Sample records for upper aqueous phase

  1. Mobility of arsenic in a Bangladesh aquifer: Inferences from geochemical profiles, leaching data, and mineralogical characterization

    NASA Astrophysics Data System (ADS)

    Swartz, Christopher H.; Blute, Nicole Keon; Badruzzman, Borhan; Ali, Ashraf; Brabander, Daniel; Jay, Jenny; Besancon, James; Islam, Shafiqul; Hemond, Harold F.; Harvey, Charles F.

    2004-11-01

    Aquifer geochemistry was characterized at a field site in the Munshiganj district of Bangladesh where the groundwater is severely contaminated by As. Vertical profiles of aqueous and solid phase parameters were measured in a sandy deep aquifer (depth >150 m) below a thick confining clay (119 to 150 m), a sandy upper aquifer (3.5 to 119 m) above this confining layer, and a surficial clay layer (<3.5 m). In the deep aquifer and near the top of the upper aquifer, aqueous As levels are low (<10 μg/L), but aqueous As approaches a maximum of 640 μg/L at a depth of 30 to 40 m and falls to 58 μg/L near the base (107 m) of the upper aquifer. In contrast, solid phase As concentrations are uniformly low, rarely exceeding 2 μg/g in the two sandy aquifers and never exceeding 10 μg/g in the clay layers. Solid phase As is also similarly distributed among a variety of reservoirs in the deep and upper aquifer, including adsorbed As, As coprecipitated in solids leachable by mild acids and reductants, and As incorporated in silicates and other more recalcitrant phases. One notable difference among depths is that sorbed As loads, considered with respect to solid phase Fe extractable with 1 N HCl, 0.2 M oxalic acid, and a 0.5 M Ti(III)-citrate-EDTA solution, appear to be at capacity at depths where aqueous As is highest; this suggests that sorption limitations may, in part, explain the aqueous As depth profile at this site. Competition for sorption sites by silicate, phosphate, and carbonate oxyanions appear to sustain elevated aqueous As levels in the upper aquifer. Furthermore, geochemical profiles are consistent with the hypothesis that past or ongoing reductive dissolution of Fe(III) oxyhydroxides acts synergistically with competitive sorption to maintain elevated dissolved As levels in the upper aquifer. Microprobe data indicate substantial spatial comapping between As and Fe in both the upper and deep aquifer sediments, and microscopic observations reveal ubiquitous Fe coatings on most solid phases, including quartz, feldspars, and aluminosilicates. Extraction results and XRD analysis of density/magnetic separates suggest that these coatings may comprise predominantly Fe(II) and mixed valence Fe solids, although the presence of Fe(III) oxyhydroxides can not be ruled out. These data suggest As release may continue to be linked to dissolution processes targeting Fe, or Fe-rich, phases in these aquifers.

  2. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells.

    PubMed

    Morré, D M; Morre, D J

    2000-06-23

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum

  3. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells

    NASA Technical Reports Server (NTRS)

    Morre, D. M.; Morre, D. J.

    2000-01-01

    Partitioning in dextran-poly(ethylene)glycol (PEG) aqueous-aqueous phase systems represents a mature technology with many applications to separations of cells and to the preparation of membranes from mammalian cells. Most applications to membrane isolation and purification have focused on plasma membranes, plasma membrane domains and separation of right side-out and inside-out plasma membrane vesicles. The method exploits a combination of membrane properties, including charge and hydrophobicity. Purification is based upon differential distributions of the constituents in a sample between the two principal compartments of the two phases (upper and lower) and at the interface. The order of affinity of animal cell membranes for the upper phase is: endoplasmic reticulum

  4. Effect of Coriolis force on counter-current chromatographic separation by centrifugal partition chromatography.

    PubMed

    Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro

    2004-02-06

    The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.

  5. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    PubMed Central

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  6. Design of Phosphonium-Type Zwitterion as an Additive to Improve Saturated Water Content of Phase-Separated Ionic Liquid from Aqueous Phase toward Reversible Extraction of Proteins

    PubMed Central

    Ito, Yoritsugu; Kohno, Yuki; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-01-01

    We designed phosphonium-type zwitterion (ZI) to control the saturated water content of separated ionic liquid (IL) phase in the hydrophobic IL/water biphasic systems. The saturated water content of separated IL phase, 1-butyl-3-methyimidazolium bis(trifluoromethanesulfonyl)imide, was considerably improved from 0.4 wt% to 62.8 wt% by adding N,N,N-tripentyl-4-sulfonyl-1-butanephosphonium-type ZI (P555C4S). In addition, the maximum water content decreased from 62.8 wt% to 34.1 wt% by increasing KH2PO4/K2HPO4 salt content in upper aqueous phosphate buffer phase. Horse heart cytochrome c (cyt.c) was dissolved selectively in IL phase by improving the water content of IL phase, and spectroscopic analysis revealed that the dissolved cyt.c retained its higher ordered structure. Furthermore, cyt. c dissolved in IL phase was re-extracted again from IL phase to aqueous phase by increasing the concentration of inorganic salts of the buffer solution. PMID:24013379

  7. Inorganic chemistry of water and bed sediment in selected tributaries of the south Umpqua River, Oregon, 1998

    USGS Publications Warehouse

    Hinkle, Stephen R.

    1999-01-01

    Ten sites on small South Umpqua River tributaries were sampled for inorganic constituents in water and streambed sediment. In aqueous samples, high concentrations (concentrations exceeding U.S. Environmental Protection Agency criterion continuous concentration for the protection of aquatic life) of zinc, copper, and cadmium were detected in Middle Creek at Silver Butte, and the concentration of zinc was high at Middle Creek near Riddle. Similar patterns of trace-element occurrence were observed in streambed-sediment samples.The dissolved aqueous load of zinc carried by Middle Creek along the stretch between the upper site (Middle Creek at Silver Butte) and the lower site (Middle Creek near Riddle) decreased by about 0.3 pounds per day. Removal of zinc from solution between the upper and lower sites on Middle Creek evidently was occurring at the time of sampling. However, zinc that leaves the aqueous phase is not necessarily permanently lost from solution. For example, zinc solubility is pH-dependent, and a shift between solid and aqueous phases towards release of zinc to solution in Middle Creek could occur with a perturbation in stream-water pH. Thus, at least two potentially significant sources of zinc may exist in Middle Creek: (1) the upstream source(s) producing the observed high aqueous zinc concentrations and (2) the streambed sediment itself (zinc-bearing solid phases and/or adsorbed zinc). Similar behavior may be exhibited by copper and cadmium because these trace elements also were present at high concentrations in streambed sediment in the Middle Creek Basin.

  8. Cold-induced aqueous acetonitrile phase separation: A salt-free way to begin quick, easy, cheap, effective, rugged, safe.

    PubMed

    Shao, Gang; Agar, Jeffrey; Giese, Roger W

    2017-07-14

    Cooling a 1:1 (v/v) solution of acetonitrile and water at -16° C is known to result in two clear phases. We will refer to this event as "cold-induced aqueous acetonitrile phase separation (CIPS)". On a molar basis, acetonitrile is 71.7% and 13.6% in the upper and lower phases, respectively, in our study. The phase separation proceeds as a descending cloud of microdroplets. At the convenient temperature (typical freezer) employed here the lower phase is rather resistant to solidification, although it emerges from the freezer as a solid if various insoluble matter is present at the outset. In a preliminary way, we replaced the initial (salting-out) step of a representative QuEChERS procedure with CIPS, applying this modified procedure ("CIPS-QuEChERS") to a homogenate of salmon (and partly to beef). Three phases resulted, where only the upper, acetonitrile-rich phase is a liquid (that is completely clear). The middle phase comprises ice and precipitated lipids, while the lower phase is the residual matrix of undissolved salmon or meat. Treating the upper phase from salmon, after isolation, with anhydrous MgSO 4 and C18-Si (typical QuEChERS dispersive solid phase extraction sorbents), and injecting into a GC-MS in a nontargeted mode, gives two-fold more preliminary hits for chemicals, and also number of spiked pesticides recovered, relative to that from a comparable QuEChERS method. In part, this is because of much higher background signals in the latter case. Further study of CIPS-QuEChERS is encouraged, including taking advantage of other QuERChERS conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ionic liquid-anionic surfactant based aqueous two-phase extraction for determination of antibiotics in honey by high-performance liquid chromatography.

    PubMed

    Yang, Xiao; Zhang, Shaohua; Yu, Wei; Liu, Zhongling; Lei, Lei; Li, Na; Zhang, Hanqi; Yu, Yong

    2014-06-01

    An ionic liquid-anionic surfactant based aqueous two-phase extraction was developed and applied for the extraction of tetracycline, oxytetracycline and chloramphenicol in honey. The honey sample was mixed with Na2EDTA aqueous solution. The sodium dodecyl sulfate, ionic liquid 1-octyl-3-methylimidazolium bromide and sodium chloride were added in the mixture. After the resulting mixture was ultrasonically shaken and centrifuged, the aqueous two phase system was formed and analytes were extracted into the upper phase. The parameters affecting the extraction efficiency, such as the volume of ionic liquid, the category and amount of salts, sample pH value, extraction time and temperature were investigated. The limits of detection of tetracycline, oxytetracycline and chloramphenicol were 5.8, 8.2 and 4.2 μg kg(-1), respectively. When the present method was applied to the analysis of real honey samples, the recoveries of analytes ranged from 85.5 to 110.9% and relative standard deviations were lower than 6.9%. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  11. Diffusion-regulated phase-transfer catalysis for atom transfer radical polymerization of methyl methacrylate in an aqueous/organic biphasic system.

    PubMed

    Ding, Mingqiang; Jiang, Xiaowu; Peng, Jinying; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2015-03-01

    A concept based on diffusion-regulated phase-transfer catalysis (DRPTC) in an aqueous-organic biphasic system with copper-mediated initiators for continuous activator regeneration is successfully developed for atom transfer radical polymerization (ICAR ATRP) (termed DRPTC-based ICAR ATRP here), using methyl methacrylate (MMA) as a model monomer, ethyl α-bromophenylacetate (EBrPA) as an initiator, and tris(2-pyridylmethyl)amine (TPMA) as a ligand. In this system, the monomer and initiating species in toluene (organic phase) and the catalyst complexes in water (aqueous phase) are simply mixed under stirring at room temperature. The trace catalyst complexes transfer into the organic phase via diffusion to trigger ICAR ATRP of MMA with ppm level catalyst content once the system is heated to the polymerization temperature (75 °C). It is found that well-defined PMMA with controlled molecular weights and narrow molecular weight distributions can be obtained easily. Furthermore, the polymerization can be conducted in the presence of limited amounts of air without using tedious degassed procedures. After cooling to room temperature, the upper organic phase is decanted and the lower aqueous phase is reused for another 10 recycling turnovers with ultra low loss of catalyst and ligand loading. At the same time, all the recycled catalyst complexes retain nearly perfect catalytic activity and controllability, indicating a facile and economical strategy for catalyst removal and recycling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cell separation in immunoaffinity partition in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1989-01-01

    Two methods for immunoaffinity partitioning are described. One technique involves the covalent coupling of poly (ethylene glycol) (PEG) to immunoglobulin G antibody preparations. In the second method PEG-modified Protein A is used to complex with cells and unmodified antibody. The effects of PEG molecular weight, the degree of modification, and varying phase system composition on antibody activity and its affinity for the upper phase are studied. It is observed that both methods resulted in effective cell separation.

  13. Interfacially polymerized layers for oxygen enrichment: a method to overcome Robeson's upper-bound limit.

    PubMed

    Tsai, Ching-Wei; Tsai, Chieh; Ruaan, Ruoh-Chyu; Hu, Chien-Chieh; Lee, Kueir-Rarn

    2013-06-26

    Interfacial polymerization of four aqueous phase monomers, diethylenetriamine (DETA), m-phenylenediamine (mPD), melamine (Mela), and piperazine (PIP), and two organic phase monomers, trimethyl chloride (TMC) and cyanuric chloride (CC), produce a thin-film composite membrane of polymerized polyamide layer capable of O2/N2 separation. To achieve maximum efficiency in gas permeance and O2/N2 permselectivity, the concentrations of monomers, time of interfacial polymerization, number of reactive groups in monomers, and the structure of monomers need to be optimized. By controlling the aqueous/organic monomer ratio between 1.9 and 2.7, we were able to obtain a uniformly interfacial polymerized layer. To achieve a highly cross-linked layer, three reactive groups in both the aqueous and organic phase monomers are required; however, if the monomers were arranged in a planar structure, the likelihood of structural defects also increased. On the contrary, linear polymers are less likely to result in structural defects, and can also produce polymer layers with moderate O2/N2 selectivity. To minimize structural defects while maximizing O2/N2 selectivity, the planar monomer, TMC, containing 3 reactive groups, was reacted with the semirigid monomer, PIP, containing 2 reactive groups to produce a membrane with an adequate gas permeance of 7.72 × 10(-6) cm(3) (STP) s(-1) cm(-2) cm Hg(-1) and a high O2/N2 selectivity of 10.43, allowing us to exceed the upper-bound limit of conventional thin-film composite membranes.

  14. Partitioning studies of coal-tar constituents in a two-phase contaminated ground-water system

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Hult, M.F.

    1985-01-01

    Organic compounds derived from coal-tar wastes in a contaminated aquifer in St. Louis Park, Minnesota, were identified, and their partition coefficients between the tar phase and aqueous phase were determined and compared with the corresponding n-octanol/water partition coefficients. Coal tar contains numerous polycyclic aromatic compounds, many of which are suspected carcinogens or mutagens. Groundwater contamination by these toxic compounds may pose an environmental health hazard in nearby public water-supply wells. Fluid samples from this aquifer developed two phases upon settling: an upper aqueous phase, and a lower oily-tar phase. After separating the phases, polycyclic aromatic compounds in each phase were isolated using complexation with N-methyl-2-pyrrolidone and identified by fused-silica capillary gas chromatography/mass spectrometry. Thirty-one of the polycyclic aromatic compounds were chosen for further study from four different classes: 12 polycyclic aromatic hydrocarbons, 10 nitrogen heterocycles, 5 sulfur heterocycles, and 4 oxygen heterocycles. Within each compound class, the tar/water partition coefficients of these compounds were reasonably comparable with the respective n-octanol/water partition coefficient.

  15. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    PubMed

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hydrophilic organic/salt-containing aqueous two-phase solvent system for counter-current chromatography: a novel technique for separation of polar compounds.

    PubMed

    Liu, Dan; Zou, Xiaowei; Gao, Mingzhe; Gu, Ming; Xiao, Hongbin

    2014-08-22

    Hydrophilic organic/salt-containing aqueous two-phase system composing of ethanol, water and ammonium sulfate for separation polar compounds was investigated on multilayer coil associated with J-type HSCCC devices. Compared to the classical polar solvent system based on 1-butanol-water or PEG1000-ammonium sulfate-water, the water content of upper phase in ethanol-ammonium sulfate-water systems was from 53.7% to 32.8% (wt%), closed to PEG1000-ammonium sulfate-water aqueous two-phase systems and higher than 1-butanol-water (22.0%, wt%). Therefore, the polarity of ethanol-ammonium sulfate-water is in the middle of 1-butanol-water and PEG-ammonium sulfate-water system, which is quite good for separating polar compounds like phenols, nucleosides and amino acids with low partition coefficient in 1-octanol-water system. The retention of stationary phase in four elution mode on type-J counter-current chromatography devices with multilayer coil column changed from 26% to 71%. Hydrodynamic trend possess both intermediate and hydrophilic solvent system property, which closely related to the composition of solvent system. The applicability of this system was demonstrated by successful separation of adenosine, uridine guanosine and cytidine. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Separation of Cd and Ni from Ni-Cd batteries by an environmentally safe methodology employing aqueous two-phase systems

    NASA Astrophysics Data System (ADS)

    Lacerda, Vânia Gonçalves; Mageste, Aparecida Barbosa; Santos, Igor José Boggione; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol

    The separation of Cd and Ni from Ni-Cd batteries using an aqueous two-phase system (ATPS) composed of copolymer L35, Li 2SO 4 and water is investigated. The extraction behavior of these metals from the bottom phase (BP) to the upper phase (UP) of the ATPS is affected by the amount of added extractant (potassium iodide), tie-line length (TLL), mass ratio between the phases of the ATPS, leaching and dilution factor of the battery samples. Maximum extraction of Cd (99.2 ± 3.1)% and Ni (10.6 ± 0.4)% is obtained when the batteries are leached with HCl, under the following conditions: 62.53% (w/w) TLL, concentration of KI equal to 50.00 mmol kg -1, mass ratio of the phases equal to 0.5 and a dilution factor of battery samples of 35. This novel methodology is efficient to separate the metals in question, with the advantage of being environmentally safe, since water is the main constituent of the ATPS, which is prepared with recyclable and biodegradable compounds.

  18. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic-aqueous two-phase solvent systems.

    PubMed

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-05-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1=300 rpm, ω2=150 rpm and ω3=150 rpm. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effects of solid/liquid phase fractionation on pH and aqueous species molality in subduction zone fluids

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Galvez, M. E.

    2017-12-01

    Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.

  20. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions

    PubMed Central

    Massoli, Paola; Paglione, Marco; Giulianelli, Lara; Carbone, Claudio; Rinaldi, Matteo; Decesari, Stefano; Sandrini, Silvia; Costabile, Francesca; Gobbi, Gian Paolo; Pietrogrande, Maria Chiara; Visentin, Marco; Scotto, Fabiana; Fuzzi, Sandro; Facchini, Maria Cristina

    2016-01-01

    The mechanisms leading to the formation of secondary organic aerosol (SOA) are an important subject of ongoing research for both air quality and climate. Recent laboratory experiments suggest that reactions taking place in the atmospheric liquid phase represent a potentially significant source of SOA mass. Here, we report direct ambient observations of SOA mass formation from processing of biomass-burning emissions in the aqueous phase. Aqueous SOA (aqSOA) formation is observed both in fog water and in wet aerosol. The aqSOA from biomass burning contributes to the “brown” carbon (BrC) budget and exhibits light absorption wavelength dependence close to the upper bound of the values observed in laboratory experiments for fresh and processed biomass-burning emissions. We estimate that the aqSOA from residential wood combustion can account for up to 0.1–0.5 Tg of organic aerosol (OA) per y in Europe, equivalent to 4–20% of the total OA emissions. Our findings highlight the importance of aqSOA from anthropogenic emissions on air quality and climate. PMID:27551086

  1. Isolation of >1 nm Diameter Single-Wall Carbon Nanotube Species Using Aqueous Two-Phase Extraction.

    PubMed

    Fagan, Jeffrey A; Hároz, Erik H; Ihly, Rachelle; Gui, Hui; Blackburn, Jeffrey L; Simpson, Jeffrey R; Lam, Stephanie; Hight Walker, Angela R; Doorn, Stephen K; Zheng, Ming

    2015-05-26

    In this contribution we demonstrate the effective separation of single-wall carbon nanotube (SWCNT) species with diameters larger than 1 nm through multistage aqueous two-phase extraction (ATPE), including isolation at the near-monochiral species level up to at least the diameter range of SWCNTs synthesized by electric arc synthesis (1.3-1.6 nm). We also demonstrate that refined species are readily obtained from both the metallic and semiconducting subpopulations of SWCNTs and that this methodology is effective for multiple SWCNT raw materials. Using these data, we report an empirical function for the necessary surfactant concentrations in the ATPE method for separating different SWCNTs into either the lower or upper phase as a function of SWCNT diameter. This empirical correlation enables predictive separation design and identifies a subset of SWCNTs that behave unusually as compared to other species. These results not only dramatically increase the range of SWCNT diameters to which species selective separation can be achieved but also demonstrate that aqueous two-phase separations can be designed across experimentally accessible ranges of surfactant concentrations to controllably separate SWCNT populations of very small (∼0.62 nm) to very large diameters (>1.7 nm). Together, the results reported here indicate that total separation of all SWCNT species is likely feasible by the ATPE method, especially given future development of multistage automated extraction techniques.

  2. Distribution of free and antibody-bound peptide hormones in two-phase aqueous polymer systems

    PubMed Central

    Desbuquois, Bernard; Aurbach, G. D.

    1972-01-01

    Peptide hormones labelled with radioactive iodine were partitioned into the aqueous two-phase polymer systems developed by Albertsson (1960) and the conditions required for separation of free from antibody-bound hormone have been worked out. Hormones studied included insulin, growth hormone, parathyroid hormone and [arginine]-vasopressin. Free and antibody-bound hormones show different distribution coefficients in a number of systems tested; two systems, the dextran–polyethylene glycol and dextran sulphate–polyethylene glycol system, give optimum separation. Free hormones distribute readily into the upper phase of these systems, whereas hormone–antibody complexes, as well as uncombined antibody, are found almost completely in the lower phase. Various factors including the polymer concentration, the ionic composition of the system, the nature of the hormone and the nature of added serum protein differentially affect the distribution coefficients for free and antibody-bound hormone. These factors can be adequately controlled so as to improve separation. The two-phase partition method has been successfully applied to measure binding of labelled hormone to antibody under standard radioimmunoassay conditions. It exhibits several advantages over the method of equilibration dialysis and can be applied to the study of non-immunological interactions. PMID:4672674

  3. Design of a novel coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with organic-aqueous two-phase solvent systems

    PubMed Central

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-01-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1 = ω2 + ω3. This relation enabled to lay out the flow tube by two different ways, the SS type and the JS type. In the SS type, the flow tube was introduced from the upper side of the apparatus into the sun axis of the first rotary frame and connected to the planet axis of the second rotary frame like a double letter SS. In the JS type, the flow tube was introduced from the bottom of the apparatus into the sun axis reaching the upper side of the planet axis an inversed letter J, followed by distribution as in the SS type. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for lower phase mobile and (1 : 4 : 5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) – CCW (ω2) – CCW (ω3) by the JS type flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) – CW (ω2) – CW (ω3) by the JS type flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase mobile when using the left-handed multilayer coil (total capacity: 57.0 mL for column 1 and 75.0 mL for column 2) under the rotation speeds of approximately ω1 = 300 rpm, ω2 = 150 rpm and ω3 = 150 rpm. PMID:25805719

  4. Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers

    PubMed Central

    Quiroz, Felipe García; Chilkoti, Ashutosh

    2015-01-01

    Proteins and synthetic polymers that undergo aqueous phase transitions mediate self-assembly in nature and in man-made material systems. Yet little is known about how the phase behaviour of a protein is encoded in its amino acid sequence. Here, by synthesizing intrinsically disordered, repeat proteins to test motifs that we hypothesized would encode phase behaviour, we show that the proteins can be designed to exhibit tunable lower or upper critical solution temperature (LCST and UCST, respectively) transitions in physiological solutions. We also show that mutation of key residues at the repeat level abolishes phase behaviour or encodes an orthogonal transition. Furthermore, we provide heuristics to identify, at the proteome level, proteins that might exhibit phase behaviour and to design novel protein polymers consisting of biologically active peptide repeats that exhibit LCST or UCST transitions. These findings set the foundation for the prediction and encoding of phase behaviour at the sequence level. PMID:26390327

  5. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOEpatents

    Agblevor, Foster A.; Besler-Guran, Serpil

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  6. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems.

    PubMed

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-12-27

    A new design of universal high-speed counter-current chromatograph (HSCCC) was fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. An ammonium sulfate/ethanol aqueous two-phase system combined with ultrasonication for the separation and purification of lithospermic acid B from Salvia miltiorrhiza Bunge.

    PubMed

    Guo, Y X; Han, J; Zhang, D Y; Wang, L H; Zhou, L L

    2012-07-01

    We studied the effect of ultrasonication extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS) for the separation of lithospermic acid B (LAB) from Salvia miltiorrhiza Bunge. According to the literature and preliminary studies, ammonium sulfate concentration, ethanol concentration, pH, ultrasonication power, ultrasonication time and the ratio of solvent-to-solid were investigated using a single factor design to identify the factors affecting separation. Taking into consideration a simultaneous increase in LAB recovery (R (%)) and partition coefficient (K), the best performance of the ATPS was obtained at 25°C and pH 2 using ammonium sulfate 22% (w/w) and ethanol 30% (w/w). To keep the solvent-to-solid ratio at 10, response surface methodology was used to find the optimal ultrasonication power and ultrasonication time. Quadratic models were predicted for LAB yield in the upper phase. Optimal conditions of 572.1 W ultrasonication power and 42.2 min produced a maximum yield of LAB of 42.16 mg g(-1) sample. There was no obvious degradation of LAB with ultrasound under the applied conditions, and the experimental yield of LAB was 42.49 mg g(-1) sample and the purity was 55.28% (w/w), which was much higher than that obtained using conventional extraction. The present study demonstrated that ultrasound coupled with aqueous two-phase systems is very efficient tool for the extraction and purification of LAB from Salvia miltiorrhiza Bunge. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, Jay D.

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant tomore » terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.« less

  9. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  10. Kinetics of nitrosamine and amine reactions with NO3 radical and ozone related to aqueous particle and cloud droplet chemistry

    NASA Astrophysics Data System (ADS)

    Weller, Christian; Herrmann, Hartmut

    2015-01-01

    Aqueous phase reactivity experiments with the amines dimethylamine (DMA), diethanolamine (DEA) and pyrrolidine (PYL) and their corresponding nitrosamines nitrosodimethylamine (NDMA), nitrosodiethanolamine (NDEA) and nitrosopyrrolidine (NPYL) have been performed. NO3 radical reaction rate coefficients for DMA, DEA and PYL were measured for the first time and are 3.7 × 105, 8.2 × 105 and 8.7 × 105 M-1 s-1, respectively. Rate coefficients for NO3 + NDMA, NDEA and NPYL are 1.2 × 108, 2.3 × 108 and 2.4 × 108 M-1 s-1. Compared to OH radical rate coefficients for reactions with amines, the NO3 radical will most likely not be an important oxidant but it is a potential nighttime oxidant for nitrosamines in cloud droplets or deliquescent particles. Ozone is unreactive towards amines and nitrosamines and upper limits of rate coefficients suggest that aqueous ozone reactions are not important in atmospheric waters.

  11. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate.

    PubMed

    Powelson, Michelle H; Espelien, Brenna M; Hawkins, Lelia N; Galloway, Melissa M; De Haan, David O

    2014-01-21

    Reactions between small water-soluble carbonyl compounds, ammonium sulfate (AS), and/or amines were evaluated for their ability to form light-absorbing species in aqueous aerosol. Aerosol chemistry was simulated with bulk phase reactions at pH 4, 275 K, initial concentrations of 0.05 to 0.25 M, and UV-vis and fluorescence spectroscopy monitoring. Glycolaldehyde-glycine mixtures produced the most intense absorbance. In carbonyl compound reactions with AS, methylamine, or AS/glycine mixtures, product absorbance followed the order methylglyoxal > glyoxal > glycolaldehyde > hydroxyacetone. Absorbance extended into the visible, with a wavelength dependence fit by absorption Ångstrom coefficients (Å(abs)) of 2 to 11, overlapping the Å(abs) range of atmospheric, water-soluble brown carbon. Many reaction products absorbing between 300 and 400 nm were strongly fluorescent. On a per mole basis, amines are much more effective than AS at producing brown carbon. In addition, methylglyoxal and glyoxal produced more light-absorbing products in reactions with a 5:1 AS-glycine mixture than with AS or glycine alone, illustrating the importance of both organic and inorganic nitrogen in brown carbon formation. Through comparison to biomass burning aerosol, we place an upper limit on the contribution of these aqueous carbonyl-AS-amine reactions of ≤ 10% of global light absorption by brown carbon.

  12. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  13. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: phase diagrams and molecular dynamic simulations.

    PubMed

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-28

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  14. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage

    USGS Publications Warehouse

    White, Sarah Jane O.; Hussain, Fatima A.; Hemond, Harold F.; Sacco, Sarah A.; Shine, James P.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~ 3, indium concentrations are 6–29 μg/L (10,000 × those found in natural rivers), and are completely filterable through a 0.45 μm filter. During a pH modification experiment, the pH of the system was raised to > 8, and > 99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45 μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

  15. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  16. Stepwise pH-gradient elution for the preparative separation of natural anthraquinones by multiple liquid-liquid partition.

    PubMed

    Hynninen, P H; Räisänen, R

    2001-01-01

    Preparative-scale separation of substituted anthraquinones by multiple liquid-liquid partition was studied using isopropylmethyl ketone (IMK)/aqueous phosphate buffer (aq.) as the solvent system and the Hietala apparatus with 100 partition units as the partition equipment. The lower (aq.) phase was chosen as mobile, while the upper (IMK) phase remained stationary. Hence, the principle of stepwise pH-gradient elution could be utilized to separate the components in two complex mixtures of hydroxyanthraquinones and hydroxyanthraquinone carboxylic acids, isolated from the fungus Dermocybe sanguinea. In spite of the nonlinearity of the partition isotherms for these anthraquinones, implying deviations from the Nernst partition law, remarkable separations were achieved for the components in each mixture. Every anthraquinone carboxylic acid showed markedly irregular partition behavior, appearing in the effluent as two more or less resolved concentration zones. Such splitting was attributed to the formation of relatively stable sandwich-dimers, which were in a slow equilibrium with the monomers in the more nonpolar organic phase. At lower pH-values, only the polar monomers were distributed into the mobile aqueous phase and moved forward, whereas the nonpolar sandwich-dimers remained almost entirely in the stationary organic phase and lagged behind. When the pH of the mobile aqueous phase was raised high enough, the firmly linked dimers were monomerized and emerged from the apparatus as a second concentration profile. Intermolecular hydrogen bonding and pi-pi interaction between the pi-systems of two anthraquinone molecules in a parallel orientation were considered responsible for the nonlinear and markedly irregular partition behavior of the natural anthraquinones studied. The nonlinearity of the partition behavior of the hydroxyanthraquinones lacking the carboxyl group, appeared merely as excessive broadening of the experimental concentration profile, which impaired the resolution between the components only insignificantly. Thus, e.g. the main components, dermocybin and emodin, could both be obtained from Separation 1 in a purity of at least 99%.

  17. Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System

    PubMed Central

    Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen

    2013-01-01

    Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434

  18. Simultaneous Separation of Manganese, Cobalt, and Nickel by the Organic-Aqueous-Aqueous Three-Phase Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shirayama, Sakae; Uda, Tetsuya

    2016-04-01

    This research outlines an organic-aqueous-aqueous three-phase solvent extraction method and proposes its use in a new metal separation process for the recycling of manganese (Mn), cobalt (Co), and nickel (Ni) from used lithium ion batteries (LIBs). The three-phase system was formed by mixing xylene organic solution, 50 pct polyethylene glycol (PEG) aqueous solution, and 1 mol L-1 sodium sulfate (Na2SO4) aqueous solution. The xylene organic solution contained 2-ethylhexylphosphonic acid (D2EHPA) as an extractant for Mn ion, and the Na2SO4 aqueous solution contained 1 mol L-1 potassium thiocyanate (KSCN) as an extractant for Co ion. Concentrations of the metal ions were varied by dissolving metal sulfates in the Na2SO4 aqueous solution. As a result of the experiments, Mn, Co, and Ni ions were distributed in the xylene organic phase, PEG-rich aqueous phase, and Na2SO4-rich aqueous phase, respectively. The separation was effective when the pH value was around 4. Numerical simulation was also conducted in order to predict the distribution of metal ions after the multi-stage counter-current extractions.

  19. Formulation of poorly water-soluble drugs via coacervation--a pilot study using febantel.

    PubMed

    De Jaeghere, W; De Geest, B G; Van Bocxlaer, J; Remon, J P; Vervaet, C; Antunes da Fonseca, A

    2013-11-01

    In this study, febantel was dissolved under increased temperature in a nonionic surfactant Lutrol L44® and subsequently mixed into an aqueous maltodextrin solution. After 8h under static conditions, coacervation or phase separation took place. (1)H NMR spectra and HPLC analysis showed that the upper phase contained mainly all febantel, while no febantel was detected in the lower phase. Fluorescent microscopy showed that maltodextrin is distributed in the lower phase. Coacervation proved to be a promising formulation technology for certain poorly water-soluble drugs, such as febantel. The coacervate phase showed an increase in in vitro dissolution kinetics, compared to Rintal® granules. These results were confirmed in an in vivo study performed on dogs. Febantel and fenbendazole showed a significant increase in plasma concentration compared to Rintal® granules. Further studies have to be performed to transform coacervates into a solid dosage form and to prove broad applicability to other poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Segregation in like-charged polyelectrolyte-surfactant mixtures can be precisely tuned via manipulation of the surfactant mass ratio.

    PubMed

    Wills, Peter W; Lopez, Sonia G; Burr, Jocelyn; Taboada, Pablo; Yeates, Stephen G

    2013-04-09

    In this study, we consider segregative phase separation in aqueous mixtures of quaternary ammonium surfactants didecyldimethylammonium chloride (DDQ) and alkyl (C12, 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) upon the addition of poly(diallyldimethylammonium) chloride (pDADMAC) as a function of both concentration and molecular weight. The nature of the surfactant type is dominant in determining the concentration at which separation into an upper essentially surfactant-rich phase and lower polyelectrolyte-rich phase is observed. However, for high-molecular-weight pDADMAC there is a clear indication of an additional depletion flocculation effect. When the BAC/DDQ ratio is tuned, the segregative phase separation point can be precisely controlled. We propose a phase separation mechanism for like-charged quaternary ammonium polyelectrolyte/surfactant/water mixtures induced by a reduction in the ionic atmosphere around the surfactant headgroup and possible ion pair formation. An additional polyelectrolyte-induced depletion flocculation effect was also observed.

  1. Centrifugal partition chromatography in a biorefinery context: Separation of monosaccharides from hydrolysed sugar beet pulp.

    PubMed

    Ward, David P; Cárdenas-Fernández, Max; Hewitson, Peter; Ignatova, Svetlana; Lye, Gary J

    2015-09-11

    A critical step in the bioprocessing of sustainable biomass feedstocks, such as sugar beet pulp (SBP), is the isolation of the component sugars from the hydrolysed polysaccharides. This facilitates their subsequent conversion into higher value chemicals and pharmaceutical intermediates. Separation methodologies such as centrifugal partition chromatography (CPC) offer an alternative to traditional resin-based chromatographic techniques for multicomponent sugar separations. Highly polar two-phase systems containing ethanol and aqueous ammonium sulphate are examined here for the separation of monosaccharides present in hydrolysed SBP pectin: l-rhamnose, l-arabinose, d-galactose and d-galacturonic acid. Dimethyl sulfoxide (DMSO) was selected as an effective phase system modifier improving monosaccharide separation. The best phase system identified was ethanol:DMSO:aqueous ammonium sulphate (300gL(-1)) (0.8:0.1:1.8, v:v:v) which enabled separation of the SBP monosaccharides by CPC (200mL column) in ascending mode (upper phase as mobile phase) with a mobile phase flow rate of 8mLmin(-1). A mixture containing all four monosaccharides (1.08g total sugars) in the proportions found in hydrolysed SBP was separated into three main fractions; a pure l-rhamnose fraction (>90%), a mixed l-arabinose/d-galactose fraction and a pure d-galacturonic acid fraction (>90%). The separation took less than 2h demonstrating that CPC is a promising technique for the separation of these sugars with potential for application within an integrated, whole crop biorefinery. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Solvent extraction system for plutonium colloids and other oxide nano-particles

    DOEpatents

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  3. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs.

    PubMed

    Liang, Bo; Zhang, Kai; Wang, Li-Ying; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2018-01-01

    To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55-65°C) by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature ( p < 0.05). Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.

  4. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    PubMed Central

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  5. Geomorphic and Aqueous Chemistry of a Portion of the Upper Rio Tinto System, Spain

    NASA Technical Reports Server (NTRS)

    Osburn, M. R.; Fernandez-Remolar, D. C.; Arvidson, R. E.; Morris, R. V.; Ming, D.; Prieto-Ballesteros, O.; Amils, R.; Stein, T. C.; Heil-Chapdelaine, V.; Friedlander, L. R.; hide

    2007-01-01

    Observations from the two Mars rovers, Spirit and Opportunity, combined with discoveries of extensive hydrated sulfate deposits from OMEGA and CRISM show that aqueous deposition and alteration involving acidic systems and sulfate deposition has been a key contributor to the martian geologic record. Rio Tinto, Spain, provides a process model for formation of sulfates on Mars by evaporation of acidic waters within shallow fluvial pools, particularly during dry seasons. We present results from a detailed investigation of an upper portion of the Rio Tinto, focusing on geomorphology, clastic sediment transport, and acidic aqueous processes. We also lay out lessons-learned for under-standing sulfate formation and alteration on Mars.

  6. POLONIUM SEPARATION PROCESS

    DOEpatents

    Karraker, D.G.

    1959-07-14

    A liquid-liquid extraction process is presented for the recovery of polonium from lead and bismuth. According to the invention an acidic aqueous chloride phase containing the polonium, lead, and bismuth values is contacted with a tributyl phosphate ether phase. The polonium preferentially enters the organic phase which is then separated and washed with an aqueous hydrochloric solution to remove any lead or bismuth which may also have been extracted. The now highly purified polonium in the organic phase may be transferred to an aqueous solution by extraction with aqueous nitric acid.

  7. CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, Camille; Deguillaume, Laurent; Monod, Anne; Perroux, Hélène; Rose, Clémence; Ghigo, Giovanni; Long, Yoann; Leriche, Maud; Aumont, Bernard; Patryl, Luc; Armand, Patrick; Chaumerliac, Nadine

    2017-03-01

    A new detailed aqueous phase mechanism named the Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) is proposed to describe the oxidation of water soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) which provide global rate constants together with branching ratios for HOṡ abstraction and addition on atmospheric organic compounds. The GROMHE SAR allows the evaluation of Henry's law constants for undocumented organic compounds. This new aqueous phase mechanism is coupled with the MCM v3.3.1 gas phase mechanism through a mass transfer scheme between gas phase and aqueous phase. The resulting multiphase mechanism has then been implemented in a model based on the Dynamically Simple Model for Atmospheric Chemical Complexity (DSMACC) using the Kinetic PreProcessor (KPP) that can serve to analyze data from cloud chamber experiments and field campaigns. The simulation of permanent cloud under low-NOx conditions describes the formation of oxidized monoacids and diacids in the aqueous phase as well as a significant influence on the gas phase chemistry and composition and shows that the aqueous phase reactivity leads to an efficient fragmentation and functionalization of organic compounds.

  8. Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production.

    PubMed

    Shanmugam, Saravanan R; Adhikari, Sushil; Wang, Zhouhang; Shakya, Rajdeep

    2017-01-01

    Hydrothermal liquefaction of wet biomass such as algae is a promising thermochemical process for the production of bio-oil. Bio-oil aqueous phase generated during liquefaction process is rich in complex organics and can be utilized for biogas production following its pre-treatment with granular activated carbon. In our study, use of 30% activated carbon resulted in higher chemical oxygen demand (COD) reduction (53±0.3%) from aqueous phase. Higher CH 4 production (84±12mL/gCOD) was also observed in 30% carbon-treated aqueous phase fed cultures, whereas only 32±6mLCH 4 /gCOD was observed in control (non-carbon treated) cultures. The results from this study indicate that almost 67±0.3% initial COD of aqueous phase can be reduced using a combination of both carbon treatment and biogas production. This study shows that aqueous phase can be utilized for CH 4 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.

  10. Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Zhan, Hongbin; Zhou, Renjie

    2016-07-01

    Solutions with one-, two-, and three-dimensional arbitrary shape source geometries will be very helpful tools for investigating a variety of contaminant transport problems in the geological media. This study proposed a general method to develop new solutions for solute transport in a saturated, homogeneous aquifer (confined or unconfined) with a constant, unilateral groundwater flow velocity. Several typical source geometries, such as arbitrary line sources, vertical and horizontal patch sources, circular and volumetric sources, were considered. The sources can sit on the upper or lower aquifer boundary to simulate light non-aqueous-phase-liquids (LNAPLs) or dense non-aqueous-phase-liquids (DNAPLs), respectively, or can be located anywhere inside the aquifer. The developed new solutions were tested against previous benchmark solutions under special circumstances and were shown to be robust and accurate. Such solutions can also be used as a starting point for the inverse problem of source zone and source geometry identification in the future. The following findings can be obtained from analyzing the solutions. The source geometry, including shape and orientation, generally played an important role for the concentration profile through the entire transport process. When comparing the inclined line sources with the horizontal line sources, the concentration contours expanded considerably along the vertical direction, and shrank considerably along the groundwater flow direction. A planar source sitting on the upper aquifer boundary (such as a LNAPL pool) would lead to significantly different concentration profiles compared to a planar source positioned in a vertical plane perpendicular to the flow direction. For a volumetric source, its dimension along the groundwater flow direction became less important compared to its other two dimensions.

  11. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    PubMed

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Biphasic catalysis in water/carbon dioxide micellar systems

    DOEpatents

    Jacobson, Gunilla B.; Tumas, William; Johnston, Keith P.

    2002-01-01

    A process is provided for catalyzing an organic reaction to form a reaction product by placing reactants and a catalyst for the organic reaction, the catalyst of a metal complex and at least one ligand soluble within one of the phases of said aqueous biphasic system, within an aqueous biphasic system including a water phase, a dense phase fluid, and a surfactant adapted for forming an emulsion or microemulsion within the aqueous biphasic system, the reactants soluble within one of the phases of the aqueous biphasic system and convertible in the presence of the catalyst to a product having low solubility in the phase in which the catalyst is soluble; and, maintaining the aqueous biphasic system under pressures, at temperatures, and for a period of time sufficient for the organic reaction to occur and form the reaction product and to maintain sufficient density on the dense phase fluid, the reaction product characterized as having low solubility in the phase in which the catalyst is soluble.

  13. Reversible, on-demand generation of aqueous two-phase microdroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phasemore » transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.« less

  14. Centrifugal contactor with liquid mixing and flow control vanes and method of mixing liquids of different phases

    DOEpatents

    Jubin, Robert T.; Randolph, John D.

    1991-01-01

    The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.

  15. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    EPA Science Inventory

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  16. Measurement of Biologically Available Naphthalene in Gas and Aqueous Phases by Use of a Pseudomonas putida Biosensor

    PubMed Central

    Werlen, Christoph; Jaspers, Marco C. M.; van der Meer, Jan Roelof

    2004-01-01

    Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 μM). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices. PMID:14711624

  17. Laboratory studies of aqueous-phase oxidation of polyols in submicron particles

    NASA Astrophysics Data System (ADS)

    Daumit, K. E.; Carrasquillo, A. J.; Hunter, J. F.; Kroll, J. H.

    2013-12-01

    Aqueous-phase oxidation has received recent attention as a potential pathway for the formation of highly oxidized organic aerosol. However most aqueous oxidation studies are performed in bulk solutions rather than aqueous droplets. Here we describe experiments in which aqueous oxidation is carried out within submicron particles, allowing for gas-particle partitioning of reactants, intermediates, and products. Using Fenton chemistry as a source of hydroxyl radicals, and a high-resolution aerosol mass spectrometer (AMS) for online characterization of particle composition, we find that aqueous oxidation can be quite rapid. The formation of high concentrations of oxalic acid is observed in the particle phase with some loss of carbon to the gas phase, indicating the formation of volatile products. We see a rapid degradation of condensed-phase oxidation products upon exposure to ultraviolet lights (centered at 350 nm) suggesting that these products may exist as iron(III)-oxalate complexes. Similar results are also seen when oxidation is carried out in bulk solution (with AMS analysis of the atomized solution); however in some cases the mass loss is less than is observed for submicron particles, likely due to differences in partitioning of early-generation products. Such products can partition out of the aqueous phase at the low liquid water contents in the chamber but remain in solution for further aqueous processing in bulk oxidation experiments. This work suggests that the product distributions from oxidation in aqueous aerosol may be substantially different than those in bulk oxidation, pointing to the need to carry out aqueous oxidation studies under atmospherically relevant partitioning conditions (with liquid water contents mimicking those of cloud droplets or wet aerosol).

  18. Aqueous oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Kinetics and SOA yields

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, Nicole K.; Hansel, Amie K.; Valsaraj, Kalliat T.; Anastasio, Cort

    2014-10-01

    Green leaf volatiles (GLVs) are a class of oxygenated hydrocarbons released from vegetation, especially during mechanical stress or damage. The potential for GLVs to form secondary organic aerosol (SOA) via aqueous-phase reactions is not known. Fog events over vegetation will lead to the uptake of GLVs into water droplets, followed by aqueous-phase reactions with photooxidants such as the hydroxyl radical (OH). In order to determine if the aqueous oxidation of GLVs by OH can be a significant source of secondary organic aerosol, we studied the partitioning and reaction of five GLVs: cis-3-hexen-1-ol, cis-3-hexenyl acetate, methyl salicylate, methyl jasmonate, and 2-methyl-3-butene-2-ol. For each GLV we measured the kinetics of aqueous oxidation by OH, and the corresponding SOA mass yield. The second-order rate constants for GLVs with OH were all near diffusion controlled, (5.4-8.6) × 109 M-1 s-1 at 298 K, and showed a small temperature dependence, with an average activation energy of 9.3 kJ mol-1 Aqueous-phase SOA mass yields ranged from 10 to 88%, although some of the smaller values were not statistically different from zero. Methyl jasmonate was the most effective aqueous-phase SOA precursor due to its larger Henry's law constant and high SOA mass yield (68 ± 8%). While we calculate that the aqueous-phase SOA formation from the five GLVs is a minor source of aqueous-phase SOA, the availability of other GLVs, other oxidants, and interfacial reactions suggest that GLVs overall might be a significant source of SOA via aqueous reactions.

  19. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL

    2009-10-06

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  20. Process for radioisotope recovery and system for implementing same

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  1. Method and apparatus for the removal of bioconversion of constituents of organic liquids

    DOEpatents

    Scott, Timothy; Scott, Charles D.

    1994-01-01

    A method and apparatus for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing.

  2. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  3. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang

    2016-08-26

    A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation. Copyright © 2016. Published by Elsevier B.V.

  4. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    PubMed

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  5. The Effect of Fluid Properties on Two-Phase Regimes of Flow in a Wide Rectangular Microchannel

    NASA Astrophysics Data System (ADS)

    Ronshin, F. V.; Cheverda, V. V.; Chinnov, E. A.; Kabov, O. A.

    2018-04-01

    We have experimentally studied a two-phase flow in a microchannel with a height of 150 μm and a width of 20 mm. Different liquids have been used, namely, a purified Milli-Q water, an 50% aqueous-ethanol solution, and FC-72. Before and after the experiment, the height of the microchannel was controlled, as well as the wettability of its walls and surface tension of liquids. Using the schlieren method, the main characteristics of two-phase flow in wide ranges of gas- and liquid-flow rates have been revealed. The flow regime-formation mechanism has been found to depend on the properties of the liquid used. The flow regime has been registered when the droplets moving along the microchannel are vertical liquid bridges. It has been shown that, when using FC-72 liquid, a film of liquid is formed on the upper channel wall in the whole range of gas- and liquid-flow rates.

  6. Biochemical characterization of sap (latex) of a few Indian mango varieties.

    PubMed

    John, K Saby; Bhat, S G; Prasada Rao, U J S

    2003-01-01

    Mango sap (latex) from four Indian varieties was studied for its composition. Sap was separated into non-aqueous and aqueous phases. Earlier, we reported that the non-aqueous phase contained mainly mono-terpenes having raw mango aroma (Phytochemistry 52 (1999) 891). In the present study biochemical composition of the aqueous phase was studied. Aqueous phase contained little amount of protein (2.0-3.5 mg/ml) but showed high polyphenol oxidase (147-214 U/mg protein) and peroxidase (401-561 U/mg protein) activities. It contained low amounts of polyphenols and protease activities. On native PAGE, all the major protein bands exhibited both polyphenol oxidase and peroxidase activities. Both polyphenol oxidase and peroxidase activities were found to be stable in the aqueous phase of sap at 4 degrees C. Sap contained large amount of non-dialyzable and non-starchy carbohydrate (260-343 mg/ml sap) which may be responsible for maintaining a considerable pressure of fluid in the ducts. Thus, the mango sap could be a valuable by-product in the mango industry as it contains some of the valuable enzymes and aroma components.

  7. Chemicals for enhanced oil recovery. Quarterly report, October 1-December 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.S. Jr.

    1980-10-01

    Studies on the salinity range in which three liquid phases are observed for systems containing a tall oil ethoxylate or related nonionic surfactant, a cosurfactant, aqueous NaCl, and a hydrocarbon were extended. Increasing hydrophile-lipophile balance, HLB, causes an increase in the salinity needed to effect the transition of the surfactant from the lower to the upper phase. However, other factors besides HLB seem to be involved. Addition of the nonionic surfactant increases optimal salinity by an amount which depends on its hydrophilic character. Sodium-2-methyloleate,-2-butyloleate, -2-hexyloleate, -2,2-dimethyloleate, and -2,2-diethyloleate were synthesized and its phase behavior in aqueous/hydrocarbon systems studied. Adsorption ofmore » a commercial petroleum sulfonate from 0.1 M NaCl on the sodium form of montmorillonite was reduced a factor of ten by caustic extract from bleaching of wood pulp. In a comparison of several pulping wastes or byproducts as sacrificial agents, caustic extract and weak black liquor appeared most effective, and lignosulfonate only slightly less effective. Plugging tests of the filtrates obtained in the biomass-polymer separations indicated that polish filtration probably would be required. The microscreen is the most economical of the biomass separation methods. Small fermenter tests indicate that Sclerotium rolfsii cultures are able to tolerate salinity of 2 to 4% w/v NaCl in the fermentation broth makeup water; however, the organism was unable to grow in 6% w/v NaCl.« less

  8. Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel.

    PubMed

    Yoshikuni, Nobutaka; Baba, Takayuki; Tsunoda, Natsuki; Oguma, Koichi

    2005-03-31

    A polyethylene glycol (PEG)-based aqueous two-phase system has been established for the extraction of Ni-dimethylglyoximato complex. Appropriate amounts of PEG solution and solid (NH(4))(2)SO(4) were added to the Ni-dimethylglyoximato complex which had been formed in the presence of sodium tartrate and K(2)S(2)O(8) at pH 12 in a separatory funnel and shaken vigorously for about 1min. The mixture was allowed to stand for 10min and then the absorbance of the extracted complex in the upper PEG-rich phase was measured at 470nm. Beer's law was obeyed over the range of 0.26-2.1ppm Ni. The proposed extraction method has been applied to the determination of Ni in steel. A steel sample was decomposed with an appropriate acid mixture. An aliquot of the sample solution was taken, treated with H(3)PO(4) and most of the iron and copper were removed by hydroxide precipitation using solid BaCO(3) to control the pH of the sample solution in advance of the extraction of Ni. The analytical results obtained for Ni in steel certified reference material JSS 650-10 (The Japan Iron and Steel Federation), BCS 323 (Bureau of Analysed Samples Ltd.) and NIST SRM 361 and 362 (National Institute of Standards and Technology) were in good agreement with certified values.

  9. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  10. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  11. Method and apparatus for the removal or bioconversion of constituents of organic liquids

    DOEpatents

    Scott, T.; Scott, C.D.

    1994-10-25

    A method and apparatus are disclosed for the removal or conversion of constituents from bulk organic liquids. A countercurrent biphasic bioreactor system is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the constituent. Two transient, high-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the constituent to produce a product which is then removed from the bioreactor in the aqueous phase or retained in the organic phase. The organic liquid, now free of the original constituents, is ready for immediate use or further processing. 1 fig.

  12. Impact of In-Cloud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Li, Yang; Barth, Mary C.; Patton, Edward G.; Steiner, Allison L.

    2017-10-01

    We investigate the impacts of cloud aqueous processes on the chemistry and transport of biogenic volatile organic compounds (BVOC) using the National Center for Atmospheric Research's large-eddy simulation code with an updated chemical mechanism that includes both gas- and aqueous-phase reactions. We simulate transport and chemistry for a meteorological case with a diurnal pattern of nonprecipitating cumulus clouds from the Baltimore-Washington area DISCOVER-AQ campaign. We evaluate two scenarios with and without aqueous-phase chemical reactions. In the cloud layer (2-3 km), the addition of aqueous phase reactions decreases HCHO by 18% over the domain due to its solubility and the fast depletion from aqueous reactions, resulting in a corresponding decrease in radical oxidants (e.g., 18% decrease in OH). The decrease of OH increases the mixing ratios of isoprene and methacrolein (MACR) (100% and 15%, respectively) in the cloud layer because the reaction rate is lower. Aqueous-phase reactions can modify the segregation between OH and BVOC by changing the sign of the segregation intensity, causing up to 55% reduction in the isoprene-OH reaction rate and 40% reduction for the MACR-OH reaction when clouds are present. Analysis of the isoprene-OH covariance budget shows the chemistry term is the primary driver of the strong segregation in clouds, triggered by the decrease in OH. All organic acids except acetic acid are formed only through aqueous-phase reactions. For acids formed in the aqueous phase, turbulence mixes these compounds on short time scales, with the near-surface mixing ratios of these acids reaching 20% of the mixing ratios in the cloud layer within 1 h of cloud formation.

  13. Synthesis and Characterization of Functional Mesostructures Using Colloidal Crystal Templating

    DTIC Science & Technology

    2004-01-01

    fluorescent probes in aqueous polymer solutions . Khoury and co-workers measured the diffusion coefficient of several fluorescein-labeled proteins in...diffraction naq refractive index of the aqueous solution phase xvii ni refractive index of component i ngel refractive index of the hydrogel...phase Tg glass transition temperature α angle of diffraction φaq volume fraction of the aqueous solution phase φi volume fraction of

  14. Iron Cycling in Sediment of the North Atlantic: Preliminary Results from R/V Knorr Expedition 223

    NASA Astrophysics Data System (ADS)

    Anderson, C. H.; Estes, E. R.; Dyar, M. D.; Murray, R. W.; Spivack, A. J.; Sauvage, J.; McKinley, C. C.; Present, T. M.; Homola, K.; Pockalny, R. A.; D'Hondt, S.

    2015-12-01

    Iron (Fe) in marine sediments is a significant microbial electron acceptor [Fe(III)] in suboxic conditions and is an electron donor [Fe(II)] in oxic conditions. In the transition from oxic to suboxic sediment, a portion of solid Fe is reduced and mobilized as soluble Fe(II) into interstitial water during the oxidation of organic matter. The presence of Fe and its oxidation state in oxic sediment provides insight into an important metabolic and mineral reaction pathway in subseafloor sediment. We recovered bulk sediment and interstitial water at western North Atlantic sites during Expedition 223 on the R/V Knorr in November, 2014. The expedition targeted regions with predominantly oxic sediment and regions with predominantly anoxic sediment, ideal for investigating redox Fe cycling between solid and aqueous phases. At Site 10 (14.4008N, 50.6209W, 4455m water depth), interstitial dissolved oxygen is depleted within the upper few meters of sediment. At Site 12 (29.6767N, 58.3285W, 5637m water depth), interstitial dissolved oxygen is present throughout the cored sediment column (10s of meters). Here we present total solid Fe concentration for 45 bulk sediment samples and total aqueous Fe and Mn concentrations for 50 interstitial water samples analyzed via ICP-ES. We additionally present Fe(II) and Fe(III) speciation results from 10 solid sediment samples determined by Mossbauer spectroscopy. We trace downcore fluctuations in Fe in solid and aqueous phases to understand Fe cycling in oxic, suboxic, and transitional regimes. Our preliminary data indicate that solid Fe concentration ranges from 4-6 wt % at the oxic site; aqueous Fe ranges from below detection to 20μM and aqueous Mn ranges from 1 to 125 μM at the anoxic site. In the anoxic sediment (Site 10), 86-90% of the total Fe is oxidized [Fe(III)] and 10-14% as reduced [Fe(II)], compared to 3-6% as reduced [Fe(II)] at the oxic site (Site 12), even in sediment as old as 25 million years.

  15. Energetics of small molecule and water complexation in hydrophobic calixarene cavities.

    PubMed

    Notestein, Justin M; Katz, Alexander; Iglesia, Enrique

    2006-04-25

    Calixarenes grafted on silica are energetically uniform hosts that bind aromatic guests with 1:1 stoichiometry, as shown by binding energies that depend upon the calixarene upper rim composition but not on their grafted surface density (0.02-0.23 nm(-2)). These materials are unique in maintaining a hydrophilic silica surface, as probed by H2O physisorption measurements, while possessing a high density of hydrophobic binding sites that are orthogonal to the silica surface below them. The covalently enforced cone-shaped cavities and complete accessibility of these rigidly grafted calixarenes allow the first unambiguous measurements of the thermodynamics of guest interaction with the same calixarene cavities in aqueous solution and vapor phase. Similar to adsorption into nonpolar protein cavities, adsorption into these hydrophobic cavities from aqueous solution is enthalpy-driven, which is in contrast to entropy-driven adsorption into water-soluble hydrophobic hosts such as beta cyclodextrin. The adsorption thermodynamics of several substituted aromatics from vapor and liquid are compared by (i) describing guest chemical potentials relative to pure guest, which removes differences among guests because of aqueous solvation and van der Waals contacts in the pure condensed phase, and (ii) passivating residual guest binding sites on exposed silica, titrated by water during adsorption from aqueous solution, using inorganic salts before vapor adsorption. Adsorption isotherms depend only upon the saturation vapor pressure of each guest, indicating that guest binding from aqueous or vapor media is controlled by van der Waals contacts with hydrophobic calixarene cavities acting as covalently assembled condensation nuclei, without apparent contributions from CH-pi or other directional interactions. These data also provide the first direct quantification of free energies for interactions of water with the calixarene cavity interior. The calixarene-water interface is stabilized by approximately 20 kJ/mol relative to the water-vapor interface, indicating that water significantly competes with the aromatic guests for adsorption at these ostensibly hydrophobic cavities. This result is useful for understanding models of water interactions with other concave hydrophobic surfaces, including those commonly observed within proteins.

  16. Ca(2+) -complex stability of GAPAGPLIVPY peptide in gas and aqueous phase, investigated by affinity capillary electrophoresis and molecular dynamics simulations and compared to mass spectrometric results.

    PubMed

    Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann

    2016-03-01

    Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Anthracene and pyrene photolysis kinetics in aqueous, organic, and mixed aqueous-organic phases

    NASA Astrophysics Data System (ADS)

    Grossman, Jarod N.; Stern, Adam P.; Kirich, Makena L.; Kahan, Tara F.

    2016-03-01

    Condensed phases in the atmosphere, such as cloud droplets and aerosols, often contain both water and organic matter (OM). Reactivity can differ significantly between aqueous and organic phases. We have measured photolysis kinetics of the polycyclic aromatic hydrocarbons (PAHs) anthracene and pyrene in several organic solvents and in water, as well as in miscible and phase-separated aqueous-organic mixtures at atmospherically-relevant wavelengths. Photolysis rate constants generally increased with increasing solvent polarity; photolysis of both PAHs was more than ten times faster in water than in octanol. Local polarity had a much greater effect on PAH photolysis kinetics than changes in PAH absorptivity or singlet oxygen concentrations. Photolysis kinetics in homogeneous aqueous-organic mixtures varied monotonically with2 OM volume fraction. Kinetics in immiscible (phase-separated) solutions were more complex, with different dependences on OM content observed in stagnant and turbulent solutions. Our results suggest that OM could greatly affect the photochemical lifetimes of PAHs in atmospheric condensed phases such as aerosols, even if the OM does not itself absorb photons.

  18. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    PubMed

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Insights into Aqueous-phase processing through Comparison of the Organic Chemical Composition of Atmospheric Particles and Cloud Water in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Boone, E.; Laskin, J.; Laskin, A.; Wirth, C.; Shepson, P. B.; Stirm, B. H.; Pratt, K.

    2014-12-01

    Organic compounds comprise a significant mass fraction of submicron atmospheric particles with considerable contribution from secondary organic aerosol (SOA), a large fraction of which is formed from the oxidation of biogenic volatile organic compounds. Aqueous-phase reactions in particles and cloud droplets are suggested to increase SOA mass and change the chemical composition the particles following cloud evaporation. Aqueous-phase processing may also explain discrepancies between measurements and models. To gain a better understanding of these processes, cloud water and below-cloud atmospheric particles were collected onboard a research aircraft during the Southeast Oxidants and Aerosol Study (SOAS) over Alabama in June 2013. Nanospray desorption electrospray ionization (nano-DESI) and direct electrospray ionization (ESI) coupled with high resolution mass spectrometry were utilized to compare the organic molecular composition of the particle and cloud water samples, respectively. Several hundred unique compounds have been identified in the particle and cloud water samples, allowing possible aqueous-phase reactions to be examined. Hydrolysis of organosulfate compounds, aqueous-phase formation of nitrogen-containing compounds, and possible fragmentation of oligomeric compounds will be discussed, with comparisons to previous laboratory studies. This study provides insights into aqueous-phase reactions in ambient cloud droplets.

  20. A portable and autonomous multichannel fluorescence detector for on-line and in situ explosive detection in aqueous phase.

    PubMed

    Xin, Yunhong; Wang, Qi; Liu, Taihong; Wang, Lingling; Li, Jia; Fang, Yu

    2012-11-21

    A multichannel fluorescence detector used to detect nitroaromatic explosives in aqueous phase has been developed, which is composed of a five-channel sample-sensor unit, a measurement and control unit, a microcontroller, and a communication unit. The characteristics of the detector as developed are mainly embedded in the sensor unit, and each sensor consists of a fluorescent sensing film, a light emitting diode (LED), a multi-pixel photon counter (MPPC), and an optical module with special bandpass optical filters. Due to the high sensitivity of the sensing film, the small size and low cost of LED and MPPC, the developed detector not only has a better detecting performance and small size, but also has a very low cost - it is an alternative to the device made with an expensive high power lamp and photomultiplier tube. The wavelengths of the five sensors covered extend from the upper UV through the visible spectrum, 370-640 nm, and thereby it possesses the potential to detect a variety of explosives and other hazardous materials in aqueous phase. An additional function of the detector is its ability to function via a wireless network, by which the data recorded by the detector can be sent to the host computer, and at the same time the instructions can be sent to the detector from the host computer. By means of the powerful computing ability of the host computer, and utilizing the classical principal component analysis (PCA) algorithm, effective classification of the analytes is achieved. Furthermore, the detector has been tested and evaluated using NB, PA, TNT and DNT as the analytes, and toluene, benzene, methanol and ethanol as interferent compounds (concentration various from 10 and 60 μM). It has been shown that the detector can detect the four nitroaromatics with high sensitivity and selectivity.

  1. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    PubMed

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  2. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Qiuxia; Lopez-Ruiz, Juan A.; Cooper, Alan R.

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxylmore » groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at PNNL.« less

  3. REMOVAL OF CHLORIDE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schulz, W.W.

    1959-08-01

    The removal of chlorides from aqueons solutions is described. The process involves contacting the aqueous chloride containing solution with a benzene solution about 0.005 M in phenyl mercuric acetate whereby the chloride anions are taken up by the organic phase and separating the organic phase from the aqueous solutions.

  4. Arsenic interactions with a fullerene-like BN cage in the vacuum and aqueous phase.

    PubMed

    Beheshtian, Javad; Peyghan, Ali Ahmadi; Bagheri, Zargham

    2013-02-01

    Adsorption of arsenic ions, As (III and V), on the surface of fullerene-like B(12)N(12) cage has been explored in vacuum and aqueous phase using density functional theory in terms of Gibbs free energies, enthalpies, geometry, and density of state analysis. It was found that these ions can be strongly chemisorbed on the surface of the cluster in both vacuum and aqueous phase, resulting in significant changes in its electronic properties so that the cluster transforms from a semi-insulator to a semiconductor. The solvent significantly affects the geometry parameters and electronic properties of the As/B(12)N(12) complexes and the interaction between components is considerably weaker in the aqueous phase than that in the vacuum.

  5. Photochemistry of aqueous pyruvic acid

    PubMed Central

    Griffith, Elizabeth C.; Carpenter, Barry K.; Shoemaker, Richard K.; Vaida, Veronica

    2013-01-01

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols. PMID:23821751

  6. Recovery of cesium

    DOEpatents

    Izatt, Reed M.; Christensen, James J.; Hawkins, Richard T.

    1984-01-01

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  7. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  8. URANIUM SEPARATION PROCESS

    DOEpatents

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  9. Solution-phase electronegativity scale: insight into the chemical behaviors of metal ions in solution.

    PubMed

    Li, Keyan; Li, Min; Xue, Dongfeng

    2012-04-26

    By incorporating the solvent effect into the Born effective radius, we have proposed an electronegativity scale of metal ions in aqueous solution with the most common oxidation states and hydration coordination numbers in terms of the effective ionic electrostatic potential. It is found that the metal ions in aqueous solution are poorer electron acceptors compared to those in the gas phase. This solution-phase electronegativity scale shows its efficiency in predicting some important properties of metal ions in aqueous solution such as the aqueous acidities of the metal ions, the stability constants of metal complexes, and the solubility product constants of the metal hydroxides. We have elaborated that the standard reduction potential and the solution-phase electronegativity are two different quantities for describing the processes of metal ions in aqueous solution to soak up electrons with different final states. This work provides a new insight into the chemical behaviors of the metal ions in aqueous solution, indicating a potential application of this electronegativity scale to the design of solution reactions.

  10. Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.

    2003-01-01

    While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.

  11. Effect of lipophilization on the distribution and reactivity of ingredients in emulsions.

    PubMed

    Leong, Wai Fun; Berton-Carabin, Claire C; Elias, Ryan J; Lecomte, Jérôme; Villeneuve, Pierre; Zhao, Yu; Coupland, John N

    2015-12-01

    The reactivity of small molecules in emulsions is believed to depend on their partitioning between phases, yet this is hard to verify experimentally in situ. In the present work, we use electron paramagnetic resonance (EPR) spectroscopy to simultaneously measure the distribution and reactivity of a homologous series of lipophilized spin probes in an emulsion. 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) was derivatized with saturated fatty acids to create a series of spin probes with increasing lipophilicity (C4-, C8-, C12-, and C16-TEMPO). The probes were added to a 10 wt.% tetradecane-in water emulsions (d32∼190 nm) stabilized with sodium caseinate (1 wt.% in the aqueous phase, pH 7). The distribution of the probes between phases was measured by electron paramagnetic resonance (EPR) spectroscopy. TEMPOL partitioned into the aqueous phase, C4-TEMPO distributed between the lipid and aqueous phases (69% and 31% respectively) while the more lipophilic probes dissolved exclusively within the lipid droplets. Interestingly, the more lipophilic probes initially precipitated upon their addition to the emulsion, and only slowly redistributed to the droplets over hours or days, the rate of which was dependent on their carbon chain length. The reactivity of the probes with aqueous an aqueous phase reductant (ascorbate) generally depended on the proportion in the aqueous phase (i.e., TEMPOL>C4-TEMPO>C8-TEMPO∼C12-TEMPO∼C16-TEMPO). Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Summary report for the FY-2015 SACSESS Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterman, Dean Richard; Mincher, Bruce Jay

    2015-09-01

    During FY-2015, a collaborative research program was established by the Department of Energy-Nuclear Energy (DOE-NE) Material Recovery and Waste Form Development program and the European Union (EU) Safety of Actinide Separation Processes (SACSESS) program. One component of this collaboration was the evaluation of the radiolytic stability of a Selective ActiNide Extraction (SANEX) separation which utilized a TODGA-based organic solvent and an aqueous phase containing the hydrophilic complexing reagent, SO3-Ph-BTP. To best simulate process conditions, this experiment was irradiated in the radiolysis/hydrolysis test loop located at the Idaho National Laboratory. The effect of irradiation on a SACSESS program iSANEX formulation containingmore » a TODGA-based organic phase and a BTP-based aqueous phase was investigated using irradiations at INL in static and test loop modes. When irradiated in contact with only the acidic aqueous phase, the TODGA organic solution maintained excellent extraction performance of americium, cerium and europium to a maximum absorbed dose of nearly 0.9 MGy. When the aqueous phase was changed to that containing the aqueous soluble BTP, the irradiated aqueous phase showed a dramatic color change, but this does not appear to have adverse effects on solvent extraction performance. Only minor increases in distribution ratios for both the lanthanides and actinide were measured, and the separation factors were essentially unchanged to a maximum absorbed dose of 174 kGy. The determination of the americium, cerium, and europium distribution ratios for the remaining SACSESS test loop samples will be completed in the near future. The analysis of stable metals concentration in the the irradiated aqueous and organic phases will be completed shortly.« less

  13. Solubility of HOBr in Acidic Solution and Implications for Liberation of Halogens Via Aerosol Processing

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, R. R.; Rammer, T. A.; Ashbourn, S. F. M.

    2004-01-01

    Halogen species are known to catalytically destroy ozone in several regions of the atmosphere. In addition to direct catalytic losses, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr) is a key species in the linkage of BrOx to ClOx and HOx. The aqueous- phase coupling reaction HOBr + HCI (right arrow) BrCl + H2O may provide a pathway for chlorine activation on sulfate aerosols at temperatures warmer than those required for polar stratospheric cloud formation. We have measured t h e solubility of HOBr in 45 - 70 wt% sulfuric acid solutions. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, H* = 10(exp 4) - 10(exp 7) mol dm(exp -3) atm(exp -1). The expected inverse dependence of H* on temperature was observed, but only a weak dependence on acidity was found. The solubility of HOBr is comparable to that of HBr, indicating that equilibrium concentrations of HOBr could equal or exceed those of HBr in upper tropospheric and lower stratospheric aerosols. Despite the high solubility of HOBr, aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Our measurements of HOBr uptake in aqueous sulfuric acid in the presence of other brominated gases show the evolution of gaseous products including Br2O and Br2.

  14. Phase-separable aqueous amide solutions as a thermal history indicator.

    PubMed

    Kitsunai, Makoto; Miyajima, Kentaro; Mikami, Yuzuru; Kim, Shokaku; Hirasawa, Akira; Chiba, Kazuhiro

    2008-12-01

    Aqueous solutions of several new amide compounds for use as simple thermal history indicators in the low-temperature transport of food and other products were synthesized. The phase transition temperatures of the aqueous solutions can be freely adjusted by changing the amide-water ratio in solution, the sodium chloride concentration of the water, and the type of amide compound. It is expected that these aqueous solutions can be applied as new thermal history indicators.

  15. Key Role of Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for Secondary Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Sun, Jiaxing; Liu, Lei; Xu, Liang; Wang, Yuanyuan; Wu, Zhijun; Hu, Min; Shi, Zongbo; Li, Yongjie; Zhang, Xiaoye; Chen, Jianmin; Li, Weijun

    2018-01-01

    Ammonium sulfate (AS) and ammonium nitrate (AN) are key components of urban fine particles. Both field and model studies showed that heterogeneous reactions of SO2, NO2, and NH3 on wet aerosols accelerated the haze formation in northern China. However, little is known on phase transitions of AS-AN containing haze particles. Here hygroscopic properties of laboratory-generated AS-AN particles and individual particles collected during haze events in an urban site were investigated using an individual particle hygroscopicity system. AS-AN particles showed a two-stage deliquescence at mutual deliquescence relative humidity (MDRH) and full deliquescence relative humidity (DRH) and three physical states: solid before MDRH, solid-aqueous between MDRH and DRH, and aqueous after DRH. During hydration, urban haze particles displayed a solid core and aqueous shell at RH = 60-80% and aqueous phase at RH > 80%. Most particles were in aqueous phase at RH > 50% during dehydration. Our results show that AS content in individual particles determines their DRH and AN content determines their MDRH. AN content increase can reduce MDRH, which indicates occurrence of aqueous shell at lower RH. The humidity-dependent phase transitions of nitrate-abundant urban particles are important to provide reactive surfaces of secondary aerosol formation in the polluted air.

  16. The free radical chemistry of cloud droplets and its impact upon the composition of rain

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1982-01-01

    Calculations are presented that simulate the free radical chemistries of the gas phase and aqueous phase within a warm cloud during midday. It is demonstrated that in the presence of midday solar fluxes, the heterogeneous scavenging of OH and HO2 from the gas phase by cloud droplets can represent a major source of free radicals to cloud water, provided the accommodation or sticking coefficient for these species impinging upon water droplets is not less than 0.0001. The aqueous-phase of HO2 radicals are found to be converted to H2O2 by aqueous-phase chemical reactions at a rate that suggests that this mechanism could produce a significant fraction of the H2O2 found in cloud droplets. The rapid oxidation of sulfur species dissolved in cloudwater by this free-radical-produced H2O2 as well as by aqueous-phase OH radicals could conceivably have a significant impact upon the chemical composition of rain.

  17. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    EPA Science Inventory

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for...

  18. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation.

    PubMed

    Ciobanu, V Gabriela; Marcolli, Claudia; Krieger, Ulrich K; Zuend, Andreas; Peter, Thomas

    2010-09-09

    Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in aqueous AS and in aqueous 1:1 and 8:1 (by dry weight) poly(ethylene glycol)-400 (PEG-400)/AS particles deposited on a hydrophobically coated slide. Aqueous PEG-400/AS particles exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below approximately 90% RH with the PEG-400-rich phase surrounding the aqueous AS inner phase. Pure aqueous AS particles effloresced in the RH range from 36.3% to 43.7%, in agreement with literature data (31-48% RH). In contrast, aqueous 1:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 7.2 to 19.2 mum effloresced between 26.8% and 33.9% RH and aqueous 8:1 (by dry weight) PEG-400/AS particles with diameters of the AS phase from 1.8 to 7.3 mum between 24.3% and 29.3% RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that these unprecedented low ERHs of AS in PEG-400/AS particles could not possibly be explained by the presence of low amounts of PEG-400 in the aqueous AS phase, by a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, or by different time scales between various experimental techniques. High-speed photography of the efflorescence process allowed the development of the AS crystallization fronts within the particles to be monitored with millisecond time resolution. The nucleation sites were inferred from the initial crystal growth sites. Analysis of the probability distribution of initial sites of 31 and 19 efflorescence events for pure AS and 1:1 (by dry weight) PEG-400/AS particles, respectively, showed that the particle volume can be excluded as the preferred nucleation site in the case of pure AS particles. For aqueous 1:1 (by dry weight) PEG-400/AS particles preferential AS nucleation in the PEG phase and at the PEG/AS/substrate contact line can be excluded. On the basis of this probability analysis of efflorescence events together with the AS ERH values of pure aqueous AS and aqueous PEG-400/AS particles aforementioned, we suggest that in pure aqueous AS particles nucleation starts at the surface of the particles and attribute the lower ERH values observed for aqueous PEG-400/AS particles to the suppression of the surface-induced nucleation process. Our results suggest that surface-induced nucleation is likely to also occur during the efflorescence of atmospheric AS aerosol particles, possibly constituting the dominating nucleation pathway.

  19. Methods for removing contaminants from algal oil

    DOEpatents

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  20. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    DOEpatents

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  1. Preparative crystallization of a single chain antibody using an aqueous two-phase system.

    PubMed

    Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois

    2014-11-01

    A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration. © 2014 Wiley Periodicals, Inc.

  2. Corrosion of low alloy steel containing 0.5% chromium in supercritical CO2-saturated brine and water-saturated supercritical CO2 environments

    NASA Astrophysics Data System (ADS)

    Wei, Liang; Gao, Kewei; Li, Qian

    2018-05-01

    The corrosion behavior of P110 low-Cr alloy steel in supercritical CO2-saturated brine (aqueous phase) and water-saturated supercritical CO2 (SC CO2 phase) was investigated. The results show that P110 steel primarily suffered general corrosion in the aqueous phase, while severe localized corrosion occurred in the SC CO2 phase. The formation of corrosion product scale on P110 steel in the aqueous phase divided into three stages: formation of the initial corrosion layer containing amorphous Cr(OH)3, FeCO3 and a small amount of Fe3C; transformation of initial corrosion layer to mixed layer, which consisted of FeCO3 and a small amount of Cr(OH)3 and Fe3C; growth and dissolution of the mixed layer. Finally, only a single mixed layer covered on the steel in the aqueous phase. However, the scale formed in SC CO2 phase consisted of two layers: the inner mixed layer and the dense outer FeCO3 crystalline layer.

  3. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhibo; Liu, Ning; Chen, Biaohua

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology andmore » exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further oxidized in aqueous phase.« less

  4. Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces

    DOE PAGES

    Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish; ...

    2018-02-09

    Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less

  5. Vibrational Studies of Saccharide-Induced Lipid Film Reorganization at Aqueous/Air Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Katie A.; Hsieh, Chia -Yun; Tuladhar, Aashish

    Vibrational sum frequency generation (VSFG) and surface tension experiments were used to examine the effects of aqueous phase soluble saccharides on the structure and organization of insoluble lipid monolayers adsorbed to aqueous-air interfaces. Changes in dipalmitoylphosphocholine (DPPC) chain structure as a function of aqueous phase saccharide concentration and pH are reported. Complementary differential scanning calorimetry (DSC) measurements performed on solutions containing soluble saccharides and DPPC vesicles measured the effects of the saccharides on the lipid membrane phase behavior. Here, data show that the saccharides glucosamine and glucuronic acid induce a higher degree of organization in compressed DPPC monolayers regardless ofmore » the saccharide’s charge.« less

  6. Influence of propylene glycol on aqueous silica dispersions and particle-stabilized emulsions.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Thompson, Michael A; Elliott, Russell P

    2013-05-14

    We have studied the influence of adding propylene glycol to both aqueous dispersions of fumed silica nanoparticles and emulsions of paraffin liquid and water stabilized by the same particles. In the absence of oil, aerating mixtures of aqueous propylene glycol and particles yields either stable dispersions, aqueous foams, climbing particle films, or liquid marbles depending on the glycol content and particle hydrophobicity. The presence of glycol in water promotes particles to behave as if they are more hydrophilic. Calculations of their contact angle at the air-aqueous propylene glycol surface are in agreement with these findings. In the presence of oil, particle-stabilized emulsions invert from water-in-oil to oil-in-water upon increasing either the inherent hydrophilicity of the particles or the glycol content in the aqueous phase. Stable multiple emulsions occur around phase inversion in systems of low glycol content, and completely stable, waterless oil-in-propylene glycol emulsions can also be prepared. Accounting for the surface energies at the respective interfaces allows estimation of the contact angle at the oil-polar phase interface; reasonable agreement between measured and calculated phase inversion conditions is found assuming no glycol adsorption on particle surfaces.

  7. Cloud Point and Liquid-Liquid Equilibrium Behavior of Thermosensitive Polymer L61 and Salt Aqueous Two-Phase System.

    PubMed

    Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang

    2015-06-25

    The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.

  8. Air-assisted dispersive liquid-liquid microextraction based on a new hydrophobic deep eutectic solvent for the preconcentration of benzophenone-type UV filters from aqueous samples.

    PubMed

    Ge, Dandan; Zhang, Yi; Dai, Yixiu; Yang, Shumin

    2018-04-01

    Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl-menthol-based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air-assisted dispersive liquid-liquid microextraction method for preconcentration and extraction of benzophenone-type UV filters from aqueous samples followed by high-performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl-menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high-performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone-type filters in environmental water samples with relative recoveries of 88.8-105.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    NASA Astrophysics Data System (ADS)

    Sareen, Neha; Carlton, Annmarie G.; Surratt, Jason D.; Gold, Avram; Lee, Ben; Lopez-Hilfiker, Felipe D.; Mohr, Claudia; Thornton, Joel A.; Zhang, Zhenfa; Lim, Yong B.; Turpin, Barbara J.

    2016-11-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols), leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Hydroxyl (OH⚫) radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS). Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) spectra and tandem MS (MS-MS) fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and complexes). Thus, formation of pyruvate/oxalate suggests the potential for aqueous processing of these ambient mixtures to form SOAAQ.

  10. Aqueous two-phase assisted by ultrasound for the extraction of anthocyanins from Lycium ruthenicum Murr.

    PubMed

    Qin, Benlin; Liu, Xuecong; Cui, Haiming; Ma, Yue; Wang, Zimin; Han, Jing

    2017-10-21

    In this study, an efficient ultrasound-assisted aqueous two-phase extraction method was used for the extraction of anthocyanins from Lycium ruthenicum Murr. An ethanol/ammonium sulfate system was chosen for the aqueous two-phase system due to its fine partitioning and recycling behaviors. Single-factor experiments were conducted to determine the optimized composition of the system, and the response surface methodology was used for the further optimization of the ultrasound-assisted aqueous two-phase extraction. The optimal conditions were as follows: a salt concentration of 20%, an ethanol concentration of 25%, an extraction time of 33.7 min, an extraction temperature of 25°C, a liquid/solid ratio of 50:1 w/w, pH value of 3.98, and an ultrasound power of 600 W. Under the above conditions, the yields of anthocyanins reached 4.71 mg/g dry sample. For the further purification, D-101 resin was used, and the purity of anthocyanins reached 25.3%. In conclusion, ultrasound-assisted aqueous two-phase extraction was an efficient, ecofriendly, and economical method, and it may be a promising technique for extracting bioactive components from plants.

  11. A novel TFC forward osmosis (FO) membrane supported by polyimide (PI) microporous nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Chi, Xiang-Yu; Zhang, Ping-Yun; Guo, Xue-Jiao; Xu, Zhen-Liang

    2018-01-01

    A novel interfacial polymerization (IP) procedure on polyimide (PI) microporous nanofiber membrane support with mean pore size 1.27 μm was reported. Using m-phenylenediamine (MPD) as aqueous phase monomer, trimesoyl chloride (TMC) as organic phase monomer, ethanol as aqueous phase co-solvent, thin-film composite (TFC) forward osmosis (FO) membrane was fabricated by two IP procedures. The first IP procedure with the unconventional order (ie, the membrane was immersed in the TMC organic phase first, then in the co-solvent ethanol-water MPD aqueous phase) was used to diminish the pore size of PI microporous nanofiber membrane support for the formation of the polyamide layer. The secondary IP procedure was employed to form the relatively dense polyamide layer with conventional order (ie, the membrane was immersed in the co-solvent ethanol-water MPD aqueous phase first, then in the TMC organic phase). The experimental results showed that higher ethanol concentration led to the relatively higher pure water permeability in RO process and osmotic water flux in FO process, whereas NaCl rejection in RO process decreased and reverse salt flux increased. The specific salt flux (Js/Jv) of TFC FO PI nanofiber membrane (PIN-2-4) could be as low as 0.095 g/L in FO mode. These results could be attributed to influence of the addition of ethanol into aqueous phase on the surface morphology, hydrophilicity and polyamide layer structure.

  12. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 2. Aqueous solubility, octanol solubility and octanol-water partition coefficient.

    PubMed

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H

    2015-01-01

    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses additive and non-additive parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky (2014) on a data set of 700 hydrocarbons. Recently, Admire et al. (2014) expanded the model to predict the boiling and melting points of 1288 polyhalogenated benzenes, biphenyls, dibenzo-p-dioxins, diphenyl ethers, anisoles and alkanes. In this work, 19 new group descriptors are determined and used to predict the aqueous solubilities, octanol solubilities and the octanol-water coefficients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  14. PCE DNAPL degradation using ferrous iron solid mixture (ISM).

    PubMed

    Lee, Hong-Kyun; Do, Si-Hyun; Batchelor, Bill; Jo, Young-Hoon; Kong, Sung-Ho

    2009-08-01

    Ferrous iron solid mixture (ISM) containing Fe(II), Fe(III), and Cl was synthesized for degradation of tetrachloroethene (PCE) as a dense non-aqueous phase liquid (DNAPL), and an extraction procedure was developed to measure concentrations of PCE in both the aqueous and non-aqueous phases. This procedure included adding methanol along with hexane in order to achieve the high extraction efficiency, particularly when solids were present. When PCE was present as DNAPL, dechlorination of PCE was observed to decrease linearly with respect to the total PCE concentration (aqueous and non-aqueous phases) and the concentration of PCE in the aqueous phase was observed to be approximately constant. In the absence of DNAPL, the rate of PCE degradation was observed to be the first-order with respect to the concentration in the aqueous phase. A kinetic model was developed to describe these observations and it was able to fit experimental data well. Increasing the concentration of Fe(II) in ISM increased the values of rate constants, while increasing the concentration of PCE DNAPL did not affect the value of the rate constant. The reactivity of ISM for PCE dechlorination might be close to that of Friedel's salt, and the accumulation of trichloroethylene (TCE) might imply the lower reactivity of ISM for degradation of TCE or the necessity of large amount of Fe(II) in ISM. TCE (the major chlorinated intermediate), ethene (the major non-chlorinated compound), acetylene and ethane were detected, which implied that both hydrogenolysis and beta-elimination were pathways of PCE DNAPL degradation on ISM.

  15. Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase.

    PubMed

    Liu, Jing-fu; Liu, Rui; Yin, Yong-guang; Jiang, Gui-bin

    2009-03-28

    Capable of preserving the sizes and shapes of nanomaterials during the phase transferring, Triton X-114 based cloud point extraction provides a general, simple, and cost-effective route for reversible concentration/separation or dispersion of various nanomaterials in the aqueous phase.

  16. Anomalistic Self-Assembled Phase Behavior of Block Copolymer Blended with Organic Derivative Depending on Temperature

    DOE PAGES

    Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo; ...

    2016-08-16

    Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less

  17. Anomalistic Self-Assembled Phase Behavior of Block Copolymer Blended with Organic Derivative Depending on Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hwan; Kim, Eunhye; Do, Changwoo

    Amphiphilic Pluronic block copolymers have attracted great attention in a broad spectrum of potential applications due to the excellent phase behaviors in an aqueous solution, and many efforts have been made to investigate their phase behaviors under various external conditions. With a variety of external conditions, however, the closed looplike phase behaviors of a Pluronic block copolymer in an aqueous solution have not been reported yet. Herein, we report the closed looplike (CLL) phase behavior of a Pluronic P65 triblock copolymer blended with an organic derivative, 5-methylsalicylic acid (5mS), in aqueous solution, which is very unique for block copolymers. Asmore » the 5mS concentration increases, the isotropic to ordered phase or back to isotropic phase transition temperature is decreased while the number of closed loops is increased to two. To the best of our knowledge, this is the first demonstration of a CLL phase transition of a Pluronic block copolymer in an aqueous solution, which is readily applicable to optical devices such as optical sensors or optoelectronics, and nanotemplates for a highly ordered superlattice. Additionally, this provides new insight into the understanding on the phase behavior of a Pluronic block copolymer blended with additives.« less

  18. SEPARATION OF POLONIUM, PROTACTINIUM OR MIXTURES THEREOF IN AQUEOUS SOLUTION FROM BISMUTH, LEAD, ZIRCONIUM AND/OR COLUMBIUM VALUES

    DOEpatents

    Van Winkle, Q.; Kraus, K.A.

    1959-10-27

    A process is presented for separating polonium, protactinium, or mixtures thereof in aqueous solution from bismuth, zirconium, lead, and niobium values contained in the solution. The method comprises providing hydrochloric acid in the solution in a concentration of at least 5N. contacting the aqueous solution with a substantially waterimmiscible organic solvent such as diisopropyl ketone, and separating the aqueous phase containing the bismuth, zirconium, lead, and niobium from the organic extract phase containing the polonium, protactinium, or mixture thereof.

  19. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1999-01-01

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  20. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1999-03-30

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.

  1. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study.

    PubMed

    Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N

    2007-07-19

    Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.

  2. SE-72/AS-72 generator system based on Se extraction/ As reextraction

    DOEpatents

    Fassbender, Michael Ernst; Ballard, Beau D

    2013-09-10

    The preparation of a .sup.72Se/.sup.72As radioisotope generator involves forming an acidic aqueous solution of an irradiated alkali bromide target such as a NaBr target, oxidizing soluble bromide in the solution to elemental bromine, removing the elemental bromine, evaporating the resulting solution to a residue, removing hydrogen chloride from the residue, forming an acidic aqueous solution of the residue, adding a chelator that selectively forms a chelation complex with selenium, and extracting the chelation complex from the acidic aqueous solution into an organic phase. As the .sup.72Se generates .sup.72As in the organic phase, the .sup.72As may be extracted repeatedly from the organic phase with an aqueous acid solution.

  3. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth.

    PubMed

    Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A; Galli, Giulia

    2013-04-23

    Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth's deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones.

  4. Determination of total phthalate in cosmetics using a simple three-phase sample preparation method.

    PubMed

    Liu, Laping; Wang, Zhengmeng; Zhao, Sihan; Duan, Jiahui; Tao, Hu; Wang, Wenji; Liu, Shuhui

    2018-02-01

    A simple sample preparation method requiring minimal organic solvents is proposed for the determination of the total phthalate content in cosmetics by high-performance liquid chromatography-tandem mass spectrometry. The hydrolysis of phthalates and purification of interfering substances were performed in a three-phase system that included an upper n-hexane phase, a middle ethanol phase, and a lower aqueous alkali solution. This three-phase system utilized an incremental purification strategy. The apolar ingredients were extracted with n-hexane, the polar pigments accumulated in the ethanol phase, and the hydrolysis product, phthalic acid, remained in the hydrolysate. Under the optimized conditions, the correlation coefficients (r) for the calibration curves were 0.998-0.999 in the range 0.60-12 mol L -1 . The limit of detection was 5.1 μmol kg -1 , and the limit of quantification was 9.2 μmol kg -1 . The recoveries varied from 84 to 97% with RSDs equal to or lower than 11%. The intra-day and inter-day repeatability values, expressed as the relative standard deviation, were less than 8.7 and 9.8, respectively. No obvious matrix effect existed in the different cosmetics matrices. The validated method was applied for the analysis of 57 commercial cosmetic samples. Graphical abstract Analysis of phthalates in cosmetics using a three-phase preparation method.

  5. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs.

    PubMed

    Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S

    2014-09-01

    Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method.

    PubMed

    Kang, Jian; Wu, Fei; Cai, Yunpeng; Xu, Mingxin; He, Mu; Yuan, Weien

    2014-10-01

    A novel method has been developed to protect Recombinant Human Growth Hormone (rhGH) in poly (lactic-co-glycolic acid) (PLGA) microspheres using an aqueous phase/aqueous phase emulsion and S/O/W multi-emulsion method. This method develops a novel rhGH sustained-release system, which is based on the combination of rhGH-loaded dextran microparticles and PLGA microspheres. The process to fabricate rhGH-loaded dextran microparticles involves an aqueous phase/aqueous phase emulsion system formed at the reduced temperature. RhGH was first dissolved in water together with dextran and polyethylene glycol, followed by stirring at the speed of 2000 rpm for 20-30s at 0°C, and then a freezing process could enable the dextran phase to separate from the continuous PEG phase and rhGH could preferentially be loaded with dextran. The sample after freezing and phase separation was then lyophilized to powder and washed with dichloromethane to remove the PEG. Once loaded in the dextran microparticles (1-4 μm in diameter), rhGH gained resistance to interface tensions and was encapsulated into PLGA microspheres without aggregation thereafter. RhGH released from PLGA microspheres was in a sustained manner with minimal burst and maximally reduced incomplete release in vitro. Single subcutaneous injection of rhGH-loaded PLGA microspheres to rats resulted in a stable plasma concentration for 30 days avoiding the drug concentration fluctuations after multiple injections of protein solutions. In a hypophysectomized rat model, the IGF-1 and bodyweight results showed that there were higher than the levels obtained for the sustained release formulation by W/O/W for 40 days. These results suggest that the microsphere delivery system had the potential to be an injectable depot for sustained-release of the biocompatible protein of rhGH. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Separation of four flavonol glycosides from Solanum rostratum Dunal using aqueous two-phase flotation followed by preparative high-performance liquid chromatography.

    PubMed

    Chang, Lin; Shao, Qian; Xi, Xingjun; Chu, Qiao; Wei, Yun

    2017-02-01

    Aqueous two-phase flotation followed by preparative high-performance liquid chromatography was used to separate four flavonol glycosides from Solanum rostratum Dunal. In the aqueous two-phase flotation section, the effects of sublation solvent, solution pH, (NH 4 ) 2 SO 4 concentration in aqueous solution, cosolvent, N 2 flow rate, flotation time, and volumes of the polyethylene glycol phase on the recovery were investigated in detail, and the optimal conditions were selected: 50 wt% polyethylene glycol 1000 ethanol solvent as the flotation solvent, pH 4, 350 g/L of (NH 4 ) 2 SO 4 concentration in aqueous phase, 40 mL/min of N 2 flow rate, 30 min of flotation time, 10.0 mL of flotation solvent volume, and two times. After aqueous two-phase flotation concentration, the flotation products were purified by preparative high-performance liquid chromatography. The purities of the final products A and B were 98.1 and 99.0%. Product B was the mixture of three compounds based on the analysis of high-performance liquid chromatography at the temperature of 10°C, while product A was hyperoside after the identification by nuclear magnetic resonance. Astragalin, 3'-O-methylquercetin 3-O-β-d-galactopyranoside, and 3'-O-methylquercetin 3-O-β-d-glucopyranoside were obtained with the purity of 93.8, 97.1, and 99.2%, respectively, after the further separation of product B using preparative high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Latent nitrate reductase activity is associated with the plasma membrane of corn roots

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Grimes, H. D.; Huffaker, R. C.

    1989-01-01

    Latent nitrate reductase activity (NRA) was detected in corn (Zea mays L., Golden Jubilee) root microsome fractions. Microsome-associated NRA was stimulated up to 20-fold by Triton X-100 (octylphenoxy polyethoxyethanol) whereas soluble NRA was only increased up to 1.2-fold. Microsome-associated NRA represented up to 19% of the total root NRA. Analysis of microsomal fractions by aqueous two-phase partitioning showed that the membrane-associated NRA was localized in the second upper phase (U2). Analysis with marker enzymes indicated that the U2 fraction was plasma membrane (PM). The PM-associated NRA was not removed by washing vesicles with up to 1.0 M NACl but was solubilized from the PM with 0.05% Triton X-100. In contrast, vanadate-sensitive ATPase activity was not solubilized from the PM by treatment with 0.1% Triton X-100. The results show that a protein capable of reducing nitrate is embedded in the hydrophobic region of the PM of corn roots.

  9. Analytical determination of virginiamycin drug residues in edible porcine tissues by LC-MS with confirmation by LC-MS/MS.

    PubMed

    Boison, Joe; Lee, Stephen; Gedir, Ron

    2009-01-01

    A liquid chromatographic-mass spectrometric (LC-MS) method was developed and validated for the determination and confirmation of virginiamycin (VMY) M1 residues in porcine liver, kidney, and muscle tissues at concentrations > or =2 ng/g. Porcine liver, kidney, or muscle tissue is homogenized with methanol-acetonitrile. After centrifugation, the supernatant is diluted with phosphate buffer and cleaned up on a C18 solid-phase extraction cartridge. VMY in the eluate is partitioned into chloroform and the aqueous upper layer is removed by aspiration. After evaporating the chloroform in the residual mixture to dryness, the dried extract is reconstituted in mobile phase and VMY is quantified by LC-MS. Any samples eliciting quantifiable levels of VMY M1 (i.e., at concentrations > or =2 ng/g) are subjected to confirmatory analysis by LC-MSIMS. VMY S1, a minor component of the VMY complex, is monitored but not quantified or confirmed.

  10. Effect of oil concentration and residence time on the biodegradation of α-pinene vapours in two-liquid phase suspended-growth bioreactors.

    PubMed

    Montes, María; Veiga, María C; Kennes, Christian

    2012-02-20

    Recently, research on the use of binary aqueous-organic liquid phase systems for the treatment of polluted air has significantly increased. This paper reports the removal of α-pinene from a waste air stream in a continuous stirred tank bioreactor (CSTB), using either a single-liquid aqueous phase or a mixed aqueous-organic liquid phase. The influence of gas flow rate, load and pollutant concentration was evaluated as well as the effect of the organic to aqueous phase ratio. Continuous experiments were carried out at different inlet α-pinene concentrations, ranging between 0.03 and 25.1 g m⁻³ and at four different flow rates, corresponding to residence times (RTs) of 120 s, 60 s, 36 s and 26 s. The maximum elimination capacities (ECs) reached in the CSTB were 382 g m⁻³ h⁻¹ (without silicone oil) and 608 g m⁻³ h⁻¹ (with 5%v/v silicone oil), corresponding to a 1.6-fold improvement using an aqueous-organic liquid phase. During shock-loads experiments, the performance and stability of the CSTB were enhanced with 5% silicone oil, quickly recovering almost 100% removal efficiency (RE), when pre-shock conditions were restored. The addition of silicone oil acted as a buffer for high α-pinene loads, showing a more stable behaviour in the case of two-liquid-phase systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Formation of uniform carrot-like Cu31S16-CuInS2 heteronanostructures assisted by citric acid at the oil/aqueous interface.

    PubMed

    Li, Yongjie; Tang, Aiwei; Liu, Zhenyang; Peng, Lan; Yuan, Yi; Shi, Xifeng; Yang, Chunhe; Teng, Feng

    2018-01-07

    A simple two-phase strategy was developed to prepare Cu 31 S 16 -CuInS 2 heterostructures (HNS) at the oil/aqueous interface, in which the In(OH) 3 phase was often obtained in the products due to the reaction between indium ions and hydroxyl ions in the aqueous phase. To prevent the formation of the In(OH) 3 phase, citric acid was incorporated into the aqueous phase to assist in the synthesis of uniform carrot-like Cu 31 S 16 -CuInS 2 semiconductor HNS at the oil/aqueous interface for the first time. By manipulating the dosage of citric acid and Cu/In precursor ratios, the morphology of the Cu 31 S 16 -CuInS 2 HNS could be tailored from mushroom to carrot-like, and the presence of citric acid played a critical role in the synthesis of high-quality Cu 31 S 16 -CuInS 2 HNS, which inhibited the formation of the In(OH) 3 phase due to the formation of the indium(iii)-citric acid complex. The formation mechanism was studied by monitoring the morphology and phase evolution of the Cu 31 S 16 -CuInS 2 HNS with reaction time, which revealed that the Cu 31 S 16 seeds were first formed and then the cation-exchange reaction directed the subsequent anisotropic growth of the Cu 31 S 16 -CuInS 2 HNS.

  12. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE PAGES

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira; ...

    2016-01-29

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  13. Separation of switchgrass bio-oil by water/organic solvent addition and pH adjustment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Lydia Kyoung-Eun; Ren, Shoujie; Yiacoumi, Sotira

    Applications of bio-oil are limited by its challenging properties including high moisture content, low pH, high viscosity, high oxygen content, and low heating value. Separation of switchgrass bio-oil components by adding water, organic solvents (hexadecane and octane), and sodium hydroxide may help to overcome these issues. Acetic acid and phenolic compounds were extracted in aqueous and organic phases, respectively. Polar chemicals, such as acetic acid, did not partition in the organic solvent phase. Acetic acid in the aqueous phase after extraction is beneficial for a microbial-electrolysis-cell application to produce hydrogen as an energy source for further hydrodeoxygenation of bio-oil. Organicmore » solvents extracted more chemicals from bio-oil in combined than in sequential extraction; however, organic solvents partitioned into the aqueous phase in combined extraction. When sodium hydroxide was added to adjust the pH of aqueous bio-oil, organic-phase precipitation occurred. As the pH was increased, a biphasic aqueous/organic dispersion was formed, and phase separation was optimized at approximately pH 6. The neutralized organic bio-oil had approximately 37% less oxygen and 100% increased heating value than the initial centrifuged bio-oil. In conclusion, the less oxygen content and increased heating value indicated a significant improvement of the bio-oil quality through neutralization.« less

  14. Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase.

    PubMed

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2007-01-05

    The use of methanol-aqueous buffer mobile phases in HPLC is a common election when performing chromatographic separations of ionisable analytes. The addition of methanol to the aqueous buffer to prepare such a mobile phase changes the buffer capacity and the pH of the solution. In the present work, the variation of these buffer properties is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-hydrogencitrate-citrate, and ammonium-ammonia buffers. It is well established that the pH change of the buffers depends on the initial concentration and aqueous pH of the buffer, on the percentage of methanol added, and on the particular buffer used. The proposed equations allow the pH estimation of methanol-water buffered mobile phases up to 80% in volume of organic modifier from initial aqueous buffer pH and buffer concentration (before adding methanol) between 0.001 and 0.01 mol L(-1). From both the estimated pH values of the mobile phase and the estimated pKa of the ionisable analytes, it is possible to predict the degree of ionisation of the analytes and therefore, the interpretation of acid-base analytes behaviour in a particular methanol-water buffered mobile phase.

  15. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Yao, Tian; Song, Hang

    2015-10-30

    Aqueous two-phase systems (ATPS) based on tropine type chiral ionic liquids and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic phenylalanine. The phase behavior of IL-based ATPS was comprehensive investigated, and phase equilibrium data were correlated by Merchuk equation. Various factors were also systematically investigated for their influence on separation efficiency. Under the appropriate conditions (0.13g/g [C8Tropine]pro, 35mg/g Cu(Ac)2, 20mg/g d,l-phenylalanine, 0.51g/g H2O and 0.30g/g K2HPO4), the enantiomeric excess value of phenylalanine in solid phase (mainly containing l-enantiomer) was 65%. Finally, the interaction mechanism was studied via 1D and 2D NMR. The results indicate that d-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+) based on the chiral ion-pairs space coordination mechanism, which makes it tend to remain in the top IL-rich phase. By contrast, l-enantiomer is transferred into the solid phase. Above chiral ionic liquids aqueous two-phase systems have demonstrated obvious resolution to racemic phenylalanine and could be promising alterative resolution approach for racemic amino acids in aqueous circumstance. Copyright © 2015. Published by Elsevier B.V.

  16. Non-aqueous phase cold vapor generation and determination of trace cadmium by atomic fluorescence spectrometry.

    PubMed

    Lei, Zirong; Chen, Luqiong; Hu, Kan; Yang, Shengchun; Wen, Xiaodong

    2018-06-05

    Cold vapor generation (CVG) of cadmium was firstly accomplished in non-aqueous media by using solid reductant of potassium borohydride (KBH 4 ) as a derivation reagent. The mixture of surfactant Triton X-114 micelle and octanol was innovatively used as the non-aqueous media for the CVG and atomic fluorescence spectrometry (AFS) was used for the elemental determination. The analyte ions were firstly extracted into the non-aqueous media from the bulk aqueous phase of analyte/sample solution via a novelly established ultrasound-assisted rapidly synergistic cloud point extraction (UARS-CPE) process and then directly mixed with the solid redcutant KBH 4 to generate volatile elemental state cadmium in a specially designed reactor, which was then rapidly transported to a commercial atomic fluorescence spectrometer for detection. Under the optimal conditions, the limit of detection (LOD) for cadmium was 0.004 μg L -1 . Compared to conventional hydride generation (HG)-AFS, the efficiency of non-aqueous phase CVG and the analytical performance of the developed system was considerably improved. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  18. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, Hector M.; Scott, Timothy C.; Scott, Charles D.

    1995-01-01

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  19. Human plasma-derived immunoglobulin G fractionated by an aqueous two-phase system, caprylic acid precipitation, and membrane chromatography has a high purity level and is free of detectable in vitro thrombogenic activity.

    PubMed

    Vargas, M; Segura, Á; Wu, Y-W; Herrera, M; Chou, M-L; Villalta, M; León, G; Burnouf, T

    2015-02-01

    Instituto Clodomiro Picado has developed an immunoglobulin G (IgG) plasma fractionation process combining a polyethylene glycol/phosphate aqueous two-phase system (ATPS), caprylic acid precipitation and anion-exchange membrane chromatography. We evaluated the purity and in vitro thrombogenicity of such IgG, in line with current international requirements. Contributions of the different production steps to reduce thrombogenicity were assessed at 0·2 l-scale, and then the methodology was scaled-up to a 10 l-scale and final products (n = 3) were analysed. Purity, immunoglobulin composition, and subclass distribution were determined by electrophoretic and immunochemical methods. The in vitro thrombogenic potential was determined by a thrombin generation assay (TGA) using a Technothrombin fluorogenic substrate. Prekallikrein activator (PKA), plasmin, factor Xa, thrombin and thrombin-like activities were assessed using S-2302, S-2251, S-2222, S-2238 and S-2288 chromogenic substrates, respectively, and FXI by an ELISA. The thrombogenicity markers were reduced mostly during the ATPS step and were found to segregate mostly into the discarded liquid upper phase. The caprylic acid precipitation eliminated the residual procoagulant activity. The IgG preparations made from the 10 l-batches contained 100% gamma proteins, low residual IgA and undetectable IgM. The IgG subclass distribution was not substantially affected by the process. TGA and amidolytic activities revealed an undetectable in vitro thrombogenic risk and the absence of proteolytic enzymes in the final product. Fractionating human plasma by an ATPS combined with caprylic acid and membrane chromatography resulted in an IgG preparation of high purity and free of a detectable in vitro thrombogenic risk. © 2014 International Society of Blood Transfusion.

  20. Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India.

    PubMed

    Castelluccio, Mauro; Agrahari, Sudha; De Simone, Gabriele; Pompilj, Francesca; Lucchetti, Carlo; Sengupta, Debashish; Galli, Gianfranco; Friello, Pierluigi; Curatolo, Pierpaolo; Giorgi, Riccardo; Tuccimei, Paola

    2018-05-01

    Geochemical and geophysical surveys employing radon deficit, resistivity, and induced polarization (IP) measurements were undertaken on soil contaminated with non-aqueous phase liquids (NAPLs) in two different sites in India and in Italy. Radon deficit, validated through the comparison with average soil radon in reference unpolluted areas, shows the extension of contamination in the upper part of the unsaturated aquifers. In site 1 (Italy), the spill is not recent. A residual film of kerosene covers soil grains, inhibiting their chargeability and reducing electrical resistivity difference with background unpolluted areas. No correlation between the two parameters is observed. Soil volatile organic compounds (VOCs) concentration is not linked with radon deficit, supporting the old age of the spillage. NAPL pollution in sites 2a and 2b (India) is more recent and probably still active, as demonstrated by higher values of electrical resistivity. A good correlation with IP values suggests that NAPL is still distributed as droplets or as a continuous phase in the pores, strengthening the scenario of a fresh spill or leakage. Residual fraction of gasoline in the pore space of sites 2a and 2b is respectively 1.5 and 11.8 kg per cubic meter of terrain. This estimation is referred to the shallower portion of the unsaturated aquifer. Electrical resistivity is still very high indicating that the gasoline has not been strongly degraded yet. Temperature and soil water content influence differently radon deficit in the three areas, reducing soil radon concentration and partly masking the deficit in sites 2a and 2b.

  1. STIMULATION OF TARSAL RECEPTORS OF THE BLOWFLY BY ALIPHATIC ALDEHYDES AND KETONES

    PubMed Central

    Chadwick, L. E.; Dethier, V. G.

    1949-01-01

    Rejection of eight aldehydes, eight ketones, five secondary alcohols, and 3-pentanol has been studied in the blowfly Phormia regina Meigen. The data agree with results previously reported for normal alcohols and several series of glycols in showing a logarithmic increase in stimulating effect with increasing chain length. The order of increasing effectiveness among the different species of compounds thus far investigated is the following: polyglycols, diols, secondary alcohols, iso-alcohols, normal alcohols, ketones, iso-aldehydes, normal aldehydes. Curves relating the logarithms of threshold concentration to the logarithms of chain length for diols, alcohols, aldehydes, and ketones show inflections in the 3 to 6 carbon range. Above and below the region of inflection the curves are nearly rectilinear. The slopes for the upper limbs (smaller molecules) are of the order of –2; for the lower limbs, about –10. Comparisons of the threshold data with numerical values for molecular weights, molecular areas and volumes, oil-water distribution coefficients, activity coefficients, standard free energies, vapor pressures, boiling points, melting points, dipole moments, dielectric constants, and degree of association are discussed briefly, and it is concluded that none of the comparisons serves to bring the data from the several series and from the two portions of each series into a single homogeneous system. A qualitative comparison with water solubilities shows fewer discrepancies. It is suggested that the existence of a combination of aqueous and lipoid phases at the receptor surface would fit best with what is presently known about the relationship between chemical structure and stimulating effect in contact chemoreception. In this hypothesis the smaller and more highly water-soluble compounds are envisaged as gaining access to the receptors partly through the aqueous phase, the larger molecules predominantly through the lipoid phase. PMID:18114559

  2. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  3. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    NASA Astrophysics Data System (ADS)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; Boone, Eric; Chu, Rosalie K.; Dukett, James E.; Gunsch, Matthew J.; Zhang, Wuliang; Tolic, Nikola; Laskin, Alexander; Pratt, Kerri A.

    2017-12-01

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds. Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less

  5. Trivalent Lanthanide/Actinide Separation Using Aqueous-Modified TALSPEAK Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis S. Grimes; Richard D. Tillotson; Leigh R. Martin

    TALSPEAK is a liquid/liquid extraction process designed to separate trivalent lanthanides (Ln3+) from minor actinides (MAs) Am3+ and Cm3+. Traditional TALSPEAK organic phase is comprised of a monoacidic dialkyl bis(2-ethylhexyl)phosphoric acid extractant (HDEHP) in diisopropyl benzene (DIPB). The aqueous phase contains a soluble aminopolycarboxylate diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid (DTPA) in a concentrated (1.0-2.0 M) lactic acid (HL) buffer with the aqueous acidity typically adjusted to pH 3.0. TALSPEAK balances the selective complexation of the actinides by DTPA against the electrostatic attraction of the lanthanides by the HDEHP extractant to achieve the desired trivalent lanthanide/actinide group separation. Although TALSPEAK is considered a successfulmore » separations scheme, recent fundamental studies have highlighted complex chemical interactions occurring in the aqueous and organic phases during the extraction process. Previous attempts to model the system have shown thermodynamic models do not accurately predict the observed extraction trends in the p[H+] range 2.5-4.8. In this study, the aqueous phase is modified by replacing the lactic acid buffer with a variety of simple and longer-chain amino acid buffers. The results show successful trivalent lanthanide/actinide group separation with the aqueous-modified TALSPEAK process at pH 2. The amino acid buffer concentrations were reduced to 0.5 M (at pH 2) and separations were performed without any effect on phase transfer kinetics. Successful modeling of the aqueous-modified TALSPEAK process (p[H+] 1.6-3.1) using a simplified thermodynamic model and an internally consistent set of thermodynamic data is presented.« less

  6. SOLVENT EXTRACTION PROCESS FOR SEPARATING ACTINIDE AND LANTHANIDE METAL VALUES

    DOEpatents

    Hildebrandt, R.A.; Hyman, H.H.; Vogler, S.

    1962-08-14

    A process of countercurrently extracting an aqueous mineral acid feed solution for the separation of actinides from lanthanides dissolved therern is described. The feed solution is made acid-defrcient with alkali metal hydroxide prior to.contact with acid extractant; during extraction, however, acid is transferred from organic to aqueous solution and the aqueous solution gradually becomes acid. The acid-deficient phase ' of the process promotes the extraction of the actinides, while the latter acid phase'' of the process improves retention of the lanthanides in the aqueous solution. This provides for an improved separation. (AEC)

  7. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, D.J.; McTaggart, D.R.

    1983-08-31

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  8. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Pruett, David J.; McTaggart, Donald R.

    1984-01-01

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc.sup.+7 therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  9. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  10. [Phase transfer catalyzed bioconversion of penicillin G to 6-APA by immobilized penicillin acylase in recyclable aqueous two-phase systems with light/pH sensitive copolymers].

    PubMed

    Jin, Ke-ming; Cao, Xue-jun; Su, Jin; Ma, Li; Zhuang, Ying-ping; Chu, Ju; Zhang, Si-liang

    2008-03-01

    Immobilized penicillin acylase was used for bioconversion of penicillin PG into 6-APA in aqueous two-phase systems consisting of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB. Partition coefficients of 6-APA was found to be about 5.78 in the presence of 1% NaCl. Enzyme kinetics showed that the reaction reached equilibrium at roughly 7 h. The 6-APA mole yields were 85.3% (pH 7.8, 20 degrees C), with about 20% increment as compared with the reaction of single aqueous phase buffer. The partition coefficient of PG (Na) varied scarcely, while that of the product, 6-APA and phenylacetic acid (PA) significantly varied due to Donnan effect of the phase systems and hydrophobicity of the products. The variation of the partition coefficients of the products also affected the bioconversion yield of the products. In the aqueous two-phase systems, the substrate, PG, the products of 6-APA and PA were biased in the top phase, while immobilized penicillin acylase at completely partitioned at the bottom. The substrate and PG entered the bottom phase, where it was catalyzed into 6-APA and PA and entered the top phase. Inhibition of the substrate and products was removed to result in improvement of the product yield, and the immobilized enzyme showed higher efficiency than the immobilized cells and occupied smaller volume. Compared with the free enzyme, immobilized enzyme had greater stability, longer life-time, and was completely partitioned in the bottom phase and recycle. Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage. The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtered 450 nm light, while pH-sensitive polymer PADB could be recovered at the isoelectric point (pH 4.1). The recovery of the two copolymers was between 95% and 99%.

  11. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment.

    PubMed

    Chen, Dengyu; Cen, Kehui; Jing, Xichun; Gao, Jinghui; Li, Chen; Ma, Zhongqing

    2017-06-01

    Bio-oil undergoes phase separation because of poor stability. Practical application of aqueous phase bio-oil is challenging. In this study, a novel approach that combines aqueous phase bio-oil washing and torrefaction pretreatment was used to upgrade the biomass and pyrolysis product quality. The effects of individual and combined pretreatments on cotton stalk pyrolysis were studied using TG-FTIR and a fixed bed reactor. The results showed that the aqueous phase bio-oil washing pretreatment removed metals and resolved the two pyrolysis peaks in the DTG curve. Importantly, it increased the bio-oil yield and improved the pyrolysis product quality. For example, the water and acid content of bio-oil decreased significantly along with an increase in phenol formation, and the heating value of non-condensable gases improved, and these were more pronounced when combined with torrefaction pretreatment. Therefore, the combined pretreatment is a promising method, which would contribute to the development of polygeneration pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Management of the diffusion of 4-methylumbelliferone across phases in microdroplet-based systems for in vitro protein evolution.

    PubMed

    Wu, Nan; Courtois, Fabienne; Zhu, Yonggang; Oakeshott, John; Easton, Chris; Abell, Chris

    2010-09-01

    Fluorongenic reagents based on 4-methylumbelliferone (4-MU) have been widely used for the detection of phosphatase, sulfatase, esterase, lipase and glycosidase activities in conventionally formatted enzyme assay systems. However, the sensitivity of assays based on these substrates is also potentially very useful in the microdroplet formats now being developed for high throughput in vitro evolution experiments. In this article, we report the investigation of diffusion of 4-MU as a model dye from water-in-oil droplets and the internal aqueous phase of water-in-oil-in-water droplets in microfluidics. The effect of BSA in the aqueous phase on the diffusion of 4-MU is also discussed. Based on these results, we provided here proof-of-concept of the reaction of the enzyme OpdA with the substrate coumaphos in water-in-oil-in-water droplets. In this double-emulsion system, the reaction of OpdA and coumaphos was achieved by allowing coumaphos to diffuse from the continuous aqueous phase across the oil phase into the internal aqueous droplets.

  13. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Treesearch

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  14. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  15. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Mohebbi, Ali; Feriduni, Behruz

    2016-05-12

    In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography-flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3-6% (n = 6, C = 30 μg L(-1)) for intra-day and 4-7% (n = 4, C = 30 μg L(-1)) for inter-day precisions. The limits of detection were in the range of 0.20-0.86 μg L(-1). Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Diffusion-based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous two-phase photobioreactors by photosynthetic microorganisms.

    PubMed

    Bentley, Fiona K; Melis, Anastasios

    2012-01-01

    Photosynthesis for the generation of fuels and chemicals from cyanobacteria and microalgae offers the promise of a single host organism acting both as photocatalyst and processor, performing sunlight absorption and utilization, as well as CO(2) assimilation and conversion into product. However, there is a need to develop methods for generating, sequestering, and trapping such bio-products in an efficient and cost-effective manner that is suitable for industrial scale-up and exploitation. A sealed gaseous/aqueous two-phase photobioreactor was designed and applied for the photosynthetic generation of volatile isoprene (C(5)H(8)) hydrocarbons, which operates on the principle of spontaneous diffusion of CO(2) from the gaseous headspace into the microalgal or cyanobacterial-containing aqueous phase, followed by photosynthetic CO(2) assimilation and isoprene production by the transgenic microorganisms. Volatile isoprene hydrocarbons were emitted from the aqueous phase and were sequestered into the gaseous headspace. Periodic replacement (flushing) of the isoprene (C(5)H(8)) and oxygen (O(2)) content of the gaseous headspace with CO(2) allowed for the simultaneous harvesting of the photoproducts and replenishment of the CO(2) supply in the gaseous headspace. Reduction in practice of the gaseous/aqueous two-phase photobioreactor is offered in this work with a fed-batch and a semi-continuous culturing system using Synechocystis sp. PCC 6803 heterologously expressing the Pueraria montana (kudzu) isoprene synthase (IspS) gene. Constitutive isoprene production was observed over 192 h of experimentation, coupled with cyanobacterial biomass accumulation. The diffusion-based process in gaseous/aqueous two-phase photobioreactors has the potential to be applied to other high-value photosynthetically derived volatile molecules, emanating from a variety of photosynthetic microorganisms. Copyright © 2011 Wiley Periodicals, Inc.

  17. Sherwood correlation for dissolution of pooled NAPL in porous media

    NASA Astrophysics Data System (ADS)

    Aydin Sarikurt, Derya; Gokdemir, Cagri; Copty, Nadim K.

    2017-11-01

    The rate of interphase mass transfer from non-aqueous phase liquids (NAPLs) entrapped in the subsurface into the surrounding mobile aqueous phase is commonly expressed in terms of Sherwood (Sh) correlations that are expressed as a function of flow and porous media properties. Because of the lack of precise methods for the estimation of the interfacial area separating the NAPL and aqueous phases, most studies have opted to use modified Sherwood expressions that lump the interfacial area into the interphase mass transfer coefficient. To date, there are only two studies in the literature that have developed non-lumped Sherwood correlations; however, these correlations have undergone limited validation. In this paper controlled dissolution experiments from pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing horizontally on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two different porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution kinetics and aqueous phase transport was developed. The observed effluent concentrations were then used to compute best-fit mass transfer coefficients. Comparison of the effluent concentrations computed with the two-dimensional pore network model to those estimated with one-dimensional analytical solutions indicates that the analytical model which ignores the transport in the lateral direction can lead to under-estimation of the mass transfer coefficient. Based on system parameters and the estimated mass transfer coefficients, non-lumped Sherwood correlations were developed and compared to previously published data. The developed correlations, which are a significant improvement over currently available correlations that are associated with large uncertainties, can be incorporated into future modeling studies requiring non-lumped Sh expressions.

  18. Oxidation of Organic Compoundsin the Atmospheric Aqueous Phase: Development of a New Explicit Oxidation Mechanism

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bregonzio-Rozier, L.; Monod, A.; Leriche, M.; Doussin, J. F.; Chaumerliac, N. M.; Deguillaume, L.

    2014-12-01

    Current 3D models tend to underestimate the production of secondary organic aerosol (SOA) in the atmosphere (Volkamer et al., 2006). Recent studies argue that aqueous chemistry in clouds could be responsible for a significant production of SOA (Ervens et al., 2011; Carlton and Turpin, 2013) through oxidative and non-oxidative processes. Aqueous phase reactivity of organic compounds needs to be thoroughly described in models to identify organic molecules available to contribute to SOA mass. Recently, new empirical methods have been developed to allow the estimate of HO·reaction rates in the aqueous phase (Doussin and Monod, 2013, Minakata et al., 2009). These methods provide global rate constants together with branching ratios for HO·abstraction and addition on organic compounds of atmospheric interests. Current cloud chemistry mechanisms do not take the different possible pathways into account. Based on these structure-activity relationships, a new detailed aqueous phase mechanism describing the oxidation of hydrosoluble organic compounds resulting from isoprene oxidation is proposed. This new aqueous phase mechanism is coupled with the detailed gas phase mechanism MCM v3.2 (Jenkin et al., 1997; Saunders et al., 2003) through a kinetic of mass transfer parameterization for the exchange between gas phase and aqueous phase. The GROMHE SAR (Raventos-Duran et al., 2010) allows the evaluation of Henry's law constants for organic compounds. Variable photolysis in both phases using the TUV 4.5 radiative transfer model (Madronich and Flocke, 1997) is also calculated. The resulting multiphase mechanism has been implemented in a cloud chemistry model. Focusing on oxygenated compounds produced from the isoprene oxidation, sensitivity tests and comparisons with multiphase experiments performed in the framework of the CUMULUS project in the CESAM atmospheric simulation chamber (Wang et al., 2011) will be presented. Volkamer et al., GRL, 33, L17811, 2006. Carlton and Turpin, ACP, 13, 10203-10214, 2013. Ervens et al., ACP, 11069-11102, 2011. Doussin and Monod, ACP, 13, 11625-11641, 2013. Minakata et al., EST, 45, 3479-3486, 2009. Jenkin et al., AE, 31, 81, 1997. Saunders et al., ACP, 3, 161, 2003. Raventos-Duran et al., ACP, 10, 7643-7654, 2010. Madronich and Flocke, 1997. Wang et al., AMT, 4, 2465-2494,2011.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Distler, T. M.; Wong, C. M.

    Runoff-water samples for the first, third, and fourth quarters of 1975 were analyzed for pesticide residues at LLL and independently by the LFE Environmental Analysis Laboratories. For the compounds analyzed, upper limits to possible contamination were placed conservatively at the low parts-per-billion level. In addition, soil samples were also analyzed. Future work will continue to include quarterly sampling and will be broadened in scope to include quantitative analysis of a larger number of compounds. A study of recovery efficiency is planned. Because of the high backgrounds on soil samples together with the uncertainties introduced by the cleanup procedures, there ismore » little hope of evaluating the distribution of a complex mixture of pesticides among the aqueous and solid phases in a drainage sample. No further sampling of soil from the streambed is therefore contemplated.« less

  20. Secondary Organic Aerosol Produced from Aqueous Reactions of Phenols in Fog Drops and Deliquesced Particles

    NASA Astrophysics Data System (ADS)

    Smith, J.; Anastasio, C.

    2014-12-01

    The formation and evolution of secondary organic aerosol (SOA) in atmospheric condensed phases (i.e., aqueous SOA) can proceed rapidly, but relatively little is known of the important aqueous SOA precursors or their reaction pathways. In our work we are studying the aqueous SOA formed from reactions of phenols (phenol, guaiacol, and syringol), benzene-diols (catechol, resorcinol, and hydroquinone), and phenolic carbonyls (e.g., vanillin and syringaldehyde). These species are potentially important aqueous SOA precursors because they are released in large quantities from biomass burning, have high Henry's Law constants (KH = 103 -109 M-1 atm-1) and are rapidly oxidized. To evaluate the importance of aqueous reactions of phenols as a source of SOA, we first quantified the kinetics and SOA mass yields for 11 phenols reacting via direct photodegradation, hydroxyl radical (•OH), and with an excited organic triplet state (3C*). In the second step, which is the focus of this work, we use these laboratory results in a simple model of fog chemistry using conditions during a previously reported heavy biomass burning event in Bakersfield, CA. Our calculations indicate that under aqueous aerosol conditions (i.e., a liquid water content of 100 μg m-3) the rate of aqueous SOA production (RSOA(aq)) from phenols is similar to the rate in the gas phase. In contrast, under fog/cloud conditions the aqueous RSOA from phenols is 10 times higher than the rate in the gas phase. In both of these cases aqueous RSOA is dominated by the oxidation of phenols by 3C*, followed by direct photodegradation of phenolic carbonyls, and then •OH oxidation. Our results suggest that aqueous oxidation of phenols is a significant source of SOA during fog events and also during times when deliquesced aerosols are present.

  1. Effects of temperature and solvent condition on phase separation induced molecular fractionation of gum arabic/hyaluronan aqueous mixtures.

    PubMed

    Hu, Bing; Han, Lingyu; Gao, Zhiming; Zhang, Ke; Al-Assaf, Saphwan; Nishinari, Katsuyoshi; Phillips, Glyn O; Yang, Jixin; Fang, Yapeng

    2018-05-14

    Effects of temperature and solvent condition on phase separation-induced molecular fractionation of gum arabic/hyaluronan (GA/HA) mixed solutions were investigated. Two gum arabic samples (EM10 and STD) with different molecular weights and polydispersity indices were used. Phase diagrams, including cloud and binodal curves, were established by visual observation and GPC-RI methods. The molecular parameters of control and fractionated GA, from upper and bottom phases, were measured by GPC-MALLS. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 11% to 18% in STD/HA system and 28% to 55% in EM10/HA system. The phase separation-induced molecular fractionation was further studied as a function of temperature and solvent condition (varying ionic strength and ethanol content). Increasing salt concentration (from 0.5 to 5 mol/L) greatly reduced the extent of phase separation-induced fractionation. This effect may be ascribed to changes in the degree of ionization and shielding of the acid groups. Increasing temperature (from 4 °C to 80 °C) also exerted a significant influence on phase separation-induced fractionation. The best temperature for GA/HA mixture system was 40 °C while higher temperature negatively affected the fractionation due to denaturation and possibly degradation in mixed solutions. Increasing the ethanol content up to 30% showed almost no effect on the phase separation induced fractionation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. OPTIMIZING MODEL PERFORMANCE: VARIABLE SIZE RESOLUTION IN CLOUD CHEMISTRY MODELING. (R826371C005)

    EPA Science Inventory

    Under many conditions size-resolved aqueous-phase chemistry models predict higher sulfate production rates than comparable bulk aqueous-phase models. However, there are special circumstances under which bulk and size-resolved models offer similar predictions. These special con...

  3. Jacob Kruger | NREL

    Science.gov Websites

    Jacob.Kruger@nrel.gov | 303-275-4081 Research Interests Algal growth systems targeting high-efficiency Hydrotalcite Catalysts," ACS Catalysis (2016) "Aqueous-Phase Fructose Dehydration Using Brønsted ) "Elucidating the Roles of Zeolite H-BEA in Aqueous-Phase Fructose Dehydration and HMF Rehydration

  4. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground water contamination by non-aqueous phase liquids poses one of the greatest remedial challenges in the field of environmental engineering. Denser-than-water non-aqueous phase liquids (DNAPLs) are especially problematic due to their low water solubility, high density, an...

  5. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components.

    PubMed

    Amid, Mehrnoush; Manap, Mohd Yazid; Hussin, Muhaini; Mustafa, Shuhaimi

    2015-06-17

    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  6. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  7. Using design of experiments to optimize derivatization with methyl chloroformate for quantitative analysis of the aqueous phase from hydrothermal liquefaction of biomass.

    PubMed

    Madsen, René Bjerregaard; Jensen, Mads Mørk; Mørup, Anders Juul; Houlberg, Kasper; Christensen, Per Sigaard; Klemmer, Maika; Becker, Jacob; Iversen, Bo Brummerstedt; Glasius, Marianne

    2016-03-01

    Hydrothermal liquefaction is a promising technique for the production of bio-oil. The process produces an oil phase, a gas phase, a solid residue, and an aqueous phase. Gas chromatography coupled with mass spectrometry is used to analyze the complex aqueous phase. Especially small organic acids and nitrogen-containing compounds are of interest. The efficient derivatization reagent methyl chloroformate was used to make analysis of the complex aqueous phase from hydrothermal liquefaction of dried distillers grains with solubles possible. A circumscribed central composite design was used to optimize the responses of both derivatized and nonderivatized analytes, which included small organic acids, pyrazines, phenol, and cyclic ketones. Response surface methodology was used to visualize significant factors and identify optimized derivatization conditions (volumes of methyl chloroformate, NaOH solution, methanol, and pyridine). Twenty-nine analytes of small organic acids, pyrazines, phenol, and cyclic ketones were quantified. An additional three analytes were pseudoquantified with use of standards with similar mass spectra. Calibration curves with high correlation coefficients were obtained, in most cases R (2)  > 0.991. Method validation was evaluated with repeatability, and spike recoveries of all 29 analytes were obtained. The 32 analytes were quantified in samples from the commissioning of a continuous flow reactor and in samples from recirculation experiments involving the aqueous phase. The results indicated when the steady-state condition of the flow reactor was obtained and the effects of recirculation. The validated method will be especially useful for investigations of the effect of small organic acids on the hydrothermal liquefaction process.

  8. Partitioning phase preference for secondary organic aerosol in an urban atmosphere

    NASA Astrophysics Data System (ADS)

    Chang, Wayne Li-Wen

    Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter (PM). The impact of PM on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state-of-the-art 3-D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the distribution of fAQ values is inversely proportional to the total SOA loading. Further analysis accounting for various meteorological parameters indicates that large fAQ values are the results of aqueous-phase SOA insensitivity to the ambient conditions; while organic-phase SOA concentrations are dramatically reduced under unfavorable SOA formation conditions, aqueous-phase SOA level remains relatively unchanged, thus increasing fAQ at low SOA loading. Diurnal variations of fAQ near the surface are also observed: it tends to be larger during daytime hours than nighttime hours. When examining the vertical gradient of fAQ, largest values are found at heights above the surface layer. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.

  9. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  10. Pore-scale interfacial dynamics during gas-supersaturated water injection in porous media - on nucleation, growth and advection of disconnected fluid phases (Invited)

    NASA Astrophysics Data System (ADS)

    Or, D.; Ioannidis, M.

    2010-12-01

    Degassing and in situ development of a mobile gas bubbles occur when injecting supersaturated aqueous phase into water-saturated porous media. Supersaturated water injection (SWI) has potentially significant applications in remediation of soils contaminated by non-aqueous phase liquids and in enhanced oil recovery. Pore network simulations indicate the formation of a region near the injection boundary where gas phase nuclei are activated and grow by mass transfer from the flowing supersaturated aqueous phase. Ramified clusters of gas-filled pores develop which, owing to the low prevailing Bond number, grow laterally to a significant extent prior to the onset of mobilization, and are thus likely to coalesce. Gas cluster mobilization invariably results in fragmentation and stranding, such that a macroscopic region containing few tenuously connected large gas clusters is established. Beyond this region, gas phase nucleation and mass transfer from the aqueous phase are limited by diminishing supply of dissolved gas. New insights into SWI dynamics are obtained using rapid micro-visualization in transparent glass micromodels. Using high-speed imaging, we observe the nucleation, initial growth and subsequent fate (mobilization, fragmentation, collision, coalescence and stranding) of CO2 bubbles and clusters of gas-filled pores and analyze cluster population statistics. We find significant support for the development of invasion-percolation-like patterns, but also report on hitherto unaccounted for gas bubble behavior. Additionally, we report for the first time on the acoustic emission signature of SWI in porous media and relate it to the dynamics of bubble nucleation and growth. Finally, we identify the pore-scale mechanisms associated with the mobilization and subsequent recovery of a residual non-aqueous phase liquid due to gas bubble dynamics during SWI.

  11. Experimental measurements of U60 nanocluster stability in aqueous solution

    NASA Astrophysics Data System (ADS)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the dissociation behavior of nanoclusters under a range of aqueous conditions.

  12. Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)

    NASA Astrophysics Data System (ADS)

    Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick

    2018-02-01

    The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.

  13. Bacterial RNA isolation.

    PubMed

    Ares, Manuel

    2012-09-01

    In this bacterial RNA isolation protocol, an "RNA-protective" treatment is followed by lysozyme digestion of the peptidoglycan component of the cell wall. EDTA promotes the loss of the outer membrane of Gram-negative bacteria and allows the lysozyme better access to the peptidoglycan. Cells begin to lyse during digestion in hypotonic lysozyme buffer and lysis is completed by sodium dodecyl sulfate (SDS) and hot phenol:chloroform:isoamyl alcohol (PCA) extraction. SDS and hot phenol disrupt membranes, denature protein (including RNase), and strip proteins from RNA. The separation of the organic phase from the aqueous phase is achieved using Phase Lock Gel, an inert material with a density intermediate between the organic and aqueous samples. The sample is split into three phases: from bottom to top, these are phenol and chloroform (organic phase), the inert gel with the interface material, and the aqueous phase with the RNA. The gel acts as a physical barrier between the sample and the organic phase plus interface. Following organic extraction, the RNA is concentrated by ethanol precipitation.

  14. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  15. “Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”

    EPA Science Inventory

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...

  16. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    PubMed

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  17. Hydrogen donor solvent coal liquefaction process

    DOEpatents

    Plumlee, Karl W.

    1978-01-01

    An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.

  18. Regional Air Quality Model Application of the Aqueous-Phase ...

    EPA Pesticide Factsheets

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry models use a parameterization of the aqueous-phase reduction of Hg2+ that has been shown to be unlikely under normal ambient conditions or use a non mechanistic value derived to optimize wet deposition results. Recent laboratory experiments have shown that Hg2+ can be photochemically reduced to elemental mercury (Hg) in the aqueous-phase by dissolved organic matter and a mechanism and the rate for Hg2+ photochemical reduction by dicarboxylic acids (DCA) has been proposed. For the first time in a regional scale model, the DCA mechanism has been applied. The HO2-Hg2+ reduction mechanism, the proposed DCA reduction mechanism, and no aqueous-phase reduction (NAR) of Hg2+ are evaluated against weekly wet deposition totals, concentrations and precipitation observations from the Mercury Deposition Network (MDN) using the Community Multiscale Air Quality (CMAQ) model version 4.7.1. Regional scale simulations of mercury wet deposition using a DCA reduction mechanism evaluated well against observations, and reduced the bias in model evaluation by at least 13% over the other schemes evaluated, although summertime deposition estimates were still biased by −31.4% against observations. The use of t

  19. Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shoujie; Ye, Philip; Borole, Abhijeet P

    Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less

  20. Separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extraction

    DOE PAGES

    Ren, Shoujie; Ye, Philip; Borole, Abhijeet P

    2017-01-05

    Bio-oil aqueous phase contains a considerable amount of furans, alcohols, ketones, aldehydes and phenolics besides the major components of organic acids and anhydrosugars. The complexity of bio-oil aqueous phase limits its efficient utilization. To improve the efficiency of bio-oil biorefinery, this study focused on the separation of chemical groups from bio-oil aqueous phase via sequential organic solvent extractions. Due to their high recoverability and low solubility in water, four solvents (hexane, petroleum ether, chloroform, and ethyl acetate) with different polarities were evaluated, and the optimum process conditions for chemical extraction were determined. Chloroform had high extraction efficiency for furans, phenolics,more » and ketones. In addition to these chemical groups, ethyl acetate had high extraction efficiency for organic acids. The sequential extraction by using chloroform followed by ethyl acetate rendered that 62.2 wt.% of original furans, ketones, alcohols, and phenolics were extracted to chloroform, over 62 wt.% acetic acid was extracted to ethyl acetate, resulting in a high concentration of levoglucosan (~53.0 wt.%) in the final aqueous phase. Chemicals separated via the sequential extraction could be used as feedstocks in biorefinery using processes such as catalytic upgrading of furans and phenolics to hydrocarbons, fermentation of levoglucosan to produce alcohols and diols, and hydrogen production from organic acids via microbial electrolysis.« less

  1. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  2. Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography.

    PubMed

    David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y

    2014-01-03

    Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    PubMed

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-03

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  4. Preparative isolation of alkaloids from Dactylicapnos scandens using pH-zone-refining counter-current chromatography by changing the length of the separation column.

    PubMed

    Wang, Xiao; Dong, Hongjing; Yang, Bin; Liu, Dahui; Duan, Wenjuan; Huang, Luqi

    2011-12-01

    pH-Zone-refining counter-current chromatography was successfully applied for the preparative separation of alkaloids from Dactylicapnos scandens. The two-phase solvent system was composed of petroleum ether-ethyl acetate-methanol-water (3:7:1:9, v/v), where 20 mM of triethylamine (TEA) was added to the upper phase as a retainer and 5 mM of hydrochloric acid (HCl) to the aqueous phase as an eluter. In this experiment, the apparatus with an adjustable length of the separation column was used for the separation of alkaloids from D. scandens and the resolution of the compounds can be remarkably improved by increasing the length of the separation column. As a result, 70 mg protopin, 30 mg (+) corydine, 120 mg (+) isocorydine and 40 mg (+) glaucine were obtained from 1.0 g of the crude extracts and each with 99.2%, 96.5%, 99.3%, 99.5% purity as determined by HPLC. The chemical structures of these compounds were confirmed by positive ESI-MS and (1)H NMR. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Recovery of uranium values

    DOEpatents

    Brown, K. B.; Crouse, Jr., D. J.; Moore, J. G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine fn the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected anine dissolved in a nonpolar waterimmiscible organfc solvent such as kerosene. The uranium which is substantially completely extracted by the organic phase may be stripped therefrom by water, and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  6. RECOVERY OF URANIUM VALUES

    DOEpatents

    Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  7. Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids

    EPA Science Inventory

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry...

  8. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  9. CONTINUOUS DISSOLVER EXTRACTOR FOR PROCESSING METAL

    DOEpatents

    Lemon, R.B.; Buckham, J.A.

    1959-02-01

    An apparatus is presented for the continuous dissolution of metal slugs in an aqueous acid and sequential continuous extraction of selected metal values from the acid solution by counter-current contact with an organic solvent. The apparatus comprises a cylindrical tank divided into upper and lower sections. Dissolution of the metal slug takes place in the lower section and the solution so produced is continuously fed to the topmost plate of the upper extraction section. An immiscible organic extractant is continuously passed by a pulsing pump into the lowermost unit of the extraction section. Suitable piping and valving permits of removing the aqueous raffinate solution from the lowermost portion of the extraction section, and simultaneous removal of organic solvent extractant containing the desired product from the uppermost portion of the extraction section.

  10. Fluid inclusion characteristics and hydrocarbon accumulation dating in upper Palaeozoic reservoirs in Hangjinqi region of Northern,Ordos Basin

    NASA Astrophysics Data System (ADS)

    Zhao, G.

    2017-12-01

    Hangjinqi region is one of the key exploration areas of natural gas in Ordos Basin. The main gas accumulation periods and gas charge dating can be determined through the comprehensive research on the fluid inclusions occurrence characteristics, composition and homogenization temperatures. The results show that: the fluid inclusions in upper palaeozoic sand reservoirs were mainly hosted in quartz overgrowth or cements of fissures of conglomeratic sandstone and medium-fine sandstone. According to the diagenetic stages, composion and homogenization temperatures of fluid inclusions in host minerals, two different phases of hydrocarbon inclusions have been identified. Gas-liquid biphase hydrocarbon inclusions and gas-liquid biphase aqueous inclusion are the main types inclusions with morphology of oval, sub-angular, rectangular, semi-circular and irregular and with gas components of CO2 and CH4. The homogenization temperature of brines inclusions associated with the hydrocarbon inclusions is characterized of continuous distribution and multiple peaks. Three regions such as Shilijiahan, Xinzhao, Shiguhao areas have significant differences in temperature distributions. The integrated analysis of burial and thermo-evolution by combining the employment of homogenization temperature of aqueous inclusions projected on a burial history diagram and hydrocarbon source rock thermal evolution history show that the hydrocarbon charging in Shilijiahan area occurred mainly from Eocene to present. The main accumulation stage in Xinzhao area is from Eocene to present and there may be charging period from late stage of early Jurassic to middle stage of middle Jurassic. The hydrocarbon charging in Shiguhao area occurred mainly from Eocene to present according to the homogenization temperature of fluid inclusions and the features of gas migration.

  11. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns.

    PubMed

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-12-01

    Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule.

  12. A Chain of Modeling Tools For Gas and Aqueous Phase Chemstry

    NASA Astrophysics Data System (ADS)

    Audiffren, N.; Djouad, R.; Sportisse, B.

    Atmospheric chemistry is characterized by the use of large set of chemical species and reactions. Handling with the set of data required for the definition of the model is a quite difficult task. We prsent in this short article a preprocessor for diphasic models (gas phase and aqueous phase in cloud droplets) named SPACK. The main interest of SPACK is the automatic generation of lumped species related to fast equilibria. We also developped a linear tangent model using the automatic differentiation tool named ODYSSEE in order to perform a sensitivity analysis of an atmospheric multi- phase mechanism based on RADM2 kinetic scheme.Local sensitivity coefficients are computed for two different scenarii. We focus in this study on the sensitivity of the ozone,NOx,HOx, system with respect to some aqueous phase reactions and we inves- tigate the influence of the reduction in the photolysis rates in the area below the cloud region.

  13. Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems.

    PubMed

    Ziemecka, Iwona; van Steijn, Volkert; Koper, Ger J M; Rosso, Michel; Brizard, Aurelie M; van Esch, Jan H; Kreutzer, Michiel T

    2011-02-21

    This paper presents a method to form micron-sized droplets in an aqueous two-phase system (ATPS) and to subsequently polymerize the droplets to produce hydrogel beads. Owing to the low interfacial tension in ATPS, droplets do not easily form spontaneously. We enforce the formation of drops by perturbing an otherwise stable jet that forms at the junction where the two aqueous streams meet. This is done by actuating a piezo-electric bending disc integrated in our device. The influence of forcing amplitude and frequency on jet breakup is described and related to the size of monodisperse droplets with a diameter in the range between 30 and 60 μm. Rapid on-chip polymerization of derivatized dextran inside the droplets created monodisperse hydrogel particles. This work shows how droplet-based microfluidics can be used in all-aqueous, surfactant-free, organic-solvent-free biocompatible two-phase environment.

  14. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-interactive Chemicals Contained in Boundary Layer-targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Richmond, Robert Chafee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor)

    2013-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  15. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    PubMed

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  16. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor)

    2017-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, water, or a water-based lubricant. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  17. Friction and Wear Modifiers Using Solvent Partitioning of Hydrophilic Surface-Interactive Chemicals Contained in Boundary Layer-Targeted Emulsions

    NASA Technical Reports Server (NTRS)

    Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor); Schramm, Harry F., Jr. (Inventor)

    2016-01-01

    A wear and/or friction reducing additive for a lubricating fluid in which the additive is a combination of a moderately hydrophilic single-phase compound and an anti-wear and/or anti-friction aqueous salt solution. The aqueous salt solution produces a coating on boundary layer surfaces. The lubricating fluid can be an emulsion-free hydrophobic oil, hydraulic fluid, antifreeze, or water. Preferably, the moderately hydrophilic single-phase compound is sulfonated castor oil and the aqueous salt solution additionally contains boric acid and zinc oxide. The emulsions produced by the aqueous salt solutions, the moderately hydrophilic single-phase compounds, or the combination thereof provide targeted boundary layer organizers that significantly enhance the anti-wear and/or anti-friction properties of the base lubricant by decreasing wear and/or friction of sliding and/or rolling surfaces at boundary layers.

  18. The effects of biomacromolecules on the physical stability of W/O/W emulsions.

    PubMed

    Li, Jinlong; Zhu, Yunping; Teng, Chao; Xiong, Ke; Yang, Ran; Li, Xiuting

    2017-02-01

    The effect of bovine serum albumin (BSA), whey protein isolate (WPI), whey protein hydrolysate (WPH), sodium caseinate (SC), carboxymethylcellulose sodium (CMC), fish gelatin (FG), high methoxyl apple pectin (HMAP), low methoxyl apple pectin (LMAP), gum Arabic (GA), ι-carrageenan (CGN), and hydroxypropyl chitosan (HPCTS) on physical stability of internal or external aqueous phase of water-in-oil-in-water (W/O/W) emulsions was evaluated. WPI and CGN in the internal aqueous phase, and GA, HPCTS, and CMC in the external phase reduced the size of emulsion droplets. BSA, WPI, SC, FG, CGN, and HPCTS improved the dilution stability of W/O/W emulsions, but HMAP had a negative effect. BSA, WPI, SC, FG, LMAP, GA, CGN, HPCTS, or CMC significantly improved the thermal stability of W/O/W emulsions. Results also indicated that the addition of CGN (1.0%), HMAP (1.0%), WPH (1.0%), or HPCTS (1.0%) in internal aqueous phase significantly increased the viscosity of emulsions, however, addition to the external aqueous phase had insignificant effects. A protein-knockout experiment confirmed that proteins as biomacromolecules, were the key factor in improving physical stability of emulsions.

  19. Efficient counter-current chromatographic isolation and structural identification of two new cinnamic acids from Echinacea purpurea.

    PubMed

    Lu, Ying; Li, JiaYin; Li, MiLu; Hu, Xia; Tan, Jun; Liu, Zhong Hua

    2012-10-01

    Two new cinnamic acids, 2-O-caffeoyl-3-O-isoferuloyltartaric (3), and 2, 3-di-O-isoferuloyltartaric acid (5), along with three known caffeic acids, cichoric acid (1), 2-O-caffeoyl-3-O-feruloyltartaric acid (2) and 2-O-caffeoyl-3-O-p-coumaroyltartaric acid (4), have been successfully isolated and purified from Echinacea purpurea. In this study, we investigated an efficient method for the preparative isolation and purification of cinnamic acids from E. purpurea by high-speed counter-current chromatography (HSCCC). The separation was performed using a two-phase solvent composed of n-hexane-ethyl-acetate-methanol-0.5% aqueous acetic acid (1:3:1:4, v/v). The upper phase was used as the stationary phase and the lower phase as the mobile phase, with a flow rate of 1.6 mL/min. From 250 mg of crude extracts, 65.1 mg of 1, 8.3 mg of 2, 4.0 mg of 3, 4.5 mg of 4, and 4.3 mg of 5 were isolated in one-step, with purities of 98.5%, 97.7%, 94.6%, 94.3%, and 98.6%, respectively, as evaluated by HPLC-DAD. The chemical structures were identified by electro spray ionization mass spectrometry (ESI-MS) and one- and two-dimensional NMR spectra. HSCCC was very efficient for the separation and purification of the cinnamic acids from

  20. pH recycling aqueous two-phase systems applied in extraction of Maitake β-Glucan and mechanism analysis using low-field nuclear magnetic resonance.

    PubMed

    Hou, Huiyun; Cao, Xuejun

    2015-07-31

    In this paper, a recycling aqueous two-phase systems (ATPS) based on two pH-response copolymers PADB and PMDM were used in purification of β-Glucan from Grifola frondosa. The main parameters, such as polymer concentration, type and concentration of salt, extraction temperature and pH, were investigated to optimize partition conditions. The results demonstrated that β-Glucan was extracted into PADB-rich phase, while impurities were extracted into PMDM-rich phase. In this 2.5% PADB/2.5% PMDM ATPS, 7.489 partition coefficient and 96.92% extraction recovery for β-Glucan were obtained in the presence of 30mmol/L KBr, at pH 8.20, 30°C. The phase-forming copolymers could be recycled by adjusting pH, with recoveries of over 96.0%. Furthermore, the partition mechanism of Maitake β-Glucan in PADB/PMDM aqueous two-phase systems was studied. Fourier transform infrared spectra, ForteBio Octet system and low-field nuclear magnetic resonance (LF-NMR) were introduced for elucidating the partition mechanism of β-Glucan. Especially, LF-NMR was firstly used in the mechanism analysis in partition of aqueous two-phase systems. The change of transverse relaxation time (T2) in ATPS could reflect the interaction between polymers and β-Glucan. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution.

    PubMed

    Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou

    2017-08-10

    Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.

  2. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    PubMed

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems

    PubMed Central

    Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Pauly, Jérôme; Coutinho, João A. P.

    2010-01-01

    Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS. PMID:20480041

  4. Using the liquid nature of the stationary phase in countercurrent chromatography. IV. The cocurrent CCC method.

    PubMed

    Berthod, Alain; Hassoun, Mahmoud

    2006-05-26

    The retention volumes of solutes in countercurrent chromatography (CCC) are directly proportional to their distribution coefficients, K(D) in the biphasic liquid system used as mobile and stationary phase in the CCC column. The cocurrent CCC method consists in putting the liquid "stationary" phase in slow motion in the same direction as the mobile phase. A mixture of five steroid compounds of widely differing polarities was used as a test mixture to evaluate the capabilities of the method with the biphasic liquid system made of water/methanol/ethyl acetate/heptane 6/5/6/5 (v/v) and a 53 mL CCC column of the coil planet centrifuge type. It is shown that the chromatographic resolution obtained in cocurrent CCC is very good because the solute band broadening is minimized as long as the solute is located inside the "stationary" phase. Pushing the method at its limits, it is demonstrated that the five steroids can still be (partly) separated when the flow rate of the two liquid phases is the same (2 mL/min). This is due to the higher volume of upper phase (72% of the column volume) contained inside the CCC column producing a lower linear speed compared to the aqueous lower phase linear speed. The capabilities of the cocurrent CCC method compare well with those of the gradient elution method in HPLC. Continuous detection is a problem due to the fact that two immiscible liquid phases elute from the column. It was partly solved using an evaporative light scattering detector.

  5. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    PubMed Central

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-01-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42−) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42− aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions. PMID:27688763

  6. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    DOE PAGES

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu; ...

    2017-12-21

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less

  7. Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM

    NASA Astrophysics Data System (ADS)

    Tilgner, A.; Herrmann, H.

    2010-12-01

    Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.

  8. Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Ryan D.; Lin, Ying-Hsuan; Peng, Zhuoyu

    Organic aerosol formation and transformation occurs within aqueous aerosol and cloud droplets, yet little is known about the composition of high molecular weight organic compounds in cloud water. Cloud water samples collected at Whiteface Mountain, New York, during August-September 2014 were analyzed by ultra-high-resolution mass spectrometry to investigate the molecular composition of dissolved organic carbon, with a focus on sulfur- and nitrogen-containing compounds. Organic molecular composition was evaluated in the context of cloud water inorganic ion concentrations, pH, and total organic carbon concentrations to gain insights into the sources and aqueous-phase processes of the observed high molecular weight organic compounds.more » Cloud water acidity was positively correlated with the average oxygen : carbon ratio of the organic constituents, suggesting the possibility for aqueous acid-catalyzed (prior to cloud droplet activation or during/after cloud droplet evaporation) and/or radical (within cloud droplets) oxidation processes. Many tracer compounds recently identified in laboratory studies of bulk aqueous-phase reactions were identified in the cloud water. Organosulfate compounds, with both biogenic and anthropogenic volatile organic compound precursors, were detected for cloud water samples influenced by air masses that had traveled over forested and populated areas. Oxidation products of long-chain (C 10-12) alkane precursors were detected during urban influence. Influence of Canadian wildfires resulted in increased numbers of identified sulfur-containing compounds and oligomeric species, including those formed through aqueous-phase reactions involving methylglyoxal. Light-absorbing aqueous-phase products of syringol and guaiacol oxidation were observed in the wildfire-influenced samples, and dinitroaromatic compounds were observed in all cloud water samples (wildfire, biogenic, and urban-influenced). Overall, the cloud water molecular composition depended on air mass source influence and reflected aqueous-phase reactions involving biogenic, urban, and biomass burning precursors.« less

  9. TOGA: A TOUGH code for modeling three-phase, multi-component, and non-isothermal processes involved in CO 2-based Enhanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Oldenburg, Curtis M.

    TOGA is a numerical reservoir simulator for modeling non-isothermal flow and transport of water, CO 2, multicomponent oil, and related gas components for applications including CO 2-enhanced oil recovery (CO 2-EOR) and geologic carbon sequestration in depleted oil and gas reservoirs. TOGA uses an approach based on the Peng-Robinson equation of state (PR-EOS) to calculate the thermophysical properties of the gas and oil phases including the gas/oil components dissolved in the aqueous phase, and uses a mixing model to estimate the thermophysical properties of the aqueous phase. The phase behavior (e.g., occurrence and disappearance of the three phases, gas +more » oil + aqueous) and the partitioning of non-aqueous components (e.g., CO 2, CH 4, and n-oil components) between coexisting phases are modeled using K-values derived from assumptions of equal-fugacity that have been demonstrated to be very accurate as shown by comparison to measured data. Models for saturated (water) vapor pressure and water solubility (in the oil phase) are used to calculate the partitioning of the water (H 2O) component between the gas and oil phases. All components (e.g., CO 2, H 2O, and n hydrocarbon components) are allowed to be present in all phases (aqueous, gaseous, and oil). TOGA uses a multiphase version of Darcy’s Law to model flow and transport through porous media of mixtures with up to three phases over a range of pressures and temperatures appropriate to hydrocarbon recovery and geologic carbon sequestration systems. Transport of the gaseous and dissolved components is by advection and Fickian molecular diffusion. New methods for phase partitioning and thermophysical property modeling in TOGA have been validated against experimental data published in the literature for describing phase partitioning and phase behavior. Flow and transport has been verified by testing against related TOUGH2 EOS modules and CMG. The code has also been validated against a CO 2-EOR experimental core flood involving flow of three phases and 12 components. Results of simulations of a hypothetical 3D CO 2-EOR problem involving three phases and multiple components are presented to demonstrate the field-scale capabilities of the new code. This user guide provides instructions for use and sample problems for verification and demonstration.« less

  10. A Systematic Evaluation of the Extent of Photochemical Processing in Different Types of Secondary Organic Aerosols in the Aqueous Phase

    NASA Astrophysics Data System (ADS)

    Romonosky, D.; Lee, H.; Epstein, S. A.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2013-12-01

    A significant fraction of atmospheric organic compounds are predominantly found in condensed phases, such as organic phase in aerosol particles or aqueous phase in cloud droplets. The oxidation of VOCs followed by the condensation of products into particles was thought to be the main mechanism of organic aerosol (OA) formation. However, in the last several years, scientists have realized that a large fraction, if not the majority of organic particles, is produced through cloud and fog photochemical processes. Many of these organic compounds are photolabile, and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of droplets (hours) and particles (days). We previously reported that compounds in secondary organic aerosol (SOA) from ozonolysis of d-limonene efficiently photodegrade in both organic (Walser et al., 2007) and aqueous phases (Bateman et al., 2011). Significant photolysis was also observed in an aqueous extract of SOA from high-NOx photooxidation of isoprene (Nguyen et al., 2012). More recent experiments studying the response to irradiation of complex aqueous mixtures (as opposed to solutions of isolated compounds) found surprising resilience to photodegradation in aqueous extracts of SOA prepared by photooxidation of alpha-pinene (Romonosky et al., unpublished). We present a systematic investigation of the extent of photochemical processing in different types of SOA from various biogenic and anthropogenic precursors. Chamber- or flowtube-generated SOA is collected on an inert substrate, extracted in a methanol/water solution (70:30), photolyzed in the aqueous solution, and the extent of change in the molecular level composition of the material is assessed with high-resolution mass spectrometry (HR-MS). The outcome of this study will be improved understanding of the role of condensed-phase photochemistry in chemical aging of aerosol particles and cloud droplets. Bateman et al. Photolytic processing of secondary organic aerosols dissolved in cloud droplets. Phys. Chem. Chem. Phys. 2011, 13, 12199. Nguyen et al. Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol. Phys. Chem. Chem. Phys. 2012, 14, 9702. Walser et al. Photochemical aging of secondary organic aerosol particles generated from the oxidation of d-limonene. J. Phys. Chem. A 2007, 111, 1907.

  11. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1997-01-01

    A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  12. Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats.

    PubMed

    Jia, L; Cepurna, W O; Johnson, E C; Morrison, J C

    2000-05-01

    To determine the diural intraocular pressure (IOP) response of Brown Norway rat eyes after sclerosis of the aqueous humor outflow pathways and its relationship to optic nerve damage. Hypertonic saline was injected into a single episcleral vein in 17 animals and awake IOP measured in both the light and dark phases of the circadian cycle for 34 days. Mean IOP for light and dark phases during the experimental period were compared with the respective pressures of the uninjected fellow eyes. Optic nerve cross sections from each nerve were graded for injury by five independent masked observers. For fellow eyes, mean light- and dark-phase IOP was 21 +/- 1 and 31 +/- 1 mm Hg, respectively. For four experimental eyes, mean IOPs for both phases were not altered. Six eyes demonstrated significant mean IOP elevations only during the dark phase. Of these, five showed persistent, large circadian oscillations, and four had partial optic nerve lesions. The remaining seven eyes experienced significant IOP elevations during both phases, and all had extensive optic nerve damage. Episcleral vein injection of hypertonic saline is more likely to increase IOP during the dark phase than the light. This is consistent with aqueous outflow obstruction superimposed on a circadian rhythm of aqueous humor production. Because these periodic IOP elevations produced optic nerve lesions, both light- and dark-phase IOP determinations are necessary for accurate correlation of IOP history to optic nerve damage in animals housed in a light- dark environment.

  13. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.

    PubMed

    Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R

    2009-01-01

    The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.

  14. Aqueous-phase story of isoprene - A mini-review and reaction with HONO

    NASA Astrophysics Data System (ADS)

    Rudziński, Krzysztof J.; Szmigielski, Rafał; Kuznietsova, Inna; Wach, Paulina; Staszek, Dorota

    2016-04-01

    Isoprene is a major biogenic hydrocarbon emitted to the atmosphere and a well-recognized player in atmospheric chemistry, formation of secondary organic aerosol and air quality. Most of the scientific work on isoprene has focused on the gas-phase and smog chamber processing while direct aqueous chemistry has escaped the major attention because physical solubility of isoprene in water is low. Therefore, this work recollects the results of genuine research carried on atmospherically relevant aqueous-phase transformations of isoprene. It clearly shows that isoprene dissolves in water and reacts in aqueous solutions with common atmospheric oxidants such as hydrogen peroxide, ozone, hydroxyl radicals, sulfate radicals and sulfite radicals. The reactions take place in the bulk of solutions or on the gas-liquid interfaces and often are acid-catalyzed and/or enhanced by light. The review is appended by an experimental study of the aqueous-phase reaction of isoprene with nitrous acid (HONO). The decay of isoprene and formation of new products are demonstrated. The tentative chemical mechanism of the reaction is suggested, which starts with slow decomposition of HONO to NO2 and NO. The aqueous chemistry of isoprene explains the formation of a few tropospheric components identified by scientists yet considered of unknown origin. The reaction of isoprene with sulfate radicals explains formation of the MW 182 organosulfate found in ambient aerosol and rainwater while the reaction of isoprene with HONO explains formation of the MW 129 and MW 229 nitroorganic compounds identified in rainwater. Thus, aqueous transformations of isoprene should not be neglected without evidence but rather considered and evaluated in modeling of atmospheric chemical processes even if alternative and apparently dominant heterogeneous pathways of isoprene transformation, dry or wet, are demonstrated.

  15. Dense Non Aqueous Phase Liquid (DNAPL) Removal from Fractured Rock using Thermal Conductive Heating (TCH)

    DTIC Science & Technology

    2013-01-01

    of 95% or greater in parent compounds . The data also show that most rock concentrations were lowered to around 0-5...INTRODUCTION 1.1 BACKGROUND The removal of dense non-aqueous phase liquids (DNAPL) and associated dissolved phase compounds is challenging in ...trend as presented in Figure 10. Figure 10. Vapor stream VOC concentrations for the dominant compounds . The more or less consistent level of

  16. Process for recovering hydrocarbons from a diatomite-type ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1983-02-15

    A process for recovering hydrocarbons from a diatomite-type ore which comprises contacting the diatomite ore with a C/sub 4/-C/sub 10/ alcohol and thereafter contacting the diatomite ore-alcohol mixture with an aqueous alkaline solution to separate a hydrocarbon-alcohol phase and an alkaline aqueous phase containing the stripped diatomite ore. Thereafter, the alcohol is distilled off from the hydrocarbon phase and recycled back into the initial process.

  17. Preparation of novel alkaline pH-responsive copolymers for the formation of recyclable aqueous two-phase systems and their application in the extraction of lincomycin.

    PubMed

    Liu, Jiali; Cao, Xuejun

    2016-02-01

    Aqueous two-phase systems have potential industrial application in bioseparation and biocatalysis engineering; however, their practical application is limited primarily because the copolymers involved in the formation of aqueous two-phase systems cannot be recovered. In this study, two novel alkaline pH-responsive copolymers were synthesized and examined for the extraction of lincomycin. The two copolymers could form a novel alkaline aqueous two-phase systems when their concentrations were both 6% w/w and the pH was 8.4(±0.1)-8.7(±0.1). One copolymer was synthesized using acrylic acid, 2-(dimethylamino)ethyl methacrylate, and butyl methacrylate as monomers. Moreover, 98.8% of the copolymer could be recovered by adjusting the solution pH to its isoelectric point (pH 6.29). The other copolymer was synthesized using the monomers methacrylic acid, 2-(dimethylamino)ethyl methacrylate, and methyl methacrylate. In this case, 96.7% of the copolymer could be recovered by adjusting the solution pH to 7.19. The optimal partition coefficient of lincomycin was 0.17 at 30°C in the presence of 10 mM KBr and 5.5 at 40°C in the presence of 80 mM Ti(SO4)2 using the novel alkaline aqueous two-phase systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solvent Extraction of Rare Earth Elements from a Nitric Acid Leach Solution of Apatite by Mixtures of Tributyl Phosphate and Di-(2-ethylhexyl) Phosphoric Acid

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Ali; Yoozbashizadeh, Hossein

    2017-12-01

    Solvent extraction of rare earths from nitrate leach liquor of apatite using mixtures of tributyl phosphate (TBP) and di-(2-ethylhexyl) phosphoric acid (D2EHPA) was studied. The effects of nitrate and hydrogen ion concentration of the aqueous phase as well as the composition and concentration of extractants in the organic phase on the extraction behavior of lanthanum, cerium, neodymium, and yttrium were investigated. The distribution ratio of REEs increases by increasing the nitrate concentration in aqueous phase and concentration of extractants in organic phase, but the hydrogen ion concentration in aqueous phase has a decreasing effect. Yttrium as a heavy rare earth is more sensitive to these parameters than light rare earth elements. Although the composition of organic phase has a minor effect on the extraction of light rare earths, the percent of extraction of yttrium decreases dramatically by increasing the TBP content of organic phase. Mixtures of TBP and D2EHPA can show either synergism or antagonism extraction depending on the concentration and composition of extractants in organic phase. The best condition for separating rare earth elements in groups of heavy and light REEs can be achieved at high nitrate concentration, low H+ concentration, and high concentration of D2EHPA in organic phase. Separation of Ce and La by TBP and D2EHPA is practically impossible in the studied conditions; however, low nitrate concentration and high hydrogen ion concentration in aqueous phase and low concentration of extractants in organic phase favor the separation of Nd from other light rare earth elements.

  19. Coencapsulation of (-)-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility.

    PubMed

    Chen, Xing; McClements, David Julian; Wang, Jian; Zou, Liqiang; Deng, Sumeng; Liu, Wei; Yan, Chi; Zhu, Yuqing; Cheng, Ce; Liu, Chengmei

    2018-04-11

    Particle-stabilized W 1 /O/W 2 emulsion gels were fabricated using a two-step procedure: ( i) a W 1 /O emulsion was formed containing saccharose (for osmotic stress balance) and gelatin (as a gelling agent) in the aqueous phase and polyglycerol polyricinoleate (a lipophilic surfactant) in the oil phase; ( ii) this W 1 /O emulsion was then homogenized with another water phase (W 2 ) containing wheat gliadin nanoparticles (hydrophilic emulsifier). The gliadin nanoparticles in the external aqueous phase aggregated at pH 5.5, which led to the formation of particle-stabilized W 1 /O/W 2 emulsion gels with good stability to phase separation. These emulsion gels were then used to coencapsulate a hydrophilic bioactive (epigallocatechin-3-gallate, EGCG) in the internal aqueous phase (encapsulation efficiency = 65.5%) and a hydrophobic bioactive (quercetin) in the oil phase (encapsulation efficiency = 97.2%). The emulsion gels improved EGCG chemical stability and quercetin solubility under simulated gastrointestinal conditions, which led to a 2- and 4-fold increase in their effective bioaccessibility, respectively.

  20. Aqueous photooxidation of ambient Po Valley Italy air samples: Insights into secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Kirkland, J. R.; Lim, Y. B.; Sullivan, A. P.; Decesari, S.; Facchini, C.; Collett, J. L.; Keutsch, F. N.; Turpin, B. J.

    2012-12-01

    In this work, we conducted aqueous photooxidation experiments with ambient samples in order to develop insights concerning the formation of secondary organic aerosol through gas followed by aqueous chemistry (SOAaq). Water-soluble organics (e.g., glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone) are formed through gas phase oxidation of alkene and aromatic emissions of anthropogenic and biogenic origin. Their further oxidation in clouds, fogs and wet aerosols can form lower volatility products (e.g., oligomers, organic acids) that remain in the particle phase after water evaporation, thus producing SOA. The aqueous OH radical oxidation of several individual potentially important precursors has been studied in the laboratory. In this work, we used a mist-chamber apparatus to collect atmospheric mixtures of water-soluble gases from the ambient air at San Pietro Capofiume, Italy during the PEGASOS field campaign. We measured the concentration dynamics after addition of OH radicals, in order to develop new insights regarding formation of SOA through aqueous chemistry. Specifically, batch aqueous reactions were conducted with 33 ml mist-chamber samples (TOC ~ 50-100μM) and OH radicals (~10-12M) in a new low-volume aqueous reaction vessel. OH radicals were formed in-situ, continuously by H2O2 photolysis. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS +/-), and ESI-MS with IC pre-separation (IC/ESI-MS-). Reproducible formation of pyruvate and oxalate were observed both by IC and ESI-MS. These compounds are known to form from aldehyde oxidation in the aqueous phase. New insights regarding the aqueous chemistry of these "more atmospherically-realistic" experiments will be discussed.

  1. PROCESS FOR DECONTAMINATING THORIUM AND URANIUM WITH RESPECT TO RUTHENIUM

    DOEpatents

    Meservey, A.A.; Rainey, R.H.

    1959-10-20

    The control of ruthenium extraction in solvent-extraction processing of neutron-irradiated thorium is presented. Ruthenium is rendered organic-insoluble by the provision of sulfite or bisulfite ions in the aqueous feed solution. As a result the ruthenium remains in the aqueous phase along with other fission product and protactinium values, thorium and uranium values being extracted into the organic phase. This process is particularly applicable to the use of a nitrate-ion-deficient aqueous feed solution and to the use of tributyl phosphate as the organic extractant.

  2. Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars

    USGS Publications Warehouse

    Bishop, J.L.; Dobrea, E.Z.N.; McKeown, N.K.; Parente, M.; Ehlmann, B.L.; Michalski, J.R.; Milliken, R.E.; Poulet, F.; Swayze, G.A.; Mustard, J.F.; Murchie, S.L.; Bibring, J.-P.

    2008-01-01

    Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)-smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry. A spectral feature attributed to an Fe2+ phase is present in many locations in the Mawrth Vallis region at the transition from Fe/Mg-smectite to aluminum/silicon (Al/Si)-rich units. Fe2+-bearing materials in terrestrial sediments are typically associated with microorganisms or changes in pH or cations and could be explained here by hydrothermal activity. The stratigraphy of Fe/Mg-smectite overlain by a ferrous phase, hydrated silica, and then Al-phyllosilicates implies a complex aqueous history.

  3. EFFECT OF AQUEOUS PHASE PROPERTIES ON CLAY PARTICLE ZETA POTENTIAL AND ELECTRO-OSMOTIC PERMEABILITY: IMPLICATIONS FOR ELECTRO-KINETIC SOIL REMEDIATION PROCESSES

    EPA Science Inventory

    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  4. Photocatalytic Destruction of Nitrate Esters in Air

    DTIC Science & Technology

    2000-07-01

    four technologies are thermal treatment (direct flame or incineration), absorption (scrubbing), biofiltration , and adsorption (activated carbon). The...recycling the water through an aqueous phase photocatalytic system. Both approaches eliminate the carbon and reduce the water consumption. The use...of an aqueous phase photocatalytic oxidation system increases the capital equipment cost but eliminates the chemical handling and wastewater issues

  5. [Raman spectroscopic analysis of dissolution and phase transformation of chloropinnoite in the boric acid aqueous solution].

    PubMed

    Li, Xiao-Ping; Gao, Shi-Yang; Liu, Zhi-Hong; Hu, Man-Cheng; Xia, Shu-Ping

    2005-01-01

    Raman spectroscopy of dissolution and transformation of chloropinnoite in 4.5% (w.t.%) boric acid aqueous solution at 30 degrees C has been recorded. The Raman spectra of kinetics process have been obtained. The phase transformation product is kurnakovite (2MgO x 3B2O3 x 15H2O). The main polyborate anions and their interaction in aqueous solution have been proposed according to the Raman spectrum. Some assignments were tentatively given and the relations between the existing forms of polyborate anions and the crystallizing solid phases have been gained. A mechanisms of dissolution and crystallization reactions and the formation condition of kurnakovite in Qinghai-Tibet plateau were proposed and discussed.

  6. Sorption of per- and polyfluoroalkyl substances (PFASs) on filter media: implications for phase partitioning studies.

    PubMed

    Chandramouli, Bharat; Benskin, Jonathan P; Hamilton, M Coreen; Cosgrove, John R

    2015-01-01

    Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are ubiquitous in the environment. Investigations into their fate and potential phase-partitioning behavior require separating solid from aqueous phases via filtration. However, sorption of aqueous-phase PFASs on filtration media may lead to underestimation of PFAS concentrations in the aqueous phase. The authors investigated the sorption of perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids (PFPiAs), polyfluoroalkyl phosphate monoesters, polyfluoroalkyl phosphate diesters (diPAPs), fluorotelomer sulfonates, and perfluorooctane sulfonamide on filtration media. The effects of concentration (3 spiking levels), filter media (4 types), matrix (4 matrices), and compound structure on sorption are reported. Glass fiber filtration resulted in the least sorption, whereas polytetrafluoroethylene filters resulted in the most sorption (up to 98%). Analyte concentration had no significant effect. Sorption was generally consistent across matrix types except for samples affected by aqueous film forming foam deployment, which displayed high sorption of PFOS on nylon filters. Sorption usually increased with an increasing number of carbon or fluorine atoms and was most pronounced for PFPiAs and diPAPs (30–75% sorption). Overall, glass fiber filters are more recommended than nylon filters in environmental samples when phase separation is required. Use of filtration media for PFAS must be preceded by matrix-specific testing to account for unpredictable effects. (C)2014 SETAC

  7. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bräuer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.

    2012-09-01

    The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (<2%) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  8. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, C.; Bräuer, P.; Camredon, M.; Valorso, R.; Madronich, S.; Herrmann, H.; Aumont, B.

    2013-01-01

    The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene) is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis) under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation) to 70% (octane oxidation) of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively). Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  9. Concurrence of aqueous and gas phase contamination of groundwater in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Son, Ji-Hee; Carlson, Kenneth H

    2016-01-01

    The potential impact of rapid development of unconventional oil and natural gas resources using hydraulic fracturing and horizontal drilling on regional groundwater quality has received significant attention. Major concerns are methane or oil/gas related hydrocarbon (such as TPHs, BTEX including benzene, toluene, ethybenzene and xylene) leaks into the aquifer due to the failure of casing and/or stray gas migration. Previously, we investigated the relationship between oil and gas activity and dissolved methane concentration in a drinking water aquifer with the major finding being the presence of thermogenic methane contamination, but did not find detectable concentrations of TPHs or BTEX. To understand if aqueous and gas phases from the producing formation were transported concurrently to drinking water aquifers without the presence of oil/gas related hydrocarbons, the ionic composition of three water groups was studied: (1) uncontaminated deep confined aquifer, (2) suspected contaminated groundwater - deep confined aquifer containing thermogenic methane, and (3) produced water from nearby oil and gas wells that would represent aqueous phase contaminants. On the basis of quantitative and spatial analysis, we identified that the "thermogenic methane contaminated" groundwater did not have similarities to produced water in terms of ionic character (e.g. Cl/TDS ratio), but rather to the "uncontaminated" groundwater. The analysis indicates that aquifer wells with demonstrated gas phase contamination have not been contacted by an aqueous phase from oil and gas operations according to the methodology we use in this study and the current groundwater quality data from COGCC. However, the research does not prove conclusively that this the case. The results may provide insight on contamination mechanisms since improperly sealed well casing may result in stray gas but not aqueous phase transport. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A green separation strategy for neodymium (III) from cobalt (II) and nickel (II) using an ionic liquid-based aqueous two-phase system.

    PubMed

    Chen, Yuehua; Wang, Huiyong; Pei, Yuanchao; Wang, Jianji

    2018-05-15

    It is significant to develop sustainable strategies for the selective separation of rare earth from transition metals from fundamental and practical viewpoint. In this work, an environmentally friendly solvent extraction approach has been developed to selectively separate neodymium (III) from cobalt (II) and nickel (II) by using an ionic liquid-based aqueous two phase system (IL-ATPS). For this purpose, a hydrophilic ionic liquid (IL) tetrabutylphosphonate nitrate ([P 4444 ][NO 3 ]) was prepared and used for the formation of an ATPS with NaNO 3 . Binodal curves of the ATPSs have been determined for the design of extraction process. The extraction parameters such as contact time, aqueous phase pH, content of phase-formation components of NaNO 3 and the ionic liquid have been investigated systematically. It is shown that under optimal conditions, the extraction efficiency of neodymium (III) is as high as 99.7%, and neodymium (III) can be selectively separated from cobalt (II) and nickel (II) with a separation factor of 10 3 . After extraction, neodymium (III) can be stripped from the IL-rich phase by using dilute aqueous sodium oxalate, and the ILs can be quantitatively recovered and reused in the next extraction process. Since [P 4444 ][NO 3 ] works as one of the components of the ATPS and the extractant for the neodymium, no organic diluent, extra etractant and fluorinated ILs are used in the separation process. Thus, the strategy described here shows potential in green separation of neodymium from cobalt and nickel by using simple IL-based aqueous two-phase system. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    NASA Astrophysics Data System (ADS)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  12. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  13. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  14. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1997-02-18

    A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.

  15. “Towards building better linkages between aqueous phase ...

    EPA Pesticide Factsheets

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and employing a bisection method to calculate H+ concentrations. With potentially hundreds of reactions that may be important in cloud water and only seven reactions in the current model, expansion of the existing mechanism is an important area of investigation. However, with the current mechanism hardwired into the solver code, the module is difficult to expand with additional chemistry. It also ignores the impacts of mass transfer limitations on cloud chemistry which may be significant. Here, the Kinetic PreProcessor has been applied to generate a Rosenbrock solver for the CMAQ v5.0.1 aqueous phase chemistry mechanism. The module has been updated to simultaneously solve kinetic mass transfer between the phases, dissociation/association, chemical kinetics, Aitken scavenging, and wet deposition. This will allow for easier expansion of the chemical mechanism in the future and a better link between aqueous phase chemistry and droplet microphysics. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating pre

  16. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reductionmore » of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.« less

  17. Improved Separations of Proteins and Sugar Derivatives Using the Small-Scale Cross-Axis Coil Planet Centrifuge with Locular Multilayer Coiled Columns

    PubMed Central

    Shinomiya, Kazufusa; Umezawa, Motoki; Seki, Manami; Nitta, Jun; Zaima, Kazumasa; Harikai, Naoki; Ito, Yoichiro

    2016-01-01

    1) Background Countercurrent chromatography (CCC) is liquid-liquid partition chromatography without using a solid support matrix. This technique requires further improvement of partition efficiency and shortening theseparation time. 2) Methods The locular multilayer coils modified with and without mixer glass beads were developed for the separation of proteins and 4-methylumbelliferyl (MU) sugar derivatives using the small-scale cross-axis coil planet centrifuge. 3) Results Proteins were well separated from each other and the separation was improved at a low flow rate of the mobile phase. On the other hand, 4-MU sugar derivatives were sufficiently resolved with short separation time at a highflow rate of the mobile phase under satisfactory stationary phase retention. 4) Conclusion Effective separations were achieved using the locular multilayer coil for proteins with aqueous-aqueous polymer phase systems and for 4-MU sugar derivatives with organic-aqueous two-phase solvent systems by inserting a glass bead into each locule. PMID:27891507

  18. Actinium radioisotope products of enhanced purity

    DOEpatents

    Meikrantz, David Herbert; Todd, Terry Allen; Tranter, Troy Joseph; Horwitz, E. Philip

    2010-06-15

    A product includes actinium-225 (.sup.225Ac) and less than about 1 microgram (.mu.g) of iron (Fe) per millicurie (mCi) of actinium-225. The product may have a radioisotopic purity of greater than about 99.99 atomic percent (at %) actinium-225 and daughter isotopes of actinium-225, and may be formed by a method that includes providing a radioisotope mixture solution comprising at least one of uranium-233 (.sup.233U) and thorium-229 (.sup.229Th), extracting the at least one of uranium-233 and thorium-229 into an organic phase, substantially continuously contacting the organic phase with an aqueous phase, substantially continuously extracting actinium-225 into the aqueous phase, and purifying the actinium-225 from the aqueous phase. In some embodiments, the product may include less than about 1 nanogram (ng) of iron per millicurie (mCi) of actinium-225, and may include less than about 1 microgram (.mu.g) each of magnesium (Mg), Chromium (Cr), and manganese (Mn) per millicurie (mCi) of actinium-225.

  19. Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate

    NASA Technical Reports Server (NTRS)

    Jacob, D. J.

    1986-01-01

    The chemistry of OH in nonprecipitating tropospheric clouds was studied using a coupled gas phase/aqueous phase chemical model. The simulation takes into account the radial dependence of the concentrations of short lived aqueous phase species, in particular, O3(aq) OH(aq). Formic acid is shown to be rapidly produced by the aqueous phase reaction between H2C(OH)2 and OH, but HCOO(-) and OH, but HCOO(-) is in turn rapidly oxidized by OH(aq). The HCOOH concentration in cloud is shown to be strongly dependent on the pH of the cloud water; clouds with pH greater than 5 are not efficient HCOOH sources. A novel mechanism is proposed for the oxidation of S(IV) by OH(aq), with the main product predicted to be peroxymonosulfate, HSO5(-). The latter could contribute significantly to total cloud water sulfur.

  20. Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.

    PubMed

    Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim

    2017-02-01

    Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.

  1. The fate and transport of reproductive hormones and their conjugates in the environment (Invited)

    NASA Astrophysics Data System (ADS)

    Casey, F. X.; Shrestha, S. L.; Hakk, H.; Smith, D. J.; Larsen, G. L.; Padmanabhan, G.

    2009-12-01

    Reproductive steroid hormones can disrupt the endocrine system of some species at ng/L concentrations. Sources of steroid hormones to the environment include human waste water effluents or manure produced at animal feeding operations (AFOs). Steroid hormones, such as 17β-estradiol (E2) and estrone (E1), undergo various fate and transport processes, and laboratory studies have shown that they do not persist long (hours to few days), and have very little if any mobility in soil. Nonetheless, steroid hormones are detected at frequencies and concentrations of concern in the natural environment that would suggest their moderate persistence and mobility. One theory that may partially explain the disparity between field and laboratory studies is that conjugated forms of hormones are more mobile than their deconjugated counterparts. Glucuronide and sulfate conjugates are found in abundance in animal waste and are more soluble than their deconjugated forms. Laboratory studies were conducted to study the fate of a major urinary E2 conjugate, 17β-estradiol glucuronide (E2G), in a Hamar soil (Sandy, mixed, frigid typic Endoaquolls) from the surface and subsurface horizons. Speciation studies using batch sorption indicated that E2G degraded to E2 and E1 within 24 hours in the upper horizon soil with organic carbon content (OC) of 1.35%; whereas it persisted more in the lower horizon soil containing 0.32% OC. For initial concentrations of 2.8-28 mg/L, more than 15% of the applied dose concentration was still intact in the conjugate form in the aqueous phase for 3 - 14 days, in the lower horizon soil. The decline of E2G in the aqueous phase in the upper horizon soil was approximated with a first-order rate constant (k), which ranged from -0.208 to -0.279/h. The k values ranged from -0.006 to -0.016/h for the lower soil horizon. The differences in k values between the two horizons could be attributed to differences in bacterial activity and/or differences in sorption capacities. The upper horizon would generally have more biological activity and perhaps more E2G bio-degradation. Also, the higher OC of the upper horizon would result in greater sorption of the hydrophobic hormones. Our results may have important implications for on-farm manure management. A prevailing practice is to inject manure slurry below the soil surface to reduce ammonia volatilization and odor. If slurries are injected too deep, then conjugated hormones in the manure could potentially be placed at soil depths that have less capacity to degrade and a greater potential to be transported. Time windows of 24 hours for surface manure application and 3 - 14 days for subsurface manure application may be decisive in determining whether E2G will be transported during runoff and leaching events.

  2. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water

    PubMed Central

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-01-01

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures   to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911

  3. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.

    PubMed

    Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng

    2015-08-19

    An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.

  4. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2017-08-25

    Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hierarchical drug release of pH-sensitive liposomes encapsulating aqueous two phase system.

    PubMed

    Zhang, Xunan; Zong, Wei; Bi, Hongmei; Zhao, Kunming; Fuhs, Thomas; Hu, Ying; Cheng, Wenlong; Han, Xiaojun

    2018-06-01

    As promising drug delivery vehicles, previous investigations of liposomes as carriers are primarily focused on insertion and modification of lipid membrane interfaces. The utility of the inner core seems to be overlooked. Herein, we developed pH-sensitive liposomes (PSLs) containing an aqueous two phase system (ATPS), and intriguingly discovered their hierarchical release under acidic stimuli. ATPS containing two polymers (poly(ethylene glycol) (PEG) and dextran) is homogeneous above phase transition temperature when producing ATPS-liposomes, and separated into PEG-rich phase and dextran-rich phase after cooling down to room temperature. The overall release time of ATPS-liposomes is divided into two stages and prolonged compared to simple aqueous liposomes. The unique release profile is due to the disproportional distribution of drugs in two phases. Doxorubicin (DOX) is loaded in the ATPS-liposomes, and their half maximum inhibition concentration on HeLa cells is 0.018 μmol L -1 , which means 27.5 fold increase in inhibition efficiency over free DOX. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Cross-phase separation of nanowires and nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Fang; Duoss, Eric; Han, Jinkyu

    In one embodiment, a process includes creating a mixture of an aqueous component, nanowires and nanoparticles, and a hydrophobic solvent and allowing migration of the nanowires to the hydrophobic solvent, where the nanoparticles remain in the aqueous component. Moreover, the nanowires and nanoparticles are in the aqueous component before the migration.

  7. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    PubMed

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic/hydrophobic part of a lipid molecule that will form a desired phase in a desired temperature range.

  8. Analytical methodologies based on LC-MS/MS for monitoring selected emerging compounds in liquid and solid phases of the sewage sludge.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-01-01

    In this work, two analytical methodologies based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) were developed for quantification of emerging pollutants identified in sewage sludge after a previous wide-scope screening. The target list included 13 emerging contaminants (EC): thiabendazole, acesulfame, fenofibric acid, valsartan, irbesartan, salicylic acid, diclofenac, carbamazepine, 4-aminoantipyrine (4-AA), 4-acetyl aminoantipyrine (4-AAA), 4-formyl aminoantipyrine (4-FAA), venlafaxine and benzoylecgonine. The aqueous and solid phases of the sewage sludge were analyzed making use of Solid-Phase Extraction (SPE) and UltraSonic Extraction (USE) for sample treatment, respectively. The methods were validated at three concentration levels: 0.2, 2 and 20 μg L(-1) for the aqueous phase, and 50, 500 and 2000 μg kg(-1) for the solid phase of the sludge. In general, the method was satisfactorily validated, showing good recoveries (70-120%) and precision (RSD < 20%). Regarding the limit of quantification (LOQ), it was below 0.1 μg L(-1) in the aqueous phase and below 50 μg kg(-1) in the solid phase for the majority of the analytes. The method applicability was tested by analysis of samples from a wider study on degradation of emerging pollutants in sewage sludge under anaerobic digestion. The key benefits of these methodologies are: • SPE and USE are appropriate sample procedures to extract selected emerging contaminants from the aqueous phase of the sewage sludge and the solid residue. • LC-MS/MS is highly suitable for determining emerging contaminants in both sludge phases. • Up to our knowledge, the main metabolites of dipyrone had not been studied before in sewage sludge.

  9. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  10. Ringer tablet-based ionic liquid phase microextraction: Application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples.

    PubMed

    Farajzadeh, Mir Ali; Bamorowat, Mahdi; Mogaddam, Mohammad Reza Afshar

    2016-11-01

    An efficient, reliable, sensitive, rapid, and green analytical method for the extraction and determination of neonicotinoid insecticides in aqueous samples has been developed using ionic liquid phase microextraction coupled with high performance liquid chromatography-diode array detector. In this method, a few microliters of 1-hexyl-3-methylimidazolium hexafluorophosphate (as an extractant) is added onto a ringer tablet and it is transferred into a conical test tube containing aqueous phase of the analytes. By manually shaking, the ringer tablet is dissolved and the extractant is released into the aqueous phase as very tiny droplets to provide a cloudy solution. After centrifuging the extracted analytes into ionic liquid are collected at the bottom of a conical test tube. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12 and 0.33 and 0.41 and 1.11ngmL(-1), respectively. Extraction recoveries and enrichment factors were from 66% to 84% and 655% to 843%, respectively. Finally different aqueous samples were successfully analyzed using the proposed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cloud iron speciation: Experimental simulations

    NASA Astrophysics Data System (ADS)

    Sofikitis, A. M.; Colin, J. L.; Desboeufs, K. V.; Losno, R.

    2003-04-01

    The aim of our contribution is to identify major processes controlling iron speciation in the atmospheric aqueous phase. Fe is known to participate in a variety of redox reactions in cloud chemistry, as well as controlling free radical production in the troposphere. Iron cycling is slower than cycles with other catalytic transition metals (Cu, Mn). The residence time of each iron species is around ten minutes, this allows analytical separation and determination of each iron redox species and therefore its ratio. As the only source of trace metals in aqueous atmospheric phase is due to the solubilization of aerosols, we present here dissolution rate measurements obtained by laboratory experiments with an open flow reactor. This reactor enables us to reproduce the dissolution of a particle in aqueous atmospheric water. The dissolution rate and the speciation of iron are dependent on the mineralogy of the solid phase. Our experiments included Goethite, hematite and vermiculite, which are typical mineral constituents of dust particles. Comparisons were made with natural loess which is a blend of various crystalline and amorphous phases. We will present results of crustal origin particles dissolution experiments where kinetic parameters are determined, including iron speciation. Major functions of variation are pH and photochemistry in the aqueous weathering solution.

  12. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  13. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOEpatents

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  14. First-principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yeohoon; Rousseau, Roger J.; Weber, Robert S.

    2014-07-23

    The effects of aqueous phase on the reactivity of phenol hydrogenation over Pt and Ni catalysts were investigated using density functional theory based ab initio molecular dynamics (AIMD) calculations. The adsorption of phenol and the first hydrogenation steps via three carbon positions (ortho, meta and para) with respect to the phenolic OH group were studied in both vacuum and liquid phase conditions. To gain insight into how the aqueous phase affects the metal catalyst surface, increasing water environments including singly adsorbed water molecule, mono- (9 water molecules), double layers (24 water molecules), and the bulk liquid water which (52 watermore » molecules) on the Pt(111) and the Ni(111) surfaces were modeled. Compared to the vacuum/metal interfaces, AIMD simulation results suggest that the aqueous Pt(111) and Ni(111) interfaces have a lower metal work function in the order of 0.8 - 0.9 eV, thus, making the metals in aqueous phase stronger reducing agents and poorer oxidizing agents. Phenol adsorption from the aqueous phase is found to be slightly weaker that from the vapor phase. The first hydrogenation step of phenol at the ortho position of the phenolic ring is slightly favored over the other two positions. The polarization induced by the surrounding water molecules and the solvation effect play important roles in stabilizing the transition states associated with phenol hydrogenation by lowering the barriers of 0.1 - 0.4 eV. The detailed discussion on the basis of the interfacial electrostatics from the current study is very useful to understand the nature of a broader class of metal catalyzed reactions in liquid solution phase. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and Office of Energy Efficiency and Renewable Energy. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  15. Complexation Enhancement Drives Water-to-Oil Ion Transport: A Simulation Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Baofu; Ferru, Geoffroy; Ellis, Ross J.

    We address the structures and energetics of ion solvation in aqueous and organic solutions to understand liquid-liquid ion transport. Atomistic molecular dynamics (MD) simulations with polarizable force field are performed to study the coordination transformations driving lanthanide (Ln(III)) and nitrate ion transport between aqueous and an alkylamide-oil solution. An enhancement of the coordination behavior in the organic phase is achieved in contrast with the aqueous solution. In particular, the coordination number of Ce3+ increases from 8.9 in the aqueous to 9.9 in the organic solutions (from 8 in the aqueous to 8.8 in the organic systems for Yb3+). Moreover, themore » local coordination environ ment changes dramatically. Potential of mean force calculations show that the Ln(III)-ligand coordination interaction strengths follow the order of Ln(III-)nitrate> Ln(III)-water>Ln(III)-DMDBTDMA. They increase 2-fold in the lipophilic environment in comparison to the aqueous phase, and we attribute this to the shedding of the outer solvation shell. Our findings highlight the importance of outer sphere interactions on the competitive solvation energetics that cause ions to migrate between immiscible phases; an essential ingredient for advancing important applications such as rare earth metal separations. Some open questions in simulating the coordination behavior of heavy metals are also addressed.« less

  16. Recovery of sugars from ionic liquid biomass liquor by solvent extraction

    DOEpatents

    Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2015-10-13

    The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.

  17. Quantifying the equilibrium partitioning of substituted polycyclic aromatic hydrocarbons in aerosols and clouds using COSMOtherm.

    PubMed

    Awonaike, Boluwatife; Wang, Chen; Goss, Kai-Uwe; Wania, Frank

    2017-03-22

    Functional groups attached to polycyclic aromatic hydrocarbons (PAHs) can significantly modify the environmental fate of the parent compound. Equilibrium partition coefficients, which are essential for describing the environmental phase distribution of a compound, are largely unavailable for substituted PAHs (SPAHs). Here, COSMOtherm, a software based on quantum-chemical calculations is used to estimate the atmospherically relevant partition coefficients between the gas phase, the aqueous bulk phase, the water surface and the water insoluble organic matter phase, as well as the salting-out coefficients, for naphthalene, anthracene, phenanthrene, benz(a)anthracene, benzo(a)pyrene and dibenz(a,h)anthracene and 62 of their substituted counterparts. They serve as input parameters for the calculation of equilibrium phase distribution of these compounds in aerosols and clouds. Our results, which were compared with available experimental data, show that the effect of salts, the adsorption to the water surface and the dissolution in a bulk aqueous phase can be safely neglected when estimating the gas-particle partitioning of SPAHs in aerosols. However, for small PAHs with more than one polar functional group the aqueous phase can be the dominant reservoir in a cloud.

  18. Compact and highly stable quantum dots through optimized aqueous phase transfer

    NASA Astrophysics Data System (ADS)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  19. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    PubMed

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.

    PubMed

    Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K

    2017-10-24

    The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.

  1. Amorphous Metal Oxide Thin Films from Aqueous Precursors: New Routes to High-kappa Dielectrics, Impact of Annealing Atmosphere Humidity, and Elucidation of Non-Uniform Composition Profiles

    NASA Astrophysics Data System (ADS)

    Woods, Keenan N.

    Metal oxide thin films serve as critical components in many modern technologies, including microelectronic devices. Industrial state-of-the-art production utilizes vapor-phase techniques to make high-quality (dense, smooth, uniform) thin film materials. However, vapor-phase techniques require large energy inputs and expensive equipment and precursors. Solution-phase routes to metal oxides have attracted great interest as cost-effective alternatives to vapor-phase methods and also offer the potential of large-area coverage, facile control of metal composition, and low-temperature processing. Solution deposition has previously been dominated by sol-gel routes, which utilize organic ligands, additives, and/or solvents. However, sol-gel films are often porous and contain residual carbon impurities, which can negatively impact device properties. All-inorganic aqueous routes produce dense, ultrasmooth films without carbon impurities, but the mechanisms involved in converting aqueous precursors to metal oxides are virtually unexplored. Understanding these mechanisms and the parameters that influence them is critical for widespread use of aqueous approaches to prepare microelectronic components. Additionally, understanding (and controlling) density and composition inhomogeneities is important for optimizing electronic properties. An overview of deposition approaches and the challenges facing aqueous routes are presented in Chapter I. A summary of thin film characterization techniques central to this work is given in Chapter II. This dissertation contributes to the field of solution-phase deposition by focusing on three areas. First, an all-inorganic aqueous route to high-kappa metal oxide dielectrics is developed for two ternary systems. Chapters III and IV detail the film formation chemistry and film properties of lanthanum zirconium oxide (LZO) and zirconium aluminum oxide (ZAO), respectively. The functionality of these dielectrics as device components is also demonstrated. Second, the impact of steam annealing on the evolution of aqueous-derived films is reported. Chapter V demonstrates that steam annealing lowers processing temperatures by effectively reducing residual counterion content, improving film stability with respect to water absorption, and enhancing dielectric properties of LZO films. Third, density and composition inhomogeneities in aqueous-derived films are investigated. Chapters VI and VII examine density inhomogeneities in single- and multi-metal component thin films, respectively, and show that these density inhomogeneities are related to inhomogeneous metal component distributions. This dissertation includes previously published coauthored material.

  2. Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Michelsen, Rebecca R.; Staton, Sarah J. R.; Iraci, Laura T.

    2006-01-01

    The solubility of gas-phase ethanol (ethyl alcohol, CH3CH2OH, EtOH) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (209-237 K) and acid composition (39-76 wt % H2SO4). Ethanol is very soluble under these conditions: effective Henry's law coefficients, H*, range from 4 x 10(exp 4) M/atm in the 227 K, 39 wt % acid to greater than 10(exp 7) M/atm in the 76 wt % acid. In 76 wt % sulfuric acid, ethanol solubility exceeds that which can be precisely determined using the Knudsen cell technique but falls in the range of 10(exp 7)-10(exp 10) M/atm. The equilibrium concentration of ethanol in upper tropospheric/lower stratospheric (UT/LS) sulfate particles is calculated from these measurements and compared to other small oxygenated organic compounds. Even if ethanol is a minor component in the gas phase, it may be a major constituent of the organic fraction in the particle phase. No evidence for the formation of ethyl hydrogen sulfate was found under our experimental conditions. While the protonation of ethanol does augment solubility at higher acidity, the primary reason H* increases with acidity is an increase in the solubility of molecular (i.e., neutral) ethanol.

  3. Aqueous SOA formation from radical oligomerization of methyl vinyl ketone (MVK) and methacrolein (MACR)

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Ravier, S.; Temime-Roussel, B.; Clément, J.; Ervens, B.; Monod, A.

    2013-12-01

    It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. We have investigated the aqueous phase photooxidation of MACR and MVK, which are biogenic organic compounds derived from isoprene. Aqueous phase photooxidation of MVK and MACR was investigated in a photoreactor using photolysis of H2O2 as OH radical source. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature (T = 298 K) and highest precursor initial concentrations ([MVK]0 = 20 mM). A radical mechanism of oligomerization is proposed to explain the formation of the high molecular weight products. Furthermore, we quantified the total amount of carbon present in oligomers. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the atmospheric multiphase system as compared to other aqueous phase as well as traditional SOA sources. MVK time profile (as measured by UV Spectroscopy) and mass spectra (obtained using UPLC-ESI-MS for the retention time range 0-5 min in the positive mode) at 5, 10 and 50 min of reaction (MVK 20 mM, 25° C, under supersaturated O2 initial conditions).

  4. Extension of the CAPRAM mechanism with the improved mechanism generator GECKO-A

    NASA Astrophysics Data System (ADS)

    Bräuer, Peter; Mouchel-Vallon, Camille; Tilgner, Andreas; Wolke, Ralf; Aumont, Bernard; Herrmann, Hartmut

    2013-04-01

    Organic compounds are an ubiquitous constituent of the tropospheric multiphase system. With either biogenic or anthropogenic sources, they have a major influence on the atmospheric multiphase system and thus have become a main research topic within the last decades. Modelling can provide a useful tool to explore the tropospheric multiphase chemistry. While in the gas phase several comprehensive near-explicit mechanisms exist, in the aqueous phase those mechanisms are very limited. The current study aims to advance the currently most comprehensive aqueous phase mechanism CAPRAM 3.0 by means of automated mechanism construction. Therefore, the mechanism generator GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere; see Aumont et al., 2005) has been advanced to the aqueous phase. A protocol has been designed for automated mechanism construction based on reviewed experimental data and evaluated prediction methods. The generator is able to describe the oxidation of aliphatic organic compounds by OH and NO3. For the mechanism construction, mainly structure-activity relationships are used, which are completed by Evans-Polanyi-type correlations and further suitable estimates. GECKO-A has been used to create new CAPRAM versions, where branching ratios are introduced and new chemical subsystems with species with up to 4 carbon atoms are added. The currently most comprehensive version, CAPRAM 3.7, includes about 2000 aqueous phase species and more than 3300 reactions in the aqueous phase. Box model studies have been performed using a meteorological scenario with non-permanent clouds. Besides the investigation of the concentration-time profiles, detailed time-resolved flux analyses have been performed. Several aqueous phase subsystems have been investigated, such as the formation of oxidised mono- and diacids in the aqueous phase, as well as interactions to inorganic cycles and the influence on the gas phase chemistry and composition. Results have been compared to results of previous versions and show a significant improvement in the new mechanism versions, when comparing the modelled data to field data from literature. For example, in CAPRAM 3.7 there is a malonic acid production of about 80 ng m-3 compared to a few ng m-3 in CAPRAM 3.0. The results in CAPRAM 3.7 confirm recent measurements by Bao et al. (2012), who measure up to 137 ng m-3. Moreover, several attempts have been undertaken to validate the mechanisms created by GECKO-A with own field experiments, such as the HCCT-2010 campaign and chamber experiments in the LEAK chamber. References Aumont, B., Szopa, S., Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos. Chem. Phys., 5, 2497-2517 (2005). Bao, L., Matsumoto, M., Kubota, T., Sekiguchi, K., Wang, Q., Sakamoto, K.: Gas/particle partitioning of low-molecular-weight dicarboxylic acids at a suburban site in Saitama, Japan. Atmos. Env., 47, 546 - 553 (2012).

  5. Partitioning phase preference for secondary organic aerosol in an urban atmosphere.

    PubMed

    Chang, Wayne L; Griffin, Robert J; Dabdub, Donald

    2010-04-13

    Secondary organic aerosol (SOA) comprises a significant portion of atmospheric particular matter. The impact of particular matter on both human health and global climate has long been recognized. Despite its importance, there are still many unanswered questions regarding the formation and evolution of SOA in the atmosphere. This study uses a modeling approach to understand the preferred partitioning behavior of SOA species into aqueous or organic condensed phases. More specifically, this work uses statistical analyses of approximately 24,000 data values for each variable from a state of the art 3D airshed model. Spatial and temporal distributions of fractions of SOA residing in the aqueous phase (fAQ) in the South Coast Air Basin of California are presented. Typical values of fAQ within the basin near the surface range from 5 to 80%. Results show that the likelihood of large fAQ values is inversely proportional to the total SOA loading. Analysis of various meteorological parameters indicates that large fAQ values are predicted because modeled aqueous-phase SOA formation is less sensitive than that of organic-phase SOA to atmospheric conditions that are not conducive to SOA formation. There is a diurnal variation of fAQ near the surface: It tends to be larger during daytime hours than during nighttime hours. Results also indicate that the largest fAQ values are simulated in layers above ground level at night. In summary, one must consider SOA in both organic and aqueous phases for proper regional and global SOA budget estimation.

  6. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium. (c) 2007 Wiley Periodicals, Inc.

  7. Development of diapiric structures in the upper mantle due to phase transitions

    NASA Technical Reports Server (NTRS)

    Liu, M.; Yuen, D. A.; Zhao, W.; Honda, S.

    1991-01-01

    Solid-state phase transition in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.

  8. The effect of alloy composition on the mechanism of stress corrosion cracking of titanium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Boyd, J. D.; Williams, D. N.; Wood, R. A.; Jaffee, R. I.

    1972-01-01

    The effects of alloy composition on the aqueous stress corrosion of titanium alloys were studied with emphasis on determining the interrelations among composition, phase structure, and deformation and fracture properties of the alpha phase in alpha-beta alloys. Accomplishments summarized include the effects of alloy composition on susceptibility, and metallurgical mechanisms of stress-corrosion cracking.

  9. OZONATION BY-PRODUCTS 2. IMPROVEMENT OF AN AQUEOUS- PHASE DERIVITIZATION METHOD FOR THE DETECTION OF FORMALDEHYDE AND OTHER CARBONYL COMPOUNDS FORMED BY THE OZONATION OF DRINKING WATER

    EPA Science Inventory

    A method for the determination of low molecular weight aldehydes in water using aqueous-phase derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride has been improved by the use of high-resolution capillary GC. Detection limits with GC/ECD and GC/MS with ...

  10. Microextraction in a tetrabutylammonium bromide/ammonium sulfate aqueous two-phase system and electrohydrodynamic generation of a micro-droplet.

    PubMed

    Song, Young Soo; Choi, Young Hoon; Kim, Do Hyun

    2007-08-31

    Microextraction of methyl orange in the aqueous two-phase system (ATPS) formed by dissolving tetrabutylammonium bromide (TBAB) and ammonium sulfate (AS) is reported. Methyl orange was transported from the AS-rich phase to TBAB-rich phase across the interface of the two immiscible phases. The electrohydrodynamic effect on the shape of the interface of two immiscible flows was also observed by applying dc voltage at the T-junction of the microchannel and the generation of a droplet of AS-rich phase was observed when the potential difference between positive and negative electrodes exceeds a threshold voltage. The minimum voltage necessary for the droplet generation depends on pH due to the degree of dissociation and charge accumulation.

  11. How Does Boiling in the Earth's Crust Influence Metal Speciation and Transport?

    NASA Astrophysics Data System (ADS)

    Kam, K.; Lemke, K.

    2014-12-01

    The presence of large quantities of precious metals, such as gold and copper, near the Earth's surface (upper crust) is commonly attributed to transport in aqueous solution and precipitation upon variations in temperature and pressure. As a consequence, gold exploration is closely linked to solution chemistry, i.e. hydrothermal processes involving aqueous fluids with densities of around unity. However, as crustal fluids buoyantly ascend, boiling produces a coexisting low-density aqueous liquid with fundamentally different physical and chemical properties, and a, most importantly, a high affinity for coinage metals (Heinrich et al., Econ Geol., 1992, 87, 1566). From recent experimental studies of Au (Hurtig and Williams-Jones, 2014, Geochim. Cosmochim. Acta,, 127, 304), we know that metal speciation in this low-density phase differs fundamentally from that observed in bulk solution, clearly, with important implications for Au, and metal speciation in general, transport and ore concentrations processes (these processes would also be operable in industrial geothermal plants given the quite special solvent properties of steam). In brief, this study focuses on the speciation of select metal halides in bulk solution as well as in water vapor, and is driven by our need to understand the solvent properties of around 2.0x109 cubic kilometers of free water (or 2,500 times as much water as stored in all lakes and rivers) present in the Earth's crust. The scope of this study has particular applications in the geothermal and oil industries, as both deal with high temperature low-density aqueous fluids. Understanding how metal halide species behave upon boiling can also provide insight into how metals, such as copper and silver, coat turbine equipment and steam piping in geothermal plants, ultimately rendering these components inoperable. This study will also provide preliminary results from mass spectrometric experiments of transition metal halides, and will be augmented with results from molecular simulations of metal halides that are aimed at characterizing the nature (i.e. relativistic structures and energies) of metal clusters in water vapor.

  12. Insights into Supramolecular Sites Responsible for Complete Separation of Biomass-Derived Phenolics and Glucose in Metal-Organic Framework NU-1000.

    PubMed

    Yabushita, Mizuho; Li, Peng; Durkin, Kathleen A; Kobayashi, Hirokazu; Fukuoka, Atsushi; Farha, Omar K; Katz, Alexander

    2017-05-02

    The molecular origins of adsorption of lignin-derived phenolics to metal-organic framework NU-1000 are investigated from aqueous solution as well as in competitive mode with glucose present in the same aqueous mixture. A comparison of adsorption equilibrium constants (K ads ) for phenolics functionalized with either carboxylic acid or aldehyde substituents demonstrated only a slight increase (less than a factor of 6) for the former according to both experiments and calculations. This small difference in K ads between aldehyde and carboxylic-acid substituted adsorbates is consistent with the pyrene unit of NU-1000 as the adsorption site, rather than the zirconia nodes, while at saturation coverage, the adsorption capacity suggests multiple guests per pyrene. Experimental standard free energies of adsorption directly correlated with the molecular size and electronic structure calculations confirmed this direct relationship, with the pyrene units as adsorption site. The underlying origins of this relationship are grounded in noncovalent π-π interactions as being responsible for adsorption, the same interactions present in the condensed phase of the phenolics, which to a large extent govern their heat of vaporization. Thus, NU-1000 acts as a preformed aromatic cavity for driving aromatic guest adsorption from aqueous solution and does so specifically without causing detectable glucose adsorption from aqueous solution, thereby achieving complete glucose-phenolics separations. The reusability of NU-1000 during an adsorption/desorption cycle was good, even with some of the phenolic compounds with greatest affinity not easiliy removed with water and ethanol washes at room temperature. A competitive adsorption experiment gave an upper bound for K ads for glucose of at most 0.18 M -1 , which can be compared with K ads for the phenolics investigated here, which fell in the range of 443-42 639 M -1 . The actual value of K ads for glucose may be much closer to zero given the lack of observed glucose uptake with NU-1000 as adsorbent.

  13. Is there an aerosol signature of aqueous processing?

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Sorooshian, A.

    2017-12-01

    The formation of aerosol mass in cloud water has been recognized as a substantial source of atmospheric aerosol mass. While sulfate formation can be relatively well constrained, the formation of secondary organic aerosol mass in the aqueous phase (aqSOA) is much more complex due to the multitude of precursors and variety in chemical processes. Aqueous phase processing adds aerosol mass to the droplet mode, which is formed due to mass addition to activated particles in clouds. In addition, it has been shown that aqSOA mass has specific characteristics in terms of oxidation state and hygroscopicity that might help to distinguish it from other SOA sources. Many models do not include detailed chemical mechanisms of sulfate and aqSOA formation and also lack details on the mass distribution of newly formed mass. Mass addition inside and outside clouds modifies different parts of an aerosol population and consequently affects predictions of properties and lifetime of particles. Using a combination of field data analysis and model studies for a variety of air masses, we will show which chemical and physical aerosol properties can be used, in order to identify an `aqueous phase signature' in processed aerosol populations. We will discuss differences in this signature in clean (e.g., background), moderately polluted (e.g., urban) and highly polluted (e.g., biomass burning) air masses and suggest air-mass-specific chemical and/or physical properties that will help to quantify the aqueous-phase derived aerosol mass.

  14. Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-02-21

    This study examines the effect of dissolved humic substances (DHS) on the rate of water-gas exchange of organic compounds under conditions where diffusion through the aqueous boundary layer is rate-determining. A synthetic surfactant was applied for comparison. Mass-transfer coefficients were determined from the rate of depletion of the model compounds by means of an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution. In addition, experiments with continuous passive dosing of analytes into the water phase were conducted to simulate a system where thermodynamic activity of the chemical in the aqueous phase is identical in the presence and absence of DHS. The experimental results show that DHS and surfactants can affect water-gas exchange rates by the superposition of two mechanisms: (1) hydrodynamic effects due to surface film formation ("surface smoothing"), and (2) sorption-induced effects. Whether sorption accelerates or retards mass transfer depends on its effect on the thermodynamic activity of the pollutant in the aqueous phase. Mass transfer will be retarded if the activity (or freely dissolved concentration) of the pollutant is decreased due to sorption. If it remains unchanged (e.g., due to fast equilibration with a sediment acting as a large source phase), then DHS and surfactant micelles can act as an additional shuttle for the pollutants, enhancing the flux through the boundary layer.

  15. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOEpatents

    Dumesic, James A.; Simonetti, Dante A.; Kunkes, Edward L.

    2015-12-08

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  16. Single-reactor process for producing liquid-phase organic compounds from biomass

    DOEpatents

    Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  17. Methods to control phase inversions and enhance mass transfer in liquid-liquid dispersions

    DOEpatents

    Tsouris, Constantinos; Dong, Junhang

    2002-01-01

    The present invention is directed to the effects of applied electric fields on liquid-liquid dispersions. In general, the present invention is directed to the control of phase inversions in liquid-liquid dispersions. Because of polarization and deformation effects, coalescence of aqueous drops is facilitated by the application of electric fields. As a result, with an increase in the applied voltage, the ambivalence region is narrowed and shifted toward higher volume fractions of the dispersed phase. This permits the invention to be used to ensure that the aqueous phase remains continuous, even at a high volume fraction of the organic phase. Additionally, the volume fraction of the organic phase may be increased without causing phase inversion, and may be used to correct a phase inversion which has already occurred. Finally, the invention may be used to enhance mass transfer rates from one phase to another through the use of phase inversions.

  18. Diagenetic Layers in the Upper Walls of Valles Marineris, Mars: Evidence for Drastic Climate Change Since the Mid-Hesperian

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Fuks, Kelly H.; Murchie, Scott

    1995-01-01

    A packet of relatively resistant layers, totaling approx. 400 m thickness, is present at the tops of the chasma walls throughout Valles Marineris. The packet consists of an upper dark layer (approx. 50 m thick), a central bright layer (approx. 250 m thick), and a lower dark layer (approx. 100 m thick). The packet appears continuous and of nearly constant thickness and depth below ground surface over the whole Valles system (4000 km E-W, 800 km N-S), independent of elevation (3-10 km) and age of plateau surface (Noachian through upper Hesperian). The packet continues undisturbed beneath the boundary between surface units of Noachian and Hesperian ages, and continues undisturbed beneath impact craters transected by chasma walls. These attributes are not consistent with layer formation by volcanic or sedimentary deposition, and are consistent with layer formation in situ, i.e., by diagenesis, during or after upper Hesperian time. Diagenesis seems to require the action of aqueous solutions in the near subsurface, which are not now stable in the Valles Marineris area. To permit the stability of aqueous solutions, Mars must have had a fairly dense atmosphere, greater than or equal to 1 bar CO2, when the layers formed. Obliquity variations appear to be incapable of producing such a massive atmosphere so late in Mars' history.

  19. The role of aqueous chemistry in determining the composition and cloud structure of the upper troposphere on Uranus

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Prather, Michael J.; Rossow, William B.

    1987-01-01

    Aqueous chemistry on Uranus affects the atmospheric abundances of NH3 and H2S below the methane cloud base. Here a complete thermochemical equilibrium model for the H2O-NH3-H2S system is presented. Inclusion of H2S increases the aqueous removal of NH3 to 20-30 percent, but aqueous chemistry alone cannot account for the depletion of NH3 in the 150-200-K region of the atmosphere required to fit microwave observations. Formation of NH4SH clouds can account for the observed depletion provided the H2S/NH3 ratio is enhanced by a factor of 4 relative to solar. Perturbations to the chemical balance between N and S, for example by the general circulation on Uranus, would then produce regions with either NH3 or H2S aloft.

  20. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  1. Method for selectively reducing plutonium values by a photochemical process

    DOEpatents

    Friedman, Horace A.; Toth, Louis M.; Bell, Jimmy T.

    1978-01-01

    The rate of reduction of Pu(IV) to Pu(III) in nitric acid solution containing a reducing agent is enhanced by exposing the solution to 200-500 nm electromagnetic radiation. Pu values are recovered from an organic extractant solution containing Pu(IV) values and U(VI) values by the method of contacting the extractant solution with an aqueous nitric acid solution in the presence of a reducing agent and exposing the aqueous solution to electromagnetic radiation having a wavelength of 200-500 nm. Under these conditions, Pu values preferentially distribute to the aqueous phase and U values preferentially distribute to the organic phase.

  2. Gas driven displacement in a Hele-Shaw cell with chemical reaction

    NASA Astrophysics Data System (ADS)

    White, Andrew; Ward, Thomas

    2011-11-01

    Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.

  3. Recovery of high-purity silver directly from dilute effluents by an emulsion liquid membrane-crystallization process.

    PubMed

    Tang, Bing; Yu, Guojun; Fang, Jianzhang; Shi, Taihong

    2010-05-15

    An emulsion liquid membrane (ELM)-crystallization process, using hypophosphorous acid as a reducing agent in the internal aqueous phase, has been developed for the purpose of recovering high-purity silver directly from dilute industrial effluents (waste rinse water). After pretreatment with HNO(3), silver in waste rinse water can be reliably recovered with high efficiency through the established process. The main parameters in the process of ELM-crystallization include the concentration of carrier in the membrane phase, the concentration of reducing agent in the internal aqueous phase, and the treatment ratio, which influence the recovery efficiency to various extents and must be controlled carefully. The results indicated that more than 99.5% (wt.) of the silver ions in the external aqueous phase were extracted by the ELM-crystallization process, with an average efficiency of recovery of 99.24% (wt.) and a purity of 99.92% (wt.). The membrane phase can be used repeatedly without loss of the efficiency of recovery. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.

    PubMed

    Paul, Laiby; Smolders, Erik

    2015-01-01

    The anaerobic biotransformation of trichloroethylene (TCE) can be affected by competing electron acceptors such as Fe (III). This study assessed the role of Fe (III) reduction on the bioenhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). Columns were set up as 1-D diffusion cells consisting of a lower DNAPL layer, a layer with an aquifer substratum and an upper water layer that is regularly refreshed. The substrata used were either inert sand or sand coated with 2-line ferrihydrite (HFO) or two environmental Fe (III) containing samples. The columns were inoculated with KB-1 and were repeatedly fed with formate. In none of the diffusion cells, vinyl chloride or ethene was detected while dissolved and extractable Fe (II) increased strongly during 60 d of incubation. The cis-DCE concentration peaked at 4.0 cm from the DNAPL (inert sand) while it was at 3.4 cm (sand+HFO), 1.7 cm and 2.5 cm (environmental samples). The TCE concentration gradients near the DNAPL indicate that the DNAPL dissolution rate was larger than that in an abiotic cell by factors 1.3 (inert sand), 1.0 (sand+HFO) and 2.2 (both environmental samples). This results show that high bioavailable Fe (III) in HFO reduces the TCE degradation by competitive Fe (III) reduction, yielding lower bioenhanced dissolution. However, Fe (III) reduction in environmental samples was not reducing TCE degradation and the dissolution factor was even larger than that of inert sand. It is speculated that physical factors, e.g. micro-niches in the environmental samples protect microorganisms from toxic concentrations of TCE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory

    NASA Astrophysics Data System (ADS)

    Verma, Anand Mohan; Kishore, Nanda

    2017-02-01

    The hydrolysis of cellulose fraction of biomass yields C6 glucose which further can be transformed into long-chain hydrocarbons by C-C coupling. In this study, C6 glucose is transformed into three chain alkanes, namely, C9, C12 and C15 using C-C coupling reactions under the gas and aqueous phase milieus. The geometry optimisation and vibrational frequency calculations are carried out at well-known hybrid-GGA functional, B3LYP with the basis set of 6-31+g(d,p) under the density functional theory framework. The single point energetics are calculated at M05-2X/6-311+g(3df,2p) level of theory. All thermochemical properties are calculated over a wide range of temperature between 300 and 900 K at an interval of 100 K. The thermochemistry suggested that the aqueous phase behaviour is suitable for the hydrolysis of sugar into long-chain alkanes compared to gas-phase environment. The hydrodeoxygenation reactions under each reaction pathway are found as most favourable reactions in both phases; however, aqueous phase dominates over gas phase in all discussed thermodynamic parameters.

  6. Temperature-Induced Protein Release from Water-in-Oil-in-Water Double Emulsions

    PubMed Central

    Rojas, Edith C.; Staton, Jennifer A.; John, Vijay T.; Papadopoulos, Kyriakos D.

    2009-01-01

    A model water-in-oil-in-water (W1/O/W2) double emulsion was prepared by a two-step emulsification procedure and subsequently subjected to temperature changes that caused the oil phase to freeze and thaw while the two aqueous phases remained liquid. Our previous work on individual double-emulsion globules1 demonstrated that crystallizing the oil phase (O) preserves stability, while subsequent thawing triggers coalescence of the droplets of the internal aqueous phase (W1) with the external aqueous phase (W2), termed external coalescence. Activation of this instability mechanism led to instant release of fluorescently tagged bovine serum albumin (fluorescein isothiocyanate (FITC)-BSA) from the W1 droplets and into W2. These results motivated us to apply the proposed temperature-induced globule-breakage mechanism to bulk double emulsions. As expected, no phase separation of the emulsion occurred if stored at temperatures below 18 °C (freezing point of the model oil n-hexadecane), whereas oil thawing readily caused instability. Crucial variables were identified during experimentation, and found to greatly influence the behavior of bulk double emulsions following freeze-thaw cycling. Adjustment of these variables accounted for a more efficient release of the encapsulated protein. PMID:18543998

  7. Separation and recycling of nanoparticles using cloud point extraction with non-ionic surfactant mixtures.

    PubMed

    Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal

    2011-11-15

    A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Drop mass transfer in a microfluidic chip compared to a centrifugal contactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemer, Martin B.; Roberts, Christine C.; Hughes, Lindsey G.

    2014-06-13

    A model system was developed for enabling a multiscale understanding of centrifugal-contactor liquid–liquid extraction.The system consisted of Nd(III) + xylenol orange in the aqueous phase buffered to pH =5.5 by KHP, and dodecane + thenoyltrifluroroacetone (HTTA) + tributyphosphate (TBP) in the organic phase. Diffusion constants were measured for neodymium in both the organic and aqueous phases, and the Nd(III) partition coefficients were measured at various HTTA and TBP concentrations. A microfluidic channel was used as a high-shear model environment to observe mass-transfer on a droplet scale with xylenol orange as the aqueous-phase metal indicator; mass-transfer rates were measured quantitatively inmore » both diffusion and reaction limited regimes on the droplet scale. Lastly, the microfluidic results were comparable to observations made for the same system in a laboratory scale liquid–liquid centrifugal contactor, indicating that single drop microfluidic experiments can provide information on mass transfer in complicated flows and geometries.« less

  9. Computer modeling of the mineralogy of the Martian surface, as modified by aqueous alteration

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L.

    1988-01-01

    Mineralogical constraints can be placed on the Martian surface by assuming chemical equilibria among the surface rocks, atmosphere and hypothesized percolating groundwater. A study was made of possible Martian surface mineralogy, as modified by the action of aqueous alteration, using the EQ3/6 computer codes. These codes calculate gas fugacities, aqueous speciation, ionic strength, pH, Eh and concentration and degree of mineral saturation for complex aqueous systems. Thus, these codes are also able to consider mineralogical solid solutions. These codes are able to predict the likely alteration phases which will occur as the result of weathering on the Martian surface. Knowledge of the stability conditions of these phases will then assist in the definition of the specifications for the sample canister of the proposed Martian sample return mission. The model and its results are discussed.

  10. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    PubMed

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement for application of these silicon membranes in electroanalytical chemistry.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautsky, Mark; Ranalli, Tony; Dander, David

    The objective of this investigation was to identify and differentiate potential non- mill-related water inputs to a shallow terrace groundwater system through the use of aqueous chemical and isotopic tracers at a former uranium- and vanadium-ore processing facility. Terrace groundwater in the vicinity of the Shiprock, New Mexico, site is hypothesized to be largely anthropogenic because natural rates of recharge in the terrace are likely insufficient to sustain a continuous water table in the terrace alluvial system, as observed in several analogue terrace locations east of the site and in response to post-mill dewatering efforts across the site. The terracemore » is composed of alluvial sand and gravel and weathered and unweathered Mancos Shale. Terrace groundwater exists and flows in the alluvium and to a much less extent in the Mancos Shale. Historical data established that in both the terrace and floodplain below the terrace, mill-derived uranium and sulfate is found primarily in the alluvium and the upper portion of the weathered Mancos Shale. Groundwater extraction is being conducted in the vicinity of former mill operations and in washes and seeps to dewater the formation and remove contamination, thus eliminating these exposure pathways and minimizing movement to the floodplain. However, past and present contribution of non-mill anthropogenic water sources may be hindering the dewatering effort, resulting in reduced remedy effectiveness. Groundwater source signatures can be determined based on chemical and isotopic ratios and are used to help identify and delineate both mill and non-mill water contributions. Aqueous chemical and isotopic tracers, such as 234U/238U activity ratios and uranium concentrations, δ34S sulfate and sulfate concentrations, tritium concentrations, and δ2Hwater and δ18O water are being used in this Phase I study. The aqueous chemical and isotopic analysis has identified areas on the terrace where groundwater is derived from mill-related activities and areas where the groundwater is associated with non-mill activities. A separate field effort of Phase II work will follow, including investigating additional locations for these isotopes and examination of δ18Osulfate , δ34Ssulfate , and chlorofluorocarbon signatures.« less

  12. Non-aqueous solution preparation of doped and undoped lixmnyoz

    DOEpatents

    Boyle, Timothy J.; Voigt, James A.

    1997-01-01

    A method for generation of phase-pure doped and undoped Li.sub.x Mn.sub.y O.sub.z precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder.

  13. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOEpatents

    Elliot, Douglas C.; Werpy, Todd A.; Wang, Yong; Frye, Jr., John G.

    2001-01-01

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  14. Test plan for Geo-Cleanse{reg_sign} demonstration (in situ destruction of dense non-aqueous phase liquid (DNAPL))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome, K.M.; Looney, B.B.; Accorsi, F.

    1996-09-01

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, mostmore » DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only proven cleanup method. New cleanup approaches based on destruction of DNAPL either in situ or ex situ have been proposed and tested at the pilot scale. The proposed demonstration, as described in this report will evaluate the applicability to DNAPL plumes of a technology proven for in situ destruction of light non-aqueous phase liquids (LNAPLs) such as oils.« less

  15. In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.

    PubMed

    Wang, Zheng; Yang, Kun; Li, Haining; Yuan, Chaosheng; Zhu, Xiang; Huang, Haijun; Wang, Yongqiang; Su, Lei; Fang, Yapeng

    2018-06-01

    Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure. Copyright © 2018. Published by Elsevier B.V.

  16. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  17. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  18. Photo-oxidation of Nitrophenols in the Aqueous Phase: Reaction Kinetics, Mechanistic Insights, and Evolution of Light Absorption

    NASA Astrophysics Data System (ADS)

    Hems, R.; Abbatt, J.

    2017-12-01

    Nitrophenols are a class of water soluble, light absorbing compounds which can make up a significant fraction of biomass burning brown carbon. The atmospheric lifetime and aging of these compounds can have important implications for their impact on climate through the aerosol direct effect. Recent studies have shown that brown carbon aerosols can be bleached of their colour by direct photolysis and photo-oxidation reactions on the timescale of hours to days. However, during aqueous phase photo-oxidation of nitrophenol compounds light absorption is sustained or enhanced, even after the parent nitrophenol molecule has been depleted. In this work, we use online aerosol chemical ionization mass spectrometry (aerosol-CIMS) to investigate the aqueous phase photo-oxidation mechanism and determine the second order rate constants for the reaction of OH radicals with three commonly detected nitrophenol compounds: nitrocatechol, nitroguaiacol, and dinitrophenol. These nitrophenol compounds are found to have aqueous phase lifetimes with respect to oxidation by the OH radical ranging between 5 - 11 hours. Our results indicate that functionalization of the parent nitrophenol molecule by addition of hydroxyl groups leads to the observed absorption enhancement. Further photo-oxidation forms breakdown products that no longer absorb significantly in the visible light range.

  19. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    PubMed Central

    Choi, Dongwhi; Lee, Donghyeon; Sung Kim, Dong

    2015-01-01

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two–phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid–liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability. PMID:26462437

  20. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    PubMed

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  1. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase.

    PubMed

    Patel, Bhavish; Guo, Miao; Chong, Chinglih; Sarudin, Syazwani Hj Mat; Hellgardt, Klaus

    2016-10-15

    Hydrothermal Liquefaction (HTL) for algal biomass conversion is a promising technology capable of producing high yields of biocrude as well as partitioning even higher quantity of nutrients in the aqueous phase. To assess the feasibility of utilizing the aqueous phase, HTL of Nannochloropsis sp. was carried out in the temperature range of 275 to 350°C and Residence Times (RT) ranging between 5 and 60min The effect of reaction conditions on the NO3(-),PO4(3-),SO4(2-),Cl(-),Na(+),andK(+) ions as well as Chemical Oxygen Demand (COD) and pH was investigated with view of recycling the aqueous phase for either cultivation or energy generation via Anaerobic Digestion (AD), quantified via Lifecycle Assessment (LCA). It addition to substantial nutrient partitioning at short RT, an increase in alkalinity to almost pH10 and decrease in COD at longer RT was observed. The LCA investigation found reaction conditions of 275°C/30min and 350°C/10min to be most suitable for nutrient and energy recovery but both processing routes offer environmental benefit at all reaction conditions, however recycling for cultivation has marginally better environmental credentials compared to AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry's law equilibrium and aqueous phase photooxidation.

    PubMed

    Poulain, Laurent; Katrib, Yasmine; Isikli, Estelle; Liu, Yao; Wortham, Henri; Mirabel, Philippe; Le Calvé, Stéphane; Monod, Anne

    2010-09-01

    Acetone is ubiquitous in the troposphere. Several papers have focused in the past on its gas phase reactivity and its impact on tropospheric chemistry. However, acetone is also present in atmospheric water droplets where its behaviour is still relatively unknown. In this work, we present its gas/aqueous phase transfer and its aqueous phase photooxidation. The uptake coefficient of acetone on water droplets was measured between 268 and 281K (γ=0.7 x 10(-2)-1.4 x 10(-2)), using the droplet train technique coupled to a mass spectrometer. The mass accommodation coefficient α (derived from γ) was found in the range (1.0-3.0±0.25) x 10(-2). Henry's law constant of acetone was directly measured between 283 and 298K using a dynamic equilibrium system (H((298K))=(29±5)Matm(-1)), with the Van't Hoff expression lnH(T)=(5100±1100)/T-(13.4±3.9). A recommended value of H was suggested according to comparison with literature. The OH-oxidation of acetone in the aqueous phase was carried out at 298K, under two different pH conditions: at pH=2, and under unbuffered conditions. In both cases, the formation of methylglyoxal, formaldehyde, hydroxyacetone, acetic acid/acetate and formic acid/formate was observed. The formation of small amounts of four hydroperoxides was also detected, and one of them was identified as peroxyacetic acid. A drastic effect of pH was observed on the yields of formaldehyde, one hydroperoxide, and, (to a lesser extent) acetic acid/acetate. Based on the experimental observations, a chemical mechanism of OH-oxidation of acetone in the aqueous phase was proposed and discussed. Atmospheric implications of these findings were finally discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Behaviour of emerging contaminants in sewage sludge after anaerobic digestion.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-11-01

    Nowadays, there is an increasing concern over the presence of contaminants in the aquatic environment, where they can be introduced from wastewater after their incomplete removal in the treatment plants. In this work, degradation of selected emerging pollutants in the aqueous and solid phases of sewage sludge has been investigated after anaerobic digestion using two different digesters: mesophilic and thermophilic. Initially, sludge samples were screened by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) for identification of emerging contaminants in the samples. In a second step, a target quantitative method based on LC coupled to tandem MS was applied for selected pollutants identified in the previous screening. The behaviour of the compounds under anaerobic conditions was studied estimating the degradation efficiency and distribution of compounds between both sludge phases. Irbesartan and benzoylecgonine seemed to be notably degraded in both phases of the sludge. Venlafaxine showed a significant concentration decrease in the aqueous phase in parallel to an increase in the solid phase. The majority of the compounds showed an increase of their concentrations in both phases after the digestion. Concentrations in the solid phase were commonly higher than in the aqueous for most contaminants, indicating that they were preferentially adsorbed onto the solid particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparative study of alkylthiols and alkylamines for the phase transfer of gold nanoparticles from an aqueous phase to n-hexane.

    PubMed

    Li, Lingxiangyu; Leopold, Kerstin; Schuster, Michael

    2013-05-01

    An efficient ligand-assisted phase transfer method has been developed to transfer gold nanoparticles (Au-NPs, d: 5-25 nm) from an aqueous solution to n-hexane. Four different ligands, namely 1-dodecanethiol (DDT), 1-octadecanethiol (ODT), dodecylamine (DDA), and octadecylamine (ODA) were investigated, and DDT was found to be the most efficient ligand. It appears that the molar ratio of DDT to Au-NPs is a critical factor affecting the transfer efficiency, and 270-310 is found to be the optimum range, under which the transfer efficiency is >96%. Moreover, the DDT-assisted phase transfer can preserve the shape and size of the Au-NPs, which was confirmed by UV-vis spectra and transmission electron microscopy (TEM). Additionally, the transferred Au-NPs still can be well dispersed in the n-hexane phase and remain stable for at least 2 weeks. On the other hand, the ODT-, DDA-, and ODA-assisted phase transfer is fraught with problems either related to transfer efficiency or NPs aggregation. Overall, the DDT-assisted phase transfer of Au-NPs provides a rapid and efficient method to recover Au-NPs from an aqueous solution to n-hexane. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography.

    PubMed

    Pesek, Joseph J; Matyska, Maria T

    2015-07-03

    The use of ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography with silica hydride-based stationary phases and mass spectrometry detection is evaluated. Retention times, peak shape, efficiency and peak intensity are compared to the more standard additives formic acid and ammonium formate. The test solutes were NAD, 3-hydroxyglutaric acid, α-ketoglutaric acid, p-aminohippuric acid, AMP, ATP, aconitic acid, threonine, N-acetyl carnitine, and 3-methyladipic acid. The column parameters are assessed in both the positive and negative ion detection modes. Ammonium fluoride is potentially an aggressive mobile phase additive that could have detrimental effects on column lifetime. Column reproducibility is measured and the effects of switching between different additives are also tested. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    PubMed

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  7. Chemical characterization of the main products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-08-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e., burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed atmospherically in the gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the main products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of hydrogen peroxide and nitrite. The formed guaiacol reaction products were concentrated by solid-phase extraction and then purified with semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state proton, carbon-13 and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of ultraviolet and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  8. Chemical characterization of the main secondary organic aerosol (SOA) products formed through aqueous-phase photonitration of guaiacol

    NASA Astrophysics Data System (ADS)

    Kitanovski, Z.; Čusak, A.; Grgić, I.; Claeys, M.

    2014-04-01

    Guaiacol (2-methoxyphenol) and its derivatives can be emitted into the atmosphere by thermal degradation (i.e. burning) of wood lignins. Due to its volatility, guaiacol is predominantly distributed in the atmospheric gaseous phase. Recent studies have shown the importance of aqueous-phase reactions in addition to the dominant gas-phase and heterogeneous reactions of guaiacol, in the formation of secondary organic aerosol (SOA) in the atmosphere. The main objectives of the present study were to chemically characterize the low-volatility SOA products of the aqueous-phase photonitration of guaiacol and examine their possible presence in urban atmospheric aerosols. The aqueous-phase reactions were carried out under simulated sunlight and in the presence of H2O2 and nitrite. The formed guaiacol reaction products were concentrated by using solid-phase extraction (SPE) and then purified by means of semi-preparative high-performance liquid chromatography (HPLC). The fractionated individual compounds were isolated as pure solids and further analyzed with liquid-state 1H, 13C and 2D nuclear magnetic resonance (NMR) spectroscopy and direct infusion negative ion electrospray ionization tandem mass spectrometry ((-)ESI-MS/MS). The NMR and product ion (MS2) spectra were used for unambiguous product structure elucidation. The main products of guaiacol photonitration are 4-nitroguaiacol (4NG), 6-nitroguaiacol (6NG), and 4,6-dinitroguaiacol (4,6DNG). Using the isolated compounds as standards, 4NG and 4,6DNG were unambiguously identified in winter PM10 aerosols from the city of Ljubljana (Slovenia) by means of HPLC/(-)ESI-MS/MS. Owing to the strong absorption of UV and visible light, 4,6DNG could be an important constituent of atmospheric "brown" carbon, especially in regions affected by biomass burning.

  9. Modeling photodegradation kinetics of three systemic neonicotinoids-dinotefuran, imidacloprid, and thiamethoxam-in aqueous and soil environment.

    PubMed

    Kurwadkar, Sudarshan; Evans, Amanda; DeWinne, Dustan; White, Peter; Mitchell, Forrest

    2016-07-01

    Environmental presence and retention of commonly used neonicotinoid insecticides such as dinotefuran (DNT), imidacloprid (IMD), and thiamethoxam (THM) are a cause for concern and prevention because of their potential toxicity to nontarget species. In the present study the kinetics of the photodegradation of these insecticides were investigated in water and soil compartments under natural light conditions. The results suggest that these insecticides are fairly unstable in both aqueous and soil environments when exposed to natural sunlight. All 3 insecticides exhibit strong first-order degradation rate kinetics in the aqueous phase, with rate constants kDNT , kIMD , and kTHM of 0.20 h(-1) , 0.30 h(-1) , and 0.18 h(-1) , respectively. However, in the soil phase, the modeled photodegradation kinetics appear to be biphasic, with optimal rate constants k1DNT and k2DNT of 0.0198 h(-1) and 0.0022 h(-1) and k1THM and k2THM of 0.0053 h(-1) and 0.0014 h(-1) , respectively. Differentially, in the soil phase, imidacloprid appears to follow the first-order rate kinetics with a kIMD of 0.0013 h(-1) . These results indicate that all 3 neonicotinoids are photodegradable, with higher degradation rates in aqueous environments relative to soil environments. In addition, soil-encapsulated imidacloprid appears to degrade slowly compared with dinotefuran and thiamethoxam and does not emulate the faster degradation rates observed in the aqueous phase. Environ Toxicol Chem 2016;35:1718-1726. © 2015 SETAC. © 2015 SETAC.

  10. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    PubMed Central

    Lewis, Scott; Lynch, Andrew; Bachas, Leonidas; Hampson, Steve; Ormsbee, Lindell; Bhattacharyya, Dibakar

    2009-01-01

    Abstract The primary objective of this research was to model and understand the chelate-modified Fenton reaction for the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. The addition of a nontoxic chelate (L), such as citrate or gluconic acid, allows for operation at near-neutral pH and controlled release of Fe(II)/Fe(III). For the standard Fenton reaction at low pH in two-phase systems, an optimum H2O2:Fe(II) molar ratio was found to be between 1:1 and 2:1. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinated TCE in both the aqueous and organic phases at pH 6–7 using low H2O2:Fe(II) molar ratios (4:1 to 8:1). Increasing the L:Fe ratio was found to decrease the rate of H2O2 degradation in both Fe(II) and Fe(III) systems at near-neutral pH. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using literature-reported hydroxyl radical reaction kinetics and mass transfer relationships. Additional aspects of this work include the reusability of the Fe–citrate complex under repeated H2O2 injections in real water systems as well as packed column studies for simulated groundwater injection. PMID:20418966

  11. Theoretical and vibrational study of N-(3-chloro-4-fluoro-phenyl)-7-methoxy-6-(3-morpholin-4-ylpropoxy)-quinazolin-4-amine (gefitinib)

    NASA Astrophysics Data System (ADS)

    Mıhçıokur, Özlem; Özpozan, Talat

    2015-12-01

    N-(3-chloro-4fluoro-phenyl)-7-methoxy-6-(3-morpholin-4ylpropoxy)-quinazolin-4-amine (GEF), a quinalizoline derivative used as new anti-cancer agent, designed to target activity of epidermal growth factor receptor (EGFR) promoting the growth, division and spread of cancer cells, was examined from the vibrational and theoretical point of view. All calculations have been carried out both in gaseous and aqueous phases. In the calculations of both phases, the molecule has been optimized through conformer analysis beginning with the x-ray data. The conformer analyses have been carried out in each phases and the geometrical differences between the most stable structures in gaseous and in aqueous phases have been discussed. The solvent effect for GEF in aqueous solution was simulated by using self-consistent reaction field (SCRF) calculations employing the integral equation formalism variant (IEFPCM) model. NBO analysis has been performed to indicate the presence of intramolecular charge transfer. The complete assignments of the vibrational spectra (IR&Raman) were made with the aid of calculated spectra both in gaseous and aqueous phases. The observed spectral data of the title compound were compared with the calculated spectra obtained by DFT/B3LYP and DFT/B3PW91 methods using 6-31G(d,p) basis set. The theoretical results were found to be in good agreement with the measured experimental data especially for the interpretation of intra molecular interactions.

  12. [Environment of tryptophan residues in proteins--a factor for stability to oxidative nitrosylation. I. Analysis of primary structure].

    PubMed

    Beda, N V; Nedospasov, A A

    2001-01-01

    Micellar catalysis under aerobic conditions effectively accelerates oxidative nitrosylation because of solubilization of NO and O2 by protein membranes and hydrophobic nuclei. Nitrosylating intermediates NOx (NO2, N2O3, N2O4) form mainly in the hydrophobic phase, and therefore their solubility in aqueous phase is low and hydrolysis is rapid, local concentration of NOx in the hydrophobic phase being essentially higher than in aqueous. Tryptophan is a hydrophobic residue and can nitrosylate with the formation of isomer N-nitrosotryptophans (NOW). Without denitrosylation mechanism, the accumulation of NOW in proteins of NO-synthesizing organisms would be constant, and long-living proteins would contain essential amounts of NOW, which is however not the case. Using Protein Data Bank (more than 78,000 sequences) we investigated the distribution of tryptophan residues environment (22 residues on each side of polypeptide chain) in proteins with known primary structure. Charged and polar residues (D, H, K, N, Q, R, S) are more incident in the immediate surrounding of tryptophan (-6, -5, -2, -1, 1, 2, 4) and hydrophobic residues (A, F, I, L, V, Y) are more rare than in remote positions. Hence, an essential part of tryptophan residues is situated in hydrophilic environment, which decreases the nitrosylation velocity because of lower NOx concentration in aqueous phase and allows the denitrosylation reactions course via nitrosonium ion transfer on nucleophils of functional groups of protein and low-molecular compounds in aqueous phase.

  13. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Rickard, David T.

    2005-10-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

  14. Converting sugars to sugar alcohols by aqueous phase catalytic hydrogenation

    DOEpatents

    Elliott, Douglas C [Richland, WA; Werpy, Todd A [West Richland, WA; Wang, Yong [Richland, WA; Frye, Jr., John G.

    2003-05-27

    The present invention provides a method of converting sugars to their corresponding sugar alcohols by catalytic hydrogenation in the aqueous phase. It has been found that surprisingly superior results can be obtained by utilizing a relatively low temperature (less than 120.degree. C.), selected hydrogenation conditions, and a hydrothermally stable catalyst. These results include excellent sugar conversion to the desired sugar alcohol, in combination with long life under hydrothermal conditions.

  15. Simultaneous separation/enrichment and detection of trace ciprofloxacin and lomefloxacin in food samples using thermosensitive smart polymers aqueous two-phase flotation system combined with HPLC.

    PubMed

    Lu, Yang; Chen, Bo; Yu, Miao; Han, Juan; Wang, Yun; Tan, Zhenjiang; Yan, Yongsheng

    2016-11-01

    Smart polymer aqueous two phase flotation system (SPATPF) is a new separation and enrichment technology that integrated the advantages of the three technologies, i.e., aqueous two phase system, smart polymer and flotation sublation. Ethylene oxide and propylene oxide copolymer (EOPO)-(NH4)2SO4 SPATPF is a pretreatment technique, and it is coupled with high-performance liquid chromatography to analyze the trace ciprofloxacin and lomefloxacin in real food samples. The optimized conditions of experiment were determined in the multi-factor experiment by using response surface methodology. The flotation efficiency of lomefloxacin and ciprofloxacin was 94.50% and 98.23% under the optimized conditions. The recycling experimentsshowed that the smart polymer EOPO could use repeatedly, which will reduce the cost in the future application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2.

    PubMed

    Sharma, Suman; Singh, Partapbir; Raj, Mayil; Chadha, Bhupinder Singh; Saini, Harvinder Singh

    2009-11-15

    The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal gamma-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, beta-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.

  17. Method and device for removing a non-aqueous phase liquid from a groundwater system

    DOEpatents

    Looney, Brian B.; Rossabi, Joseph; Riha, Brian D.

    2002-01-01

    A device for removing a non-aqueous phase liquid from a groundwater system includes a generally cylindrical push-rod defining an internal recess therein. The push-rod includes first and second end portions and an external liquid collection surface. A liquid collection member is detachably connected to the push-rod at one of the first and second end portions thereof. The method of the present invention for removing a non-aqueous phase liquid from a contaminated groundwater system includes providing a lance including an external hydrophobic liquid collection surface, an internal recess, and a collection chamber at the bottom end thereof. The lance is extended into the groundwater system such that the top end thereof remains above the ground surface. The liquid is then allowed to collect on the liquid collection surface, and flow downwardly by gravity into the collection chamber to be pumped upwardly through the internal recess in the lance.

  18. Simultaneous determination of bromhexine hydrochloride and methyl and propyl p-hydroxybenzoate and determination of dextromethorphan hydrobromide in cough-cold syrup by high-performance liquid chromatography.

    PubMed

    Rauha, J P; Salomies, H; Aalto, M

    1996-11-01

    Liquid chromatographic methods were developed for the determination of bromhexine hydrochloride, methyl p-hydroxybenzoate and propyl p-hydroxybenzoate (method A) and dextromethorphan hydrobromide (method B) in cough-cold syrup formulations. Reversed-phase analytical columns (150 mm x 3.9 mm i.d.) were used with (A) C18 and (B) phenyl as stationary phases and mixtures of (A) acetonitrile and aqueous 15 mM triethylamine solution (43:57) and (B) methanol and aqueous 3% ammonium formate buffer solution (53:47) as mobile phases at a flow rate of 1.0 ml min-1. Both aqueous components were adjusted to pH 3.9. UV detection of analytes was at (A) 245 nm and (B) 278 nm. In both methods, the time required for an HPLC run giving good separations and recoveries was less than 8 min.

  19. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.

    We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less

  1. Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography.

    PubMed

    Yanagida, Akio; Shoji, Atsushi; Shibusawa, Yoichi; Shindo, Heisaburo; Tagashira, Motoyuki; Ikeda, Mitsuo; Ito, Yoichiro

    2006-04-21

    High-speed counter-current chromatography (HSCCC) using the type-J coil planet centrifuge was applied to compositional analysis of tea catechins and separation of other food-related polyphenols. The HSCCC separation of nine different standard compounds and those from extracts of commercial tea leaves was performed with a two-phase solvent system composed of tert-butyl methyl ether-acetonitrile-0.1% aqueous trifluoroacetic acid (TFA) (2:2:3, v/v/v) by eluting the upper organic phase at a flow rate of 2 ml/min. The main compounds in the extract of non-fermented green tea were found to be monomeric catechins, their galloylated esters and caffeine. In addition to these compounds, oxidized pigments, such as hydrophobic theaflavins (TFs) and polar thearubigins (TRs) were also separated and detected from the extracts of semi-fermented oolong tea and fermented black tea. Furthermore, several food-related polyphenols, such as condensed catechin oligomers (procyanidins), phenolic acids and flavonol glycosides were clearly separated under the same HSCCC condition. These separation profiles of HSCCC provide useful information about the hydrophobic diversity of these bioactive polyphenols present in various types of teas and food products.

  2. The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand.

    PubMed

    Stepka, Zane; Dror, Ishai; Berkowitz, Brian

    2018-01-01

    As a consequence of their growing use in electronic and industrial products, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently little is known about the fate of many of these elements. Initial research on their potential environmental impact identifies TCEs as emerging contaminants. TCE movement in the environment is often governed by water systems. Research on "natural" waters so far demonstrates that TCEs tend to be associated with suspended particulate matter (SPM), which influences TCE aqueous concentrations (here: concentration of TCEs in dissolved form and attached to SPM) and transport. However, the relative potential of different types of SPM to interact with TCEs is unknown. Here we examine the potential of various types of particulate matter, namely different nanoparticles (NPs; Al 2 O 3, SiO 2 , CeO 2 , ZnO, montmorillonite, Ag, Au and carbon dots) and humic acid (HA), to impact TCE aqueous concentrations in aqueous solutions with soil and sand, and thus influence TCE transport in soil-water environments. We show that a combination of NPs and HA, and not NPs or HA individually, increases the aqueous concentrations of TCEs in soil solutions, for all tested NPs regardless of their type. TCEs retained on SPM, however, settle with time. In solutions with sand, HA alone is as influential as NPs+HA in keeping TCEs in the aqueous phase. Among NPs, Ag-NPs and Au-NPs demonstrate the highest potential for TCE transport. These results suggest that in natural soil-water environments, once TCEs are retained by soil, their partitioning to the aqueous phase by through-flowing water is unlikely. However, if TCEs are introduced to soil-water environments as part of solutions rich in NPs and HA, it is likely that NP and HA combinations can increase TCE stability in the aqueous phase and prevent their retention on soil and sand, thus facilitating TCE transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell

    USGS Publications Warehouse

    Li, Jianking; Chou, I-Ming; Yuan, Shunda; Burruss, Robert A.

    2013-01-01

    Crystallization experiments were conducted in a new type of hydrothermal diamond-anvil cell (HDAC; type V) using LiAlSi2O6 (S) gel and H2O (W) as starting materials. A total of 21 experiments were performed at temperatures up to 950°C and pressures up to 788 MPa. In the samples with relatively low W/S ratios, many small crystals formed in the melt phase during cooling. In those with high W/S ratios, only a few crystals with smooth surfaces crystallized from the aqueous fluid in the presence of melt droplets, which were gradually consumed during crystal growth, indicating rapid transfer of material from the melt to the crystals through the aqueous fluid. The nucleation of crystals started at 710 (±70)°C and 520 (±80) MPa, and crystal growth ended at 570 (±40)°C and 320 (±90) MPa, with the cooling P-T path within the stability field of spodumene + quartz in the S-W system. The observed linear crystal growth rates in the aqueous phase, calculated by dividing the maximum length of a single crystal by the duration of the entire growth step, were 4.7 × 10−6 and 5.7 × 10−6 cm s−1 for the cooling rates of 0.5 and 1°C min−1, respectively. However, a rapid crystal growth rate of 3.6 × 10−5 cm s−1 in the aqueous fluid was observed when the components were supplied by nearby melt droplets. Our results show that when crystals nucleate in the aqueous fluid instead of the melt phase, there are fewer nuclei formed, and they grow much faster due to the low viscosity of the aqueous fluid, which accelerates diffusion of components for the growth of crystals. Therefore, the large crystals in granitic pegmatite can crystallize directly from aqueous fluids rather than hydrosilicate melt.

  4. Pulsed corona discharge: the role of ozone and hydroxyl radical in aqueous pollutants oxidation.

    PubMed

    Preis, S; Panorel, I C; Kornev, I; Hatakka, H; Kallas, J

    2013-01-01

    Ozone and hydroxyl radical are the most active oxidizing species in water treated with gas-phase pulsed corona discharge (PCD). The ratio of the species dependent on the gas phase composition and treated water contact surface was the objective for the experimental research undertaken for aqueous phenol (fast reaction) and oxalic acid (slow reaction) solutions. The experiments were carried out in the reactor, where aqueous solutions showered between electrodes were treated with 100-ns pulses of 20 kV voltage and 400 A current amplitude. The role of ozone increased with increasing oxygen concentration and the oxidation reaction rate. The PCD treatment showed energy efficiency surpassing that of conventional ozonation.

  5. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions

    USGS Publications Warehouse

    Chiou, C.T.; Shoup, T.D.; Porter, P.E.

    1985-01-01

    Mechanistic roles of soil humus and soil minerals and their contributions to soil sorption of nonionic organic compounds from aqueous and organic solutions are illustrated. Parathion and lindane are used as model solutes on two soils that differ greatly in their humic and mineral contents. In aqueous systems, observed sorptive characteristics suggest that solute partitioning into the soil-humic phase is the primary mechanism of soil uptake. By contrast, data obtained from organic solutions on dehydrated soil partitioning into humic phase and adsorption by soil minerals is influenced by the soil-moisture content and by the solvent medium from which the solute is sorbed. ?? 1985.

  6. NMR Studies on the Aqueous Phase Photochemical Degradation of TNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorn, Kevin A.; Cox, Larry G.

    2008-04-06

    Aqueous phase photochemical degradation of 2,4,6-trinitrotoluene (TNT) is an important pathway in several environments, including washout lagoon soils, impact craters from partially detonated munitions that fill with rain or groundwater, and shallow marine environments containing unexploded munitions that have corroded. Knowledge of the degradation products is necessary for compliance issues on military firing ranges and formerly used defense sites. Previous laboratory studies have indicated that UV irradiation of aqueous TNT solutions results in a multicomponent product mixture, including polymerization compounds, that has been only partially resolved by mass spectrometric analyses. This study illustrates how a combination of solid and liquidmore » state 1H, 13C, and 15N NMR spectroscopy, including two dimensional analyses, provides complementary information on the total product mixture from aqueous photolysis of TNT, and the effect of reaction conditions. Among the degradation products detected were amine, amide, azoxy, azo, and carboxylic acid compounds.« less

  7. Integrated process for the removal of emulsified oils from effluents in the steel industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, J.M.; Rios, G.; Gutierrez, B.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicatedmore » coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.« less

  8. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption.

    PubMed

    Shi, Yi; Gao, Ping; Gong, Yuchuan; Ping, Haili

    2010-10-04

    A biphasic in vitro test method was used to examine release profiles of a poorly soluble model drug, celecoxib (CEB), from its immediate release formulations. Three formulations of CEB were investigated in this study, including a commercial Celebrex capsule, a solution formulation (containing cosolvent and surfactant) and a supersaturatable self-emulsifying drug delivery system (S-SEDDS). The biphasic test system consisted of an aqueous buffer and a water-immiscible organic solvent (e.g., octanol) with the use of both USP II and IV apparatuses. The aqueous phase provided a nonsink dissolution medium for CEB, while the octanol phase acted as a sink for CEB partitioning. For comparison, CEB concentration-time profiles of these formulations in the aqueous medium under either a sink condition or a nonsink condition were also explored. CEB release profiles of these formulations observed in the aqueous medium from either the sink condition test, the nonsink condition test, or the biphasic test have little relevance to the pharmacokinetic observations (e.g., AUC, C(max)) in human subjects. In contrast, a rank order correlation among the three CEB formulations is obtained between the in vitro AUC values of CEB from the octanol phase up to t = 2 h and the in vivo mean AUC (or C(max)) values. As the biphasic test permits a rapid removal of drug from the aqueous phase by partitioning into the organic phase, the amount of drug in the organic phase represents the amount of drug accumulated in systemic circulation in vivo. This hypothesis provides the scientific rationale for the rank order relationship among these CEB formulations between their CEB concentrations in the organic phase and the relative AUC or C(max). In addition, the biphasic test method permits differentiation and discrimination of key attributes among the three different CEB formulations. This work demonstrates that the biphasic in vitro test method appears to be useful as a tool in evaluating performance of formulations of poorly water-soluble drugs and to provide potential for establishing an in vitro-in vivo relationship.

  9. Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors

    DOEpatents

    Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

    1982-06-29

    The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

  10. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.

    PubMed

    Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2015-01-01

    A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Blast wave mitigation by dry aqueous foams

    NASA Astrophysics Data System (ADS)

    Del Prete, E.; Chinnayya, A.; Domergue, L.; Hadjadj, A.; Haas, J.-F.

    2013-02-01

    This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.

  12. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  13. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures.

    PubMed

    Kanno, H; Kajiwara, K; Miyata, K

    2010-05-21

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R

  14. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    NASA Astrophysics Data System (ADS)

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  15. Triply Periodic Multiply Continuous Lyotropic Liquid Crystals Derived from Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Sorenson, Gregory P.

    A subtle balance of non-covalent interactions directs the self-assembly of small molecule amphiphiles in aqueous media into supramolecular assemblies known as aqueous lyotropic liquid crystals (LLCs). Aqueous LLCs form many intricate, ordered nanoscale morphologies comprising distinct and structurally periodic hydrophobic and hydrophilic domains. Triply periodic multiply continuous (TPMC) LLC morphologies, which exhibit continuous hydrophobic and aqueous domains that percolate in three-dimensions, are of particular interest by virtue of their potentially wide ranging technological applications including advanced membranes for electrical energy storage and utilization, therapeutic delivery, and templates for new organic and inorganic mesoporous materials. However, robust molecular design criteria for amphiphiles that readily form TMPC morphologies are notably lacking in the literature. Recent reports have described the increased propensity for quaternary ammonium and phosphonium gemini surfactants, derived from dimerization of traditional single-tail surfactants at or near the hydrophilic headgroups through a hydrophobic linker, to stabilize TMPC mesophases. The generality of this surfactant design strategy remains untested in other amphiphiles classes bearing different headgroup chemistries. In this thesis, we describe the unusual aqueous LLC phase behavior of series of gemini dicarboxylate amphiphiles as a function of the alkyl tail length, hydrophobic linker length, and the charge-compensating counterion. These dicarboxylate surfactants unexpectedly exhibit a strong propensity to form TPMC LLCs over amphiphile concentration windows as wide as 20 wt% over a temperature range T = 25--100 °C. Through systematic modifications of the length of the hydrophobic linker and alkyl tails, we use small-angle X-ray scattering to demonstrate that these surfactants adopt new LLC mesophases including the first report of a single-gyroid phase (I4132 symmetry) and a new, tetracontinuous hexagonal network phase ( P63/mcm symmetry). Additionally, we probe the role of the linker position in the surfactant architecture. These data taken together indicate the sensitive dependence of the LLC phase behavior on counterion-headgroup correlations. Based on these molecular design criteria, we demonstrate the synthesis of a polymerizable gemini surfactant that may be self-assembled into a TPMC LLC phase and covalently fixed by a crosslinking photopolymerization. Comprised of aqueous nanochannels lined with metal carboxylates, the resulting LLC membranes exhibit high ionic conductivities.

  16. Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature.

    PubMed

    Elhag, Amro S; Da, Chang; Chen, Yunshen; Mukherjee, Nayan; Noguera, Jose A; Alzobaidi, Shehab; Reddy, Prathima P; AlSumaiti, Ali M; Hirasaki, George J; Biswal, Sibani L; Nguyen, Quoc P; Johnston, Keith P

    2018-07-15

    The viscosity and stability of CO 2 /water foams at elevated temperature can be increased significantly with highly viscoelastic aqueous lamellae. The slow thinning of these viscoelastic lamellae leads to greater foam stability upon slowing down Ostwald ripening and coalescence. In the aqueous phase, the viscoelasticity may be increased by increasing the surfactant tail length to form more entangled micelles even at high temperatures and salinity. Systematic measurements of the steady state shear viscosity of aqueous solutions of the diamine surfactant (C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 ) were conducted at varying surfactant concentrations and salinity to determine the parameters for formation of entangled wormlike micelles. The apparent viscosity and stability of CO 2 /water foams were compared for systems with viscoelastic entangled micellar aqueous phases relative to those with much less viscous spherical micelles. We demonstrated for the first time stable CO 2 /water foams at temperatures up to 120 °C and CO 2 volumetric fractions up to 0.98 with a single diamine surfactant, C 16-18 N(CH 3 )C 3 N(CH 3 ) 2 . The foam stability was increased by increasing the packing parameter of the surfactant with a long tail and methyl substitution on the amine to form entangled viscoelastic wormlike micelles in the aqueous phase. The foam was more viscous and stable compared to foams with spherical micelles in the aqueous lamellae as seen with C 12-14 N(EO) 2 and C 16-18 N(EO)C 3 N(EO) 2 . Copyright © 2018. Published by Elsevier Inc.

  17. Aqueous foam as a less-than-lethal technology for prison applications

    NASA Astrophysics Data System (ADS)

    Goolsby, Tommy D.

    1997-01-01

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In late 1994, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objective were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.

  18. Materials Applications for Non-Lethal: Aqueous Foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam formore » correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.« less

  19. Rapid determination of triclosan in personal care products using new in-tube based ultrasound-assisted salt-induced liquid-liquid microextraction coupled with high performance liquid chromatography-ultraviolet detection.

    PubMed

    Chen, Ming-Jen; Liu, Ya-Ting; Lin, Chiao-Wen; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2013-03-12

    This paper describes the development of a novel, simple and efficient in-tube based ultrasound-assisted salt-induced liquid-liquid microextraction (IT-USA-SI-LLME) technique for the rapid determination of triclosan (TCS) in personal care products by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. IT-USA-SI-LLME method is based on the rapid phase separation of water-miscible organic solvent from the aqueous phase in the presence of high concentration of salt (salting-out phenomena) under ultrasonication. In the present work, an indigenously fabricated home-made glass extraction device (8-mL glass tube inbuilt with a self-scaled capillary tip) was utilized as the phase separation device for USA-SI-LLME. After the extraction, the upper extractant layer was narrowed into the self-scaled capillary tip by pushing the plunger plug; thus, the collection and measurement of the upper organic solvent layer was simple and convenient. The effects of various parameters on the extraction efficiency were thoroughly evaluated and optimized. Under optimal conditions, detection was linear in the concentration range of 0.4-100ngmL(-1) with correlation coefficient of 0.9968. The limit of detection was 0.09ngmL(-1) and the relative standard deviations ranged between 0.8 and 5.3% (n=5). The applicability of the developed method was demonstrated for the analysis of TCS in different commercial personal care products and the relative recoveries ranged from 90.4 to 98.5%. The present method was proven to be a simple, sensitive, less organic solvent consuming, inexpensive and rapid procedure for analysis of TCS in a variety of commercially available personal care products or cosmetic preparations. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    NASA Technical Reports Server (NTRS)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and the potential for oceanic crust (including metasediments) to transport water deeper into the mantle.

  1. Drowning-out crystallisation of sodium sulphate using aqueous two-phase systems.

    PubMed

    Taboada, M E; Graber, T A; Asenjo, J A; Andrews, B A

    2000-06-23

    A novel method to obtain crystals of pure, anhydrous salt, using aqueous two-phase systems was studied. A concentrated salt solution is mixed with polyethylene glycol (PEG), upon which three phases are formed: salt crystals, a PEG-rich liquid and a salt-rich liquid. After removal of the solid salt, a two-phase system is obtained. Both liquid phases are recycled, allowing the design of a continuous process, which could be exploited industrially. The phase diagram of the system water-Na2SO4-PEG 3350 at 28 degrees C was used. Several process alternatives are proposed and their economic potential is discussed. The process steps needed to produce sodium sulphate crystals include mixing, crystallisation, settling and, optionally, evaporation of water. The yield of sodium sulphate increases dramatically if an evaporation step is used.

  2. Partition in aqueous two-phase system: its application in downstream processing of tannase from Aspergillus niger.

    PubMed

    Rodríguez-Durán, Luis V; Spelzini, Darío; Boeris, Valeria; Aguilar, Cristóbal N; Picó, Guillermo A

    2013-01-01

    Tannase from Aspergillus niger was partitioned in aqueous two-phase systems composed by polyethyleneglycol of molar mass 400, 600 and 1000 and potassium phosphate. Tannase was found to be partitioned toward the salt-rich phase in all systems, with partition coefficients lower than 0.5. Partition coefficients values and low entropic and enthalpic changes associated with tannase partition suggest that the entropic effect may be the driving force of the concentration of the enzyme in the bottom phase due to the high molar mass of the enzyme. The process was significantly influenced by the top phase/bottom phase volume ratio. When the fungal culture broth was partitioned in these systems, a good performance was found, since the enzyme recovery in the bottom phase of the system composed by polyethyleneglycol 1000 was around 96% with a 7.0-fold increase in purity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  4. Determination of the distribution constants of aromatic compounds and steroids in biphasic micellar phosphonium ionic liquid/aqueous buffer systems by capillary electrokinetic chromatography.

    PubMed

    Lokajová, Jana; Railila, Annika; King, Alistair W T; Wiedmer, Susanne K

    2013-09-20

    The distribution constants of some analytes, closely connected to the petrochemical industry, between an aqueous phase and a phosphonium ionic liquid phase, were determined by ionic liquid micellar electrokinetic chromatography (MEKC). The phosphonium ionic liquids studied were the water-soluble tributyl(tetradecyl)phosphonium with chloride or acetate as the counter ion. The retention factors were calculated and used for determination of the distribution constants. For calculating the retention factors the electrophoretic mobilities of the ionic liquids were required, thus, we adopted the iterative process, based on a homologous series of alkyl benzoates. Calculation of the distribution constants required information on the phase-ratio of the systems. For this the critical micelle concentrations (CMC) of the ionic liquids were needed. The CMCs were calculated using a method based on PeakMaster simulations, using the electrophoretic mobilities of system peaks. The resulting distribution constants for the neutral analytes between the ionic liquid and the aqueous (buffer) phase were compared with octanol-water partitioning coefficients. The results indicate that there are other factors affecting the distribution of analytes between phases, than just simple hydrophobic interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Unexpected high yields of carbonyl and peroxide products of aqueous isoprene ozonolysis and implications

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Huang, D.; Zhang, X.; Zhao, Y.; Chen, Z. M.

    2012-03-01

    The aqueous phase reaction of volatile organic compounds (VOCs) has not been considered in most analyses of atmospheric chemical processes. However, some experimental evidence has shown that, compared to the corresponding gas phase reaction, the aqueous chemical processes of VOCs in the bulk solutions and surfaces of ambient wet particles (cloud, fog, and wet aerosols) may potentially contribute to the products and formation of secondary organic aerosol (SOA). In the present study, we performed a laboratory experiment of the aqueous ozonolysis of isoprene at different pHs (3-7) and temperatures (4-25 °C). We detected three important kinds of products, including carbonyl compounds, peroxide compounds, and organic acids. Our results showed that the molar yields of these products were nearly independent of the investigated pHs and temperatures. These products included (1) carbonyls: 56.7 ± 6.7% formaldehyde, 42.8 ± 2.5% methacrolein (MAC), and 57.7 ± 3.4% methyl vinyl ketone (MVK); (2) peroxides: 53.4 ± 4.1% hydrogen peroxide (H2O2) and 15.1 ± 3.1% hydroxylmethyl hydroperoxide (HMHP); and (3) organic acids: undetectable (< 1% estimated by the detection limit). Based on the amounts of products formed and the isoprene consumed, the total carbon yield was estimated to be 95 ± 4%. This implied that most of the products in the reaction system were detected. Of note, the combined yields of both MAC + MVK and H2O2 + HMHP in the aqueous isoprene ozonolysis were much higher than those observed in the corresponding gas phase reaction. We suggested that these unexpected high yields of carbonyls and peroxides were related to the greater capability of condensed water, compared to water vapor, to stabilize energy-rich Criegee radicals. This aqueous ozonolysis of isoprene (and possibly other biogenic VOCs) could potentially occur on the surfaces of ambient wet particles and plants. Moreover, the high-yield carbonyl and peroxide products might provide a considerable source of aqueous phase oxidants and SOA precursors. Thus, aqueous ozonolysis on the surface of plants, where carbonyls and peroxides form, might affect biogenic VOC emissions and the deposition of O3 and SO2 onto leaves to different extents in clean and polluted regions.

  6. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  7. Dispersive liquid-liquid microextraction based on the solidification of floating organic droplet for the determination of polychlorinated biphenyls in aqueous samples.

    PubMed

    Dai, Liping; Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Li, Jun-Kai

    2010-08-03

    In the proposed method, an extraction solvent with a lower toxicity and density than the solvents typically used in dispersive liquid-liquid microextraction was used to extract seven polychlorinated biphenyls (PCBs) from aqueous samples. Due to the density and melting point of the extraction solvent, the extract which forms a layer on top of aqueous sample can be collected by solidifying it at low temperatures, which form a layer on top of the aqueous sample. Furthermore, the solidified phase can be easily removed from the aqueous phase. Based on preliminary studies, 1-undecanol was selected as the extraction solvent, and a series of parameters that affect the extraction efficiency were systematically investigated. Under the optimized conditions, enrichment factors for PCBs ranged between 494 and 606. Based on a signal-to-noise ratio of 3, the limit of detection for the method ranged between 3.3 and 5.4 ng L(-1). Good linearity, reproducibility and recovery were also obtained. 2010 Elsevier B.V. All rights reserved.

  8. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    PubMed Central

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  9. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    PubMed

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Extraction and separation of tungsten (VI) from aqueous media with Triton X-100-ammonium sulfate-water aqueous two-phase system without any extractant.

    PubMed

    Yongqiang Zhang; Tichang Sun; Tieqiang Lu; Chunhuan Yan

    2016-11-25

    An aqueous two-phase system composed of Triton X-100-(NH 4 ) 2 SO 4 -H 2 O was proposed for extraction and separation of tungsten(VI) from aqueous solution without using any extractant. The effects of aqueous pH, concentration of ammonium sulfate, Triton X-100 and tungsten, extracting temperature on the extraction of tungsten were investigated. The extraction of tungsten has remarkable relationship with aqueous pH and are to above 90% at pH=1.0-3.0 under studied pH range (pH=1.0-7.0) and increases gradually with increasing Triton X-100 concentration, but decreases slightly with increasing ammonium sulfate concentration. The extraction percentage of tungsten is hardly relevant to temperature but its distribution coefficient linearly increases with increasing temperature within 303.15-343.15K. The distribution coefficient of tungsten increases with the increase of initial tungsten concentration (0.1-3%) and temperature (303.15 K-333.15K). The solubilization capacity of tungsten in Triton X-100 micellar phase is independent of temperature. FT-IR analysis reveals that there is no evident interaction between polytungstate anion and ether oxygen unit in Triton X-100, and DLS analysis indicates that zeta potential of Triton X-100 micellar phase have a little change from positive to negative after extracting tungsten. Based on the above-mentioned results, it can be deduced that polytungstate anions are solubilized in hydrophilic outer shell of Triton X-100 micelles by electrostatic attraction depending on its relatively high hydrophobic nature. The stripping of tungsten is mainly influenced by temperature and can be easily achieved to 95% in single stage stripping. The tungsten (VI) is separated out from solution containing Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Al(III), Cr(III) and Mn(II) under the suitable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Consequences of CO2 solubility for hydrate formation from carbon dioxide containing water and other impurities.

    PubMed

    Kvamme, Bjørn; Kuznetsova, Tatiana; Jensen, Bjørnar; Stensholt, Sigvat; Bauman, Jordan; Sjøblom, Sara; Nes Lervik, Kim

    2014-05-14

    Deciding on the upper bound of water content permissible in a stream of dense carbon dioxide under pipeline transport conditions without facing the risks of hydrate formation is a complex issue. In this work, we outline and analyze ten primary routes of hydrate formation inside a rusty pipeline, with hydrogen sulfide, methane, argon, and nitrogen as additional impurities. A comprehensive treatment of equilibrium absolute thermodynamics as applied to multiple hydrate phase transitions is provided. We also discuss in detail the implications of the Gibbs phase rule that make it necessary to consider non-equilibrium thermodynamics. The analysis of hydrate formation risk has been revised for the dominant routes, including the one traditionally considered in industrial practice and hydrate calculators. The application of absolute thermodynamics with parameters derived from atomistic simulations leads to several important conclusions regarding the impact of hydrogen sulfide. When present at studied concentrations below 5 mol%, the presence of hydrogen sulfide will only support the carbon-dioxide-dominated hydrate formation on the phase interface between liquid water and hydrate formers entering from the carbon dioxide phase. This is in contrast to a homogeneous hydrate nucleation and growth inside the aqueous solution bulk. Our case studies indicate that hydrogen sulfide at higher than 0.1 mol% concentration in carbon dioxide can lead to growth of multiple hydrate phases immediately adjacent to the adsorbed water layers. We conclude that hydrate formation via water adsorption on rusty pipeline walls will be the dominant contributor to the hydrate formation risk, with initial concentration of hydrogen sulfide being the critical factor.

  12. Modification of the Magnetic Properties of α-Fe2O3 Powders by Ultrasonic Processing

    NASA Astrophysics Data System (ADS)

    Stolyar, S. V.; Bayukov, O. A.; Iskhakov, R. S.; Yaroslavtsev, R. N.; Ladygina, V. P.

    2017-12-01

    Hematite (α-Fe2O3) powders after ultrasonic treatment (UST) in the regime of cavitation in aqueous suspension and in that with an organic component (albumin protein) have been studied by Mössbauer spectroscopy and ferromagnetic resonance techniques. It is established that the UST in aqueous hematite suspensions with albumin results in the formation of a new magnetic phase with parameters coinciding with those of the α-Fe metallic phase.

  13. Development of a Compact and Efficient Ice Thermal Energy Storage Vessel

    NASA Astrophysics Data System (ADS)

    Sasaguchi, Kengo; Ishikawa, Masatoshi; Muta, Kenji; Yoshino, Kiyotaka; Hayashi, Hiroko; Baba, Yoshiyuki

    In the present study, the authors propose the use of a low concentration aqueous solution as phase change material for static-type ice-storage-vessels, instead of pure water commonly used today. If an aqueous solution with low concentration is used, even when a large amount of solution (aqueous ethylene glycol in this study) is solidified and bridging of ice developed around cold tubes occurs, the pressure increase could be prevented by the existence of a continuous liquid phase in the solid-liquid two-phase layer (mushy layer) which opens to an air gap at the top of a vessel. Therefore, one can continue to solidify an aqueous solution after bridging, achieving a high ice packing factor (IPF). First, experiments using small-scale test cells have been conducted to confirm the present idea, and then we have performed experiments using a large vessel with an early practical size. It was seen that a large pressure increase is prevented for the initial concentration of the solution C0 of 1.0%, and IPF obtained using the solution is much greater than 0.65 using pure water for which the solidification must be stopped before the bridging.

  14. Aqueous Alteration and Hydrogen Generation on Parent Bodies of Unequilibrated Ordinary Chondrites: Thermodynamic Modeling for the Semarkona Composition

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Y.; Mironenko, M. V.; Shock, E. L.

    2005-01-01

    Ordinary chondrites are the most abundant class of meteorites that could represent rocky parts of solar system bodies. However, even the most primitive unequilibrated ordinary chondrites (UOC) reveal signs of mild alteration that affected the matrix and peripheral zones of chondrules. Major chemical changes include oxidation of kamacite, alteration of glass, removal of alkalis, Al, and Si from chondrules, and formation of phases enriched in halogens, alkalis, and hydrogen. Secondary mineralogical changes include formation of magnetite, ferrous olivine, fayalite, pentlandite, awaruite, smectites, phosphates, carbonates, and carbides. Aqueous alteration is consistent with the oxygen isotope data for magnetite. The presence of secondary magnetite, Ni-rich metal alloys, and ferrous silicates in UOC implies that H2O was the oxidizing agent. However, oxidation by H2O means that H2 is produced in each oxidative pathway. In turn, production of H2, and its redistribution and possible escape should have affected total pressure, as well as the oxidation state of gas, aqueous and mineral phases in the parent body. Here we use equilibrium thermodynamic modeling to explore water-rock reactions in UOC. The chemical composition of gas, aqueous, and mineral phases is considered.

  15. Laboratory Experiments and Modeling of Pooled NAPL Dissolution in Porous Media

    NASA Astrophysics Data System (ADS)

    Copty, N. K.; Sarikurt, D. A.; Gokdemir, C.

    2017-12-01

    The dissolution of non-aqueous phase liquids (NAPLs) entrapped in porous media is commonly modeled at the continuum scale as the product of a chemical potential and an interphase mass transfer coefficient, the latter expressed in terms of Sherwood correlations that are related to flow and porous media properties. Because of the lack of precise estimates of the interface area separating the NAPL and aqueous phase, numerous studies have lumped the interfacial area into the interphase mass transfer coefficient. In this paper controlled dissolution experiments from a pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two types of porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution was developed. The well-defined geometry of the NAPL-water interface and the observed effluent concentrations were used to compute best-fit mass transfer coefficients and non-lumped Sherwood correlations. Comparing the concentrations predicted with the pore network model to simple previously used one-dimensional analytic solutions indicates that the analytic model which ignores the transverse dispersion can lead to over-estimation of the mass transfer coefficient. The predicted Sherwood correlations are also compared to previously published data and implications on NAPL remediation strategies are discussed.

  16. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  17. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Extension of the CAPRAM mechanism with the improved mechanism generator GECKO-A

    NASA Astrophysics Data System (ADS)

    Herrmann, H.; Bräuer, P.; Mouchel-Vallon, C.; Tilgner, A.; Wolke, R.; Aumont, B.

    2013-12-01

    The ubiquitous abundance of organic compounds in natural and anthropogenically influenced eco-systems has put these compounds into the focus of environmental research. To investigate the chemistry of organic compounds in the tropospheric multiphase system, modelling can provide a useful tool. While in the gas phase several comprehensive near-explicit mechanisms exist, in the aqueous phase those mechanisms are very limited. The present study aims to advance the currently most comprehensive aqueous phase mechanism CAPRAM 3.0n (Tilgner and Herrmann, 2010; Bräuer et al., 2013) by means of automated mechanism self-construction. Therefore, the mechanism generator GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere; see Aumont et al., 2005) has been advanced to the aqueous phase. A protocol has been designed for automated mechanism construction based on reviewed experimental data and evaluated prediction methods. The generator is able to describe the oxidation of aliphatic organic compounds by OH and NO3. For the mechanism construction, mainly structure-activity relationships are used. They are completed by Evans-Polanyi-type correlations, which have been further improved for the purpose of automated mechanism self-construction. GECKO-A has been used to create new CAPRAM versions, where branching ratios are introduced and new chemical subsystems with species with up to 4 carbon atoms are added. The currently most comprehensive version, CAPRAM 3.5alpha, includes about 2000 aqueous phase species and more than 3300 reactions in the aqueous phase. Process studies with the box model SPACCIM (SPectral Aerosol Cloud Chemistry Interaction Model; Wolke et al., 2005) have been performed using a meteorological scenario with non-permanent clouds. Besides the investigation of the concentration-time profiles, detailed time-resolved flux analyses have been performed. Several aqueous phase subsystems have been investigated, such as the formation of oxidised mono- and diacids in the aqueous phase as well as interactions to inorganic cycles and the influence on the gas phase chemistry and composition. Results have been compared to results of previous versions and show a significant improvement in CAPRAM 3.5alpha when comparing the modelled data to literature data from field experiments. For example, in CAPRAM 3.5alpha there is a malonic acid production of about 80 ng/m3 compared to a few ng m-3 in CAPRAM 3.0n. The results in CAPRAM 3.5alpha confirm recent measurements by Bao et al. (2012), who measured up to 137 ng m-3. Moreover, several attempts have been undertaken to validate the mechanisms created by GECKO-A with own experiments, such as the HCCT-2010 campaign and LEAK chamber experiments. References Aumont, B et al., Atmos. Chem. Phys., 5, 2497-2517, 2005. Bräuer, P. et al., J. Atmos. Chem., 70(1), 1 - 34, 2013. Bao, L. et al., Atmos. Env., 47, 546 - 553, 2012. Tilgner, A. and Herrmann, H., Atmos. Environ., 44, 5415 - 5422, 2010. Wolke, R. et al., Atmos. Environ., 39, 4375 - 4388, 2005.

  19. Evaluation of toxicity of trichloroethylene for plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, S.B.; Davis, L.C.; Dana, J.

    1996-12-31

    Trichloroethylene (TCE) exposure of several species of plants was studied. Although earlier studies indicated that the root systems of plants could tolerate an aqueous phase concentration of 1 mM for a day, toxicity to whole plants was observed at somewhat lower levels in the gas phase in this study. The tested species included pumpkin (Cucurbita maxima), tomato (Lycopersicon esculentum), sweet potato (Dioscoria batata), tobacco (Nicotiana tabacum), soybean (Glycine max L. Merr), and alfalfa (Medicago sativa). Damage was observable as wilting or failure of the gravitropic response of shoots at levels above about 0.2 mM in the gas phase, which correspondsmore » to 0.5 mM in the aqueous phase. Plants were usually killed quickly at gas phase concentrations above 0.4 mM.« less

  20. Insights into water-mediated ion clustering in aqueous CaSO4 solutions: pre-nucleation cluster characteristics studied by ab initio calculations and molecular dynamics simulations.

    PubMed

    Li, Hui-Ji; Yan, Dan; Cai, Hou-Qin; Yi, Hai-Bo; Min, Xiao-Bo; Xia, Fei-Fei

    2017-05-10

    The molecular structure of growth units building crystals is a fundamental issue in the crystallization processes from aqueous solutions. In this work, a systematic investigation of pre-nucleation clusters and their hydration characteristics in aqueous CaSO 4 solutions was performed using ab initio calculations and molecular dynamics (MD) simulations. The results of ab initio calculations and MD simulations indicate that the dominant species in aqueous CaSO 4 solutions are monodentate ion-associated structures. Compared with charged ion clusters, neutral clusters are more likely to be present in an aqueous CaSO 4 solution. Neutral (CaSO 4 ) m clusters are probably the growth units involved in the pre-nucleation or crystallization processes. Meanwhile, hydration behavior around ion associated species in aqueous CaSO 4 solutions plays an important role in related phase/polymorphism selections. Upon ion clustering, the residence of some water molecules around Ca 2+ in ion-associated species is weakened while that of some bridging waters is enhanced due to dual interaction by Ca 2+ and SO 4 2- . Some phase/polymorphism selections can be achieved in aqueous CaSO 4 solutions by controlling the hydration around pre-nucleation clusters. Moreover, the association trend between calcium and sulfate is found to be relatively strong, which hints at the low solubility of calcium sulfate in water.

  1. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    NASA Astrophysics Data System (ADS)

    Couvidat, F.; Sartelet, K.

    2014-01-01

    The Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model is designed to be modular with different user options depending on the computing time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles, activity coefficients, phase separation). Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hydrophobic (condenses only on the organic phase of particles) or both (condenses on both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC thermodynamic model for short-range interactions and with the AIOMFAC parameterization for medium and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium and a dynamic representation of the organic aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA) is not at equilibrium with the gas phase because the organic phase could be semi-solid (very viscous liquid phase). The condensation or evaporation of organic compounds could then be limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the center of the particle (slowly reaches equilibrium) and the final layer near the interface with the gas phase (quickly reaches equilibrium).

  2. THE CHEMISTRY OF TRIBUTYL PHOSPHATE: A REVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, L.L.

    1955-10-27

    The preparation, purification, and chemical properties of THP have been reviewed with emphasis on the hydrolytic reactions. TBP is chemically a very stable compound as evidenced by its thermal stability and resistance to oxidation. The most important reactions are hydrolytic which cleave the butyl or butoxy group and normally produce butyl alcohol together with dibutyl and monobutyl phosphate (DBP and MBP, respectively), and eventually H/sub 3/PO/sub 4/. Hydrolysis occurs in either the organic phase or the aqueous phase and is first order with respect to the ester. Although the rate in the aqueous phase is much faster than in themore » organic phase, the solubility is so low in aqueous solutions that the organic phase reactions become more important. Acid hydrolysis depends on both the nature of the acid and the concentration. The order with respect to acid concentration is close to one but often less than one. Hydrolysis is catalyzed by both acids and bases. In the latter case, the reaction occurs only in the aqueous phase and normally stops with the formation of dibutyl phosphate. The hydrolysis rate increases greatly as the temperature is raised and an activation energy of the order of 20 kcal is often found. The rates observed in the presence of 5 M acid at 60 and 70 deg C may be high enough to cause some concern in solvent extraction technology, since the product, dibutyl phosphate, has undesirable properties. Impurities produced during manufacture or by thermal degradation during purification such as the pyrophosphates, if present, would yield the same objectionable products as TBP hydrolysis, but at a faster rate. Included in the survey is a selected tabulation of physical properties of TBP. (auth)« less

  3. Measuring the Densities of Aqueous Glasses at Cryogenic Temperatures.

    PubMed

    Shen, Chen; Julius, Ethan F; Tyree, Timothy J; Dan, Ritwik; Moreau, David W; Thorne, Robert

    2017-06-28

    We demonstrate a method for determining the vitreous phase cryogenic temperature densities of aqueous mixtures, and other samples that require rapid cooling, to prepare the desired cryogenic temperature phase. Microliter to picoliter size drops are cooled by projection into a liquid nitrogen-argon (N2-Ar) mixture. The cryogenic temperature phase of the drop is evaluated using a visual assay that correlates with X-ray diffraction measurements. The density of the liquid N2-Ar mixture is adjusted by adding N2 or Ar until the drop becomes neutrally buoyant. The density of this mixture and thus of the drop is determined using a test mass and Archimedes principle. With appropriate care in drop preparation, management of gas above the liquid cryogen mixture to minimize icing, and regular mixing of the cryogenic mixture to prevent density stratification and phase separation, densities accurate to <0.5% of drops as small as 50 pL can readily be determined. Measurements on aqueous cryoprotectant mixtures provide insight into cryoprotectant action, and provide quantitative data to facilitate thermal contraction matching in biological cryopreservation.

  4. In-situ phase transition from microemulsion to liquid crystal with the potential of prolonged parenteral drug delivery.

    PubMed

    Ren, Xiazhong; Svirskis, Darren; Alany, Raid G; Zargar-Shoshtari, Sara; Wu, Zimei

    2012-07-15

    This study is the first to investigate and demonstrate the potential of microemulsions (MEs) for sustained release parenteral drug delivery, due to phase transition behavior in aqueous environments. Phase diagrams were constructed with Miglyol 812N oil and a blend of (co)surfactants Solutol HS 15 and Span 80 with ethanol. Liquid crystal (LC) and coarse emulsion (CE) regions were found adjacent to the ME region in the water-rich corner of the phase diagram. Two formulations were selected, a LC-forming ME and a CE-forming ME and each were investigated with respect to their rheology, particle size, drug release profiles and particularly, the phase transition behavior. The spreadability in an aqueous environment was determined and release profiles from MEs were generated with gamma-scintigraphy. The CE-forming ME dispersed readily in an aqueous environment, whereas the LC-forming ME remained in a contracted region possibly due to the transition of ME to LC at the water/ME interface. Gamma-scintigraphy showed that the LC-forming ME had minimal spreadability and a slow release of (99m)Tc in the first-order manner, suggesting phase conversion at the interface. In conclusion, owing to the potential of phase transition, LC-forming MEs could be used as extravascular injectable drug delivery vehicles for prolonged drug release. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, E.; Kraatz, M.; Luthy, R.G.

    The dissolution of naphthalene, phenanthrene, and pyrene from viscous organic phases into water was studied in continuous-flow systems for time periods ranging from several months to more than 1 year. By selecting nonaqueous phases ranging from low viscosity to semisolid, i.e., from a light lubricating oil to paraffin, the governance of mass transfer was shown to vary from water phase control to nonaqueous phase control. An advancing depleted-zone model is proposed to explain the dissolution of PAHs from a viscous organic phase wherein the formation of a depleted zone within the organic phase increases the organic phase resistance to themore » dissolution of PAHs. The experimental data suggest the formation of a depleted zone within the organic phase for systems comprising a high-viscosity oil, petrolatum (petroleum jelly), and paraffin. Organic phase resistance to naphthalene dissolution became dominant over aqueous phase resistance after flushing for several days. Such effects were not evident for low viscosity lubricating oil. The transition from aqueous-phase dissolution control to nonaqueous-phase dissolution control appears predictable, and this provides a more rational framework to assess long-term release of HOCs from viscous nonaqueous phase liquids and semisolids.« less

  6. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  7. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, Terrence L.; Wilson, James H.

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  8. Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores.

    PubMed

    Yang, Fan; Yu, Long-Jiang; Wang, Peng; Ai, Xi-Cheng; Wang, Zheng-Yu; Zhang, Jian-Ping

    2011-06-23

    We carried out femtosecond magic-angle and polarized pump-probe spectroscopies for the light-harvesting complex 2 (LH2) from Thermochromatium (Tch.) tepidum in aqueous phase and in chromatophores. To examine the effects of LH2 aggregation on the dynamics of excitation energy transfer, dominant monodispersed and aggregated LH2s were prepared by controlling the surfactant concentrations. The aqueous preparations solubilized with different concentrations of n-dodecyl-β-D-maltoside (DDM) show similar visible-to-near-infrared absorption spectra, but distinctively different aggregation states, as revealed by using dynamic light scattering. The B800 → B850 intra-LH2 energy transfer time was determined to be 1.3 ps for isolated LH2, which, upon aggregation in aqueous phase or clustering in chromatophores, shortened to 1.1 or 0.9 ps, respectively. The light-harvesting complex 1 (LH1) of this thermophilic purple sulfur bacterium contains bacteriochlorophyll a absorbing at 915 nm (B915), and the LH2(B850) → LH1(B915) intercomplex transfer time in chromatophores was found to be 6.6 ps. For chromatophores, a depolarization time of 21 ps was derived from the anisotropy kinetics of B850*, which is attributed to the migration of B850* excitation before being trapped by LH1. In addition, the B850* annihilation is accelerated upon LH2 aggregation in aqueous phase, but it is much less severe upon LH2 clustering in the intracytoplasmic membrane. These results are helpful in understanding the light-harvesting function of a bacterial photosynthetic membrane incorporating different types of antenna complexes.

  9. Theoretical Evidence for the Stronger Ability of Thymine to Disperse SWCNT than Cytosine and Adenine: self-stacking of DNA bases vs their cross-stacking with SWCNT

    PubMed Central

    Wang, Yixuan

    2008-01-01

    Self-stacking of four DNA bases, adenine (A), cytosine (C), guanine (G) and thymine (T), and their cross-stacking with (5,5) as well as (10,0) single walled carbon nanotubes (SWCNTs) were extensively investigated with a novel hybrid DFT method, MPWB1K/cc-pVDZ. The binding energies were further corrected with MP2/6-311++G(d,p) method in both gas phase and aqueous solution, where the solvent effects were included with conductor-like polarized continuum model (CPCM) model and UAHF radii. The strongest self-stacking of G and A takes displaced anti-parallel configuration, but un-displaced or “eclipsed” anti-parallel configuration is the most stable for C and T. In gas phase the self-stacking of nucleobases decreases in the sequence G>A>C>T, while because of quite different solvent effects their self-stacking in aqueous solution exhibits a distinct sequence A>G>T>C. For a given base, cross-stacking is stronger than self-stacking in both gas phase and aqueous solution. Binding energy for cross-stacking in gas phase varies as G>A>T>C for both (10,0) and (5,5) SWCNTs, and the binding of four nucleobases to (10,0) is slightly stronger than to (5,5) SWCNT by a range of 0.1–0.5 kcal/mol. The cross-stacking in aqueous solution varies differently from that gas phase: A>G>T>C for (10,0) SWCNT and G>A>T>C for (5,5) SWCNT. It is suggested that the ability of nucleobases to disperse SWCNT depends on relative strength (ΔΔEbinsol) of self-stacking and cross-stacking with SWCNT in aqueous solution. Of the four investigated nucleobases thymine (T) exhibits the highest (ΔΔEbinsol) which can well explain the experimental finding that T more efficiently functionalizes SWCNT than C and A. PMID:18946514

  10. Study of the Solvent Extraction of V(V) from Nitrate Medium by Tri- n-Octylamine Dissolved in Kerosene

    NASA Astrophysics Data System (ADS)

    Biswas, Ranjit Kumar; Karmakar, Aneek Krishna; Mottakin, Mohammad

    2017-10-01

    The liquid-liquid extraction of V(V) from a nitrate medium by tri- n-Octylamine [( n-C8H17)3N; abbreviated as TOA] dissolved in distilled colorless kerosene has been investigated as a function of various experimental parameters. The equilibration time is less than 10 min. It is observed that the extraction ratio increases with increasing [V(V)] in the aqueous phase, which is possibly a result of the formation of V10O26(OH) 2 4- (via reaction: 10 VO2 + + 8 H2O → V10O26(OH) 2 4- + 14 H+) with increasing concentration in the aqueous phase. The nature of the species extracted into the organic phase depends on the existing aqueous species prevailing at a certain pH. At lower pH values, the extraction of VO2 + occurs via cation (H+) exchange of (C8H17)3NHNO3. On the other hand, at higher pH values, anionic V(V) species such as V10O26(OH) 2 4- , V10O27(OH)5-, V10O28 6- etc. are extracted by solvated ion-pair formation mechanism. The TOA concentration dependence varies from 2 at a lower pH region ( 2.3) to 1 at a higher pH region ( 5.7). The extraction is also found to be favored by a rise of nitrate concentration in the aqueous phase. Temperature has a pronounced effect with Δ H < -58 kJ/mol. Kerosene is demonstrated as the best diluent for this system. Increased organic to aqueous phase volume ratio (O/A) enhances extraction ratio. The extracted species can be stripped by 0.75 mol/L NH4OH solution to the extent of 72% in a single stage. But stage-wise stripping is not so effective. It is observed a very high loading, of the order of 2.3 mol V(V) per mol TOA.

  11. Determination of ammonium in aqueous samples using new headspace dynamic in-syringe liquid-phase microextraction with in situ derivitazation coupled with liquid chromatography-fluorescence detection.

    PubMed

    Muniraj, Sarangapani; Yan, Cheing-Tong; Shih, Hou-Kung; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon

    2012-11-19

    A new simultaneous derivatization and extraction method for the preconcentration of ammonia using new one-step headspace dynamic in-syringe liquid-phase microextraction with in situ derivatization was developed for the trace determination of ammonium in aqueous samples by liquid chromatography with fluorescence detection (LC-FLD). The acceptor phase (as derivatization reagent) containing o-phthaldehyde and sodium sulfite was held within a syringe barrel and immersed in the headspace of sample container. The gaseous ammonia from the alkalized aqueous sample formed a stable isoindole derivative with the acceptor phase inside the syringe barrel through the reciprocated movements of plunger. After derivatization-cum-extraction, the acceptor phase was directly injected into LC-FLD for analysis. Parameters affecting the ammonia evolution and the extraction/derivatization efficiency such as sample matrix, pH, temperature, sampling time, and the composition of derivatization reagent, reaction temperature, and frequency of reciprocated plunger, were studied thoroughly. Results indicated that the maximum extraction efficiency was obtained by using 100μL derivatization reagent in a 1-mL gastight syringe under 8 reciprocated movements of plunger per min to extract ammonia evolved from a 20mL alkalized aqueous solution at 70°C (preheated 4min) with 380rpm stirring for 8min. The detection was linear in the concentration range of 0.625-10μM with the correlation coefficient of 0.9967 and detection limit of 0.33μM (5.6ng mL(-1)) based on SN(-1)=3. The method was applied successfully to determine ammonium in real water samples without any prior cleanup of the samples, and has been proved to be a simple, sensitive, efficient and cost-effective procedure for trace ammonium determination in aqueous samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  13. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  14. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1996-04-16

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  15. Organic aerogel microspheres and fabrication method therefor

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1996-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  16. Investigations of kinetics and mechanism of chloropinnoite in boric acid aqueous solution at 303 K by Raman spectroscopy.

    PubMed

    Xiaoping, Li; Shiyang, Gao; Shuping, Xia

    2004-10-01

    Raman spectroscopy of dissolution and transformation of chloropinnoite in 4.5% (wt.%) boric acid aqueous solution at 303 K has been recorded. The Raman spectra of kinetics process have been obtained. The phase transformation product is 2MgO.3B2O3.15H2O (kurnakovite). The main polyborate anions and their interaction in aqueous solution have been proposed according to the Raman spectrum. Some assignments were tentatively given and the relations between the existing forms of polyborate anions and the crystallizing solid phases have been gained. A mechanism of dissolution and crystallization reactions and the formation condition of kurnakovite in Qinghai-Tibet plateau were proposed and discussed.

  17. Metal separations using aqueous biphasic partitioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they reviewmore » the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.« less

  18. Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide.

    PubMed

    Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua

    2015-08-04

    Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.

  19. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase

    DOE PAGES

    Mincher, Bruce J.; Precek, Martin; Paulenova, Alena

    2015-10-17

    The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30% TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated thismore » reduction.« less

  20. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce J.; Precek, Martin; Paulenova, Alena

    The radiolytic changes in oxidation state for solutions of initially Np(V) and/or Np(VI) were investigated by gamma-irradiation in conjunction with UV/Vis spectroscopy of the aqueous phase. Samples were irradiated in varying concentrations of nitric acid, and with or without the presence of 30% TBP in dodecane. At short irradiation times Np(V) was oxidized to Np(VI), even in the presence of the organic phase. Upon the radiolytic production of sufficient amounts of nitrous acid, reduction of Np(VI) to Np(V) occurred in both phases. This was accompanied by stripping of the previously extracted Np(VI). Nitric acid concentrations of 6 M mitigated thismore » reduction.« less

  1. Negative/positive chemotaxis of a droplet: Dynamic response to a stimulant gas

    NASA Astrophysics Data System (ADS)

    Sakuta, Hiroki; Magome, Nobuyuki; Mori, Yoshihito; Yoshikawa, Kenichi

    2016-05-01

    We report here the repulsive/attractive motion of an oil droplet floating on an aqueous phase caused by the application of a stimulant gas. A cm-sized droplet of oleic acid is repelled by ammonia vapor. In contrast, a droplet of aniline on an aqueous phase moves toward hydrochloric acid as a stimulant. The mechanisms of these characteristic behaviors of oil droplets are discussed in terms of the spatial gradient of the interfacial tension caused by the stimulant gas.

  2. Non-aqueous solution preparation of doped and undoped Li{sub x}Mn{sub y}O{sub z}

    DOEpatents

    Boyle, T.J.; Voigt, J.A.

    1997-05-20

    A method is described for generation of phase-pure doped and undoped Li{sub x}Mn{sub y}O{sub z} precursors. The method of this invention uses organic solutions instead of aqueous solutions or nonsolution ball milling of dry powders to produce phase-pure precursors. These precursors can be used as cathodes for lithium-polymer electrolyte batteries. Dopants may be homogeneously incorporated to alter the characteristics of the powder. 1 fig.

  3. NAPL: SIMULATOR DOCUMENTATION

    EPA Science Inventory

    A mathematical and numerical model is developed to simulate the transport and fate of NAPLs (Non-Aqueous Phase Liquids) in near-surface granular soils. The resulting three-dimensional, three phase simulator is called NAPL. The simulator accommodates three mobile phases: water, NA...

  4. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    PubMed

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  6. Demixing of aqueous polymer two-phase systems in low gravity

    NASA Technical Reports Server (NTRS)

    Bamberger, S.; Harris, J. M.; Baird, J. K.; Boyce, J.; Vanalstine, J. M.; Snyder, R. S.; Brooks, D. E.

    1986-01-01

    When polymers such as dextran and poly(ethylene glycol) are mixed in aqueous solution biphasic systems often form. On Earth the emulsion formed by mixing the phases rapidly demixes because of phase density differences. Biological materials can be purified by selective partitioning between the phases. In the case of cells and other particulates the efficiency of these separations appears to be somewhat compromised by the demixing process. To modify this process and to evaluate the potential of two-phase partitioning in space, experiments on the effects of gravity on phase emulsion demixing were undertaken. The behavior of phase systems with essentially identical phase densities was studied at one-g and during low-g parabolic aircraft maneuvers. The results indicate the demixing can occur rather rapidly in space, although more slowly than on Earth. The demixing process was examined from a theoretical standpoint by applying the theory of Ostwald ripening. This theory predicts demizing rates many orders of magnitude lower than observed. Other possible demixing mechanisms are considered.

  7. Metal-Catalyzed Aqueous Oxidation Processes in Merged Microdroplets

    NASA Astrophysics Data System (ADS)

    Davis, R. D.; Wilson, K. R.

    2017-12-01

    Iron-catalyzed production of reactive oxygen species (ROS) from hydrogen peroxide (Fenton's reaction) is a fundamental process throughout nature, from groundwater to cloud droplets. In recent years, Fenton's chemistry has gained further interest in atmospheric science as a potentially important process in the oxidation of aqueous secondary organic aerosol (e.g., Chu et al., Sci. Rep., 2017), with some observations indicating that Fenton's reaction proceeds at a higher rate at aerosol interfaces compared to in the bulk (Enami et al., PNAS, 2014). However, a fundamental-level mechanistic understanding of this process remains elusive and the relative importance of interfacial versus bulk chemistry for aqueous organic processing via Fenton's has yet to be fully established. Here, we present a microreactor experimental approach to studying aqueous-phase Fenton's chemistry in microdroplets by rapidly mixing droplets of different composition. Utilizing two on-demand droplet generators, a stream of microdroplets containing aqueous iron chloride were merged with a separate stream of microdroplets containing aqueous hydrogen peroxide and a range of aromatic organic compounds, initiating ROS production and subsequent aqueous-phase oxidation reactions. Upon merging, mixing of the microdroplets occurred in submillisecond timescales, thus allowing the reaction progress to be monitored with high spatial and temporal resolution. For relatively large microreactor (droplet) sizes (50 µm diameter post-merging), the Fenton-initiated aqueous oxidation of aromatic organic compounds in merged microdroplets was consistent with bulk predictions with hydroxyl radicals as the ROS. The microdroplet-size dependence of this observation, along with the role of other ROS species produced from Fenton and Fenton-like processes, will be discussed in the context of relative importance to aqueous organic processing of atmospheric particles.

  8. Development of sodium acetate trihydrate-ethylene glycol composite phase change materials with enhanced thermophysical properties for thermal comfort and therapeutic applications.

    PubMed

    Kumar, Rohitash; Vyas, Sumita; Kumar, Ravindra; Dixit, Ambesh

    2017-07-12

    The heat packs using phase change materials (PCMs) are designed for possible applications such as body comfort and medical applications under adverse situations. The development and performance of such heat packs rely on thermophysical properties of PCMs such as latent heat, suitable heat releasing temperature, degree of supercooling, effective heat releasing time, crystallite size, stability against spontaneous nucleation in metastable supercooled liquid state and thermal stability during heating and cooling cycles. Such PCMs are rare and the available PCMs do not exhibit such properties simultaneously to meet the desired requirements. The present work reports a facile approach for the design and development of ethylene glycol (EG) and aqueous sodium acetate trihydrate (SAT) based composite phase change materials, showing these properties simultaneously. The addition of 2-3 wt% EG in aqueous SAT enhances the softness of SAT crystallites, its degree of supercooling and most importantly the effective heat releasing time by ~10% with respect to aqueous SAT material. In addition, the maximum heat releasing temperature of aqueous SAT has been tailored from 56.5 °C to 55 °C, 54.9 °C, 53.5 °C, 51.8 °C and 43.2 °C using 2%, 3%, 5%, 7% and 10 wt% EG respectively, making the aqueous SAT-EG composite PCMs suitable for desired thermal applications.

  9. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography.

    PubMed

    Soukup, Jan; Jandera, Pavel

    2014-12-29

    Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Factors influencing the stability and type of hydroxyapatite stabilized Pickering emulsion.

    PubMed

    Zhang, Ming; Wang, Ai-Juan; Li, Jun-Ming; Song, Na; Song, Yang; He, Rui

    2017-01-01

    Hydroxyapatite (HAp) nanoparticle stabilized Pickering emulsion was fabricated with poly(l-lactic acid) dissolved in dichloromethane (CH 2 Cl 2 ) solution as oil phase and HAp aqueous dispersion as aqueous phase. Pickering emulsion was cured via in situ solvent evaporation method. Effect of PLLA concentrations, pH value, HAp concentrations, oil-water ratio, emulsification rates and times were studied on emulsion stability and emulsion type, etc. The results indicated emulsion stability increased with the increase of HAp concentration, emulsification rate and time; it is very stable when pH value of aqueous phase was adjusted to 10. Stable W/O and O/W emulsions were fabricated successfully using as-received HAp particles as stabilizer by adjusting the fabricating parameters. The interaction between HAp and PLLA played an important role to stabilize Pickering emulsions. SEM results indicated that both microsphere and porous materials were fabricated using emulsion stabilized by unmodified HAp nanoparticles, implying that both W/O and O/W emulsion type were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Ketonization of levulinic acid and γ-valerolactone to hydrocarbon fuel precursors

    DOE PAGES

    Lilga, Michael A.; Padmaperuma, Asanga B.; Auberry, Deanna L.; ...

    2017-06-21

    We studied a new process for direct conversion of either levulinic acid (LA) or γ-valerolactone (GVL) to hydrocarbon fuel precursors. The process involves passing an aqueous solution of LA or GVL containing a reducing agent, such as ethylene glycol or formic acid, over a ketonization catalyst at 380–400 °C and atmospheric pressure to form a biphasic liquid product. The organic phase is significantly oligomerized and deoxygenated and comprises a complex mixture of open-chain alkanes and olefins, aromatics, and low concentrations of ketones, alcohols, ethers, and carboxylates or lactones. Carbon content in the aqueous phase decreases with decreasing feed rate; themore » aqueous phase can be reprocessed through the same catalyst to form additional organic oils to improve carbon yield. Catalysts are readily regenerated to restore initial activity. Furthermore, the process might be valuable in converting cellulosics to biorenewable gasoline, jet, and diesel fuels as a means to decrease petroleum use and decrease greenhouse gas emissions.« less

  12. Enhanced Hydrothermal Stability and Catalytic Activity of La x Zr y O z Mixed Oxides for the Ketonization of Acetic Acid in the Aqueous Condensed Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng

    Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less

  13. Achieving High Levels of NMR-Hyperpolarization in Aqueous Media With Minimal Catalyst Contamination Using SABRE.

    PubMed

    Iali, Wissam; Olaru, Alexandra M; Green, Gary G R; Duckett, Simon B

    2017-08-04

    Signal amplification by reversible exchange (SABRE) is shown to allow access to strongly enhanced 1 H NMR signals in a range of substrates in aqueous media. To achieve this outcome, phase-transfer catalysis is exploited, which leads to less than 1.5×10 -6  mol dm -3 of the iridium catalyst in the aqueous phase. These observations reflect a compelling route to produce a saline-based hyperpolarized bolus in just a few seconds for subsequent in vivo MRI monitoring. The new process has been called catalyst separated hyperpolarization through signal amplification by reversible exchange or CASH-SABRE. We illustrate this method for the substrates pyrazine, 5-methylpyrimidine, 4,6-d 2 -methyl nicotinate, 4,6-d 2 -nicotinamide and pyridazine achieving 1 H signal gains of approximately 790-, 340-, 3000-, 260- and 380-fold per proton at 9.4 T at the time point at which phase separation is complete. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.

    PubMed

    Palencia, Manuel; Rivas, Bernabé L

    2011-11-15

    Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass.

    PubMed

    Torri, Cristian; Fabbri, Daniele

    2014-11-01

    Intermediate pyrolysis produces a two-phase liquid whose aqueous phase is characterized by low heating value and high water content (aqueous pyrolysis liquid, APL). Anaerobic digestion can be the straightest way to produce a fuel (methane) from this material. Batch tests showed poor performance in anaerobic digestion of APL, which underlined the inhibition of biological process. Nutrient supplementation was ineffective, whereas biochar addition increased yield of methane (60±15% of theoretical) with respect to pure APL (34±6% of theoretical) and improved the reaction rate. On the basis of batch results, a semi-continuous biomethanation test was set up, by adding an increasingly amount of APL in a 30ml reactor preloaded with biochar (0.8gml(-1)). With a daily input of 5gd(-1)l(-1) of APL (corresponding to overall amount of 0.1kgl(-1) added before the end of the study) the yield of methane was 65±5% of the theoretical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1993-07-27

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  17. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  18. EXTRACTION METHOD FOR SEPARATING URANIUM, PLUTONIUM, AND FISSION PRODUCTS FROM COMPOSITIONS CONTAINING SAME

    DOEpatents

    Seaborg, G.T.

    1957-10-29

    Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.

  19. Self-assembly of large-scale crack-free gold nanoparticle films using a ‘drain-to-deposit’ strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Hallinan, Daniel T.

    2016-04-26

    Gold nanoparticles are widely studied due to the ease of controlled synthesis, facile surface modification, and interesting physical properties. However, a technique for depositing large-area, crack-free monolayers on solid substrates is lacking. Herein is presented a method for accomplishing this. Spherical gold nanoparticles were synthesized as an aqueous dispersion. Assembly into monolayers and ligand exchange occurred simultaneously at an organic/aqueous interface. Then the monolayer film was deposited onto arbitrary solid substrates by slowly pumping out the lower, aqueous phase. This allowed the monolayer film (and liquid–liquid interface) to descend without significant disturbance, eventually reaching substrates contained in the aqueous phase.more » The resulting macroscopic quality of the films was found to be superior to films transferred by Langmuir techniques. The surface plasmon resonance and Raman enhancement of the films were evaluated and found to be uniform across the surface of each film.« less

  20. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  1. Crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics for immobilization of simulated sulfate bearing high-level liquid waste

    NASA Astrophysics Data System (ADS)

    Wu, Lang; Xiao, Jizong; Wang, Xin; Teng, Yuancheng; Li, Yuxiang; Liao, Qilong

    2018-01-01

    The crystalline phase, microstructure, and aqueous stability of zirconolite-barium borosilicate glass-ceramics with different content (0-30 wt %) of simulated sulfate bearing high-level liquid waste (HLLW) were evaluated. The sulfate phase segregation in vitrification process was also investigated. The results show that the glass-ceramics with 0-20 wt% of HLLW possess mainly zirconolite phase along with a small amount baddeleyite phase. The amount of perovskite crystals increases while the amount of zirconolite crystals decreases when the HLLW content increases from 20 to 30 wt%. For the samples with 20-30 wt% HLLW, yellow phase was observed during the vitrification process and it disappeared after melting at 1150 °C for 2 h. The viscosity of the sample with 16 wt% HLLW (HLLW-16) is about 27 dPa·s at 1150 °C. The addition of a certain amount (≤20 wt %) of HLLW has no significant change on the aqueous stability of glass-ceramic waste forms. After 28 days, the 90 °C PCT-type normalized leaching rates of Na, B, Si, and La of the sample HLLW-16 are 7.23 × 10-3, 1.57 × 10-3, 8.06 × 10-4, and 1.23 × 10-4 g·m-2·d-1, respectively.

  2. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry's Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds.

    PubMed

    Hilal, S H; Saravanaraj, A N; Carreira, L A

    2014-02-01

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry's Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aqueous pKa values, relative pKa values in the gas phase, and aqueous HLC for neutral compounds have been used to develop monopole interaction models that quantify the energy differences upon moving an ionic solute molecule from the gas phase to the liquid phase. Inter-molecular interaction energies were factored into mechanistic contributions of monopoles with polarizability, dipole, H-bonding, and resonance. The monopole ionic models were validated by a wide range of measured gas phase pKa data for 450 acidic compounds. The RMS deviation error and R(2) for the OH, SH, CO2 H, CH3 and NR2 acidic reaction centers (C) were 16.9 kcal/mol and 0.87, respectively. The calculated HLCs of ions were compared to the HLCs of 142 ions calculated by quantum mechanics. Effects of inter-molecular interaction of the monopoles with polarizability, dipole, H-bonding, and resonance on acidity of the solutes in the gas phase are discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method.

    PubMed

    Terzić, Jelena; Popović, Igor; Stajić, Ana; Tumpa, Anja; Jančić-Stojanović, Biljana

    2016-06-05

    This paper deals with the development of hydrophilic interaction liquid chromatographic (HILIC) method for the analysis of bilastine and its degradation impurities following Analytical Quality by Design approach. It is the first time that the method for bilastine and its impurities is proposed. The main objective was to identify the conditions where an adequate separation in minimal analysis duration could be achieved within a robust region. Critical process parameters which have the most influence on method performance were defined as acetonitrile content in the mobile phase, pH of the aqueous phase and ammonium acetate concentration in the aqueous phase. Box-Behnken design was applied for establishing a relationship between critical process parameters and critical quality attributes. The defined mathematical models and Monte Carlo simulations were used to identify the design space. Fractional factorial design was applied for experimental robustness testing and the method is validated to verify the adequacy of selected optimal conditions: the analytical column Luna(®) HILIC (100mm×4.6mm, 5μm particle size); mobile phase consisted of acetonitrile-aqueous phase (50mM ammonium acetate, pH adjusted to 5.3 with glacial acetic acid) (90.5:9.5, v/v); column temperature 30°C, mobile phase flow rate 1mLmin(-1), wavelength of detection 275nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A hybrid approach to device integration on a genetic analysis platform

    NASA Astrophysics Data System (ADS)

    Brennan, Des; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Justice, John; Aherne, Margaret; Macek, Milan; Galvin, Paul

    2012-10-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization.

  5. Dehydration induced phase transitions in a microfluidic droplet array for the separation of biomolecules

    NASA Astrophysics Data System (ADS)

    Nelson, Chris; Anna, Shelley

    2013-11-01

    Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.

  6. A new, double-inversion mechanism of the F- + CH3Cl SN2 reaction in aqueous solution.

    PubMed

    Liu, Peng; Wang, Dunyou; Xu, Yulong

    2016-11-23

    Atomic-level, bimolecular nucleophilic substitution reaction mechanisms have been studied mostly in the gas phase, but the gas-phase results cannot be expected to reliably describe condensed-phase chemistry. As a novel, double-inversion mechanism has just been found for the F - + CH 3 Cl S N 2 reaction in the gas phase [Nat. Commun., 2015, 6, 5972], here, using multi-level quantum mechanics methods combined with the molecular mechanics method, we discovered a new, double-inversion mechanism for this reaction in aqueous solution. However, the structures of the stationary points along the reaction path show significant differences from those in the gas phase due to the strong influence of solvent and solute interactions, especially due to the hydrogen bonds formed between the solute and the solvent. More importantly, the relationship between the two double-inversion transition states is not clear in the gas phase, but, here we revealed a novel intermediate complex serving as a "connecting link" between the two transition states of the abstraction-induced inversion and the Walden-inversion mechanisms. A detailed reaction path was constructed to show the atomic-level evolution of this novel double reaction mechanism in aqueous solution. The potentials of mean force were calculated and the obtained Walden-inversion barrier height agrees well with the available experimental value.

  7. Aqueous-Phase Photochemical Production of Oxidants in Atmospheric Waters.

    NASA Astrophysics Data System (ADS)

    Allen, John Morrison

    1992-01-01

    The photochemical formation and subsequent reactions of oxidants plays an important role in the overall chemistry of the atmosphere. Much of the interest in atmospheric oxidation reactions has been fueled by the environmental consequences of the oxidation of sulfur dioxide (SO _2) forming sulfuric acid (H_2 SO_4). Oxidation reactions also play a crucial role in other atmospheric chemical transformations such as: (1) the destruction of tropospheric ozone, (2) redox cycling of transition metals, and (3) oxidation of organic compounds. Much of the research pertaining to atmospheric oxidant formation and the reactions that these oxidants undergo has centered upon gas-phase photochemical oxidant formation and: (1) subsequent reactions in the gas phase, or (2) partitioning of oxidants into cloud and fog drops and subsequent reactions in the aqueous phase. Only a very limited amount of data is available concerning aqueous -phase photochemical sources of oxidants in cloud and fog drops. The focus of one aspect of the work presented in this dissertation is upon the aqueous-phase sunlight photochemical formation of oxidants in authentic cloud and fog water samples from across the United States and Canada. It will be demonstrated that atmospheric waters typically absorb solar ultraviolet radiation at wavelengths ranging from 290 to 340 nm. This absorption is due to the presence of chemical constituents in the cloud and fog waters that contain chromophoric functional groups that give rise to the formation of: (1) singlet molecular oxygen O_2(^1Delta_ {rm g}), (2) peroxyl radicals (HO _2cdot and RO_2 cdot), (3) peroxides (HOOH, ROOH, and ROOR '), and (4) hydroxyl radical ( cdotOH). This work will demonstrate that aqueous-phase photochemical reactions are a significant and in some cases dominant source of these oxidants in cloud and fog drops. The transition metal catalyzed oxidation of SO _2 to H_2SO _4 by molecular oxygen has been extensively studied. This reaction is thought to be an important pathway by which a strong acid is produced within cloud drops under certain conditions. Experiments performed in distilled, deionized water presented in this dissertation will demonstrate that the oxidation of SO_2 in the presence of Fe(III) is much slower in sunlight than in the dark.

  8. Sustained delivery of salbutamol and beclometasone from spray-dried double emulsions.

    PubMed

    Learoyd, Tristan P; Burrows, Jane L; French, Eddie; Seville, Peter C

    2010-01-01

    The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.

  9. Effect of pH on skin permeation enhancement of acidic drugs by l-menthol-ethanol system.

    PubMed

    Katayama, K; Matsui, R; Hatanaka, T; Koizumi, T

    2001-09-11

    The effect of pH on the skin permeation enhancement of three acidic drugs by the l-menthol-ethanol system was investigated. The total flux of acidic drugs from the system remarkably varied over the pH range 3.0-8.0, and the permeation enhancement factor depended on the system pH and drug. A skin permeation model, which consists of two permeant (unionized and ionized) species, two system (oily and aqueous) phases, and two permeation (lipid and pore) pathways, was developed. The assumptions were made that only the unionized species can distribute to the oily phase and transport via the lipid pathway. The model explained the relationship between the concentration of drug in the aqueous phase and system pH. The skin permeability data were also described by the model and permeability coefficients corresponding to the physicochemical properties of permeant were calculated for the lipid and pore pathways. The model simulation showed that the permeation of acidic drugs occurred from the aqueous phase and the oily phase acted as a reservoir. Whether the total flux increased with increase of pH was dependent on the lipophilicity of drug. These results suggest that the pH of l-menthol-ethanol system should be given attention to elicit the maximum permeation enhancement.

  10. Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shoujie; Ye, X. Philip; Borole, Abhijeet P.

    To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, our study investigated the physico-chemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compoundsmore » into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels were extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. Ultimately, a better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations.« less

  11. Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer

    DOE PAGES

    Ren, Shoujie; Ye, X. Philip; Borole, Abhijeet P.; ...

    2016-03-30

    To efficiently utilize water-soluble compounds in bio-oil and evaluate the potential effects of these compounds on processes such as microbial electrolysis, our study investigated the physico-chemical properties of bio-oil and the associated aqueous phase generated from switchgrass using a semi-pilot scale auger pyrolyzer. Combining separation and detection strategies with organic solvent extraction, an array of analytical instruments and methods were used to identify and quantify the chemical constituents. Separation of an aqueous phase from crude bio-oil was achieved by adding water (water: crude bio-oil at 4:1 in weight), which resulted in a partition of 61 wt.% of the organic compoundsmore » into a bio-oil aqueous phase (BOAP). GC/MS analysis for BOAP identified over 40 compounds of which 16 were quantified. Acetic acid, propionic acid, and levoglucosan are the major components in BOAP. In addition, a significant portion of chemicals that have the potential to be upgraded to hydrocarbon fuels were extracted to BOAP (77 wt.% of the alcohols, 61 wt.% of the furans, and 52 wt.% of the phenolic compounds in crude bio-oil). Valorization of the BOAP may require conversion methods capable of accommodating a very broad substrate specificity. Ultimately, a better separation strategy is needed to selectively remove the acidic and polar components from crude bio-oil to improve economic feasibility of biorefinery operations.« less

  12. Evidence for long term deep CO2 confinement below thick Jurassic shales at Montmiral site (SE Basin of France)

    NASA Astrophysics Data System (ADS)

    Rubert, Y.; Ramboz, C.; Le Nindre, Y. M.; Lerouge, C.; Lescanne, M.

    2009-04-01

    Studies of natural CO2 analogues bring key information on the factors governing the long term (>1My) stability/instability of future anthropogenic CO2 storages. The main objective of this work is to trace the deep-origin CO2 migrations in fractures in the Montmiral CO2 deep natural occurrence (Valence Basin, SE France). The final objective is to document the reservoir feeding and the possible leakages through overlying series. The CO2 reservoir is hosted within a horst controlled by a N-S fault network. From the Triassic to Eocene, the Montmiral area was part of the South-East Basin of France. This period is marked by the Tethysian extension phase (Triassic-Cretaceous) followed by the closure of the basin which culminated during the Pyrenean compressive phase (Eocene). Then, from the late Eocene, the Valence Basin was individualised in particular during the Oligocene E-W rifting affecting the West of Europe. Finally the eastern border of the Basin was overthrusted by Mesozoic formations during the Alpine orogenesis (Miocene). The Montmiral CO2 reservoir is intersected by the currently productive V.Mo.2 well, drilled through Miocene to Triassic sedimentary formations, and reaching the Palaeozoic substratum at a depth of 2771 meters. The CO2 is trapped below a depth of 2340 meters, at the base of sandy, evaporitic and calcareous formations (2340-2771m), Triassic to Sinemurian in age. These units are overlain by a 575 m-thick Domerian to Oxfordian marly sequence which seals the CO2 reservoir. Above these marls, calcareous strata (1792-1095 m), Oxfordian to Cretaceous in age, and sandy clayey formations (1095-0 m), Oligocene and Miocene in age, are deposited. The various stratigraphic levels from the Miocene to the basement were cored over a total length of ~100m. From bottom to top, three lithological units, which exhibit well characterised contrasted diagenetic evolution, record various stages and effects of the CO2 migration: - Lower unit: Palaeozoic metamorphic basement; - Middle unit: Triassic-Liassic reservoir; - Upper unit: late Jurassic to Cretaceous. The middle unit (reservoir) and the upper unit are separated by the thick, tight seal, Domerian to Oxfordian in age. The definition of these lithological units was made using combined petrographic techniques (cathodoluminescence CL, fluorescence, Raman spectroscopy, crushing tests), geochemical techniques (C and O isotopes) and microthermometry. Lower unit: Paleozoïc basement - In the metamorphic basement, aquo-carbonic and CO2-dominant fluids are trapped as primary fluid inclusions in hydrothermal barite and fluoroapatite, and as secondary fluid inclusions in extensionnal microcracks crosscutting metamorphic quartz. All these fluids, trapped in the two-phase stability field, indicate firstly a limited phase separation at 300°C and 400-500 bars evolving toward wider CO2-H2O unmixing at 200°C and 200 bars. Basinal saline brines (10 and 15-25 wt % eq. NaCl and 70

  13. Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.

    PubMed

    Montenegro, L; Carbone, C; Giannone, I; Puglisi, G

    2007-05-01

    The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.

  14. Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols.

    PubMed

    Thomas, Daniel A; Coggon, Matthew M; Lignell, Hanna; Schilling, Katherine A; Zhang, Xuan; Schwantes, Rebecca H; Flagan, Richard C; Seinfeld, John H; Beauchamp, J L

    2016-11-15

    The complexation of iron(III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron(II) and the carbon dioxide anion radical. Importantly, iron(III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron(III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron(III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ∼3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron(III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols.

  15. Investigating the scale of structural controls on chlorinated hydrocarbon distributions in the fractured-porous unsaturated zone of a sandstone aquifer in the UK

    NASA Astrophysics Data System (ADS)

    Lawrence, Adrian; Stuart, Marianne; Cheney, Colin; Jones, Neil; Moss, Richard

    2006-12-01

    Contaminant migration behaviour in the unsaturated zone of a fractured porous aquifer is discussed in the context of a study site in Cheshire, UK. The site is situated on gently dipping sandstones, adjacent to a linear lagoon historically used to dispose of industrial wastes containing chlorinated solvents. Two cores of more than 100 m length were recovered and measurements of chlorinated hydrocarbons (CHCs), inorganic chemistry, lithology, fracturing and aquifer properties were made. The results show that selecting an appropriate vertical sampling density is crucial both to providing an understanding of contaminant pathways and distinguishing whether CHCs are present in the aqueous or non-aqueous phase. The spacing of such sampling should be on a similar scale to the heterogeneity that controls water and contaminant movement. For some sections of the Permo-Triassic aquifer, significant changes in lithology and permeability occur over vertical distances of less than 1 m and samples need to be collected at this interval, otherwise considerable resolution is lost, potentially leading to erroneous interpretation of data. At this site, although CHC concentrations were high, the consistent ratio of the two main components of the plume (tetrachloroethene and trichloroethene) provided evidence of movement in the aqueous phase rather than in dense non-aqueous phase liquid (DNAPL).

  16. Effects of •OH and •NO radicals in the aqueous phase on H2O2 and \\text{NO}_{2}^{-} generated in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kondo, Takashi; Kikkawa, Fumitaka; Mizuno, Masaaki; Hori, Masaru

    2017-04-01

    A plasma-activated medium (PAM), which means a cell-culture medium irradiated with cold atmospheric plasmas or non-equilibrium atmospheric pressure plasma (NEAPP), has shown strong antitumor effects on various kinds of cells such as gastric cancer cells, human lung adenocarcinoma cells, human breast cancer cells and so on. In order to clarify the mechanism, it is extremely important to investigate the behaviors of stable and unstable reactive oxygen nitrogen species in culture medium irradiated by NEAPP. The roles of hydroxyl radicals (•OH) and nitric oxide (•NO) were studied to understand the dominant synthetic pathways of H2O2 and \\text{NO}2- in culture medium irradiated with NEAPP. In the PAM, •OH in the aqueous phase was generated predominantly by photo-dissociation. However, most of the H2O2 nor \\text{NO}2- generated in the PAM did not originate from aqueous •OH and •NO. Pathways for the generation of H2O2 and \\text{NO}2- are suggested based on the high concentrations of intermediates generated at the gas/aqueous-phase interface following NEAPP irradiation. On the basis of these results, the reaction model of chemical species in the culture medium is proposed.

  17. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munjal, Sandeep, E-mail: drsandeepmunjal@gmail.com; Khare, Neeraj, E-mail: nkhare@physics.iitd.ernet.in

    We have synthesized CoFe{sub 2}O{sub 4} (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible inmore » water and form a stable aqueous solution with high electrophoretic mobility.« less

  18. Preparative separation of two subsidiary colors of FD&C Yellow No. 5 (Tartrazine) using spiral high-speed counter-current chromatography◊

    PubMed Central

    Roque, Jose A.; Mazzola, Eugene P.; Ito, Yoichiro

    2014-01-01

    Specifications in the U.S. Code of Federal Regulations for the color additive FD&C Yellow No. 5 (Colour Index No. 19140) limit the level of the tetrasodium salt of 4-[(4',5-disulfo[1,1'-biphenyl]-2-yl)hydrazono]-4,5-dihydro-5-oxo-1-(4-sulfophenyl)-1H-pyrazole-3-carboxylic acid and that of the trisodium salt of 4,4'-[4,5-dihydro-5-oxo-4-[(4-sulfophenyl)hydrazono]-1H-pyrazol-1,3-diyl]bis[benzenesulfonic acid], which are subsidiary colors abbreviated as Pk5 and Pk7, respectively. Small amounts of Pk5 and Pk7 are needed by the U.S. Food and Drug Administration for confirmatory analyses and for development of analytical methods. The present study describes the use of spiral high-speed counter-current chromatography (HSCCC) with the recently introduced highly polar organic/high-ionic strength aqueous solvent systems to separate Pk5 and Pk7 from a sample of FD&C Yellow No. 5 containing ~3.5% Pk5 and ~0.7% Pk7. Multiple ~1.0 g portions of FD&C Yellow No. 5 (totaling 6.4 g dye) were separated, using the upper phase of the solvent system 1-BuOH/EtOHabs/saturated ammonium sulfate/water, 1.7:0.3:1:1, v/v/v/v, as the mobile phase. After applying a specially developed method for removing the ammonium sulfate from the HSCCC-collected fractions, these separations resulted in an enriched mixture (~160 mg) of Pk5 and Pk7 (~46% and ~21%, respectively). Separation of the enriched mixture, this time using the lower phase of that solvent system as the mobile phase, resulted in ~ 61 mg of Pk5 collected in fractions whose purity ranged from 88.0% to 92.7% (by HPLC at 254 nm). Pk7 (20.7 mg, ~83% purity) was recovered from the upper phase of the column content. Application of this procedure also resulted in purifying the major component of FD&C Yellow No. 5 to >99% purity. The separated compounds were characterized by high-resolution mass spectrometry and several 1H and 13C nuclear magnetic resonance spectroscopic techniques (COSY, NOESY, HSQC, and HMBC). PMID:24755184

  19. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant effect on the pH dependence of T(sol-gel). For PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:10, the T(sol-gel) of its 25 wt % aqueous solution increased faster with the increase of pH than that of PTEGMA-b-P(DEGEA-co-AA) with a DEGEA-to-AA molar ratio of 100:5.2. © 2012 American Chemical Society

  20. Process for the extraction of technetium from uranium

    DOEpatents

    Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.

    2010-12-21

    A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.

  1. Rapid RNA Exchange in Aqueous Two-Phase System and Coacervate Droplets

    NASA Astrophysics Data System (ADS)

    Jia, Tony Z.; Hentrich, Christian; Szostak, Jack W.

    2014-02-01

    Compartmentalization in a prebiotic setting is an important aspect of early cell formation and is crucial for the development of an artificial protocell system that effectively couples genotype and phenotype. Aqueous two-phase systems (ATPSs) and complex coacervates are phase separation phenomena that lead to the selective partitioning of biomolecules and have recently been proposed as membrane-free protocell models. We show in this study through fluorescence recovery after photobleaching (FRAP) microscopy that despite the ability of such systems to effectively concentrate RNA, there is a high rate of RNA exchange between phases in dextran/polyethylene glycol ATPS and ATP/poly-L-lysine coacervate droplets. In contrast to fatty acid vesicles, these systems would not allow effective segregation and consequent evolution of RNA, thus rendering these systems ineffective as model protocells.

  2. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  3. Measurement of Soret and Fickian diffusion coefficients by orthogonal phase-shifting interferometry and its application to protein aqueous solutions

    NASA Astrophysics Data System (ADS)

    Torres, Juan F.; Komiya, Atsuki; Henry, Daniel; Maruyama, Shigenao

    2013-08-01

    We have developed a method to measure thermodiffusion and Fickian diffusion in transparent binary solutions. The measuring instrument consists of two orthogonally aligned phase-shifting interferometers coupled with a single rotating polarizer. This high-resolution interferometer, initially developed to measure isothermal diffusion coefficients in liquid systems [J. F. Torres, A. Komiya, E. Shoji, J. Okajima, and S. Maruyama, Opt. Lasers Eng. 50, 1287 (2012)], was modified to measure transient concentration profiles in binary solutions subject to a linear temperature gradient. A convectionless thermodiffusion field was created in a binary solution sample that is placed inside a Soret cell. This cell consists of a parallelepiped cavity with a horizontal cross-section area of 10 × 20 mm2, a variable height of 1-2 mm, and transparent lateral walls. The small height of the cell reduces the volume of the sample, shortens the measurement time, and increases the hydrodynamic stability of the system. An additional free diffusion experiment with the same optical apparatus provides the so-called contrast factors that relate the unwrapped phase and concentration gradients, i.e., the measurement technique is independent and robust. The Soret coefficient is determined from the concentration and temperature differences between the upper and lower boundaries measured by the interferometer and thermocouples, respectively. The Fickian diffusion coefficient is obtained by fitting a numerical solution to the experimental concentration profile. The method is validated through the measurement of thermodiffusion in the well-known liquid pairs of ethanol-water (ethanol 39.12 wt.%) and isobutylbenzene-dodecane (50.0 wt.%). The obtained coefficients agree with the literature values within 5.0%. Finally, the developed technique is applied to visualize biomolecular thermophoresis. Two protein aqueous solutions at 3 mg/ml were used as samples: aprotinin (6.5 kDa)-water and lysozyme (14.3 kDa)-water. It was found that the former protein molecules are thermophilic and the latter thermophobic. In contrast to previously reported methods, this technique is suitable for both short time and negative Soret coefficient measurements.

  4. Dynamics of rigid microparticles at the interface of co-flowing immiscible liquids in a microchannel.

    PubMed

    Jayaprakash, K S; Banerjee, U; Sen, A K

    2017-05-01

    We report the dynamical migration behavior of rigid polystyrene microparticles at an interface of co-flowing streams of primary CP 1 (aqueous) and secondary CP 2 (oils) immiscible phases at low Reynolds numbers (Re) in a microchannel. The microparticles initially suspended in the CP 1 either continue to flow in the bulk CP 1 or migrate across the interface into CP 2 , when the stream width of the CP 1 approaches the diameter of the microparticles. Experiments were performed with different secondary phases and it is found that the migration criterion depends on the sign of the spreading parameter S and the presence of surfactant at the interface. To substantiate the migration criterion, experiments were also carried out by suspending the microparticles in CP 2 (oil phase). Our study reveals that in case of aqueous-silicone oil combination, the microparticles get attached to the interface since S<0 and the three phase contact angle, θ>90°. For complete detachment of microparticles from the interface into the secondary phase, additional energy ΔG is needed. We discuss the role of interfacial perturbation, which causes detachment of microparticles from the interface. In case of mineral and olive oils, the surfactants present at the interface prevents attachment of the microparticles to the interface due to the repulsive disjoining pressure. Finally, using a aqueous-silicone oil system, we demonstrate size based sorting of microparticles of size 25μm and 15μm respectively from that of 15μm and 10μm and study the variation of separation efficiency η with the ratio of the width of the aqueous stream to the diameter of the microparticles ρ. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    PubMed

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  6. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    NASA Astrophysics Data System (ADS)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  7. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    NASA Astrophysics Data System (ADS)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  8. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    PubMed

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2 Hydrogenation: Integrated Reaction and Catalyst Separation for CO2 -Scrubbing Solutions.

    PubMed

    Scott, Martin; Blas Molinos, Beatriz; Westhues, Christian; Franciò, Giancarlo; Leitner, Walter

    2017-03-22

    Aqueous biphasic systems were investigated for the production of formate-amine adducts by metal-catalyzed CO 2 hydrogenation, including typical scrubbing solutions as feedstocks. Different hydrophobic organic solvents and ionic liquids could be employed as the stationary phase for cis-[Ru(dppm) 2 Cl 2 ] (dppm=bis-diphenylphosphinomethane) as prototypical catalyst without any modification or tagging of the complex. The amines were found to partition between the two phases depending on their structure, whereas the formate-amine adducts were nearly quantitatively extracted into the aqueous phase, providing a favorable phase behavior for the envisaged integrated reaction/separation sequence. The solvent pair of methyl isobutyl carbinol (MIBC) and water led to the most practical and productive system and repeated use of the catalyst phase was demonstrated. The highest single batch activity with a TOF av of approximately 35 000 h -1 and an initial TOF of approximately 180 000 h -1 was achieved in the presence of NEt 3 . Owing to higher stability, the highest productivities were obtained with methyl diethanolamine (Aminosol CST 115) and monoethanolamine (MEA), which are used in commercial scale CO 2 -scrubbing processes. Saturated aqueous solutions (CO 2 overpressure 5-10 bar) of MEA could be converted into the corresponding formate adducts with average turnover frequencies up to 14×10 3  h -1 with an overall yield of 70 % based on the amine, corresponding to a total turnover number of 150 000 over eleven recycling experiments. This opens the possibility for integrated approaches to carbon capture and utilization. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO2 Hydrogenation: Integrated Reaction and Catalyst Separation for CO2‐Scrubbing Solutions

    PubMed Central

    Scott, Martin; Blas Molinos, Beatriz; Westhues, Christian

    2017-01-01

    Abstract Aqueous biphasic systems were investigated for the production of formate–amine adducts by metal‐catalyzed CO2 hydrogenation, including typical scrubbing solutions as feedstocks. Different hydrophobic organic solvents and ionic liquids could be employed as the stationary phase for cis‐[Ru(dppm)2Cl2] (dppm=bis‐diphenylphosphinomethane) as prototypical catalyst without any modification or tagging of the complex. The amines were found to partition between the two phases depending on their structure, whereas the formate–amine adducts were nearly quantitatively extracted into the aqueous phase, providing a favorable phase behavior for the envisaged integrated reaction/separation sequence. The solvent pair of methyl isobutyl carbinol (MIBC) and water led to the most practical and productive system and repeated use of the catalyst phase was demonstrated. The highest single batch activity with a TOFav of approximately 35 000 h−1 and an initial TOF of approximately 180 000 h−1 was achieved in the presence of NEt3. Owing to higher stability, the highest productivities were obtained with methyl diethanolamine (Aminosol CST 115) and monoethanolamine (MEA), which are used in commercial scale CO2‐scrubbing processes. Saturated aqueous solutions (CO2 overpressure 5–10 bar) of MEA could be converted into the corresponding formate adducts with average turnover frequencies up to 14×103 h−1 with an overall yield of 70 % based on the amine, corresponding to a total turnover number of 150 000 over eleven recycling experiments. This opens the possibility for integrated approaches to carbon capture and utilization. PMID:28103428

  11. THE EFFECT OF ALKYL AMINE TYPE ON THE EXTRACTION OF NITRIC ACID AND NITROSYLRUTHENIUM NITRATO COMPLEXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmins, T.H.; Mason, E.A.

    1963-04-01

    An investigation of the solvent extraction characteristics of nitric acid and the nitrato complexes of nitrosylruthenium was conducted, using alkyl amines as extractants. The alkyl amines used were a primary amine Primene JMT, a tertiary amine trilaurylamine (TLA), and a quaternary amine Aliquat 336. The organic phase concentrations of HNO/sub 3/ resulting during extraction by alkyl amines were found to correlate well on the basis of the undissociated aqueous HNO/ sub 3/ activity for both salted (NaNO/sub 3/) and unsalted aqueous phases. The distribution ratios for Ru extraction showed better correlation on this basis than on the basis of aqueousmore » phase nitrate and nitric acid. The order of decreasing Ru extraction at low HNO/sub 3/ concentration (2N) was found to be Aliquat 336, TLA, and Primene JMT. At high HNO/sub 3/ concentration (9N). Primene JMT had the highest Ru extractability. Hapid dilution experiments were utilized to determine the number and aqueous phase concentrations of the extractable species of Ru, and the amine partition coefficients for the species. It was found that two Ru species are extractable, and the more extractable species is present in the aqueous phase at lower concentration than the less extractable species. The mole fractions of both species were found to increase with increasing HNO/sub 3/ concentration. The TLA partition coefficients for the extractable species were found to decrease with increasing HNO/sub 3/ concentration. The quaternary amine, Aliquat 336, was found to have partition coefficients an order of magnitude greater than the tertiary amine, TLA. Equations for the mole fractions and TLA partition coefficients in the region of HNO/sub 3/ concentration investigated were developed. (auth)« less

  12. Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography.

    PubMed

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2015-05-01

    A rapid and effective method of aqueous two-phase systems based on ionic liquid microextraction for the simultaneous determination of five synthetic food colourants (tartrazine, sunset yellow, amaranth, ponceau 4R and brilliant blue) in food samples was established. High-performance liquid chromatography coupled with an ultraviolet detector of variable wavelength was used for the determinations. 1-alkyl-3-methylimidazolium bromide was selected as the extraction reagent. The extraction efficiency of the five colourants in the proposed system is influenced by the types of salts, concentrations of salt and [CnMIM]Br, as well as the extracting time. Under the optimal conditions, the extraction efficiencies for these five colourants were above 95%. The phase behaviours of aqueous two-phase system and extraction mechanism were investigated by UV-vis spectroscopy. This method was applied to the analysis of the five colourants in real food samples with the detection limit of 0.051-0.074 ng/mL. Good spiked recoveries from 93.2% to 98.9% were obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Bovine serum albumin partitioning in an aqueous two-phase system: effect of pH and sodium chloride concentration.

    PubMed

    Gündüz, U; Korkmaz, K

    2000-06-23

    The partitioning of bovine serum albumin (BSA) in a polyethylene glycol 3350 (8% w/w)-dextran 37 500 (6% w/w)-0.05 M phosphate aqueous two-phase was investigated at different pHs, at varying concentrations of sodium chloride at 20 degrees C. The effect of NaCl concentration on the partition coefficient of BSA was studied for the PEG-dx systems with initial pH values of 4.2, 5.0, 7.0, 9.0, and 9.8. The NaCl concentrations in the phase systems with constant pH value were 0.06, 0.1, 0.2, 0.3, and 0.34 M. It was observed that the BSA partition coefficient decreased at concentrations smaller than 0.2 M NaCl and increased at concentrations greater than 0.2 M NaCl for all systems with initial pHs of 4.2, 5.0, 7.0, 9.0, and 9.8. It was also seen that the partition coefficient of BSA decreased as the pH of the aqueous two-phase systems increased at any NaCl salt concentration studied.

  14. Solvent-induced conformational flexibility of a bicyclic proline analogue: Octahydroindole-2-carboxylic acid.

    PubMed

    Torras, Juan; Warren, Javier G; Revilla-López, Guillem; Jiménez, Ana I; Cativiela, Carlos; Alemán, Carlos

    2014-03-01

    The conformational preferences of the N-acetyl-N'-methylamide derivatives of the four octahydroindole-2-carboxylic acid (Oic) stereoisomers have been investigated in the gas-phase and in aqueous solution using quantum mechanical calculations. In addition to the conformational effects provoked by the stereochemical diversity of Oic, which presents three chiral centers, results provide evidence of interesting and rather unusual features. The conformational preferences of the Oic stereoisomers in solution are only well described by applying a complete and systematic search process, results achieved by simple re-optimization of the gas-phase minima being very imprecise. This is because the conformational rigidity detected in the gas-phase, which is imposed by the chemical restrictions of the fused bicyclic skeleton, disappears in aqueous solution, the four stereoisomers behaving as flexible molecules in this environment. Thus, in general, the γ-turn is the only minimum energy conformation in the gas-phase while in aqueous solution the helical, polyproline-II and γ-turn motifs are energetically favored. Molecular dynamics simulations indicate that the conformational flexibility predicted by quantum mechanical calculations for the four Oic stereoisomers in solution is satisfactorily reproduced by classical force-fields. Copyright © 2014 Wiley Periodicals, Inc.

  15. Cleaning and dewatering fine coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also bemore » used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.« less

  16. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  17. Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel-contaminated site in Brazil

    NASA Astrophysics Data System (ADS)

    Teramoto, Elias Hideo; Chang, Hung Kiang

    2017-03-01

    Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion.

  18. Distribution of Dechlorinating Bacteria between the Aqueous and Solid Phases

    NASA Astrophysics Data System (ADS)

    Cápiro, N. L.; Hatt, J. K.; Wang, Y.; Loeffler, F. E.; Pennell, K. D.

    2010-12-01

    Microbial monitoring of aquifers relies on nucleic acid biomarker analysis, which is typically performed with biomass recovered from groundwater samples; however, it is unclear what fraction of the target population(s) is associated with groundwater (i.e., planktonic cells) or is attached to solid phases (i.e., biofilms). Understanding how the titer of target organism(s) in groundwater correlates with the true cell titers of the target organism in the aquifer (i.e., planktonic plus attached cells) is critical for a meaningful interpretation of the data, the prediction of bioremediation performance, and the implementation of site management strategies. To evaluate the distribution of active cells between resident solid phase and the aqueous phase, one-dimensional columns were packed under water-saturated conditions with Bio-Dechlor INOCULUM, a PCE-to ethene-dechlorinating bacterial consortium containing both multiple Dehalococcoides (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ). The columns were packed with two distinct solid matrices: a low organic content sandy Federal Fine Ottawa soil or Appling soil with higher organic matter content. Influent reduced mineral salts medium supplied at a groundwater pore-water velocity of 0.3 m/day contained both 10 mM lactate as electron donor and 0.33 mM PCE as electron acceptor. Routine collection of biomass from column side ports and effluent samples measured the titers of target cells in the aqueous phase and determined when steady state conditions had been reached. A second set of column experiments evaluated delivery and filtration effects by the solid matrix (i.e., Federal Fine Ottawa sand versus Appling soil) under the same conditions except that electron donor or acceptor were omitted (no growth conditions). Quantitative real-time PCR (qPCR) analysis using Dhc and GeoSZ 16S rRNA gene-targeted primer and probe sets determined the planktonic cell counts, and destructive sampling of the columns allowed measurement of the total cell titer (i.e., attached plus planktonic cells). The results indicate that within the higher organic matter Appling soil, the fraction of target cells associated with the solid phase was nearly 2-orders of magnitude higher compared to the fraction attached to the aqueous phase. In the sandy soil, differences were approximately 1-order of magnitude. Ongoing efforts use dynamic light scattering and electrophoretic mobility measurements over a range of ionic strengths and pH values to shed light on the parameters that control microbial attachment behavior. Knowledge of factors that affect microbial distribution between aqueous and solid phases is essential for interpreting qPCR data obtained from site groundwater where biological remedies are implemented.

  19. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  20. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  1. Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation

    DOEpatents

    Tedder, Daniel W.

    1985-05-14

    Alcohol substantially free of water is prepared by continuously fermenting a fermentable biomass feedstock in a fermentation unit, thereby forming an aqueous fermentation liquor containing alcohol and microorganisms. Continuously extracting a portion of alcohol from said fermentation liquor with an organic solvent system containing an extractant for said alcohol, thereby forming an alcohol-organic solvent extract phase and an aqueous raffinate. Said alcohol is separated from said alcohol-organic solvent phase. A raffinate comprising microorganisms and unextracted alcohol is returned to the fermentation unit.

  2. Surfactant effects on desorption rate of nonionic organic compounds from soils to water

    USGS Publications Warehouse

    Cesare, David Di; Smith, James A.

    1994-01-01

    The widespread occurrence of organic contamination in groundwater systems has become an important environmental concern. Of particular interest are nonionic organic compounds, which sorb strongly to natural soil as a result of their characteristic low aqueous solubilities and hydrophobic nature. Consequently, the remediation of nonionic organic contamination in groundwater systems is often highly dependent on contaminant desorption from the sorbed to aqueous phase. The kinetics of desorption will significantly influence the extraction efficiency of pump-and-treat remedial methods that are capable of removing only dissolved phase contaminants.

  3. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  4. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  5. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... levels not to exceed 0.2 percent of the reaction mixture to catalyze the directed esterification. (c) The esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase. Final traces of catalyst are removed by washing batches of the product three times with an aqueous...

  6. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2011-01-01

    Short range-ordered (SRO) aluminosilicates (e.g., allophane) and nanophase ferric oxides (npOx) are common SRO minerals derived during aqueous alteration of basaltic materials. NpOx refers to poorly crystalline or amorphous alteration products that can be any combination of superparamagnetic hematite and/or goethite, akaganeite, schwertmannite, ferrihydrite, iddingsite, and nanometer-sized ferric oxide particles that pigment palagonitic tephra. Nearly 30 years ago, SRO phases were suggested as alteration phases on Mars based on similar spectral properties for altered basaltic tephra on the slopes of Mauna Kea in Hawaii and Martian bright regions measured by Earth-based telescopes. Detailed characterization of altered basaltic tephra on Mauna Kea have identified a variety of alteration phases including allophane, npOx, hisingerite, jarosite, alunite, hematite, goethite, ferrihydrite, halloysite, kaolinite, smectite, and zeolites. The presence of npOx and other Fe-bearing minerals (jarosite, hematite, goethite) was confirmed by the M ssbauer Spectrometer onboard the Mars Exploration Rovers. Although the presence of allophane has not been definitely identified on Mars robotic missions, chemical analysis by the Spirit and Opportunity rovers and thermal infrared spectral orbital measurements suggest the presence of allophane or allophane-like phases on Mars. SRO phases form under a variety of environmental conditions on Earth ranging from cold and arid to warm and humid, including hydrothermal conditions. The formation of SRO aluminosilicates such as allophane (and crystalline halloysite) from basaltic material is controlled by several key factors including activity of water, extent of leaching, Si activity in solution, and available Al. Generally, a low leaching index (e.g., wet-dry cycles) and slightly acidic to alkaline conditions are necessary. NpOx generally form under aqueous oxidative weathering conditions, although thermal oxidative alteration may occasional be involved. The style of aqueous alteration (hydrolytic vs. acid sulfate) impacts which phases will form (e.g., oxides, oxysulfates, and oxyhydroxides). Knowledge on the formation processes of SRO phases in basaltic materials on Earth has allowed significant enhancement in our understanding of the aqueous processes at work on Mars. The 2011 Mars Science Laboratory (MSL) will provide an instrument suite that should improve our understanding of the mineralogical and chemical compositions of SRO phases. CheMin is an X-ray diffraction instrument that may provide broad X-ray diffraction peaks for SRO phases; e.g., broad peaks around 0.33 and 0.23 nm for allophane. Sample Analysis at Mars (SAM) heats samples and detects evolved gases of volatile-bearing phases including SRO phases (i.e., carbonates, sulfates, hydrated minerals). The Alpha Particle X-ray Spectrometer (APXS) and ChemCam element analyzers will provide chemical characterization of samples. The identification of SRO phases in surface materials on MSL will be challenging due to their nanocrystalline properties; their detection and identification will require utilizing the MSL instrument suite in concert. Ultimately, sample return missions will be required to definitively identify and fully characterize SRO minerals with state-of-the-art laboratory instrumentation back on Earth.

  7. NAPL: SIMULATOR DOCUMENTATION (EPA/600/SR-97/102)

    EPA Science Inventory

    A mathematical and numerical model is developed to simulate the transport and fate of NAPLs (Non-Aqueous Phase Liquids) in near-surface granular soils. The resulting three-dimensional, three phase simulator is called NAPL. The simulator accommodates three mobile phases: water, NA...

  8. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients

    NASA Astrophysics Data System (ADS)

    Woolf, D. K.; Land, P. E.; Shutler, J. D.; Goddijn-Murphy, L. M.; Donlon, C. J.

    2016-02-01

    The presence of vertical temperature and salinity gradients in the upper ocean and the occurrence of variations in temperature and salinity on time scales from hours to many years complicate the calculation of the flux of carbon dioxide (CO2) across the sea surface. Temperature and salinity affect the interfacial concentration of aqueous CO2 primarily through their effect on solubility with lesser effects related to saturated vapor pressure and the relationship between fugacity and partial pressure. The effects of temperature and salinity profiles in the water column and changes in the aqueous concentration act primarily through the partitioning of the carbonate system. Climatological calculations of flux require attention to variability in the upper ocean and to the limited validity of assuming "constant chemistry" in transforming measurements to climatological values. Contrary to some recent analysis, it is shown that the effect on CO2 fluxes of a cool skin on the sea surface is large and ubiquitous. An opposing effect on calculated fluxes is related to the occurrence of warm layers near the surface; this effect can be locally large but will usually coincide with periods of low exchange. A salty skin and salinity anomalies in the upper ocean also affect CO2 flux calculations, though these haline effects are generally weaker than the thermal effects.

  9. Optical Limiting Based on Liquid-Liquid Immiscibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.

    A nonionic surfactant is used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using anmore » alkyl end-capped polyethylene glycol ether. The salt concentration was adjusted so that the index-matched mixture exhibited a large pass band. Marked optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture Z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is thought to be a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Mie scattering. The presence of many boundaries significantly amplifies the effect. Experiments also were conducted on the phase-inverted system (aqueous phase in organic liquid). Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved limiters based upon this optical deflection approach.« less

  10. Application of fluid-rock reaction studies to in situ recovery from oil sand deposits, Alberta, Canada - I. Aqueous phase results for an experimental-statistical study of water-bitumen-shale reactions

    NASA Astrophysics Data System (ADS)

    Boon, J. A.; Hitchon, Brian

    1983-02-01

    In situ recovery operations in oil sand deposits effectively represent man-imposed low to intermediate temperature metamorphism of the sediments in the deposit. In order to evaluate some of the reactions which occur, a factorial experiment was earned out in which a shale from the Lower Cretaceous McMurray Formation in the Athabasca oil sand deposit of Alberta, in the presence or absence of bitumen, was subjected to hydrothermal treatment with aqueous fluids of varying pH and salinity, at two different temperatures, for periods up to 92 hours. The aqueous fluid was analyzed and the analytical data subjected to statistical factor analysis and analysis of variance, which enabled identification of the main processes, namely, cation exchange, the production of two types of colloidal material, and the dissolution of quartz There is also saturation of the aqueous phase by. as yet unidentified, "total organic carbon" and complete conversion and removal of all nitrogen in the shale to the aqueous phase. These reactions have implications with regards to the economics of the in situ recovery process, specifically with respect to the reuse and/or disposal of the produced water and the plugging of the pore space and hence of reduction of permeability between the injection and production wells. As a result of these experiments it is suggested that monitoring of the composition of the produced water from in situ recovery operations in oil sand deposits would be advisable.

  11. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    PubMed

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  12. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.

    PubMed

    Smith, Jeremy D; Kinney, Haley; Anastasio, Cort

    2015-04-21

    Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.

  13. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  14. The Jeffers Brook diorite-granodiorite pluton: style of emplacement and role of volatiles at various crustal levels in Avalonian appinites, Canadian Appalachians

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.

    2018-04-01

    Small appinite plutons ca. 610 Ma outcrop in the peri-Gondwanan Avalon terrane of northern Nova Scotia, with different structural levels exposed. Field mapping shows that the Jeffers Brook pluton is a laccolith emplaced along an upper crustal thrust zone, likely in a dilational jog in a regional dextral strike-slip system. The oldest rocks are probably mafic sills, which heated the area facilitating emplacement of intermediate magmas. Cross-cutting relationships show that both mafic and intermediate magmas were supplied throughout the history of pluton emplacement. The modal composition, mineral chemistry, and bulk chemistry of gabbro, diorite, tonalite, granodiorite, and granite have been studied in the main plutonic phases, dykes, and sills, and mafic microgranular enclaves. As with the type appinites in the Scottish Caledonides, the pluton shows evidence of high water content: the dominance of hornblende, locally within pegmatitic texture; vesicles and irregular felsic patches in enclaves; and late aplite dykes. Analyzed mafic microgranular enclaves are geochemically similar to larger diorite bodies in the pluton. Tonalite-granodiorite is distinct from the diorite in trace-element geochemistry and radiogenic isotopes. Elsewhere to the east, similar rocks of the same age form vertically sheeted complexes in major shear zones; hornblende chemistry shows that they were emplaced at a deeper upper crustal level. This implies that little of the observed geochemical variability in the Jeffers Brook pluton was developed within the pluton. The general requirements to form appinites are proposed to be small magma volumes of subduction-related magmas that reach the upper crust because of continual heating by mafic magmas moving through strike-slip fault pathways and trapping of aqueous fluids rather than venting through volcanic activity.

  15. Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 k) sulfuric acid solutions: implications for the upper troposphere and lower stratosphere.

    PubMed

    Andersen, Mads P Sulbaek; Axson, Jessica L; Michelsen, Rebecca R H; Nielsen, Ole John; Iraci, Laura T

    2011-05-05

    The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.

  16. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    1982-01-01

    It is known that the addition of phosphate buffer to two polymer aqueous phase systems has a strong effect on the partition behavior of cells and other particles in such mixtures. The addition of sodium phosphate to aqueous poly(ethylene glycol) dextran phase systems causes a concentration-dependent shift in binodial on the phase diagram, progressively lowering the critical conditions for phase separation as the phosphate concentration is increased. Sodium chloride produces no significant shift in the critical point relative to the salt-free case. Accurate determinations of the phase diagram require measurements of the density of the phases; data is presented which allows this parameter to be calculated from polarimetric measurements of the dextran concentrations of both phases. Increasing polymer concentrations in the phase systems produce increasing preference of the phosphate for the dextran-rich bottom phase. Equilibrium dialysis experiments showed that poly(ethylene glycol) effectively rejected phosphate, and to a lesser extent chloride, but that dextran had little effect on the distribution of either salt. Increasing ionic strength via addition of 0.15 M NaCl to phase systems containing 0.01 M phosphate produces an increased concentration of phosphate ions in the bottom dextran-rich phase, the expected effect in this type of Donnan distribution.

  17. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zheng, Y.; Xie, Z.; Ritzwoller, M. H.

    2011-12-01

    The Tibetan Plateau results from the convergence between the Indian and Eurasian plates. However, the physical processes that have controlled the deformation history of Tibet, particularly the potential localization of deformation either in the vertical or horizontal directions remain subject to debate. There are a growing list and wide variety of observations that suggest that the Tibetan crust is warm and presumably ductile. Some of observations are often taken as prima facie evidence for the existence of partial melt or aqueous fluids in the middle or deep crust beneath Tibet and in some cases for the decoupling or partitioning of strain between the upper crust and uppermost mantle. However, most of this evidence is highly localized along nearly linear seismic or magneto-telluric profiles. This motivates the two questions addressed by this study. First, how pervasive across Tibet are the phenomena on which inferences of the existence of crustal partial melt rest? In particular, how pervasive are mid-crustal low velocity zones across Tibet? Second, what is the geometry or inter-connectivity of the crustal low velocity zones observed across Tibet? In this study, we address these questions by producing a new 3-D model of crustal and uppermost mantle shear wave speeds inferred from Rayleigh wave dispersion observed on cross-correlations of long time series of ambient seismic noise. Broadband seismic data from about 600 stations (Chinese Provincial networks, FDSN, several PASSCAL experiments including the INDEPTH IV experiment) yield about 50,000 inter-station paths, which are used to generate Rayleigh wave phase velocity maps from 10 sec to 50 sec period. The time series lengths in the cross-correlations range from 1 to 2 years in duration. The resulting Rayleigh wave phase velocity maps are inverted for a 3D Vsv model of crustal and upper most mantles. The major results from our model are summarized below: (1) A crustal LVZ exists across most of the high Tibetan Plateau. (2) The distribution of the amplitude of the LVZ is not uniform. In fact, the largest amplitudes (i.e., lowest mid-crustal shear wave speeds) are found predominantly around the periphery of Tibet. (3) The lateral distribution of strong LVZs are coincident with the distribution of strong radial anisotropy in the middle crust, suggesting LVZs of Vsv in the middle crust may be mostly due to the strong radial anisotropy rather than the presence of partial melt or aqueous fluids.

  18. How salt lakes affect atmospheric new particle formation: A case study in Western Australia.

    PubMed

    Kamilli, K A; Ofner, J; Krause, T; Sattler, T; Schmitt-Kopplin, P; Eitenberger, E; Friedbacher, G; Lendl, B; Lohninger, H; Schöler, H F; Held, A

    2016-12-15

    New particle formation was studied above salt lakes in-situ using a mobile aerosol chamber set up above the salt crust and organic-enriched layers of seven different salt lakes in Western Australia. This unique setup made it possible to explore the influence of salt lake emissions on atmospheric new particle formation, and to identify interactions of aqueous-phase and gas-phase chemistry. New particle formation was typically observed at enhanced air temperatures and enhanced solar irradiance. Volatile organic compounds were released from the salt lake surfaces, probably from a soil layer enriched in organic compounds from decomposed leaf litter, and accumulated in the chamber air. After oxidation of these organic precursor gases, the reaction products contributed to new particle formation with observed growth rates from 2.7 to 25.4nmh -1 . The presence of ferrous and ferric iron and a drop of pH values in the salt lake water just before new particle formation events indicated that organic compounds were also oxidized in the aqueous phase, affecting the new particle formation process in the atmosphere. The contribution of aqueous-phase chemistry to new particle formation is assumed, as a mixture of hundreds of oxidized organic compounds was characterized with several analytical techniques. This chemically diverse composition of the organic aerosol fraction contained sulfur- and nitrogen-containing organic compounds, and halogenated organic compounds. Coarse mode particles were analyzed using electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Ultra-high resolution mass spectrometry was applied to analyze filter samples. A targeted mass spectral analysis revealed the formation of organosulfates from monoterpene precursors and two known tracers for secondary organic aerosol formation from atmospheric oxidation of 1,8-cineole, which indicates that a complex interplay of aqueous-phase and gas-phase oxidation of monoterpenes contributes to new particle formation in the investigated salt lake environment. Copyright © 2016. Published by Elsevier B.V.

  19. Magmatic (silicates/saline/sulfur-rich/CO2) immiscibility and zirconium and rare-earth element enrichment from alkaline magma chamber margins : Evidence from Ponza Island, Pontine Archipelago, Italy

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Lima, A.; Torok, K.

    1996-01-01

    Fluid inclusions were measured from a feldspathoid-bearing syenite xenolith entrained in trachyte from Ponza, one of the islands of the Pontine Archipelago, located in the Gulf of Gaeta, Italy. The feldspathoid-bearing syenite consists mainly of potassium feldspar, clinopyroxene, amphibole, biotite, titanite, manganoan magnetite, apatite with minor nosean, Na-rich feldspar, pyrrhotite, and rare cheralite. Baddeleyite and zirkelite occur associated with manganoan magnetite. Detailed electron-microprobe analysis reveals enrichments in REE, Y, Nb, U, Th as well as Cl and F in appropriate phases. Fluid inclusions observed in potassium feldspar are either silicate-melt or aqueous inclusions. The aqueous inclusions can be further classified as. (1) one-phase vapor, (2) two-phase (V + L) inclusions, vapor-rich inclusions with a small amount of CO2 in most cases; homogenization of the inclusions always occurred in the vapor phase between 359 and 424??C, salinities vary from 2.9 to 8.5 wt. % NaCl equivalent; and. (3) three-phase and multiphase inclusions (hypersaline/sulfur-rich aqueous inclusions sometimes with up to 8 or more solid phases). Daughter minerals dissolve on heating before vapor/liquid homogenization. Standardless quantitative scanning electron microscope X-ray fluorescence analysis has tentatively identified the following chloride and sulfate daughter crystals; halite, sylvite, glauberite. arcanite, anhydrite, and thenardite. Melting of the daughter crystals occurs between 459 and 536??C (54 to 65 wt. % NaCI equivalent) whereas total homogenization is between 640 and 755??C. The occurrence of silicate-melt inclusions and high-temperature, solute-rich aqueous inclusions suggests that the druse or miarolitic texture of the xenolith is late-stage magmatic. The xenolith from Ponza represents a portion of the peripheral magma chamber wall that has recorded the magmatic/hydrothermal transition and the passage of high solute fluids enriched in chlorides, sulfur, and incompatible elements.

  20. Phytochemical analysis and a study on the antiestrogenic antifertility effect of leaves of Piper betel in female albino rat

    PubMed Central

    Biswal, Sasmita

    2014-01-01

    Objective: To study the effect of graded doses of the aqueous and methanolic extract of the leaves of Piper betel (PB) Linn (PBL) on the estrous cycle of female albino rats. Materials and Methods: Both the extracts were tested for their effect on the estrous cycle at three dose levels of 500, 1000 and 1500 mg/kg/day and the vaginal smears were examined daily microscopically for the different phases of the estrous cycle for a period of 30 days. Result: The estrous cycle was irregular and prolonged in the treated groups indicating anestrus condition, which would result in infertility. Both types of the extract showed a significant decrease in the duration of proestrus and estrus with a prolonged diestrus at 1000 mg/kg/day and 1500 mg/kg/day doses as compared with control. However, no change was seen in the metestrus phase. The rats treated with PB showed a significant (P < 0.05), dose-dependent decrease in the estrus phase, in comparison to the control group, the effect was more with the methanolic extract. Large, cornified cells appeared after proestrus phase with decreased number of cornified cells. There was a significant reduction in the number of the estrous cycle, in the PBL treated group. Anestrus phase appeared in all the rats treated with the aqueous and methanolic PB extract, which was not observed in the control group. However, the aqueous extract at a dose of 500 mg/kg/day had no effect either on the estrous cycle or on its different phases. The observed effect of PB leaves could be due to the flavonoids and saponin contents, which also contributes to its antiestrogenic mechanism of action. Conclusion: Both the aqueous and methanolic extract of PBL possesses antifertility effect in female albino rats. PMID:25737606

  1. Ground-water contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, Wilfred E.; Rostad, Colleen E.; Garbarino, John R.; Hult, Marc F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed.

  2. Groundwater contamination by organic bases derived from coal-tar wastes

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Garbarino, J.R.; Hult, M.F.

    1983-01-01

    A fluid sample from a shallow aquifer contaminated by coal-tar wastes was analyzed for organic bases. The sample consisted of a mixture of aqueous and oily-tar phases. The phases were separated by centrifugation and filtration. Organic bases were isolated from each phase by pH adjustment and solvent extraction. Organic bases in the oily-tar phase were further purified by neutral-alumina, micro-column adsorption chromatography. Separation and identification of the organic bases in each phase were achieved by using capillary gas chromatography-mass spectrometry-computer (GC-MS-COM) and probe distillation-high resolution mass spectrometry (PD-HRMS) techniques. Organic bases present in the aqueous phase included primary aromatic amines (such as aniline, alkylated anilines, and naphthylamines) as well as azaarenes (such as alkylated pyridines, quinolines, acridine, and benzoquinolines). The oily-tar phase contained acridine, benzacridines, dibenzacridines, and numerous other azaarenes, the elemental compositions of which were determined by PD-HRMS. Azaarenes in the oily-tar phase, varying in size from 6 to 12 rings, are reported for the first time. The origin and environmental significance of these compounds are discussed. ?? 1983.

  3. SURFACTANT-ENHANCED SOLUBILIZATION OF RESIDUAL DODECANE IN SOIL COLUMNS - 2. MATHEMATICAL MODELING

    EPA Science Inventory

    A mathematical model is developed to describe surfactant-enhanced solubilization of nonaqueous-phase liquids (NAPLs) in porous media. The model incorporates aqueous-phase transport equations for organic and surfactant components as well as a mass balance for the organic phase. Ra...

  4. SURFACTANT ENHANCED SOLUBILIZATION OF RESIDUAL DODECANE IN SOIL COLUMNS 1. MATHEMATICAL MODELING

    EPA Science Inventory

    A mathematical model is developed to describe surfactant enhanced solubilization of nonaqueous phase liquids (NAPLS) in porous media. he model incorporates aqueous phase transport equations for organic and surfactant components as well as a mass balance on the organic phase. ate-...

  5. SYNTHESIS REPORT ON FIVE DENSE, NONAQUEOUS-PHASE LIQUID (DNAPL) REMEDIATION PROJECTS

    EPA Science Inventory

    Dense non-aqueous phase liquid (DNAPL) poses a difficult problem for subsurface remediation because it serves as a continuing source to dissolved phase ground water contamination and is difficult to remove from interstitial pore space or bedrock fractures in the subsurface. Numer...

  6. Micro- and Nano-Liquid Phases Coexistent with Ice as Separation and Reaction Media.

    PubMed

    Okada, Tetsuo

    2017-04-01

    Ice has a variety of scientifically interesting features, some of which have not been reasonably interpreted despite substantial efforts by researchers. Most chemical studies of ice have focused on the elucidation of its physicochemical nature and its roles in the natural environment. Ice often contains impurities, such as salts, and in such cases, a liquid phase coexists with solid ice over a wide temperature range. This impure ice also acts as a cryoreactor, governing the circulation of chemical species of environmental importance. Reactions and phenomena occurring in this liquid phase show features different from those seen in normal bulk aqueous solutions. In the present account, we discuss the chemical characteristics of the liquid phase that develops in a frozen aqueous phase and show how novel analytical systems can be designed based on he features of the liquid phase which are predictable in some cases but unpredictable in others. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spectroscopic characterization of Greek dolomitic marble surface interacted with uranium and thorium in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Godelitsas, A.; Kokkoris, M.; Chatzitheodoridis, E.; Misaelides, P.

    2008-05-01

    The surface of a typical Greek (Thassian) dolomitic marble was studied after interaction with U- and Th-containing aqueous solutions (1000 mg/L, free-drift experiments for 1 week at atmospheric PCO2), using 12C-RBS and Laser μ-Raman spectroscopy. Powder-XRD and SEM-EDS were also applied to investigate the phases deposited on the surface of the interacted samples. The obtained results indicated a considerable removal of U from the aqueous medium mainly due to massive surface precipitation of amorphous UO2-hydroxide phases forming a relatively thick (μm-sized) coating on the carbonate substrate. The interaction of Th with dolomitic marble surface is also intense leading to a formation of an amorphous Th-hydroxide layer of similar thickness but of significantly lower elemental atomic proportion.

  8. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  9. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2010-09-28

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  10. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Sanner, Robert D [Livermore, CA; Dias, Victoria L [Livermore, CA; Reynolds, John G [San Ramon, CA

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  11. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  12. Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water-edible oil two-phase system.

    PubMed

    Hu, Minglue; Zhang, Xuehong; Wang, Zhilong

    2016-11-01

    Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil-water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.

  13. Analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculation.

    PubMed

    Si, Dejun; Li, Hui

    2011-10-14

    The analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculations are derived and implemented for spin-restricted closed shell (RMP2), Z-averaged spin-restricted open shell (ZAPT2), and spin-unrestricted open shell (UMP2) cases. Using these methods, the geometries of the S(0) ground state and the T(1) state of three nucleobase pairs (guanine-cytosine, adenine-thymine, and adenine-uracil) in the gas phase and aqueous solution phase are optimized. It is found that in both the gas phase and the aqueous solution phase the hydrogen bonds in the T(1) state pairs are weakened by ~1 kcal/mol as compared to those in the S(0) state pairs. © 2011 American Institute of Physics

  14. Visualization and quantification of two-phase flow in transparent miniature packed beds

    NASA Astrophysics Data System (ADS)

    Zhu, Peixi; Papadopoulos, Kyriakos D.

    2012-10-01

    Optical microscopy was used to visualize the flow of two phases [British Petroleum (BP) oil and an aqueous surfactant phase] in confined space, three-dimensional, transparent, natural porous media. The porous media consisted of water-wet cryolite grains packed inside cylindrical, glass microchannels, thus producing microscopic packed beds. Primary drainage of BP oil displacing an aqueous surfactant phase was studied at capillary numbers that varied between 10-6 and 10-2. The confinement space had a significant effect on the flow behavior. Phenomena of burst motion and capillary fingering were observed for low capillary numbers due to the domination of capillary forces. It was discovered that breakthrough time and capillary number bear a log-log scale linear relationship, based on which a generalized correlation between oil travel distance x and time t was found empirically.

  15. Visualization and quantification of two-phase flow in transparent miniature packed beds.

    PubMed

    Zhu, Peixi; Papadopoulos, Kyriakos D

    2012-10-01

    Optical microscopy was used to visualize the flow of two phases [British Petroleum (BP) oil and an aqueous surfactant phase] in confined space, three-dimensional, transparent, natural porous media. The porous media consisted of water-wet cryolite grains packed inside cylindrical, glass microchannels, thus producing microscopic packed beds. Primary drainage of BP oil displacing an aqueous surfactant phase was studied at capillary numbers that varied between 10(-6) and 10(-2). The confinement space had a significant effect on the flow behavior. Phenomena of burst motion and capillary fingering were observed for low capillary numbers due to the domination of capillary forces. It was discovered that breakthrough time and capillary number bear a log-log scale linear relationship, based on which a generalized correlation between oil travel distance x and time t was found empirically.

  16. Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system.

    PubMed

    Barbosa, José Murillo P; Souza, Ranyere L; Fricks, Alini T; Zanin, Gisella Maria; Soares, Cleide Mara F; Lima, Alvaro S

    2011-12-15

    This work discusses the application of an aqueous two-phase system for the purification of lipases produced by Bacillus sp. ITP-001 using polyethylene glycol (PEG) and potassium phosphate. In the first step, the protein content was precipitated with ammonium sulphate (80% saturation). The enzyme remained in the aqueous solution and was dialyzed against ultra-pure water for 18 h and used to prepare an aqueous two-phase system (PEG/potassium phosphate). The use of different molecular weights of PEG to purify the lipase was investigated; the best purification factor (PF) was obtained using PEG 20,000g/mol, however PEG 8000 was used in the next tests due to lower viscosity. The influence of PEG and potassium phosphate concentrations on the enzyme purification was then studied: the highest FP was obtained with 20% of PEG and 18% of potassium phosphate. NaCl was added to increase the hydrophobicity between the phases, and also increased the purification factor. The pH value and temperature affected the enzyme partitioning, with the best purifying conditions achieved at pH 6.0 and 4°C. The molecular mass of the purified enzyme was determined to be approximately 54 kDa by SDS-PAGE. According to the results the best combination for purifying the enzyme is PEG 8000g/mol and potassium phosphate (20/18%) with 6% of NaCl at pH 6.0 and 4°C (201.53 fold). The partitioning process of lipase is governed by the entropy contribution. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.

    PubMed

    Zakzeski, Joseph; Weckhuysen, Bert M

    2011-03-21

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model compounds and the distribution of products obtained during the lignin aqueous phase reforming revealed that lignin was depolymerized through disruption of the abundant β-O-4 linkages and, to a lesser extent, the 5-5' carbon-carbon linkages to form monomeric aromatic compounds. The alkyl chains contained on these monomeric compounds were readily reformed to produce hydrogen and simple aromatic platform chemicals, particularly guaiacol and syringol, with the distribution of each depending on the lignin source. The methoxy groups present on the aromatic rings were subject to hydrolysis to form methanol, which was also readily reformed to produce hydrogen and carbon dioxide. The composition of the isolated yields of monomeric aromatic compounds and overall lignin conversion based on these isolated yields varied from 10-15% depending on the lignin sample, with the balance consisting of gaseous products and residual solid material. Furthermore, we introduce the use of a high-pressure autoclave with optical windows and an autoclave with ATR-IR sentinel for on-line in situ spectroscopic monitoring of biomass conversion processes, which provides direct insight into, for example, the solubilization process and aqueous phase reforming reaction of lignin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. THE SOLVENT EXTRACTION OF NITROSYLRUTHENIUM BY TRILAURYLAMINE IN NITRATE SYSTEM. Summary Report for the Period, July 1, 1960 to March 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skavdahl, R.E.; Mason, E.A.

    1962-06-01

    An investigation of the solvent extraction characteristics of the nitro and nitrato complexes of nitrosylruthenium in nitric acid- sodium nitrate aqueous media was conducted. As the organic extractant phase, a solution of trilaurylamine (TLA) in toluene was utilized. In addition to the usual process parameter variation tyne of experiment, a rapid dilution type of experiment was used extensively to determine qualitative and semiquantitative results regarding the degree of extractability and concentration of the more extractable species of the nitrato complexes of nitrosylruthenium. It was found that the acids of the tetra-nitrato and pentanitrato complexes were the more extractable species formore » that set of complexes and that the acid of the penta-nitrato complex was the more extractable of the two. It was observed that for freshly prepared solutions, the dinitro complex of nitrosylruthenium was much more extractable than the gross nitrato complexes solutions. Nitro complexes in general, and the dinitro complex in particular, may be the controlling agent in ruthenium decontamination of spent nuclear fuel processed by solvent extraction methods. The experimental results from both sets of complexes could be more meaningfully correlated on the basis of unbound nitric acid concentration in the organic phase than on the basis of nitric acid concentration in the aqueous phase. The extraction of nitric acid by TLA from nitric acid-sodium nitrate aqueous solutions was investigated and the results correlated on the basis of activity of the undissociated nitric acid in the aqueous phase. (auth)« less

  19. Bacterial toxicity assessment of drinking water treatment residue (DWTR) and lake sediment amended with DWTR.

    PubMed

    Yuan, Nannan; Wang, Changhui; Pei, Yuansheng

    2016-11-01

    Drinking water treatment residue (DWTR) seems to be very promising for controlling lake sediment pollution. Logically, acquisition of the potential toxicity of DWTR will be beneficial for its applications. In this study, the toxicity of DWTR and sediments amended with DWTR to Aliivibrio fischeri was evaluated based on the Microtox(®) solid and leachate phase assays, in combination with flow cytometry analyses and the kinetic luminescent bacteria test. The results showed that both solid particles and aqueous/organic extracts of DWTR exhibited no toxicity to the bacterial luminescence and growth. The solid particles of DWTR even promoted bacterial luminescence, possibly because DWTR particles could act as a microbial carrier and provide nutrients for bacteria growth. Bacterial toxicity (either luminescence or growth) was observed from the solid phase and aqueous/organic extracts of sediments with or without DWTR addition. Further analysis showed that the solid phase toxicity was determined to be related mainly to the fixation of bacteria to fine particles and/or organic matter, and all of the observed inhibition resulting from aqueous/organic extracts was identified as non-significant. Moreover, DWTR addition not only had no adverse effect on the aqueous/organic extract toxicity of the sediment but also reduced the solid phase toxicity of the sediment. Overall, in practical application, the solid particles, the water-soluble substances transferred to surface water or the organic substances in DWTR had no toxicity or any delayed effect on bacteria in lakes, and DWTR can therefore be considered as a non-hazardous material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Aqueous Alteration of Basalts: Earth, Moon, and Mars

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.

    2007-01-01

    The geologic processes responsible for aqueous alteration of basaltic materials on Mars are modeled beginning with our knowledge of analog processes on Earth, i.e., characterization of elemental and mineralogical compositions of terrestrial environments where the alteration and weathering pathways related to aqueous activity are better understood. A key ingredient to successful modeling of aqueous processes on Mars is identification of phases that have formed by those processes. The purpose of this paper is to describe what is known about the elemental and mineralogical composition of aqueous alteration products of basaltic materials on Mars and their implications for specific aqueous environments based upon our knowledge of terrestrial systems. Although aqueous alteration has not occurred on the Moon, it is crucial to understand the behaviors of basaltic materials exposed to aqueous environments in support of human exploration to the Moon over the next two decades. Several methods or indices have been used to evaluate the extent of basalt alteration/weathering based upon measurements made at Mars by the Mars Exploration Rover (MER) Moessbauer and Alpha Particle X-Ray Spectrometers. The Mineralogical Alteration Index (MAI) is based upon the percentage of total Fe (Fe(sub T)) present as Fe(3+) in alteration products (Morris et al., 2006). A second method is the evaluation of compositional trends to determine the extent to which elements have been removed from the host rock and the likely formation of secondary phases (Nesbitt and Young, 1992; Ming et al., 2007). Most of the basalts that have been altered by aqueous processes at the two MER landing sites in Gusev crater and on Meridiani Planum have not undergone extensive leaching in an open hydrolytic system with the exception of an outcrop in the Columbia Hills. The extent of aqueous alteration however ranges from relatively unaltered to pervasively altered materials. Several experimental studies have focused upon the aqueous alteration of lunar materials and simulants (e.g., Keller and Huang, 1971; Eick et al., 1996). Lunar basalts are void of water and highly reduced, hence, these materials are initially very reactive when exposed to water under oxidizing conditions.

  1. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and dechlorination kinetics were reflected in a transient, spatially heterogeneous bioavailability number and dissolution enhancement. In agreement with the literature, source zone architecture largely determined the impact of mass transfer on potential dissolution enhancement, with bioavailability decreasing the most at high ganglia to pool ratios. The results of this study suggest that if mass transfer rate limitations are not considered in designing bioremediation applications at DNAPL source zones, the enhancement of DNAPL depletion and the overall effectiveness of enhanced bioremediation may be significantly overestimated.

  2. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis.

    PubMed

    Rajendran, Vivek; Puvendran, Kirubhakaran; Guru, Bharath Raja; Jayaraman, Guhan

    2016-02-01

    Hyaluronic acid has a wide range of biomedical applications and its commercial value is highly dependent on its purity and molecular weight. This study highlights the utility of aqueous two-phase separation as a primary recovery step for hyaluronic acid and for removal of major protein impurities from fermentation broths. Metabolically engineered cultures of a lactate dehydrogenase mutant strain of Lactococcus lactis (L. lactis NZ9020) were used to produce high-molecular-weight hyaluronic acid. The cell-free fermentation broth was partially purified using a polyethylene glycol/potassium phosphate system, resulting in nearly 100% recovery of hyaluronic acid in the salt-rich bottom phase in all the aqueous two-phase separation experiments. These experiments were optimized for maximum removal of protein impurities in the polyethylene glycol rich top phase. The removal of protein impurities resulted in substantial reduction of membrane fouling in the subsequent diafiltration process, carried out with a 300 kDa polyether sulfone membrane. This step resulted in considerable purification of hyaluronic acid, without any loss in recovery and molecular weight. Diafiltration was followed by an adsorption step to remove minor impurities and achieve nearly 100% purity. The final hyaluronic acid product was characterized by Fourier-transform IR and NMR spectroscopy, confirming its purity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Optimization of Ultrasonic-Assisted Aqueous Two-Phase Extraction of Phloridzin from Malus Micromalus Makino with Ethanol/Ammonia Sulfate System.

    PubMed

    Zhang, Zhen; Liu, Fang; He, Caian; Yu, Yueli; Wang, Min

    2017-12-01

    Application of an aqueous two-phase system (ATPS) coupled with ultrasonic technology for the extraction of phloridzin from Malus micromalus Makino was evaluated and optimized by response surface methodology (RSM). The ethanol/ammonium sulfate ATPS was selected for detailed investigation, including the phase diagram, effect of phase composition and extract conditions on the partition of phloridzin, and the recycling of ammonium sulfate. In addition, the evaluation of extraction efficiency and the identification of phloridzin were investigated. The optimal partition coefficient (6.55) and recovery (92.86%) of phloridzin were obtained in a system composed of 35% ethanol (w/w) and 16% (NH 4 ) 2 SO 4 (w/w), 51:1 liquid-to-solid ratio, and extraction temperature of 36 °C. Comparing with the traditional solvent extraction with respective 35% and 80% ethanol, ultrasonic-assisted aqueous two-phase extraction (UAATPE) strategy had significant advantages with lower ethanol consumption, less impurity of sugar and protein, and higher extracting efficiency of phloridzin. Our result indicated that UAATPE was a valuable method for the extraction and preliminary purification of phloridzin from the fruit of Malus micromalus Makino, which has great potential in the deep processing of Malus micromalus Makino industry to increase these fruits' additional value and drive the local economic development. © 2017 Institute of Food Technologists®.

  4. Molecularly imprinted polymer/cryogel composites for solid-phase extraction of bisphenol A from river water and wine.

    PubMed

    Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Giraudi, Gianfranco

    2010-05-01

    Superporous monolithic hydrogels (cryogel monoliths) are elastic, sponge-like materials that can be prepared in an aqueous medium through a cryotropic gelation technique. These monoliths show interesting properties for the development of high-throughput solid-phase extraction supports to treat large volumes of aqueous samples. In this work, a cryogel-supported molecularly imprinted solid-phase extraction approach for the endocrine disruptor bisphenol A (BPA) from river water and wine samples is presented. An imprinted polymer with molecular recognition properties for BPA was prepared in acetonitrile by thermal polymerization of a mixture of 4,4'-dihydroxy-2,2-diphenyl-1,1,1,3,3,3-trifluoropropane as a mimic template of BPA, 4-vinylpyridine and trimethylolpropane trimethacrylate in a molar ratio of 1 + 6 + 6. Fine imprinted particles (<10 microm) were embedded in a poly-acrylamide-co-N,N'-methylenbisacrylamide cryogel obtained by ammonium persulfate-induced cryopolymerization at -18 degrees C. The resulting monolithic gel was evaluated for its use as a sorbent support in an off-line solid-phase extraction approach to recover BPA from dilute aqueous samples with minimum pre-loading work-up. The optimized extraction protocol resulted in a reliable MISPE method suitable to selectively extract and preconcentrate BPA from river water and red wine samples, demonstrating the practical feasibility of cryogel-trapped imprinted polymers as solid-phase extraction materials.

  5. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  6. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    PubMed

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  7. Microbubble Fabrication of Concave-porosity PDMS Beads

    PubMed Central

    Bertram, John R.; Nee, Matthew J.

    2015-01-01

    Microbubble fabrication (by use of a fine emulsion) provides a means of increasing the surface-area-to-volume (SAV) ratio of polymer materials, which is particularly useful for separations applications. Porous polydimethylsiloxane (PDMS) beads can be produced by heat-curing such an emulsion, allowing the interface between the aqueous and aliphatic phases to mold the morphology of the polymer. In the procedures described here, both polymer and crosslinker (triethoxysilane) are sonicated together in a cold-bath sonicator. Following a period of cross-linking, emulsions are added dropwise to a hot surfactant solution, allowing the aqueous phase of the emulsion to separate, and forming porous polymer beads. We demonstrate that this method can be tuned, and the SAV ratio optimized, by adjusting the electrolyte content of the aqueous phase in the emulsion. Beads produced in this way are imaged with scanning electron microscopy, and representative SAV ratios are determined using Brunauer–Emmett–Teller (BET) analysis. Considerable variability with the electrolyte identity is observed, but the general trend is consistent: there is a maximum in SAV obtained at a specific concentration, after which porosity decreases markedly. PMID:26709997

  8. Droplet formation at the non-equilibrium water/water (w/w) interface

    NASA Astrophysics Data System (ADS)

    Chao, Youchuang; Mak, Sze Yi; Kong, Tiantian; Ding, Zijing; Shum, Ho Cheung

    2017-11-01

    The interfacial instability at liquid-liquid interfaces has been intensively studied in recent years due to their important role in nature and technology. Among them, two classic instabilities are Rayleigh-Taylor (RT) and double diffusive (DD) instabilities, which are practically relevant to many industrial processes, such as geologic CO2 sequestration. Most experimental and theoretical works have focused on RT or DD instability in binary systems. However, the study of such instability in complex systems, such as non-equilibrium ternary systems that involves mass-transfer-induced phase separation, has received less attention. Here, by using a ternary system known as the aqueous two-phase system (ATPS), we investigate experimentally the behavior of non-equilibrium water/water (w/w) interfaces in a vertically orientated Hele-Shaw cell. We observe that an array of fingers emerge at the w/w interface, and then break into droplets. We explore the instability using different concentrations of two aqueous phases. Our experimental findings are expected to inspire the mass production of all-aqueous emulsions in a simple setup.

  9. Physical and chemical interactions at the interface between atmospheric pressure plasmas and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Byrns, Brandon; Knappe, Detlef; Graves, David; Shannon, Steven

    2014-10-01

    Transport and reactions of charged species, neutrals, and photons at the interface between plasmas and liquids must be better quantified. The work presented here combines theoretical and experimental investigations of conditions in the gas and liquid phases in proximity to the interface for various discharges. OES is used to determine rotational and vibrational temperatures of OH, NO, and N2+; the relationship between these temperatures that characterize the distribution of internal energy states and gas and electron kinetic temperatures is considered. The deviation of OH rotational states from equilibrium under high humidity conditions is also presented. In contradiction with findings of other groups, high energy rotational states appear to become underpopulated with increasing humidity. In the aqueous phase, concentrations of longer-lived species such as nitrate, nitrite, hydrogen peroxide, and ozone are determined using ion chromatography and colorimetric methods. Spin-traps and electron paramagnetic resonance (EPR) are investigated for characterization of short-lived aqueous radicals like OH, O2-, NO, and ONOO-. Finally, experimental results are compared to a numerical model which couples transport and reactions within and between the bulk gas and liquid phases.

  10. Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO2 catalysts: Role of Pt and product distribution

    NASA Astrophysics Data System (ADS)

    Li, Fuying; Gu, Quan; Niu, Yu; Wang, Renzhang; Tong, Yuecong; Zhu, Shuying; Zhang, Hualei; Zhang, Zizhong; Wang, Xuxu

    2017-01-01

    Pt nanoparticles were loaded on anatase TiO2 by the photodeposition method to investigate their photocatalytic activity for H2 evolution in an aqueous solution containing a certain amount of ethylene glycol (EG) as the sacrificial agent. The surface properties and chemical states of the Pt/TiO2 sample were characterized by X-ray powder diffraction analysis, Brunauer-Emmett-Teller surface area analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and electrochemical resistance. The aqueous-phase photocatalytic EG reforming using Pt/TiO2 and anatase TiO2 generated not only H2 and CO2, but also CO, CH4, C2H6, and C2H4. Moreover, the amount of formate and acetate complexes in the solution increased gradually. The EG adsorption and gas-phase intermediates during photocatalytic reaction processes were investigated by the in situ FTIR spectrum. Finally, the photocatalytic EG reforming reaction mechanism was elucidated. This helped to better understand the role of a sacrificial agent in a photocatalytic hydrogen production.

  11. Effect of Pluronic F-127 on the photosensitizing activity of tetraphenylporphyrins in organic and aqueous phases

    NASA Astrophysics Data System (ADS)

    Savko, M. A.; Aksenova, N. A.; Akishina, A. K.; Khasanova, O. V.; Glagolev, N. N.; Rumyantseva, V. D.; Zhdanova, K. A.; Spokoinyi, A. L.; Solov'eva, A. B.

    2017-11-01

    The solubilization of hydrophobic porphyrin photosensitizers (PPSes) to obtain corresponding water-soluble forms is an important line of modern antimicrobial photodynamic therapy. It is shown that a triblock copolymer of ethylene and propylene oxides, Pluronic F-127, one of the most nontoxic and effective polymer surface active substances (SASes), can be used for the conversion of hydrophobic tetraphenylporphyrin (TPP) and monosubstituted and tetrasubstituted hydroxy, amino, and nitro TPPs into water-soluble forms. It is found that Pluronic has a substantially higher solubilizing affinity (defined as the minimum molar concentration of an SAS required for the complete migration of porphyrin with a specific molar concentration to the aqueous phase) toward monosubstituted TPPs than to corresponding tetrasubstituted porphyrins. It is shown that with Pluronic in the organic phase, the activity of tetraphenylporphyrin in a test reaction of the oxidation of anthracene is higher than that of its monosubstituted and tetrasubstituted derivatives. In an aqueous medium, the activity of solubilized mono derivatives of TPP is comparable to that of unsubstituted TPP and is higher than the activity of the corresponding tetra derivatives of TPP.

  12. A propofol microemulsion with low free propofol in the aqueous phase: formulation, physicochemical characterization, stability and pharmacokinetics.

    PubMed

    Cai, WeiHui; Deng, WanDing; Yang, HuiHui; Chen, XiaoPing; Jin, Fang

    2012-10-15

    The purpose of this study was to develop a propofol microemulsion with a low concentration of free propofol in the aqueous phase. Propofol microemulsions were prepared based on single-factor experiments and orthogonal design. The optimal microemulsion was evaluated for pH, osmolarity, particle size, zeta potential, morphology, free propofol in the aqueous phase, stability, and pharmacokinetics in beagle dogs, and comparisons made with the commercial emulsion, Diprivan(®). The pH and osmolarity of the microemulsion were similar to those of Diprivan(®). The average particle size was 22.6±0.2 nm, and TEM imaging indicated that the microemulsion particles were spherical in appearance. The concentration of free propofol in the microemulsion was 21.3% lower than that of Diprivan(®). Storage stability tests suggested that the microemulsion was stable long-term under room temperature conditions. The pharmacokinetic profile for the microemulsion showed rapid distribution and elimination compared to Diprivan(®). We conclude that the prepared microemulsion may be clinically useful as a potential carrier for propofol delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Purification of pectinase from mango (Mangifera indica L. cv. Chokanan) waste using an aqueous organic phase system: a potential low cost source of the enzyme.

    PubMed

    Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi

    2013-07-15

    As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Molecular dynamics simulations of aqueous solutions of ethanolamines.

    PubMed

    López-Rendón, Roberto; Mora, Marco A; Alejandre, José; Tuckerman, Mark E

    2006-08-03

    We report on molecular dynamics simulations performed at constant temperature and pressure to study ethanolamines as pure components and in aqueous solutions. A new geometric integration algorithm that preserves the correct phase space volume is employed to study molecules having up to three ethanol chains. The most stable geometry, rotational barriers, and atomic charges were obtained by ab initio calculations in the gas phase. The calculated dipole moments agree well with available experimental data. The most stable conformation, due to intramolecular hydrogen bonding interactions, has a ringlike structure in one of the ethanol chains, leading to high molecular stability. All molecular dynamics simulations were performed in the liquid phase. The interaction parameters are the same for the atoms in the ethanol chains, reducing the number of variables in the potential model. Intermolecular hydrogen bonding is also analyzed, and it is shown that water associates at low water mole fractions. The force field reproduced (within 1%) the experimental liquid densities at different temperatures of pure components and aqueous solutions at 313 K. The excess and partial molar volumes are analyzed as a function of ethanolamine concentration.

  15. Detection of aqueous phase chemical warfare agent degradation products by negative mode ion mobility time-of-flight mass spectrometry [IM(tof)MS].

    PubMed

    Steiner, Wes E; Harden, Charles S; Hong, Feng; Klopsch, Steve J; Hill, Herbert H; McHugh, Vincent M

    2006-02-01

    The use of negative ion monitoring mode with an atmospheric pressure ion mobility orthogonal reflector time-of-flight mass spectrometer [IM(tof)MS] to detect chemical warfare agent (CWA) degradation products from aqueous phase samples has been determined. Aqueous phase sampling used a traditional electrospray ionization (ESI) source for sample introduction and ionization. Certified reference materials (CRM) of CWA degradation products for the detection of Schedule 1, 2, or 3 toxic chemicals or their precursors as defined by the chemical warfare convention (CWC) treaty verification were used in this study. A mixture of six G-series nerve related CWA degradation products (EMPA, IMPA, EHEP, IHEP, CHMPA, and PMPA) and their related collision induced dissociation (CID) fragment ions (MPA and EPA) were found in each case to be clearly resolved and detected using the IM(tof)MS instrument in negative ion monitoring mode. Corresponding ions, masses, drift times, K(o) values, and signal intensities for each of the CWA degradation products are reported.

  16. A comparison of the y-Radiolysis of TODGA and T(EH)DGA using UHPLC-ESI-MS analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzana, Christopher A.; Groenewold, Gary S.; Mincher, Bruce J.

    2015-04-27

    Solutions of the diglycolamide extractants TODGA and T(EH)DGA in n-dodecane were subjected to γ- irradiation in the presence and absence of an acidic aqueous phase. These solutions were then analyzed using UHPLC-ESI-MS to determine the rates of radiolytic decay of the two extractants neat and in contact with respect to the acidity of the contacted aqueous phase, as well as to identify radiolysis products. The presence or absence of an acidic aqueous phase was shown to have no influence on the measured decay rates, nor did the side-chain have an influence. A number of radiolysis products were identified, consistent with thosemore » previously identified for these two compounds using GC-MS. The identity of these radiolysis products suggests that the bonds most vulnerable to radiolytic attack are those in the dyglycolamide center of these molecules, and not on the side-chains.  The agreement of these results with previous work using GC-MS indicates supports the further use of UHPLC-ESI-MS as a tool for studying diglycolamide extractant systems.« less

  17. Aqueous solubility calculation for petroleum mixtures in soil using comprehensive two-dimensional gas chromatography analysis data.

    PubMed

    Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo

    2009-04-03

    An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.

  18. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    EPA Science Inventory

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used t...

  19. Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneouos saccharification and fermentation (TPSSF)

    USDA-ARS?s Scientific Manuscript database

    An integrated bioconversion process was developed to convert corn-stover derived pentose and hexose to ethanol effectively. In this study, corn stover was pretreated by soaking in aqueous ammonia (SAA), which resulted in high retention of glucan (~100%) and xylan (>80%) in the solids. The pretreated...

  20. AQUEOUS AND VAPOR PHASE MERCURY SORPTION BY INORGANIC OXIDE MATERIALS FUNCTIONALIZED WITH THIOLS AND POLY-THIOLS

    EPA Science Inventory

    The objective of the study is the development of sorbents where the sorption sites are highly accessible for the capture of mercury from aqueous and vapor streams. Only a small fraction of the equilibrium capacity is utilized for a sorbent in applications involving short residenc...

Top