWD on soil microbial community level physiological profile (CLPP) and soil enzyme activities in FMM and PMM in a reclaimed landscape in the oil sands. This experiment was conducted with a 2 (FMM vs PMM) × 2 (near CWD vs away from CWD) factorial design with 6 replications. The study plots were established with Populus tremuloides (trembling aspen) CWD placed on each plot between November 2007 and February 2008. Soil samples were collected within 5 cm from CWD and more than 100 cm away from CWD in July, August and September 2013 and 2014. Microbial biomass was greater (p<0.05) in FMM than in PMM, in July, and August 2013 and July 2014, and greater (p<0.05) near CWD than away from CWD in FMM in July and August samplings. Soil microbial CLPP differed between FMM and PMM (p<0.01) according to a principal component analysis and CWD changed microbial CLPP in FMM (p<0.05) but not in PMM. Coarse woody debris increased microbial community functional diversity (average well color development in Biolog Ecoplates) in both cover soils (p<0.05) in August and September 2014. Carbon degrading soil enzyme activities were greater in FMM than in PMM (p<0.05) regardless of distance from CWD but were not affected by CWD. Greater microbial biomass and enzyme activities in FMM than in PMM will increase organic matter decomposition and nutrient cycling, improving plant growth. Enhanced microbial community functional diversity by CWD application in upland reclamation has implications for accelerating upland reclamation after oil sands mining. PMID:26618605

  10. Pore water chemistry in a disturbed and an undisturbed peat forests in Brunei Darussalam: Nutrient and carbon contents

    NASA Astrophysics Data System (ADS)

    Gandois, L.; Cobb, A.; Abu Salim, K.; Chieng Hei, I.; Lim Biaw Leng, L.; Corlett, R.; Harvey, C.

    2010-12-01

    Tropical peat swamp forests in their natural state are important reservoir of biodiversity, carbon and water. However, they are rapidly vanishing due to agricultural conversion (mainly to oil palms), logging, drainage and fire. Peat swamp forests constitute an important contribution to global and regional biodiversity, providing an habitat to rare and threatened species. They encompass a sequence of forest types from the perimeter to the center of mildely elevated domes, and at our site in Brunei, are host to Shorea Albida trees (Anderson, 1983). They constitute a large terrestrial carbon reservoir (tropical peat soils contain up to 70 Pg C, which accounts for 20% of global peat soil carbon and 2% of the global soil carbon (Hirano et al., 2007)). In tropical peat swamp forests, the most important factors controling organic matter accumulation, as well as the biodiversity and structure of the forest, are hydrology and nutrients availability (Page et al., 1999). Study of pore water in peat swamp forest can provide key information on carbon cycle, including biomass production, organic matter decomposition and leaching of carbon in draining water. However, data on pore water chemistry and nutrient concentrations in pristine tropical peatlands, as well as the effect of forest exploitation are scarce. The study area is located in the Belait district in Brunei Darussalam in Borneo Island. Brunei is perhaps the best of the regional guardians of peat forest systems; potentially irreversible damage to peat forest ecosystems has been widespread elsewhere. Two sites, one pristine dome and a logging concession, are being investigated. In order to assess the chemical status of the peat soil, pore water is sampled at different depth along the dome radius. The chemistry of pore water, including pH, conductivity, dissolved oxygen, concentration of major elements, as well as organic carbon content and properties are analyzed. References: Anderson, 1983. The tropical peat swamp of

  11. Content of lipids in finnish peat mires

    SciTech Connect

    Fagernaes, L.; Ekman, R.

    1985-01-01

    Peat is a potential raw material for chemical products. Peat extracts, bitumens, obtained from peat with neutral organic solvents, and, in particular, their wax fractions have been of interest with regard to their substituting for other natural waxes. Yields and characteristics of peat extracts have been studied by numerous researchers and acid and saponification values, molecular weights and elements analyses have been determined since the 1930s. New analytical methods have recently been introduced and made it possible to determine the amount and detailed composition of the lipid components of peat extracts by capillary gas chromatography (GC) and mass spectrometry. The aim of this study was to determine the yield and lipid composition of extracts from peat samples collected from different mires in Finland.

  12. Selected Trace Element Concentrations in Peat Used for Cosmetic Production - A Case Study from Southern Poland

    NASA Astrophysics Data System (ADS)

    Glina, Bartłomiej

    2016-12-01

    The aim of the study was to assess the concentration of selected trace elements in organic soils used as a source to obtain a unique peat extract for cosmetics production. Peat material for laboratory analysis were collected from fen peatland located in the Prosna River Valley (Borek village). Studied peatland is managed by "Torf Corporation" company as a source of material to obtain peat extract for cosmetics production. In the collected soil samples (four soil profiles) Zn, Cu and Pb concentrations were determined by using atomic absorption spectrometer SpectraAA 220 (Varian), after acid digestion. Obtained results showed that the highest concentrations of selected trace elements were recorded in the surface horizons of organic soils. This fact might be the results of Prosna river flooding or air deposition. Howevere, according to the new Polish regulations (Ordinance of the Minister for Environment 01.09.2016 - the way of conducting contamination assessment of the earth surface), the content of trace elements in the examined soils was greatly belowe the permissible limit for areas from group IV (mine lands). Thus, described soils are proper to obtain peat extract used as a component in cosmetic production.

  13. Duration-Related Variations in Archaeal Communities after a Change from Upland Fields to Paddy Fields.

    PubMed

    Jiang, Nan; Wei, Kai; Chen, Lijun; Chen, Rui

    2016-05-28

    Archaea substantially contribute to global geochemical cycling and energy cycling and are impacted by land-use change. However, the response of archaeal communities to a change from upland field to paddy field has been poorly characterized. Here, soil samples were collected at two depths (0-20 cm and 20-40 cm) from one upland field and six paddy fields that were established on former upland fields at different times (1, 5, 10, 20, 30, and 40 years before the study). Barcoded pyrosequencing was employed to assess the archaeal communities from the samples at taxonomic resolutions from phylum to genus levels. The total archaeal operational taxonomic unit (OTU) richness showed a significant positive correlation with the land-use change duration. Two phyla, Euryarchaeota and Crenarchaeota, were recorded throughout the study. Both the relative abundance and OTU richness of Euryarchaeota increased at both depths but increased more steadily at the subsurface rather than at the surface. However, these data of Crenarchaeota were the opposite. Additionally, the archaeal composition exhibited a significant relationship with C/N ratios, total phosphorus, soil pH, Olsen phosphorus, and the land-use change duration at several taxonomic resolutions. Our results emphasize that after a change from upland fields to paddy fields, the archaeal diversity and composition changed, and the duration is an important factor in addition to the soil chemical properties.

  14. Impact of subjacent rocks at the water and air regime of the depleted peat deposits

    NASA Astrophysics Data System (ADS)

    Rakovich, V. A.

    2009-04-01

    At the depleted peat deposits (after peat extraction), where the residual layer of peat with the thickness of about 0,5 meters is laid at the well water permeable rocks, vegetation typical for dry conditions is developed in case of good drainage conditions; birch trees, willow, alder-trees and buckthorn prevail in this vegetation. Water and air regime is characterized here by good aeration with prevailing of oxidative processes. If water regime is regulated, these depleted peat areas are suitable for agricultural and forest lands; however, necessity of transformation of these depleted lands into forest and agricultural lands must be ecologically and economically justified. If the residual layer of peat with the thickness of 0,05-0,3 m is based at the sapropel or peat sapropel, contrast amphibiotic water and air regime with strong fluctuation of oxidative and restoration process depending on the weather conditions is formed; this regime is formed without artificial increase of the ground waters level. This does not allow bog vegetation or vegetation typical for dry conditions to develop. Thus, within 20 and more years after completion of peat extraction, such areas are not covered by vegetation in spite of favorable agro-chemical qualities of peat layer and favorable for vegetation chemical composition of soil and ground waters. Depleted peat deposits, that are based at the sapropel, are not suitable for agricultural use, because agricultural vegetation requires stable water and air regime with good aeration and oxidative and restoration potential within 400-750 mV. Contrast amphibiotic water and air regime of the depleted peat deposits that are based at sapropel excludes possibility to use them as agricultural lands. Because of this reason, areas with residual peat layer that are based at sapropel are not suitable for forest planting. Due to periodic increase of ground waters level, rot systems of the plants can not penetrate into the required depth, and mechanical

  15. Effect of past peat cultivation practices on present dynamics of dissolved organic carbon.

    PubMed

    Frank, S; Tiemeyer, B; Bechtold, M; Lücke, A; Bol, R

    2017-01-01

    Peatlands are a major source of dissolved organic carbon (DOC) for aquatic ecosystems. Naturally high DOC concentrations in peatlands may be increased further by drainage. For agricultural purposes, peat has frequently been mixed with sand, but the effect of this measure on the release and cycling of DOC has rarely been investigated. This study examined the effects of (i) mixing peat with sand and (ii) water table depth (WTD) on DOC concentrations at three grassland sites on shallow organic soils. The soil solution was sampled bi-weekly for two years with suction plates at 15, 30 and 60cm depth. Selected samples were analysed for dissolved organic nitrogen (DON), δ(13)CDOM and δ(15)NDOM. Average DOC concentrations were surprisingly high, ranging from 161 to 192mgl(-1). There was no significant impact of soil organic carbon (SOC) content or WTD on mean DOC concentrations. At all sites, DOC concentrations were highest at the boundary between the SOC-rich horizon and the mineral subsoil. In contrast to the mean concentrations, the temporal patterns of DOC concentrations, their drivers and the properties of dissolved organic matter (DOM) differed between peat-sand mixtures and peat. DOC concentrations responded to changes in environmental conditions, but only after a lag period of a few weeks. At the sites with a peat-sand mixture, temperature and therefore probably biological activity determined the DOC concentrations. At the peat site, the contribution of vegetation-derived DOM was higher. The highest concentrations occurred during long, cool periods of waterlogging, suggesting a stronger physicochemical-based DOC mobilisation. Overall, these results indicate that mixing peat with sand does not improve water quality and may result in DOC losses of around 200kg DOCha(-1)a(-1).

  16. Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, Northeast China.

    PubMed

    Bao, Kunshan; Xing, Wei; Yu, Xiaofei; Zhao, Hongmei; McLaughlin, Neil; Lu, Xianguo; Wang, Guoping

    2012-08-01

    Recent deposition of atmospheric soil dust (ASD) was studied using (210)Pb-dated Sphagnum-derived peat sequences from Great Hinggan Mountain in northeast China. Physicochemical indices of peat including dry bulk density, water content, ash content, total organic carbon and mass magnetic susceptibility were measured. Acid-insoluble concentration of lithogenic metals (Al, Ca, Fe, Mn, V and Ti) were measured using ICP-AES. The basic physicochemical properties were used to assess the peat trophic status and indicated that the sections above 45-60 cm are rain-fed peat. A continuous record of ASD fluxes over the past 150 years was reconstructed based on the geochemical data obtained from the ombrotrophic zone, and the average input rate of ASD is 13.4-68.1 g m(-2) year(-1). The source of soil dust deposited in peat was dominated by the long-range transport of mineral aerosol from the drylands in north China and Mongolia. The temporal variation of ASD fluxes in the last 60 years coincides well with the meteorological records of dust storm frequency during 1954-2002 in north China. This suggests that the reconstructed sequence of atmospheric dust deposition is reliable and we can look back in time at the dust evolution before 1949. Dust storm events were observed occasionally in the late Qing dynasty, and their frequency and intensity were smaller than dust weather occurring in recent times. Four peaks of ASD fluxes were distinguished and correlated with the historical events at that time. This study presents the first atmospheric soil dust data in peat records in northeast China, and complements a global database of peat bog archives of atmospheric deposition. The results reflect the patterns of local environmental change over the past century in north China and will be helpful in formulating policies to achieve sustainable and healthy development.

  17. Upslope development of a tidal marsh as a function of upland land use.

    PubMed

    Anisfeld, Shimon C; Cooper, Katharine R; Kemp, Andrew C

    2017-02-01

    To thrive in a time of rapid sea-level rise, tidal marshes will need to migrate upslope into adjacent uplands. Yet little is known about the mechanics of this process, especially in urbanized estuaries, where the adjacent upland is likely to be a mowed lawn rather than a wooded natural area. We studied marsh migration in a Long Island Sound salt marsh using detailed hydrologic, edaphic, and biotic sampling along marsh-to-upland transects in both wooded and lawn environments. We found that the overall pace of marsh development was largely unaffected by whether the upland being invaded was lawn or wooded, but the marsh-edge plant communities that developed in these two environments were quite different, and some indicators (soil salinity, foraminifera) appeared to migrate more easily into lawns. In addition, we found that different aspects of marsh structure and function migrated at different rates: Wetland vegetation appeared to be a leading indicator of marsh migration, while soil characteristics such as redox potential and surface salinity developed later in the process. We defined a 'hydrologic migration zone', consisting of elevations that experience tidal inundation with frequencies ranging from 20% to 0.5% of high tides. This hydrologically defined zone - which extended to an elevation higher than the highest astronomical tide datum - captured the biotic and edaphic marsh-upland ecotone. Tidal inundation at the upper border of this migration zone is highly variable over time and may be rising more rapidly than mean sea level. Our results indicate that land management practices at the upland periphery of tidal marshes can facilitate or impede ecosystem migration in response to rising sea level. These findings are applicable to large areas of tidal marsh along the U.S. Atlantic coast and in other urbanized coastal settings.

  18. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.

    PubMed

    Hirano, Takashi; Kusin, Kitso; Limin, Suwido; Osaki, Mitsuru

    2014-02-01

    In Southeast Asia, a huge amount of peat has accumulated under swamp forests over millennia. Fires have been widely used for land clearing after timber extraction, thus land conversion and land management with logging and drainage are strongly associated with fire activity. During recent El Niño years, tropical peatlands have been severely fire-affected and peatland fires enlarged. To investigate the impact of peat fires on the regional and global carbon balances, it is crucial to assess not only direct carbon emissions through peat combustion but also oxidative peat decomposition after fires. However, there is little information on the carbon dynamics of tropical peat damaged by fires. Therefore, we continuously measured soil CO2 efflux [peat respiration (RP)] through oxidative peat decomposition using six automated chambers on a burnt peat area, from which about 0.7 m of the upper peat had been lost during two fires, in Central Kalimantan, Indonesia. The RP showed a clear seasonal variation with higher values in the dry season. The RP increased logarithmically as groundwater level (GWL) lowered. Temperature sensitivity or Q10 of RP decreased as GWL lowered, mainly because the vertical distribution of RP would shift downward with the expansion of an unsaturated soil zone. Although soil temperature at the burnt open area was higher than that in a near peat swamp forest, model simulation suggests that the effect of temperature rise on RP is small. Annual gap-filled RP was 382 ± 82 (the mean ± 1 SD of six chambers) and 362 ± 74 gC m(-2)  yr(-1) during 2004-2005 and during 2005-2006 years, respectively. Simulated RP showed a significant negative relationship with GWL on an annual basis, which suggests that every GWL lowering by 0.1 m causes additional RP of 89 gC m(-2)  yr(-1) . The RP accounted for 21-24% of ecosystem respiration on an annual basis.

  19. Microelements in Lowland Peat of the Northeastern Part of the Altai Mountains

    NASA Astrophysics Data System (ADS)

    Shurova, M. V.; Larina, G. V.; Kozlova, S. A.; Shagaeva, L. L.

    2010-05-01

    The greatest areas of bogs are concentrated in the northeastern part of Altai Republic. This place due to a great amount of precipitation and a powerful accumulation of snow with a little drain in comparison with other areas has plenty of bogs. A quarter of all bogs of the Altai Mountains is concentrated here. The bogs develop mainly in the valleys of the rivers. The bogs have a modern origin and the process of bog formation goes at the present time by overgrowing of oxbow and valley lakes, and also by bogging of dry lands - woods and meadows. The area of bogs in relation to the general territory of highlands makes up 1%. Nevertheless, these territories are regarded as complex ecosystems which have economic and scientific value. Let's consider the content of heavy metals in different horizons of the peat under study. The samples of peat of the deposit being examined are characterized by a low total content of zinc: 6,21-44,12 mg/kg. The average amount of zinc in the soils of the Altai Mountains is much larger and makes up 70,3 mg/kg. Quite a significant amount of copper is washed away from peat thickness, its total amount is at the level of 1,58-10,73 mg/kg. The reason for it, probably, lies in the fact that there is a significant amount of fulvic acids in the composition of humic acids which enable the migration of copper beyond the limits of the peat ground in the conditions of the sour environment. A completely different situation is observed in the soils of the Altai mountain area. The biogeochemistry of copper in the soils of the Altai Mountains is thoroughly investigated by M.A.Malgin, A.V.Puzanov, O.A.Yelchininova. Its average amount in the soils of the Altai Mountains makes up 40,6 mg/kg which is twice as much as the abundance ratio in comparison with the world soils. The authors explain this fact as follows: copper is an inactive element in the soils since its ions are easily precipitated by sulfide-, carbonate-, and hydroxide ions, and also are taken up

  20. Adsorption studies of azotetrazolate and 3,6-dihydrazinotetrazine on peat.

    PubMed

    Borkowski, Andrzej; Rydelek, Paweł; Szala, Mateusz

    2013-01-01

    The objective of our studies was the evaluation of the adsorption process of two high-nitrogen compounds-dihydrazinotetrazine (DHTz) and azotetrazolate ion (AZ)-on a chosen peat. The experiments were performed using a static method at three different temperatures (283, 298, and 333 K). The adsorption process of DHTz and AZ on peat was characterized by isotherms according to the Freundlich and Langmuir models. The obtained correlations between adsorption and equilibrium concentration were in good accordance with the Freundlich and Langmuir models, as confirmed by high values of the correlation coefficients (0.97-0.99). Adsorption of AZ on peat was less efficient than that of DHTz, and this inference was experimentally proven. The maximum surface coverages of peat particles with adsorbate according to the Langmuir model were calculated as 0.02 and 0.17 mol kg(-1) (at 298 K) for AZ and DHTz, respectively. The determined adsorption equilibrium constants confirmed greater adsorption of DHTz on the investigated peat. It can be concluded that adsorption of AZ occurred to a much lesser extent compared to that of DHTz, pointing to a potentially greater threat of migration of soluble azotetrazolates in soil. Standard enthalpies of adsorption estimated for AZ and DHTz were -11.1 and -23.7 kJ mol(-1), respectively. Based on these adsorption enthalpy values, it can be stated that both investigated compounds are adsorbed on peat by a physisorption process.

  1. Assessment of the peat resources of Florida, with a detailed survey of the northern everglades

    SciTech Connect

    Griffin, G.M.; Wieland, C.C.; Hood, L.Q.; Goode, R.W. III; Sawyer, R.K.; McNeill, D.F.

    1982-01-01

    Available data, including previous publications, modern soil surveys, and detailed coring in the Northern Everglades for this project have been used to update information on Florida's peat resources. It is now estimated that Florida could, if no other constraints existed, produce 606 million tons of moisture-free fuel-grade peat, which may yield approximately 10.0 x 10/sup 15/ Btu of energy. These estimates are much lower than previously published projections for the state. The principal effort of this survey was in the largest peat region of the state, the Northern Everglades of Palm Beach and adjacent counties, where more than 800 core holes were drilled. Based on analyses of these cores, the Northern Everglades is now estimated to contain 191 million tons of moisture-free peat, with a potential energy yield of 2.98 x 10/sup 15/ Btu. These values are considerably less than previously published estimates, probably due to bacterial oxidation and other forms of drainage-induced subsidence in the Everglades agricultural areas. The present fuel-peat resources of the Northern Everglades occur in 19 separate deposits. Of these, the deposits in the Port Mayaca, Bryant, Six Mile Bend, and Loxahatchee Quadrangles comprise the highest concentration of the resource. These lands are generally privately owned and used for sugar cane and other crops, and the conversion of these lands to peat removal seems unlikely. It seems even less likely that the extensive peat deposits within the Loxahatchee National Wildlife Refuge will be available for fuel use, barring a dire national emergency. The utilization of peat as a fuel must be approached with caution and careful study; large scale use may require state or federal action. 34 references.

  2. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption

  3. Hydrogeomorphic Controls on Redox Chemistry Across Boreal Upland-Wetland Interfaces

    NASA Astrophysics Data System (ADS)

    Mitchell, C. P.; Branfireun, B. A.

    2002-12-01

    deeper upland soils and thus, a continuous hydrological connection between upland and wetland. Although large changes in chemical variability were also observed under storm conditions, the distribution of redox chemical species was more closely related to groundwater flow path. In situ Eh measurements across this transect revealed rapid changes between reducing and oxidizing conditions that were closely controlled by precipitation inputs and the subsequent input of oxic groundwater from the surrounding uplands. Contrary to some previous research, increases in water table elevation resulted in more highly oxidizing conditions that were sustained for one to two days. It is on this and shorter temporal scales that many biogeochemical transformations need to be studied. Implications of the dynamics of mercury methylation will be discussed in the context of the controls on sulphate reduction and oxidation.

  4. South Florida wetlands ecosystem; biogeochemical processes in peat

    USGS Publications Warehouse

    Orem, William; ,

    1996-01-01

    The South Florida wetlands ecosystem is an environment of great size and ecological diversity (figs. 1 and 2). The landscape diversity and subtropical setting of this ecosystem provide a habitat for an abundance of plants and wildlife, some of which are unique to South Florida. South Florida wetlands are currently in crisis, however, due to the combined effects of agriculture, urbanization, and nearly 100 years of water management. Serious problems facing this ecosystem include (1) phosphorus contamination producing nutrient enrichment, which is causing changes in the native vegetation, (2) methylmercury contamination of fish and other wildlife, which poses a potential threat to human health, (3) changes in the natural flow of water in the region, resulting in more frequent drying of wetlands, loss of organic soils, and a reduction in freshwater flow to Florida Bay, (4) hypersalinity, massive algal blooms, and seagrass loss in parts of Florida Bay, and (5) a decrease in wildlife populations, especially those of wading birds. This U.S. Geological Survey (USGS) project focuses on the role of organic-rich sediments (peat) of South Florida wetlands in regulating the concentrations and impact of important chemical species in the environment. The cycling of carbon, nitrogen, phosphorus, and sulfur in peat is an important factor in the regulation of water quality in the South Florida wetlands ecosystem. These elements are central to many of the contamination issues facing South Florida wetlands, such as nutrient enrichment, mercury toxicity, and loss of peat. Many important chemical and biological reactions occur in peat and control the fate of chemical species in wetlands. Wetland scientists often refer to these reactions as biogeochemical processes, because they are chemical reactions usually mediated by microorganisms in a geological environment. An understanding of the biogeochemical processes in peat of South Florida wetlands will provide a basis for evaluating the

  5. Regional Haze Evolved from Peat Fires - an Overview

    NASA Astrophysics Data System (ADS)

    Hu, Yuqi; Rein, Guillermo

    2016-04-01

    This work provides an overview of haze episodes, their cause, emissions and health effects found in the scientific literature. Peatlands, the terrestrial ecosystems resulting from the accumulation of partially decayed vegetation, become susceptible to smouldering fires because of natural droughts or anthropogenic-induced drainages. Once ignited, smouldering peat fires persistently consume large amounts of soil carbon in a flameless form. It is estimated that the average annual carbon gas emissions (mainly CO2 and CO) from peat fires are equivalent to 15% of manmade emissions, representing influential perturbation of global carbon circle. In addition to carbon emissions, smouldering peat fires emit substantial quantities of heterogeneous smoke, which is responsible for haze phenomena, has not yet been fully studied. Peat-fire-derived smoke is characterized by high concentration of particulate matter (PM), ranging from nano-scale ultrafine fraction (PM1, particle diameter < 1 μm) to micro-scale fine (PM2.5, particle diameter < 2.5 μm) and coarse fraction (PM10, particle diameter < 10 μm). The dispersal of the smoke could be blocked due to the stagnant weather condition, and then low buoyant smoke plume could accumulate and migrate long distances, leading to regional haze. Apart from air quality deterioration, haze leads to severe reduction in visibility, which strongly affects local transportation, construction, tourism and agriculture-based industries. For example, an unprecedented peatland mega-fire burst on the Indonesian islands Kalimantan and Sumatra during the 1997 El-Niño event, resulting in transboundary smoke-haze disaster. Severe haze events continue to appear in Southeast Asia every few years due to periodical peat fires in this region. In addition, smouldering peat fires have been frequently reported in tropical, temperate and boreal regions (Botswana in 2000, North America in 2004, Scotland in 2006 and Central Russia in 2010 et al.), peat

  6. Mineral resource of the month: peat

    USGS Publications Warehouse

    Jasinski, Stephen M.

    2008-01-01

    Peat is a natural organic material of botanical origin, harvested from deposits in bogs and fens. Commercial deposits form from the incomplete decomposition of plant matter under anaerobic conditions and gradually accumulate to form peat over about a 5,000-year period.

  7. Peat resource estimation in Minnesota. Third quarter report, FY1985

    SciTech Connect

    Not Available

    1985-01-01

    The Minnesota Department of Natural Resources has been surveying organic soil deposits to determine the location of fuel-grade peat since October 1, 1979, when the US Department of Energy and the Gas Research Institute awarded Minnesota a grant for peat resource estimation. The survey determines the type, quantity, and energy potential of peatlands by field mapping and laboratory characterization. The focus of the project is an eight-county study area (Aitkin, Beltrami, Carlton, Cass, Itasca, Koochiching, Lake of the Woods, and St. Louis counties) that contain over half of Minnesota's six or seven million acres of peatland. Approximately one million acres of the state's total peatland acreage are currently available for state lease. The Koochiching County survey (1,147,560 acres of peatland), the Aitkin County survey (420,560 acres of peatland), and the survey of an area of Beltrami and Lake of the Woods counties (775,400 acres of peatland) have been completed, and the reports have been published. A reconnaissance-level peatland survey of southwest St. Louis County was completed, and a report was published with state funding. Our staff is continuing the redrafting of the Carlton County Peat Resource Map to correct registration errors. We expect the redrafted version of map to be completed in the fourth quarter. The computerized version of the map will be started when the redrafting is complete.

  8. Rhizosphere impacts on peat decomposition and nutrient cycling across a natural water table gradient

    NASA Astrophysics Data System (ADS)

    Gill, A. L.; Finzi, A.

    2014-12-01

    High latitude forest and peatland soils represent a major terrestrial carbon store sensitive to climate change. Warming temperatures and increased growing-season evapotranspiration are projected to reduce water table (WT) height in continental peatlands. WT reduction increases peat aerobicity and facilitates vascular plant and root growth. Root-associated microbial communities are exposed to a different physical and chemical environment than microbial communities in non-root associated "bulk" peat, and therefore have distinct composition and function within the soil system. As the size of the peatland rhizosphere impacts resources available to the microbial communities, transitions from a root-free high water table peatland to a root-dominated low WT peatland may alter seasonal patterns of microbial community dynamics, enzyme production, and carbon storage within the system. We used a natural water table gradient in Caribou Bog near Orono, ME to explore the influence of species composition, root biomass, and rhizosphere size on seasonal patterns in microbial community structure, enzyme production, and carbon mineralization. We quantified root biomass across the water table gradient and measured microbial biomass carbon and nitrogen, C mineralization, N mineralization, and exoenzyme activity in root-associated and bulk peat samples throughout the 2013 growing season. Microbial biomass was consistently higher in rhizosphere-associated soils and peaked in the spring. Microbial biomass CN and enzyme activity was higher in rhizosphere-associated soil, likely due to increased mycorrhizal abundance. Exoenzyme activity peaked in the fall, with a larger relative increase in enzyme activity in rhizosphere peat, while carbon mineralization rates did not demonstrate a strong seasonal pattern. The results suggest that rhizosphere-associated peat sustains higher and more variable rates of enzyme activity throughout the growing season, which results in higher rates of carbon

  9. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-10-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly but also from peat-draining rivers. So far, though, this has been mere speculation, since there has been no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam River in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the first and second campaign, respectively. Overall, we found that only 32 ± 19 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  10. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-07-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly, but also from peat-draining rivers. So far, though, this has been mere speculation, since there was no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam river in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the two campaigns, respectively. Overall, we found that only 26 ± 15 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  11. Substitution of peat, fertiliser and manure by compost in hobby gardening: user surveys and case studies.

    PubMed

    Andersen, Jacob K; Christensen, Thomas H; Scheutz, Charlotte

    2010-12-01

    Four user surveys were performed at recycle centres (RCs) in the Municipalities of Aarhus and Copenhagen, Denmark, to get general information on compost use and to examine the substitution of peat, fertiliser and manure by compost in hobby gardening. The average driving distance between the users' households and the RCs was found to be 4.3 km and the average amount of compost picked up was estimated at 800 kg per compost user per year. The application layer of the compost varied (between 1 and 50 cm) depending on the type of use. The estimated substitution (given as a fraction of the compost users that substitute peat, fertiliser and manure with compost) was 22% for peat, 12% for fertiliser and 7% for manure (41% in total) from the survey in Aarhus (n=74). The estimate from the survey in Copenhagen (n=1832) was 19% for peat, 24% for fertiliser and 15% for manure (58% in total). This is the first time, to the authors' knowledge, that the substitution of peat, fertiliser and manure with compost has been assessed for application in hobby gardening. Six case studies were performed as home visits in addition to the Aarhus surveys. From the user surveys and the case studies it was obvious that the total substitution of peat, fertiliser and manure was not 100%, as is often assumed when assigning environmental credits to compost. It was more likely around 50% and thus there is great potential for improvement. It was indicated that compost was used for a lot of purposes in hobby gardening. Apart from substitution of peat, fertiliser and manure, compost was used to improve soil quality and as a filling material (as a substitute for soil). Benefits from these types of application are, however, difficult to assess and thereby quantify.

  12. Monitoring the effects of manure policy in the Peat region, Netherlands

    NASA Astrophysics Data System (ADS)

    Hooijboer, Arno; Buis, Eke; Fraters, Dico; Boumans, Leo; Lukacs, Saskia; Vrijhoef, Astrid

    2014-05-01

    Total N concentrations in farm ditches in the Peat region of the Netherlands are on the average twice as high as the Good Ecological Potential value of the Water Framework Directive. Since ditches are connected to regional surface water, they may contribute to eutrophication. The minerals policy aims to improve the water quality. In the Netherlands, the effectiveness of the minerals policy on water quality is evaluated with data from the National Minerals Policy Monitoring Programme (LMM). This regards farm data on the quality of water leaching from the root zone and on farm practices. The soil balance nitrogen surpluses decreased between 1996 and 2003 on dairy farms in the Peat region. However, no effect on root zone leaching was found. This study aims to show how monitoring in the Peat region can be improved in order to link water quality to agricultural practice. Contrary to the other Dutch regions, nitrate concentrations in root zone leaching on farms in the Peat region are often very low (90% of the farms below 25 mg/l) due to the reduction of nitrate (denitrification). The main nitrogen (N) components in the peat region waters are ammonium and organic N. Total N is therefore a better measure for N concentrations in the Peat region. The ammonium concentration in groundwater in Dutch peat soils increases with depth. It is assumed that the deeper ammonia-rich water is older and relates to anaerobic peat decomposition instead of agricultural practice. Recent infiltrated low-ammonium water, lies like a thin freshwater lens on the older water. In the Peat region, root zone leaching is monitored by taking samples from the upper meter of groundwater. Unintended, often both lens water and older water are sampled and this distorts the relation between agricultural practice and water quality. In the Peat region, the N surplus is transported with the precipitation surplus to ditches. The relation between the N surplus and the total N in ditch water is therefore better

  13. 7 CFR 1427.103 - Upland cotton Domestic User Agreement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Upland cotton Domestic User Agreement. 1427.103... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.103 Upland cotton Domestic User Agreement. (a) Payments...

  14. 7 CFR 1427.103 - Upland cotton Domestic User Agreement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Upland cotton Domestic User Agreement. 1427.103... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.103 Upland cotton Domestic User Agreement. (a) Payments...

  15. 7 CFR 1427.103 - Upland cotton Domestic User Agreement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Upland cotton Domestic User Agreement. 1427.103... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.103 Upland cotton Domestic User Agreement. (a) Payments...

  16. 7 CFR 1427.101 - Eligible upland cotton.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Eligible upland cotton. 1427.101 Section 1427.101... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.101 Eligible upland cotton. (a) For purposes of this subpart, eligible...

  17. 7 CFR 1427.101 - Eligible upland cotton.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Eligible upland cotton. 1427.101 Section 1427.101... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.101 Eligible upland cotton. (a) For purposes of this subpart, eligible...

  18. 7 CFR 1427.101 - Eligible upland cotton.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Eligible upland cotton. 1427.101 Section 1427.101... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.101 Eligible upland cotton. (a) For purposes of this subpart, eligible...

  19. 7 CFR 1427.103 - Upland cotton Domestic User Agreement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Upland cotton Domestic User Agreement. 1427.103... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.103 Upland cotton Domestic User Agreement. (a) Payments...

  20. 7 CFR 1427.103 - Upland cotton Domestic User Agreement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Upland cotton Domestic User Agreement. 1427.103... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.103 Upland cotton Domestic User Agreement. (a) Payments...

  1. 7 CFR 1427.101 - Eligible upland cotton.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Eligible upland cotton. 1427.101 Section 1427.101... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.101 Eligible upland cotton. (a) For purposes of this subpart, eligible...

  2. 7 CFR 1427.101 - Eligible upland cotton.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Eligible upland cotton. 1427.101 Section 1427.101... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.101 Eligible upland cotton. (a) For purposes of this subpart, eligible...

  3. Assessment of chitin decomposer diversity within an upland grassland.

    PubMed

    Krsek, M; Wellington, E M

    2001-09-01

    The breakdown of chitin within an acidic upland grassland was studied. The aim was to provide a molecular characterisation of microorganisms involved in chitin degradation in the soil using soil microcosms and buried litter bags containing chitin. The investigation involved an examination of the effects of liming on the microbial communities within the soil and their chitinolytic activity. Microcosm experiments were designed to study the influence of lime and chitin enrichment on the grassland soil bacterial community ex situ under controlled environmental conditions. Bacterial and actinomycete counts were determined and total community DNA was extracted from the microcosms and from chitin bags buried at the experimental site. PCR based on specific 16S rRNA target sequences provided products for DGGE analysis to determine the structure of bacterial and actinomycete communities. Chitinase activity was assessed spectrophotometrically using chitin labelled with remazol brilliant violet. Both liming and chitin amendment increased bacterial and actinomycete viable counts and the chitinase activity. DGGE band patterns confirmed changes in bacterial populations under the influence of both treatments. PCR products amplified from DNA isolated from chitin bags were cloned and sequenced. Only a few matched known species but a prominent coloniser of chitin proved to be Stenotrophomonas maltophilia.

  4. Inventory of peat resources, Aitkin County, Minnesota

    SciTech Connect

    Not Available

    1982-01-01

    The subject of this report is the Minnesota Peat Inventory Project (MPIP) reconnaissance-level peatland survey of Aitkin County, which contains 170,050 ha (420,160 ac) of peatland. The main objectives of this study were to map the resource and to determine the quality, quantity, and energy potential of peat in the county. The report consists of (1) a text that discusses the resource and the survey; and (2) a map of the peat resources in Aitkin County. Over 700 sites were visited by the MPIP to determine peat type and depth. Samples were obtained from 188 selected representative sites for MPIP laboratory analysis. Peatlands cover 170,050 ha (420,160 ac) or 33% of the total area of Aitkin County. Total oven-dried tons of peat amount to 246,414,000 metric tons (276,237,000 US short tons). The peatlands meeting the DOE criteria for fuel-grade peat cover 30,390 ha (75,080 ac) or 18% of the county's lands is 98,134,000 oven-dried metric tons (110,012,000 oven-dried US short tons). These peatlands cover at least 80 contiguous acres and are composed of peat that (1) has an average energy value of 8,874 Btu/lb (moisture-free), (2) has an average ash content of 10.6%, and (3) is at least 150 cm (5 ft) deep. The estimated potential energy of these peat deposits is 1.97 x 10/sup 15/ Btu (1.97 quads of energy) if all three peat types, fibric, hemic, and sapric, in deposits greater than 150 cm deep are considered.

  5. HYDRAULIC CONDUCTIVITY OF ESSENTIALLY SATURATED PEAT

    SciTech Connect

    Nichols, R

    2008-02-27

    The Savannah River National Laboratory measured the hydraulic conductivity of peat samples using method ASTM D4511-00. Four samples of peat were packed into 73mm diameter plastic tubes and saturated from the bottom up with water. The columns were packed with Premier ProMoss III TBK peat to a dry density of approximately 0.16 gm/cc (10 lb/ft3). One column was packed using oven dried peat and the other 3 were packed using as delivered peat. The oven dried sample was the most difficult to saturate. All of the peat samples expanded during saturation resulting in a sample length (L) that was longer than when the sample was initially packed. Table 1 contains information related to the column packing. After saturation the hydraulic conductivity test was conducted using the apparatus shown in Figure 1. Three of the samples were tested at 2 different flow conductions, 1 high and 1 low. Table 2 and Figure 2 contain the results of the hydraulic conductivity testing. Each test was run for a minimum of 40 minutes to allow the test conditions to stabilize. The hydraulic conductivity at the end of each test is reported as the hydraulic conductivity for that test. The hydraulic conductivity of the 4 peat samples is 0.0052 {+-} 0.0009 cm/sec. This result compares well with the hydraulic conductivity measured in the pilot scale peat bed after approximately 2 months of operation. The similarity in results between the dry pack sample and moist pack samples shows the moisture content at the time of packing had a minimal effect on the hydraulic conductivity. Additionally, similarity between the results shows the test is reproducible. The hydraulic conductivity results are similar to those reported by other tests of peat samples reported in the literature.

  6. Some peat deposits in Penobscot County, Maine

    USGS Publications Warehouse

    Cameron, Cornelia Clermont; Anderson, Walter A.

    1979-01-01

    Twenty of the peat deposits in Penobscot County, Maine contain an estimated 29,282,000 short tons air-dried peat. The peat is chiefly sphagnum moss and reed-sedge of high quality according to ASTM standards for agricultural and horticultural use. Analyses show that this same volume has high fuel value, low sulfur and high hydrogen contents compared with lignite and sub-bituminous coal, which may indicate that it also has potential for fuel use. On the basis of the metallic trace element content, one area within the region containing the 20 deposits has been delineated for further bedrock studies.

  7. Trace element content of northern Ontario peat

    SciTech Connect

    Glooschenko, W.A.; Capoblanco, J.A.

    1982-03-01

    Peat samples were collected at 0-20- and 20-40-cm depths from several peatland ecosystems located in northern Ontario, Canada. Analysis was made for the trace metals Zn, Pb, Cu, Cr, Cd, and Hg. Concentration values in general were in the low ppm range and did not significantly differ in terms of peatland type or depth except for Pb. This element was signficantly higher in surface peats in bogs and fens. Concentration of metals in peats found in the study were equivalent to those in US coals, suggesting caution during combustion in terms of potential atmospheric input of metals.

  8. Interdependence of peat and vegetation in a tropical peat swamp forest.

    PubMed Central

    Page, S E; Rieley, J O; Shotyk, W; Weiss, D

    1999-01-01

    The visual uniformity of tropical peat swamp forest masks the considerable variation in forest structure that has evolved in response to differences and changes in peat characteristics over many millennia. Details are presented of forest structure and tree composition of the principal peat swamp forest types in the upper catchment of Sungai Sebangau, Central Kalimantan, Indonesia, in relation to thickness and hydrology of the peat. Consideration is given to data on peat geochemistry and age of peat that provide evidence of the ombrotrophic nature of this vast peatland and its mode of formation. The future sustainability of this ecosystem is predicted from information available on climate change and human impact in this region. PMID:11605630

  9. Peat deposits of the Carolina Bays of North Carolina

    SciTech Connect

    Ingram, R.L.; Otte, L.J.; Witner, T.W.

    1983-11-01

    Of the approximately 500 Carolina Bays larger than 100 acres (3,000 ft. long) in the Coastal Plain of North Carolina, 96 contained at least 1 ft of peat. The 96 bays have a total of 35,000 acres of peatland containing 15 millions tons of moisture-free peat. Of these 96 bays, 43 have peat greater than 4 ft thick totaling 8,000 acres with 8 million tons of peat. The largest single deposit of peat greater than 4 ft thick contains 1.1 million tons in a 1,000 acre area. Two main types of peat are present: (1) a black, fine-grained, highly decomposed peat, and (2) a brownish, decomposed somewhat fibrous peat usually found at the base of the thicker peats. An average peat has 84% moisture, 6% ash, 0.2% sulfur, and a heating value of 10,000 Btu/lb.

  10. Influence of peat formation conditions on the transformation of peat deposit organic matter

    NASA Astrophysics Data System (ADS)

    Serebrennikova, O. V.; Strelnikova, E. B.; Preis, Yu I.; Duchko, M. A.

    2015-11-01

    The paper studies the individual composition of n-alkanes, polycycloaromatic hydrocarbons, steroids, bi-, tri-, and pentacyclic terpenoids of two peat deposits of rich fen Kirek located in Western Siberia. Considering the individual n-alkanes concentrations, some indexes were calculated to estimate the humidity during peat formation. It was shown that the pH of peat medium primarily affects steroids, tri- and pentacyclic terpenoids transformations.

  11. Mobility of trace metals in pore waters of two Central European peat bogs.

    PubMed

    Novak, Martin; Pacherova, Petra

    2008-05-15

    Vertical peat profiles can only be used as archives of past changes in pollution levels if atmogenic elements are immobile after their burial. For mobile elements, similar pore-water concentrations can be expected at different peat depths. Concentrations of Pb, Cu, Zn, Cr, Mn, Fe, Co and Cd were determined in surface bog water and bog pore water 40 cm below surface in two Sphagnum-dominated peat bogs in the Czech Republic. Velke jerabi jezero (VJJ) is an upland bog located in an industrial area, Cervene blato (CB) is a lowland bog located in a rural area. Metal concentrations were monitored seasonally over 3 years (2002--2005) at both sites. Higher concentrations of Pb, Cu, Zn, Cr and Cd and lower concentrations of Mn, Fe and Co were found at the less polluted CB compared to VJJ. No clear-cut seasonality was observed in metal concentrations in bog waters, despite seasonal differences in industrial emission rates of pollutants (more coal burning in winter than in summer). This contrasts with an earlier observation of distinct seasonality in sulfate concentration and isotope composition in these stagnating bog waters. Peat substrate 40 cm below current bog surface represented pre-industrial low-pollution environment, yet pore waters at such depths contained the same metal concentrations as surface waters. The only exception was Pb, whose concentration in water solutes increased with increasing depth. Lack of vertical stratification in pore-water contents of Cu, Zn, Cr, Mn, Fe and Co indicated vertical mobility of these metals.

  12. Impacts of peatland restoration on dissolved carbon loss from eroded upland peatlands in the UK

    NASA Astrophysics Data System (ADS)

    Evans, M.; Stimson, A.; Allott, T. E. H. A.; Holland, N.

    2012-04-01

    Upland blanket peatlands in the UK are severely degraded by extensive gully erosion. Large areas have experienced complete vegetation loss. In the last decade landscape scale approaches to the restoration of eroded and bare peat have been developed in the Peak District National Park in northern England. Bare peat is re-vegetated with a nurse crop of grasses established by the aerial application of lime, seed, and fertiliser. The approach has successfully re-vegetated large areas of eroded bog a nd has been shown to dramatically reduce particulate carbon losses in runoff. The impacts of the treatment on water quality and dissolved carbon loss have not previously been fully assessed. This paper reports results from a small catchment study assessing the impacts of restoration practice in the Peak District. Data from five small catchments are presented one re-vegetated, one intact and three eroded/bare catchments. Bi-weekly water samples have been taken from the catchments between January 2011 and February 2012 and during July 2012 two of the bare sites were treated with lime, seed, and fertiliser. The data show that there are significant spikes in nutrient flux post treatment and marked effects on dissolved carbon which include initial spikes in in DOC concentration but longer term reductions in DOC concentration. Monitoring is ongoing at these sites but the evidence to date points to at least a short term benefit in DOC flux reduction from this form of peatland restoration.

  13. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.

    PubMed

    Lourie, Elena; Gjengedal, Elin

    2011-10-01

    The article presents a new approach that can be used for the purification of water contaminated by heavy metals. The treatment of peat with microalgae showed to be an effective way of increasing metal uptake by peat. Metal sorption was studied for a multimetal solution containing Cu, Cd, Ni, Zn, Cd, and Pb. Cu and Pb were found to be the metals having the highest affinity to peat. Water hardness has a strong effect on the uptake of borderline metals (Cd, Ni, Zn, Cd) from a solution. The use of algae for peat treatment resulted in less time to reach an equilibrium (24 h vs. 72 h for pure peat), and the effect of water hardness (Ca²⁺) on metal uptake was considerably reduced. Both peat and algal-treated peat were able to take up metals from rather acidic solutions (pH 3.0). pH had less influence on the metal uptake compared with water hardness. The affinity of heavy metals to peat was the following: Pb>Cu>Ni>Cd>Zn>Co. It slightly changed to Pb>Cu>Ni>Cd≈Co≈Zn when the combined sorbent, peat treated with microalga, was applied.

  14. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events.

    PubMed

    Heijmans, Monique M P D; van der Knaap, Yasmijn A M; Holmgren, Milena; Limpens, Juul

    2013-07-01

    Peatlands store approximately 30% of global soil carbon, most in moss-dominated bogs. Future climatic changes, such as changes in precipitation patterns and warming, are expected to affect peat bog vegetation composition and thereby its long-term carbon sequestration capacity. Theoretical work suggests that an episode of rapid environmental change is more likely to trigger transitions to alternative ecosystem states than a gradual, but equally large, change in conditions. We used a dynamic vegetation model to explore the impacts of drought events and increased temperature on vegetation composition of temperate peat bogs. We analyzed the consequences of six patterns of summer drought events combined with five temperature scenarios to test whether an open peat bog dominated by moss (Sphagnum) could shift to a tree-dominated state. Unexpectedly, neither a gradual decrease in the amount of summer precipitation nor the occurrence of a number of extremely dry summers in a row could shift the moss-dominated peat bog permanently into a tree-dominated peat bog. The increase in tree biomass during drought events was unable to trigger positive feedbacks that keep the ecosystem in a tree-dominated state after a return to previous 'normal' rainfall conditions. In contrast, temperature increases from 1 °C onward already shifted peat bogs into tree-dominated ecosystems. In our simulations, drought events facilitated tree establishment, but temperature determined how much tree biomass could develop. Our results suggest that under current climatic conditions, peat bog vegetation is rather resilient to drought events, but very sensitive to temperature increases, indicating that future warming is likely to trigger persistent vegetation shifts.

  15. Radioactivity of peat mud used in therapy.

    PubMed

    Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław

    2016-02-01

    The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation.

  16. The effect of pore structure on ebullition from peat

    NASA Astrophysics Data System (ADS)

    Ramirez, Jorge A.; Baird, Andy J.; Coulthard, Tom J.

    2016-06-01

    The controls on methane (CH4) bubbling (ebullition) from peatlands are uncertain, but evidence suggests that physical factors related to gas transport and storage within the peat matrix are important. Variability in peat pore size and the permeability of layers within peat can produce ebullition that ranges from steady to erratic in time and can affect the degree to which CH4 bubbles bypass consumption by methanotrophic bacteria and enter the atmosphere. Here we investigate the role of peat structure on ebullition in structurally different peats using a physical model that replicates bubble production using air injection into peat. We find that the frequency distributions of number of ebullition events per time and the magnitude of bubble loss from the physical model were similar in shape to ebullition from peatlands and incubated peats. This indicates that the physical model could be a valid proxy for naturally occurring ebullition from peat. For the first time, data on bubble sizes from peat were collected to conceptualize ebullition, and we find that peat structure affects bubble sizes. Using a new method to measure peat macrostructure, we collected evidence that supports the hypothesis that structural differences in peat determine if bubble release is steady or erratic and extreme. Collected pore size data suggest that erratic ebullition occurs when large amounts of gas stored at depth easily move through shallower layers of open peat. In contrast, steady ebullition occurs when dense shallower layers of peat regulate the flow of gas emitted from peat.

  17. Investigation of gas exchange processes in peat bog ecosystems by means of innovative Raman gas spectroscopy.

    PubMed

    Frosch, Torsten; Keiner, Robert; Michalzik, Beate; Fischer, Bernhard; Popp, Jürgen

    2013-02-05

    Highly sensitive Raman gas spectroscopy is introduced for simultaneous real time analysis of O(2), CO(2), CH(4), and N(2) in order to elucidate the dynamics of greenhouse gases evolving from climate-sensitive ecosystems. The concentrations and fluxes of this suite of biogenic gases were quantified in the head space of a water-saturated, raised peat bog ecotron. The intact peat bog, exhibiting various degradation stages of peat and sphagnum moss, was exposed to various light regimes in order to determine important ecosystem parameters such as the maximum photosynthesis rate of the sphagnum as well as the extent of soil and plant respiration. Miniaturized Raman gas spectroscopy was proven to be an extremely versatile analytical technique that allows for onsite multigas analysis in high temporal resolution. Therefore it is an urgently needed tool for elucidation of complex biochemical processes especially in climate-sensitive ecosystems and consequently for the estimation of climate-relevant gas budgets.

  18. Catchment-scale deposition and redistribution of Chernobyl radiocaesium in upland Britain

    SciTech Connect

    Higgitt, D.L.; Rowan, J.S. ); Walling, D.E. )

    1993-01-01

    Fallout from the Chernobyl nuclear accident in April 1986 resulted in a significant increase in the inventory of radiocaesium in many areas of upland Britain. Caesium-137 derived from nuclear weapons testing in the 1950s and 1960s has been widely used as a sediment tracer to monitor soil erosion. The presence of Chernobyl fallout provides an opportunity to examine the short-term, post-input behavior of radiocaesium in upland soils and assess its potential for investigating sediment transfer in upland systems. Sampling undertaken in the catchment of Lake Vyrnwy, North Wales considered the vertical distribution of radiocaesium in different soil types, the catchment-wide variation in Chernobyl fallout deposition, and the radiocaesium content of sediment from a variety of slope and fluvial environments. Whilst uncertainty surrounding the estimation of baseline inventories limits the detailed interpretation of short-term sediment dynamics, it is apparent that the sediment-associated redistribution of Chernobyl radioactivity may result in its accumulation in certain parts of the catchment over longer timescales. 18 refs., 6 figs., 2 tabs.

  19. A Few Issues on the Peat Research in the Altai Mountains

    NASA Astrophysics Data System (ADS)

    Inisheva, Lydia I.; Larina, Galina; Shurova, Maya

    2010-05-01

    At the present time we carry out complex research of marsh ecosystems in various areas of Gorny Altai to reveal the perspective deposits of peat in the Altai Mountains with the purpose of its use in the medical and recreational spheres. The peat deposits of the Northeastern Altai, Central Altai, and Southeastern Altai are surveyed; the selective chemical analysis of peat and marsh waters is carried out. The group structure of organic substance of various samples of peat is investigated by the method of Institutes of Peat. The toxic metals of Cd, Pb, Hg, Cu, Zn, and As were defined by the method of stripping voltammetry. The region of the Altai Mountains is characterized by the contrastive distribution of some heavy metals and arsenic in a soil cover. This is caused by a variety of petrography and granulometry of soil forming material, and also by a landscape and geochemical situation in the system of vertical zoning. The sources of natural accumulation of heavy metals in the ground might be the deposits of polymetals. In this connection the content of the specified toxic elements in the peat under research has been identified. The peat of the Turochak deposit is characterized by a significant ash content - up to 41,9%; the increased ash content is typical of the Kutyush deposit: from 6,1% up to 19, %. The peat of the Northeastern Altai is referred to non-bitumunous: the content of bitumen makes up less than 5%. In comparison with the European peat the peat under study of the transitive and lowland type is characterized by the significant content of easy hydrolysable substances in the amount of 24,8-41,1%. The amount of the non-hydrolysable rest makes up around 4,3 - 7,4 %. The total content of fulvic acids is less than the content of humic acids by 2,9 - 5,8 times. The high content of humic acids which can reach up to 58 % is characteristic of certain deposits. Humic acids extracted from the peat are characterized, as a rule, by similar IR-spectra. The distinctions

  20. Development of new peat based growing media by addition of pruning waste and biochars

    NASA Astrophysics Data System (ADS)

    Nieto, Aurora; Gascó, Gabriel; Paz-Ferreiro, Jorge; Plaza, César; Fernández, José Manuel; Méndez, Ana

    2015-04-01

    In the last years, several researches have been performed to find high quality and low cost substrates from different organic wastes in order to decrease peat consumption since the indiscriminate exploitation of peat lands is exhausting this non-renewable useful resource and destroying endangered wetland ecosystems worldwide. The use of organic wastes as soil amendments or possible peat substitute could be improved by pyrolysis treatment, leading to biochar, a carbon-rich material that has attached important attention. Our research group has been worked in the formulation of new based-growing media by peat substitution in 50 and 75 vol% of pruning waste (PW), commercial charcoal (CC), biochar from PW at 300°C (B300) and 500°C (B500). Growing media show adequate physicochemical and hydrophysical properties. Experiments performed with lettuce germination show that PW addition in a 75vol% reduces germination index probably due to their high content on phenolic compounds. Lettuce growing experiments were performed during 5 weeks and show that addition of PW and CC to peat decreases biomass production whereas; B300 and specially, B500 addition significantly increases the lettuce biomass.

  1. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  2. 3D modelling of mechanical peat properties in the Holocene coastal-deltaic sequence of the Netherlands

    NASA Astrophysics Data System (ADS)

    Koster, Kay; Stouthamer, Esther; Cohen, Kim; Stafleu, Jan; Busschers, Freek; Middelkoop, Hans

    2016-04-01

    Peat is abundantly present within the Holocene coastal-deltaic sequence of the Netherlands, where it is alternating with clastic fluvial, estuarine and lagoonal deposits. The areas that are rich in peat are vulnerable to land subsidence, resulting from consolidation and oxidation, due to loading by overlying deposits, infrastructure and buildings, as well as excessive artificial drainage. The physical properties of the peat are very heterogeneous, with variable clastic admixture up to 80% of its mass and rapid decrease in porosity with increasing effective stress. Mapping the spatial distribution of the peat properties is essential for identifying areas most susceptible to future land subsidence, as mineral content determines volume loss by oxidation, and porosity influences the rate of consolidation. Here we present the outline of a study focusing on mapping mechanical peat properties in relation to density and amount of admixed clastic constituents of Holocene peat layers (in 3D). In this study we use a staged approach: 1) Identifying soil mechanical properties in two large datasets that are managed by Utrecht University and the Geological Survey. 2) Determining relations between these properties and palaeogeographical development of the area by evaluating these properties against known geological concepts such as distance to clastic source (river, estuary etc.). 3) Implementing the obtained relations in GeoTOP, which is a 3D geological subsurface model of the Netherlands developed by the Geological Survey. The model will be used, among others, to assess the susceptibility of different areas to peat related land subsidence and load bearing capacity of the subsurface. So far, our analysis has focused stage 1, by establishing empirical relations between mechanical peat properties in ~70 paired (piezometer) cone penetration tests and continuously cored boreholes with LOI measurements. Results show strong correlations between net cone resistance (qn), excess pore

  3. Measurement and modeling of soil-water dynamics and evapotranspiration of drained peatland soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural peat soils serve as important sinks for nutrients, organic components, and water. Peat soils can pose major environmental problems when they are drained for agricultural production, which may change their role in the landscape from a sink to a source. To successfully restore and conserve pea...