Ischemia causes muscle fatigue
NASA Technical Reports Server (NTRS)
Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.
2001-01-01
The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.
Hara, Kenju; Watanabe, Osamu; Shibano, Ken; Ishiguro, Hideaki
2012-01-01
A 21-year-old man complained of severe pain and muscle twitching localized in his right arm. Neurological examination showed muscle fasciculations in his right forearm but no myokymia or myotonia. Needle electromyography revealed fibrillation potentials in his biceps brachii muscle and extensor carpi radialis muscle at rest but no myokymic discharges. His serum anti-voltage-gated potassium channel (VGKC)-complex antibody level was significantly high (194.2pM; controls <100pM). Although anticonvulsant therapy relieved his pain, he was readmitted to our hospital because of severe pain in his left arm and both thighs three months later. A high-dose intravenous immunoglobulin (IVIG) therapy followed by steroid pulse therapy relieved his pain. This case with neither muscle cramp nor myokymia expands the phenotype of anti VGKC-complex antibody associated disorder.
... and twitching in your arms, shoulders and tongue Difficulty holding your head up or keeping good posture ALS often starts in the hands, feet or limbs, and then spreads to other parts of your body. As the disease advances and nerve cells are destroyed, your muscles progressively ...
Schroegendorfer, Klaus F; Hacker, Stefan; Nickl, Stefanie; Vierhapper, Martin; Nedomansky, Jakob; Haslik, Werner
2014-12-01
The latissimus dorsi muscle flap represents a valuable option in breast reconstruction but can result in postoperative twitching and retraction, discomfort, arm movement limitations, and breast deformation. These complications can be avoided by denervation of the thoracodorsal nerve; however, the optimal method of nerve management is unknown. This study presents the authors' experience with the outcomes of latissimus dorsi flaps for breast reconstruction in the light of thoracodorsal nerve management strategies. The authors retrospectively collected data from 74 patients who underwent partial or total breast reconstruction with a latissimus dorsi flap alone or with an implant between January of 1999 and October of 2011. Follow-up data were collected at 12 and 24 months postoperatively. In 56 patients (75.7 percent), the latissimus dorsi muscle was denervated at the time of surgery, whereas the thoracodorsal nerve remained intact in 18 patients (24.3 percent). No partial or total flap loss was observed. At 12 and 24 months' follow-up, all patients with an intact thoracodorsal nerve showed twitching of the muscle, and 50 percent and 67.9 percent, respectively, of the denervated patients showed twitching (p < 0.001). No patient had twitching if more than 4 cm of nerve was excised at 12 or 24 months postoperatively, and the length of nerve resection was predictive of the presence of twitching. Denervation of the latissimus dorsi is a safe and reliable procedure that should be performed at the time of breast reconstruction and should include more than 4 cm to achieve a nontwitching breast with a stable volume and shape.
TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, randomised controlled trial
Ware, Russell E.; Davis, Barry R.; Schultz, William H.; Brown, R. Clark; Aygun, Banu; Sarnaik, Sharada; Odame, Isaac; Fuh, Beng; George, Alex; Owen, William; Luchtman-Jones, Lori; Rogers, Zora R.; Hilliard, Lee; Gauger, Cynthia; Piccone, Connie; Lee, Margaret T.; Kwiatkowski, Janet L.; Jackson, Sherron; Miller, Scott T.; Roberts, Carla; Heeney, Matthew M.; Kalfa, Theodosia A.; Nelson, Stephen; Imran, Hamayun; Nottage, Kerri; Alvarez, Ofelia; Rhodes, Melissa; Thompson, Alexis A.; Rothman, Jennifer A.; Helton, Kathleen J.; Roberts, Donna; Coleman, Jamie; Bonner, Melanie J.; Kutlar, Abdullah; Patel, Niren; Wood, John; Piller, Linda; Wei, Peng; Luden, Judy; Mortier, Nicole A.; Stuber, Susan E.; Luban, Naomi L. C.; Cohen, Alan R.; Pressel, Sara; Adams, Robert J.
2017-01-01
Background For children with sickle cell anaemia and elevated transcranial Doppler (TCD) flow velocities, regular blood transfusions effectively prevent primary stroke, but must be continued indefinitely. The efficacy of hydroxyurea in this setting is unknown. Methods TWiTCH was a multicentre Phase III randomised open label, non-inferiority trial comparing standard treatment (transfusions) to alternative treatment (hydroxyurea) in children with abnormal TCD velocities but no severe vasculopathy. Iron overload was managed with chelation (Standard Arm) and serial phlebotomy (Alternative Arm). The primary study endpoint was the 24-month TCD velocity calculated from a general linear mixed model, with non-inferiority margin = 15 cm/sec. Findings Among 121 randomised participants (61 transfusions, 60 hydroxyurea), children on transfusions maintained <30% sickle haemoglobin, while those taking hydroxyurea (mean 27 mg/kg/day) averaged 25% fetal haemoglobin. The first scheduled interim analysis demonstrated non-inferiority, and the sponsor terminated the study. Final model-based TCD velocities (mean ± standard error) on Standard versus Alternative Arm were 143 ± 1.6 and 138 ± 1.6 cm/sec, respectively, with difference (95% CI) = 4.54 (0.10, 8.98), non-inferiority p=8.82 × 10−16 and post-hoc superiority p=0.023. Among 29 new neurological events adjudicated centrally by masked reviewers, no strokes occurred but there were 3 transient ischaemic attacks per arm. Exit brain MRI/MRA revealed no new cerebral infarcts in either arm, but worse vasculopathy in one participant (Standard Arm). Iron burden decreased more in the Alternative Arm, with ferritin difference −1047 ng/mL (−1524, −570), p<0.001 and liver iron difference −4.3 mg Fe/gm dry weight (−6.1, −2.5), p=0.001. Interpretation For high-risk children with sickle cell anaemia and abnormal TCD velocities, after four years of transfusions and without severe MRA vasculopathy, hydroxyurea therapy can substitute for chronic transfusions to maintain TCD velocities and help prevent primary stroke. PMID:26670617
Dulhunty, A F; Gage, P W; Valois, A A
1981-12-23
There are fewer indentations on the flat surfaces of terminal cisternae in soleus (slow-twitch) than in extensor digitorum longus (EDL, fast-twitch) muscle fibres of rats. Following mid-thoracic spinal cord transection, there is an increase in the number of indentations in soleus fibres but no change in EDL fibres. The increase in the numbers of indentations after spinal cord transections is correlated with changes in the contractile and charge movement properties of the soleus fibres so that they resemble normal EDL fibres. The indentations appear to have an important role in excitation-contraction coupling.
Zhang, L; Butler, J; Nishida, T; Nuber, G; Huang, H; Rymer, W Z
1998-10-01
The direction of rotation (DOR) of individual elbow muscles, defined as the direction in which a muscle rotates the forearm relative to the upper arm in three-dimensional space, was studied in vivo as a function of elbow flexion and forearm rotation. Electrical stimulation was used to activate an individual muscle selectively, and the resultant flexion-extension, supination-pronation, and varus-valgus moments were used to determine the DOR. Furthermore, multi-axis moment-angle relationships of individual muscles were determined by stimulating the muscle at a constant submaximal level across different joint positions, which was assumed to result in a constant level of muscle activation. The muscles generate significant moments about axes other than flexion-extension, which is potentially important for actively controlling joint movement and maintaining stability about all axes. Both the muscle DOR and the multi axis moments vary with the joint position systematically. Variations of the DOR and moment-angle relationship across muscle twitches of different amplitudes in a subject were small, while there were considerable variations between subjects.
Watson, Sheri; Aguas, Marita; Bienapfl, Tracy; Colegrove, Pat; Foisy, Nancy; Jondahl, Bonnie; Yosses, Mary Beth; Yu, Larissa; Anastas, Zoe
2011-06-01
The purpose of this study was to determine if blood pressure (BP) measured in the forearm or with an extra-long BP cuff in the upper arm accurately reflects BP measured in the upper arm with an appropriately sized BP cuff in patients with large upper arm circumference. A method-comparison design was used with a convenience sample of 49 PACU patients. Noninvasive blood pressures were obtained in two different locations (forearm; upper arm) and in the upper arm with an extra-long adult and recommended large adult cuff sizes. Data were analyzed by calculating bias and precision for the BP cuff size and location and Student's t-tests, with P < .0125 considered significant. Significantly higher forearm systolic (P < .0001) and diastolic (P < .0002) BP measurements were found compared to BP obtained in the upper arm with the reference standard BP cuff. Significantly higher systolic (t(48df) = 5.38, P < .0001), but not diastolic (t(48df) = 4.11, P < .019), BP differences were found for BP measured with the extra-long cuff at the upper arm site compared to the upper arm, reference standard BP. Findings suggest that the clinical practice of using the forearm or an extra-long cuff in the upper arm for BP measurement in post anesthesia patients with large upper arm circumferences may result in inaccurate BP values. Copyright © 2011 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
Flanders, Kelsey; Feldner, Heather
2017-10-01
Whiplash Associated Disorders and the interventions used to remediate them are well documented in physical therapy literature. However, specific interventions for spasms of the neck musculature that also involve constant ear twitching have yet to be addressed. The purpose of this case report is twofold. First, to describe comprehensive physical therapy management and outcomes for a subject with uncontrolled ear twitching and related musculoskeletal impairments, and second, to discuss the physical therapist's approach to evidence-based care when faced with a paucity of literature addressing physical therapy interventions for subjects with uncontrolled ear twitching. The subject was a 14-year-old female who sustained a right anterolateral whiplash injury when struck in the head by a volleyball seven months prior to physical therapy. Beginning five months after that injury, she experienced uncontrolled and constant superior/inferior movement of her right ear (hereafter described in this report as a twitch) in addition to facial and cervical pain from her initial injury. She was unable to participate in high school athletics due to her pain. A multimodal treatment approach including exercise, manual therapy, and postural reeducation was utilized during the subject's episode of care. After eight treatment sessions, the subjects's cervical range of motion and upper extremity strength improved. The reported frequency of ear twitching decreased, as did reports of neck and shoulder pain. In addition, her Neck Disability Index improved from a score of 22, indicating moderate disability, to 9, indicating mild disability and she was able to return to sport activity. With limited research to direct intervention, clinical reasoning was utilized to formulate an effective therapeutic intervention. A combination of manual therapy, exercise, and postural reeducation intervention was effective for this subject and could assist in guiding interventions for similarly unique clinical presentations in the future. Further research is needed to examine the etiology of ear twitching caused by muscle spasm and to develop additional evidence-based interventions for Whiplash Associated Disorders. Level 4.
Forearm and upper-arm oscillometric blood pressure comparison in acutely ill adults.
Schell, Kathleen; Morse, Kate; Waterhouse, Julie K
2010-04-01
When patients' upper arms are not accessible and/or when cuffs do not fit large upper arms, the forearm site is often used for blood pressure (BP) measurement. The purpose of this study is to compare forearm and upper-arm BPs in 70 acutely ill adults, admitted to a community hospital's 14-bed ICU. Using Philips oscillometric monitors, three repeated measures of forearm and upper-arm BPs are obtained with head of bed flat and with head of bed elevated at 30 degrees. Arms are resting on the bed. Paired t tests show statistically significant differences in systolic BPs, diastolic BPs, and mean arterial pressures in the supine and head-elevated positions. Bland-Altman analyses indicate that forearm and upper-arm oscillometric BPs are not interchangeable in acutely ill adults.
Comparison of forearm and upper arm blood pressures.
Singer, A J; Kahn, S R; Thode, H C; Hollander, J E
1999-01-01
In the prehospital setting it is not always feasible to obtain blood pressure (BP) readings from the upper arm. This study was performed to compare BPs obtained from subjects' forearms and upper arms in order to assess the utility of forearm BP as a surrogate for standard BP. The authors performed a prospective, cross-sectional, convenience study in a sample of ambulatory university ED patients, where each subject had sequential determinations of left upper arm and forearm BPs with an automated monitor at ED triage. The order of measurement was determined by the day of the week. Demographic and clinical data were also recorded. The main outcome measure was the correlation between upper arm and forearm systolic and diastolic BPs. Pearson's correlation coefficient and Student's t-test were used to analyze the data. 151 patients were enrolled. The mean age was 35.3+/-15.7 years; 40% were female and 78% were white. The mean forearm and upper arm systolic BPs were 129.8+/-20.7 mm Hg and 126.2+/-17.6 mm Hg (p = 0.002). The mean forearm and upper arm diastolic BPs were 80.7+/-14.5 mm Hg and 76.8+/-13.4 mm Hg (p<0.001). The correlations between forearm and upper arm systolic and diastolic BPs were 0.75 (p<0.001) and 0.72 (p<0.001). The differences between forearm and upper arm systolic and diastolic BPs were within 20 mm Hg in 86% and 94% of patients, respectively. Forearm BP is a fairly good predictor of standard upper arm BP in most patients. Forearm BP may be used when measurement of upper arm BP is not feasible.
Doshi, Hardik; Weder, Alan B; Bard, Robert L; Brook, Robert D
2010-02-01
Arm size can affect the accuracy of blood pressure (BP) measurement, and "undercuffing" of large upper arms is likely to be a growing problem. Therefore, the authors investigated the relationship between upper arm and wrist readings. Upper arm and wrist circumferences and BP were measured in 261 consecutive patients. Upper arm auscultation and wrist BP was measured in triplicate, rotating measurements every 30 seconds between sites. Upper arm BP was 131.9+/-20.6/71.6+/-12.6 mm Hg in an obese population (body mass index, 30.6+/-6.6 kg/m(2)) with mean upper arm size of 30.7+/-5.1 cm. Wrist BP was higher (2.6+/-9.2 mm Hg and 4.9+/-6.6 mm Hg, respectively, P<.001); however, there was moderate concordance for the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7) strata (kappa value=0.27-0.71), and the difference was >or=5 mm Hg in 72% of the patients. The authors conclude that there was poor concordance between arm and wrist BP measurement and found no evidence that "hidden undercuffing" was associated with obesity; therefore, they do not support routine use of wrist BP measurements.
Kisiel-Sajewicz, Katarzyna; Davis, Mellar P; Siemionow, Vlodek; Seyidova-Khoshknabi, Dilara; Wyant, Alexandria; Walsh, Declan; Hou, Juliet; Yue, Guang H
2012-09-01
Fatigue is one of the most common symptoms reported by cancer survivors, and fatigue worsens when patients are engaged in muscle exertion, which results in early motor task failure. Central fatigue plays a significant role, more than muscle (peripheral) fatigue, in contributing to early task failure in cancer-related fatigue (CRF). The purpose of this study was to determine if muscle contractile property alterations (reflecting muscle fatigue) occurred at the end of a low-intensity muscle contraction to exhaustion and if these properties differed between those with CRF and healthy controls. Ten patients (aged 59.9±10.6 years, seven women) with advanced solid cancer and CRF and 12 age- and gender-matched healthy controls (aged 46.6±12.8 years, nine women) performed a sustained contraction of the right arm elbow flexion at 30% maximal level until exhaustion. Peak twitch force, time to peak twitch force, rate of peak twitch force development, and half relaxation time derived from electrical stimulation-evoked twitches were analyzed pre- and post-sustained contraction. CRF patients reported significantly greater fatigue as measured by the Brief Fatigue Inventory and failed the motor task earlier, 340±140 vs. 503±155 seconds in controls. All contractile property parameters did not change significantly in CRF but did change significantly in controls. CRF patients perceive physical exhaustion sooner during a motor fatigue task with minimal muscular fatigue. The observation supports that central fatigue is a more significant factor than peripheral fatigue in causing fatigue feelings and limits motor function in cancer survivors with fatigue symptoms. Copyright © 2012. Published by Elsevier Inc.
Schell, Kathleen; Bradley, Elisabeth; Bucher, Linda; Seckel, Maureen; Lyons, Denise; Wakai, Sandra; Bartell, Deborah; Carson, Elizabeth; Chichester, Melanie; Foraker, Teresa; Simpson, Kathleen
2005-05-01
When the upper arm (area from shoulder to elbow) is inaccessible and/or a standard-sized blood pressure cuff does not fit, some healthcare workers use the forearm to measure blood pressure. To compare automatic noninvasive measurements of blood pressure in the upper arm and forearm. A descriptive, correlational comparison study was conducted in the emergency department of a 1071-bed teaching hospital. Subjects were 204 English-speaking patients 6 to 91 years old in medically stable condition who had entered the department on foot or by wheelchair and who had no exclusions to using their left upper extremity. A Welch Allyn Vital Signs 420 series monitor was used to measure blood pressure in the left upper arm and forearm with the subject seated and the upper arm or forearm at heart level. Pearson r correlation coefficients between measurements in the upper arm and forearm were 0.88 for systolic blood pressure and 0.76 for diastolic blood pressure (P < .001 for both). Mean systolic pressures, but not mean diastolic pressures, in the upper arm and forearm differed significantly (t = 2.07, P = .04). A Bland-Altman analysis indicated that the distances between the mean values and the limits of agreement for the 2 sites ranged from 15 mm Hg (mean arterial pressure) to 18.4 mm Hg (systolic pressure). Despite strict attention to correct cuff size and placement of the upper arm or forearm at heart level, measurements of blood pressure obtained noninvasively in the arm and forearm of seated patients in stable condition are not interchangeable.
Schell, Kathleen; Lyons, Denise; Bradley, Elisabeth; Bucher, Linda; Seckel, Maureen; Wakai, Sandra; Carson, Elizabeth; Waterhouse, Julie; Chichester, Melanie; Bartell, Deborah; Foraker, Theresa; Simpson, E Kathleen
2006-03-01
Noninvasive measurement of blood pressure in the forearm is used when the upper arm is inaccessible and/or when available blood pressure cuffs do not fit a patient's arm. Evidence supporting this practice is limited. To compare noninvasive measurements of blood pressure in the forearm and upper arm of medical-surgical inpatients positioned supine and with the head of the bed raised 45 degrees . Cuff size was selected on the basis of forearm and upper arm circumference and manufacturers' recommendations. With a Welch Allyn Vital Signs 420 Series monitor, blood pressures were measured in the forearm and then in the upper arm of 221 supine patients with their arms resting at their sides. Patients were repositioned with the head of the bed elevated 45 degrees and after 2 minutes, blood pressures were measured in the upper arm and then the forearm. Starting position was alternated on subsequent subjects. Paired t tests revealed significant differences between systolic and diastolic blood pressures measured in the upper arm and forearm with patients supine and with the head of the bed elevated 45 degrees . The Bland-Altman procedure revealed that the distances between the mean values and the limits of agreement were from 15 to 33 mm Hg for individual subjects. Noninvasive measurements of blood pressure in the forearm and upper arm cannot be interchanged in medical-surgical patients who are supine or in patients with the head of the bed elevated 45 degrees .
Curado, Marco Rocha; Cossio, Eliana Garcia; Broetz, Doris; Agostini, Manuel; Cho, Woosang; Brasil, Fabricio Lima; Yilmaz, Oezge; Liberati, Giulia; Lepski, Guilherme
2015-01-01
Background Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. Methods Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. Results Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). Conclusions Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice. PMID:26495971
Curado, Marco Rocha; Cossio, Eliana Garcia; Broetz, Doris; Agostini, Manuel; Cho, Woosang; Brasil, Fabricio Lima; Yilmaz, Oezge; Liberati, Giulia; Lepski, Guilherme; Birbaumer, Niels; Ramos-Murguialday, Ander
2015-01-01
Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies. Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity. Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001). Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.
Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori
2014-01-01
Although the mixed orbicularis oculi muscle lacks the muscle spindles required to induce reflex contraction of its slow-twitch fibers, the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction. We hypothesize that strong stretching of these mechanoreceptors increases reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. We examined a 71-year-old man with right blepharospasm and bilateral aponeurosis-disinserted blepharoptosis to determine whether the patient's blepharospasm was worsened by increased trigeminal proprioceptive evocation via stretching of the mechanoreceptors in Müller's muscle owing to a 60° upward gaze and serrated eyelid closure, and whether local anesthesia of the mechanoreceptors via lidocaine administration to the upper fornix as well as surgical disinsertion of Müller's muscle from the tarsus and fixation of the disinserted aponeurosis to the tarsus decreased trigeminal proprioceptive evocation and improved patient's blepharospasm. Before pharmacological desensitization, 60° upward gaze and serrated eyelid closure exacerbated the patient's blepharospasm. In contrast, these maneuvers did not worsen his blepharospasm following lidocaine administration. One year after surgical desensitization, the blepharospasm had disappeared and a 60° upward gaze did not induce blepharospasm. Strong stretching of the mechanoreceptors in Müller's muscle appeared to increase reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. In addition to botulinum neurotoxin injections into the involuntarily contracted orbicularis oculi muscle and myectomy, surgical desensitization of the mechanoreceptors in Müller's muscle may represent an additional procedure to reduce blepharospasm.
Ban, Ryokuya; Ban, Midori
2014-01-01
Objective: Although the mixed orbicularis oculi muscle lacks the muscle spindles required to induce reflex contraction of its slow-twitch fibers, the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction. We hypothesize that strong stretching of these mechanoreceptors increases reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. Methods: We examined a 71-year-old man with right blepharospasm and bilateral aponeurosis-disinserted blepharoptosis to determine whether the patient's blepharospasm was worsened by increased trigeminal proprioceptive evocation via stretching of the mechanoreceptors in Müller's muscle owing to a 60° upward gaze and serrated eyelid closure, and whether local anesthesia of the mechanoreceptors via lidocaine administration to the upper fornix as well as surgical disinsertion of Müller's muscle from the tarsus and fixation of the disinserted aponeurosis to the tarsus decreased trigeminal proprioceptive evocation and improved patient's blepharospasm. Results: Before pharmacological desensitization, 60° upward gaze and serrated eyelid closure exacerbated the patient's blepharospasm. In contrast, these maneuvers did not worsen his blepharospasm following lidocaine administration. One year after surgical desensitization, the blepharospasm had disappeared and a 60° upward gaze did not induce blepharospasm. Conclusions: Strong stretching of the mechanoreceptors in Müller's muscle appeared to increase reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. In addition to botulinum neurotoxin injections into the involuntarily contracted orbicularis oculi muscle and myectomy, surgical desensitization of the mechanoreceptors in Müller's muscle may represent an additional procedure to reduce blepharospasm. PMID:25328566
Superior Patency of Upper Arm Arteriovenous Fistulae in High Risk Patients
Chiulli, Larissa C; Vasilas, Penny; Dardik, Alan
2011-01-01
Background Despite an increased propensity to primary failure in forearm arteriovenous fistulae compared to upper arm fistulae, forearm fistulae remain the preferred primary access type for chronic hemodialysis patients. In a high risk patient population with multiple medical comorbidities associated with requirement for intravenous access we compared the rates of access failure in forearm and upper arm fistulae. Materials and Methods The records of all patients having primary native arteriovenous fistulae placed between 2004 and 2009 at the VA Connecticut Healthcare system were reviewed (n=118). Primary and secondary patency of upper arm and forearm fistulae were evaluated using Kaplan-Meier survival analysis. The effects of medical comorbidities on access patency were analyzed with Cox regression. Results The median time to primary failure of the vascular access was 0.288 years in the forearm group compared to 0.940 years in the upper arm group (p=0.028). Secondary patency was 52% at 4.9 years in upper arm fistulae compared to 52% at 1.1 years in the forearm group (p=0.036). There was no significant effect of patient comorbidities on fistula failure; however, there was a trend toward upper arm surgical site as a protective factor for primary fistula patency (Hazard Ratio=0.573, p=0.076). Conclusions In veterans needing hemodialysis, a high risk population with extensive comorbid factors often requiring intravascular access, upper arm fistulae are not only a viable option for primary vascular access, but are likely to be a superior option to classic forearm fistulae. PMID:21571318
The Contribution of Upper Body Movements to Dynamic Balance Regulation during Challenged Locomotion
Boström, Kim J.; Dirksen, Tim; Zentgraf, Karen; Wagner, Heiko
2018-01-01
Recent studies suggest that in addition to movements between ankle and hip joints, movements of the upper body, in particular of the arms, also significantly contribute to postural control. In line with these suggestions, we analyzed regulatory movements of upper and lower body joints supporting dynamic balance regulation during challenged locomotion. The participants walked over three beams of varying width and under three different verbally conveyed restrictions of arm posture, to control the potential influence of arm movements on the performance: The participants walked (1) with their arms stretched out perpendicularly in the frontal plane, (2) spontaneously, i.e., without restrictions to the arm movements, and (3) with their hands on their thighs. After applying an inverse-dynamics analysis to the measured joint kinematics, we investigated the contribution of upper and lower body joints to balance regulation in terms of torque amplitude and variation. On the condition with the hands on the thighs, the contribution of the upper body remains significantly lower than the contribution of the lower body irrespective of beam widths. For spontaneous arm movements and for outstretched arms we find that the upper body (including the arms) contributes to the balancing to a similar extent as the lower body. Moreover, when the task becomes more difficult, i.e., for narrower beam widths, the contribution of the upper body increases, while the contribution of the lower body remains nearly constant. These findings lend further support to the hypothetical existence of an “upper body strategy” complementing the ankle and hip strategies especially during challenging dynamic balance tasks. PMID:29434544
The effect of arm weight support on upper limb muscle synergies during reaching movements
2014-01-01
Background Compensating for the effect of gravity by providing arm-weight support (WS) is a technique often utilized in the rehabilitation of patients with neurological conditions such as stroke to facilitate the performance of arm movements during therapy. Although it has been shown that, in healthy subjects as well as in stroke survivors, the use of arm WS during the performance of reaching movements leads to a general reduction, as expected, in the level of activation of upper limb muscles, the effects of different levels of WS on the characteristics of the kinematics of motion and of the activity of upper limb muscles have not been thoroughly investigated before. Methods In this study, we systematically assessed the characteristics of the kinematics of motion and of the activity of 14 upper limb muscles in a group of 9 healthy subjects who performed 3-D arm reaching movements while provided with different levels of arm WS. We studied the hand trajectory and the trunk, shoulder, and elbow joint angular displacement trajectories for different levels of arm WS. Besides, we analyzed the amplitude of the surface electromyographic (EMG) data collected from upper limb muscles and investigated patterns of coordination via the analysis of muscle synergies. Results The characteristics of the kinematics of motion varied across WS conditions but did not show distinct trends with the level of arm WS. The level of activation of upper limb muscles generally decreased, as expected, with the increase in arm WS. The same eight muscle synergies were identified in all WS conditions. Their level of activation depended on the provided level of arm WS. Conclusions The analysis of muscle synergies allowed us to identify a modular organization underlying the generation of arm reaching movements that appears to be invariant to the level of arm WS. The results of this study provide a normative dataset for the assessment of the effects of the level of arm WS on muscle synergies in stroke survivors and other patients who could benefit from upper limb rehabilitation with arm WS. PMID:24594139
Dislocated Shoulder: Symptoms and Causes
... arm bone pops out of the cup-shaped socket that's part of your shoulder blade. The shoulder ... your upper arm bone out of your shoulder socket. Partial dislocation — in which your upper arm bone ...
Summary Report: U.S.-UK Integration in Helmand
2016-02-01
Select a caveat Unlimited distribution Summary Report: U.S.-UK Integration in Helmand Alexander Powell , Larry Lewis, Catherine...October 1993. 3 Benjamin Russell, “Special relationship is safe... ’US has no better partner than UK’, says John Kerry,” The Express (London), 9...Robinson, Eugene. “Clinton’s Remarks Cause Upper Lips to Twitch," Washington Post, 19 October 1993. Russell, Benjamin . “Special relationship is safe
Charleer, Sara; Mathieu, Chantal; Nobels, Frank; Gillard, Pieter
2018-06-01
Nowadays, most Belgian patients with type 1 diabetes use flash glucose monitoring (FreeStyle Libre [FSL]; Abbott Diabetes Care, Alameda, California) to check their glucose values, but some patients find the sensor on the upper arm too visible. The aim of the present study was to compare the accuracy and precision of FSL sensors when placed on different sites. A total of 23 adults with type 1 diabetes used three FSL sensors simultaneously for 14 days on the upper arm, abdomen and upper thigh. FSL measurements were compared with capillary blood glucose (BG) measurements obtained with a built-in FSL BG meter. The aggregated mean absolute relative difference was 11.8 ± 12.0%, 18.5 ± 18.4% and 12.3 ± 13.8% for the arm, abdomen (P = .002 vs arm) and thigh (P = .5 vs arm), respectively. Results of Clarke error grid analysis for the arm and thigh were similar (zone A: 84.9% vs 84.5%; P = .6), while less accuracy was seen for the abdomen (zone A: 69.4%; P = .01). Apart from the first day, the accuracy of FSL sensors on the arm and thigh was more stable across the 14-day wear duration than accuracy of sensors on the abdomen, which deteriorated mainly during week 2 (P < .0005). The aggregated precision absolute relative difference was markedly lower for the arm/thigh (10.9 ± 11.9%) compared with the arm/abdomen (20.9 ± 22.8%; P = .002). Our results indicate that the accuracy and precision of FSL sensors placed on the upper thigh are similar to the upper arm, whereas the abdomen performed unacceptably poorly. © 2018 John Wiley & Sons Ltd.
Rukhadze, I; Kamani, H; Kubin, L
2011-12-01
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.
Shiono, Masatoshi; Takahashi, Shin; Kakudo, Yuichi; Takahashi, Masanobu; Shimodaira, Hideki; Kato, Shunsuke; Ishioka, Chikashi
2014-01-01
Background The requirement of central venous (CV) port implantation is increasing with the increase in the number of cancer patients and advancement in chemotherapy. In our division, medical oncologists have implanted all CV ports to save time and consultation costs to other departments. Recently, upper arm implantation has become the first choice as a safe and comfortable method in our unit. Here we report our experience and discuss the procedure and its potential advantages. Methods All CV port implantations (n = 599) performed in our unit from January 2006 to December 2011 were analyzed. Procedural success and complication rates between subclavian and upper arm groups were compared. Results Both groups had similar patient characteristics. Upper arm CV port and subclavian implantations were equivalently successful and safe. Although we only retrospectively analyzed data from a single center, the upper arm group had a significantly lower overall postprocedural complication rate than the subclavian group. No pneumothorax risk, less risk of arterial puncture by ultrasound, feasibility of stopping potential arterial bleeding, and prevention of accidental arterial cannulation by targeting the characteristic solitary basilic vein were the identified advantages of upper arm CV port implantation. In addition to the aforementioned advantages, there is no risk of “pinch-off syndrome,” possibly less patient fear of manipulation, no scars on the neck and chest, easier accessibility, and compatibility with the “peripherally inserted central catheter” technique. Conclusions Upper arm implantation may benefit clinicians and patients with respect to safety and comfort. We also introduce our methods for upper arm CV port implantation with the videos. PMID:24614412
Furniture dimensions and postural overload for schoolchildren's head, upper back and upper limbs.
Batistão, Mariana Vieira; Sentanin, Anna Cláudia; Moriguchi, Cristiane Shinohara; Hansson, Gert-Åke; Coury, Helenice Jane Cote Gil; de Oliveira Sato, Tatiana
2012-01-01
The aim of this study was to evaluate how the fixed furniture dimensions match with students' anthropometry and to describe head, upper back and upper limbs postures and movements. Evaluation was performed in 48 students from a Brazilian state school. Furniture dimensions were measured with metric tape, movements and postures by inclinometers (Logger Tecknologi, Åkarp, Sweden). Seat height was high for 21% and low for 36% of the students; seat length was short for 45% and long for 9% and table height was high for 53% and low for 28%. Regression analysis showed that seat/popliteal height quotient is explained by 90th percentile of upper back inclination (β=0.410) and 90th percentile of right upper arm elevation (β=-0.293). For seat/thigh length quotient the significant variables were 90th percentile of upper back velocity (β=-0.282) and 90th percentile of right upper arm elevation (β=0.410). This study showed a relationship between furniture mismatch and postural overload. When the seat height is low students increase upper back left inclination and right upper arm elevation; when the seat is short students decrease the upper back flexion velocity and increase right upper arm elevation.
Watson, Sheri; Aguas, Marita; Colegrove, Pat; Foisy, Nancy; Jondahl, Bonnie; Anastas, Zoe
2017-02-01
The purpose of the study was to determine if forearm blood pressures (BPs) measured in three different locations agree with the recommended upper arm location for noninvasive BP measurement. A method-comparison design was used. In a convenience sample of postanesthesia care unit patients with large upper arm circumference, BP's were obtained in three different forearm locations (lower forearm, middle forearm, and upper forearm) and compared to upper arm BP using an automated BP measuring device. The level of agreement (bias ± precision) between each forearm location and the upper arm BP was calculated using standard formulas. Acceptable levels of agreement based on expert opinion were set a priori at bias and precision values of less than ±5 mm Hg (bias) and ±8 mm Hg (precision). Forty-eight postanesthesia patients participated in the study. Bias and precision values were found to exceed the acceptable level of agreement for all but one of the systolic and diastolic BP comparisons in the three forearm BP locations. Fifty-six percent of all patients studied had one or more BP difference of at least 10 mm Hg in each of the three forearm locations, with 10% having one or more differences of at least 20 mm Hg. The differences in forearm BP measurements observed in this study indicate that the clinical practice of using a forearm BP with a regular-sized BP cuff in place of a larger sized BP cuff placed on the upper arm in postanesthesia care unit patients with large arm circumferences is inappropriate. The BPs obtained at the forearm location are not equivalent to the BPs obtained at the upper arm location. Copyright © 2015 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
Wijdenes, Paula; Brouwers, Michael; van der Sluis, Corry K
2018-02-01
In order to create more uniformity in the prescription of upper limb prostheses by Dutch rehabilitation teams, the development and implementation of a Prosthesis Prescription Protocol of the upper limb (PPP-Arm) was initiated. The aim was to create a national digital protocol to structure, underpin, and evaluate the prescription of upper limb prostheses for clients with acquired or congenital arm defects. Prosthesis Prescription Protocol of the Arm (PPP-Arm) was developed on the basis of the International Classification of Functioning and consisted of several layers. All stakeholders (rehabilitation teams, orthopedic workshops, patients, and insurance companies) were involved in development and implementation. A national project coordinator and knowledge brokers in each team were essential for the project. PPP-Arm was successfully developed and implemented in nine Dutch rehabilitation teams. The protocol improved team collaboration, structure, and completeness of prosthesis prescriptions and treatment uniformity and might be interesting for other countries as well. Clinical relevance A national protocol to prescribe upper limb prostheses can be helpful to create uniformity in treatment of patients with upper limb defects. Such a protocol improves quality of care for all patients in the country.
Comparison of upper arm and forearm blood pressure.
Domiano, Kathy L; Hinck, Susan M; Savinske, Debra L; Hope, Kathryn L
2008-11-01
The upper arm is the primary site used to obtain a blood pressure measurement (BPM); however, when it is not possible to use the upper arm, the forearm is a commonly used alternate site. This study determines if there is a significant difference between upper arm and forearm BPMs among adults and examines the relationship of participant characteristics to the BPM difference. A convenience sample was recruited from a low-income, independent-living, 104-apartment complex in the Midwest. Of the 106 participants, 64% were female and 89% were White. Ages ranged from 20 to 85 years (M = 50.7). The investigators calculated the BMIs (range = 18 to 42, M = 29.3, SD = 5.4) for the 89% (n = 94) of participants who reported their weight. The forearm tended to have higher BPMs than the upper arm (M difference = 4.0 mm Hg systolic, 2.3 mm Hg diastolic). However, site differences were greatest for men, obese adults, and middle aged (36 to 65) adults.
The Influence of Dopaminergic Striatal Innervation on Upper Limb Locomotor Synergies
Isaias, Ioannis U.; Volkmann, Jens; Marzegan, Alberto; Marotta, Giorgio; Cavallari, Paolo; Pezzoli, Gianni
2012-01-01
To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of reduced arm ROM when putaminal dopamine content loss was >47%. A significant correlation was described between the asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities. PMID:23236504
Bia, Daniel; Cabrera-Fischer, Edmundo I.; Zócalo, Yanina; Galli, Cintia; Graf, Sebastián; Valtuille, Rodolfo; Pérez-Cámpos, Héctor; Saldías, María; Álvarez, Inés; Armentano, Ricardo L.
2012-01-01
Purpose. To evaluate in chronically haemodialysed patients (CHPs), if: (1) the vascular access (VA) position (upper arm or forearm) is associated with differential changes in upper limb arterial stiffness; (2) differences in arterial stiffness exist between genders associated with the VA; (3) the vascular substitute (VS) of choice, in biomechanical terms, depends on the previous VA location and CHP gender. Methods. 38 CHPs (18 males; VA in upper arm: 18) were studied. Left and right carotid-brachial pulse wave velocity (PWVc-b) was measured. In in vitro studies, PWV was obtained in ePTFE prostheses and in several arterial and venous homografts obtained from donors. The biomechanical mismatch (BM) between CHP native vessel (NV) and VS was calculated. Results/Conclusions. PWVc-b in upper limbs with VA was lower than in the intact contralateral limbs (P < 0.05), and differences were higher (P < 0.05) when the VA was performed in the upper arm. Differences between PWVc-b in upper limbs with VA (in the upper arm) with respect to intact upper limbs were higher (P < 0.05) in males. Independently of the region in which the VA was performed, the homograft that ensured the minimal BM was the brachial artery. The BM was highly dependent on gender and the location in the upper limb in which the VA was performed. PMID:22567282
Saul, F; Aristidou, Y; Klaus, D; Wiemeyer, A; Lösse, B
1995-09-01
Indirectly measured blood pressure at the wrist or upper arm was compared with directly measured values in the aortic arch during routinely performed diagnostic cardiac catheterization in 100 patients (31-80 years, mean 59.3 years, 60% males). The noninvasive measurements were carried out by oscillometric devices, NAiS Blood Pressure Watch for measurements at the wrist, and Hestia OZ80 at the upper arm. Systolic blood pressure measured at the wrist was 4.3 +/- 14.1 mm Hg, and the diastolic value 6.0 +/- 8.9 mm Hg higher than when measured at the aortic arch; the difference was significant in both cases. Correlation coefficients were 0.85 for systolic and 0.71 for diastolic blood pressure. In 16% of the patients the systolic blood pressure at the wrist differed more than +/- 20 mm Hg. The diastolic blood pressure at the wrist measured more than +/- 20 mm Hg higher than in the aorta in 5% of the patients. At the upper arm mean systolic values were not different to the aorta. The diastolic pressure was 9.3 +/- 9.8 mm Hg higher in the aorta than at the upper arm. To verify the accuracy of values measured with the NAiS Blood Pressure Watch compared with the standard technique at the upper arm, sequential measurements were made at wrist and ipsilateral upper arm in the same group of 100 patients. The systolic blood pressure at the left wrist was 3.4 +/- 13.3 mm Hg higher and the diastolic pressure 3.8 +/- 9.5 mm Hg lower than at the upper arm. Only 53% of systolic values lay within a range of +/- 10 mm Hg. The correspondence between wrist and upper arm values was better for diastolic blood pressure, the values differing by less than +/- 10 mm Hg in two-thirds of patients. Self-measurement of arterial blood pressure with an oscillometric device at the wrist can be recommended only in individual cases with a difference of simultaneously measured values at the upper arm of less than +/- 10 mm Hg for systolic and diastolic blood pressures. The standard method for indirectly measuring arterial blood pressure remains the measurement at the upper arm site, which nevertheless showed a systolic pseudohypertension (deviation of more than 10 mm Hg) in comparison to the invasively measured values in 15% of our selected patients and a diastolic pseudohypertension (deviation of more than 15 mm Hg) in 23% of the patients.
Yamamoto, Nana; Yamamoto, Takumi; Hayashi, Nobuko; Hayashi, Akitatsu; Iida, Takuya; Koshima, Isao
2016-06-01
Volumetry, measurement of extremity volume, is a commonly used method for upper extremity lymphedema (UEL) evaluation. However, comparison between different patients with different physiques is difficult with volumetry, because body-type difference greatly affects arm volume. Seventy arms of 35 participants who had no history of arm edema or breast cancer were evaluated. Arm volume was calculated using a summed truncated cone model, and UEL index was calculated using circumferences and body mass index (BMI). Examinees' BMI was classified into 3 groups, namely, low BMI (BMI, <20 kg/m), middle BMI (BMI, 20-25 kg/m), and high BMI (BMI, >25 kg/m). Arm volume and UEL index were compared with corresponding BMI groups. Mean (SD) arm volume was 1090.9 (205.5) mL, and UEL index 96.9 (5.6). There were significant differences in arm volume between BMI groups [low BMI vs middle BMI vs high BMI, 945.2 (107.4) vs 1045.2 (87.5) vs 1443.1 (244.4) mL, P < 0.001]. There was no significant difference in UEL index between BMI groups [low BMI vs middle BMI vs high BMI, 97.2 (4.2) vs 96.6 (4.6) vs 96.7 (9.9), P > 0.5]. Arm volume significantly increased with increase of BMI, whereas UEL index stayed constant regardless of BMI. Upper extremity lymphedema index would allow better body-type corrected arm volume evaluation compared with arm volumetry.
Influence of Upper-Body Exercise on the Fatigability of Human Respiratory Muscles
TILLER, NICHOLAS B.; CAMPBELL, IAN G.; ROMER, LEE M.
2017-01-01
ABSTRACT Purpose Diaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue. Methods Seven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg−1·min−1) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively. Results Exercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min−1 (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min−1 (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5–15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25–35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise. Conclusions High-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax. PMID:28288012
Influence of Upper-Body Exercise on the Fatigability of Human Respiratory Muscles.
Tiller, Nicholas B; Campbell, Ian G; Romer, Lee M
2017-07-01
Diaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue. Seven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg·min) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively. Exercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5-15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25-35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise. High-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax.
Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta(2)-receptor agonist
NASA Technical Reports Server (NTRS)
Zeman, Richard J.; Ludemann, Robert; Easton, Thomas G.; Etlinger, Joseph D.
1988-01-01
The effects of a beta(2)-receptor agonist, clenbuterol, and a beta(2) antagonist, butoxamine, on the skeletal muscle fibers of rats were investigated. It was found that chronic treatment of rats with clenbuterol caused hypertrophy of histochemically identified fast-twitch, but not slow-twitch, fibers within the soleus, while in the extensor digitorum longus the mean areas of both fiber types were increased; in both muscles, the ratio of the number of fast-twitch to slow-twitch fibers was increased. In contrast, a treatment with butoxamine caused a reduction of the fast-twitch fiber size in both muscles, and the ratio of the fast-twitch to slow-twitch fibers was decreased.
2008-03-11
slow - twitch muscle , would be less vulnerable to tourniquet-induced ischemia–reperfusion than the plantaris (Plant), a predominantly fast - twitch muscle ...predominantly fast - and slow - twitch muscle reported after 2–3 h of ischemia will be erased after longer periods of ischemia (Carvalho et al. 1997a). The...functional loss in predominantly fast - twitch muscle than in predominantly slow - twitch muscle in response
Angelova, Silvija; Ribagin, Simeon; Raikova, Rositsa; Veneva, Ivanka
2018-02-01
After a stroke, motor units stop working properly and large, fast-twitch units are more frequently affected. Their impaired functions can be investigated during dynamic tasks using electromyographic (EMG) signal analysis. The aim of this paper is to investigate changes in the parameters of the power/frequency function during elbow flexion between affected, non-affected, and healthy muscles. Fifteen healthy subjects and ten stroke survivors participated in the experiments. Electromyographic data from 6 muscles of the upper limbs during elbow flexion were filtered and normalized to the amplitudes of EMG signals during maximal isometric tasks. The moments when motion started and when the flexion angle reached its maximal value were found. Equal intervals of 0.3407 s were defined between these two moments and one additional interval before the start of the flexion (first one) was supplemented. For each of these intervals the power/frequency function of EMG signals was calculated. The mean (MNF) and median frequencies (MDF), the maximal power (MPw) and the area under the power function (APw) were calculated. MNF was always higher than MDF. A significant decrease in these frequencies was found in only three post-stroke survivors. The frequencies in the first time interval were nearly always the highest among all intervals. The maximal power was nearly zero during first time interval and increased during the next ones. The largest values of MPw and APw were found for the flexor muscles and they increased for the muscles of the affected arm compared to the non-affected one of stroke survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early manifestation of arm-leg coordination during stepping on a surface in human neonates.
La Scaleia, Valentina; Ivanenko, Y; Fabiano, A; Sylos-Labini, F; Cappellini, G; Picone, S; Paolillo, P; Di Paolo, A; Lacquaniti, F
2018-04-01
The accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk. Human adults normally swing their arms and a quadrupedal limb coordination persists during bipedal walking despite a strong corticospinal control of the upper extremities that allows to uncouple this connection during voluntary activities. Here we investigated arm-leg coordination during stepping responses on a surface in human neonates. In eight neonates, we found the overt presence of alternating arm-leg oscillations, the arms moving up and down in alternation with ipsilateral lower limb movements. These neonates moved the diagonal limbs together, and the peak of the arm-to-trunk angle (i.e., maximum vertical excursion of the arm) occurred around the end of the ipsilateral stance phase, as it occurs during typical adult walking. Although episodes of arm-leg coordination were sporadic in our sample of neonates, their presence provides significant evidence for a neural coupling between the upper and lower limbs during early ontogenesis of locomotion in humans.
Iuppariello, Luigi; D'Addio, Giovanni; Romano, Maria; Bifulco, Paolo; Lanzillo, Bernardo; Pappone, Nicola; Cesarelli, Mario
2016-01-01
Robot-mediated therapy (RMT) has been a very dynamic area of research in recent years. Robotics devices are in fact capable to quantify the performances of a rehabilitation task in treatments of several disorders of the arm and the shoulder of various central and peripheral etiology. Different systems for robot-aided neuro-rehabilitation are available for upper limb rehabilitation but the biomechanical parameters proposed until today, to evaluate the quality of the movement, are related to the specific robot used and to the type of exercise performed. Besides, none study indicated a standardized quantitative evaluation of robot assisted upper arm reaching movements, so the RMT is still far to be considered a standardised tool. In this paper a quantitative kinematic assessment of robot assisted upper arm reaching movements, considering also the effect of gravity on the quality of the movements, is proposed. We studied a group of 10 healthy subjects and results indicate that our advised protocol can be useful for characterising normal pattern in reaching movements.
Arm posture-dependent changes in corticospinal excitability are largely spinal in origin.
Nuzzo, James L; Trajano, Gabriel S; Barry, Benjamin K; Gandevia, Simon C; Taylor, Janet L
2016-04-01
Biceps brachii motor evoked potentials (MEPs) from cortical stimulation are influenced by arm posture. We used subcortical stimulation of corticospinal axons to determine whether this postural effect is spinal in origin. While seated at rest, 12 subjects assumed several static arm postures, which varied in upper-arm (shoulder flexed, shoulder abducted, arm hanging to side) and forearm orientation (pronated, neutral, supinated). Transcranial magnetic stimulation over the contralateral motor cortex elicited MEPs in resting biceps and triceps brachii, and electrical stimulation of corticospinal tract axons at the cervicomedullary junction elicited cervicomedullary motor evoked potentials (CMEPs). MEPs and CMEPs were normalized to the maximal compound muscle action potential (Mmax). Responses in biceps were influenced by upper-arm and forearm orientation. For upper-arm orientation, biceps CMEPs were 68% smaller (P= 0.001), and biceps MEPs 31% smaller (P= 0.012), with the arm hanging to the side compared with when the shoulder was flexed. For forearm orientation, both biceps CMEPs and MEPs were 34% smaller (both P< 0.046) in pronation compared with supination. Responses in triceps were influenced by upper-arm, but not forearm, orientation. Triceps CMEPs were 46% smaller (P= 0.007) with the arm hanging to the side compared with when the shoulder was flexed. Triceps MEPs and biceps and triceps MEP/CMEP ratios were unaffected by arm posture. The novel finding is that arm posture-dependent changes in corticospinal excitability in humans are largely spinal in origin. An interplay of multiple reflex inputs to motoneurons likely explains the results. Copyright © 2016 the American Physiological Society.
Arm posture-dependent changes in corticospinal excitability are largely spinal in origin
Nuzzo, James L.; Trajano, Gabriel S.; Barry, Benjamin K.; Gandevia, Simon C.
2016-01-01
Biceps brachii motor evoked potentials (MEPs) from cortical stimulation are influenced by arm posture. We used subcortical stimulation of corticospinal axons to determine whether this postural effect is spinal in origin. While seated at rest, 12 subjects assumed several static arm postures, which varied in upper-arm (shoulder flexed, shoulder abducted, arm hanging to side) and forearm orientation (pronated, neutral, supinated). Transcranial magnetic stimulation over the contralateral motor cortex elicited MEPs in resting biceps and triceps brachii, and electrical stimulation of corticospinal tract axons at the cervicomedullary junction elicited cervicomedullary motor evoked potentials (CMEPs). MEPs and CMEPs were normalized to the maximal compound muscle action potential (Mmax). Responses in biceps were influenced by upper-arm and forearm orientation. For upper-arm orientation, biceps CMEPs were 68% smaller (P = 0.001), and biceps MEPs 31% smaller (P = 0.012), with the arm hanging to the side compared with when the shoulder was flexed. For forearm orientation, both biceps CMEPs and MEPs were 34% smaller (both P < 0.046) in pronation compared with supination. Responses in triceps were influenced by upper-arm, but not forearm, orientation. Triceps CMEPs were 46% smaller (P = 0.007) with the arm hanging to the side compared with when the shoulder was flexed. Triceps MEPs and biceps and triceps MEP/CMEP ratios were unaffected by arm posture. The novel finding is that arm posture-dependent changes in corticospinal excitability in humans are largely spinal in origin. An interplay of multiple reflex inputs to motoneurons likely explains the results. PMID:26864764
A comparison of rat myosin from fast and slow skeletal muscle and the effect of disuse
NASA Technical Reports Server (NTRS)
Unsworth, B. R.; Witzmann, F. A.; Fitts, R. H.
1981-01-01
Certain enzymatic and structural features of myosin, purified from rat skeletal muscles representative of the fast twitch glycolytic (type IIb), the fast twitch oxidative (type IIa), and the slow twitch oxidative (type I) fiber, were determined and the results were compared with the measured contractile properties. Good correlation was found between the shortening velocities and Ca(2+)-activated ATPase activity for each fiber type. Short term hind limb immobilization caused prolongation of contraction time and one-half relaxation time in the fast twitch muscles and a reduction of these contractile properties in slow twitch soleus. Furthermore, the increased maximum shortening velocity in the immobilized soleus could be correlated with increased Ca(2+)-ATPase, but no change was observed in the enzymatic activity of the fast twitch muscles. No alteration in light chain distribution with disuse was observed in any of the fiber types. The myosin from slow twitch soleus could be distinguished from fast twitch myosins on the basis of the pattern of peptides generated by proteolysis of the heavy chains. Six weeks of hind limb immobilization resulted in both an increased ATPase activity and an altered heavy chain primary structure in the slow twitch soleus muscle.
Korshøj, Mette; Skotte, Jørgen H; Christiansen, Caroline S; Mortensen, Pelle; Kristiansen, Jesper; Hanisch, Christiana; Ingebrigtsen, Jørgen; Holtermann, Andreas
2014-01-01
The validity of inclinometer measurements by ActiGraph GT3X+ (AG) accelerometer, when analysed with the Acti4 customised software, was examined by comparison of inclinometer measurements with a reference system (TrakStar) in a protocol with standardised arm movements and simulated working tasks. The sensors were placed at the upper arm (distal to the deltoid insertion) and at the spine (level of T1-T2) on eight participants. Root mean square errors (RMSEs) values of inclination between the two systems were low for the slow- and medium-speed standardised arm movements and in simulated working tasks. Fast arm movements caused the inclination estimated by the AG to deviate from the reference measurements (RMSE values up to ∼10°). Furthermore, it was found that AG positioned at the upper arm provided inclination data without bias compared to the reference system. These findings indicate that the AG provides valid estimates of arm and upper body inclination in working participants. Being inexpensive, small, water-resistant and without wires, ActiGraph GT3X+ seems to be a valid mean for direct long-term field measurements of arm and trunk inclinations when analysed by the Acti4 customised software.
Xu, Binjie; Wozniak, Daniel J.
2015-01-01
Twitching motility is an important migration mechanism for the Gram-negative bacterium Pseudomonas aeruginosa. In the commonly used subsurface twitching assay, the sub-population of P. aeruginosa with active twitching motility is difficult to harvest for high-throughput studies. Here we describe the development of a novel method that allows efficient isolation of bacterial sub-populations conducting highly active twitching motility. The transcription factor AmrZ regulates multiple P. aeruginosa virulence factors including twitching motility, yet the mechanism of this activation remains unclear. We therefore set out to understand this mechanism by defining the AmrZ regulon using DNA microarrays in combination with the newly developed twitching motility method. We discovered 112 genes in the AmrZ regulon and many encode virulence factors. One gene of interest and the subsequent focus was lecB, which encodes a fucose-binding lectin. DNA binding assays revealed that AmrZ activates lecB transcription by directly binding to its promoter. The lecB gene was previously shown to be required for twitching motility in P. aeruginosa strain PAK; however, our lecB deletion had no effect on twitching motility in strain PAO1. Collectively, in this study a novel condition was developed for quantitative studies of twitching motility, under which the AmrZ regulon was defined. PMID:26309248
Wang, XinGang; Ono, Yosuke; Tan, Swee Chuan; Chai, Ruth JinFen; Parkin, Caroline; Ingham, Philip W
2011-10-01
Sox6 has been proposed to play a conserved role in vertebrate skeletal muscle fibre type specification. In zebrafish, sox6 transcription is repressed in slow-twitch progenitors by the Prdm1a transcription factor. Here we identify sox6 cis-regulatory sequences that drive fast-twitch-specific expression in a Prdm1a-dependent manner. We show that sox6 transcription subsequently becomes derepressed in slow-twitch fibres, whereas Sox6 protein remains restricted to fast-twitch fibres. We find that translational repression of sox6 is mediated by miR-499, the slow-twitch-specific expression of which is in turn controlled by Prdm1a, forming a regulatory loop that initiates and maintains the slow-twitch muscle lineage.
Model-based sensorimotor integration for multi-joint control: development of a virtual arm model.
Song, D; Lan, N; Loeb, G E; Gordon, J
2008-06-01
An integrated, sensorimotor virtual arm (VA) model has been developed and validated for simulation studies of control of human arm movements. Realistic anatomical features of shoulder, elbow and forearm joints were captured with a graphic modeling environment, SIMM. The model included 15 musculotendon elements acting at the shoulder, elbow and forearm. Muscle actions on joints were evaluated by SIMM generated moment arms that were matched to experimentally measured profiles. The Virtual Muscle (VM) model contained appropriate admixture of slow and fast twitch fibers with realistic physiological properties for force production. A realistic spindle model was embedded in each VM with inputs of fascicle length, gamma static (gamma(stat)) and dynamic (gamma(dyn)) controls and outputs of primary (I(a)) and secondary (II) afferents. A piecewise linear model of Golgi Tendon Organ (GTO) represented the ensemble sampling (I(b)) of the total muscle force at the tendon. All model components were integrated into a Simulink block using a special software tool. The complete VA model was validated with open-loop simulation at discrete hand positions within the full range of alpha and gamma drives to extrafusal and intrafusal muscle fibers. The model behaviors were consistent with a wide variety of physiological phenomena. Spindle afferents were effectively modulated by fusimotor drives and hand positions of the arm. These simulations validated the VA model as a computational tool for studying arm movement control. The VA model is available to researchers at website http://pt.usc.edu/cel .
Leong, Hio-Teng; Ng, Gabriel Yin-Fat; Leung, Vivian Yee-Fong; Fu, Siu Ngor
2013-01-01
Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI) in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years) were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87-0.97) and inter-observer (ICC = 0.78-0.83) reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders.
Leong, Hio-Teng; Ng, Gabriel Yin-fat; Leung, Vivian Yee-fong; Fu, Siu Ngor
2013-01-01
Pain and tenderness of the upper trapezius are the major complaints among people with chronic neck and shoulder disorders. Hyper-activation and increased muscle tension of the upper trapezius during arm elevation will cause imbalance of the scapular muscle force and contribute to neck and shoulder disorders. Assessing the elasticity of the upper trapezius in different arm positions is therefore important for identifying people at risk so as to give preventive programmes or for monitoring the effectiveness of the intervention programmes for these disorders. This study aimed to establish the reliability of supersonic shear imaging (SSI) in quantifying upper trapezius elasticity/shear elastic modulus and its ability to measure the modulation of muscle elasticity during arm elevation. Twenty-eight healthy adults (15 males, 13 females; mean age = 29.6 years) were recruited to participate in the study. In each participant, the shear elastic modulus of the upper trapezius while the arm was at rest and at 30° abduction was measured by two operators and twice by operator 1 with a time interval between the measurements. The results showed excellent within- and between-session intra-operator (ICC = 0.87–0.97) and inter-observer (ICC = 0.78–0.83) reliability for the upper trapezius elasticity with the arm at rest and at 30° abduction. An increase of 55.23% of shear elastic modulus from resting to 30° abduction was observed. Our findings demonstrate the possibilities for using SSI to quantify muscle elasticity and its potential role in delineating the modulation of upper trapezius elasticity, which is essential for future studies to compare the differences in shear elastic modulus between normal elasticity and that of individuals with neck and shoulder disorders. PMID:23825641
Meyns, Pieter; Duysens, Jacques; Desloovere, Kaat
2016-09-01
In this observational case-control study we aimed to determine whether altered arm postures in children with unilateral CP (uniCP) are related to gait instability in a specific direction. Antero-posterior and medio-lateral Foot Placement Estimator instability measures and arm posture measures (vertical and antero-posterior hand position, sagittal and frontal upper arm elevation angle) were determined in eleven uniCP (7 years-10 months) and twenty-four typically developing children (9 years-6 months) at two walking speeds. Spearman-rank correlation analyses were made to examine the relationship between antero-posterior and medio-lateral arm posture and gait instability. Arm posture in both planes was related to antero-posterior instability (e.g. sagittal and frontal upper arm elevation angle correlated moderately with antero-posterior instability; R=0.41, p<0.001, R=-0.47, p<0.001). In uniCP, increased antero-posterior instability was associated with a higher (R=-0.62, p=0.002) and more frontal position of the hemiplegic hand (R=-0.58, p=0.005), while the non-hemiplegic upper arm was rotated more backward (R=0.63, p=0.002) and both upper arms rotated more sideways (hemiplegic: R=-0.58, p=0.004; non-hemiplegic: R=-0.55, p=0.008). The altered non-hemiplegic (sagittal and frontal) arm posture in uniCP may be a compensation to reduce antero-posterior gait instability. Copyright © 2016 Elsevier B.V. All rights reserved.
... the blood vessels that supply blood to the head, neck, upper body and arms. It is also called ... the blood vessels that supply blood to the head, neck, upper body, and arms. It most commonly occurs ...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
49 CFR 572.15 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Assembly SA 103C 030 Torso Assembly SA 103C 041 Upper Arm Assembly Left SA 103C 042 Upper Arm Assembly Right SA 103C 051 Forearm Hand Assembly Left SA 103C 052 Forearm Hand Assembly Right SA 103C 061Upper Leg Assembly Left SA 103C 062 Upper Leg Assembly Right SA 103C 071 Lower Leg Assembly Left SA 103C 072...
Orizio, Claudio; Cogliati, Marta; Bissolotti, Luciano; Diemont, Bertrand; Gobbo, Massimiliano; Celichowski, Jan
2016-01-01
This work aimed to verify if maximal electrically evoked single twitch (STmax) scan discloses the relative functional weight of fast and slow small bundles of fibres (SBF) in determining the contractile features of tibialis anterior (TA) with ageing. SBFs were recruited by TA main motor point stimulation through 60 increasing levels of stimulation (LS): 20 stimuli at 2Hz for each LS. The lowest and highest LS provided the least ST and STmax, respectively. The scanned STmax was decomposed into individual SBF STs. They were identified when twitches from adjacent LS were significantly different and then subtracted from each other. Nine young (Y) and eleven old (O) subjects were investigated. Contraction time (CT) and STarea/STpeak (A/PT) were calculated per each SBF ST. 143 and 155 SBF STs were obtained in Y and O, respectively. Y: CT and A/PT range: 45-105ms and 67-183mNs/mN, respectively. Literature data set TA fast fibres at 34% so, from the arrays of CT and A/PT, 65ms and 100mNs/mN were identified as the upper limit for SBF fast ST classification. O: no SBF ST could be classified as fast. STmax scan reveals age-related changes in the relative contribution of fast and slow SBFs to the overall muscle mechanics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
RUKHADZE, I.; KAMANI, H.; KUBIN, L.
2017-01-01
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N > GH > GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I > GH > N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70–120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes. PMID:22205596
Sequea, Donel A; Sharma, Naveen; Arias, Edward B; Cartee, Gregory D
2012-12-01
Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch (type I) muscle from old rats is unknown. The purpose of this study was to assess insulin-stimulated glucose uptake and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from 24-month-old ad libitum fed and CR (consuming 65% of ad libitum, intake) rats. Muscles were incubated with and without 1.2 nM insulin. CR versus ad libitum rats had greater insulin-stimulated glucose uptake and Akt phosphorylation (pAkt) on T308 and S473 for both muscles incubated with insulin. GLUT4 protein abundance and phosphorylation of the insulin receptor (Y1162/1163) and AS160 (T642) were unaltered by CR in both muscles. These results implicate enhanced pAkt as a potential mechanism for the CR-induced increase in insulin-stimulated glucose uptake by the fast-twitch epitrochlearis and slow-twitch soleus of old rats.
Shi, Xiangyang; Lin, Hong
2016-04-08
Xylella fastidiosa is a Gram-negative non-flagellated bacterium that causes a number of economically important diseases of plants. The twitching motility provides X. fastidiosa a means for long-distance intra-plant movement and colonization, contributing toward pathogenicity in X. fastidiosa. The twitching motility of X. fastidiosa is operated by type IV pili. Type IV pili of Xylella fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon encoding proteins that are involved with signal transduction pathways. To elucidate the roles of pilG in the twitching motility of X. fastidiosa, a pilG-deficient mutant XfΔpilG and its complementary strain XfΔpilG-C containing native pilG were developed. A microfluidic chambers integrated with a time-lapse image recording system was used to observe twitching motility in XfΔpilG, XfΔpilG-C and its wild type strain. Using this recording system, it permits long-term spatial and temporal observations of aggregation, migration of individual cells and populations of bacteria via twitching motility. X. fastidiosa wild type and complementary XfΔpilG-C strain showed typical twitching motility characteristics directly observed in the microfluidic flow chambers, whereas mutant XfΔpliG exhibited the twitching deficient phenotype. This study demonstrates that pilG contributes to the twitching motility of X. fastidiosa. The microfluidic flow chamber is used as a means for observing twitching motility.
Baylor, S M; Hollingworth, S
2003-08-15
Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.
Brauer, Sandra G; Hayward, Kathryn S; Carson, Richard G; Cresswell, Andrew G; Barker, Ruth N
2013-07-02
Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone. A prospective, assessor-blinded parallel, three-group randomised controlled trial is being conducted. Seventy-five participants with a first-ever unilateral stroke less than 4 months previously, who present with severe arm disability (three or fewer out of a possible six points on the Motor Assessment Scale [MAS] Item 6), will be recruited from inpatient rehabilitation facilities. Participants will be randomly allocated to one of three dose-matched groups: SMART Arm training with OT-stim and usual therapy; SMART Arm training without OT-stim and usual therapy; or usual therapy alone. All participants will receive 20 hours of upper limb training over four weeks. Blinded assessors will conduct four assessments: pre intervention (0-weeks), post intervention (4-weeks), 26 weeks and 52 weeks follow-up. The primary outcome measure is MAS item 6. All analyses will be based on an intention-to-treat principle. By enabling intensive and repetitive practice of a functional upper limb task during inpatient rehabilitation, SMART Arm training with or without OT-stim in combination with usual therapy, has the potential to improve recovery of upper limb function in those with severe motor disability. The immediate and long-term effects of SMART Arm training on upper limb impairment, activity and participation will be explored, in addition to the benefit of training with or without OT-stim to augment movement when compared to usual therapy alone. ACTRN12608000457347.
3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor
NASA Astrophysics Data System (ADS)
Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki
The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].
Monyeki, Kotsedi Daniel; Sekhotha, Michael Matome
2016-05-01
Height is required for the assessment of growth and nutritional status, as well as for predictions and standardization of physiological parameters. To determine whether arm span, mid-upper arm and waist circumferences and sum of four skinfolds can be used to predict height, the relationships between these anthropometric variables were assessed among Ellisras rural children aged 8-18 years. The following parameters were measured according to the International Society for the Advancement of Kinathropometry: height, arm span, mid-upper arm circumference, waist circumference and four skinfolds (suprailiac, subscapular, triceps and biceps). Associations between the variables were assessed using Pearson correlation coefficients and linear regression models. Ellisras Longitudinal Study (ELS), Limpopo Province, South Africa. Boys (n 911) and girls (n 858) aged 8-18 years. Mean height was higher than arm span, with differences ranging from 4 cm to 11·5 cm between boys and girls. The correlation between height and arm span was high (ranging from 0·74 to 0·91) with P<0·001. The correlation between height and mid-upper arm circumference, waist circumference and sum of four skinfolds was low (ranging from 0·15 to 0·47) with P<0·00 among girls in the 15-18 years age group. Arm span was found to be a good predictor of height. The sum of four skinfolds was significantly associated with height in the older age groups for girls, while waist circumference showed a negative significant association in the same groups.
Sun, Ruimei; Ding, Yu; Sun, Chuanzheng; Li, Xiaojiang; Wang, Jinde; Li, Lei; Yang, Jie; Ren, Yanxin; Zhong, Zhaoming
2016-04-01
To determine the importance of adequate preoperative assessment with color Doppler sonography to assist in the successful transfer of lateral upper arm flaps by studying the lateral upper arm flap with color Doppler sonography and analyzing the anatomic features of the radial collateral artery. A clinical case-control study was performed. The radial collateral artery was studied with color Doppler sonography in 15 healthy volunteers. The origins, courses, variations, and locations of the perforators of the radial collateral artery were recorded. The results and data from the color Doppler sonographic investigation were compared with an anatomic study that was performed on 22 adult cadaveric upper limb specimens. The volunteer group (14 of 15 volunteers) and the cadaveric group (19 of 22 upper arm specimens) clearly showed that the branch pattern of the arterial supply was as follows: brachial artery → deep brachial artery → radial collateral artery → posterior radial collateral artery → myocutaneous perforator. Variations in the origin of the radial collateral artery were identified in 1 volunteer bilaterally and in 3 upper arm specimens. The diameters of the artery and vein measured at the distal insertion of the deltoid and the origin of the deep brachial artery were not significantly different between the volunteer and cadaver groups (P > .05). Due to the difference in measuring methods, the length of the vascular pedicles was significantly different between the groups (P < .05). Color Doppler sonography can facilitate the preoperative assessment of the origin, course, variations, and locations of the radial collateral artery and therefore may increase the success rate of lateral upper arm flap transfer. © 2016 by the American Institute of Ultrasound in Medicine.
The Action of Botulinum Toxin at the Neuromuscular Junction
1980-12-22
fast - twitch " (gastrocnemius) and " slow - twitch " (soleus) muscles ... muscle fibers -"_re not significantly affected by the toxin. It is interesting to note that, although fast - twitch and slow - twitch mucles were...Duchen LW: An electron microscopic study of the changes induced by borulinum o::in in the motor end-plates of slow and fast skeletal muscle fibres of
19. DETAIL OF SOUTH CANTILEVER ANCHOR ARM UPPER CHORD AND ...
19. DETAIL OF SOUTH CANTILEVER ANCHOR ARM UPPER CHORD AND ENDPOST CONNECTION U-19, LOOKING SOUTHWEST - Jackson's Ferry Bridge, Route 52 over New River, 6.3 miles south of Route 94, Austinville, Wythe County, VA
Models of disuse - A comparison of hindlimb suspension and immobilization
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Metzger, J. M.; Riley, D. A.; Unsworth, B. R.
1986-01-01
The effects of 1 and 2 weeks of hindlimb suspension (HS) on the contractile properties of fast- and slow-twitch skeletal muscles of male Sprague Dawley rats are studied and compared with hindlimb immobilization (HI) data. The optimal length and contractile properties of the slow-twitch soleus, fast-twitch extensor digitorum longus, and the vastus lateralis are measured. It is observed that HS and HI affect slow-twitch muscles; isometric twitch duration in the slow-twitch soleus is decreased. Soleus muscle mass and peak tetanic tension declines with disuse. A major difference in the influence of HS and HI on the maximal speed of soleus muscle shortening, V(max) is detected; HS produced a twofold increase in V(max) compared to control data and HI had no significant effect on V(max). The relation between V(max) and myosin concentration is analyzed. The data reveal that HS modifies slow-twitch muscle yielding hybrid fibers with elevated shortening velocities and this change may be dependent on the elimination of load-bearing contractions.
Recovery in skeletal muscle contractile function after prolonged hindlimb immobilization
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Brimmer, C. J.
1985-01-01
The effect of three-month hindlimb immobilization (IM) in rats on contractile properties of slow-twitch soleus (SOL), fast-twitch extensor digitorum longus, and fast-twitch superficial region of the vastus lateralis were measured after 0, 14, 28, 60, and 90 days of recovery on excized, horizontally suspended muscles stimulated electrically to maximal twitch tension. IM caused decreases in muscle-to-body weight ratios for all muscles, with no complete recovery even after 90 days. The contractile properties of the fast-twitch muscles were less affected by IM than those of the slow-twitch SOL. The SOL isometric twitch duration was shortened, due to reduced contraction and half-relaxation time, both of which returned to control levels after 14 days of recovery. The peak tetanic tension, P(O), g/sq cm,, decreased with IM by 46 percent in the SOL, but recovered by the 28th day. The maximum shortening velocity was not altered by IM in any of the muscles. Thus, normal contractile function could recover after prolonged limb IM.
Boccia, G; Dardanello, D; Zoppirolli, C; Bortolan, L; Cescon, C; Schneebeli, A; Vernillo, G; Schena, F; Rainoldi, A; Pellegrini, B
2017-09-01
Although elbow extensors (EE) have a great role in cross-country skiing (XC) propulsion, previous studies on neuromuscular fatigue in long-distance XC have investigated only knee extensor (KE) muscles. In order to investigate the origin and effects of fatigue induced by long-distance XC race, 16 well-trained XC skiers were tested before and after a 56-km classical technique race. Maximal voluntary isometric contraction (MVC) and rate of force development (RFD) were measured for both KE and EE. Furthermore, electrically evoked double twitch during MVC and at rest were measured. MVC decreased more in KE (-13%) than in EE (-6%, P = 0.016), whereas the peak RFD decreased only in EE (-26%, P = 0.02) but not in KE. The two muscles showed similar decrease in voluntary activation (KE -5.0%, EE -4.8%, P = 0.61) and of double twitch amplitude (KE -5%, EE -6%, P = 0.44). A long-distance XC race differently affected the neuromuscular function of lower and upper limbs muscles. Specifically, although the strength loss was greater for lower limbs, the capacity to produce force in short time was more affected in the upper limbs. Nevertheless, both KE and EE showed central and peripheral fatigue, suggesting that the origins of the strength impairments were multifactorial for the two muscles. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Optimal Body Size and Limb Length Ratios Associated with 100-m Personal-Best Swim Speeds.
Nevill, Alan M; Oxford, Samuel W; Duncan, Michael J
2015-08-01
This study aims to identify optimal body size and limb segment length ratios associated with 100-m personal-best (PB) swim speeds in children and adolescents. Fifty national-standard youth swimmers (21 males and 29 females age 11-16 yr; mean ± SD age, 13.5 ± 1.5 yr) participated in the study. Anthropometry comprised stature; body mass; skinfolds; maturity offset; upper arm, lower arm, and hand lengths; and upper leg, lower leg, and foot lengths. Swimming performance was taken as the PB time recorded in competition for the 100-m freestyle swim. To identify the optimal body size and body composition components associated with 100-m PB swim speeds (having controlled for age and maturity offset), we adopted a multiplicative allometric log-linear regression model, which was refined using backward elimination. Lean body mass was the singularly most important whole-body characteristic. Stature and body mass did not contribute to the model, suggesting that the advantage of longer levers was limb-specific rather than a general whole-body advantage. The allometric model also identified that having greater limb segment length ratios [i.e., arm ratio = (low arm)/(upper arm); foot-to-leg ratio = (foot)/(lower leg)] was key to PB swim speeds. It is only by adopting multiplicative allometric models that the above mentioned ratios could have been derived. The advantage of having a greater lower arm is clear; however, having a shorter upper arm (achieved by adopting a closer elbow angle technique or by possessing a naturally endowed shorter upper arm), at the same time, is a new insight into swimming performance. A greater foot-to-lower-leg ratio suggests that a combination of larger feet and shorter lower leg length may also benefit PB swim speeds.
Plant, David R; Lynch, Gordon S; Williams, David A
2002-03-15
The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P < 0.01) and fast twitch fibres (P < 0.05) compared to control. Under conditions when all Ca(2+) uptake was prevented, 1 mM H(2)O(2) increased SR Ca(2+) "leak" in fast twitch fibres by 24 +/- 5 % (P < 0.05), but leak was not altered in slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P < 0.01), which could be partly reversed following treatment with 10 mM dithiothreitol (DTT). The changes in SR function caused by 1 mM H(2)O(2) were associated with an approximately 65% increase in the peak height of depolarization-induced contractile response (DICR) in slow twitch fibres, compared to control (no H(2)O(2); P < 0.05). In contrast, peak contractile force of fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P < 0.05). Our results indicate that exogenous H(2)O(2) increases depolarization-induced contraction of mechanically skinned slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.
Plant, David R; Lynch, Gordon S; Williams, David A
2002-01-01
The effect of exogenous hydrogen peroxide (H2O2) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mm H2O2 diminished the ability of the Ca2+-depleted SR to reload Ca2+ in both slow (P < 0.01) and fast twitch fibres (P < 0.05) compared to control. Under conditions when all Ca2+ uptake was prevented, 1 mm H2O2 increased SR Ca2+ ‘leak’ in fast twitch fibres by 24 ± 5 % (P < 0.05), but leak was not altered in slow twitch fibres. Treatment with 1 mm H2O2 also increased the peak force of low [caffeine] contracture by ∼45 % in both fibre types compared to control (P < 0.01), which could be partly reversed following treatment with 10 mm dithiothreitol (DTT). The changes in SR function caused by 1 mm H2O2 were associated with an ∼65 % increase in the peak height of depolarization-induced contractile response (DICR) in slow twitch fibres, compared to control (no H2O2; P < 0.05). In contrast, peak contractile force of fast twitch fibres was not altered by 1 mm H2O2 treatment. Equilibration with 5 mm H2O2 induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mm DTT. Peak DICR was also increased ∼40 % by 5 mm H2O2 in slow twitch fibres compared to control (no H2O2; P < 0.05). Our results indicate that exogenous H2O2 increases depolarization-induced contraction of mechanically skinned slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca2+ release during contraction and/or an increase in Ca2+ sensitivity. PMID:11897857
20. DETAIL OF SOUTH CANTILEVER ANCHOR ARM UPPER CHORD, POST, ...
20. DETAIL OF SOUTH CANTILEVER ANCHOR ARM UPPER CHORD, POST, AND DIAGONAL CONNECTION U-17, LOOKING NORTHWEST - Jackson's Ferry Bridge, Route 52 over New River, 6.3 miles south of Route 94, Austinville, Wythe County, VA
Three-dimensional circumferential liposuction of the overweight or obese upper arm.
Hong, Yoon Gi; Sim, Hyung Bo; Lee, Mu Young; Seo, Sang Won; Chang, Choong Hyun; Yeo, Kwan Koo; Kim, June-kyu
2012-06-01
Due to recent trends in liposuction, anatomic consideration of the body's fatty layers is essential. Based on this knowledge, a circumferential approach to achieving maximal aesthetic results is highlighted. In the upper arm, aspiration of fat from only the posterolateral region can result in skin flaccidity and disharmony of the overall balance of the upper arm contour. Different suction techniques were applied depending on the degree of fat accumulation. If necessary, the operation area was extended around the axillary and scapular regions to overcome the limitations of the traditional method and to achieve optimal effects. To maximize skin contracture and redraping, the authors developed three-dimensional circumferential liposuction (3D-CL) based on two concepts: circumferential aspiration of the upper arm, to which was applied different fluid infiltration and liposuction techniques in three anatomic compartments (anteromedial, anterolateral, and posterolateral), and extension of liposuction to the periaxillar and parascarpular areas. A total of 57 female patients underwent liposuction of their excess arm fat using this technique. The authors achieved their aesthetic goals of a straightened inferior brachial border and a more slender body contour. Complications occurred for five patients including irregularity, incision-site scar, and transient pigmentation. Through 3D-CL, the limitations of traditional upper arm liposuction were overcome, and a slender arm contour with a straightened inferior brachial border was produced. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at http://www.springer.com/00266.
An iPhone application for upper arm posture and movement measurements.
Yang, Liyun; Grooten, Wilhelmus J A; Forsman, Mikael
2017-11-01
There is a need for objective methods for upper arm elevation measurements for accurate and convenient risk assessments. The aims of this study were (i) to compare a newly developed iOS application (iOS) for measuring upper arm elevation and angular velocity with a reference optical tracking system (OTS), and (ii) to compare the accuracy of the iOS incorporating a gyroscope and an accelerometer with using only an accelerometer, which is standard for inclinometry. The iOS-OTS limits of agreement for static postures (9 subjects) were -4.6° and 4.8°. All root mean square differences in arm swings and two simulated work tasks were <6.0°, and all mean correlation coefficients were >0.98. The mean absolute iOS-OTS difference of median angular velocity was <13.1°/s, which was significantly lower than only using an accelerometer (<43.5°/s). The accuracy of this iOS application compares well to that of today's research methods and it can be useful for practical upper arm measurements. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
VO2 Max in Variable Type Exercise Among Well-Trained Upper Body Athletes.
ERIC Educational Resources Information Center
Seals, Douglas R.; Mullin, John P.
1982-01-01
The maximal oxygen consumption (VO2 max) of well-trained upper body athletes was compared to that of untrained individuals in four types of exercise: arm cranking, legs only cycling, graded treadmill running, and combined arm cranking and leg cycling. Results of the study showed that well-trained upper body athletes attained a significantly higher…
Irving, Greg; Holden, John; Stevens, Richard; McManus, Richard J
2016-11-03
To determine the diagnostic accuracy of different methods of blood pressure (BP) measurement compared with reference standards for the diagnosis of hypertension in patients with obesity with a large arm circumference. Systematic review with meta-analysis with hierarchical summary receiver operating characteristic models. Bland-Altman analyses where individual patient data were available. Methodological quality appraised using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS2) criteria. MEDLINE, EMBASE, Cochrane, DARE, Medion and Trip databases were searched. Cross-sectional, randomised and cohort studies of diagnostic test accuracy that compared any non-invasive BP tests (upper arm, forearm, wrist, finger) with an appropriate reference standard (invasive BP, correctly fitting upper arm cuff, ambulatory BP monitoring) in primary care were included. 4037 potentially relevant papers were identified. 20 studies involving 26 different comparisons met the inclusion criteria. Individual patient data were available from 4 studies. No studies satisfied all QUADAS2 criteria. Compared with the reference test of invasive BP, a correctly fitting upper arm BP cuff had a sensitivity of 0.87 (0.79 to 0.93) and a specificity of 0.85 (0.64 to 0.95); insufficient evidence was available for other comparisons to invasive BP. Compared with the reference test of a correctly fitting upper arm cuff, BP measurement at the wrist had a sensitivity of 0.92 (0.64 to 0.99) and a specificity of 0.92 (0.85 to 0.87). Measurement with an incorrectly fitting standard cuff had a sensitivity of 0.73 (0.67 to 0.78) and a specificity of 0.76 (0.69 to 0.82). Measurement at the forearm had a sensitivity of 0.84 (0.71 to 0.92) and a specificity 0.75 of (0.66 to 0.83). Bland-Altman analysis of individual patient data from 3 studies comparing wrist and upper arm BP showed a mean difference of 0.46 mm Hg for systolic BP measurement and 2.2 mm Hg for diastolic BP measurement. BP measurement with a correctly fitting upper arm cuff is sufficiently sensitive and specific to diagnose hypertension in patients with obesity with a large upper arm circumference. If a correctly fitting upper arm cuff cannot be applied, an incorrectly fitting standard size cuff should not be used and BP measurement at the wrist should be considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Holden, John
2016-01-01
Objective To determine the diagnostic accuracy of different methods of blood pressure (BP) measurement compared with reference standards for the diagnosis of hypertension in patients with obesity with a large arm circumference. Design Systematic review with meta-analysis with hierarchical summary receiver operating characteristic models. Bland-Altman analyses where individual patient data were available. Methodological quality appraised using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS2) criteria. Data sources MEDLINE, EMBASE, Cochrane, DARE, Medion and Trip databases were searched. Eligibility criteria Cross-sectional, randomised and cohort studies of diagnostic test accuracy that compared any non-invasive BP tests (upper arm, forearm, wrist, finger) with an appropriate reference standard (invasive BP, correctly fitting upper arm cuff, ambulatory BP monitoring) in primary care were included. Results 4037 potentially relevant papers were identified. 20 studies involving 26 different comparisons met the inclusion criteria. Individual patient data were available from 4 studies. No studies satisfied all QUADAS2 criteria. Compared with the reference test of invasive BP, a correctly fitting upper arm BP cuff had a sensitivity of 0.87 (0.79 to 0.93) and a specificity of 0.85 (0.64 to 0.95); insufficient evidence was available for other comparisons to invasive BP. Compared with the reference test of a correctly fitting upper arm cuff, BP measurement at the wrist had a sensitivity of 0.92 (0.64 to 0.99) and a specificity of 0.92 (0.85 to 0.87). Measurement with an incorrectly fitting standard cuff had a sensitivity of 0.73 (0.67 to 0.78) and a specificity of 0.76 (0.69 to 0.82). Measurement at the forearm had a sensitivity of 0.84 (0.71 to 0.92) and a specificity 0.75 of (0.66 to 0.83). Bland-Altman analysis of individual patient data from 3 studies comparing wrist and upper arm BP showed a mean difference of 0.46 mm Hg for systolic BP measurement and 2.2 mm Hg for diastolic BP measurement. Conclusions BP measurement with a correctly fitting upper arm cuff is sufficiently sensitive and specific to diagnose hypertension in patients with obesity with a large upper arm circumference. If a correctly fitting upper arm cuff cannot be applied, an incorrectly fitting standard size cuff should not be used and BP measurement at the wrist should be considered. PMID:27810973
West, J M; Williams, N A; Luff, A R; Walker, D W
2000-04-01
To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.
Crenna, P; Carpinella, I; Lopiano, L; Marzegan, A; Rabuffetti, M; Rizzone, M; Lanotte, M; Ferrarin, M
2008-12-01
Clinical evidence of impaired arm swing while walking in patients with Parkinson's disease suggests that basal ganglia and related systems play an important part in the control of upper limb locomotor automatism. To gain more information on this supraspinal influence, we measured arm and thigh kinematics during walking in 10 Parkinson's disease patients, under four conditions: (i) baseline (no treatment), (ii) therapeutic stimulation of the subthalamic nucleus (STN), (iii)L-DOPA medication and (iv) combined STN stimulation and L-DOPA. Ten age-matched controls provided reference data. Under baseline conditions the range of patients' arm motion was severely restricted, with no correlation with the excursion of the thigh. In addition, the arm swing was abnormally coupled in time with oscillation of the ipsilateral thigh. STN stimulation significantly increased the gait speed and improved the spatio-temporal parameters of arm and thigh motion. The kinematic changes as a function of gait speed changes, however, were significantly smaller for the upper than the lower limb, in contrast to healthy controls. Arm motion was also less responsive after L-DOPA. Simultaneous deep brain stimulation and L-DOPA had additive effects on thigh motion, but not on arm motion and arm-thigh coupling. The evidence that locomotor automatisms of the upper and lower limbs display uncorrelated impairment upon dysfunction of the basal ganglia, as well as different susceptibility to electrophysiological and pharmacological interventions, points to the presence of heterogeneously distributed, possibly partially independent, supraspinal control channels, whereby STN and dopaminergic systems have relatively weaker influence on the executive structures involved in the arm swing and preferential action on those for lower limb movements. These findings might be considered in the light of phylogenetic changes in supraspinal control of limb motion related to primate bipedalism.
Activity of upper limb muscles during human walking.
Kuhtz-Buschbeck, Johann P; Jing, Bo
2012-04-01
The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sebbag, Ilana; Massey, Simon R; Albert, Arianne Y K; Dube, Alison; Gunka, Vit; Douglas, M Joanne
2015-09-01
Shivering is common during cesarean delivery (CD) under neuraxial anesthesia and may disrupt the measurement of noninvasive blood pressure (BP). BP measured at the wrist may be less affected by shivering. There have been no studies comparing trends in BP measured on the upper arm and wrist. We hypothesized that wrist systolic blood pressure (sBP) would accurately trend with upper arm sBP measurements (agree within a limit of ±10%) in parturients undergoing elective CD under spinal anesthesia or combined spinal-epidural anesthesia. After initiation of spinal anesthesia, BP measurements were obtained simultaneously from the upper arm and wrist on opposite arms. The interval between measurements was 1 to 2 minutes, and data were collected for 20 minutes or until delivery. The primary outcome was agreement in dynamic changes in sBP measurements between the upper arm and the wrist. Bland-Altman plots indicating the levels of agreement between the methods were drawn for baseline measurements, over multiple measurements, and over multiple measurements on percentage change from baseline. Forty-nine patients were recruited and completed the study. The wrist sBP tended to overestimate the upper sBP for both baseline data (sBP bias = 13.4 mm Hg; 95% confidence interval = +10.4 to +16.4 mm Hg) and data obtained over multiple measurements (sBP bias = 12.8 mm Hg; 95% confidence interval = +9.3 to +16.3 mm Hg). For change in sBP from baseline over multiple measurements, the mean difference between the wrist and the arm sBP was -0.2 percentage points (99% limits of agreement -25 to +25 percentage points). The wrist measurement overestimated the reading relative to the upper arm measurement for multiple measurements over time. However, when the time series for each subject was examined for percentage change from baseline, the 2 methods mirrored each other in most cases. Nevertheless, our hypothesis was rejected as the limits of agreement were higher than ±10%. This finding suggests that wrist BP may not be an accurate method of detecting hypotension or hypertension during spinal or combined spinal-epidural anesthesia for CD.
Schimanski, Karen; Jull, Andrew; Mitchell, Nancy; McLay, Jessica
2014-12-01
Forearm blood pressures have been suggested as an alternative site to measure blood pressures when the upper arm is unavailable. However there is little evidence utilising clinical populations to support this substitution. To determine agreement between blood pressures measured in the left upper arm and forearm using a singular oscillometric non-invasive device in adult Emergency Department patients. The secondary objective was to explore the relationship of blood pressure differences with age, sex, ethnicity, smoking history and obesity. Single centre comparison study. Adult Emergency Department, Tertiary Trauma Centre. Forty-four participants who met inclusion/exclusion criteria selected sequentially from the Emergency Department arrival board. A random assignment of order of measurement for left upper arm and forearm blood pressures was utilised. Participants were eligible if they were aged 18 years or older, had been assigned an Australasian Triage Scale code of 2, 3, 4, or 5, were able to consent, and able to have blood pressures measured on their left arm whilst lying at a 45° angle. The Bland-Altman method of statistical analysis was used, with the level of agreement for clinical acceptability for the systolic, diastolic and mean arterial pressure defined as ±10 mmHg. The forearm measure overestimated systolic (mean difference 2.2 mmHg, 95% limits of agreement ±19 mmHg), diastolic (mean difference 3.4 mmHg, 95% limits of agreement ±14.4 mmHg), and mean arterial pressures (mean difference 4.1 mmHg, 95% limits of agreement ±13.7 mmHg). The systolic measure was not significantly different from zero. Evidence of better agreement was found with upper arm/forearm systolic measures below 140 mmHg compared to systolic measures above 140 mmHg using the Levene's test (p=0.002, F-statistic=11.09). Blood pressure disparity was not associated with participant characteristics. Forearm measures cannot routinely replace upper arm measures for blood pressure measurement. If the clinical picture requires use of forearm blood pressure, the potential variance from an upper arm measure is ±19 mmHg for systolic pressure, although the variability may be close to ±10 mmHg if the systolic blood pressure is below 140 mmHg. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nakamura, Y N; Iwamoto, H; Tabata, S; Ono, Y
2003-07-01
1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.
Persistent arm pain is distinct from persistent breast pain following breast cancer surgery.
Langford, Dale J; Paul, Steven M; West, Claudia; Abrams, Gary; Elboim, Charles; Levine, Jon D; Hamolsky, Deborah; Luce, Judith A; Kober, Kord M; Neuhaus, John M; Cooper, Bruce A; Aouizerat, Bradley E; Miaskowski, Christine
2014-12-01
Persistent pain following breast cancer surgery is well documented. However, it is not well characterized in terms of the anatomic site affected (ie, breast, arm). In 2 separate growth mixture modeling analyses, we identified subgroups of women (N = 398) with distinct breast pain and arm pain trajectories. The fact that these latent classes differed by anatomic site, types of tissue affected, and neural innervation patterns suggests the need for separate evaluations of these distinct persistent pain conditions. The purposes of this companion study were to identify demographic and clinical characteristics that differed between the 2 arm pain classes and determine if differences existed over time in sensitivity in the upper inner arm and axillary lymph node dissection sites, pain qualities, pain interference, and hand and arm function, as well as to compare findings with persistent breast pain. Higher occurrence rates for depression and lymphedema were found in the moderate arm pain class. Regardless of pain group membership, sensory loss was observed in the upper inner arm and axillary lymph node dissection site. Arm pain was described similarly to neuropathic pain and interfered with daily functioning. Persistent arm pain was associated with sustained impairments in shoulder mobility. For persistent breast and arm pain, changes in sensation following breast cancer surgery were notable. Persistent arm pain was associated with sustained interference with daily functioning and upper body mobility impairments. Long-term management of persistent pain following breast cancer surgery is warranted to improve the quality of survivorship for these women. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
PERSISTENT ARM PAIN IS DISTINCT FROM PERSISTENT BREAST PAIN FOLLOWING BREAST CANCER SURGERY
Langford, Dale J.; Paul, Steven M.; West, Claudia; Abrams, Gary; Elboim, Charles; Levine, Jon D.; Hamolsky, Deborah; Luce, Judith A.; Kober, Kord M.; Neuhaus, John M.; Cooper, Bruce A.; Aouizerat, Bradley E.; Miaskowski, Christine
2014-01-01
Persistent pain following breast cancer surgery is well-documented. However, it is not well characterized in terms of the anatomic site effected (i.e., breast, arm). In two separate growth mixture modeling analyses, we identified subgroups of women (n=398) with distinct breast pain and arm pain trajectories. Based on the fact that these latent classes differed by anatomic site, types if tissue affected, and neural innervation patterns suggests the need for separate evaluations of these distinct persistent pain conditions. Purposes of this companion study were to identify demographic and clinical characteristics that differed between the two arm pain classes and determine if differences existed over time in sensitivity in the upper inner arm and axillary lymph node dissection (ALND) sites, pain qualities, pain interference, and hand and arm function; as well as to compare findings with persistent breast pain. Higher occurrence rates for depression and lymphedema were found in the Moderate Arm pain class. Regardless of pain group membership, sensory loss was observed in the upper inner arm and ALND site. Arm pain was described similarly to neuropathic pain and interfered with daily functioning. Persistent arm pain was associated with sustained impairments in shoulder mobility. Perspective: For persistent breast and arm pain, changes in sensation following breast cancer surgery were notable. Persistent arm pain was associated with sustained interference with daily functioning and upper body mobility impairments. Long-term management of persistent pain following breast cancer surgery is warranted to improve the quality of survivorship for these women. PMID:25439319
Hollingworth, Stephen
2012-01-01
In skeletal muscle fibers, action potentials elicit contractions by releasing calcium ions (Ca2+) from the sarcoplasmic reticulum. Experiments on individual mouse muscle fibers micro-injected with a rapidly responding fluorescent Ca2+ indicator dye reveal that the amount of Ca2+ released is three- to fourfold larger in fast-twitch fibers than in slow-twitch fibers, and the proportion of the released Ca2+ that binds to troponin to activate contraction is substantially smaller. PMID:22450485
Chu, J; McNally, S; Bruyninckx, F; Neuhauser, D
2017-04-01
Autonomous twitch elicitation at myofascial trigger points from spondylotic radiculopathies-induced denervation supersensitivity can provide favourable pain relief using electrical twitch-obtaining intramuscular stimulation (ETOIMS). To provide objective evidence that ETOIMS is safe and efficacious in migraine and persistent pain management due to decades-old injuries to head and spine from paediatric American football. An 83-year-old mildly hypertensive patient with 25-year history of refractory migraine and persistent pain self-selected to regularly receive fee-for-service ETOIMS 2/week over 20 months. He had 180 sessions of ETOIMS. Pain levels, blood pressure (BP) and heart rate/pulse were recorded before and immediately after each treatment alongside highest level of clinically elicitable twitch forces/session, session duration and intervals between treatments. Twitch force grades recorded were from 1 to 5, grade 5 twitch force being strongest. Initially, there was hypersensitivity to electrical stimulation with low stimulus parameters (500 µs pulse-width, 30 mA stimulus intensity, frequency 1.3 Hz). This resolved with gradual stimulus increments as tolerated during successive treatments. By treatment 27, autonomous twitches were noted. Spearman's correlation coefficients showed that pain levels are negatively related to twitch force, number of treatments, treatment session duration and directly related to BP and heart rate/pulse. Treatment numbers and session durations directly influence twitch force. At end of study, headaches and quality of life improved, hypertension resolved and antihypertensive medication had been discontinued. Using statistical process control methodology in an individual patient, we showed long-term safety and effectiveness of ETOIMS in simultaneous diagnosis, treatment, prognosis and prevention of migraine and persistent pain in real time obviating necessity for randomised controlled studies.
Collier, H O; Hammond, M D; Schneider, C
1976-01-01
1 Twenty-four hours after ethanol withdrawal, dependent mice exhibited frequent head twitching. Naive mice exhibited similar twitching 15 min after treatment with 5-hydroxytryptophan (5-HTP) or 6 h after alpha-methyl-p-tyrosine (AMPT). Ethanol lessened the incidence of head twitches induced by any of these treatments. 5-HTP and AMPT each increased the incidence of head twitches induced by withdrawal of ethanol from dependent mice. 2 Drugs that affect the amount or activity of endogenous amines or cyclic nucleotides modified the incidence of head twitches. Nearly all drugs acted in the same direction on twitching elicited by any of these three treatments. 3 The incidence was lessened by: (a) methysergide, methergoline, MA 1420, p-chlorophenylalanine and p-chloroamphetamine; (b) dopamine, noradrenaline, L-DOPA, amphetamine and apomorphine; (c) hyoscine and nicotine; and (d) adenosine triphosphate, dibutyryl cyclic adenosine-3',5'-monophosphate (db cyclic AMP) and prostaglandins E1 and E2. 4 The incidence was increased by: (a) acetylcholine, carbachol and physostigmine; and (b) guanosine triphosphate, dibutyryl cyclic guanosine monophosphate (db cyclic GMP), theophylline and 3-isobutyl-1-methyl-xanthine. 5 These findings suggest that head twitching induced by these three treatments arises from a common biochemical mechanism, which may ultimately be a change in favour of cyclic GMP of the balance between this nucleotide and cyclic AMP within appropriate neurones. This imbalance appears to be elicited or increased by 5-hydroxytryptamine and acetylcholine and to be decreased by dopamine, noradrenaline and E prostaglandins. 6 Neither actinomycin D nor cycloheximide, given during the induction of ethanol dependence, altered the incidence of head twitches after ethanol withdrawal. PMID:987821
Twitching in Sensorimotor Development from Sleeping Rats to Robots
Marques, Hugo Gravato; Iida, Fumiya
2013-01-01
It is still not known how the “rudimentary” movements of fetuses and infants are transformed into the coordinated, flexible, and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: When twitches are mimicked in robot models of the musculoskeletal system, basic neural circuitry self-organizes. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain. PMID:23787051
Fernández-de-las-Peñas, César; Gröbli, Christian; Ortega-Santiago, Ricardo; Fischer, Christine Stebler; Boesch, Daniel; Froidevaux, Philippe; Stocker, Lilian; Weissmann, Richard; González-Iglesias, Javier
2012-07-01
To describe the prevalence and referred pain area of trigger points (TrPs) in blue-collar (manual) and white-collar (office) workers, and to analyze if the referred pain pattern elicited from TrPs completely reproduces the overall spontaneous pain pattern. Sixteen (62% women) blue-collar and 19 (75% women) white-collar workers were included in this study. TrPs in the temporalis, masseter, upper trapezius, sternocleidomastoid, splenius capitis, oblique capitis inferior, levator scapulae, scalene, pectoralis major, deltoid, infraspinatus, extensor carpi radialis brevis and longus, extensor digitorum communis, and supinator muscles were examined bilaterally (hyper-sensible tender spot within a palpable taut band, local twitch response with snapping palpation, and elicited referred pain pattern with palpation) by experienced assessors blinded to the participants' condition. TrPs were considered active when the local and referred pain reproduced any symptom and the patient recognized the pain as familiar. The referred pain areas were drawn on anatomic maps, digitized, and measured. Blue-collar workers had a mean of 6 (SD: 3) active and 10 (SD: 5) latent TrPs, whereas white-collar workers had a mean of 6 (SD: 4) active and 11 (SD: 6) latent TrPs (P>0.548). No significant differences in the distribution of active and latent TrPs in the analyzed muscles between groups were found. Active TrPs in the upper trapezius, infraspinatus, levator scapulae, and extensor carpi radialis brevis muscles were the most prevalent in both groups. Significant differences in referred pain areas between muscles (P<0.001) were found; pectoralis major, infraspinatus, upper trapezius, and scalene muscles showed the largest referred pain areas (P<0.01), whereas the temporalis, masseter, and splenius capitis muscles showed the smallest (P<0.05). The combination of the referred pain from TrPs reproduced the overall clinical pain area in all participants. Blue-collar and white-collar workers exhibited a similar number of TrPs in the upper quadrant musculature. The referred pain elicited by active TrPs reproduced the overall pain pattern. The distribution of TrPs was not significantly different between groups. Clinicians should examine for the presence of muscle TrPs in blue-collar and white-collar workers.
Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke.
Levin, Mindy F; Liebermann, Dario G; Parmet, Yisrael; Berman, Sigal
2016-08-01
Background The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. Objectives To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. Methods Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. Results Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. Conclusions The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke. © The Author(s) 2015.
Modulation of skeletal muscle fiber type by mitogen-activated protein kinase signaling.
Shi, Hao; Scheffler, Jason M; Pleitner, Jonathan M; Zeng, Caiyun; Park, Sungkwon; Hannon, Kevin M; Grant, Alan L; Gerrard, David E
2008-08-01
Skeletal muscle is composed of diverse fiber types, yet the underlying molecular mechanisms responsible for this diversification remain unclear. Herein, we report that the extracellular signal-regulated kinase (ERK) 1/2 pathway, but not p38 or c-Jun NH(2)-terminal kinase (JNK), is preferentially activated in fast-twitch muscles. Pharmacological blocking of ERK1/2 pathway increased slow-twitch fiber type-specific reporter activity and repressed those associated with the fast-twitch fiber phenotype in vitro. Overexpression of a constitutively active ERK2 had an opposite effect. Inhibition of ERK signaling in cultured myotubes increased slow-twitch fiber-specific protein accumulation while repressing those characteristic of fast-twitch fibers. Overexpression of MAP kinase phosphatase-1 (MKP1) in mouse and rat muscle fibers containing almost exclusively type IIb or IIx fast myosin heavy chain (MyHC) isoforms induced de novo synthesis of the slower, more oxidative type IIa and I MyHCs in a time-dependent manner. Conversion to the slower phenotype was confirmed by up-regulation of slow reporter gene activity and down-regulation of fast reporter activities in response to forced MKP1 expression in vivo. In addition, activation of ERK2 signaling induced up-regulation of fast-twitch fiber program in soleus. These data suggest that the MAPK signaling, most likely the ERK1/2 pathway, is necessary to preserve the fast-twitch fiber phenotype with a concomitant repression of slow-twitch fiber program.
Ortiz-Rubio, Araceli; Cabrera-Martos, Irene; Rodríguez-Torres, Janet; Fajardo-Contreras, Waldo; Díaz-Pelegrina, Ana; Valenza, Marie Carmen
2016-12-01
To evaluate the effects of a home-based upper limb training program on arm function in patients with multiple sclerosis (MS). Additionally, the effects of this program on manual dexterity, handgrip strength, and finger prehension force were analyzed. Randomized, single-blind controlled trial. Home based. Patients with a clinical diagnosis of MS acknowledging impaired manual ability (N=37) were randomized into 2 groups. Patients in the experimental group were included in a supervised home-based upper limb training program for 8 weeks twice a week. Patients in the control group received information in the form of a leaflet with a schedule of upper limb exercise training. The primary outcome measure was arm function (motor functioning assessed using the finger tapping test and a functional measure, the Action Research Arm Test). The secondary outcome measures were manual dexterity assessed with the Purdue Pegboard Test and handgrip strength and finger prehension force evaluated with a handgrip and a pinch dynamometer, respectively. After 8 weeks, a significant between-group improvement (P<.05) was found on the Action Research Arm Test bilaterally and the finger tapping test in the most affected upper limb. The secondary outcomes also improved in the most affected limb in the experimental group. An 8-week home-based intervention program focused on upper limbs twice a week improved arm function and physiologic variables with a primary focus on the more affected extremity in patients with MS compared with the control group. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Association between intramuscular fat in the arm following arm training and INSIG2.
Popadic Gacesa, J Z; Secher, N H; Momcilovic, M; Grujic, N G
2014-12-01
Insulin-induced gene 2 (INSIG2) single-nucleotide polymorphism (SNP rs7566605) is linked to lipid metabolism, and this study assessed its potential influence on fat in the upper arm following arm training. Twenty healthy sedentary volunteers (22.0 ± 1.1 years, body mass index 25.4 ± 4.0 kg/m(2) ; mean ± standard deviation) carried out a 12-week two-arm elbow extensor training (10 maximal extensions with 1 min recovery between bouts) five times per day, five times per week. For 17 volunteers, upper arm muscle and adipose tissue [subcutaneous (SCAT) and intramuscular (IMAT)] volumes were evaluated by magnetic resonance imaging before, immediately after, and 12 months after training and variables were related to the subjects' INSIG2 SNP rs7566605 genotype. Muscle volume and SCAT for the upper arm, as the decrease in IMAT during training were not related to INSIG2 SNP rs7566605: GG: %IMAT 1.0 ± 0.9%; GC/CC: %IMAT 0.6 ± 0.5% (P > 0.05). However, in the year following the training, accumulation of upper arm IMAT was twice as large in participants homozygous for the G allele (GG: Δ%IMAT +2.5 ± 0.8%; GC/CC: Δ%IMAT +1.1 ± 0.7%; P < 0.01). This study suggests that the G allele in the INSIG2 SNP rs7566605 is more relevant for changes in IMAT following training than for the amount of subcutaneous fat. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Siu, Aaron; Schinkel-Ivy, Alison; Drake, Janessa Dm
2016-10-01
To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Francisco, Gerard E; Yozbatiran, Nuray; Berliner, Jeffrey; OʼMalley, Marcia K; Pehlivan, Ali Utku; Kadivar, Zahra; Fitle, Kyle; Boake, Corwin
2017-10-01
The aim of the study was to demonstrate the feasibility, tolerability, and effectiveness of robotic-assisted arm training in incomplete chronic tetraplegia. Pretest/posttest/follow-up was conducted. Ten individuals with chronic cervical spinal cord injury were enrolled. Participants performed single degree-of-freedom exercise of upper limbs at an intensity of 3-hr per session for 3 times a week for 4 wks with MAHI Exo-II. Arm and hand function tests (Jebsen-Taylor Hand Function Test, Action Research Arm Test), strength of upper limb (upper limb motor score, grip, and pinch strength), and independence in daily living activities (Spinal Cord Independence Measure II) were performed at baseline, end of training, and 6 mos later. After 12 sessions of training, improvements in arm and hand functions were observed. Jebsen-Taylor Hand Function Test (0.14[0.04]-0.21[0.07] items/sec, P = 0.04), Action Research Arm Test (30.7[3.8]-34.3[4], P = 0.02), American Spinal Injury Association upper limb motor score (31.5[2.3]-34[2.3], P = 0.04) grip (9.7[3.8]-12[4.3] lb, P = 0.02), and pinch strength (4.5[1.1]-5.7[1.2] lb, P = 0.01) resulted in significant increases. Some gains were maintained at 6 mos. No change in Spinal Cord Independence Measure II scores and no adverse events were observed. Results from this pilot study suggest that repetitive training of arm movements with MAHI Exo-II exoskeleton is safe and has potential to be an adjunct treatment modality in rehabilitation of persons with spinal cord injury with mild to moderate impaired arm functions.
Sato, Fumiko; Arinaga, Yoko; Sato, Naoko; Ishida, Takanori; Ohuchi, Noriaki
2016-03-01
The many women with breast cancer who underwent axillary lymph node dissection (ALND) suffer from the upper arm dysfunction. In this study, we investigated the effectiveness of a perioperative educational program for improving upper arm dysfunction in breast cancer patients following ALND. This study was a sub-analysis of a previous controlled trial with an educational program. The subjects of this analysis included 64 patients following ALND who completed measurements at 12 months. The perioperative educational program consisted of monitoring of arm dysfunction, exercises, massage, and lifestyle adjustments. The intervention group (37 patients) received this perioperative educational program over 12 months, while 27 patients in the control group received written information about shoulder exercise from on-site staff only before surgery. Primary outcomes were shoulder range of motion (ROM), arm girth, and grip strength. Secondary outcomes were evaluated with the Subjective Perception of Post-Operative Functional Impairment of the Arm (SPOFIA) scores, the Disabilities of the Arm, Shoulder and Hand (DASH) scores, and the Medical Outcome Study 36-Item Short-Form Health Survey v2 (SF-36v2). The SF-36v2 measures health-related quality of life (QOL). Primary and secondary outcomes were compared between groups at 1 week (after drainage tube removal) and 12 months after surgery, using the Mann-Whitney U test. The horizontal extension was significantly improved only in the intervention group. Moreover, the SPOFIA score was significantly improved in the intervention group, and other scores of the secondary outcomes were similar between the two groups. The perioperative educational program may improve postoperative upper arm dysfunction and symptoms.
Recovery from Short Term Intense Exercise: Its Relation to Capillary Supply and Lactate Release,
1982-01-01
accumulate at a higher rate in fast twitch (FT or Type II) than in slow twitch (ST or Type I) fibers of exercised muscles . Lactate form- ed and accumulated...is made up by a high percentage of FT fibers than can be expected in a " slow twitch " muscle . Moreover, the over-all metabolic profile of the ST fiber...local muscular fatigue. Eur. J. Appl. Physiol. 38, 9-15 (1978b) Baldwin, K.M., Tipton, C.M.: Work and metabolic patterns of fast and slow twitch
Hedqvist, P; Von Euler, U S
1976-11-01
Noradrenaline as well as the indirectly acting amines tyramine and phenethylamine either enhance or inhibit the twitch response of the transmurally stimulated, isolated guine-pig vas deferens, thus partly confirming previous reports. In both cases enhancement is annulled by alpha-adrenoceptor blockers. The twitch inhibition caused by noradrenaline is abolished by alpha- + beta2-adrenoceptor blockers, but not by either blocker alone. The inhibition caused by the indirectly acting amines is largely abolished by alpha-adrenoceptor blockers. Clonidine strongly inhibits the twitch. This effect if promptly removed by phentolamine. After blockade of the neurally induced twitch by tetrodotoxin, noradrenaline and the indirectly acting amines have no effect or slightly enhance the twitch elicited by transmural stimulation of the smooth muscle. It is concluded that exogenous noradrenaline acts on postjunctional stimulatory alpha-adrenoceptors and on inhibitory alpha- and beta2-adrenoceptors, which are presumably prejunctional. In the unstimulated preparation contracted by acetylcholine, noradrenaline causes further contraction which is changed into relaxation after phentolamine. This relaxation is abolished by butoxamine, suggesting that noradrenaline may also act on inhibitory postjunctional beta2-adrenoceptors. The twitch-inhibiting effect of endogenous noradrenaline, released by nerve stimulation or by indirectly acting amines, appears to be primarily mediated by prejunctional alpha-adrenoceptors.
Influence of pectoralis minor and upper trapezius lengths on observable scapular dyskinesis.
Yeşilyaprak, Sevgi Sevi; Yüksel, Ertuğrul; Kalkan, Serpil
2016-05-01
Although a relationship between short pectoralis minor and upper trapezius and scapular dyskinesis has been postulated, no studies have investigated this theory. Understanding the effect of these muscle lengths on observable scapular dyskinesis may aid in determining risks and therefore making treatment decisions. Being aware of the magnitude of this effect would help gauge the significance of risks involved. Our aim was to evaluate the influence of pectoralis minor and upper trapezius lengths on scapular dyskinesis. Cross-sectional study. University research laboratory. Asymptomatic participants (n = 148; 296 arms) were evaluated. Scapular Dyskinesis Test (SDT) was used to identify scapular dyskinesis, Pectoralis Minor Index (PMI) and Upper Trapezius Length Testing were used to determine muscle length. SDT+ arms had shorter pectoralis minor resting length (PMI: 7.49 ± 0.38) (p < 0.001) and greater incidence of short upper trapezius (ISUT) (66.7%) (p < 0.001) compared to SDT- arms (PMI:8.58 ± 0.75, ISUT:22.5%). With each decrease in PMI, the likelihood of having scapular dyskinesis increased 96% (p < 0.001). Arms with short upper trapezius were 2.049 times more likely to exhibit scapular dyskinesis than those with normal length (p = 0.042). Having a shorter pectoralis minor and upper trapezius length substantially increased the likelihood of having visually observable scapular dyskinesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koley, Shyamal; Pal Kaur, Satinder
2011-01-01
Purpose The purpose of this study was to estimate the dominant handgrip strength and its correlations with some hand and arm anthropometric variables in 101 randomly selected Indian inter-university female volleyball players aged 18-25 years (mean age 20.52±1.40) from six Indian universities. Methods Three anthropometric variables, i.e. height, weight, BMI, two hand anthropometric variables, viz. right and left hand width and length, four arm anthropometric variables, i.e. upper arm length, lower arm length, upper extremity length, upper arm circumference and dominant right and non-dominant handgrip strength were measured among Indian inter-university female volleyball players by standard anthropometric techniques. Results The findings of the present study indicated that Indian female volleyball players had higher mean values in eleven variables and lesser mean values in two variables than their control counterparts, showing significant differences (P<0.032-0.001) in height (t=2.63), weight (t=8.66), left hand width (t=2.10), left and right hand length (t=9.99 and 10.40 respectively), right upper arm length (t=8.48), right forearm length (t=5.41), dominant (right) and non-dominant (left) handgrip strength (t=9.37 and 6.76 respectively). In female volleyball players, dominant handgrip strength had significantly positive correlations (P=0.01) with all the variables studied. Conclusion It may be concluded that dominant handgrip strength had strong positive correlations with all the variables studied in Indian inter-university female volleyball players. PMID:22375242
Isometric Arm Strength and Subjective Rating of Upper Limb Fatigue in Two-Handed Carrying Tasks
Li, Kai Way; Chiu, Wen-Sheng
2015-01-01
Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks. PMID:25794159
Isometric arm strength and subjective rating of upper limb fatigue in two-handed carrying tasks.
Li, Kai Way; Chiu, Wen-Sheng
2015-01-01
Sustained carrying could result in muscular fatigue of the upper limb. Ten male and ten female subjects were recruited for measurements of isometric arm strength before and during carrying a load for a period of 4 minutes. Two levels of load of carrying were tested for each of the male and female subjects. Exponential function based predictive equations for the isometric arm strength were established. The mean absolute deviations of these models in predicting the isometric arm strength were in the range of 3.24 to 17.34 N. Regression analyses between the subjective ratings of upper limb fatigue and force change index (FCI) for the carrying were also performed. The results indicated that the subjective rating of muscular fatigue may be estimated by multiplying the FCI with a constant. The FCI may, therefore, be adopted as an index to assess muscular fatigue for two-handed carrying tasks.
Short-Term Upper Limb Immobilization Affects Action-Word Understanding
ERIC Educational Resources Information Center
Bidet-Ildei, Christel; Meugnot, Aurore; Beauprez, Sophie-Anne; Gimenes, Manuel; Toussaint, Lucette
2017-01-01
The present study aimed to investigate whether well-established associations between action and language can be altered by short-term upper limb immobilization. The dominant arm of right-handed participants was immobilized for 24 hours with a rigid splint fixed on the hand and an immobilization vest restraining the shoulder, arm, and forearm. The…
Non-contact versus contact-based sensing methodologies for in-home upper arm robotic rehabilitation.
Howard, Ayanna; Brooks, Douglas; Brown, Edward; Gebregiorgis, Adey; Chen, Yu-Ping
2013-06-01
In recent years, robot-assisted rehabilitation has gained momentum as a viable means for improving outcomes for therapeutic interventions. Such therapy experiences allow controlled and repeatable trials and quantitative evaluation of mobility metrics. Typically though these robotic devices have been focused on rehabilitation within a clinical setting. In these traditional robot-assisted rehabilitation studies, participants are required to perform goal-directed movements with the robot during a therapy session. This requires physical contact between the participant and the robot to enable precise control of the task, as well as a means to collect relevant performance data. On the other hand, non-contact means of robot interaction can provide a safe methodology for extracting the control data needed for in-home rehabilitation. As such, in this paper we discuss a contact and non-contact based method for upper-arm rehabilitation exercises that enables quantification of upper-arm movements. We evaluate our methodology on upper-arm abduction/adduction movements and discuss the advantages and limitations of each approach as applied to an in-home rehabilitation scenario.
Wii™-habilitation of upper extremity function in children with cerebral palsy. An explorative study.
Winkels, Diny G M; Kottink, Anke I R; Temmink, Rutger A J; Nijlant, Juliëtte M M; Buurke, Jaap H
2013-01-01
Commercially available virtual reality systems can possibly support rehabilitation objectives in training upper arm function in children with Cerebral Palsy (CP). The present study explored the effect of the Nintendo Wii™ training on upper extremity function in children with CP. During six weeks, all children received twice a week training with the Wii™, with their most affected arm. The Melbourne Assessment of Upper Limb Function and ABILHAND-Kids were assessed pre- and post- training. In addition, user satisfaction of both children and health professionals was assessed after training. Enjoyment in gaming was scored on a visual analogue scale scale after each session by the children. Fifteen children with CP participated in the study. The quality of upper extremity movements did not change (-2.1, p > 0.05), while a significant increase of convenience in using hands/arms during performance of daily activities was found (0.6, p < 0.05). Daily activities seem to be easier performed after Wii™ training for most of the included children with CP.
The role of Sox6 in zebrafish muscle fiber type specification.
Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W
2015-01-01
The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog.
Gravity-supported exercise with computer gaming improves arm function in chronic stroke.
Jordan, Kimberlee; Sampson, Michael; King, Marcus
2014-08-01
To investigate the effect of 4 to 6 weeks of exergaming with a computer mouse embedded within an arm skate on upper limb function in survivors of chronic stroke. Intervention study with a 4-week postintervention follow-up. In home. Survivors (N=13) of chronic (≥6 mo) stroke with hemiparesis of the upper limb with stable baseline Fugl-Meyer assessment scores received the intervention. One participant withdrew, and 2 participants were not reassessed at the 4-week follow-up. No participants withdrew as a result of adverse effects. Four to 6 weeks of exergaming using the arm skate where participants received either 9 (n=5) or 16 (n=7) hours of game play. Upper limb component of the Fugl-Meyer assessment. There was an average increase in the Fugl-Meyer upper limb assessment score from the beginning to end of the intervention of 4.9 points. At the end of the 4-week period after the intervention, the increase was 4.4 points. A 4- to 6-week intervention using the arm skate significantly improved arm function in survivors of chronic stroke by an average of 4.9 Fugl-Meyer upper limb assessment points. This research shows that a larger-scale randomized trial of this device is warranted and highlights the potential value of using virtual reality technology (eg, computer games) in a rehabilitation setting. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Rotary Series Elastic Actuator
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)
2013-01-01
A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
Rotary series elastic actuator
NASA Technical Reports Server (NTRS)
Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)
2012-01-01
A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.
Sabharwal, Sagar; Jeyaseelan, L; Panda, Arabind; Gnanaraj, Lionel; Kekre, Nitin S; Devasia, Antony
2017-12-01
To assess the effect of diuretics with shockwave lithotripsy (SWL) on the treatment of renal and upper ureteric calculi. Adult patients with a solitary non-obstructive radio-opaque renal or upper ureteric calculus with normal renal function were included. They were prospectively randomised to receive either SWL with placebo or SWL with diuretics (40 mg parenteral furosemide) in a double-blind manner with a sample size of 48 patients in each arm. The primary outcomes were the SWL success and failure rates. The secondary outcomes were the number of shocks and sessions. Complete fragmentation was achieved in 89.6% of the patients in the furosemide arm as compared to 81.3% in the placebo arm. Clearance was achieved in 77.1% of the patients in the furosemide arm as compared to 70.8% in the placebo arm. The number of shocks and the number of sessions were higher in the placebo arm. These differences were not statistically significant. The use of diuretics along with SWL treatment of renal and upper ureteric calculi does not show a statistically significant improvement in fragmentation or clearance.
Sensory-Feedback Exoskeletal Arm Controller
NASA Technical Reports Server (NTRS)
An, Bin; Massie, Thomas H.; Vayner, Vladimir
2004-01-01
An electromechanical exoskeletal arm apparatus has been designed for use in controlling a remote robotic manipulator arm. The apparatus, called a force-feedback exoskeleton arm master (F-EAM) is comfortable to wear and easy to don and doff. It provides control signals from the wearer s arm to a robot arm or a computer simulator (e.g., a virtual-reality system); it also provides force and torque feedback from sensors on the robot arm or from the computer simulator to the wearer s arm. The F-EAM enables the wearer to make the robot arm gently touch objects and finely manipulate them without exerting excessive forces. The F-EAM features a lightweight design in which the motors and gear heads that generate force and torque feedback are made smaller than they ordinarily would be: this is achieved by driving the motors to power levels greater than would ordinarily be used in order to obtain higher torques, and by providing active liquid cooling of the motors to prevent overheating at the high drive levels. The F-EAM (see figure) includes an assembly that resembles a backpack and is worn like a backpack, plus an exoskeletal arm mechanism. The FEAM has five degrees of freedom (DOFs) that correspond to those of the human arm: 1. The first DOF is that of the side-to-side rotation of the upper arm about the shoulder (rotation about axis 1). The reflected torque for this DOF is provided by motor 1 via drum 1 and a planar four-bar linkage. 2. The second DOF is that of the up-and-down rotation of the arm about the shoulder. The reflected torque for this DOF is provided by motor 2 via drum 2. 3. The third DOF is that of twisting of the upper arm about its longitudinal axis. This DOF is implemented in a cable remote-center mechanism (CRCM). The reflected torque for this DOF is provided by motor 3, which drives the upper-arm cuff and the mechanism below it. A bladder inflatable by gas or liquid is placed between the cuff and the wearer s upper arm to compensate for misalignment between the exoskeletal mechanism and the shoulder. 4. The fourth DOF is that of flexion and extension of the elbow. The reflected torque for this DOF is provided by motor 4 and drum 4, which are mounted on a bracket that can slide longitudinally by a pin-and-slot engagement with the upper-arm cuff to compensate for slight variations in the position of the kinematic center of the elbow. Attached to drum 4 is an adapter plate to which is attached a CRCM for the lower arm. 5. The lower-arm CRCM implements the fifth DOF, which is the twist of the forearm about its longitudinal axis. Motor 5 provides the reflected torque for this DOF by driving the lower-arm cuff. A rod transmits twist and torsion between the lower-arm cuff and the hand cuff. With this system, the motion of the wearer s joints and the reflected torques applied to these joints can be measured and controlled in a relatively simple manner. This is because the anthropomorphic design of the mechanism imitates the kinematics of the human arm, eliminating the need for kinematic conversion of joint-torque and joint-angle data.
A comparative study of charge movement in rat and frog skeletal muscle fibres.
Hollingworth, S; Marshall, M W
1981-12-01
1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.
Koppenhaver, Shane L; Walker, Michael J; Rettig, Charles; Davis, Joel; Nelson, Chenae; Su, Jonathan; Fernández-de-Las-Peñas, Cesar; Hebert, Jeffrey J
2017-06-01
To investigate the relationship between dry needling-induced twitch response and change in pain, disability, nociceptive sensitivity, and lumbar multifidus muscle function, in patients with low back pain (LBP). Quasi-experimental study. Department of Defense Academic Institution. Sixty-six patients with mechanical LBP (38 men, 28 women, age: 41.3 [9.2] years). Dry needling treatment to the lumbar multifidus muscles between L3 and L5 bilaterally. Examination procedures included numeric pain rating, the Modified Oswestry Disability Index, pressure algometry, and real-time ultrasound imaging assessment of lumbar multifidus muscle function before and after dry needling treatment. Pain pressure threshold (PPT) was used to measure nocioceptive sensitivity. The percent change in muscle thickness from rest to contraction was calculated to represent muscle function. Participants were dichotomized and compared based on whether or not they experienced at least one twitch response on the most painful side and spinal level during dry needling. Participants experiencing local twitch response during dry needling exhibited greater immediate improvement in lumbar multifidus muscle function than participants who did not experience a twitch (thickness change with twitch: 12.4 [6]%, thickness change without twitch: 5.7 [11]%, mean difference adjusted for baseline value, 95%CI: 4.4 [1 to 8]%). However, this difference was not present after 1-week, and there were no between-groups differences in disability, pain intensity, or nociceptive sensitivity. The twitch response during dry needling might be clinically relevant, but should not be considered necessary for successful treatment. Published by Elsevier Ltd.
Sim, Kang Hee; Hwang, Moon Sook; Kim, Sun Young; Lee, Hye Mi; Chang, Ji Yeun; Lee, Moon Kyu
2014-04-01
Longer needle and complicated insulin injection technique such as injecting at a 45-degree angle and making skinfolds may decrease patient compliance to insulin injection therapy. In this light, shorter insulin needles have been recently developed. However, it is necessary to ascertain that such shorter needles are appropriate for Korean patients with diabetes as well. First, the diverse demographic and diabetic features of 156 Korean adults with diabetes were collected by a questionnaire and a device unit of body fat measurement. The skin and subcutaneous fat thicknesses of each subject were measured by Ultrasound device with a 7- to 12-MHz probe. Data were analyzed using analysis of variance and multiple linear regression. The mean skin thickness was 2.29±0.37 mm in the abdomen and 2.00±0.34 mm in the upper arms, and the mean subcutaneous fat thickness was to 10.15±6.54 mm in the abdomen and 5.50±2.68 mm in the upper arms. Our analysis showed that the factors affecting the skin thickness of the abdomen and upper arms were gender and body mass index (BMI), whereas the factors influencing the subcutaneous fat thickness in the abdomen were gender and BMI, and the factors influencing the subcutaneous fat thickness in the upper arms were gender, BMI, and age. Insulin fluids may not appear to be intradermally injected into the abdomen and upper arms at any needle lengths. The risk of intramuscular injection is likely to increase with longer insulin needles and lower BMI. It is recommended to fully inform the patients about the lengths of needles for insulin injections. As for the recommended needle length, the findings of this study indicate that needles as short as 4 mm are sufficient to deliver insulin for Korean patients with diabetes.
Application and comparison of different implanted ports in malignant tumor patients.
Li, Yanhong; Cai, Yonghua; Gan, Xiaoqin; Ye, Xinmei; Ling, Jiayu; Kang, Liang; Ye, Junwen; Zhang, Xingwei; Zhang, Jianwei; Cai, Yue; Hu, Huabin; Huang, Meijin; Deng, Yanhong
2016-09-23
The current study aims to compare the application and convenience of the upper arm port with the other two methods of implanted ports in the jugular vein and the subclavian vein in patients with gastrointestinal cancers. Currently, the standard of practice is placement of central venous access via an internal jugular vein approach. Perioperative time, postoperative complications, and postoperative comfort level in patients receiving an implanted venous port in the upper arm were retrospectively compared to those in the jugular vein and the subclavian vein from April 2013 to November 2014. Three hundred thirty-four patients are recruited for this analysis, consisting of 107 in the upper arm vein group, 70 in the jugular vein group, and 167 in the subclavian vein group. The occurrence of catheter misplacement in the upper arm vein is higher than that in the other two groups (13.1 vs. 2.9 vs. 5.4 %, respectively, P = 0.02), while the other complications in the perioperative period were not significantly different. The occurrence of transfusion obstacle of the upper arm vein group is significantly lower than that of the jugular and subclavian groups (0.9 vs. 7.1 vs. 7.2 %, P = 0.01). The occurrence of thrombus is also lower than that of other two groups (0.9 vs. 4.3 vs. 3.6 %, P = 0.03). Regarding the postoperative comfort, the influences of appearance (0 vs. 7.1 vs. 2.9 %, P = 0.006) and sleep (0.9 vs. 4.2 vs. 10.7 %, P = 0.003) are significantly better than those of the jugular and subclavian vein groups. Compared to the jugular and the subclavian vein groups, the implanted venous port in the upper arm vein has fewer complications and more convenience and comfort, and might be a superior novel choice for patients requiring long-term chemotherapy or parenteral nutrition.
Sim, Kang Hee; Kim, Sun Young; Lee, Hye Mi; Chang, Ji Yeun; Lee, Moon Kyu
2014-01-01
Background Longer needle and complicated insulin injection technique such as injecting at a 45-degree angle and making skinfolds may decrease patient compliance to insulin injection therapy. In this light, shorter insulin needles have been recently developed. However, it is necessary to ascertain that such shorter needles are appropriate for Korean patients with diabetes as well. Methods First, the diverse demographic and diabetic features of 156 Korean adults with diabetes were collected by a questionnaire and a device unit of body fat measurement. The skin and subcutaneous fat thicknesses of each subject were measured by Ultrasound device with a 7- to 12-MHz probe. Data were analyzed using analysis of variance and multiple linear regression. Results The mean skin thickness was 2.29±0.37 mm in the abdomen and 2.00±0.34 mm in the upper arms, and the mean subcutaneous fat thickness was to 10.15±6.54 mm in the abdomen and 5.50±2.68 mm in the upper arms. Our analysis showed that the factors affecting the skin thickness of the abdomen and upper arms were gender and body mass index (BMI), whereas the factors influencing the subcutaneous fat thickness in the abdomen were gender and BMI, and the factors influencing the subcutaneous fat thickness in the upper arms were gender, BMI, and age. Insulin fluids may not appear to be intradermally injected into the abdomen and upper arms at any needle lengths. The risk of intramuscular injection is likely to increase with longer insulin needles and lower BMI. Conclusion It is recommended to fully inform the patients about the lengths of needles for insulin injections. As for the recommended needle length, the findings of this study indicate that needles as short as 4 mm are sufficient to deliver insulin for Korean patients with diabetes. PMID:24851206
1991-10-01
KNEE I SHOULDER V SHIN /CALF 357 OTITIS EXTERNA 17 HEAT EXHAUSTION J, UPPER ARM W ANKLE T358 OITIS MEDIA K ELBOW X FOOT 0 337 CONJUNCTIVITIS - 18...OTHER, SPECIFY:__ 17 HEAT EXHAUSTION a CHEST T UPPER LEG S18 HEAT STROKE H RIBS U KNEE EYEAR: _ 19 LACERATION I SHOULDER V SHIN ,-LF 0 38010...GROINoGENITAL 03 ALERT 0 VERBAL RESPONSE I SHOULDER V UPPER LEG C3 PAIN RESPONSE 0’ UNRESPONSIVE J UPPER ARM W KNEE K ELBOW X SHIN /CALF MEDICATION L
Schumann, R; Alyamani, O; Viswanath, A; Bonney, I
2016-01-01
The purpose of this study was to determine the correlation between body mass index (BMI) and upper and lower arm as well as lower leg circumferences and the frequency of correct blood pressure (BP) cuff fit. We explored recommendations for the most likely BP cuff size and location for the three BMI categories. Following IRB approval we retrospectively analyzed a research database of bariatric surgical patients with a BMI of ≥40 kg/m(2). Data included patients' characteristics, upper and lower arm as well as lower leg circumferences. Patients were divided into three groups based on BMI (kg/m(2), Group I: <45, Group II: 45-55, and Group III: >55). Appropriate cuff fit using a standard or large adult BP cuff (CRITIKON(®), GE Healthcare, Waukesha, Wisconsin, USA) on the upper and lower arm, and lower leg was determined. We analyzed the percent proportion of proper cuff fit for cuff sizes and locations between groups using appropriate nonparametric testing. Limb circumference correlated significantly with BMI (P = 0.01), and the upper arm correlated most closely (r = 0.76). A standard adult BP cuff on the lower arm fit properly in >90% and >80% and in Groups I and II, respectively. A large cuff on the lower arm was appropriate in 87% of Group III. In two participants, a large cuff fit properly on the lower leg. Limb circumference significantly correlated with BMI. Recommendations for proper cuff fit in different BMI categories can be made.
Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina
2015-09-01
To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.
Hanft, Laurin M; McDonald, Kerry S
2010-08-01
According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length-tension relationships appear able to switch between slow-twitch-like and fast-twitch-like by PKA-mediated myofibrillar phosphorylation, which implicates a novel means for controlling Frank-Starling relationships.
Vandenboom, Rene
2014-01-01
Ca2+ entry during the action potential stimulates muscle contraction. During repetitive low frequency stimulation, skeletal muscle undergoes staircase potentiation (SP), a progressive increase in the peak twitch force induced by each successive stimulus. Multiple mechanisms, including myosin regulatory light chain phosphorylation, likely contribute to SP, a temperature-dependent process. Here, we used the Ca2+-sensitive fluorescence indicators acetoxymethyl (AM)-furaptra and AM-fura-2 to examine the intracellular Ca2+ transient (ICT) and the baseline Ca2+ level at the onset of each ICT during SP at 30 and 37°C in mouse lumbrical muscle. The stimulation protocol, 8 Hz for 8 s, resulted in a 27 ± 3% increase in twitch force at 37°C and a 7 ± 2% decrease in twitch force at 30°C (P < 0.05). Regardless of temperature, the peak rate of force production (+df/dt) was higher in all twitches relative to the first twitch (P < 0.05). Consistent with the differential effects of stimulation on twitch force at the two temperatures, raw ICT amplitude decreased during repetitive stimulation at 30°C (P < 0.05) but not at 37°C. Cytosolic Ca2+ accumulated during SP such that baseline Ca2+ at the onset of ICTs occurring late in the train was higher (P < 0.05) than that of those occurring early in the train. ICT duration increased progressively at both temperatures. This effect was not entirely proportional to the changes in twitch duration, as twitch duration characteristically decreased before increasing late in the protocol. This is the first study identifying a changing ICT as an important, and temperature-sensitive, modulator of muscle force during repetitive stimulation. Moreover, we extend previous observations by demonstrating that contraction-induced increases in baseline Ca2+ coincide with greater +df/dt but not necessarily with higher twitch force. PMID:25422504
22. View showing main anchor arm, as viewed from main ...
22. View showing main anchor arm, as viewed from main cantilever arm looking south. Note upper chord eyebar arrangement. - Williamstown-Marietta Bridge, Spanning Ohio River between Williamstown & Marietta, Williamstown, Wood County, WV
Profiles of muscularity in junior Olympic weight lifters.
Kanehisa, H; Funato, K; Abe, T; Fukunaga, T
2005-03-01
This study aimed to investigate the muscularity of strength-trained junior athletes. Muscle thickness (Mt) values at 10 sites (anterior forearm, anterior upper arm, posterior upper arm, chest, abdomen, back, anterior thigh, posterior thigh, anterior lower leg, and posterior lower leg) were determined in junior Olympic weight lifters (OWL, n=7, 15.1+/-0.3 y, mean+/-SD) and non-athletes (CON, n=13, 15.1+/-0.3 y) using a brightness mode ultrasonography. Skeletal age assessed with the Tanner-Whitehouse II method (20 hand-wrist bones) was similar in OWL (16.4+/-0.7 y) and CON (16.3+/-0.6 y). At the 6 sites (anterior forearm, anterior upper arm, posterior upper arm, chest, back and anterior thigh), OWL showed significantly greater Mt values than CON even in terms of Mt relative to body mass(1/3) Mt x BM(-1/3). On the other hand, there were no significant differences between the 2 groups in the Mt ratios of the anterior to posterior site in the upper arm, thigh and lower leg and those of the back to either the chest or abdomen in the trunk. For OWL only, skeletal age was significantly correlated to Mt x BM(-1/3) at the abdomen (r=0.869, p<0.05) and anterior thigh (r=0.883, p<0.05). The findings here indicate that 1) as compared to adolescent non-athletes, junior Olympic weight lifters show a greater muscularity in the upper body and anterior thigh without predominant development in either of anterior and posterior sites within the same body segment, 2) for junior Olympic weight lifters, the muscularity of abdominal and knee extensor muscles is influenced by the biological maturation.
Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.
Resnik, Linda; Klinger, Shana Lieberman; Etter, Katherine; Fantini, Christopher
2014-07-01
The DEKA Arm, a pre-commercial upper limb prosthesis, funded by the DARPA Revolutionizing Prosthetics Program, offers increased degrees of freedom while requiring a large number of user control inputs to operate. To address this challenge, DEKA developed prototype foot controls. Although the concept of utilizing foot controls to operate an upper limb prosthesis has been discussed for decades, only small-sized studies have been performed and no commercial product exists. The purpose of this paper is to report amputee user perspectives on using three different iterations of foot controls to operate the DEKA Arm. Qualitative data was collected from 36 subjects as part of the Department of Veterans Affairs (VA) Study to Optimize the DEKA Arm through surveys, interviews, audio memos, and videotaped sessions. Three major, interrelated themes were identified using the constant comparative method: attitudes towards foot controls, psychomotor learning and physical experience of using foot controls. Feedback about foot controls was generally positive for all iterations. The final version of foot controls was viewed most favorably. Our findings indicate that foot controls are a viable control option that can enable control of a multifunction upper limb prosthesis (the DEKA Arm). Multifunction upper limb prostheses require many user control inputs to operate. Foot controls offer additional control input options for such advanced devices, yet have had minimal study. This study found that foot controls were a viable option for controlling multifunction upper limb prostheses. Most of the 36 subjects in this study were willing to adopt foot controls to control the multiple degrees of freedom of the DEKA Arm. With training and practice, all users were able to develop the psychomotor skills needed to successfully operate food controls. Some had initial difficulty, but acclimated over time.
Barredo, Jennifer; Acluche, Frantzy; Disla, Roxanne; Fantini, Christopher; Fishelis, Leah; Sasson, Nicole; Resnik, Linda
2017-08-01
To describe a participant with scapulo-thoracic amputation and cognitive impairment trained to use the DEKA Arm and discuss factors relevant to the determination that he was not an appropriate candidate for independent home use of the device. The participant underwent 40 h of in-laboratory training with the DEKA Arm Advanced Upper Limb Prosthesis. Pre-training neuropsychological measures of cognition were collected. Qualitative and quantitative data related to functional performance, quality of life and pain were collected after 10 h of training, and at the conclusion of training. Using a constant comparative approach, data were binned into major themes; elements within each theme were identified. Six themes were relevant to the determination that the participant was inappropriate for home use of the DEKA Arm: physical and mental health; learning, memory and cognition; adult role function; functional performance; user safety and judgement and capacity for independent device use. Issues contraindicating unsupervised device use included: uncontrolled health symptoms, poor knowledge application, safety concerns, absenteeism and performance degradation under stress. The findings have implications for training with and prescription of the DEKA Arm and other complex upper limb prostheses. Further research is needed to develop a model to guide prescription of technologically complex upper limb prostheses. Implications for Rehabilitation Advanced upper limb prostheses, like the DEKA Arm, promise greater functionality, but also may be cognitively demanding, raising questions of when, and if, prescription is appropriate for patients with cognitive impairment. At this time, no formal criteria exist to guide prescription of advanced upper limb prostheses. Each clinical team applies their own informal standards in decision-making. In this case report, we described six factors that were considered in determining whether or not a research participant, with scapulo-thoracic amputation and cognitive impairment was appropriate for home use of a complex upper limb prosthesis. The findings have implications for training with and prescription of the DEKA Arm, and highlights the need for further research to develop prescription guidelines for advanced assistive devices.
Heiden, Marina; Garza, Jennifer; Trask, Catherine; Mathiassen, Svend Erik
2017-03-01
A cost-efficient approach for assessing working postures could be to build statistical models for predicting results of direct measurements from cheaper data, and apply these models to samples in which only the latter data are available. The present study aimed to build and assess the performance of statistical models predicting inclinometer-assessed trunk and arm posture among paper mill workers. Separate models were built using administrative data, workers' ratings of their exposure, and observations of the work from video recordings as predictors. Trunk and upper arm postures were measured using inclinometry on 28 paper mill workers during three work shifts each. Simultaneously, the workers were video filmed, and their postures were assessed by observation of the videos afterwards. Workers' ratings of exposure, and administrative data on staff and production during the shifts were also collected. Linear mixed models were fitted for predicting inclinometer-assessed exposure variables (median trunk and upper arm angle, proportion of time with neutral trunk and upper arm posture, and frequency of periods in neutral trunk and upper arm inclination) from administrative data, workers' ratings, and observations, respectively. Performance was evaluated in terms of Akaike information criterion, proportion of variance explained (R2), and standard error (SE) of the model estimate. For models performing well, validity was assessed by bootstrap resampling. Models based on administrative data performed poorly (R2 ≤ 15%) and would not be useful for assessing posture in this population. Models using workers' ratings of exposure performed slightly better (8% ≤ R2 ≤ 27% for trunk posture; 14% ≤ R2 ≤ 36% for arm posture). The best model was obtained when using observational data for predicting frequency of periods with neutral arm inclination. It explained 56% of the variance in the postural exposure, and its SE was 5.6. Bootstrap validation of this model showed similar expected performance in other samples (5th-95th percentile: R2 = 45-63%; SE = 5.1-6.2). Observational data had a better ability to predict inclinometer-assessed upper arm exposures than workers' ratings or administrative data. However, observational measurements are typically more expensive to obtain. The results encourage analyses of the cost-efficiency of modeling based on administrative data, workers' ratings, and observation, compared to the performance and cost of measuring exposure directly. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
USDA-ARS?s Scientific Manuscript database
Each year more children die from moderate than severe malnutrition. Home-based therapy (HBT) using Ready-to-Use Therapeutic Foods (RUTF) has proven to successfully treat uncomplicated childhood malnutrition on an outpatient basis. This study attempts to discern if Mid-upper Arm Circumference (MUAC) ...
[A man with a painful upper arm after bench press exercise].
Sijtsma, Ben C T; van der Veen, Hugo C; van Raay, Jos J A M
2015-01-01
A 22-year-old male bodybuilder presented with pain and a haematoma of his right upper arm after bench press exercises. Suspicion of a pectoralis muscle tear was confirmed by MRI and surgical repair was performed. Ruptures of the pectoralis major muscle are rare, but may occur in young male bodybuilders, typically after bench press exercises.
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
49 CFR 572.86 - Test conditions and dummy adjustment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lying on a horizontal surface and the neck assembly mounted and shoulders on the edge of the surface... surface with the shoulders on the edge of the surface, mount the head and tighten the head bolt and nut... upper arm and tighten firmly the adjustment bolts for the shoulder joint with the upper arm placed in a...
Skin tightening with a combined unipolar and bipolar radiofrequency device.
Mayoral, Flor A
2007-02-01
Monopolar radiofrequency (RF) devices are well established treatment modalities for tightening facial skin. A 60-year-old woman presented with a desire to tighten the lax skin and improve the appearance of both upper arms. A combination unipolar and bipolar RF device may provide volume reduction as well as skin tightening in the upper arm.
Full-Shift Trunk and Upper Arm Postures and Movements Among Aircraft Baggage Handlers.
Wahlström, Jens; Bergsten, Eva; Trask, Catherine; Mathiassen, Svend Erik; Jackson, Jennie; Forsman, Mikael
2016-10-01
The present study assessed full-shift trunk and upper arm postural exposure amplitudes, frequencies, and durations among Swedish airport baggage handlers and aimed to determine whether exposures differ between workers at the ramp (loading and unloading aircraft) and baggage sorting areas. Trunk and upper arm postures were measured using inclinometers during three full work shifts on each of 27 male baggage handlers working at a large Swedish airport. Sixteen of the baggage handlers worked on the ramp and 11 in the sorting area. Variables summarizing postures and movements were calculated, and mean values and variance components between subjects and within subject (between days) were estimated using restricted maximum likelihood algorithms in a one-way random effect model. In total, data from 79 full shifts (651h) were collected with a mean recording time of 495min per shift (range 319-632). On average, baggage handlers worked with the right and left arm elevated >60° for 6.4% and 6.3% of the total workday, respectively. The 90th percentile trunk forward projection (FP) was 34.1°, and the 50th percentile trunk movement velocity was 8° s(-1). For most trunk (FP) and upper arm exposure variables, between-subject variability was considerable, suggesting that the flight baggage handlers were not a homogeneously exposed group. A notable between-days variability pointed to the contents of the job differing on different days. Peak exposures (>90°) were higher for ramp workers than for sorting area workers (trunk 0.6% ramp versus 0.3% sorting; right arm 1.3% ramp versus 0.7% sorting). Trunk and upper arm postures and movements among flight baggage handlers measured by inclinometry were similar to those found in other jobs comprising manual material handling, known to be associated with increased risks for musculoskeletal disorders. The results showed that full-shift trunk (FP) and, to some extent, peak arm exposures were higher for ramp workers compared with sorting workers. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
An inhibitory role for noradrenaline in the mouse vas deferens
Jenkins, D.A.; Marshall, I.; Nasmyth, P.A.
1977-01-01
1 Noradrenaline (0.1-3.0 μM) inhibited the twitch responses to single pulse field stimulation of the isolated vas deferens of the mouse. The higher concentrations of noradrenaline (ca. 0.3-3.0 μM) were required to make the tissue contract. 2 Phentolamine (10 μM) abolished the contractor response to higher concentrations of noradrenaline and antagonized the inhibitory effect of lower concentrations on the twitch response. 3 Propranolol (10 μM) potentiated both the contractor and the inhibitory effect of noradrenaline on the twitch response. 4 Isoprenaline (0.1-3.0 μM) and salbutamol (1.0-3.0 μM) both inhibited the twitch response. Their effects were antagonized by propranolol (10 μM), but not by practolol (10 μM). 5 The effects of uptake1 and uptake2 blocking agents were determined. Cocaine (10 μM) reduced the size of the twitch response in 2 out of 4 experiments. Imipramine (0.18 μM) also reduced the size of the twitch, as did oestradiol (3.7 μM) and a combination of cocaine and oestradiol. 6 Contractor responses to exogenous noradrenaline showed tachyphylaxis, but when this was not very marked, the response could be shown to be potentiated by uptake blocking agents. 7 The inhibitory effect of noradrenaline on the twitch response was greatly potentiated by cocaine (10 μM) and much less so by oestradiol (3.7 μM). 8 It is concluded that the transmitter responsible for the twitch response is either an unknown substance released from the sympathetic neurone, or noradrenaline acting upon a receptor with none of the characteristics of known α- or β-adrenoceptors. In either case, noradrenaline can inhibit the output, probably by stimulation of presynaptic α-adrenoceptors. PMID:202361
Li, Li; Liu, Hong-Ju; Yang, Ming-Hao; Li, Jing-Long; Wang, Lu; Chen, Xiao-Ping; Fan, Ming
2012-03-01
To explore the relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus. After 28-day hind-limb unloading and muscle atrophy, we used the method of isolated muscle perfusion with different stimulated protocols to determine the changes in contractile characteristics including the isometric twitch force and tetanus force and fatigue index of slow twitch muscle in mice. The muscle myofibrillar composition and fiber type conversion were detected by immunofluorescence staining and real-time PCR. The isometric twitch force and the tetanus force and fatigue index were decreased progressively in 28-day unloaded mice soleus, with the increase in fast twitch fiber subtype and the decrease in slow twitch fiber subtype. The alteration of contractile characteristics is relevant to the slow-to-fast fiber conversion in mice soleus after 28-day hind-limb unloading.
Kim, TaeHoon; Kim, SeongSik; Lee, ByoungHee
2016-03-01
The purpose of this study was to investigate whether action observational training (AOT) plus brain-computer interface-based functional electrical stimulation (BCI-FES) has a positive influence on motor recovery of paretic upper extremity in patients with stroke. This was a hospital-based, randomized controlled trial with a blinded assessor. Thirty patients with a first-time stroke were randomly allocated to one of two groups: the BCI-FES group (n = 15) and the control group (n = 15). The BCI-FES group administered to AOT plus BCI-FES on the paretic upper extremity five times per week during 4 weeks while both groups received conventional therapy. The primary outcomes were the Fugl-Meyer Assessment of the Upper Extremity, Motor Activity Log (MAL), Modified Barthel Index and range of motion of paretic arm. A blinded assessor evaluated the outcomes at baseline and 4 weeks. All baseline outcomes did not differ significantly between the two groups. After 4 weeks, the Fugl-Meyer Assessment of the Upper Extremity sub-items (total, shoulder and wrist), MAL (MAL-Activity of Use and Quality of Movement), Modified Barthel Index and wrist flexion range of motion were significantly higher in the BCI-FES group (p < 0.05). AOT plus BCI-based FES is effective in paretic arm rehabilitation by improving the upper extremity performance. The motor improvements suggest that AOT plus BCI-based FES can be used as a therapeutic tool for stroke rehabilitation. The limitations of the study are that subjects had a certain limited level of upper arm function, and the sample size was comparatively small; hence, it is recommended that future large-scale trials should consider stratified and lager populations according to upper arm function. Copyright © 2015 John Wiley & Sons, Ltd.
Lee, Teresa S; Kilbreath, Sharon L; Sullivan, Gerard; Refshauge, Kathryn M; Beith, Jane M
2007-05-08
Current research evidence indicates that women should return to normal use of their arm after breast cancer surgery. However, it appears some women continue to hold the view that they are supposed to protect their arm from strenuous activities because of the risk of lymphoedema. Many factors contribute to women's perceptions about lymphoedema and their ability to use their affected arm, and it is the aim of this study to explore and understand these perceptions. A survey, based on the Protection Motivation Theory, has been developed and tested. The survey assesses whether subjective norms, fear and/or coping attributes predict women's intention to use their affected arm. In addition, the survey includes questions regarding cancer treatment and demographic characteristics, arm and chest symptoms, and arm function. Recruitment of 170 breast cancer survivors has begun at 3 cancer treatment sites in Sydney, Australia. This study will identify perceptions that help predict the extent women use their affected arm. The results will also determine whether upper limb impairments arise secondary to over-protection of the affected arm. Identification of factors that limit arm use will enable appropriate prevention and better provision of treatment to improve upper limb outcomes.
Shiono, Masatoshi; Takahashi, Shin; Takahashi, Masanobu; Yamaguchi, Takuhiro; Ishioka, Chikashi
2016-12-01
We conducted a nationwide questionnaire-based survey to understand the current situation regarding central venous port implantation in order to identify the ideal procedure. Questionnaire sheets concerning the number of implantation procedures and the incidence of complications for all procedures completed in 2012 were sent to 397 nationwide designated cancer care hospitals in Japan in June 2013. Venipuncture sites were categorized as chest, neck, upper arm, forearm, and others. Methods were categorized as landmark, cut-down, ultrasound-mark, real-time ultrasound guided, venography, and other groups. We received 374 responses (11,693 procedures) from 153 centers (38.5 %). The overall complication rates were 7.4 % for the chest (598/8,097 cases); 6.8 % for the neck (157/2325); 5.2 % for the upper arm (54/1,033); 7.3 % for the forearm (9/124); and 6.1 % for the other groups (7/114). Compared to the chest group, only the upper arm group showed a significantly lower incidence of complications (P = 0.010), and multivariate logistic regression (odds ratio 0.69; 95 % confidence interval 0.51-0.91; P = 0.008) also showed similar findings. Real-time ultrasound-guided puncture was most commonly used in the upper arm group (83.8 %), followed by the neck (69.8 %), forearm (53.2 %), chest (41.8 %), and other groups (34.2 %). Upper arm venipuncture with ultrasound guidance seems the most promising technique to prevent complications of central venous port implantation.
The Click and Twitch in Contemporary Poetry.
ERIC Educational Resources Information Center
Meredith, Bernard
It is the creative writing instructor's role to help the student turn "twitch" poems into "click" poems ("twitch" being a kind of verbal hypertension that takes shape in the absence of anything humanly important to say on the poet's part and "click" being the finished poem that makes a sound like the click of the lid on a perfectly made box).…
Development and use of the incremental twitch subtraction MUNE method in mice.
Hegedus, Janka; Jones, Kelvin E; Gordon, Tessa
2009-01-01
We have used a technique to estimate the number of functioning motor units (MUNE) innervating a muscle in mice based on twitch tension. The MUNE technique was verified by modeling twitch tensions from isolated ventral root stimulation. Analysis by twitch tensions allowed us to identify motor unit fiber types. The MUNE technique was used to compare normal mice with transgenic superoxide dismutase-1 mutation (G94A) mice to assess the time course of motor unit loss with respect to fiber type. Motor unit loss was found to occur well in advance of behavioral changes and the degree of reinnervation is dependent upon motor unit fiber types.
Paying the piper: the cost of Ca2+ pumping during the mating call of toadfish
Harwood, Claire L; Young, Iain S; Tikunov, Boris A; Hollingworth, Stephen; Baylor, Stephen M; Rome, Lawrence C
2011-01-01
Abstract Superfast fibres of toadfish swimbladder muscle generate a series of superfast Ca2+ transients, a necessity for high-frequency calling. How is this accomplished with a relatively low rate of Ca2+ pumping by the sarcoplasmic reticulum (SR)? We hypothesized that there may not be complete Ca2+ saturation and desaturation of the troponin Ca2+ regulatory sites with each twitch during calling. To test this, we determined the number of regulatory sites by measuring the concentration of troponin C (TNC) molecules, 33.8 μmol per kg wet weight. We then estimated how much SR Ca2+ is released per twitch by measuring the recovery oxygen consumption in the presence of a crossbridge blocker, N-benzyl-p-toluene sulphonamide (BTS). The results agreed closely with SR release estimates obtained with a kinetic model used to analyse Ca2+ transient measurements. We found that 235 μmol of Ca2+ per kg muscle is released with the first twitch of an 80 Hz stimulus (15oC). Release per twitch declines dramatically thereafter such that by the 10th twitch release is only 48 μmol kg−1 (well below the concentration of TNC Ca2+ regulatory sites, 67.6 μmol kg−1). The ATP usage per twitch by the myosin crossbridges remains essentially constant at ∼25 μmol kg−1 throughout the stimulus period. Hence, for the first twitch, ∼80% of the energy goes into pumping Ca2+ (which uses 1 ATP per 2 Ca2+ ions pumped), but by the 10th and subsequent twitches the proportion is ∼50%. Even though by the 10th stimulus the Ca2+ release per twitch has dropped 5-fold, the Ca2+ remaining in the SR has declined by only ∼18%; hence dwindling SR Ca2+ content is not responsible for the drop. Rather, inactivation of the Ca2+ release channel by myoplasmic Ca2+ likely explains this reduction. If inactivation did not occur, the SR would run out of Ca2+ well before the end of even a 40-twitch call. Hence, inactivation of the Ca2+ release channel plays a critical role in swimbladder muscle during normal in vivo function. PMID:21946852
Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B
2017-08-01
What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units possessed greater twitch force potentiation. Overall, changes in firing rates during brief steady-force contractions are dependent on recruitment threshold and explained in part by twitch force potentiation. Given that firing rate changes were measured in relationship to recruitment threshold, this study illustrates a more complete view of firing rate changes during steady-force contractions. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Brachioplasty outcomes: a review of a multipractice cohort.
Zomerlei, Terri A; Neaman, Keith C; Armstrong, Shannon D; Aitken, Marguerite E; Cullen, William T; Ford, Ronald D; Renucci, John D; VanderWoude, Douglas L
2013-04-01
Upper arm deformities secondary to massive weight loss or senile elastosis have led to an increased demand for aesthetic contouring procedures such as brachioplasty. The records of all patients who underwent a brachioplasty procedure from a multipractice medical center were reviewed. Outcomes measured included patient demographics, operative interventions, and postoperative course. Ninety-six patients were analyzed. Fifty-three patients (55.2 percent) underwent a concomitant procedure, with 53.1 percent undergoing arm liposuction at the time of brachioplasty. Major and minor complications rates were 17.7 percent and 44.8 percent, respectively. Common complications included hypertrophic scarring (24.0 percent) and infection (14.6 percent). The total revision rate was 22.9 percent, with residual contour deformity (40.9 percent of revisions) and hypertrophic scarring (36.4 percent of revisions) representing the most common causes for revision. Patients who underwent a previous bariatric procedure were at an increased risk of developing a major complication (p = 0.02). Concomitant upper arm liposuction and concomitant procedures were not associated with a significantly increased complication rate. Brachioplasty, despite being an effective treatment for contour irregularities of the upper arm, is associated with significant revision and complication rates. Post-bariatric surgery patients should be informed of the potential for increased complications. Additional procedures performed at the time of brachioplasty do not significantly increase complications. Liposuction of the upper arm can be performed safely in conjunction with brachioplasty.
Identification and classification of upper limb motions using PCA.
Veer, Karan; Vig, Renu
2018-03-28
This paper describes the utility of principal component analysis (PCA) in classifying upper limb signals. PCA is a powerful tool for analyzing data of high dimension. Here, two different input strategies were explored. The first method uses upper arm dual-position-based myoelectric signal acquisition and the other solely uses PCA for classifying surface electromyogram (SEMG) signals. SEMG data from the biceps and the triceps brachii muscles and four independent muscle activities of the upper arm were measured in seven subjects (total dataset=56). The datasets used for the analysis are rotated by class-specific principal component matrices to decorrelate the measured data prior to feature extraction.
Hoe, Victor C W; Urquhart, Donna M; Kelsall, Helen L; Sim, Malcolm R
2012-08-15
Work-related upper limb and neck musculoskeletal disorders (MSDs) are one of the most common occupational disorders around the world. Although ergonomic design and training are likely to reduce the risk of workers developing work-related upper limb and neck MSDs, the evidence is unclear. To assess the effects of workplace ergonomic design or training interventions, or both, for the prevention of work-related upper limb and neck MSDs in adults. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, AMED, Web of Science (Science Citation Index), SPORTDiscus, Cochrane Occupational Safety and Health Review Group Database and Cochrane Bone, Joint and Muscle Trauma Group Specialised Register to July 2010, and Physiotherapy Evidence Database, US Centers for Disease Control and Prevention, the National Institute for Occupational Safety and Health database, and International Occupational Safety and Health Information Centre database to November 2010. We included randomised controlled trials (RCTs) of ergonomic workplace interventions for preventing work-related upper limb and neck MSDs. We included only studies with a baseline prevalence of MSDs of the upper limb or neck, or both, of less than 25%. Two review authors independently extracted data and assessed risk of bias. We included studies with relevant data that we judged to be sufficiently homogeneous regarding the intervention and outcome in the meta-analysis. We assessed the overall quality of the evidence for each comparison using the GRADE approach. We included 13 RCTs (2397 workers). Eleven studies were conducted in an office environment and two in a healthcare setting. We judged one study to have a low risk of bias. The 13 studies evaluated effectiveness of ergonomic equipment, supplementary breaks or reduced work hours, ergonomic training, a combination of ergonomic training and equipment, and patient lifting interventions for preventing work-related MSDs of the upper limb and neck in adults.Overall, there was moderate-quality evidence that arm support with alternative mouse reduced the incidence of neck/shoulder disorders (risk ratio (RR) 0.52; 95% confidence interval (CI) 0.27 to 0.99) but not the incidence of right upper limb MSDs (RR 0.73; 95% CI 0.32 to 1.66); and low-quality evidence that this intervention reduced neck/shoulder discomfort (standardised mean difference (SMD) -0.41; 95% CI -0.69 to -0.12) and right upper limb discomfort (SMD -0.34; 95% CI -0.63 to -0.06).There was also moderate-quality evidence that the incidence of neck/shoulder and right upper limb disorders were not reduced when comparing alternative mouse and conventional mouse (neck/shoulder RR 0.62; 95% CI 0.19 to 2.00; right upper limb RR 0.91; 95% CI 0.48 to 1.72), arm support and no arm support with conventional mouse (neck/shoulder RR 0.67; 95% CI 0.36 to 1.24; right upper limb RR 1.09; 95% CI 0.51 to 2.29), and alternative mouse with arm support and conventional mouse with arm support (neck/shoulder RR 0.58; 95% CI 0.30 to 1.12; right upper limb RR 0.92; 95% CI 0.36 to 2.36).There was low-quality evidence that using an alternative mouse with arm support compared to conventional mouse with arm support reduced neck/shoulder discomfort (SMD -0.39; 95% CI -0.67 to -0.10). There was low- to very low-quality evidence that other interventions were not effective in reducing work-related upper limb and neck MSDs in adults. We found moderate-quality evidence to suggest that the use of arm support with alternative mouse may reduce the incidence of neck/shoulder MSDs, but not right upper limb MSDs. Moreover, we found moderate-quality evidence to suggest that the incidence of neck/shoulder and right upper limb MSDs is not reduced when comparing alternative and conventional mouse with and without arm support. However, given there were multiple comparisons made involving a number of interventions and outcomes, high-quality evidence is needed to determine the effectiveness of these interventions clearly. While we found very-low- to low-quality evidence to suggest that other ergonomic interventions do not prevent work-related MSDs of the upper limb and neck, this was limited by the paucity and heterogeneity of available studies. This review highlights the need for high-quality RCTs examining the prevention of MSDs of the upper limb and neck.
A strategy for computer-assisted mental practice in stroke rehabilitation.
Gaggioli, Andrea; Meneghini, Andrea; Morganti, Francesca; Alcaniz, Mariano; Riva, Giuseppe
2006-12-01
To investigate the technical and clinical viability of using computer-facilitated mental practice in the rehabilitation of upper-limb hemiparesis following stroke. A single-case study. Academic-affiliated rehabilitation center. A 46-year-old man with stable motor deficit of the upper right limb following subcortical ischemic stroke. Three computer-enhanced mental practice sessions per week at the rehabilitation center, in addition to usual physical therapy. A custom-made virtual reality system equipped with arm-tracking sensors was used to guide mental practice. The system was designed to superimpose over the (unseen) paretic arm a virtual reconstruction of the movement registered from the nonparetic arm. The laboratory intervention was followed by a 1-month home-rehabilitation program, making use of a portable display device. Pretreatment and posttreatment clinical assessment measures were the upper-extremity scale of the Fugl-Meyer Assessment of Sensorimotor Impairment and the Action Research Arm Test. Performance of the affected arm was evaluated using the healthy arm as the control condition. The patient's paretic limb improved after the first phase of intervention, with modest increases after home rehabilitation, as indicated by functional assessment scores and sensors data. Results suggest that technology-supported mental training is a feasible and potentially effective approach for improving motor skills after stroke.
Effects of wrist tendon vibration on targeted upper-arm movements in poststroke hemiparesis.
Conrad, Megan O; Scheidt, Robert A; Schmit, Brian D
2011-01-01
Impaired motor control of the upper extremity after stroke may be related to lost sensory, motor, and integrative functions of the brain. Artificial activation of sensory afferents might improve control of movement by adding excitatory drive to sensorimotor control structures. The authors evaluated the effect of wrist tendon vibration (TV) on paretic upper-arm stability during point-to-point planar movements. TV (70 Hz) was applied to the forearm wrist musculature of 10 hemiparetic stroke patients as they made center-out planar arm movements. End-point stability, muscle activity, and grip pressure were compared as patients stabilized at the target position for trials completed before, during, and after the application of the vibratory stimulus. Prior to vibration, hand position fluctuated as participants attempted to maintain the hand at the target after movement termination. TV improved arm stability, as evidenced by decreased magnitude of hand tangential velocity at the target. Improved stability was accompanied by a decrease in muscle activity throughout the arm as well as a mean decrease in grip pressure. These results suggest that vibratory stimulation of the distal wrist musculature enhances stability of the proximal arm and can be studied further as a mode for improving end-point stability during reaching in hemiparetic patients.
49 CFR 572.196 - Thorax without arm.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Thorax without arm. 572.196 Section 572.196... Dummy, Small Adult Female § 572.196 Thorax without arm. (a) The thorax is part of the upper torso... (drawing 180-0000) with the arm (180-6000) on the impacted side removed. The dummy's thorax is equipped...
49 CFR 572.196 - Thorax without arm.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Thorax without arm. 572.196 Section 572.196... Test Dummy, Small Adult Female § 572.196 Thorax without arm. (a) The thorax is part of the upper torso... (drawing 180-0000) with the arm (180-6000) on the impacted side removed. The dummy's thorax is equipped...
49 CFR 572.196 - Thorax without arm.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Thorax without arm. 572.196 Section 572.196... Dummy, Small Adult Female § 572.196 Thorax without arm. (a) The thorax is part of the upper torso... (drawing 180-0000) with the arm (180-6000) on the impacted side removed. The dummy's thorax is equipped...
49 CFR 572.196 - Thorax without arm.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Thorax without arm. 572.196 Section 572.196... Test Dummy, Small Adult Female § 572.196 Thorax without arm. (a) The thorax is part of the upper torso... (drawing 180-0000) with the arm (180-6000) on the impacted side removed. The dummy's thorax is equipped...
A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles.
Piette, Antoine Boulanger; Dufresne, Sébastien S; Frenette, Jérôme
2016-10-28
Cumulative evidence indicates that statins induce myotoxicity. However, the lack of understanding of how statins affect skeletal muscles at the structural, functional, and physiological levels hampers proper healthcare management. The purpose of the present study was to investigate the early after-effects of lovastatin on the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus (EDL) muscles. Adult C57BL/6 mice were orally administrated with placebo or lovastatin [50 mg/kg/d] for 28 days. At the end of the treatment, the isometric ex vivo contractile properties of the Sol and EDL muscles were measured. Subtetanic and tetanic contractions were assessed and contraction kinetics were recorded. The muscles were then frozen for immunohistochemical analyses. Data were analyzed by two-way ANOVA followed by an a posteriori Tukey's test. The short-term lovastatin treatment did not induce muscle mass loss, muscle fiber atrophy, or creatine kinase (CK) release. It had no functional impact on slow-twitch Sol muscles. However, subtetanic stimulations at 10 Hz provoked greater force production in fast-twitch EDL muscles. The treatment also decreased the maximal rate of force development (dP/dT) of twitch contractions and prolonged the half relaxation time (1/2RT) of tetanic contractions of EDL muscles. An early short-term statin treatment induced subtle but significant changes in some parameters of the contractile profile of EDL muscles, providing new insights into the selective initiation of statin-induced myopathy in fast-twitch muscles.
Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan
2016-01-01
The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.
Place, Nicolas; Yamada, Takashi; Bruton, Joseph D; Westerblad, Håkan
2008-01-01
An electrically evoked twitch during a maximal voluntary contraction (twitch interpolation) is frequently used to assess central fatigue. In this study we used intact single muscle fibres to determine if intramuscular mechanisms could affect the force increase with the twitch interpolation technique. Intact single fibres from flexor digitorum brevis of NMRI mice were dissected and mounted in a chamber equipped with a force transducer. Free myoplasmic [Ca2+] ([Ca2+]i) was measured with the fluorescent Ca2+ indicator indo-1. Seven fibres were fatigued with repeated 70 Hz tetani until 40% initial force with an interpolated pulse evoked every fifth tetanus. Results showed that the force generated by the interpolated twitch increased throughout fatigue, being 9 ± 1% of tetanic force at the start and 19 ± 1% at the end (P < 0.001). This was not due to a larger increase in [Ca2+]i induced by the interpolated twitch during fatigue but rather to the fact that the force–[Ca2+]i relationship is sigmoidal and fibres entered a steeper part of the relationship during fatigue. In another set of experiments, we observed that repeated tetani evoked at 150 Hz resulted in more rapid fatigue development than at 70 Hz and there was a decrease in force (‘sag’) during contractions, which was not observed at 70 Hz. In conclusion, the extent of central fatigue is difficult to assess and it may be overestimated when using the twitch interpolation technique. PMID:18403421
Zhou, Mimi; Shen, Danyu; Xu, Gaoge; Liu, Fengquan; Qian, Guoliang
2017-05-01
Lysobacter enzymogenes (L. enzymogenes) is an agriculturally important Gram-negative bacterium that employs T4P (type IV pili)-driven twitching motility to exhibit its antifungal function. Yet, it is still unclear how this bacterium regulates its twitching motility. Here, by using strain OH11 as the working model organism, we showed that a hybrid two-component system ChpA acts as a positive regulator in controlling twitching motility in L. enzymogenes. ChpA is a hybrid TCS (two-component transduction system) contains 7 domains including those for auto-phosphorylation and phosphate group transfer, as well as a phosphate receiver (REC) domain. Mutation of chpA completely abolished the wild-type twitching motility, as evidenced by the absence of mobile cells at the margin of the mutant colonies. Further studies of domain-deletion and phenotypic characterization reveal that domains responsible for phosphorylation and phosphotransfer, but not the REC domain, were indispensable for ChpA in regulating twitching motility. Transcriptome analyses of the chpA knockout strain indicated that ChpA was extensively involved in controlling expression of a wide variety of genes (totaling 243). The products of these differentially expressed genes were involved in multiple physiological and biological functions in L. enzymogenes. Thus, we have not only identified a new regulator controlling twitching motility in L. enzymogenes, but also provided the first report demonstrating the broad impact of the conserved ChpA in gene regulation in Gram-negative bacteria.
Hayward, Kathryn S; Neibling, Bridee A; Barker, Ruth N
2015-01-01
This single-case, mixed-method study explored the feasibility of self-administered, home-based SMART (sensorimotor active rehabilitation training) Arm training for a 57-yr-old man with severe upper-limb disability after a right frontoparietal hemorrhagic stroke 9 mo earlier. Over 4 wk of self-administered, home-based SMART Arm training, the participant completed 2,100 repetitions unassisted. His wife provided support for equipment set-up and training progressions. Clinically meaningful improvements in arm impairment (strength), activity (arm and hand tasks), and participation (use of arm in everyday tasks) occurred after training (at 4 wk) and at follow-up (at 16 wk). Areas for refinement of SMART Arm training derived from thematic analysis of the participant's and researchers' journals focused on enabling independence, ensuring home and user friendliness, maintaining the motivation to persevere, progressing toward everyday tasks, and integrating practice into daily routine. These findings suggest that further investigation of self-administered, home-based SMART Arm training is warranted for people with stroke who have severe upper-limb disability. Copyright © 2015 by the American Occupational Therapy Association, Inc.
Upper arm anthropometrics versus DXA scan in survivors of acute respiratory distress syndrome.
Chan, Kitty S; Mourtzakis, Marina; Aronson Friedman, Lisa; Dinglas, Victor D; Hough, Catherine L; Ely, E Wesley; Morris, Peter E; Hopkins, Ramona O; Needham, Dale M
2018-04-01
Survivors of acute respiratory distress syndrome (ARDS) experience severe muscle wasting. Upper arm anthropometrics can provide a quick, non-invasive estimate of muscle status, but its accuracy is unknown. This study examines the accuracy of upper arm percent muscle area (UAMA) with reference measures of lean mass from dual energy X-ray absorptiometry (DXA). Data are from 120 ARDS survivors participating in a multicenter national study. Receiver operating characteristic (ROC) curves, by patient sex, demonstrated that UAMA did no better than chance in discriminating low appendicular skeletal muscle mass identified using DXA findings (c-statistics, 6 months: 0.50-0.59, 12 months: 0.54-0.57). Modest correlations of UAMA with DXA measures (whole-body: r = 0.46-0.49, arm-specific: r = 0.50-0.51, p < 0.001) and Bland-Altman plots indicate poor precision. UAMA is not an appropriate screening measure for estimating muscle mass when compared to a DXA reference standard. Alternate screening measures should be evaluated in ARDS survivors.
World and Olympic mountain bike champions' anthropometry, body composition and somatotype.
Sánchez-Muñoz, Cristóbal; Muros, José J; Zabala, Mikel
2018-06-01
The aim of the study was to describe the anthropometric profile of male Olympic cross country (XCO) mountain bikers. Fifty one XCO bikers participated in this study, divided into an elite group who competed in top level international competitions, and a non-elite group who competed at a national level. The elite group was further classified according to whether they had been world or Olympic champion mountain bikers (WOC) or not (NWOC). The anthropometric profiles included the measurements of height, weight, arm span, skinfolds, girths, and breadths. Body Mass Index (BMI), body composition and somatotype were also calculated. Variables was described as mean, standard deviation and range. The standardizing of the variables was carried out using the Shapiro-Wilk with Lillieforts correction and homoscedasticity was analyzed using the Levene Test. After verifying that the variables were normal, the data were analyzed using non-paired t-tests (elite vs. non-elite and WOC vs. NWOC). Elite riders had significantly lower BMI, lower percentage of fat, total thigh area and larger thigh muscle area than the sub-elite riders, and presented significantly lower values for the endomorphic component and higher values for the ectomorphic component. The mean somatotype of the elite riders could be defined as ecto-mesomorphic (1.7-4.6-3.1). Comparisons between of WOC riders and NWOC, showed that the WOC bikers had a significantly higher value for weight, arm span, upper arm girth relaxed and upper arm girth flexed and tensed, calf girth, total upper arm area, and upper arm muscle area than the NWOC riders group.
Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.
Akhtar, Aadeel; Aghasadeghi, Navid; Hargrove, Levi; Bretl, Timothy
2017-08-01
In this paper, we quantify the extent to which shoulder orientation, upper-arm electromyography (EMG), and forearm EMG are predictors of distal arm joint angles during reaching in eight subjects without disability as well as three subjects with a unilateral transhumeral amputation and targeted reinnervation. Prior studies have shown that shoulder orientation and upper-arm EMG, taken separately, are predictors of both elbow flexion/extension and forearm pronation/supination. We show that, for eight subjects without disability, shoulder orientation and upper-arm EMG together are a significantly better predictor of both elbow flexion/extension during unilateral (R 2 =0.72) and mirrored bilateral (R 2 =0.72) reaches and of forearm pronation/supination during unilateral (R 2 =0.77) and mirrored bilateral (R 2 =0.70) reaches. We also show that adding forearm EMG further improves the prediction of forearm pronation/supination during unilateral (R 2 =0.82) and mirrored bilateral (R 2 =0.75) reaches. In principle, these results provide the basis for choosing inputs for control of transhumeral prostheses, both by subjects with targeted motor reinnervation (when forearm EMG is available) and by subjects without target motor reinnervation (when forearm EMG is not available). In particular, we confirm that shoulder orientation and upper-arm EMG together best predict elbow flexion/extension (R 2 =0.72) for three subjects with unilateral transhumeral amputations and targeted motor reinnervation. However, shoulder orientation alone best predicts forearm pronation/supination (R 2 =0.88) for these subjects, a contradictory result that merits further study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barker, Ruth N; Brauer, Sandra G; Carson, Richard G
2008-06-01
Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of a new nonrobotic training device, the Sensorimotor Active Rehabilitation Training (SMART) Arm, that was used with or without electromyography-triggered electrical stimulation of triceps brachii to augment elbow extension, permitting stroke survivors with severe paresis to practice a constrained reaching task. A single-blind, randomized clinical trial was conducted with 42 stroke survivors with severe and chronic paresis. Thirty-three participants completed the study, of whom 10 received training using the SMART Arm with electromyography-triggered electrical stimulation, 13 received training using the SMART Arm alone, and 10 received no intervention (control). Training consisted of 12 1-hour sessions over 4 weeks. The primary outcome measure was "upper arm function," item 6 of the Motor Assessment Scale. Secondary outcome measures included impairment measures; triceps muscle strength, reaching force, modified Ashworth scale; and activity measures: reaching distance and Motor Assessment Scale. Assessments were administered before (0 weeks) and after training (4 weeks) and at 2 months follow-up (12 weeks). Both SMART Arm groups demonstrated significant improvements in all impairment and activity measures after training and at follow-up. There was no significant difference between these 2 groups. There was no change in the control group. Our findings indicate that training of reaching using the SMART Arm can reduce impairment and improve activity in stroke survivors with severe and chronic upper limb paresis, highlighting the benefits of intensive task-oriented practice, even in the context of severe paresis.
Piezoelectric film load cell robot collision detector
Lembke, J.R.
1988-03-15
A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are dowelled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector. 3 figs.
Piezoelectric film load cell robot collision detector
Lembke, John R.
1989-04-18
A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are dowelled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector.
Piezoelectric film load cell robot collision detector
Lembke, J.R.
1989-04-18
A piezoelectric load cell which can be utilized for detecting collisions and obstruction of a robot arm end effector includes a force sensing element of metallized polyvinylidene fluoride (PVDF) film. The piezoelectric film sensing element and a resilient support pad are clamped in compression between upper and lower plates. The lower plate has a central recess in its upper face for supporting the support pad and sensing element, while the upper plate has a corresponding central projection formed on its lower face for bearing on the sensing element and support pad. The upper and lower plates are doweled together for concentric alignment and screwed together. The upper and lower plates are also adapted for mounting between the robot arm wrist and end effector. 3 figs.
Upper extremity sensorimotor control among collegiate football players.
Laudner, Kevin G
2012-03-01
Injuries stemming from shoulder instability are very common among athletes participating in contact sports, such as football. Previous research has shown that increased laxity negatively affects the function of the sensorimotor system potentially leading to a pathological cycle of shoulder dysfunction. Currently, there are no data detailing such effects among football players. Therefore, the purpose of this study was to examine the differences in upper extremity sensorimotor control among football players compared with that of a control group. Forty-five collegiate football players and 70 male control subjects with no previous experience in contact sports participated. All the subjects had no recent history of upper extremity injury. Each subject performed three 30-second upper extremity balance trials on each arm. The balance trials were conducted in a single-arm push-up position with the test arm in the center of a force platform and the subjects' feet on a labile device. The trials were averaged, and the differences in radial area deviation between groups were analyzed using separate 1-way analyses of variance (p < 0.05). The football players showed significantly more radial area deviation of the dominant (0.41 ± 1.23 cm2, p = 0.02) and nondominant arms (0.47 ± 1.63 cm2, p = 0.03) when compared with the control group. These results suggest that football players may have decreased sensorimotor control of the upper extremity compared with individuals with no contact sport experience. The decreased upper extremity sensorimotor control among the football players may be because of the frequent impacts accumulated during football participation. Football players may benefit from exercises that target the sensorimotor system. These findings may also be beneficial in the evaluation and treatment of various upper extremity injuries among football players.
Reliability of the Inverse Water Volumetry Method to Measure the Volume of the Upper Limb.
Beek, Martinus A; te Slaa, Alexander; van der Laan, Lijckle; Mulder, Paul G H; Rutten, Harm J T; Voogd, Adri C; Luiten, Ernest J T; Gobardhan, Paul D
2015-06-01
Lymphedema of the upper extremity is a common side effect of lymph node dissection or irradiation of the axilla. Several techniques are being applied in order to examine the presence and severity of lymphedema. Measurement of circumference of the upper extremity is most frequently performed. An alternative is the water-displacement method. The aim of this study was to determine the reliability and the reproducibility of the "Inverse Water Volumetry apparatus" (IWV-apparatus) for the measurement of arm volumes. The IWV-apparatus is based on the water-displacement method. Measurements were performed by three breast cancer nurse practitioners on ten healthy volunteers in three weekly sessions. The intra-class correlation coefficient, defined as the ratio of the subject component to the total variance, equaled 0.99. The reliability index is calculated as 0.14 kg. This indicates that only changes in a patient's arm volume measurement of more than 0.14 kg would represent a true change in arm volume, which is about 6% of the mean arm volume of 2.3 kg. The IWV-apparatus proved to be a reliable and reproducible method to measure arm volume.
Forearm versus upper arm grafts for vascular access.
Gage, Shawn M; Lawson, Jeffrey H
2017-03-06
Forearm and upper arm arteriovenous grafts perform similarly in terms of patency and complications. Primary patency at 1 year for forearm arteriovenous grafts versus upper arm grafts ranges from 22%-50% versus 22%-42%, and secondary patency at 1 year ranges from 78%-89% versus 52%-67%), respectively. Secondary patency at 2 years, ranges from 30%-64% versus 35%-60% for forearm and upper arteriovenous graft, respectively. Ample pre-operative planning is essential to improved clinical success and the decision to place a graft at one location versus the other should be based solely on previous access history, physical exam, appropriate venous imaging, and other factors that make up the clinical picture. Operative implant strategies and risk of complications are very similar between the two configurations. Postoperative ischemia due to steal syndrome is a potential complication that requires immediate attention. Utilization of the proximal radial or ulnar artery for inflow for the graft can minimize risk of clinically relevant steal syndrome.
The Effect of Restricted Arm Swing on Energy Expenditure in Healthy Men
ERIC Educational Resources Information Center
Yizhar, Ziva; Boulos, Spiro; Inbar, Omri; Carmeli, Eli
2009-01-01
Arm swing in human walking is an active natural motion involving the upper extremities. Earlier studies have described the interrelationship between arms and legs during walking, but the effect of arm swing on energy expenditure and dynamic parameters during normal gait, is inconclusive. The aim of this study was to investigate the effect of…
Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia
2011-10-01
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.
Pelit, Aykut; Emre, Mustafa; Dağli, Kenan; Tuli, Abdullah
2013-04-01
To present the relationship between oral magnesium supplementation, blood glucose, and changes in isometric twitch parameters, resting membrane potential (RMP), in the gastrocnemius muscle in diabetic rats. Sixty rats were used in this study. The rats were divided into four groups: control (drinking tap water, Group I, n = 15), control with treated with magnesium sulfate (10 g/L) (Group II, n = 15), diabetic (Group III, n = 15), and diabetic with treated with magnesium sulfate (10 g/L) (Group IV, n = 15). In Group II and IV, the level of plasma magnesium was increased comparing to those of the control group (p < 0.05). Isometric twitch tensions were decreased significantly in the Group III, but Group IV isometric twitch tensions were increased significantly. Group IV RMP values were close to the Group I. Hyperglycemia decreases gastrocnemius muscle isometric twitch tension and increases RMP in diabetic rats. Magnesium treatment can prevent these diabetic complications.
Inoue, Yusuke; Nagahara, Kazunori; Kudo, Hiroko; Itoh, Hiroyasu
2018-01-01
Automatic exposure control (AEC) modulates tube current and consequently X-ray exposure in CT. We investigated the behavior of AEC systems in whole-body PET/CT. CT images of a whole-body phantom were acquired using AEC on two scanners from different manufactures. The effects of scout imaging direction and arm positioning on dose modulation were evaluated. Image noise was assessed in the chest and upper abdomen. On one scanner, AEC using two scout images in the posteroanterior (PA) and lateral (Lat) directions provided relatively constant image noise along the z-axis with the arms at the sides. Raising the arms increased tube current in the head and neck and decreased it in the body trunk. Image noise increased in the upper abdomen, suggesting excessive reduction in radiation exposure. AEC using the PA scout alone strikingly increased tube current and reduced image noise in the shoulder. Raising the arms did not substantially influence dose modulation and decreased noise in the abdomen. On the other scanner, AEC using the PA scout alone or Lat scout alone resulted in similar dose modulation. Raising the arms increased tube current in the head and neck and decreased it in the trunk. Image noise was higher in the upper abdomen than in the middle and lower chest, and was not influenced by arm positioning. CT dose modulation using AEC may vary greatly depending on scout direction. Raising the arms tended to decrease radiation exposure; however, the effect depends on scout direction and the AEC system.
Bertomeu-Motos, Arturo; Blanco, Andrea; Badesa, Francisco J; Barios, Juan A; Zollo, Loredana; Garcia-Aracil, Nicolas
2018-02-20
End-effector robots are commonly used in robot-assisted neuro-rehabilitation therapies for upper limbs where the patient's hand can be easily attached to a splint. Nevertheless, they are not able to estimate and control the kinematic configuration of the upper limb during the therapy. However, the Range of Motion (ROM) together with the clinical assessment scales offers a comprehensive assessment to the therapist. Our aim is to present a robust and stable kinematic reconstruction algorithm to accurately measure the upper limb joints using only an accelerometer placed onto the upper arm. The proposed algorithm is based on the inverse of the augmented Jaciobian as the algorithm (Papaleo, et al., Med Biol Eng Comput 53(9):815-28, 2015). However, the estimation of the elbow joint location is performed through the computation of the rotation measured by the accelerometer during the arm movement, making the algorithm more robust against shoulder movements. Furthermore, we present a method to compute the initial configuration of the upper limb necessary to start the integration method, a protocol to manually measure the upper arm and forearm lengths, and a shoulder position estimation. An optoelectronic system was used to test the accuracy of the proposed algorithm whilst healthy subjects were performing upper limb movements holding the end effector of the seven Degrees of Freedom (DoF) robot. In addition, the previous and the proposed algorithms were studied during a neuro-rehabilitation therapy assisted by the 'PUPArm' planar robot with three post-stroke patients. The proposed algorithm reports a Root Mean Square Error (RMSE) of 2.13cm in the elbow joint location and 1.89cm in the wrist joint location with high correlation. These errors lead to a RMSE about 3.5 degrees (mean of the seven joints) with high correlation in all the joints with respect to the real upper limb acquired through the optoelectronic system. Then, the estimation of the upper limb joints through both algorithms reveal an instability on the previous when shoulder movement appear due to the inevitable trunk compensation in post-stroke patients. The proposed algorithm is able to accurately estimate the human upper limb joints during a neuro-rehabilitation therapy assisted by end-effector robots. In addition, the implemented protocol can be followed in a clinical environment without optoelectronic systems using only one accelerometer attached in the upper arm. Thus, the ROM can be perfectly determined and could become an objective assessment parameter for a comprehensive assessment.
Do, Ji-Hye; Yoo, Eun-Young; Jung, Min-Ye; Park, Hae Yean
2016-01-01
Hemiplegic cerebral palsy is a neurological symptom appearing on the unilateral arm and leg of the body that causes affected upper/lower limb muscle weakening and dysesthesia and accompanies tetany and difficulties in postural control due to abnormal muscle tone, and difficulties in body coordination. The purpose of this study was to examine the impact of virtual reality-based bilateral arm training on the motor skills of children with hemiplegic cerebral palsy, in terms of their upper limb motor skills on the affected side, as well as their bilateral coordination ability. The research subjects were three children who were diagnosed with hemiplegic cerebral palsy. The research followed an ABA design, which was a single-subject experimental design. The procedure consisted of a total of 20 sessions, including four during the baseline period (A1), 12 during the intervention period (B), and four during the baseline regression period (A2), For the independent variable bilateral arm training based on virtual reality, Nintendo Wii game was played for 30 minutes in each of the 12 sessions. For the dependent variables of upper limb motor skills on the affected side and bilateral coordination ability, a Wolf Motor Function Test (WMFT) was carried out for each session and the Pediatric Motor Activity Log (PMAL) was measured before and after the intervention, as well as after the baseline regression period. To test bilateral coordination ability, shooting baskets in basketball with both hands and moving large light boxes were carried out under operational definitions, with the number of shots and time needed to move boxes measured. The results were presented using visual graphs and bar graphs. The study's results indicated that after virtual reality-based bilateral arm training, improvement occurred in upper limb motor skills on the affected sides, and in bilateral coordination ability, for all of the research subjects. Measurements of the effects of sustained therapy after completion of the intervention, during the baseline regression period, revealed that upper limb motor skills on the affected side and bilateral coordination ability were better than in the baseline period for all subjects. This study confirmed that for children with hemiplegic with cerebral palsy, bilateral arm training based on virtual reality can be an effective intervention method for enhancing the upper limb motor skills on the affected side, as well as bilateral coordination ability.
Preston, N.; Levesley, M.; Mon‐Williams, M.; O'Connor, R.J.
2017-01-01
Abstract Background and purpose Upper limb activity measures for children with cerebral palsy have a number of limitations, for example, lack of validity and poor responsiveness. To overcome these limitations, we developed the Children's Arm Rehabilitation Measure (ChARM), a parent‐reported questionnaire validated for children with cerebral palsy aged 5–16 years. This paper describes both the development of the ChARM items and response categories and its psychometric testing and further refinement using the Rasch measurement model. Methods To generate valid items for the ChARM, we collected goals of therapy specifically developed by therapists, children with cerebral palsy, and their parents for improving activity limitation of the upper limb. The activities, which were the focus of these goals, formed the basis for the items. Therapists typically break an activity into natural stages for the purpose of improving activity performance, and these natural orders of achievement formed each item's response options. Items underwent face validity testing with health care professionals, parents of children with cerebral palsy, academics, and lay persons. A Rasch analysis was performed on ChARM questionnaires completed by the parents of 170 children with cerebral palsy from 12 hospital paediatric services. The ChARM was amended, and the procedure repeated on 148 ChARMs (from children's mean age: 10 years and 1 month; range: 4 years and 8 months to 16 years and 11 months; 85 males; Manual Ability Classification System Levels I = 9, II = 26, III = 48, IV = 45, and V = 18). Results The final 19‐item unidimensional questionnaire displayed fit to the Rasch model (chi‐square p = .18), excellent reliability (person separation index = 0.95, α = 0.95), and no floor or ceiling effects. Items showed no response bias for gender, distribution of impairment, age, or learning disability. Discussion The ChARM is a psychometrically sound measure of upper limb activity validated for children with cerebral palsy aged 5–16 years. The ChARM is freely available for use to clinicians and nonprofit organisations. PMID:28112465
Dalbøge, Annett; Hansson, Gert-Åke; Frost, Poul; Andersen, Johan Hviid; Heilskov-Hansen, Thomas; Svendsen, Susanne Wulff
2016-08-01
We recently constructed a general population job exposure matrix (JEM), The Shoulder JEM, based on expert ratings. The overall aim of this study was to convert expert-rated job exposures for upper arm elevation and repetitive shoulder movements to measurement scales. The Shoulder JEM covers all Danish occupational titles, divided into 172 job groups. For 36 of these job groups, we obtained technical measurements (inclinometry) of upper arm elevation and repetitive shoulder movements. To validate the expert-rated job exposures against the measured job exposures, we used Spearman rank correlations and the explained variance[Formula: see text] according to linear regression analyses (36 job groups). We used the linear regression equations to convert the expert-rated job exposures for all 172 job groups into predicted measured job exposures. Bland-Altman analyses were used to assess the agreement between the predicted and measured job exposures. The Spearman rank correlations were 0.63 for upper arm elevation and 0.64 for repetitive shoulder movements. The expert-rated job exposures explained 64% and 41% of the variance of the measured job exposures, respectively. The corresponding calibration equations were y=0.5%time+0.16×expert rating and y=27°/s+0.47×expert rating. The mean differences between predicted and measured job exposures were zero due to calibration; the 95% limits of agreement were ±2.9% time for upper arm elevation >90° and ±33°/s for repetitive shoulder movements. The updated Shoulder JEM can be used to present exposure-response relationships on measurement scales. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Mukhopadhyay, Prabir; O'Sullivan, Leonard W; Gallwey, Timothy J
2009-05-01
Twenty-seven right-handed male university students participated in this study, which comprised a full factorial model consisting of three forearm rotation angles (60% prone and supine and neutral range of motion), three elbow angles (45 degrees , 90 degrees and 135 degrees ), three upper arm angles (45 degrees flexion/extension and neutral), one exertion frequency (15 per min) and one level of pronation torque (20% maximum voluntary contraction (MVC) relative to MVC at each articulation). Discomfort rating after the end of each 5 min treatment was recorded on a visual analogue scale. Results of a repeated measures analysis of covariance on discomfort score, with torque endurance time as covariate, indicated that none of the factors was significant including torque endurance time (p = 0.153). An initial data collection phase preceded the main experiment in order to ensure that participants exerted exactly 20% MVC of the particular articulation. In this phase MVC pronation torque was measured at each articulation. The data revealed a significant forearm rotation angle effect (p = 0.001) and participant effect (p = 0.001). Of the two-way interactions, elbow*participant (p = 0.004), forearm*participant (p = 0.001) and upper arm*participant (p = 0.005) were the significant factors. Electromyographic activity of the pronator teres and biceps brachii muscles revealed no significant change in muscle activity in most of the articulations. Industrial jobs involving deviated upper arm postures are typical in industry but have a strong association with injury. Data from this study will enable better understanding of the effects of deviated upper arm postures on musculoskeletal disorders and can also be used to identify and control high-risk tasks in industry.
Wendowski, Oskar; Redshaw, Zoe; Mutungi, Gabriel
2017-02-01
Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) and the soleus (a slow-twitch muscle) of adult mice of different ages (range 100-900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium-coupled neutral amino acid transporter (SNAT) 2, and the sodium-independent L-type amino-acid transporter (LAT) 2. At all ages investigated, protein synthesis was always higher in the slow-twitch than in the fast-twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast-twitch than in the slow-twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast-twitch than in the slow-twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age-dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT.
Trinh, Huong H; Lamb, Graham D
2006-07-01
1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (< 3% of the fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.
Evans, David J.; Fleiszig, Suzanne M. J.
2017-01-01
It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosa chemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect against P. aeruginosa infection. This study also advances our understanding of how mucosal fluids protect against infection, and suggests directions for novel biocompatible strategies to protect our surface epithelia against a major opportunistic pathogen. PMID:28489917
Lee, Teresa S; Kilbreath, Sharon L; Sullivan, Gerard; Refshauge, Kathryn M; Beith, Jane M
2007-01-01
Background Current research evidence indicates that women should return to normal use of their arm after breast cancer surgery. However, it appears some women continue to hold the view that they are supposed to protect their arm from strenuous activities because of the risk of lymphoedema. Many factors contribute to women's perceptions about lymphoedema and their ability to use their affected arm, and it is the aim of this study to explore and understand these perceptions. Methods/design A survey, based on the Protection Motivation Theory, has been developed and tested. The survey assesses whether subjective norms, fear and/or coping attributes predict women's intention to use their affected arm. In addition, the survey includes questions regarding cancer treatment and demographic characteristics, arm and chest symptoms, and arm function. Recruitment of 170 breast cancer survivors has begun at 3 cancer treatment sites in Sydney, Australia. Discussion This study will identify perceptions that help predict the extent women use their affected arm. The results will also determine whether upper limb impairments arise secondary to over-protection of the affected arm. Identification of factors that limit arm use will enable appropriate prevention and better provision of treatment to improve upper limb outcomes. PMID:17488497
Sokal, Brad; Uswatte, Gitendra; Vogtle, Laura; Byrom, Ezekiel; Barman, Joydip
2015-01-01
In adults with hemiparesis amount of movement of the more-affected arm is related to its amount of use in daily life. In children, little is known about everyday arm use. This report examines the relationships between everyday movement of the more-affected arm and its (a) everyday use and (b) motor capacity in children with hemiparesis. Participants were 28 children with a wide range of upper-extremity hemiparesis subsequent to cerebral palsy due to pre- or peri-natal stroke. Everyday movement of the more-affected arm was assessed by putting accelerometers on the children's forearms for three days. Everyday use of that arm and its motor capacity were assessed with the Pediatric Motor Activity Log-Revised and Pediatric Arm Function Test, respectively. Intensity of everyday movement of the more-affected arm was correlated with its motor capacity (rs ≥ 0.52, ps ≤ 0.003). However, everyday movement of that arm was not correlated with its everyday use (rs ≤ 0.30, ps ≥ $ 0.126). In children with upper-extremity hemiparesis who meet the study intake criteria amount of movement of the more-affected arm in daily life is not related to its amount to use, suggesting that children differ from adults in this respect.
Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
Veerbeek, Janne M; Langbroek-Amersfoort, Anneli C; van Wegen, Erwin E H; Meskers, Carel G M; Kwakkel, Gert
2017-02-01
Robot technology for poststroke rehabilitation is developing rapidly. A number of new randomized controlled trials (RCTs) have investigated the effects of robot-assisted therapy for the paretic upper limb (RT-UL). To systematically review the effects of poststroke RT-UL on measures of motor control of the paretic arm, muscle strength and tone, upper limb capacity, and basic activities of daily living (ADL) in comparison with nonrobotic treatment. Relevant RCTs were identified in electronic searches. Meta-analyses were performed for measures of motor control (eg, Fugl-Meyer Assessment of the arm; FMA arm), muscle strength and tone, upper limb capacity, and basic ADL. Subgroup analyses were applied for the number of joints involved, robot type, timing poststroke, and treatment contrast. Forty-four RCTs (N = 1362) were included. No serious adverse events were reported. Meta-analyses of 38 trials (N = 1206) showed significant but small improvements in motor control (~2 points FMA arm) and muscle strength of the paretic arm and a negative effect on muscle tone. No effects were found for upper limb capacity and basic ADL. Shoulder/elbow robotics showed small but significant effects on motor control and muscle strength, while elbow/wrist robotics had small but significant effects on motor control. RT-UL allows patients to increase the number of repetitions and hence intensity of practice poststroke, and appears to be a safe therapy. Effects on motor control are small and specific to the joints targeted by RT-UL, whereas no generalization is found to improvements in upper limb capacity. The impact of RT-UL started in the first weeks poststroke remains unclear. These limited findings could mainly be related to poor understanding of robot-induced motor learning as well as inadequate designing of RT-UL trials, by not applying an appropriate selection of stroke patients with a potential to recovery at baseline as well as the lack of fixed timing of baseline assessments and using an insufficient treatment contrast early poststroke.
NASA Astrophysics Data System (ADS)
Deng, Zhipeng; Liang, Fuyou
2016-10-01
An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement. However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy of noninvasive blood pressure measurement, remains rarely addressed. In the present study, finite element (FE) models were constructed to quantify intra-arm stresses generated by cuff compression, aiming to provide some theoretical evidence for identifying factors of importance for blood pressure measurement or explaining clinical observations. Obtained results showed that the simulated tissue stresses were highly sensitive to the distribution of cuff pressure on the arm surface and the contact condition between muscle and bone. In contrast, the magnitude of cuff pressure and small variations in elastic properties of arm soft tissues had little influence on the efficiency of pressure transmission in arm tissues. In particular, it was found that a thickened subcutaneous fat layer in obese subjects significantly reduced the effective pressure transmitted to the brachial artery, which may explain why blood pressure overestimation occurs more frequently in obese subjects in noninvasive blood pressure measurement.
Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head.
Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W; Wu, John Z
2017-12-01
Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7-12 Hz, the shoulder resonance was 7-9 Hz, and the back and neck resonances were 6-7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods.
Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head
Xu, Xueyan S.; Dong, Ren G.; Welcome, Daniel E.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.
2016-01-01
Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7–12 Hz, the shoulder resonance was 7–9 Hz, and the back and neck resonances were 6–7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Relevance to industry Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods. PMID:29123326
Geroin, Christian; Bortolami, Marta; Saltuari, Leopold; Manganotti, Paolo
2018-01-01
Background Bilateral arm training (BAT) has shown promise in expediting progress toward upper limb recovery in chronic stroke patients, but its neural correlates are poorly understood. Objective To evaluate changes in upper limb function and EEG power after a robot-assisted BAT in chronic stroke patients. Methods In a within-subject design, seven right-handed chronic stroke patients with upper limb paresis received 21 sessions (3 days/week) of the robot-assisted BAT. The outcomes were changes in score on the upper limb section of the Fugl-Meyer assessment (FM), Motricity Index (MI), and Modified Ashworth Scale (MAS) evaluated at the baseline (T0), posttraining (T1), and 1-month follow-up (T2). Event-related desynchronization/synchronization were calculated in the upper alpha and the beta frequency ranges. Results Significant improvement in all outcomes was measured over the course of the study. Changes in FM were significant at T2, and in MAS at T1 and T2. After training, desynchronization on the ipsilesional sensorimotor areas increased during passive and active movement, as compared with T0. Conclusions A repetitive robotic-assisted BAT program may improve upper limb motor function and reduce spasticity in the chronically impaired paretic arm. Effects on spasticity were associated with EEG changes over the ipsilesional sensorimotor network. PMID:29780410
Vafadar, Amir K.; Côté, Julie N.; Archambault, Philippe S.
2015-01-01
Background. Different therapeutic methods are being used to prevent or decrease long-term impairments of the upper arm in stroke patients. Functional electrical stimulation (FES) is one of these methods, which aims to stimulate the nerves of the weakened muscles so that the resulting muscle contractions resemble those of a functional task. Objectives. The objective of this study was to review the evidence for the effect of FES on (1) shoulder subluxation, (2) pain, and (3) upper arm motor function in stroke patients, when added to conventional therapy. Methods. From the 727 retrieved articles, 10 (9 RCTs, 1 quasi-RCT) were selected for final analysis and were rated based on the PEDro (Physiotherapy Evidence Database) scores and the Sackett's levels of evidence. A meta-analysis was performed for all three considered outcomes. Results. The results of the meta-analyses showed a significant difference in shoulder subluxation in experimental groups compared to control groups, only if FES was applied early after stroke. No effects were found on pain or motor function outcomes. Conclusion. FES can be used to prevent or reduce shoulder subluxation early after stroke. However, it should not be used to reduce pain or improve upper arm motor function after stroke. PMID:25685805
Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle
NASA Technical Reports Server (NTRS)
Rankin, Lucinda L.; Enoka, Roger M.; Volz, Kathryn A.; Stuart, Douglas G.
1988-01-01
The effect of whole-muscle fatigue on the isometric twitch was investigated in various hindlimb muscles of anesthetized rats, using an experimental protocol designed to assess the levels of fatigability in motor units. The results of EMG and force measurements revealed the existence of a linear relationship between fatigability and the magnitude of the twitch force following the fatigue test in both soleus and extensor digitorum longus muscles.
Quantifying anti-gravity torques for the design of a powered exoskeleton.
Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq
2013-03-01
Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.
West, J M; Barclay, C J; Luff, A R; Walker, D W
1999-04-01
At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days gestation in both muscle types and there was no difference between the Ca(2+)- and Sr(2+)-activated force throughout development.
Baynham, Patricia J; Ramsey, Deborah M; Gvozdyev, Borys V; Cordonnier, Ellen M; Wozniak, Daniel J
2006-01-01
Pseudomonas aeruginosa is an opportunistic pathogen that is commonly found in water and soil. In order to colonize surfaces with low water content, P. aeruginosa utilizes a flagellum-independent form of locomotion called twitching motility, which is dependent upon the extension and retraction of type IV pili. This study demonstrates that AlgZ, previously identified as a DNA-binding protein absolutely required for transcription of the alginate biosynthetic operon, is required for twitching motility. AlgZ may be required for the biogenesis or function of type IV pili in twitching motility. Transmission electron microscopy analysis of an algZ deletion in nonmucoid PAO1 failed to detect surface pili. To examine expression and localization of PilA (the major pilin subunit), whole-cell extracts and cell surface pilin preparations were analyzed by Western blotting. While the PilA levels present in whole-cell extracts were similar for wild-type P. aeruginosa and P. aeruginosa with the algZ deletion, the amount of PilA on the surface of the cells was drastically reduced in the algZ mutant. Analysis of algZ and algD mutants indicates that the DNA-binding activity of AlgZ is essential for the regulation of twitching motility and that this is independent of the role of AlgZ in alginate expression. These data show that AlgZ DNA-binding activity is required for twitching motility independently of its role in alginate production and that this involves the surface localization of type IV pili. Given this new role in twitching motility, we propose that algZ (PA3385) be designated amrZ (alginate and motility regulator Z).
Myosin content of individual human muscle fibers isolated by laser capture microdissection.
Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H
2016-03-01
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.
Matsuo, Kiyoshi; Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.
Ban, Ryokuya; Ban, Midori; Yuzuriha, Shunsuke
2014-01-01
Objective: The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. Methods: We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. Results: Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. Conclusions: The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm. PMID:25210572
Myosin content of individual human muscle fibers isolated by laser capture microdissection
Stone, William L.; Howell, Mary E. A.; Brannon, Marianne F.; Hall, H. Kenton; Gibson, Andrew L.; Stone, Michael H.
2015-01-01
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. PMID:26676053
Effect of carbohydrate supplementation on postexercise GLUT-4 protein expression in skeletal muscle.
Kuo, C H; Hunt, D G; Ding, Z; Ivy, J L
1999-12-01
The effect of carbohydrate supplementation on skeletal muscle glucose transporter GLUT-4 protein expression was studied in fast-twitch red and white gastrocnemius muscle of Sprague-Dawley rats before and after glycogen depletion by swimming. Exercise significantly reduced fast-twitch red muscle glycogen by 50%. During a 16-h exercise recovery period, muscle glycogen returned to control levels (25.0 +/- 1.4 micromol/g) in exercise-fasted rats (24.2 +/- 0. 3 micro). However, when carbohydrate supplementation was provided during and immediately postexercise by intubation, muscle glycogen increased 77% above control (44.4 +/- 2.1 micromol/g). Exercise-fasting resulted in an 80% increase in fast-twitch red muscle GLUT-4 mRNA but only a 43% increase in GLUT-4 protein concentration. Conversely, exercise plus carbohydrate supplementation elevated fast-twitch red muscle GLUT-4 protein concentration by 88% above control, whereas GLUT-4 mRNA was increased by only 40%. Neither a 16-h fast nor carbohydrate supplementation had an effect on fast-twitch red muscle GLUT-4 protein concentration or on GLUT-4 mRNA in sedentary rats, although carbohydrate supplementation increased muscle glycogen concentration by 40% (35.0 +/- 0.9 micromol/g). GLUT-4 protein in fast-twitch white muscle followed a pattern similar to fast-twitch red muscle. These results indicate that carbohydrate supplementation, provided with exercise, will enhance GLUT-4 protein expression by increasing translational efficiency. Conversely, postexercise fasting appears to upregulate GLUT-4 mRNA, possibly to amplify GLUT-4 protein expression on an increase in glucose availability. These regulatory mechanisms may help control muscle glucose uptake in accordance with glucose availability and protect against postexercise hypoglycemia.
Ciapaite, Jolita; van den Berg, Sjoerd A; Houten, Sander M; Nicolay, Klaas; van Dijk, Ko Willems; Jeneson, Jeroen A
2015-02-01
High-fat diets (HFDs) have been shown to interfere with skeletal muscle energy metabolism and cause peripheral insulin resistance. However, understanding of HFD impact on skeletal muscle primary function, i.e., contractile performance, is limited. Male C57BL/6J mice were fed HFD containing lard (HFL) or palm oil (HFP), or low-fat diet (LFD) for 5weeks. Fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus muscles were characterized with respect to contractile function and selected biochemical features. In FT EDL muscle, a 30%-50% increase in fatty acid (FA) content and doubling of long-chain acylcarnitine (C14-C18) content in response to HFL and HFP feeding were accompanied by increase in protein levels of peroxisome proliferator-activated receptor-γ coactivator-1α, mitochondrial oxidative phosphorylation complexes and acyl-CoA dehydrogenases involved in mitochondrial FA β-oxidation. Peak force of FT EDL twitch and tetanic contractions was unaltered, but the relaxation time (RT) of twitch contractions was 30% slower compared to LFD controls. The latter was caused by accumulation of lipid intermediates rather than changes in the expression levels of proteins involved in calcium handling. In ST soleus muscle, no evidence for lipid overload was found in any HFD group. However, particularly in HFP group, the peak force of twitch and tetanic contractions was reduced, but RT was faster than LFD controls. The latter was associated with a fast-to-slow shift in troponin T isoform expression. Taken together, these data highlight fiber-type-specific sensitivities and phenotypic adaptations to dietary lipid overload that differentially impact fast- versus slow-twitch skeletal muscle contractile function. Copyright © 2015 Elsevier Inc. All rights reserved.
Prange, Gerdienke B; Kottink, Anke I R; Buurke, Jaap H; Eckhardt, Martine M E M; van Keulen-Rouweler, Bianca J; Ribbers, Gerard M; Rietman, Johan S
2015-02-01
Use of rehabilitation technology, such as (electro)mechanical devices or robotics, could partly relieve the increasing strain on stroke rehabilitation caused by an increasing prevalence of stroke. Arm support (AS) training showed improvement of unsupported arm function in chronic stroke. To examine the effect of weight-supported arm training combined with computerized exercises on arm function and capacity, compared with dose-matched conventional reach training in subacute stroke patients. In a single-blind, multicenter, randomized controlled trial, 70 subacute stroke patients received 6 weeks of training with either an AS device combined with computerized exercises or dose-matched conventional training (CON). Arm function was evaluated pretraining and posttraining by Fugl-Meyer assessment (FM), maximal reach distance, Stroke Upper Limb Capacity Scale (SULCS), and arm pain via Visual Analogue Scale, in addition to perceived motivation by Intrinsic Motivation Inventory posttraining. FM and SULCS scores and reach distance improved significantly within both groups. These improvements and experienced pain did not differ between groups. The AS group reported higher interest/enjoyment during training than the CON group. AS training with computerized exercises is as effective as conventional therapy dedicated to the arm to improve arm function and activity in subacute stroke rehabilitation, when applied at the same dose. © The Author(s) 2014.
Addo, O Yaw; Himes, John H; Zemel, Babette S
2017-01-01
Midupper arm circumference (MUAC) has long been used in anthropometric assessments of nutritional status in field settings, especially in emergency situations, but percentile ranges for healthy, well-nourished children are currently unavailable. We developed reference curves for MUAC and derived measures of arm muscle area (AMA) and arm fat area (AFA) on the basis of the population used in the current CDC body mass index growth charts. We analyzed cross-sectional MUAC and triceps (triceps skinfold thickness) data from 32,952 US children aged 1-20 y. Generalized additive models for location, scale, and shape were used to calculate semiparametric smoothed percentiles and L, M, and S coefficients needed for z-score estimation by age and sex. Equations were developed with the use of the height-for-age z score (HAZ) to adjust for the associations of stature with upper arm measures. MUAC increased with age steadily throughout the growing period. For children <5 y old, lower percentile ranges varied markedly across age and sex such that the single cutoff (<11.5 or 12.5 cm) for field screening of acute malnutrition did not track along the same percentile. AFA and AMA growth patterns exhibited sex-specific trends including multiple distinct age-related inflections that were more pronounced in males for AFA-for-age than in females. HAZ and age were substantially and independently related with all arm measures. The new reference percentile ranges for midupper arm measures for healthy children provide a useful nutritional assessment tool in a wide variety of settings. Height status (HAZ) has complex independent associations with arm measures irrespective of the distributional ranking by age and sex. Prediction equations that account for these effects further extend the practical use of the new curves. © 2017 American Society for Nutrition.
Weller-Stuart, Tania; Toth, Ian; De Maayer, Pieter; Coutinho, Teresa
2017-06-01
Pantoea ananatis is a widespread phytopathogen with a broad host range. Despite its ability to infect economically important crops, such as maize, rice and onion, relatively little is known about how this bacterium infects and colonizes host tissue or spreads within and between hosts. To study the role of motility in pathogenicity, we analysed both swimming and twitching motility in P. ananatis LMG 20103. Genetic recombineering was used to construct four mutants affected in motility. Two flagellar mutants were disrupted in the flgK and motA genes, required for flagellar assembly and flagellar rotation, respectively. Similarly, two twitching motility mutants were generated, impaired in the structure (pilA) and functioning (pilT) of the type IV pili. The role of swimming and twitching motility during the infection cycle of P. ananatis in onion seedlings was determined by comparing the mutant- and wild-type strains using several in vitro and in planta assays. From the results obtained, it was evident that flagella aid P. ananatis in locating and attaching to onion leaf surfaces, as well as in pathogenicity, whereas twitching motility is instrumental in the spread of the bacteria on the surface once attachment has occurred. Both swimming and twitching motility contribute towards the ability of P. ananatis to cause disease in onions. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats
NASA Technical Reports Server (NTRS)
Fell, R. D.; Gladden, L. B.; Steffen, J. M.; Musacchia, X. J.
1985-01-01
The effects of hypokinesia/hypodynamia (H/H) on the fatigability and contractile properties of the rat soleus (S) and gastrocnemius (G) muscles have been investigated experimentally. Whole body suspension for one week was used to induce H/H, and fatigue was brought on by train stimulation for periods of 45 and 16 minutes. Following stimulation, rapid rates of fatigue were observed in the G-muscles of the suspended rats, while minimal fatigue was observed in the S-muscles. The twitch and tetanic contractile properties of the muscles were measured before and after train stimulation. It is found that H/H suspension increased twitch tension in the G-muscles, but did not change any contractile properties in the S-muscles. The peak twitch, train, tetanic tensions and time to peak were unchanged in the S-muscles of the suspended rats. On the basis of the experimental results, it is concluded that 1 wk of muscle atropy induced by H/H significantly increases fatigability in G-muscles, but does not affect the contractile properties of fast-twitch and slow-twitch muscles.
Using virtual reality environment to facilitate training with advanced upper-limb prosthesis.
Resnik, Linda; Etter, Katherine; Klinger, Shana Lieberman; Kambe, Charles
2011-01-01
Technological advances in upper-limb prosthetic design offer dramatically increased possibilities for powered movement. The DEKA Arm system allows users 10 powered degrees of movement. Learning to control these movements by utilizing a set of motions that, in most instances, differ from those used to obtain the desired action prior to amputation is a challenge for users. In the Department of Veterans Affairs "Study to Optimize the DEKA Arm," we attempted to facilitate motor learning by using a virtual reality environment (VRE) program. This VRE program allows users to practice controlling an avatar using the controls designed to operate the DEKA Arm in the real world. In this article, we provide highlights from our experiences implementing VRE in training amputees to use the full DEKA Arm. This article discusses the use of VRE in amputee rehabilitation, describes the VRE system used with the DEKA Arm, describes VRE training, provides qualitative data from a case study of a subject, and provides recommendations for future research and implementation of VRE in amputee rehabilitation. Our experience has led us to believe that training with VRE is particularly valuable for upper-limb amputees who must master a large number of controls and for those amputees who need a structured learning environment because of cognitive deficits.
A review of bilateral training for upper extremity hemiparesis.
Stoykov, Mary Ellen; Corcos, Daniel M
2009-01-01
Upper extremity hemiparesis is the most common post-stroke disability. Longitudinal studies have indicated that 30-66% of stroke survivors do not have full arm function 6 months post-stroke. The current gold standard for treatment of mild post-stroke upper limb impairment is constraint-induced therapy but, because of the inclusion criteria, alternative treatments are needed which target more impaired subjects. Bilateral arm training has been investigated as a potential rehabilitation intervention. Bilateral arm training encompasses a number of methods including: (1) bilateral isokinematic training; (2) mirror therapy using bilateral training; (3) device-driven bilateral training; and (4) bilateral motor priming. Neural mechanisms mediating bilateral training are first reviewed. The key bilateral training studies that have demonstrated evidence of efficacy will then be discussed. Finally, conclusions are drawn concerning clinical implications based on the reviewed literature. (c) 2009 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Teodorescu, Mircea; Kurniawan,Sri; Agogino, Adrian; Kurniawan, Sri
2017-01-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the users movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the complexity of the underlying human body. In this paper, we present a compliant, robotic exosuit for upper-extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible design for portability. We also show how CRUX maintains full flexibility of the upper-extremities for its users while providing multi- DoF augmentative strength to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
Clindamycin enhances a nondepolarizing neuromuscular blockade.
Becker, L D; Miller, R D
1976-07-01
Neuromuscular blockades induced by clindamycin alone and with d-tubocurarine or pancuronium were examined in the in-vitro guinea pig lumbrical muscle-nerve preparation. Clindamycin, 80-240 mug/ml, initially increased twitch tension. With higher concentrations (180-240 mug/ml) twitch tension subsequently decreased. With 15 to 20 per cent depression of twitch tension by clindamycin, neostigmine (5-20 ng/ml) or calcium (81 mug/ml) slightly but not completely antagonized the blockade. Clindamycin, 40 mug/ml, a dose that did not depress twitch tension, potentiated d-tubocurarine- or pancuronium-induced neuromuscular bloackade. Plasma concentrations of clindamycin of 10-40 mug/ml were recommended for treating serious infections. The authors conclude that the administration of clindamycin may augment nondepolarizing blockade in man, and antagonism by neostigmine and calcium may be incomplete.
Backonja, Uba; Hediger, Mary L; Chen, Zhen; Lauver, Diane R; Sun, Liping; Peterson, C Matthew; Buck Louis, Germaine M
2017-09-01
Body mass index (BMI) and endometriosis have been inversely associated. To address gaps in this research, we examined associations among body composition, endometriosis, and physical activity. Women from 14 clinical sites in the Salt Lake City, Utah and San Francisco, California areas and scheduled for laparoscopy/laparotomy were recruited during 2007-2009. Participants (N = 473) underwent standardized anthropometric assessments to estimate body composition before surgery. Using a cross-sectional design, odds of an endometriosis diagnosis (adjusted odds ratio [aOR]; 95% confidence interval [CI]) were calculated for anthropometric and body composition measures (weight in kg; height in cm; mid upper arm, waist, hip, and chest circumferences in cm; subscapular, suprailiac, and triceps skinfold thicknesses in mm; arm muscle and fat areas in cm 2 ; centripetal fat, chest-to-waist, chest-to-hip, waist-to-hip, and waist-to-height ratios; arm fat index; and BMI in kg/m 2 ). Physical activity (metabolic equivalent of task-minutes/week) and sedentariness (average minutes sitting on a weekday) were assessed using the International Physical Activity Questionnaire-Short Form. Measures were modeled continuously and in quartiles based on sample estimates. Adjusted models were controlled for age (years, continuous), site (Utah/California), smoking history (never, former, or current smoker), and income (below, within 180%, and above of the poverty line). Findings were standardized by dividing variables by their respective standard deviations. We used adjusted models to examine whether odds of an endometriosis diagnosis were moderated by physical activity or sedentariness. Inverse relationships were observed between endometriosis and standardized: weight (aOR = 0.71, 95% CI 0.57-0.88); subscapular skinfold thickness (aOR = 0.79, 95% CI 0.65-0.98); waist and hip circumferences (aOR = 0.79, 95% CI 0.64-0.98 and aOR = 0.76, 95% CI 0.61-0.94, respectively); total upper arm and upper arm muscle areas (aOR = 0.76, 95% CI 0.61-0.94 and aOR = 0.74, 95% CI 0.59-0.93, respectively); and BMI (aOR = 0.75, 95% CI 0.60-0.93), despite similar heights. Women in the highest versus lowest quartile had lower adjusted odds of an endometriosis diagnosis for: weight; mid-upper arm, hip, and waist circumferences; total upper arm and upper arm muscle areas; BMI; and centripetal fat ratio. There was no evidence of a main effect or moderation of physical activity or sedentariness. In a surgical cohort, endometriosis was inversely associated with anthropometric measures and body composition indicators.
No impaired hemoglobin oxygenation in forearm muscles of patients with chronic CRPS-1.
Brunnekreef, Jaap J J; Oosterhof, Jan; Wolff, André P; Crul, Ben J P; Wilder-Smith, Oliver H G; Oostendorp, Rob A B
2009-01-01
Physiotherapy is considered an important treatment option in patients with upper limb complex regional pain syndrome type-1 (CRPS-1). In case of chronic CRPS-1, exercise therapy of the affected limb forms an important part of the physiotherapeutic program. We investigated whether muscle loading in chronic CRPS-1 patients is associated with impairments in muscle circulation of the forearm of the affected limb. Thirty patients with chronic CRPS-1 unilaterally affecting their upper limbs, and 30 age-matched and sex-matched control participants were included in this study. Local muscle blood flow and hemoglobin oxygenation were measured by near infrared spectroscopy within the muscles of the forearm at rest, after 1-minute isometric handgrip exercises, and after arterial occlusion. Main outcome parameters were: local muscle blood flow, O2 consumption (mVO2), and postischemic reoxygenation (ReOx). We found no differences in baseline muscle blood flow, mVO2, and ReOx between the affected CRPS-1, unaffected CRPS-1, and control arms. After exercise, mVO2 of the affected CRPS-1 arms was not different from the clinically unaffected CRPS-1 arms. Furthermore, in comparison with the control arms, unaffected CRPS-1 arms showed no difference in mVO2 or ReOx. Muscle loading does not seems to be related to impairments in muscle oxygen uptake in forearm muscles of upper limbs affected by chronic CRPS-1. Our results suggest that exercise therapy can be safely used in physiotherapeutic training programs for chronic CRPS-1 of the upper limb.
Gordon, Brian J; Dapena, Jesús
2013-01-04
Inaccuracy in determining the orientation of the upper arm about its longitudinal axis (twist orientation) has been a pervasive problem in sport biomechanics research. The purpose of this study was to develop a method to improve the calculation of the upper arm twist orientation in dynamic sports activities. The twist orientation of the upper arm is defined by the orientation of its mediolateral axis. The basis for the new method is that at any angle in the flexion/extension range of an individual's elbow, it is possible to define a true mediolateral axis and also a surrogate mediolateral axis perpendicular to the plane containing the shoulder, elbow and wrist joints. The difference between the twist orientations indicated by these two versions of the mediolateral axis will vary from one elbow angle to another, but if the elbow joint deforms equally in different activities, for any given subject the difference should be constant at any given value of the elbow angle. Application of the new method required individuals to execute sedate elbow extension trials prior to the dynamic trials. Three-dimensional motion analysis of the sedate extension trials allowed quantification of the difference between the true and surrogate mediolateral axes for all angles in the entire flexion/extension range of an individual's elbow. This made it possible to calculate in any dynamic trial the twist orientation defined by the true mediolateral axis from the twist orientation defined by the surrogate mediolateral axis. The method was tested on a wooden model of the arm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wendowski, Oskar; Redshaw, Zoe
2016-01-01
Abstract Background Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. Methods In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast‐twitch muscle) and the soleus (a slow‐twitch muscle) of adult mice of different ages (range 100–900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium‐coupled neutral amino acid transporter (SNAT) 2, and the sodium‐independent L‐type amino‐acid transporter (LAT) 2. Results At all ages investigated, protein synthesis was always higher in the slow‐twitch than in the fast‐twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast‐twitch than in the slow‐twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast‐twitch than in the slow‐twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. Conclusion From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age‐dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT. PMID:27239418
Al-Amood, W S; Lewis, D M
1987-01-01
1. Rat soleus muscle was denervated by sciatic transection and electrically stimulated for periods of between 3 and 9 weeks with intermittent 1 s bursts of pulses. Most of the bursts were either repeated every 90 s and pulses within them had frequencies between 10 and 100 Hz, or had a frequency of 50 Hz and were repeated at intervals between 60 and 600 s. Comparisons were made with continuous stimulation at 10 Hz. 2. At the end of the period of stimulation, isometric twitches and tetani were measured and, in a proportion, also isotonic shortening velocity. 3. Isometric twitch duration (contraction and relaxation) decreased with time of stimulation. Very similar effects were seen in all animals in which intermittent stimulation had been used. There was a significant relationship between the change in twitch duration and the frequency used within the bursts of chronic stimulation, with slightly larger effects at frequencies of 40 and 60 Hz. The lowest burst repetition rate produced the largest effects. 4. It was confirmed that similar changes were found in denervated muscles that were not stimulated, although these changes were smaller and developed more slowly. 5. The extreme loss of tetanic tension induced in the muscle by denervation was reduced by chronic stimulation, with no significant difference between different regimes, although there were small differences which showed the same patterns of effectiveness described for twitch durations. 6. Continuous stimulation at 10 Hz maintained the twitch contraction and relaxation phases at the values found 3 weeks after denervation, that is it prevented secondary shortening of the twitch. Continuous stimulation reduced tension loss but was, perhaps, less effective than intermittent stimulation. 7. Twitch-tetanus ratio increased with denervation with little spontaneous reversal later. Stimulation at all frequencies reduced the ratio, but it did not reach normal values. 8. Isotonic shortening velocity was measured in many of the muscles. Maximum velocity was estimated and normalized by muscle length.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 3 PMID:3446785
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13509-001] Turnagain Arm Tidal Electric Energy Project; Notice of Intent To File License Application, Filing of Pre-Application.... Name of Project: Turnagain Arm Tidal Electric Energy Project. f. Location: Of the Upper Cook Inlet off...
Yamamoto, Takumi; Yamamoto, Nana; Yoshimatsu, Hidehiko
2017-10-01
Volume measurement is a common evaluation for upper extremity lymphedema. However, volume comparison between different patients with different body types may be inappropriate, and it is difficult to evaluate localized limb volume change using arm volume. Localized arm volumes (Vk, k = 1-5) and localized arm volume indices (LAVIk) at 5 points (1, upper arm; 2, elbow; 3, forearm; 4, wrist; 5, hand) of 106 arms of 53 examinees with no arm edema were calculated based on physical measurements (arm circumferences and lengths and body mass index [BMI]). Interrater and intrarater reliabilities of LAVIk were assessed, and Vk and LAVIk were compared between lower BMI (BMI, <22 kg/m) group and higher BMI (BMI, ≥22 kg/m) group. Interrater and intrarater reliabilities of LAVIk were all high (all, r > 0.98). Between lower and higher BMI groups, significant differences were observed in all Vk (V1 [P = 6.8 × 10], V2 [P = 3.1 × 10], V3 [P = 1.1 × 10], V4 [P = 8.3 × 10], and V5 [P = 3.0 × 10]). Regarding localized arm volume index (LAVI) between groups, significant differences were seen in LAVI1 (P = 9.7 × 10) and LAVI5 (P = 1.2 × 10); there was no significant difference in LAVI2 (P = 0.60), LAVI3 (P = 0.61), or LAVI4 (P = 0.22). Localized arm volume index is a convenient and highly reproducible method for evaluation of localized arm volume change, which is less affected by body physique compared with arm volumetry.
Characterization of Upper-Troposphere Water Vapor Measurements during AFWEX Using LASE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrare, Richard; Browell, E. V.; Ismail, S.
Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors over the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma. LASE was deployed from the NASA DC-8 aircraft and measured water vapor over the ARM SGP Central Facility (CF) site during seven flights between November 27 and December 10, 2000. Initially, the DOE ARM SGP Cloud and Radiation Testbed (CART) Raman lidar (CARL) UTWVmore » profiles were about 5-7% wetter than LASE in the upper troposphere, and the Vaisala RS80-H radiosonde profiles were about 10% drier than LASE between 8-12 km. Scaling the Vaisala water vapor profiles to match the precipitable water vapor (PWV) measured by the ARM SGP microwave radiometer (MWR) did not change these results significantly. By accounting for an overlap correction of the CARL water vapor profiles and by employing schemes designed to correct the Vaisala RS80-H calibration method and account for the time response of the Vaisala RS80H water vapor sensor, the average differences between the CARL and Vaisala radiosonde upper troposphere water vapor profiles are reduced to about 5%, which is within the ARM goal of mean differences of less than 10%. The LASE and DC-8 in situ Diode Laser Hygrometer (DLH) UTWV measurements generally agreed to within about 3 to 4%. The DC-8 in situ frost point cryogenic hygrometer and Snow White chilled mirror measurements were drier than the LASE, Raman lidars, and corrected Vaisala RS80H measurements by about 10-25% and 10-15%, respectively. Sippican (formerly VIZ manufacturing) carbon hygristor radiosondes exhibited large variabilities and poor agreement with the other measurements. PWV derived from the LASE profiles agreed to within about 3% on average with PWV derived from the ARM SGP microwave radiometer. The agreement between the LASE and MWR PWV and the LASE and CARL UTWV measurements supports the hypotheses that MWR measurements of the 22 GHz water vapor line can accurately constrain the total water vapor amount and that the CART Raman lidar, when calibrated using the MWR PWV, can provide an accurate, stable reference for characterizing upper troposphere water vapor.« less
Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.
Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan
2003-02-01
To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.
Rogowski, Isabelle; Creveaux, Thomas; Genevois, Cyril; Klouche, Shahnaz; Rahme, Michel; Hardy, Philippe
2016-01-01
The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P < 0.01; -3.6 ± 3.0% vs. -0.9 ± 2.9%, P < 0.05; and -2.2 ± 2.2% vs. 0.1 ± 3.4%, P < 0.05, respectively). The elbow group displayed asymmetrical bilateral proportions between forearm and arm compared to the healthy group (-0.4 ± 4.3% vs. 1.5 ± 4.0%, P < 0.01). The shoulder group showed significant bilateral difference in elbow circumference, and asymmetrical bilateral proportions between forearm and elbow when compared to the healthy group (5.8 ± 4.7% vs. 3.1 ± 4.8%, P < 0.05 and -1.7 ± 4.5% vs. 1.4 ± 4.3%, P < 0.01, respectively). These findings suggest that players with a history of injury at the upper limb joint present altered dominant upper limb proportions in comparison with the non-dominant side, and such asymmetrical proportions would appear to be specific to the location of injury. Further studies are needed to confirm the link between location of tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players.
Integrative rehabilitation of elderly stroke survivors: the design and evaluation of the BrightArm™.
Rabin, Bryan A; Burdea, Grigore C; Roll, Doru T; Hundal, Jasdeep S; Damiani, Frank; Pollack, Simcha
2012-07-01
To describe the development of the BrightArm upper extremity rehabilitation system, and to determine its clinical feasibility with older hemiplegic patients. The BrightArm adjusted arm gravity loading through table tilting. Patients wore an arm support that sensed grasp strength and communicated wirelessly with a personal computer. Games were written to improve cognitive, psychosocial and the upper extremity motor function and adapted automatically to each patient. The system underwent feasibility trials spanning 6 weeks. Participants were evaluated pre-therapy, post-therapy, and at 6 weeks follow-up using standardized clinical measures. Computerized measures of supported arm reach and game performance were stored on a remote server. Five participants had clinically significant improvements in their active range of shoulder movement, shoulder strength, grasp strength, and their ability to focus. Several participants demonstrated substantially higher arm function (measured with the Fugl-Meyer test) and two were less-depressed (measured with the Becks Depression Inventory, Second Edition). The BrightArm technology was well-accepted by the participants, who gave it an overall subjective rating of 4.1 on a 5 point Likert scale. Given these preliminary findings, it will be beneficial to evaluate the BrightArm through controlled clinical trials and to investigate its application to other clinical populations.
Integrative rehabilitation of elderly stroke survivors: The design and evaluation of the BrightArm™
Rabin, Bryan A.; Burdea, Grigore C.; Roll, Doru T.; Hundal, Jasdeep S.; Damiani, Frank; Pollack, Simcha
2011-01-01
Purpose To describe the development of the BrightArm upper extremity rehabilitation system, and to determine its clinical feasibility with older hemiplegic patients. Method The BrightArm adjusted arm gravity loading through table tilting. Patients wore an arm support that sensed grasp strength and communicated wirelessly with a personal computer. Games were written to improve cognitive, psychosocial and the upper extremity motor function and adapted automatically to each patient. The system underwent feasibility trials spanning 6 weeks. Participants were evaluated pre-therapy, post-therapy, and at 6 weeks follow-up using standardized clinical measures. Computerized measures of supported arm reach and game performance were stored on a remote server. Results Five participants had clinically significant improvements in their active range of shoulder movement, shoulder strength, grasp strength, and their ability to focus. Several participants demonstrated substantially higher arm function (measured with the Fugl-Meyer test) and two were less-depressed (measured with the Becks Depression Inventory, Second Edition). The BrightArm technology was well-accepted by the participants, who gave it an overall subjective rating of 4.1 on a 5 point Likert scale. Conclusions Given these preliminary findings, it will be beneficial to evaluate the BrightArm through controlled clinical trials and to investigate its application to other clinical populations. PMID:22107353
Twitch analysis as an approach to motor unit activation during electrical stimulation.
Heyters, M; Carpentier, A; Duchateau, J; Hainaut, K
1994-12-01
The mechanical twitch in response to increasing electrical stimulus intensity, delivered both over the motor point and motor nerve, was recorded in the first dorsal interosseous (FDI) and the adductor pollicis (AP), and only over the motor point in the soleus (Sol), lateral (LG), and medial (MG) gastrocnemius muscles of human subjects. The relationship between intensity of electrical stimulation (ES) and twitch torque showed a positive linear regression in all muscles. In the FDI and AP the relationship was not significantly different when ES was applied at the motor point or over the motor nerve. At small intensities of activation, ES induced larger twitch torques in the MG and LG, which contain a roughly equal proportion of slow and fast motor units (MUs) compared to the Sol, which is composed mainly of slow type fibres. Moreover, the relationship between ES intensity and twitch time-to-peak is best fitted in all muscles by a power curve that shows a greater twitch time-to-peak range in its initial part for muscles containing a larger proportion of fast MUs (LG, MG) than for muscles mainly composed of slow MUs (Sol). In conclusion, these results induced by ES at the motor point and/or over the motor nerve confirm the concept of a reversed sequence of MU activation, as compared to voluntary contractions, and document this viewpoint in muscles of different function and composition. The reversed sequence of MU activation is more clearly evident during motor point ES.
Moving People from Science Adjacent to Science Doers with Twitch.tv
NASA Astrophysics Data System (ADS)
Gay, Pamela L.; CosmoQuest
2017-10-01
The CosmoQuest community is testing the ability to attract people from playing online videogames to doing fully online citizen science by engaging people through the Twitch.tv streaming platform. Twitch.tv launched in 2011 as an online platform for video gamers to stream their gameplay while providing narrative. In its six years of regular growth, the platform has added support for people playing non-video games, and for those participating in non-game activities. As part of their expansion, in April 2017, Twitch.tv hosted a science week during which they streamed the Cosmos series and allowed different feeds provide real-time commentary. They also hosted panel discussions on a variety of science topics. CosmoQuest participated in this event and used it as a jumping off point for beginning to interact with Twitch.tv community members online. With CosmoQuest’s beta launch of Image Detectives, they expanded their use of this streaming platform to include regular “office hours”, during which team members did science with CosmoQuest’s online projects, took questions from community members, and otherwise promoted the CosmoQuest community. This presentation examines this case study, and looks at how well different kinds of Twitter engagements attracted audiences, the conversion rate from viewer to subscriber, and at how effectively CosmoQuest was able to migrate users from viewing citizen science on Twitch.tv to participating in citizen science on CosmoQuest.org.This project was supported through NASA cooperative agreement NNX17AD20A.
A novel upper limb rehabilitation system with self-driven virtual arm illusion.
Aung, Yee Mon; Al-Jumaily, Adel; Anam, Khairul
2014-01-01
This paper proposes a novel upper extremity rehabilitation system with virtual arm illusion. It aims for fast recovery from lost functions of the upper limb as a result of stroke to provide a novel rehabilitation system for paralyzed patients. The system is integrated with a number of technologies that include Augmented Reality (AR) technology to develop game like exercise, computer vision technology to create the illusion scene, 3D modeling and model simulation, and signal processing to detect user intention via EMG signal. The effectiveness of the developed system has evaluated via usability study and questionnaires which is represented by graphical and analytical methods. The evaluation provides with positive results and this indicates the developed system has potential as an effective rehabilitation system for upper limb impairment.
Radial nerve dysfunction (image)
The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...
He, Xin; Hao, Man-Zhao; Wei, Ming; Xiao, Qin; Lan, Ning
2015-12-01
Involuntary central oscillations at single and double tremor frequencies drive the peripheral neuromechanical system of muscles and joints to cause tremor in Parkinson's disease (PD). The central signal of double tremor frequency was found to correlate more directly to individual muscle EMGs (Timmermann et al. 2003). This study is aimed at investigating what central components of oscillation contribute to inter-muscular synchronization in a group of upper extremity muscles during tremor in PD patients. 11 idiopathic, tremor dominant PD subjects participated in this study. Joint kinematics during tremor in the upper extremity was recorded along with EMGs of six upper arm muscles using a novel experimental apparatus. The apparatus provided support for the upper extremity on a horizontal surface with reduced friction, so that resting tremor in the arm can be recorded with a MotionMonitor II system. In each subject, the frequencies of rhythmic firings in upper arm muscles were determined using spectral analysis. Paired and pool-averaged coherence analyses of EMGs for the group of muscles were performed to correlate the level of inter-muscular synchronization to tremor amplitudes at shoulder and elbow. The phase shift between synchronized antagonistic muscle pairs was calculated to aid coherence analysis in the muscle pool. Recorded EMG revealed that rhythmic firings were present in most recorded muscles, which were either synchronized to form phase-locked bursting cycles at a subject specific frequency, or unsynchronized with a random phase distribution. Paired coherence showed a stronger synchronization among a subset of recorded arm muscles at tremor frequency than that at double tremor frequency. Furthermore, the number of synchronized muscles in the arm was positively correlated to tremor amplitudes at elbow and shoulder. Pool-averaged coherence at tremor frequency also showed a better correlation with the amplitude of resting tremor than that of double tremor frequency, indicating that the neuromechanical coupling in peripheral neuromuscular system was stronger at tremor frequency. Both paired and pool-averaged coherences are more consistent indexes to correlate to tremor intensity in a group of upper extremity muscles of PD patients. The central drive at tremor frequency contributes mainly to synchronize peripheral muscles in the modulation of tremor intensity.
Mogendi, Joseph Birundu; De Steur, Hans; Gellynck, Xavier; Saeed, Hibbah Araba; Makokha, Anselimo
2015-06-01
Although it is crucial to identify those children likely to be treated in an appropriate nutrition rehabilitation programme and discharge them at the appropriate time, there is no golden standard for such identification. The current study examined the appropriateness of using Mid-Upper Arm Circumference for the identification, follow-up and discharge of malnourished children. We also assessed its discrepancy with the Weight-for-Height based diagnosis, the rate of recovery, and the discharge criteria of the children during nutrition rehabilitation. The study present findings from 156 children (aged 6-59 months) attending a supplementary feeding programme at Makadara and Jericho Health Centres, Eastern District of Nairobi, Kenya. Records of age, weight, height and mid-upper arm circumference were selected at three stages of nutrition rehabilitation: admission, follow-up and discharge. The values obtained were then used to calculate z-scores as defined by WHO Anthro while estimating different diagnostic indices. Mid-upper arm circumference single cut-off (< 12.5 cm) was found to exhibit high values of sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, negative likelihood ratio at both admission and discharge. Besides, children recorded higher rate of recovery at 86 days, an average increment of 0.98 cm at the rate of 0.14mm/day, and a weight gain of 13.49gm/day, albeit higher in female than their male counterparts. Nevertheless, children admitted on basis of low MUAC had a significantly higher MUAC gain than WH at 0.19mm/day and 0.13mm/day respectively. Mid-upper arm circumference can be an appropriate tool for identifying malnourished children for admission to nutrition rehabilitation programs. Our results confirm the appropriateness of this tool for monitoring recovery trends and discharging the children thereafter. In principle the tool has potential to minimize nutrition rehabilitation costs, particularly in community therapeutic centres in developing countries.
Deodorants: a clinical provocation study in fragrance-sensitive individuals.
Johansen, J D; Rastogi, S C; Bruze, M; Andersen, K E; Frosch, P; Dreier, B; Lepoittevin, J P; White, I; Menné, T
1998-10-01
Deodorants are one of the most marketed types of cosmetics and are frequently reported as a cause of dermatitis, particularly among fragrance-sensitive persons. The aim of this study was to investigate the ability of deodorants, which had previously caused axillary dermatitis in fragrance-mix-sensitive eczema patients, to provoke reactions on repeated open application tests on the upper arm and in the axillae, and to relate the findings to the content of fragrance-mix constituents in those deodorants. 14 eczema patients performed a 7-day use test with 1 or 2 deodorants that had caused a rash within the last 12 months. 2 applications per day were made in the axilla and simultaneously on a 25 cm2 area on the upper arm. A total of 20 deodorants were tested among the 14 patients. Afterwards, the deodorants were subjected to quantitative chemical analysis identifying constituents of the fragrance mix. 12/20 (60%) deodorants elicited eczema on use testing in the axilla. 8/12 deodorants were positive in the axilla on day (D) 7 and 4 both in the axilla and on the upper arm. 2 of the 4 developed a reaction in the axilla before it developed on the upper arm. Chemical analysis revealed that 18/19 deodorants contained between 1 and 6 of the fragrance-mix constituents, on average 3 being found. The mean concentration of fragrance-mix constituents was generally higher in the deodorants causing a positive use test, as compared with those giving a negative reaction, indicating that the differences between the deodorants in terms of elicitation potential were more related to quantitative aspects of allergen content than of a qualitative nature. It is recommended that deodorants are tested in the axilla in the case of a negative use test on the upper arm and a strong clinical suspicion.
Reliability, Validity, and Responsiveness of the QuickDASH in Patients With Upper Limb Amputation.
Resnik, Linda; Borgia, Matthew
2015-09-01
To examine the internal consistency, test-retest reliability, validity, and responsiveness of the shortened version of the Disabilities of the Arm, Shoulder and Hand (QuickDASH) questionnaire in persons with upper limb amputation. Cross-sectional and longitudinal. Three sites participating in the U.S. Department of Veterans Affairs Home Study of the DEKA Arm. A convenience sample of upper limb amputees (N=44). Training with a multifunction upper limb prosthesis. Multiple outcome measures including the QuickDASH were administered twice within 1 week, and for a subset of 20 persons, after completion of in-laboratory training with the DEKA Arm. Scale alphas and intraclass correlation coefficient type 3,1 (ICC3,1) were used to examine reliability. Minimum detectable change (MDC) scores were calculated. Analyses of variance, comparing QuickDASH scores by the amount of prosthetic use and amputation level, were used for known-group validity analyses with alpha set at .05. Pairwise correlations between QuickDASH and other measures were used to examine concurrent validity. Responsiveness was measured by effect size (ES) and standardized response mean (SRM). QuickDASH alpha was .83, and ICC was .87 (95% confidence interval, .77-.93). MDC at the 95% confidence level (MDC95%) was 17.4. Full- or part-time prosthesis users had better QuickDASH scores compared with nonprosthesis users (P=.021), as did those with more distal amputations at both baseline (P=.042) and with the DEKA Arm (P=.024). The QuickDASH was correlated with concurrent measures of activity limitation as expected. The ES and SRM after training with the DEKA Arm were 0.6. This study provides evidence of reliability and validity of the QuickDASH in persons with upper limb amputation. Results provide preliminary evidence of responsiveness to prosthetic device type/training. Further research with a larger sample is needed to confirm results. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Petchey, Louisa K; Risebro, Catherine A; Vieira, Joaquim M; Roberts, Tom; Bryson, John B; Greensmith, Linda; Lythgoe, Mark F; Riley, Paul R
2014-07-01
Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.
Petchey, Louisa K.; Risebro, Catherine A.; Vieira, Joaquim M.; Roberts, Tom; Bryson, John B.; Greensmith, Linda; Lythgoe, Mark F.; Riley, Paul R.
2014-01-01
Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. PMID:24938781
Snow, Chelsi J.; Henry, Clarissa A.
2009-01-01
Muscle development involves the specification and morphogenesis of muscle fibers that attach to tendons. After attachment, muscles and tendons then function as an integrated unit to transduce force to the skeletal system and stabilize joints. The attachment site is the myotendinous junction, or MTJ, and is the primary site of force transmission. We find that attachment of fast-twitch myofibers to the MTJ correlates with the formation of novel microenvironments within the MTJ. The expression or activation of two proteins involved in anchoring the intracellular cytoskeleton to the extracellular matrix, Focal adhesion kinase (Fak) and β-dystroglycan is up-regulated. Conversely, the extracellular matrix protein Fibronectin (Fn) is down-regulated. This degradation of Fn as fast-twitch fibers attach to the MTJ results in Fn protein defining a novel microenvironment within the MTJ adjacent to slow-twitch, but not fast-twitch, muscle. Interestingly, however, Fak, laminin, Fn and β-dystroglycan concentrate at the MTJ in mutants that do not have slow-twitch fibers. Taken together, these data elucidate novel and dynamic microenvironments within the MTJ and indicate that MTJ morphogenesis is spatially and temporally complex. PMID:18783736
Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"
NASA Astrophysics Data System (ADS)
Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki
2005-12-01
In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.
Wang, Yong Tai; Vrongistinos, Konstantinos Dino; Xu, Dali
2008-08-01
The purposes of this study were to examine the consistency of wheelchair athletes' upper-limb kinematics in consecutive propulsive cycles and to investigate the relationship between the maximum angular velocities of the upper arm and forearm and the consistency of the upper-limb kinematical pattern. Eleven elite international wheelchair racers propelled their own chairs on a roller while performing maximum speeds during wheelchair propulsion. A Qualisys motion analysis system was used to film the wheelchair propulsive cycles. Six reflective markers placed on the right shoulder, elbow, wrist joints, metacarpal, wheel axis, and wheel were automatically digitized. The deviations in cycle time, upper-arm and forearm angles, and angular velocities among these propulsive cycles were analyzed. The results demonstrated that in the consecutive cycles of wheelchair propulsion the increased maximum angular velocity may lead to increased variability in the upper-limb angular kinematics. It is speculated that this increased variability may be important for the distribution of load on different upper-extremity muscles to avoid the fatigue during wheelchair racing.
Palm, Peter; Gupta, Nidhi; Forsman, Mikael; Skotte, Jørgen; Nordquist, Tobias; Holtermann, Andreas
2018-06-26
Regarding prevention of neck and shoulder pain (NSP), unsupported arm elevation is one factor that should be taken into account when performing work risk assessment. Triaxial accelerometers can be used to measure arm elevation over several days but it is not possible to differentiate between supported and unsupported arm elevation from accelerometers only. Supported arm elevation is more likely to exist during sitting than standing. The aim of the study was to evaluate the use of whole workday measurements of arm elevation with accelerometers to assess potentially harmful work exposure of arm elevation, by comparing arm elevation at work with arm elevation during leisure, in a population with diverse work tasks, and to assess how the exposure parameters were modified when upper arm elevation during sitting time was excluded. The participants, 197 workers belonging to 12 occupational groups with diverse work tasks, wore triaxial accelerometers on the dominant arm, hip, and back for 1-4 days to measure arm elevation and periods of sitting. None of the groups were found to have higher exposure to arm elevation during work compared to leisure. Even though some occupations where known to have work tasks that forced them to work with elevated arms to a large extent. A high proportion of arm elevation derived from sitting time, especially so during leisure. When arm elevation during sitting time was excluded from the analysis, arm elevation was significantly higher at work than during leisure among construction workers, garbage collectors, manufacturing workers, and domestic cleaners. Together this illustrates that it is not suitable to use whole workday measurments of arm elevation with accelerometer as a sole information source when assessing the risk for NSP due to arm elevation. Information on body posture can provide relevant contextual information in exposure assessments when it is known that the potential harmful exposure is performed in standing or walking.
Leclère, Franck Marie; Alcolea, Justo M; Vogt, Peter; Moreno-Moraga, Javier; Mordon, Serge; Casoli, Vincent; Trelles, Mario A
2015-04-01
Upper arm deformities secondary to weight loss or senile elastosis have led to an increased demand for aesthetic contouring procedures. We conducted this study to objectively assess if, in Teimourian low-grade upper arm remodelling, one session of laser-assisted lypolisis (LAL) could result in full patient satisfaction. Between 2011 and 2013, 45 patients were treated for unsightly fat arm Teimourian grade I (15 patients), grade IIa (15 patients) and grade IIb (15 patients) with one session of LAL. The laser used in this study was a 1470-nm diode laser (Alma Lasers, Cesarea, Israel) with the following parameters: continuous mode, 15 W power and transmission through a 600-μm optical fibre. Previous mathematical modelling suggested that 0.1 kJ was required in order to destroy 1 ml of fat. Treatment parameters and adverse effects were recorded.The arm circumference and skin pinch measurements were assessed pre and postoperatively. Patients were asked to file a satisfaction questionnaire. Pain during the anaesthesia and discomfort after the procedure were minimal. Complications included prolonged oedema in 11 patients. The average arm circumference decreased by 4.9 ± 0.4 cm in the right arm (p < 0.01) and 4.7 ± 0.5 cm in the left arm (p < 0.01) in grade I patients, 5.5 ± 0.6 cm in the right arm (p < 0.01) and 5.2 ± 0.5 cm in the left arm (p < 0.01) in grade IIa patients and 5.4 ± 0.5 cm in the right arm (p < 0.01) and 5.3 ± 0.5 cm in the left arm (p < 0.01) in grade IIB patients. The skin tightening effect was confirmed by the reduction of the skin calliper measurements in all three groups. Overall mean opinion of treatment was high for both patients and investigators. Of the 45 patients, all but one would recommend this treatment. A single session of LAL in upper arm remodelling for Teimourian grades I to IIb is a safe and reproducible technique. The procedure allows reduction in the amount of adipose deposits while providing full skin tightening.
Gravity compensation of an upper extremity exoskeleton.
Moubarak, S; Pham, M T; Moreau, R; Redarce, T
2010-01-01
This paper presents a new gravity compensation method for an upper extremity exoskeleton mounted on a wheel chair. This new device is dedicated to regular and efficient rehabilitation training for post-stroke and injured people without the continuous presence of a therapist. The exoskeleton is a wearable robotic device attached to the human arm. The user provides information signals to the controller by means of the force sensors around the wrist and the arm, and the robot controller generates the appropriate control signals for different training strategies and paradigms. This upper extremity exoskeleton covers four basic degrees of freedom of the shoulder and the elbow joints with three additional adaptability degrees of freedom in order to match the arm anatomy of different users. For comfortable and efficient rehabilitation, a new heuristic method have been studied and applied on our prototype in order to calculate the gravity compensation model without the need to identify the mass parameters. It is based on the geometric model of the robot and accurate torque measurements of the prototype's actuators in a set of specifically chosen joint positions. The weight effect has been successfully compensated so that the user can move his arm freely while wearing the exoskeleton without feeling its mass.
2010-06-01
muscle . J Clin Invest 117: 2388–2391. 13. Close R (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development. J Physiol...cultured skeletal muscle [30], which reported average peak twitch stress values of 2.9 kPa (reported as specific peak twitch force in units of kN/m2), but...demonstrates that the myotubes were driven down a path towards a more mature phenotype, in the process developing fast - twitch isoforms of myosin, while
2009-05-01
diplomas and who score in the upper half on the Armed Forces Qualification Test. The Army implemented some new programs to increase the market of...quality of its enlisted personnel, we analyzed data from OSD on educational credentials and aptitude test scores for these personnel, and we collected...recruits to have high-school diplomas and at least 60 percent to have scores in the upper half on the Armed Forces Qualification Test (AFQT). In fiscal
Smith, Ian C.; Gittings, William; Huang, Jian; McMillan, Elliott M.; Quadrilatero, Joe; Tupling, A. Russell
2013-01-01
The increase in isometric twitch force observed in fast-twitch rodent muscles during or after activity, known universally as potentiation, is normally associated with myosin regulatory light chain (RLC) phosphorylation. Interestingly, fast muscles from mice devoid of detectable skeletal myosin light chain kinase (skMLCK) retain a reduced ability to potentiate twitch force, indicating the presence of a secondary origin for this characteristic feature of the fast muscle phenotype. The purpose of this study was to assess changes in intracellular cytosolic free Ca2+ concentration ([Ca2+]i) after a potentiating stimulus in mouse lumbrical muscle (37°C). Lumbricals were loaded with the Ca2+-sensitive fluorescent indicators fura-2 or furaptra to detect changes in resting and peak, respectively, intracellular Ca2+ levels caused by 2.5 s of 20-Hz stimulation. Although this protocol produced an immediate increase in twitch force of 17 ± 3% (all data are n = 10) (P < 0.01), this potentiation dissipated quickly and was absent 30 s afterward. Fura-2 fluorescence signals at rest were increased by 11.1 ± 1.3% (P < 0.01) during potentiation, indicating a significant increase in resting [Ca2+]i. Interestingly, furaptra signals showed no change to either the amplitude or the duration of the intracellular Ca2+ transients (ICTs) that triggered potentiated twitches during this time (P < 0.50). Immunofluorescence work showed that 77% of lumbrical fibers expressed myosin heavy chain isoform IIx and/or IIb, but with low expression of skMLCK and high expression of myosin phosphatase targeting subunit 2. As a result, lumbrical muscles displayed no detectable RLC phosphorylation either at rest or after stimulation. We conclude that stimulation-induced elevations in resting [Ca2+]i, in the absence of change in the ICT, are responsible for a small-magnitude, short-lived potentiation of isometric twitch force. If operative in other fast-twitch muscles, this mechanism may complement the potentiating influence of myosin RLC phosphorylation. PMID:23401574
Chu, Jennifer; Bruyninckx, Frans; Neuhauser, Duncan V
2017-07-01
Favourable pain relief results on evoking autonomous twitches at myofascial trigger points with Electrical Twitch Obtaining Intramuscular Stimulation (ETOIMS). To document autonomic nervous system (ANS) dysfunction in Complex Regional Pain Syndrome (CRPS) from blood pressure (BP) and pulse/heart rate changes with ETOIMS. A patient with persistent pain regularly received serial ETOIMS sessions of 60, 90, 120 or ≥150 min over 24 months. Outcome measures include BP: systolic, diastolic, pulse pressure and pulse/heart rate, pre-session/immediate-post-session summed differences (SDPPP index), and pain reduction. His results were compared with that of two other patients and one normal control. Each individual represented the following maximal elicitable twitch forces (TWF) graded 1-5: maximum TWF2: control subject; maximum TWF3: CRPS patient with suspected ANS dysfunction; and maximum TWF4 and TWF5: two patients with respective slow-fatigue and fast-fatigue twitches who during ETOIMS had autonomous twitching at local and remote myotomes simultaneously from denervation supersensitivity. ETOIMS results between TWFs were compared using one-way analysis of variance test. The patients showed immediate significant pain reduction, BP and pulse/heart rate changes/reduction(s) except for diastolic BP in the TWF5 patient. TWF2 control subject had diastolic BP reduction with ETOIMS but not with rest. Linear regression showed TWF grade to be the most significant variable in pain reduction, more so than the number of treatments, session duration and treatment interval. TWF grade was the most important variable in significantly reducing outcome measures, especially pulse/heart rate. Unlike others, the TWF3 patient had distinctive reductions in SDPPP index. Measuring BP and pulse/heart rate is clinically practical for alerting ANS dysfunction maintained CRPS. SDPPP index (≥26) and pulse/heart rate (≥8) reductions with almost every ETOIMS treatment, plus inability to evoke autonomous twitches due to pain-induced muscle hypertonicity, are pathognomonic of this problem.
Mutungi, Gabriel; Edman, K A P; Ranatunga, K W
2003-01-01
The effects of a stretch-release cycle (≈25 % of the resting muscle fibre length, Lo) on both tension and [Ca2+]i in small, unstimulated, intact muscle fibre bundles isolated from adult and neonatal rats were investigated at 20 °C. The results show that the effects of the length change depended on the age of the rats. Thus, the length change produced three effects in the neonatal rat muscle fibre bundles, but only a single effect in the adult ones. In the neonatal fibre bundles, the length change led to an increase in resting muscle tension and to a transient increase in [Ca2+]i. The stretch-release cycle was then followed by a twitch-like tension response. In the adult fibre bundles, only the increase in resting tension was seen and both the transient increase in [Ca2+]i and the stretch-induced twitch-like tension response were absent. The amplitude of the twitch-like tension response was affected by both 2,3-butanedione monoxime and sarcomere length in the same manner as active twitch tension, suggesting that it arose from actively cycling crossbridges. It was also reversibly abolished by 25 mM K+, 1 μM tetrodotoxin and 1.5 mM lidocaine (lignocaine), and was significantly depressed (P < 0.001) by lowering [Ca2+]o. These findings suggest that a rapid stretch in neonatal rats induces a propagated impulse that leads to an increase in [Ca2+]i, and that abolishing the action potential abolishes the stretch-induced twitch-like tension response. In 5- to 7-day-old rats, the twitch-like tension response was ≈50 % of the isometric twitch. It then decreased progressively with age and was virtually absent by the time the rats were 21 days old. Interestingly, this is the same period over which rat muscles differentiate from their neonatal to their adult types. PMID:12813148
User Evaluation of a Dynamic Arm Orthosis for People With Neuromuscular Disorders.
Gunn, Margaret; Shank, Tracy M; Eppes, Marissa; Hossain, Jobayer; Rahman, Tariq
2016-12-01
This paper presents the results of an online survey conducted with users of a functional upper extremity orthosis called the Wilmington Robotic EXoskeleton (WREX). The WREX is a passive anti-gravity arm orthosis that allows people with neuromuscular disabilities to move their arms in three dimensions. The paper also describes the design of a novel lightweight 3-D printed WREX used for ambulatory children. Three different versions of the WREX are now offered to patients. Two can be mounted on a wheelchair and one to a body jacket for ambulatory patients. An online user survey with 55 patients was conducted to determine the benefits of the various WREXs. The survey asked ten questions related to upper extremity function with and without the WREX as well as subjective impressions of the device. Results show a statistically significant improvement in arm function for everyday tasks with the WREX.
Mechanical Impedance Modeling of Human Arm: A survey
NASA Astrophysics Data System (ADS)
Puzi, A. Ahmad; Sidek, S. N.; Sado, F.
2017-03-01
Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.
Chadwell, Alix; Kenney, Laurence; Granat, Malcolm; Thies, Sibylle; Head, John S; Galpin, Adam
2018-02-01
Current outcome measures used in upper limb myoelectric prosthesis studies include clinical tests of function and self-report questionnaires on real-world prosthesis use. Research in other cohorts has questioned both the validity of self-report as an activity assessment tool and the relationship between clinical functionality and real-world upper limb activity. Previously, 1 we reported the first results of monitoring upper limb prosthesis use. However, the data visualisation technique used was limited in scope. Methodology development. To introduce two new methods for the analysis and display of upper limb activity monitoring data and to demonstrate the potential value of the approach with example real-world data. Upper limb activity monitors, worn on each wrist, recorded data on two anatomically intact participants and two prosthesis users over 1 week. Participants also filled in a diary to record upper limb activity. Data visualisation was carried out using histograms, and Archimedean spirals to illustrate temporal patterns of upper limb activity. Anatomically intact participants' activity was largely bilateral in nature, interspersed with frequent bursts of unilateral activity of each arm. At times when the prosthesis was worn prosthesis users showed very little unilateral use of the prosthesis (≈20-40 min/week compared to ≈350 min/week unilateral activity on each arm for anatomically intact participants), with consistent bias towards the intact arm throughout. The Archimedean spiral plots illustrated participant-specific patterns of non-use in prosthesis users. The data visualisation techniques allow detailed and objective assessment of temporal patterns in the upper limb activity of prosthesis users. Clinical relevance Activity monitoring offers an objective method for the assessment of upper limb prosthesis users' (PUs) activity outside of the clinic. By plotting data using Archimedean spirals, it is possible to visualise, in detail, the temporal patterns of upper limb activity. Further work is needed to explore the relationship between traditional functional outcome measures and real-world prosthesis activity.
Duitama, Sandra M; Zurita, Javier; Cordoba, Diana; Duran, Paola; Ilag, Leopold; Mejia, Wilson
2018-05-20
To evaluate the intake of a soy protein-based supplement (SPS) and its effects on the sexual maturation and nutritional status of prepubertal children who consumed it for a year. Healthy children (n = 51) were recruited and randomly assigned to consume the lunch fruit juice with (n = 29) or without (n = 22) addition of 45 g of a commercial soy protein-based supplement (SPS) over 12 months. Nutritional assessment including anthropometry (bodyweight, height, triceps skinfold thickness, mid-upper arm circumference), body mass index (BMI), upper arm muscle area, arm muscle circumference, upper arm area, upper arm fat area data were derived from measures using usual procedures; age and gender-specific percentiles were used as reference. Sexual maturation was measured by Tanner stage. Isoflavones were quantified using liquid chromatography and tandem mass spectrometry. Height, BMI/age, weight/age and height/age were significantly different (P < 0.05) at 12 months between girls in the control and intervention groups. Statistically significant differences between groups by gender (P < 0.05) were found in boys in the control group for the triceps skinfold thickness and fat area. Nutritional status was adequate according to the World Health Organization parameters. On average, 0.130 mg/kg body weight/day of isoflavones were consumed by children, which did not show significant differences in their sexual maturation. Consumption of SPS for 12 months did not affect sexual maturation or the onset of puberty in prepubertal boys and girls; however, it may have induced an increase in height, BMI/age, height/age and weight/age of the girls, associated with variations in fat-free mass. © 2018 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
Ajibola, E S; Adebayo, A O; Thomas, F C; Rahman, S A; Gbadebo, A M; Odunbaku, T A
2009-12-01
The study was designed to investigate the nature of the cholinoceptors at the sciatic nerve-gastrocnemius muscle junction of the common African toad (Bufo regularis). Using myographic technique, the twitch properties of the sciatic-gastrocnemius muscle preparation of the common African toad was studied. Both the twitch height and peak tetanic height were measured as a percentage of control. Hexamethonium at a concentration of 0.1 mM significantly [P<0.05] reduced the mean twitch height from 2.62 cm to 1.0 cm and mean peak tetanic height from 5.38 cm to 4.32 cm. Hexamethonium, however does not produce tetanic fade at the same concentration. We hypothesized that the cholinoceptors of the neuromuscular junction of the common African toad (Bufo regularis) resemble the developing synapse of African clawed toad (Xenopus laevis) and may contain muscarinic M1 autoreceptors at the pre juntional membrane.
Guignard, Brice; Rouard, Annie; Chollet, Didier; Ayad, Omar; Bonifazi, Marco; Dalla Vedova, Dario; Seifert, Ludovic
2017-10-01
This study assessed perception-action coupling in expert swimmers by focusing on their upper limb inter-segmental coordination in front crawl. To characterize this coupling, we manipulated the fluid flow and compared trials performed in a swimming pool and a swimming flume, both at a speed of 1.35ms -1 . The temporal structure of the stroke cycle and the spatial coordination and its variability for both hand/lower arm and lower arm/upper arm couplings of the right body side were analyzed as a function of fluid flow using inertial sensors positioned on the corresponding segments. Swimmers' perceptions in both environments were assessed using the Borg rating of perceived exertion scale. Results showed that manipulating the swimming environment impacts low-order (e.g., temporal, position, velocity or acceleration parameters) and high-order (i.e., spatial-temporal coordination) variables. The average stroke cycle duration and the relative duration of the catch and glide phases were reduced in the flume trial, which was perceived as very intense, whereas the pull and push phases were longer. Of the four coordination patterns (in-phase, anti-phase, proximal and distal: when the appropriate segment is leading the coordination of the other), flume swimming demonstrated more in-phase coordination for the catch and glide (between hand and lower arm) and recovery (hand/lower arm and lower arm/upper arm couplings). Conversely, the variability of the spatial coordination was not significantly different between the two environments, implying that expert swimmers maintain consistent and stable coordination despite constraints and whatever the swimming resistances. Investigations over a wider range of velocities are needed to better understand coordination dynamics when the aquatic environment is modified by a swimming flume. Since the design of flumes impacts significantly the hydrodynamics and turbulences of the fluid flow, previous results are mainly related to the characteristics of the flume used in the present study (or a similar one), and generalization is subject to additional investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface
NASA Astrophysics Data System (ADS)
Kim, Hyunchul; Kim, Jungsuk
2017-04-01
This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Trombadore, James M; Teodorescu, Mircea; Agogino, Adrian; Kurniawan, Sri
2017-07-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the user's movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the underlying complexity of the human body. In this paper, we present a compliant, robotic exosuit for upper extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible multi-joint design for portable augmentation. We also illustrate how CRUX maintains the full range of motion of the upper-extremities for its users while providing multi-DoF strength amplification to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
Hamdi, M M; Mutungi, G
2010-02-01
It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.
Landén Ludvigsson, Maria; Peterson, Gunnel; Jull, Gwendolen; Trygg, Johan; Peolsson, Anneli
2016-02-01
Approximately 50% of people with Whiplash Associated Disorders (WAD) report longstanding symptoms. The upper trapezius is commonly painful yet its mechanical properties are not fully understood. This study examined the deformation of different depths of the upper trapezius muscle during a scapular elevation task (shoulder shrugging) before and following loaded arm abduction. A cross-sectional case-control study of 36 people (26 female and 10 male, mean age 38 (SD 11)) with chronic WAD and 36 controls, matched for age and gender. Real-time ultrasound recordings of upper trapezius were taken during both scapular elevation tasks. Post-process speckle tracking analysis was undertaken of three different sections of the upper trapezius muscle (superficial, middle, deep). The WAD group had lower deformation of the superficial section of the upper trapezius compared to the control group in both concentric and eccentric phases of scapular elevation (p < 0.05) especially before the loaded arm abduction. After arm abduction, the deformation of the trapezius was reduced in both groups but only significantly in the WAD-group (p = 0.03). Within-group analysis revealed that the control group least engaged the deep section of upper trapezius during the task (p < 0.01). This study, measuring mechanical deformation of the upper trapezius during a scapular elevation task indicates that persons with WAD may display different patterns in engagement of the muscle sections than those in the control group. Further research is needed to replicate and understand the reasons for and implications of this possible change in motor strategy within upper trapezius. Clinical Trials.gov, Number: NCT01547624. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strzala, Marek; Krezalek, Piotr; Glab, Grzegorz; Kaca, Marcin; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Anna K.
2013-01-01
Despite the limitations set by FINA regulations, execution technique in breaststroke swimming is being improved thanks to more and more advanced analyses of the efficiency of the swimmer’s movements. The aim of this study was to detect the parameters of the time structure of the cycle correlated with the maximal swimming speed at the of 50 meters distance, in order to focus to specific technical aspects in the breaststroke training. In the group of 23 participants, between the age of 15.0 ± 1.17, the breaststroke cycle movement of the arms and legs was divided into two phases: propulsive or non-propulsive. In addition, indices characterizing the temporal coordination of movements of the upper limbs in relation to the lower limbs were distinguished: 1) Arm-Leg Lag - determines the interval between the phases of propulsion generated by upper and lower limbs; 2) Glide or Overlap - the inter-cyclic glide or overlap of the propulsive movement of the upper on lower limbs. Significant dependence was noted between the swim speed (V50surface breast) and the percentage of time of the arm propulsive in-sweep phase 0.64, p < 0.01. A significant correlation was observed between the V50surface breast with the percentage of partially surfaced hand phase of arm recovery 0.54, p < 0.01. Correlation between total leg propulsion and non-propulsion phases with V50surface breast was 0.49 and -0.49 respectively, both p < 0.01. The Glide or Overlap index was significantly related to the swimming speed V50surface breast 0.48, p < 0.05. This type of analysis suggests how to refine the swimming technique, with the goal to improve the current speed capabilities; furthermore the results also indicate the direction of its development in the future swimmers of the group studied. Key Points This study investigated the influence of the inter- and intra-cyclic time structure of the movements in sprint breaststroke swimming. The distinction of the operations phases of the upper limbs in the propulsive movement shows significant correlation 0.64, p <0.01 between the swimming speed V50surface breast and the execution time of the in-sweep phase in the movement cycle. Significant relationship was noted between minimizing the first non-propulsive phase of arm recovery with higher contribution of the next, partially immersed sliding phase of arm recovery. The specification of the inter-cyclic coordination index of the upper and lower limbs during the movement cycle shows influence of the overlap of the propulsive movement of the upper limbs on the propulsive movement of the lower limbs on V50surface breast with correlation 0.48, p <0.05 for young swimmers. PMID:24421728
Mutungi, G; Ranatunga, K W
2001-01-01
The effects of a ramp stretch (amplitude <6% muscle fibre length (L0), speed < 13L0 s(-1)) on twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in their cross-bridge kinetics.
Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs
2018-01-01
High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p < 0.05, d = 1.1) and jump performance outputs ( p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend ( p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development ( p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height ( p < 0.01, d = 1.9, 3%) and DJ contact time were found ( p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.
Prieske, Olaf; Maffiuletti, Nicola A.; Granacher, Urs
2018-01-01
High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players (N = 12) aged 14–15 years conducted three experimental conditions in randomized order: S included 3 sets of 8–10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties (p < 0.05, d = 1.1) and jump performance outputs (p < 0.05, 1.1 ≤ d ≤ 1.2) were found. Post-hoc tests revealed that S compared to control produced larger PAP for twitch peak torques by trend (p = 0.07, d = 1.8, 33 vs. 21%) and significantly larger PAP for twitch rate of torque development (p < 0.05, d = 2.4, 55 vs. 43%). Following B+S compared to control, significant improvements in CMJ height (p < 0.01, d = 1.9, 3%) and DJ contact time were found (p < 0.01, d = 2.0, 10%). This study revealed protocol-specific acute performance improvements. While S resulted in significant increases in twitch contractile properties, B+S produced significant enhancements in jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties. PMID:29628898
House, Gregory; Burdea, Grigore; Grampurohit, Namrata; Polistico, Kevin; Roll, Doru; Damiani, Frank; Hundal, Jasdeep; Demesmin, Didier
2016-01-01
Background: Persistent pain in shoulder and arm following post-surgical breast cancer treatment can lead to cognitive and physical deficits. Depression is also common in breast cancer survivors. Virtual reality therapy with integrative cognitive and physical rehabilitation has not been clinically trialed for this population. The novel BrightArm Duo technology improved cognition and upper extremity (UE) function for other diagnoses and has great potential to benefit individuals coping with post-surgical breast cancer pain. Objectives: The aim of this study was to explore the feasibility of BrightArm Duo therapy for coping with post-surgical chronic pain and associated disability in breast cancer survivors with depression. Methods: BrightArm Duo is a robotic rehabilitation table modulating gravity loading on supported forearms. It tracks arm position and grasping strength while patients play three-dimensional (3D) custom integrative rehabilitation games. Community-dwelling women (N = 6) with post-surgical breast cancer pain in the upper arm trained on the system twice a week for 8 weeks. Training difficulty increased progressively in game complexity, table tilt and session length (20–50 minutes). Standardized assessments were performed before and after therapy for pain, cognition, emotion, UE function and activities of daily living. Results: Subjects averaged upwards of 1300 arm repetitions and 850 hand grasps per session. Pain intensity showed a 20% downward trend (p = 0.1) that was corroborated by therapist observations and participant feedback. A total of 10 out of 11 cognitive metrics improved post-training (p = 0.01) with a significant 8.3-point reduction in depression severity (p = 0.04). A total of 17 of 18 range of motion metrics increased (p < 0.01), with five affected-side shoulder improvements above the Minimal Clinically Important Difference (8°). In all, 13 out of 15 strength and function metrics improved (p = 0.02) with lateral deltoid strength increasing 7.4 N on the affected side (p = 0.05). Conclusion: This pilot study demonstrated feasibility of using the BrightArm Duo Rehabilitation System to treat cancer survivors coping with upper body chronic pain. Outcomes indicate improvement in cognition, shoulder range, strength, function and depression. PMID:27867508
House, Gregory; Burdea, Grigore; Grampurohit, Namrata; Polistico, Kevin; Roll, Doru; Damiani, Frank; Hundal, Jasdeep; Demesmin, Didier
2016-11-01
Persistent pain in shoulder and arm following post-surgical breast cancer treatment can lead to cognitive and physical deficits. Depression is also common in breast cancer survivors. Virtual reality therapy with integrative cognitive and physical rehabilitation has not been clinically trialed for this population. The novel BrightArm Duo technology improved cognition and upper extremity (UE) function for other diagnoses and has great potential to benefit individuals coping with post-surgical breast cancer pain. The aim of this study was to explore the feasibility of BrightArm Duo therapy for coping with post-surgical chronic pain and associated disability in breast cancer survivors with depression. BrightArm Duo is a robotic rehabilitation table modulating gravity loading on supported forearms. It tracks arm position and grasping strength while patients play three-dimensional (3D) custom integrative rehabilitation games. Community-dwelling women (N = 6) with post-surgical breast cancer pain in the upper arm trained on the system twice a week for 8 weeks. Training difficulty increased progressively in game complexity, table tilt and session length (20-50 minutes). Standardized assessments were performed before and after therapy for pain, cognition, emotion, UE function and activities of daily living. Subjects averaged upwards of 1300 arm repetitions and 850 hand grasps per session. Pain intensity showed a 20% downward trend (p = 0.1) that was corroborated by therapist observations and participant feedback. A total of 10 out of 11 cognitive metrics improved post-training (p = 0.01) with a significant 8.3-point reduction in depression severity (p = 0.04). A total of 17 of 18 range of motion metrics increased (p < 0.01), with five affected-side shoulder improvements above the Minimal Clinically Important Difference (8°). In all, 13 out of 15 strength and function metrics improved (p = 0.02) with lateral deltoid strength increasing 7.4 N on the affected side (p = 0.05). This pilot study demonstrated feasibility of using the BrightArm Duo Rehabilitation System to treat cancer survivors coping with upper body chronic pain. Outcomes indicate improvement in cognition, shoulder range, strength, function and depression.
Physiologically Relevant Prosthetic Limb Movement Feedback for Upper and Lower Extremity Amputees
2016-10-01
upper arm (elbow movement), Upper leg (knee movement) and lower leg ( ankle movement) to provide a physiologically relevant sense of limb movement...Additionally a BOA cable tensioning system is passed through these plates and anchored to the external surface of the socket. When tension is applied the
Stotz, Paula J.; Normandin, Sarah C.; Robinovitch, Stephen N.
2010-01-01
Background Falls are the number one cause of unintentional injury in older adults. The protective response of “breaking the fall” with the outstretched hand is often essential for avoiding injury to the hip and head. In this study, we compared the ability of young and older women to absorb the impact energy of a fall in the outstretched arms. Methods Twenty young (mean age = 21 years) and 20 older (M = 78 years) women were instructed to slowly lower their body weight, similar to the descent phase of a push-up, from body lean angles ranging from 15° to 90°. Measures were acquired of peak upper extremity energy absorption, arm deflection, and hand contact force. Results On average, older women were able to absorb 45% less energy in the dominant arm than young women (1.7 ± 0.5% vs 3.1 ± 0.4% of their body weight × body height; p < .001). These results suggest that, even when both arms participate equally, the average energy content of a forward fall exceeds by 5-fold the average energy that our older participants could absorb and exceeds by 2.7-fold the average energy that young participants could absorb. Conclusions During a descent movement that simulates fall arrest, the energy-absorbing capacity of the upper extremities in older women is nearly half that of young women. Absorbing the full energy of a fall in the upper extremities is a challenging task even for healthy young women. Strengthening of upper extremity muscles should enhance this ability and presumably reduce the risk for injury to the hip and head during a fall. PMID:19861641
Sran, Meena M; Stotz, Paula J; Normandin, Sarah C; Robinovitch, Stephen N
2010-03-01
Falls are the number one cause of unintentional injury in older adults. The protective response of "breaking the fall" with the outstretched hand is often essential for avoiding injury to the hip and head. In this study, we compared the ability of young and older women to absorb the impact energy of a fall in the outstretched arms. Twenty young (mean age = 21 years) and 20 older (M = 78 years) women were instructed to slowly lower their body weight, similar to the descent phase of a push-up, from body lean angles ranging from 15 degrees to 90 degrees . Measures were acquired of peak upper extremity energy absorption, arm deflection, and hand contact force. On average, older women were able to absorb 45% less energy in the dominant arm than young women (1.7 +/- 0.5% vs 3.1 +/- 0.4% of their body weight x body height; p < .001). These results suggest that, even when both arms participate equally, the average energy content of a forward fall exceeds by 5-fold the average energy that our older participants could absorb and exceeds by 2.7-fold the average energy that young participants could absorb. During a descent movement that simulates fall arrest, the energy-absorbing capacity of the upper extremities in older women is nearly half that of young women. Absorbing the full energy of a fall in the upper extremities is a challenging task even for healthy young women. Strengthening of upper extremity muscles should enhance this ability and presumably reduce the risk for injury to the hip and head during a fall.
Romkema, Sietske; Bongers, Raoul M; van der Sluis, Corry K
2013-01-01
Intermanual transfer may improve prosthetic handling and acceptance if used in training soon after an amputation. The purpose of this study was to determine whether intermanual transfer effects can be detected after training with a myoelectric upper-limb prosthesis simulator. A mechanistic, randomized, pretest-posttest design was used. A total of 48 right-handed participants (25 women, 23 men) who were able-bodied were randomly assigned to an experimental group or a control group. The experimental group performed a training program of 5 days' duration using the prosthesis simulator. To determine the improvement in skill, a test was administered before, immediately after, and 6 days after training. The control group only performed the tests. Training was performed with the unaffected arm, and tests were performed with the affected arm (the affected arm simulating an amputated limb). Half of the participants were tested with the dominant arm and half with the nondominant arm. Initiation time was defined as the time from starting signal until start of the movement, movement time was defined as the time from the beginning of the movement until completion of the task, and force control was defined as the maximal applied force on a deformable object. The movement time decreased significantly more in the experimental group (F₂,₉₂=7.42, P=.001, η²(G)=.028) when compared with the control group. This finding is indicative of faster handling of the prosthesis. No statistically significant differences were found between groups with regard to initiation time and force control. We did not find a difference in intermanual transfer between the dominant and nondominant arms. The training utilized participants who were able-bodied in a laboratory setting and focused only on transradial amputations. Intermanual transfer was present in the affected arm after training the unaffected arm with a myoelectric prosthesis simulator, and this effect did not depend on laterality. This effect may improve rehabilitation of patients with an upper-limb amputation.
ERIC Educational Resources Information Center
Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.
2012-01-01
This study examined the arm position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and typically developing children (TD) by means of a contralateral matching task. This task required participants to match the position of one arm with the position of the other arm for different target distances and from different starting…
The clinical aspects of the upper extremity exoskeleton "EXAR" use
NASA Astrophysics Data System (ADS)
Vorobiev, A. A.; Krivonozhkina, P. S.; Andryushchenko, F. A.; Zasypkina, O. A.
2015-11-01
The article considers some of indications and contraindications for the use of the exoskeleton "EXAR". Our experience with the present construction use shows that the exoskeleton "EXAR" is able to make up the following lost or disturbed muscle functions:- an arm raise; a drawing of the arm aside from the trunk;- a bending of the arm in shoulder or elbow joints.
Blood pressure measurement in obese patients: comparison between upper arm and forearm measurements.
Pierin, Angela M G; Alavarce, Débora C; Gusmão, Josiane L; Halpern, Alfredo; Mion, Décio
2004-06-01
It is well known that blood pressure measurement with a standard 12-13 cm wide cuff is erroneous for large arms. To compare arm blood pressure measurements with an appropriate cuff and forearm blood pressure measurements (BPM) with a standard cuff, and both measurements by the Photopletismography (Finapres) method. One hundred and twenty-nine obese patients were studied (body mass index=40+/-7 kg/m2). The patients had three arm BPM taken by an automatic oscillometric device using an appropriate cuff and three forearm BPM with a standard cuff in the sitting position after a five-minute rest. Data were analysed by the analysis of variance. The correction values were obtained by the linear regression test. Systolic and diastolic arm BPM with an appropriate cuff were significantly lower (p<0.05) than forearm BPM with a standard cuff. The measurements obtained by Finapres were significantly lower (p<0.05) than those found for forearm systolic and diastolic blood pressures and upper arm diastolic blood pressure. The equation to correct BPM in forearm in obese patients with arm circumference between 32-44 cm was: systolic BPM=33.2+/-0.68 x systolic forearm BPM, and diastolic BPM=25.2+0.59 x forearm diastolic BPM. This study showed that forearm blood pressure measurement overestimates the values of arm blood pressure measurement. In addition, it is possible to correct forearm BPM with an equation.
Friebel, H.
1959-01-01
The spontaneous twitchings of isolated frog sartorius muscles in 0.7% NaCl solution have been studied. Addition of 1 mg./ml. of (±)-carnitine hydrochloride, or of (±)-carnitine base, to the bath fluid had no influence on the spontaneous activity of the muscles, their excitability or their ability to liberate potassium. This indicates that carnitine is not a natural inhibitor of striated frog muscle. Fluids enriched with potassium either from twitching muscle or by addition of KCl inhibited the activity of muscles reversibly. PMID:13825014
Chalmers, Gordon R
2008-01-01
Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.
Hexamethonium sensitivity of the swim musculature of the pteropod mollusc, Clione limacina.
Satterlie, Richard A; Courtney, Christopher
2008-12-01
Swimming in reduced electrophysiological preparations of the pteropod mollusc, Clione limacina, was blocked by bath application of hexamethonium even though pattern generator activity continued with this treatment. Neuromuscular recordings indicated that hexamethonium blocked synaptic input from Pd-3 and Pd-4 motoneurons to slow-twitch muscle cells, while connections from Pd-1A and Pd-2A motoneurons to fast-twitch muscle cells were variable in their response to hexamethonium-synaptic inputs were suppressed in most cases and occasionally blocked, but the latter only with high concentrations and long incubations. Acutely dissociated wing muscle cells showed a concentration-dependency in the percentage of contracted cells with bath application of acetylcholine, and this contractile activity was blocked in preparations that were first bathed in hexamethonium. Intracellular recordings from dissociated slow-twitch muscle cells showed conductance-increase depolarizations of approximately 20 mV following 1 s pressure ejections of 10(-4) M acetylcholine from micropipettes placed immediately adjacent to the muscle cells. These responses were blocked when hexamethonium was bath applied prior to the pressure-applied acetylcholine. The results suggest the Pd-3/Pd-4 motoneuron to slow-twitch muscle cell junctions are cholinergic with nicotinic-like receptors, while the Pd-1A/Pd-2A to fast-twitch muscle cell connections are likely cholinergic, but with a different receptor type.
The augmenting action of banana tree juice on skeletal muscle contraction.
Singh, Y N; Dryden, W F
1990-01-01
An extract obtained from juice expressed from the stem of the plantain banana tree (Musa sapientum L., var. paradisiaca) induces twitch augmentation in skeletal muscles. The mechanism of this action was investigated in the mouse hemi-diaphragm preparation. Directly evoked twitches and potassium induced (K+) contractures were both augmented by the extract. Twitch augmentation was partly dependent on extracellular Ca2+. The action on K(+)-contractures was unaffected by tetrodotoxin, but the rate of relaxation was enhanced in the absence of extracellular calcium (0[Ca2+]o). Muscle contracture induced by high concentrations of extract was also augmented in 0[Ca2+]o and in the presence of the Ca2(+)-channel blocking agent, nifedipine. The time course of the contracture was shortened in 0[Ca2+]o, but not by nifedipine. Nifedipine enhanced the augmenting effect of the extract on twitches but shortened the time-course of this action. In addition, a muscle contracture was superimposed on the twitching muscle at higher concentrations of nifedipine. Manganese, on the other hand, reduced or abolished the augmenting action of the extract. The results are consistent with an action of banana tree juice on the molecule responsible for excitation-contraction coupling in skeletal muscle, resulting in a labilization of intracellular Ca2+.
Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian
2014-10-06
Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.
Macdonald, W A; Stephenson, D G
2006-05-15
Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.
Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M
2009-01-01
We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.
Jayasinghe, Isuru D.; Munro, Michelle; Baddeley, David; Launikonis, Bradley S.; Soeller, Christian
2014-01-01
Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. PMID:25100314
Age-related differences in twitch properties and muscle activation of the first dorsal interosseous.
Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B; Nicoll, Justin X
2017-06-01
To examine twitch force potentiation and twitch contraction duration, as well as electromyographic amplitude (EMG RMS ) and motor unit mean firing rates (MFR) at targeted forces between young and old individuals in the first dorsal interosseous (FDI). Ultrasonography was used to assess muscle quality. Twenty-two young (YG) (age=22.6±2.7years) and 14 older (OD) (age=62.1±4.7years) individuals completed conditioning contractions at 10% and 50% maximal voluntary contraction, (MVC) during which EMG RMS and MFRs were assessed. Evoked twitches preceded and followed the conditioning contractions. Ultrasound images were taken to quantify muscle quality (cross-sectional area [CSA] and echo intensity [EI]). No differences were found between young and old for CSA, pre-conditioning contraction twitch force, or MFRs (P>0.05). However, OD individuals exhibited greater EI and contraction duration (P<0.05), and EMG RMS (YG=35.4±8.7%, OD=43.4±13.2%; P=0.034). Twitch force potentiation was lower for OD (0.311±0.15N) than YG (0.619±0.26N) from pre- to post-50% conditioning contraction (P<0.001). Lower levels of potentiation with elongated contraction durations likely contributed to greater muscle activation during the conditioning contractions in the OD rather than altered MFRs. Ultrasonography suggested age-related changes in muscle structure contributed to altered contractile properties in the OD. Greater muscle activation requirements can have negative implications on fatigue resistance at low to moderate intensities in older individuals. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Kankipati, Padmaja; Boninger, Michael L; Gagnon, Dany; Cooper, Rory A; Koontz, Alicia M
2015-07-01
Repeated measures design. This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Research laboratory. Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head-hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement.
Noyes, Adam M; Dickey, John
2017-05-01
Upper extremity deep venous thrombosis (UEDVT) involves thrombosis of the deep veins of the arm as they enter the thorax. They are increasing in frequency, largely due to the rising use of central venous catheters and implantable cardiac devices, and represent more than 10% of all DVT cases, Upper extremity deep venous thrombosis has been historically misunderstood when compared to lower extremity deep vein thrombosis (LEDVT). Their associated disease states may carry devastating complications, with mortality rates often higher than that of LEDVT. Thus, education on recognition, classification and management is critical to avoid long-term sequelae and mortality from UEDVT. [Full article available at http://rimed.org/rimedicaljournal-2017-05.asp].
Accessory superficial ulnar artery: a case report.
Solan, Shweta
2013-12-01
Variations in the arterial system of the upper limb have been well documented. A thorough knowledge on variations of arteries of upper extremity is necessary during performance of vascular and reconstructive surgeries and also, during evaluation of angiographic images. A case of accessory superficial ulnar artery was reported. The ulnar artery had a high origin from the brachial artery, in the upper third of the arm and it proceeded superficially and lateral to ulnar nerve in forearm, but it had a normal termination in the hand. The brachial artery had a usual course in the arm, but in the cubital fossa, it divided into the radial and deep ulnar arteries. This deep ulnar artery ended by dividing into ulnar recurrent and common interosseous arteries. Knowledge on this variation is important for the radiologists, orthopaedic and plastic surgeons, for appropriate planning of operative procedures involving the arteries of the upper limb.
Accessory Superficial Ulnar Artery: A Case Report
Solan, Shweta
2013-01-01
Variations in the arterial system of the upper limb have been well documented. A thorough knowledge on variations of arteries of upper extremity is necessary during performance of vascular and reconstructive surgeries and also, during evaluation of angiographic images. A case of accessory superficial ulnar artery was reported. The ulnar artery had a high origin from the brachial artery, in the upper third of the arm and it proceeded superficially and lateral to ulnar nerve in forearm, but it had a normal termination in the hand. The brachial artery had a usual course in the arm, but in the cubital fossa, it divided into the radial and deep ulnar arteries. This deep ulnar artery ended by dividing into ulnar recurrent and common interosseous arteries. Knowledge on this variation is important for the radiologists, orthopaedic and plastic surgeons, for appropriate planning of operative procedures involving the arteries of the upper limb. PMID:24551682
Cortical relapses in multiple sclerosis.
Puthenparampil, Marco; Poggiali, Davide; Causin, Francesco; Rolma, Giuseppe; Rinaldi, Francesca; Perini, Paola; Gallo, Paolo
2016-08-01
Multiple sclerosis (MS) is a white and grey matter disease of the central nervous system (CNS). It is recognized that cortical damage (i.e. focal lesions and atrophy) plays a role in determining the accumulation of physical and cognitive disability that is observed in patients with progressive MS. To date, an association of cortical lesions with clinical relapses has not been described. We report clinical and magnetic resonance imaging (MRI) findings of five relapsing-remitting MS (RRMS) patients who had clinical relapses characterized by the acute appearance of cortical symptoms, due to the development of large, snake-like, cortical inflammatory lesions. Symptoms were: acute Wernicke's aphasia mimicking stroke; agraphia with acalculia, not associated to a motor deficit nor linguistic disturbance; hyposthenia of the left arm, followed by muscle twitching of the hand, spreading to arm and face; acute onset of left lower limb paroxysmal hypertonia; and temporal lobe status epilepticus, with psychotic symptoms. Cortical relapses may occur in MS. MRI examination in MS should include sequences, such as double inversion recovery (DIR) or phase sensitive inversion recovery (PSIR), that are aimed at visualizing cortical lesions, especially in the presence of symptoms of cortical dysfunction. Our observation further stresses and extends the clinical relevance of cortical pathology in MS. © The Author(s), 2015.
Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.
Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S
2005-05-01
This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.
In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units
Sanchez, Gabriel N.; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L.; Schnitzer, Mark J.
2017-01-01
SUMMARY Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle’s contractile units. Despite the motor unit’s centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. PMID:26687220
In Vivo Imaging of Human Sarcomere Twitch Dynamics in Individual Motor Units.
Sanchez, Gabriel N; Sinha, Supriyo; Liske, Holly; Chen, Xuefeng; Nguyen, Viet; Delp, Scott L; Schnitzer, Mark J
2015-12-16
Motor units comprise a pre-synaptic motor neuron and multiple post-synaptic muscle fibers. Many movement disorders disrupt motor unit contractile dynamics and the structure of sarcomeres, skeletal muscle's contractile units. Despite the motor unit's centrality to neuromuscular physiology, no extant technology can image sarcomere twitch dynamics in live humans. We created a wearable microscope equipped with a microendoscope for minimally invasive observation of sarcomere lengths and contractile dynamics in any major skeletal muscle. By electrically stimulating twitches via the microendoscope and visualizing the sarcomere displacements, we monitored single motor unit contractions in soleus and vastus lateralis muscles of healthy individuals. Control experiments verified that these evoked twitches involved neuromuscular transmission and faithfully reported muscle force generation. In post-stroke patients with spasticity of the biceps brachii, we found involuntary microscopic contractions and sarcomere length abnormalities. The wearable microscope facilitates exploration of many basic and disease-related neuromuscular phenomena never visualized before in live humans. Copyright © 2015 Elsevier Inc. All rights reserved.
Quantifying anti-gravity torques in the design of a powered exoskeleton.
Ragonesi, Daniel; Agrawal, Sunil; Sample, Whitney; Rahman, Tariq
2011-01-01
Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the passive and active residual force capabilities of users. This paper experimentally measures the passive gravitational torques of 3 groups of subjects: able-bodied adults, able bodied children, and children with neurological disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the gravitational force at the wrist. This force is then converted to static gravitational torques at the elbow and shoulder. Data are compared between look-up table data based on anthropometry and empirical data. Results show that the look-up torques deviate from experimentally measured torques as the arm reaches up and down. This experiment informs designers of Upper Limb orthoses on the contribution of passive human joint torques.
New Exoskeleton Arm Concept Design And Actuation For Haptic Interaction With Virtual Objects
NASA Astrophysics Data System (ADS)
Chakarov, D.; Veneva, I.; Tsveov, M.; Tiankov, T.
2014-12-01
In the work presented in this paper the conceptual design and actuation of one new exoskeleton of the upper limb is presented. The device is designed for application where both motion tracking and force feedback are required, such as human interaction with virtual environment or rehabilitation tasks. The choice is presented of mechanical structure kinematical equivalent to the structure of the human arm. An actuation system is selected based on braided pneumatic muscle actuators. Antagonistic drive system for each joint is shown, using pulley and cable transmissions. Force/displacement diagrams are presented of two antagonistic acting muscles. Kinematics and dynamic estimations are performed of the system exoskeleton and upper limb. Selected parameters ensure in the antagonistic scheme joint torque regulation and human arm range of motion.
Design and pilot validation of A-gear: a novel wearable dynamic arm support.
Kooren, Peter N; Dunning, Alje G; Janssen, Mariska M H P; Lobo-Prat, Joan; Koopman, Bart F J M; Paalman, Micha I; de Groot, Imelda J M; Herder, Just L
2015-09-18
Persons suffering from progressive muscular weakness, like those with Duchenne muscular dystrophy (DMD), gradually lose the ability to stand, walk and to use their arms. This hinders them from performing daily activities, social participation and being independent. Wheelchairs are used to overcome the loss of walking. However, there are currently few efficient functional substitutes to support the arms. Arm supports or robotic arms can be mounted to wheelchairs to aid in arm motion, but they are quite visible (stigmatizing), and limited in their possibilities due to their fixation to the wheelchair. The users prefer inconspicuous arm supports that are comfortable to wear and easy to control. In this paper the design, characterization, and pilot validation of a passive arm support prototype, which is worn on the body, is presented. The A-gear runs along the body from the contact surface between seat and upper legs via torso and upper arm to the forearm. Freedom of motion is accomplished by mechanical joints, which are nearly aligned with the human joints. The system compensates for the arm weight, using elastic bands for static balance, in every position of the arm. As opposed to existing devices, the proposed kinematic structure allows trunk motion and requires fewer links and less joint space without compromising balancing precision. The functional prototype has been validated in three DMD patients, using 3D motion analysis. Measurements have shown increased arm performance when the subjects were wearing the prototype. Upward and forward movements were easier to perform. The arm support is easy to put on and remove. Moreover, the device felt comfortable for the subjects. However, downward movements were more difficult, and the patients would prefer the device to be even more inconspicuous. The A-gear prototype is a step towards inconspicuousness and therefore well-received dynamic arm supports for people with muscular weakness.
Davidson, Judith
To use the Disability of the Arm Shoulder and Hand (DASH) scale to measure the disability of patients with upper limb amputation(s) and to compare these to other upper limb injuries. All 274 patients over the age of 18 years presenting to Prince Henry Hospital in Sydney over a 4-year time frame were given the DASH assessment tool and asked to complete it under supervision of the Occupational Therapist. Patients with brachial plexus injuries, Complex Regional Pain Syndrome and bilateral upper limb amputations demonstrated significantly higher levels of disability to patients with unilateral upper limb amputations. Partial hand amputees reported a higher level of disability than major unilateral upper limb amputees. For the 48 patients who completed pre- and post-treatment assessments, there was a significant improvement in their health status. Further research is required to understand the factors that affect a patient's perceptions of their disability. Perhaps the definitive nature of an amputation and the immediate involvement of highly skilled health professionals serve to assist patients to accept their injury and therefore minimizes the level of disability.
Augmentation of blood circulation to the fingers by warming distant body areas
NASA Technical Reports Server (NTRS)
Koscheyev, V. S.; Leon, G. R.; Paul, S.; Tranchida, D.; Linder, I. V.
2000-01-01
Future activities in space will require greater periods of time in extreme environments in which the body periphery will be vulnerable to chilling. Maintaining the hands and fingers in comfortable conditions enhances finger flexibility and dexterity, and thus effects better work performance. We have evaluated the efficacy of promoting heat transfer and release by the extremities by increasing the blood flow to the periphery from more distant parts of the body. The experimental garment paradigm developed by the investigators was used to manipulate the temperature of different body areas. Six subjects, two females and four males, were evaluated in a stage-1 baseline condition, with the inlet temperature of the circulating water in the liquid cooling/warming garment (LCWG) at 33 degrees C. At stage 2 the total LCWG water inlet temperature was cooled to 8 degrees C, and at stage 3 the inlet water temperature in specific segments of the LCWG was warmed (according to protocol) to 45 degrees C, while the inlet temperature in the rest of the LCWG was maintained at 8 degrees C. The following four body-area-warming conditions were studied in separate sessions: (1) head, (2) upper torso/arm, (3) upper torso/arm/head, and (4) legs/feet. Skin temperature, heat flux and blood perfusion of the fingers, and subjective perception of thermal sensations and overall physical comfort were assessed. Finger temperature (T(fing)) analyses showed a statistically significant condition x stage interaction. Post-hoc comparisons (T(fing)) indicated that at stage 3, the upper torso/arm/head warming condition was significantly different from the head, upper torso/arm and legs/feet conditions, showing an increase in T(fing). There was a significant increase in blood perfusion in the fingers at stage 3 in all conditions. Subjective perception of hand warmth, and overall physical comfort level significantly increased in the stage 3 upper torso/arm/head condition. The findings indicate that physiological methods to enhance heat transfer by the blood to the periphery within protective clothing provide an additional tool for increasing total and local human comfort in extreme environments.
Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.
Cursino, Luciana; Li, Yaxin; Zaini, Paulo A; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J
2009-10-01
A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.
Analysis of factors related to arm weakness in patients with breast cancer-related lymphedema.
Lee, Daegu; Hwang, Ji Hye; Chu, Inho; Chang, Hyun Ju; Shim, Young Hun; Kim, Jung Hyun
2015-08-01
The aim of this study was to evaluate the ratio of significant weakness in the affected arm of breast cancer-related lymphedema patients to their unaffected side. Another purpose was to identify factors related to arm weakness and physical function in patients with breast cancer-related lymphedema. Consecutive patients (n = 80) attended a single evaluation session following their outpatient lymphedema clinic visit. Possible independent factors (i.e., lymphedema, pain, psychological, educational, and behavioral) were evaluated. Handgrip strength was used to assess upper extremity muscle strength and the disabilities of arm, shoulder, and hand (DASH) questionnaire was used to assess upper extremity physical function. Multivariate logistic regression was performed using factors that had significant differences between the handgrip weakness and non-weakness groups. Out of the 80 patients with breast cancer-related lymphedema, 29 patients (36.3 %) had significant weakness in the affected arm. Weakness of the arm with lymphedema was not related to lymphedema itself, but was related to the fear of using the affected limb (odds ratio = 1.76, 95 % confidence interval = 1.30-2.37). Fears of using the affected limb and depression significantly contributed to the variance in DASH scores. Appropriate physical and psychological interventions, including providing accurate information and reassurance of physical activity safety, are necessary to prevent arm weakness and physical dysfunction in patients with breast cancer-related lymphedema.
Poole, Kerry; Mason, Howard
2007-03-15
To establish the relationship between quantitative tests of hand function and upper limb disability, as measured by the Disability of the Arm, Shoulder and Hand (DASH) questionnaire, in hand-arm vibration syndrome (HAVS). A total of 228 individuals with HAVS were included in this study. Each had undergone a full HAVS assessment by an experienced physician, including quantitative tests of vibrotactile and thermal perception thresholds, maximal hand-grip strength (HG) and the Purdue pegboard (PP) test. Individuals were also asked to complete a DASH questionnaire. PP and HG of the quantitative tests gave the best and statistically significant individual correlations with the DASH disability score (r2 = 0.168 and 0.096). Stepwise linear regression analysis revealed that only PP and HG measurements were statistically significant predictors of upper limb disability (r2 = 0.178). Overall a combination of the PP and HG measurements, rather than each alone, gave slightly better discrimination, although not statistically significant, between normal and abnormal DASH scores with a sensitivity of 73.1% and specificity of 64.3%. Measurements of manual dexterity and hand-grip strength using PP and HG may be useful in helping to confirm lack of upper limb function and 'perceived' disability in HAVS.
Meadmore, Katie L; Cai, Zhonglun; Tong, Daisy; Hughes, Ann-Marie; Freeman, Chris T; Rogers, Eric; Burridge, Jane H
2011-01-01
A novel system has been developed which combines robotic therapy with electrical stimulation (ES) for upper limb stroke rehabilitation. This technology, termed SAIL: Stimulation Assistance through Iterative Learning, employs advanced model-based iterative learning control (ILC) algorithms to precisely assist participant's completion of 3D tracking tasks with their impaired arm. Data is reported from a preliminary study with unimpaired participants, and also from a single hemiparetic stroke participant with reduced upper limb function who has used the system in a clinical trial. All participants completed tasks which involved moving their (impaired) arm to follow an image of a slowing moving sphere along a trajectory. The participants' arm was supported by a robot and ES was applied to the triceps brachii and anterior deltoid muscles. During each task, the same tracking trajectory was repeated 6 times and ILC was used to compute the stimulation signals to be applied on the next iteration. Unimpaired participants took part in a single, one hour training session and the stroke participant undertook 18, 1 hour treatment sessions composed of tracking tasks varying in length, orientation and speed. The results reported describe changes in tracking ability and demonstrate feasibility of the SAIL system for upper limb rehabilitation. © 2011 IEEE
Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle
Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan
2012-01-01
Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca2+ handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca2+] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca2+ handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca2+ handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness. PMID:22687611
Talon, S; Huchet-Cadiou, C; Léoty, C
1999-11-01
Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.
Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.
Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan
2012-08-01
Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.
Dufresne, Sébastien S; Boulanger-Piette, Antoine; Frenette, Jérôme
2017-03-01
Our recent work showed that daily injections of osteoprotegerin (OPG)-immunoglobulin fragment complex (OPG-Fc) completely restore the function of fast-twitch extensor digitorum longus muscles in dystrophic mdx mice, a murine model of Duchenne muscular dystrophy. However, despite marked improvements, OPG-Fc was not as effective in preventing the loss of function of slow-twitch soleus and diaphragm muscles. Because β 2 -agonists enhance the function of slow- and fast-twitch dystrophic muscles and because their use is limited by their adverse effects on bone and cardiac tissues, we hypothesized that OPG-Fc, a bone and skeletal muscle protector, acts synergistically with β 2 -agonists and potentiates their positive effects on skeletal muscles. We observed that the content of β 2 -adrenergic receptors, which are mainly expressed in skeletal muscle, is significantly reduced in dystrophic muscles but is rescued by the injection of OPG-Fc. Most important, OPG-Fc combined with a low dose of formoterol, a member of a new generation of β 2 -agonists, histologically and functionally rescued slow-twitch dystrophic muscles. This combination of therapeutic agents, which have already been tested and approved for human use, may open up new therapeutic avenues for Duchenne muscular dystrophy and possibly other neuromuscular diseases. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Sokal, Brad; Uswatte, Gitendra; Barman, Joydip; Brewer, Michael; Byrom, Ezekiel; Latten, Jessica; Joseph, Jeethu; Serafim, Camila; Ghaffari, Touraj; Sarkar, Nilanjan
2014-03-01
To test the convergent validity of an objective method, Sensor-Enabled Radio-frequency Identification System for Monitoring Arm Activity (SERSMAA), that distinguishes between functional and nonfunctional activity. Cross-sectional study. Laboratory. Participants (N=25) were ≥0.2 years poststroke (median, 9) with a wide range of severity of upper-extremity hemiparesis. Not applicable. After stroke, laboratory tests of the motor capacity of the more-affected arm poorly predict spontaneous use of that arm in daily life. However, available subjective methods for measuring everyday arm use are vulnerable to self-report biases, whereas available objective methods only provide information on the amount of activity without regard to its relation with function. The SERSMAA consists of a proximity-sensor receiver on the more-affected arm and multiple units placed on objects. Functional activity is signaled when the more-affected arm is close to an object that is moved. Participants were videotaped during a laboratory simulation of an everyday activity, that is, setting a table with cups, bowls, and plates instrumented with transmitters. Observers independently coded the videos in 2-second blocks with a validated system for classifying more-affected arm activity. There was a strong correlation (r=.87, P<.001) between time that the more-affected arm was used for handling objects according to the SERSMAA and functional activity according to the observers. The convergent validity of SERSMAA for measuring more-affected arm functional activity after stroke was supported in a simulation of everyday activity. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Extrinsic and intrinsic index finger muscle attachments in an OpenSim upper-extremity model.
Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L
2015-04-01
Musculoskeletal models allow estimation of muscle function during complex tasks. We used objective methods to determine possible attachment locations for index finger muscles in an OpenSim upper-extremity model. Data-driven optimization algorithms, Simulated Annealing and Hook-Jeeves, estimated tendon locations crossing the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints by minimizing the difference between model-estimated and experimentally-measured moment arms. Sensitivity analysis revealed that multiple sets of muscle attachments with similar optimized moment arms are possible, requiring additional assumptions or data to select a single set of values. The most smooth muscle paths were assumed to be biologically reasonable. Estimated tendon attachments resulted in variance accounted for (VAF) between calculated moment arms and measured values of 78% for flex/extension and 81% for ab/adduction at the MCP joint. VAF averaged 67% at the PIP joint and 54% at the DIP joint. VAF values at PIP and DIP joints partially reflected the constant moment arms reported for muscles about these joints. However, all moment arm values found through optimization were non-linear and non-constant. Relationships between moment arms and joint angles were best described with quadratic equations for tendons at the PIP and DIP joints.
Constrained handgrip force decreases upper extremity muscle activation and arm strength.
Smets, Martin P H; Potvin, James R; Keir, Peter J
2009-09-01
Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18-25%) and muscle activity (by 15-30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.
Movement quality of conventional prostheses and the DEKA Arm during everyday tasks
Cowley, Jeffrey; Resnik, Linda; Wilken, Jason; Walters, Lisa Smurr; Gates, Deanna
2017-01-01
Background Conventional prosthetic devices fail to restore the function and characteristic movement quality of the upper limb. The DEKA Arm is a new, advanced prosthesis featuring a compound, powered wrist and multiple grip configurations. Objectives The purpose of this study was to determine if the DEKA Arm improved the movement quality of upper limb prosthesis users compared to conventional prostheses. Study design Case series. Methods Three people with transradial amputation completed tasks of daily life with their conventional prosthesis and with the DEKA Arm. A total of 10 healthy controls completed the same tasks. The trajectory of the wrist joint center was analyzed to determine how different prostheses affected movement duration, speed, smoothness, and curvature compared to patients’ own intact limbs and controls. Results Movement quality decreased with the DEKA Arm for two participants, and increased for the third. Prosthesis users made slower, less smooth, more curved movements with the prosthetic limb compared to the intact limb and controls, particularly when grasping and manipulating objects. Conclusion The effects of one month of training with the DEKA Arm on movement quality varied with participants’ skill and experience with conventional prostheses. Future studies should examine changes in movement quality after long-term use of advanced prostheses. PMID:26932980
A Mirror Therapy-Based Action Observation Protocol to Improve Motor Learning After Stroke.
Harmsen, Wouter J; Bussmann, Johannes B J; Selles, Ruud W; Hurkmans, Henri L P; Ribbers, Gerard M
2015-07-01
Mirror therapy is a priming technique to improve motor function of the affected arm after stroke. To investigate whether a mirror therapy-based action observation (AO) protocol contributes to motor learning of the affected arm after stroke. A total of 37 participants in the chronic stage after stroke were randomly allocated to the AO or control observation (CO) group. Participants were instructed to perform an upper-arm reaching task as fast and as fluently as possible. All participants trained the upper-arm reaching task with their affected arm alternated with either AO or CO. Participants in the AO group observed mirrored video tapes of reaching movements performed by their unaffected arm, whereas participants in the CO group observed static photographs of landscapes. The experimental condition effect was investigated by evaluating the primary outcome measure: movement time (in seconds) of the reaching movement, measured by accelerometry. Movement time decreased significantly in both groups: 18.3% in the AO and 9.1% in the CO group. Decrease in movement time was significantly more in the AO compared with the CO group (mean difference = 0.14 s; 95% confidence interval = 0.02, 0.26; P = .026). The present study showed that a mirror therapy-based AO protocol contributes to motor learning after stroke. © The Author(s) 2014.
Feedforward control strategies of subjects with transradial amputation in planar reaching.
Metzger, Anthony J; Dromerick, Alexander W; Schabowsky, Christopher N; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S
2010-01-01
The rate of upper-limb amputations is increasing, and the rejection rate of prosthetic devices remains high. People with upper-limb amputation do not fully incorporate prosthetic devices into their activities of daily living. By understanding the reaching behaviors of prosthesis users, researchers can alter prosthetic devices and develop training protocols to improve the acceptance of prosthetic limbs. By observing the reaching characteristics of the nondisabled arms of people with amputation, we can begin to understand how the brain alters its motor commands after amputation. We asked subjects to perform rapid reaching movements to two targets with and without visual feedback. Subjects performed the tasks with both their prosthetic and nondisabled arms. We calculated endpoint error, trajectory error, and variability and compared them with those of nondisabled control subjects. We found no significant abnormalities in the prosthetic limb. However, we found an abnormal leftward trajectory error (in right arms) in the nondisabled arm of prosthetic users in the vision condition. In the no-vision condition, the nondisabled arm displayed abnormal leftward endpoint errors and abnormally higher endpoint variability. In the vision condition, peak velocity was lower and movement duration was longer in both arms of subjects with amputation. These abnormalities may reflect the cortical reorganization associated with limb loss.
Maas, J; Rae, G A; Huidobro-Toro, J P; Calixto, J B
1995-04-01
1. This study analyses the receptors mediating the effects of bradykinin (BK) and analogues on neurogenic twitch contractions of the mouse isolated vas deferens evoked, in the presence of captopril (3 microM), by electrical field stimulation with trains of 4 rectangular 0.5 ms pulses of supramaximal strength, delivered at a frequency of 10 Hz every 20 s. 2. BK (0.1-300 nM) induced a graded potentiation of twitches, with an EC50 (geometric mean and 95% confidence limits) of 4.5 nM (1.7-11.6) and an Emax of 315 +/- 19 mg per 10 mg of wet tissue (n = 6). Similar results were obtained in tissues challenged with Lys-BK, [Hyp3]-BK, Met,Lys-BK and the selective B2 receptor agonist [Tyr(Me)8]-BK (0.1-300 nM). 3. The selective B2 receptor antagonists, Hoe 140 (1-10 nM) and NPC 17731 (3-30 nM), caused graded rightward shifts of the curve to BK-induced twitch potentiation, yielding apparent pA2 values of 9.65 +/- 0.09 and 9.08 +/- 0.13, respectively, and Schild plot slopes not different from 1. Both antagonists (100 nM) failed to modify similar twitch potentiations induced by substance P (3 nM) or endothelin-1 (1 nM). Preincubation with the selective B1 receptor antagonist, [Leu8,des-Arg9]-BK (1 microM), increased the potentiating effect of BK on twitches at 30-300 nM. 4. In contrast to BK, the selective B1 receptor agonist, [des-Arg9]-BK (0.3-1000 nM) reduced the amplitude of twitches in a graded fashion, with an IC50 of 13.7 nM (10.4-16.1) and an Imax of 175 +/- 11 mg (n = 4). The twitch depression induced by [des-Arg9]-BK (300 nM) was not affected by Hoe140 (30nM) or NPC 17731 (100nM), but was abolished by the selective B1 receptor antagonist,[Leu8,des-Arg9]-BK (1 microM), which did not modify the twitch inhibitory effect of clonidine (1 nM) or morphine (300 nM).5. In non-stimulated preparations, BK (100 nM) also potentiated, in a Hoe 140-sensitive (10 nM)manner, the contractions induced by ATP (100 microM), but not by noradrenaline (10 microM), whereas[des-Arg9]-BK (300 nM) did not modify the contractions induced by either agonist.6. It is concluded that the mouse vas deferens expresses both B1 and B2 receptors, which modulate sympathetic neurotransmission in opposing ways. Neurogenic contractions are inhibited by stimulation of possibly prejunctional B, receptors, whereas activation of B2 receptors increases twitch contractions,in part by amplifying the responsiveness of the smooth muscle cells to the sympathetic co-transmitter ATP.
An EMG-based robot control scheme robust to time-varying EMG signal features.
Artemiadis, Panagiotis K; Kyriakopoulos, Kostas J
2010-05-01
Human-robot control interfaces have received increased attention during the past decades. With the introduction of robots in everyday life, especially in providing services to people with special needs (i.e., elderly, people with impairments, or people with disabilities), there is a strong necessity for simple and natural control interfaces. In this paper, electromyographic (EMG) signals from muscles of the human upper limb are used as the control interface between the user and a robot arm. EMG signals are recorded using surface EMG electrodes placed on the user's skin, making the user's upper limb free of bulky interface sensors or machinery usually found in conventional human-controlled systems. The proposed interface allows the user to control in real time an anthropomorphic robot arm in 3-D space, using upper limb motion estimates based only on EMG recordings. Moreover, the proposed interface is robust to EMG changes with respect to time, mainly caused by muscle fatigue or adjustments of contraction level. The efficiency of the method is assessed through real-time experiments, including random arm motions in the 3-D space with variable hand speed profiles.
Martin, Caroline; Kulpa, Richard; Delamarche, Paul; Bideau, Benoit
2013-03-01
The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF-RLP, RLP-MER, and MER-BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF-RLP and RLP-MER phases) to the upper arm (RLP-MER phase), forearm (RLP-MER and MER-BI phases), and the hand-racket (MER-BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF-MER, upper arm during RLP-MER, forearm during RLP-BI, and the hand-racket during MER-BI.
Franssen, Frits M E; Wouters, Emiel F M; Baarends, Erica M; Akkermans, Marco A; Schols, Annemie M W J
2002-10-01
Previous studies indicate that energy expenditure related to physical activity is enhanced and that mechanical efficiency of leg exercise is reduced in patients with chronic obstructive pulmonary disease (COPD). However, it is yet unclear whether an inefficient energy expenditure is also present during other activities in COPD. This study was carried out to examine arm efficiency and peak arm exercise performance relative to leg exercise in 33 (23 male) patients with COPD ((mean +/- SEM) age: 61 +/- 2 yr; FEV : 40 +/- 2% of predicted) and 20 sex- and age-matched healthy controls. Body composition, pulmonary function, resting energy expenditure (REE), and peak leg and arm exercise performance were determined. To calculate mechanical efficiency, subjects performed submaximal leg and arm ergometry at 50% of achieved peak loads. During exercise testing, metabolic and ventilatory parameters were measured. In contrast to a reduced leg mechanical efficiency in patients compared with controls (15.6 +/- 0.6% and 22.5 +/- 0.6%, respectively; < 0.001), arm mechanical efficiency was comparable in both groups (COPD: 18.3 +/- 0.9%, controls: 21.0 +/- 1.2%; NS). Arm efficiency was not related to leg efficiency, pulmonary function, work of breathing, or REE. Also, arm exercise capacity was relatively preserved in patients with COPD (ratio arm peak work rate/leg peak work rate in patients: 89% vs 53% in controls; < 0.001). Mechanical efficiency and exercise capacity of the upper and lower limbs are not homogeneously affected in COPD, with a relative preservation of the upper limbs. This may have implications for screening of exercise tolerance and prescription of training interventions in patients with COPD. Future studies need to elucidate the mechanism behind this observation.
Totonchi, Samer; Elgin, Robert; Monahan, Michael; Johnston, William K
2014-08-01
Abstract Background and Purpose: Placement of the fourth arm (4th arm) in the lower quadrant (LQ) is commonly described for robot-assisted renal surgical procedures but has anatomic restrictions and limited ergonomics. An alternative, upper quadrant (UQ) location is desirable, but patient habitus and spacing may restrict robotic attachment. We investigate current trends in 4th arm port placement and propose an alternative method at attaching the robot-the "Floating Arm" (FLA). Robotic surgeons from the Endourological Society were surveyed. A 20-cm extra-long (XL Protype) da Vinci instrument was developed for the FLA technique. A dry lab allowed quantitative comparison of spacing and ranges of motion for standard da Vinci ports (dVP), bariatric dVP, telescoping dVP, and FLA. There were 108 respondents who participated. Half of the respondents avoid using the 4th arm (30% lack of need and 20% because of interference). The majority (90%) typically positions the 4th arm in the LQ, but many reported limitations in this location. Few (5%) place 4th arm in the UQ, while most (73%) have never heard of UQ placement. Existing techniques may increase shoulder height clearance but inversely shorten the working length of the instrument intracorporeally. Alternatively, the XL Protype significantly increased the shoulder length and maintained available working distances intracorporeally. Adjacent arm interference angle was essentially identical (27 degrees) for all ports except a greater range of movement for the XL Protype (35 degrees). Few surgeons are using an UQ positioning or use techniques to improve attachment of the 4th arm. The greatest freedom may be obtained by implementing the FLA, but this necessitates production of a longer instrument.
Fuel trafficking in muscle—potential role of myoglobin/lipid binding
USDA-ARS?s Scientific Manuscript database
Myoglobin is one of the most abundant proteins in skeletal muscle (type 1, "slow twitch" fibers) and cardiomyocytes, and supports oxidative combustion of fuels. Myoglobin-abundant muscle types are adept at fatty acid oxidation, in contrast to "white" (type 2, "fast twitch") fibers that tend to rely ...
Muscle Fiber Types and Training.
ERIC Educational Resources Information Center
Karp, Jason R.
2001-01-01
The specific types of fibers that make up individual muscles greatly influence how people will adapt to their training programs. This paper explains the complexities of skeletal muscles, focusing on types of muscle fibers (slow-twitch and fast-twitch), recruitment of muscle fibers to perform a motor task, and determining fiber type. Implications…
LeMoyne, Robert; Mastroianni, Timothy
2016-08-01
Natural gait consists of synchronous and rhythmic patterns for both the lower and upper limb. People with hemiplegia can experience reduced arm swing, which can negatively impact the quality of gait. Wearable and wireless sensors, such as through a smartphone, have demonstrated the ability to quantify various features of gait. With a software application the smartphone (iPhone) can function as a wireless gyroscope platform capable of conveying a gyroscope signal recording as an email attachment by wireless connectivity to the Internet. The gyroscope signal recordings of the affected hemiplegic arm with reduced arm swing arm and the unaffected arm are post-processed into a feature set for machine learning. Using a multilayer perceptron neural network a considerable degree of classification accuracy is attained to distinguish between the affected hemiplegic arm with reduced arm swing arm and the unaffected arm.
Disorders of Upper Limb Movements in Ataxia-Telangiectasia
Shaikh, Aasef G.; Zee, David S.; Mandir, Allen S.; Lederman, Howard M.; Crawford, Thomas O.
2013-01-01
Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia. PMID:23826191
Disorders of Upper Limb Movements in Ataxia-Telangiectasia.
Shaikh, Aasef G; Zee, David S; Mandir, Allen S; Lederman, Howard M; Crawford, Thomas O
2013-01-01
Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.
Stump sensibility in children with upper limb reduction deficiency.
Reinkingh, Marianne; Reinders-Messelink, Heleen A; Dijkstra, Pieter U; Maathuis, Karel G B; van der Sluis, Corry K
2014-01-01
To compare stump sensibility in children with upper limb reduction deficiency with sensibility of the unaffected arm and hand. In addition, to evaluate the associations between stump sensibility, stump length and activity level. Cross-sectional study. Children and young adults aged 6-25 years with upper limb reduction deficiency. Threshold of touch was measured with Semmes-Weinstein monofilaments, stereognosis was measured with the Shape-Texture Identification test and kinaesthesia and activity level was measured with the Child Amputee Prosthetics Project - Functional Status Inventory and the Prosthetic Upper Extremity Functional Index. A total of 31 children with upper limb reduction deficiency (mean age 15 years, 3 prosthesis wearers) were investigated. The threshold of touch of the stump circumference was lower (indicating higher sensibility) than of the unaffected arm (p = 0.006), hand (p = 0.004) and stump end-point (p = < 0.001). Long stumps had higher threshold of touch (indicating lower sensibility) than short stumps (p = 0.046). Twenty-nine children recognized 1 or more shapes or textures with the stump. Kinaesthesia in the affected and unaffected sides was comparable. Sensibility was not correlated with activity level. Threshold of touch, stereognosis and kinaesthesia of the affected sides were excellent. Threshold of touch of the stump circumference was lower (indicating higher sensibility) than of the unaffected arm and hand. High stump sensibility may clarify good functioning in the children without prostheses and contribute to prosthesis rejection.
Noninvasive lifting of arm, thigh, and knee skin with transcutaneous intense focused ultrasound.
Alster, Tina S; Tanzi, Elizabeth L
2012-05-01
Transcutaneous intense focused ultrasound is a novel Food and Drug Administration-approved technology for noninvasive skin tightening of the face and neck. No studies have reported on its safety and effectiveness on nonfacial areas. Eighteen paired areas (6 each) on the upper arms, medial thighs, and extensor knees were randomly treated with two different transducers (4.0 MHz, 4.5-mm focal depth and 7.0 MHz, 3.0-mm focal depth). One side was randomly assigned to receive a single pass (single plane) of microthermal coagulation zones over the involved area with the 4.0 MHz, 4.5-mm-depth transducer, and the contralateral side was assigned to receive consecutive single passes (dual plane) using both transducers (4.0 MHz, 4.5-mm depth followed by 7.0 MHz, 3.0-mm depth). Two independent masked assessors determined clinical improvement scores using comparative standardized photographs obtained at baseline and 3 and 6 months after treatment. Subjective assessments of clinical improvement and side effects of treatment were obtained. Global assessment scores revealed significant improvement in all treated areas, with the upper arms and knees demonstrating more skin lifting and tightening than the thighs. Areas receiving dual-plane treatment had slightly better clinical scores than those receiving single-plane treatment in all three sites. Clinical scores from single-plane and dual-plane treated areas continued to improve between 3 and 6 months after treatment. Side effects were mild and transient and included erythema, warmth, and skin tenderness. Rare focal bruising was noted in two patients on the upper arms that resolved within 7 days. No other side effects were reported or observed. Transcutaneous intense focused ultrasound can be safely and effectively used to improve the clinical appearance (texture and contour) of the upper arms, extensor knees, and medial thighs. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
De Meulemeester, Kayleigh; Calders, Patrick; Dewitte, Vincent; Barbe, Tom; Danneels, Lieven; Cagnie, Barbara
2017-12-01
Myofascial pain can be accompanied by a disturbed surface electromyographic (sEMG) activity. Nevertheless, the effect of myofascial treatment techniques, such as dry needling (DN), on the sEMG activity is poorly investigated. Several DN studies also emphasize the importance of eliciting local twitch responses (LTRs) during treatment. However, studies investigating the added value of LTRs are scarce. Therefore, the aims of this study were first to evaluate the effect of DN on the sEMG activity of myalgic muscle tissue, compared with no intervention (rest), and secondly to identify whether this effect is dependent of eliciting LTRs during DN. Twenty-four female office workers with work-related trapezius myalgia were included. After completion of a typing task, changes in sEMG activity were evaluated after a DN treatment of the upper trapezius, compared with rest. The sEMG activity increased after rest and after DN, but this increase was significantly smaller 10 minutes after DN, compared with rest. These differences were independent whether LTRs were elicited or not. Dry needling leads to a significantly lower increase in sEMG activity of the upper trapezius, compared with no intervention, after a typing task. This difference was independent of eliciting LTRs.
Design & control of a 3D stroke rehabilitation platform.
Cai, Z; Tong, D; Meadmore, K L; Freeman, C T; Hughes, A M; Rogers, E; Burridge, J H
2011-01-01
An upper limb stroke rehabilitation system is developed which combines electrical stimulation with mechanical arm support, to assist patients performing 3D reaching tasks in a virtual reality environment. The Stimulation Assistance through Iterative Learning (SAIL) platform applies electrical stimulation to two muscles in the arm using model-based control schemes which learn from previous trials of the task. This results in accurate movement which maximises the therapeutic effect of treatment. The principal components of the system are described and experimental results confirm its efficacy for clinical use in upper limb stroke rehabilitation. © 2011 IEEE
Human skeletal muscle responses to spaceflight and possible countermeasures
NASA Technical Reports Server (NTRS)
Gollnick, Philip D.; Edgerton, V. Reggie; Saltin, Bengt
1990-01-01
The current status of knowledge concerning the effects of unweighting skeletal muscle is summarized. The results of both ground-based and space-based animal studies are reviewed which show that there is rapid loss in muscle mass, primarily in slow-twitch muscle, of the rat during unweighting of muscle. There is also a shift in the myosin isoforms with muscles such that slow-twitch muscles take on many of the characteristics of fast-twitch muscles. Ground-based studies in human suggest that programs of electrical stimulation can be developed to simulate normal muscular contractions. Attempts to develop countermeasures to the adverse effects of space travel on muscular functions in humans have not been successful to date.
The Use of B-Mode Ultrasound for Measuring Subcutaneous Fat Thickness on the Upper Arms.
ERIC Educational Resources Information Center
Weiss, Lawrence W.; Clark, Frank C.
1985-01-01
A study was carried out to investigate the potential use of B-mode ultrasound for measuring subcutaneous fat thickness at two arm sites. B-mode sonograms and skinfold measurements were found to be highly correlated for both men and women. (Author/MT)
Packaging Of Control Circuits In A Robot Arm
NASA Technical Reports Server (NTRS)
Kast, William
1994-01-01
Packaging system houses and connects control circuitry mounted on circuit boards within shoulder, upper section, and lower section of seven-degree-of-freedom robot arm. Has modular design that incorporates surface-mount technology, multilayer circuit boards, large-scale integrated circuits, and multi-layer flat cables between sections for compactness. Three sections of robot arm contain circuit modules in form of stardardized circuit boards. Each module contains two printed-circuit cards, one of each face.
Kankipati, Padmaja; Boninger, Michael L.; Gagnon, Dany; Cooper, Rory A.; Koontz, Alicia M.
2015-01-01
Study design Repeated measures design. Objective This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Setting Research laboratory. Methods Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head–hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Results Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Conclusion Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement. PMID:25130053
Guo, Wan-Gang; Li, Bing-Ling; He, Yong; Xue, Yu-Sheng; Wang, Hai-Yan; Zheng, Qiang-Sun; Xiang, Ding-Cheng
2014-08-01
To validate the Andon KD-5917 automatic upper arm blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Sequential same-left-arm measurements of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were obtained in 33 participants using the mercury sphygmomanometer and the test device. According to the validation protocol, 99 pairs of test device and reference blood pressure measurements (three pairs for each of the 33 participants) were obtained in the study. The device produced 73, 98, and 99 measurements within 5, 10, and 15 mmHg for SBP and 86, 98, and 99 for DBP, respectively. The mean ± SD device-observer difference was 3.07 ± 3.68 mmHg for SBP and -0.89 ± 3.72 mmHg for DBP. The number of patients with two or three of the device-observer difference within 5 mmHg was 26 for SBP and 29 for DBP, and no patient had a device-observer difference within 5 mmHg. The Andon KD-5917 automatic upper arm blood pressure monitor can be recommended for clinical use and self-measurement in an adult population on the basis of the European Society of Hypertension International Protocol revision 2010.
RMS upper boom framed by aft flight deck viewing window W10
NASA Technical Reports Server (NTRS)
1983-01-01
Remote Manipulator System (RMS) upper arm boom (tear in multilayer beta cloth) deployed during dynamic interaction test using Payload Flight Test Article (PFTA) is visible outside aft viewing window W10. RMS 'Canada' insignia or logo appears on boom.
Berents, Teresa Løvold; Carlsen, Karin Cecilie Lødrup; Mowinckel, Petter; Skjerven, Håvard Ove; Kvenshagen, Bente; Rolfsjord, Leif Bjarte; Bradley, Maria; Lieden, Agne; Carlsen, Kai-Håkon; Gaustad, Peter; Gjersvik, Petter
2015-01-01
Atopic eczema (AE) is associated with Staphylococcus aureus (S. aureus) colonization and skin barrier dysfunction, often measured by increased transepidermal water loss (TEWL). In the present study, the primary aim was to see whether S. aureus colonization in the vestibulum nasi and/or fauces was associated with increased TEWL in infants with healthy skin and infants with eczema. Secondarily, we aimed to investigate whether TEWL measurements on non-lesional skin on the lateral upper arm is equivalent to volar forearm in infants. In 167 of 240 infants, recruited from the general population, TEWL measurements on the lateral upper arm and volar forearm, using a DermaLab USB, fulfilled our environmental requirements. The mean of three TEWL measurements from each site was used for analysis. The infants were diagnosed with no eczema (n = 110), possible AE (n = 28) or AE (n = 29). DNA samples were analysed for mutations in the filaggrin gene (FLG). Bacterial cultures were reported positive with the identification of at least one culture with S. aureus from vestibulum nasi and/or fauces. S. aureus colonization, found in 89 infants (53%), was not associated with increased TEWL (i.e. TEWL in the upper quartile), neither on the lateral upper arm or volar forearm (p = 0.08 and p = 0.98, respectively), nor with AE (p = 0.10) or FLG mutation (p = 0.17). TEWL was significantly higher on both measuring sites in infants with AE compared to infants with possible AE and no eczema. FLG mutation was significantly associated with increased TEWL, with a 47% difference in TEWL. We conclude that S. aureus in vestibulum nasi and/or fauces was not associated with TEWL, whereas TEWL measurements on the lateral upper arm and volar forearm appear equally appropriate in infants.
Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G
2012-04-01
Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.
Lee, So Young; Jeon, Young Tae; Kim, Bo Ryun; Han, Eun Young
2017-01-01
Abstract Rationale: Spasticity is a major complication after stroke, and botulinumtoxin A (BoNT-A) injection is commonly used to manage focal spasticity. However, it is uncertain whether BoNT-A can improve voluntary motor control or activities of daily living function of paretic upper limbs. This study investigated whether BoNT-A injection combined with robot-assisted upper limb therapy improves voluntary motor control or functions of upper limbs after stroke. Patient concerns: Two subacute stroke patients were transferred to the Department of Rehabilitation. Diagnoses: Patients demonstrated spasticity in the upper extremity on the affected side. Interventions: BoNT-A was injected into the paretic muscles of the shoulder, arm, and forearm of the 2 patients at the subacute stage. Conventional rehabilitation therapy and robot-assisted upper limb training were performed during the rehabilitation period. Outcomes: Manual dexterity, grip strength, muscle tone, and activities of daily living function were improved after multidisciplinary rehabilitation treatment. Lessons: BoNT-A injection in combination with multidisciplinary rehabilitation treatment, including robot-assisted arm training, should be recommended for subacute spastic stroke patients to enhance appropriate motor recovery. PMID:29390585
Performing Play: Cultural Production on Twitch.tv
ERIC Educational Resources Information Center
Pellicone, Anthony James
2017-01-01
Streaming is an emerging practice of videogame culture, where a player broadcasts a live capture of their game-play to an audience. Every day Twitch.tv, the most popular streaming platform, features thousands of streams broadcast to millions of viewers. Streams are detailed multimedia artifacts, and their study allows us to understand how the…
Henley, Nicole; Quatrara, Beth D; Conaway, Mark
2015-01-01
Standard practice for obtaining noninvasive blood pressure includes arm blood pressure (BP) cuff placement at the level of the heart; however, some critical care patients cannot have BPs taken in their arm because of various conditions, and ankle BPs are frequently used as substitutes. The aim of this study was to determine if there was a significant variation between upper arm and ankle BP measurements at different backrest elevations with consideration of peripheral edema factors. After institutional review board approval was obtained, a pilot study was implemented to evaluate noninvasive BP measurements of the arm and ankle with backrest elevation at 0° and 30° in a population of medical intensive care unit patients. Participants served as their own controls and were randomly assigned to left- versus right-side BP readings. Data were also collected on presence of arm versus ankle edema. A total of 30 participants enrolled in the study and provided 120 BP measurements. Blood pressure readings were analyzed in terms of diastolic and systolic findings as well as backrest elevations and edema presence. Thirteen participants presented with either arm or ankle edema. There was a statistical difference between the systolic arm and ankle BP measurements in the 0° (P = .008) and 30° (P < .001) backrest elevation positions. The correlation between arm and ankle diastolic BP is greater for participants without ankle edema (P = .038, r = 0.54) than for participants with ankle edema (P = .650, r = 0.14), but it is not statistically significant (P = .47). Even though ankle BPs are often substituted for arm BPs when the arm is unable to be used, ankle BPs and arm BPs are not interchangeable. Adjustments in backrest elevation and considerations of edema do not normalize the differences. Blood pressures obtained from the ankle are significantly greater than those obtained from the arm. This information needs to be considered when arms are not available and legs are used as surrogates for the upper arm.
Kaban, Nicole L; Avitabile, Nicholas C; Siadecki, Sebastian D; Saul, Turandot
2016-06-01
The peripheral veins in the arms and forearms of patients with a history of intravenous (IV) drug use may be sclerosed, calcified, or collapsed due to damage from previous injections. These patients may consequently require alternative, more invasive types of vascular access including central venous or intraosseous catheters. We investigated the relationship between hand dominance and the presence of patent upper extremity (UE) veins specifically in patients with a history of IV drug-use. We predicted that injection into the non-dominant UE would occur with a higher frequency than the dominant UE, leading to fewer damaged veins in the dominant UE. If hand dominance affects which upper extremity has more patent veins, providers could focus their first vascular access attempt on the dominant upper extremity. Adult patients were approached for enrollment if they provided a history of IV drug use into one of their upper extremities. Each upper extremity was examined with a high frequency linear transducer in 3 areas: the antecubital crease, forearm and the proximal arm. The number of fully compressible veins ≥1.8 mm in diameter was recorded for each location. The mean vein difference between the numbers of veins in the dominant versus the non-dominant UE was -1.5789. At a .05 significance level, there was insufficient evidence to suggest the number of compressible veins between patients' dominant and non-dominant arms was significantly different (P = .0872.) The number of compressible veins visualized with ultrasound was not greater in the dominant upper extremity as expected. Practitioners may gain more information about potential peripheral venous access sites by asking patients their previous injection practice patterns. Copyright © 2016 Elsevier Inc. All rights reserved.
Responsiveness of outcome measures for upper limb prosthetic rehabilitation.
Resnik, Linda; Borgia, Matthew
2016-02-01
There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.
Redgrave, Jessica N; Moore, Lucy; Oyekunle, Tosin; Ebrahim, Maryam; Falidas, Konstantinos; Snowdon, Nicola; Ali, Ali; Majid, Arshad
2018-03-23
Invasive vagus nerve stimulation (VNS) has the potential to enhance the effects of physiotherapy for upper limb motor recovery after stroke. Noninvasive, transcutaneous auricular branch VNS (taVNS) may have similar benefits, but this has not been evaluated in stroke recovery. We sought to determine the feasibility of taVNS delivered alongside upper limb repetitive task-specific practice after stroke and its effects on a range of outcome measures evaluating limb function. Thirteen participants at more than 3 months postischemic stroke with residual upper limb dysfunction were recruited from the community of Sheffield, United Kingdom (October-December 2016). Participants underwent 18 × 1-hour sessions over 6 weeks in which they made 30-50 repetitions of 8-10 arm movements concurrently with taVNS (NEMOS; Cerbomed, Erlangen, Germany, 25 Hz, .1-millisecond pulse width) at maximum tolerated intensity (mA). An electrocardiogram and rehabilitation outcome scores were obtained at each visit. Qualitative interviews determined the acceptability of taVNS to participants. Median time after stroke was 1.16 years, and baseline median/interquartile range upper limb Fugl-Meyer (UFM) score was 63 (54.5-99.5). Participants attended 92% of the planned treatment sessions. Three participants reported side effects, mainly fatigue, but all performed mean of more than 300 arm repetitions per session with no serious adverse events. There was a significant change in the UFM score with a mean increase per participant of 17.1 points (standard deviation 7.8). taVNS is feasible and well-tolerated alongside upper limb repetitive movements in poststroke rehabilitation. The motor improvements observed justify a phase 2 trial in patients with residual arm weakness. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W
2008-06-01
The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.
Isometric contractions of motor units in a fast twitch muscle of the cat
Bagust, J.; Knott, Sarah; Lewis, D. M.; Luck, J. C.; Westerman, R. A.
1973-01-01
1. Isosmetric contractions of cat flexor digitorum longus whole muscles and of functionally isolated motor units have been measured under conditions similar to those used by Buller & Lewis (1965a). 2. Motor unit twitch time to peak was inversely related to axonal conduction velocity. The logarithm of tetanic tension was directly related to conduction velocity. These relationships suggest that each motoneurone has an influence on the muscle fibres which it innervates. 3. The ratio of twitch to tetanic tension was directly related to the time to peak of the motor unit. This fact might be explained by variation between motor units of the duration of `active state'. 4. The muscle length at which tension was maximal varied between motor units and the optima were found over the range of muscle lengths which could occur in the body. Slow motor units had longer optimal lengths. 5. The sample of motor units was considered to be unbiased because the distribution of axon conduction velocities was compatible with reported motor fibre diameter spectra of the muscle nerve. The mean motor unit tetanic tension gave a reasonable estimate of the number of α-motor axons in the muscle nerve. Twitch tensions gave a value that was 40% higher. 6. Motor unit and whole muscle data were in good agreement for length-tetanus tension curves, for times to peak and for twitch-tetanus ratios at long muscle lengths. PMID:4715372
Tricarico, Domenico; Mele, Antonietta; Lundquist, Andrew L; Desai, Reshma R; George, Alfred L; Conte Camerino, Diana
2006-01-24
ATP-sensitive K(+) channels (K(ATP)) are an octameric complex of inwardly rectifying K(+) channels (Kir6.1 and Kir6.2) and sulfonylurea receptors (SUR1 and SUR2A/B), which are involved in several diseases. The tissue-selective expression of the subunits leads to different channels; however, the composition and role of the functional channel in native muscle fibers is not known. In this article, the properties of K(ATP) channels of fast-twitch and slow-twitch muscles were compared by combining patch-clamp experiments with measurements of gene expression. We found that the density of K(ATP) currents/area was muscle-type specific, being higher in fast-twitch muscles compared with the slow-twitch muscle. The density of K(ATP) currents/area was correlated with the level of Kir6.2 expression. SUR2A was the most abundant subunit expressed in all muscles, whereas the vascular SUR2B subunit was expressed but at lower levels. A significant expression of the pancreatic SUR1 was also found in fast-twitch muscles. Pharmacological experiments showed that the channel response to the SUR1 agonist diazoxide, SUR2A/B agonist cromakalim, SUR1 antagonist tolbutamide, and the SUR1/SUR2A/B-antagonist glibenclamide matched the SURs expression pattern. Muscle-specific K(ATP) subunit compositions contribute to the physiological performance of different muscle fiber types and determine the pharmacological actions of drugs modulating K(ATP) activity in muscle diseases.
Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog
Cruz, Luisa F.; Parker, Jennifer K.; Cobine, Paul A.
2014-01-01
The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. PMID:25217013
Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog.
Cruz, Luisa F; Parker, Jennifer K; Cobine, Paul A; De La Fuente, Leonardo
2014-12-01
The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, M.; Deshpande, S.S.; Foster, R.E.
1992-12-31
The subacute effects of pyridostigmine bromide were investigated on the contractile properties of rat extensor digitorum longus (EDL) and diaphragm muscles. The cholinesterase inhibitor was delivered via subcutaneously implanted osmotic minipumps (Alzet) at 9 microns g h-1 (low dose) or 60 micro g h-1 (high dose). Animals receiving high-dose pyridostigmine pumps exhibited marked alterations in muscle properties within the first day of exposure that persisted for the remaining 13 days. With 0.1 Hz stimulation, EDL twitch tensions of treated animals were elevated relative to control. Repetitive stimulation at frequencies > 1 Hz led a use-dependent depression in the amplitude ofmore » successive twitches during the train. Recovery from pyridostigmine was essentially complete by 1 day of withdrawal. Rats implanted with low-dose pyridostigmine pumps showed little or no alteration of in vivo twitch tensions during the entire 14 days of treatment. Diaphragm and EDL muscles excised from pyridostigmine-treated rats and tested in vitro showed no significant alterations in twitch and tetanic tensions and displayed the same sensitivity as muscles of control animals to subsequent pyridostigmine exposures. In the presence of atropine, subacutely administered pyridostigmine protected rats from two LD5O doses of the irreversible cholinesterase inhibitor, soman. In the absence of atropine, the LD50 of soman was not altered by subacute pyridostigmine treatment. Extensor digitorum longus; diaphragm; twitch tension; ACh release; subacute; Alzet pumps; tolerance; anticholinesterase; pyridostigmine; soman.« less
Anatomic and physiological characteristics of the ferret lateral rectus muscle and abducens nucleus.
Bishop, Keith N; McClung, J Ross; Goldberg, Stephen J; Shall, Mary S
2007-11-01
The ferret has become a popular model for physiological and neurodevelopmental research in the visual system. We believed it important, therefore, to study extraocular whole muscle as well as single motor unit physiology in the ferret. Using extracellular stimulation, 62 individual motor units in the ferret abducens nucleus were evaluated for their contractile characteristics. Of these motor units, 56 innervated the lateral rectus (LR) muscle alone, while 6 were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch, tetanic peak force, and fatigue. The abducens nucleus motor units showed a twitch contraction time of 15.4 ms, a mean twitch tension of 30.2 mg, and an average fusion frequency of 154 Hz. Single-unit fatigue index averaged 0.634. Whole muscle twitch contraction time was 16.7 ms with a mean twitch tension of 3.32 g. The average fatigue index of whole muscle was 0.408. The abducens nucleus was examined with horseradish peroxidase conjugated with the subunit B of cholera toxin histochemistry and found to contain an average of 183 motoneurons. Samples of LR were found to contain an average of 4,687 fibers, indicating an LR innervation ratio of 25.6:1. Compared with cat and squirrel monkeys, the ferret LR motor units contract more slowly yet more powerfully. The functional visual requirements of the ferret may explain these fundamental differences.
Donnerer, Josef; Liebmann, Ingrid; Holzer-Petsche, Ulrike
2014-08-08
Longitudinal muscle-myenteric plexus strips of the guinea-pig ileum were used to investigate the nature of the hexamethonium-induced augmentation of the twitch response. All preparations were set up in Tyrode solution and intermittent longitudinal twitch contractions were evoked by single pulse electrical field stimulation. Hexamethonium, a blocker of nicotinic ganglionic transmission, at 300 μmol/l and 1 mmol/l augmented the twitch contractions by 21% and 35%, respectively. First we tested for a possible nicotinic drive onto an inhibitory neuronal component to the longitudinal smooth muscle cells. However, guanethidine (5 μmol/l), naloxone (1 μmol/l), or l-NAME (300 μmol/l) were without effect on the hexamethonium-induced augmentation. The P2 purinoceptor antagonist pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS), 25-100 μmol/l, without altering the control twitch responses, dose-dependently reduced the hexamethonium-induced augmentation; at 100 μmol/l a statistically significantly inhibition was observed. Based on these functional experiments we found no evidence that blocking nicotinic transmission removed a tonic adrenergic, opioidergic or nitrergic inhibitory input to the longitudinal muscle. However, we provide evidence for a hexamethonium-induced augmentation of the P2 purinergic input to cholinergic motoneurons of the guinea-pig ileum longitudinal muscle. The P2-nicotinic receptor interaction presents a novel modulatory mechanism to cholinergic myenteric motor neurons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Locomotor-Like Leg Movements Evoked by Rhythmic Arm Movements in Humans
Sylos-Labini, Francesca; Ivanenko, Yuri P.; MacLellan, Michael J.; Cappellini, Germana; Poppele, Richard E.; Lacquaniti, Francesco
2014-01-01
Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs. PMID:24608249
Zhang, Ri-Hui; Kang, Zhi-Xin
2011-05-01
To study training effect of upper limbs and lumbar muscles in the proceed of air striking of straight punch by analyzing boxing athletes' changes of electromyogram (EMG). We measured EMG of ten women boxing athletes' upper arm biceps (contractor muscle), upper arm triceps (antagonistic muscle), forearm flexor muscle (contractor muscle), forearm extensor muscle (antagonistic muscle), and lumbar muscles by ME6000 (Mega Electronics Ltd.). The stipulated exercise was to do air striking of straight punch with loads of 2.5 kg of dumbbell in the hand until exhausted. In the proceed of exercise-induce exhausted, the descend magnitude and speed of median frequency (MF) in upper limb antagonistic muscle exceeded to contracting muscle, moreover, the work percentage showed that contractor have done a larger percentage of work than antagonistic muscle. Compared with world champion's EMG, the majority of ordinary athletes' lumbar muscles MF revealed non-drop tendency, and the work percentage showed that lumbar muscles had a very little percentage of work. After comparing the EMG test index in upper limb and lumbar muscle of average boxing athletes with that of the world champion, we find the testees lack of the training of upper limb antagonistic muscle and lumbar muscle, and more trainings aimed at these muscles need to be taken.
Mohapatra, Sambit; Harrington, Rachael; Chan, Evan; Dromerick, Alexander W; Breceda, Erika Y; Harris-Love, Michelle
2016-03-23
Stroke is highly prevalent and a leading cause of serious, long-term disability among American adults. Impaired movement (i.e. paresis) of the stroke-affected arm is a major contributor to post-stroke disability, yet the mechanisms of upper extremity motor recovery are poorly understood, particularly in severely impaired patients who lack hand function. To address this problem, we examined the functional relevance of the contralesional hemisphere in paretic arm motor performance in individuals with severe arm paresis. Twelve individuals with severe stroke-induced arm paresis (Upper Extremity Fugl-Meyer Assessment=17.1 ± 8.5; maximum score=66) participated in the study. Participants performed a reaching response time task with their paretic arm. At varying time intervals following a 'Go' cue, a pair of transcranial magnetic stimulation (TMS) pulses were delivered to contralesional hemisphere primary motor (M1) or dorsal pre-motor cortex (PMd) to momentarily disrupt the pattern of neural firing. Response time components and hand-path characteristics were compared across the 2 sites for trials with and without TMS disruption. There was no significant effect of TMS disruption on overall Response time or Reaction time, but Movement time was significantly longer (i.e. slower) with disruption of the contralesional hemisphere (p=0.015), regardless of which area was stimulated. Peak hand-path velocity and hand-path smoothness were also significantly lower (p=0.005 and p<0.0001, respectively) with TMS disruption of the contralesional hemisphere. The data from this study provide evidence supporting a functionally relevant role of contralesional hemisphere motor areas in paretic arm reaching movements in individuals with severe post-stroke arm impairment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cao, Bangming; Wang, Haipeng; Zhang, Chi; Xia, Ming
2018-01-01
Background The aim of this study was to evaluate the role of remote ischemic postconditioning (RIPC) of the upper arm on protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI). Material/Methods Eighty patients with STEMI were randomized into two groups: primary PCI (N=44) and primary PCI+RIPC (N=36). RIPC consisted of four cycles of 5 minutes of occlusion and five minutes of reperfusion by cuff inflation and deflation of the upper arm, commencing within one minute of the first PCI balloon dilatation. Peripheral venous blood samples were collected before PCI and at 0.5, 8, 24, 48, and 72 hours after PCI. Levels of creatine kinase-MB (CK-MB), serum creatinine (Cr), nitric oxide (NO), and stromal cell-derived factor-1α (SDF-1α) were measured. The rates of acute kidney injury (AKI) and the estimated glomerular filtration rate (eGFR) were calculated. Results Patients in the primary PCI+RIPC group, compared with the primary PCI group, had significantly lower peak CK-MB concentrations (P<0.01), a significantly increased left ventricular ejection fraction (LVEF) (P=0.01), a significantly lower rate of AKI (P<0.01) a significantly increased eGFR (P<0.01), and decreased area under the curve (AUC) of CK-MB, NO and SDF-1α. Conclusions RIPC of the upper arm following primary PCI in patients with acute STEMI might provide cardiac and renal protection from ischemia-reperfusion injury via the actions of SDF-1α, and NO. PMID:29456238
Cao, Bangming; Wang, Haipeng; Zhang, Chi; Xia, Ming; Yang, Xiangjun
2018-02-19
BACKGROUND The aim of this study was to evaluate the role of remote ischemic postconditioning (RIPC) of the upper arm on protection from cardiac ischemia-reperfusion injury following primary percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI). MATERIAL AND METHODS Eighty patients with STEMI were randomized into two groups: primary PCI (N=44) and primary PCI+RIPC (N=36). RIPC consisted of four cycles of 5 minutes of occlusion and five minutes of reperfusion by cuff inflation and deflation of the upper arm, commencing within one minute of the first PCI balloon dilatation. Peripheral venous blood samples were collected before PCI and at 0.5, 8, 24, 48, and 72 hours after PCI. Levels of creatine kinase-MB (CK-MB), serum creatinine (Cr), nitric oxide (NO), and stromal cell-derived factor-1α (SDF-1α) were measured. The rates of acute kidney injury (AKI) and the estimated glomerular filtration rate (eGFR) were calculated. RESULTS Patients in the primary PCI+RIPC group, compared with the primary PCI group, had significantly lower peak CK-MB concentrations (P<0.01), a significantly increased left ventricular ejection fraction (LVEF) (P=0.01), a significantly lower rate of AKI (P<0.01) a significantly increased eGFR (P<0.01), and decreased area under the curve (AUC) of CK-MB, NO and SDF-1α. CONCLUSIONS RIPC of the upper arm following primary PCI in patients with acute STEMI might provide cardiac and renal protection from ischemia-reperfusion injury via the actions of SDF-1α, and NO.
Hancock, Laura; Correia, Stephen; Ahern, David; Barredo, Jennifer; Resnik, Linda
2017-07-01
Purpose The objectives were to 1) identify major cognitive domains involved in learning to use the DEKA Arm; 2) specify cognitive domain-specific skills associated with basic versus advanced users; and 3) examine whether baseline memory and executive function predicted learning. Method Sample included 35 persons with upper limb amputation. Subjects were administered a brief neuropsychological test battery prior to start of DEKA Arm training, as well as physical performance measures at the onset of, and following training. Multiple regression models controlling for age and including neuropsychological tests were developed to predict physical performance scores. Prosthetic performance scores were divided into quartiles and independent samples t-tests compared neuropsychological test scores of advanced scorers and basic scorers. Baseline neuropsychological test scores were used to predict change in scores on physical performance measures across time. Results Cognitive domains of attention and processing speed were statistically significantly related to proficiency of DEKA Arm use and predicted level of proficiency. Conclusions Results support use of neuropsychological tests to predict learning and use of a multifunctional prosthesis. Assessment of cognitive status at the outset of training may help set expectations for the duration and outcomes of treatment. Implications for Rehabilitation Cognitive domains of attention and processing speed were significantly related to level of proficiencyof an advanced multifunctional prosthesis (the DEKA Arm) after training. Results provide initial support for the use of neuropsychological tests to predict advanced learningand use of a multifunctional prosthesis in upper-limb amputees. Results suggest that assessment of patients' cognitive status at the outset of upper limb prosthetictraining may, in the future, help patients, their families and therapists set expectations for theduration and intensity of training and may help set reasonable proficiency goals.
Abdulrazzaq, Yousef M; Nagelkerke, Nico; Moussa, Mohamed A
2011-11-01
To determine a range of anthropometric measurements including skinfold thickness measurements in four different areas of the body, to construct population growth charts for body mass index (BMI), skinfolds, and to compare these with growth charts from other countries. One aim was also to validate body fat charts derived from skinfold thickness. A national cross-sectional growth survey of children, 0-18 years old, was conducted using multistage stratified random sampling. The sample size included at least 200 children in each age-sex group. Height, weight, biceps skinfold, triceps skinfold, subscapular skinfold, suprailiac skinfold, and mid-upper-arm circumference were measured in each child. We describe correlation, standard deviation scores relative to the other standards, and calculation of body density in the United Arab Emirates population. We determined whether any of the above is a good indicator of fatness in children. BMI, upper-arm circumference, sum of four skinfolds, and percentage body fat charts were constructed using the LMS method of smoothing. BMI was very significantly correlated with sum of skinfold thicknesses, and mid-upper-arm circumference. Prevalence of obesity and overweight in ages 13-17 years was respectively 9.94% and 15.16% in females and 6.08% and 14.16% in males. Derived body fat charts were found not to be accurate. A national BMI, upper-arm circumference, and sum of four skinfolds chart has been constructed that can be used as a reference standard for the United Arab Emirates. Sum of four skinfold thickness charts can be used as crude determinants of adiposity in children, but derived body fat charts were shown to be inaccurate.
Predictors of the risk of malnutrition among children under the age of 5 years in Somalia.
Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Kandala, Ngianga-Bakwin; Noor, Abdisalan M
2015-12-01
To investigate the predictors of wasting, stunting and low mid-upper arm circumference among children aged 6-59 months in Somalia using data from household cross-sectional surveys from 2007 to 2010 in order to help inform better targeting of nutritional interventions. Cross-sectional nutritional assessment surveys using structured interviews were conducted among communities in Somalia each year from 2007 to 2010. A two-stage cluster sampling methodology was used to select children aged 6-59 months from households across three livelihood zones (pastoral, agro-pastoral and riverine). Predictors of three anthropometric measures, weight-for-height (wasting), height-for-age (stunting) and mid-upper arm circumference, were analysed using Bayesian binomial regression, controlling for both spatial and temporal dependence in the data. The study was conducted in randomly sampled villages, representative of three livelihood zones in Somalia. Children between the ages of 6 and 59 months in Somalia. The estimated national prevalence of wasting, stunting and low mid-upper arm circumference in children aged 6-59 months was 21 %, 31 % and 36 %, respectively. Although fever, diarrhoea, sex and age of the child, household size and access to foods were significant predictors of malnutrition, the strongest association was observed between all three indicators of malnutrition and the enhanced vegetation index. A 1-unit increase in enhanced vegetation index was associated with a 38 %, 49 % and 59 % reduction in wasting, stunting and low mid-upper arm circumference, respectively. Infection and climatic variations are likely to be key drivers of malnutrition in Somalia. Better health data and close monitoring and forecasting of droughts may provide valuable information for nutritional intervention planning in Somalia.
Mascie-Taylor, C G N; Marks, M K; Goto, R; Islam, R
2010-11-01
To determine whether a cash-for-work programme during the annual food insecurity period in Bangladesh improved nutritional status in poor rural women and children. The panel study involved a random sample of 895 households from over 50,000 enrolled in a cash-for-work programme between September and December 2007 and 921 similar control households. The height, weight and mid-upper arm circumference of one woman and child aged less than 5 years from each household were measured at baseline and at the end of the study (mean time: 10 weeks). Women reported 7-day household food expenditure and consumption on both occasions. Changes in parameters were compared between the two groups. At baseline, no significant difference existed between the groups. By the study end, the difference in mean mid-upper arm circumference between women in the intervention and control groups had widened by 2.29 mm and the difference in mean weight, by 0.88 kg. Among children, the difference in means between the two groups had also widened in favour of the intervention group for: height (0.08 cm; P<0.05), weight (0.22 kg; P<0.001), mid-upper arm circumference (1.41 mm; P<0.001) and z-scores for height-for-age (0.02; P<0.001), weight-for-age (0.17; P<0.001), weight-for-height (0.23; P<0.001) and mid-upper arm circumference (0.12; P<0.001). Intervention households spent more on food and consumed more protein-rich food at the end of the study. The cash-for-work programme led to greater household food expenditure and consumption and women's and children's nutritional status improved.
Altunkan, Sekip; Iliman, Nevzat; Altunkan, Erkan
2008-04-01
Despite the widespread use of automated self-measurement monitors, there is limited published evidence on their accuracy and reliability on different patient groups. The objective of this study was to evaluate the accuracy and reliability of the Omron M6 (HEM-7001-E) upper-arm blood pressure (BP) device against mercury sphygmomanometer on elderly patients according to the criteria of the International Protocol. Thirty-three patients above 65 years of age, who were classified based on the BP categories of the International Protocol, were recruited for the study. BP measurements at the upper arm with the Omron M6 were compared with the results obtained by two trained observers using a mercury sphygmomanometer. Nine sequential BP measurements were taken. During the validation study, 99 measurements were obtained from 33 patients for comparison. The first phase was carried out on 15 patients and if the device passed this phase, 18 more patients were selected. Mean discrepancies and standard deviations of the device sphygmomanometer were 1.4+/-5.3 mmHg for systolic BP (SBP) and -1.4+/-4.5 mmHg for diastolic BP (DBP) in the study group. The device passed phase 1 in 15 patients. In phase 2.1, from the total 99 comparisons, 76, 92, and 97 for SBP and 77, 94, and 99 for DBP were less than 5, 10, and 15 mmHg, respectively. The Omron M6 passed phases 2.1 and 2.2 in the elderly group of patients. The Omron M6 (HEM-7001-E) upper-arm BP monitor passed according to the International Protocol criteria and can be recommended for use in elderly patients.
Samuelkamaleshkumar, Selvaraj; Reethajanetsureka, Stephen; Pauljebaraj, Paul; Benshamir, Bright; Padankatti, Sanjeev Manasseh; David, Judy Ann
2014-11-01
To investigate the effectiveness of mirror therapy (MT) combined with bilateral arm training and graded activities to improve motor performance in the paretic upper limb after stroke. Randomized, controlled, assessor-blinded study. Inpatient stroke rehabilitation center of a tertiary care teaching hospital. Patients with first-time ischemic or hemorrhagic stroke (N=20), confined to the territory of the middle cerebral artery, occurring <6 months before the commencement of the study. The MT and control group participants underwent a patient-specific multidisciplinary rehabilitation program including conventional occupational therapy, physical therapy, and speech therapy for 5 d/wk, 6 h/d, over 3 weeks. The participants in the MT group received 1 hour of MT in addition to the conventional stroke rehabilitation. The Upper Extremity Fugl-Meyer Assessment for motor recovery, Brunnstrom stages of motor recovery for the arm and hand, Box and Block Test for gross manual hand dexterity, and modified Ashworth scale to assess the spasticity. After 3 weeks of MT, mean change scores were significantly greater in the MT group than in the control group for the Fugl-Meyer Assessment (P=.008), Brunnstrom stages of motor recovery for the arm (P=.003) and hand (P=.003), and the Box and Block Test (P=.022). No significant difference was found between the groups for modified Ashworth scale (P=.647). MT when combined with bilateral arm training and graded activities was effective in improving motor performance of the paretic upper limb after stroke compared with conventional therapy without MT. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Clausen, T; Overgaard, K; Nielsen, O B
2004-02-01
Muscles containing predominantly fast-twitch (type II) fibres [ext. dig. longus (EDL)] show considerably lower contractile endurance than muscles containing mainly slow-twitch (type I) fibres (soleus). To assess whether differences in Na+-K+ fluxes and excitability might contribute to this phenomenon, we compared excitation-induced Na+-K+ leaks, Na+ channels, Na+-K+ pump capacity, force and compound action potentials (M-waves) in rat EDL and soleus muscles. Isolated muscles were mounted for isometric contractions in Krebs-Ringer bicarbonate buffer and exposed to direct or indirect continuous or intermittent electrical stimulation. The time-course of force decline and concomitant changes in Na+-K+ exchange and M-waves were recorded. During continuous stimulation at 60-120 Hz, EDL showed around fivefold faster rate of force decline than soleus. This was associated with a faster loss of excitability as estimated from the area and amplitude of the M-waves. The net uptake of Na+ and the release of K+ per action potential were respectively 6.5- and 6.6-fold larger in EDL than in soleus, which may in part be due to the larger content of Na+ channels in EDL. During intermittent stimulation with 1 s 60 Hz pulse trains, EDL showed eightfold faster rate of force decline than soleus. The considerably lower contractile endurance of fast-twitch compared with slow-twitch muscles reflects differences in the rate of excitation-induced loss of excitability. This is attributed to the much larger excitation-induced Na+ influx and K+ efflux, leading to a faster rise in [K+]o in fast-twitch muscles. This may only be partly compensated by the concomitant activation of the Na+-K+ pumps, in particular in fibres showing large passive Na+-K+ leaks or reduced content of Na+-K+ pumps. Thus, endurance depends on the leak/pump ratio for Na+ and K+.
Vieira Carlos, Ricardo; Luis Abramides Torres, Marcelo; de Boer, Hans Donald
2018-04-01
After reversal of a rocuronium-induced neuromuscular blockade with sugammadex, the recovery of train-of-four ratio to 0.9 is faster than recovery of first twitch of the train-of-four to 90% in adults. These findings after reversal of neuromuscular blockade with sugammadex have not yet been investigated in pediatric patients. The aim of this retrospective analysis was to investigate the relationship of the recovery of first twitch of the train-of-four height and train-of-four ratio after reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric patients. Patients ASA I-III, aged 2-11 years, and who underwent abdominal and/or perineal surgery were included in the analysis. After extracting the necessary data from the hospital database, the patients were divided into 2 groups based on the dose of sugammadex received: group A: 2 mg.kg -1 for reversal of moderate neuromuscular blockade and group B: 4 mg.kg -1 for reversal of deep neuromuscular blockade. The relationship of the recovery of first twitch of the train-of-four height and train-of-four ratio in these 2 groups were analyzed. Data from 43 pediatric patients aged 2-11 years could be analyzed. The first twitch of the train-of-four height at the recovery of train-of-four ratio to 0.9 in group B was statistically significantly lower compared with group A. This height 3 and 5 minutes after the train-of-four ratio reached 0.9 showed no statistically significant differences between groups. The results were in line with the results found in adults and showed that the train-of-four ratio recovered to 0.9 was faster than first twitch of the train-of-four height recovered to the same level. © 2018 John Wiley & Sons Ltd.
Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue
Macdonald, W A; Stephenson, D G
2006-01-01
Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 μm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (−log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 μm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 μm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres. PMID:16556653
Maas, J; Rae, G A; Huidobro-Toro, J P; Calixto, J B
1995-01-01
1. This study analyses the receptors mediating the effects of bradykinin (BK) and analogues on neurogenic twitch contractions of the mouse isolated vas deferens evoked, in the presence of captopril (3 microM), by electrical field stimulation with trains of 4 rectangular 0.5 ms pulses of supramaximal strength, delivered at a frequency of 10 Hz every 20 s. 2. BK (0.1-300 nM) induced a graded potentiation of twitches, with an EC50 (geometric mean and 95% confidence limits) of 4.5 nM (1.7-11.6) and an Emax of 315 +/- 19 mg per 10 mg of wet tissue (n = 6). Similar results were obtained in tissues challenged with Lys-BK, [Hyp3]-BK, Met,Lys-BK and the selective B2 receptor agonist [Tyr(Me)8]-BK (0.1-300 nM). 3. The selective B2 receptor antagonists, Hoe 140 (1-10 nM) and NPC 17731 (3-30 nM), caused graded rightward shifts of the curve to BK-induced twitch potentiation, yielding apparent pA2 values of 9.65 +/- 0.09 and 9.08 +/- 0.13, respectively, and Schild plot slopes not different from 1. Both antagonists (100 nM) failed to modify similar twitch potentiations induced by substance P (3 nM) or endothelin-1 (1 nM). Preincubation with the selective B1 receptor antagonist, [Leu8,des-Arg9]-BK (1 microM), increased the potentiating effect of BK on twitches at 30-300 nM. 4. In contrast to BK, the selective B1 receptor agonist, [des-Arg9]-BK (0.3-1000 nM) reduced the amplitude of twitches in a graded fashion, with an IC50 of 13.7 nM (10.4-16.1) and an Imax of 175 +/- 11 mg (n = 4).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7606350
Refractory status epilepticus complicated by drug-induced involuntary movements.
Nair, Pradeep Pankajakshan; Wadwekar, Vaibhav; Murgai, Aditya; Narayan, Sunil K
2014-02-11
New onset refractory status epilepticus (NORSE) is a neurological emergency and difficult to treat condition. We report a case of involuntary movements resulting from thiopentone sodium infusion during the management of refractory status epilepticus. A young woman was admitted with fever and NORSE in the neurology intensive care unit. In addition to supportive measures, she was treated with intravenous lorazepam, phenytoin sodium, sodium valproate, midazolam and thiopentone sodium. While on thiopentone sodium, she developed involuntary twitches involving her upper limbs and face with EEG showing no evidence of ongoing status epilepticus. Because of the temporal relationship with thiopentone infusion, we tapered the dose of thiopentone sodium, which resulted in the disappearance of the movements. The patient recovered well with no recurrence of the seizures during the hospital stay.
Cardiac troponin T and fast skeletal muscle denervation in ageing
Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong‐Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M.; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian‐Ping; Delbono, Osvaldo
2017-01-01
Abstract Background Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast‐twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow‐twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre‐type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle‐specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Methods Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real‐time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Results Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region—but mainly in the fast‐twitch, not the slow‐twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ—again, preferentially in fast‐twitch but not slow‐twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Conclusions Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast‐twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age‐related decline in muscle function. PMID:28419739
Cadigan, Edward W. J.; Collins, Brandon W.; Philpott, Devin T. G.; Kippenhuck, Garreth; Brenton, Mitchell; Button, Duane C.
2017-01-01
Transcranial magnetic (TMS) and motor point stimulation have been used to determine voluntary activation (VA). However, very few studies have directly compared the two stimulation techniques for assessing VA of the elbow flexors. The purpose of this study was to compare TMS and motor point stimulation for assessing VA in non-fatigued and fatigued elbow flexors. Participants performed a fatigue protocol that included twelve, 15 s isometric elbow flexor contractions. Participants completed a set of isometric elbow flexion contractions at 100, 75, 50, and 25% of maximum voluntary contraction (MVC) prior to and following fatigue contractions 3, 6, 9, and 12 and 5 and 10 min post-fatigue. Force and EMG of the bicep and triceps brachii were measured for each contraction. Force responses to TMS and motor point stimulation and EMG responses to TMS (motor evoked potentials, MEPs) and Erb's point stimulation (maximal M-waves, Mmax) were also recorded. VA was estimated using the equation: VA% = (1−SITforce/PTforce) × 100. The resting twitch was measured directly for motor point stimulation and estimated for both motor point stimulation and TMS by extrapolation of the linear regression between the superimposed twitch force and voluntary force. MVC force, potentiated twitch force and VA significantly (p < 0.05) decreased throughout the elbow flexor fatigue protocol and partially recovered 10 min post fatigue. VA was significantly (p < 0.05) underestimated when using TMS compared to motor point stimulation in non-fatigued and fatigued elbow flexors. Motor point stimulation compared to TMS superimposed twitch forces were significantly (p < 0.05) higher at 50% MVC but similar at 75 and 100% MVC. The linear relationship between TMS superimposed twitch force and voluntary force significantly (p < 0.05) decreased with fatigue. There was no change in triceps/biceps electromyography, biceps/triceps MEP amplitudes, or bicep MEP amplitudes throughout the fatigue protocol at 100% MVC. In conclusion, motor point stimulation as opposed to TMS led to a higher estimation of VA in non-fatigued and fatigued elbow flexors. The decreased linear relationship between TMS superimposed twitch force and voluntary force led to an underestimation of the estimated resting twitch force and thus, a reduced VA. PMID:28979211
Cadigan, Edward W J; Collins, Brandon W; Philpott, Devin T G; Kippenhuck, Garreth; Brenton, Mitchell; Button, Duane C
2017-01-01
Transcranial magnetic (TMS) and motor point stimulation have been used to determine voluntary activation (VA). However, very few studies have directly compared the two stimulation techniques for assessing VA of the elbow flexors. The purpose of this study was to compare TMS and motor point stimulation for assessing VA in non-fatigued and fatigued elbow flexors. Participants performed a fatigue protocol that included twelve, 15 s isometric elbow flexor contractions. Participants completed a set of isometric elbow flexion contractions at 100, 75, 50, and 25% of maximum voluntary contraction (MVC) prior to and following fatigue contractions 3, 6, 9, and 12 and 5 and 10 min post-fatigue. Force and EMG of the bicep and triceps brachii were measured for each contraction. Force responses to TMS and motor point stimulation and EMG responses to TMS (motor evoked potentials, MEPs) and Erb's point stimulation (maximal M-waves, M max ) were also recorded. VA was estimated using the equation: VA% = (1- SITforce / PTforce ) × 100. The resting twitch was measured directly for motor point stimulation and estimated for both motor point stimulation and TMS by extrapolation of the linear regression between the superimposed twitch force and voluntary force. MVC force, potentiated twitch force and VA significantly ( p < 0.05) decreased throughout the elbow flexor fatigue protocol and partially recovered 10 min post fatigue. VA was significantly ( p < 0.05) underestimated when using TMS compared to motor point stimulation in non-fatigued and fatigued elbow flexors. Motor point stimulation compared to TMS superimposed twitch forces were significantly ( p < 0.05) higher at 50% MVC but similar at 75 and 100% MVC. The linear relationship between TMS superimposed twitch force and voluntary force significantly ( p < 0.05) decreased with fatigue. There was no change in triceps/biceps electromyography, biceps/triceps MEP amplitudes, or bicep MEP amplitudes throughout the fatigue protocol at 100% MVC. In conclusion, motor point stimulation as opposed to TMS led to a higher estimation of VA in non-fatigued and fatigued elbow flexors. The decreased linear relationship between TMS superimposed twitch force and voluntary force led to an underestimation of the estimated resting twitch force and thus, a reduced VA.
Sagen, Ase; Kåresen, Rolf; Skaane, Per; Risberg, May Arna
2009-05-01
To evaluate concurrent and construct validity for the Simplified Water Displacement Instrument (SWDI), an instrument for measuring arm volumes and arm lymphedema as a result of breast cancer surgery. Validity design. Hospital setting. Women (N=23; mean age, 64+/-11y) were examined 6 years after breast cancer surgery with axillary node dissection. Not applicable. The SWDI was included for measuring arm volumes to estimate arm lymphedema as a result of breast cancer surgery. A computed tomography (CT) scan was included to examine the cross-sectional areas (CSAs) in square millimeters for the subcutaneous tissue, for the muscle tissue, and for measuring tissue density in Hounsfield units. Magnetic resonance imaging (MRI) with T2-weighted sequences was included to show increased signal intensity in subcutaneous and muscle tissue areas. The affected arm volume measured by the SWDI was significantly correlated to the total CSA of the affected upper limb (R=.904) and also to the CSA of the subcutaneous tissue and muscles tissue (R=.867 and R=.725), respectively (P<.001). The CSA of the subcutaneous tissue for the upper limb was significantly larger compared with the control limb (11%). Tissue density measured in Hounsfield units did not correlate significantly with arm volume (P>.05). The affected arm volume was significantly larger (5%) than the control arm volume (P<.05). Five (22%) women had arm lymphedema defined as a 10% increase in the affected arm volume compared with the control arm volume, and an increased signal intensity was identified in all 5 women on MRI (T2-weighted, kappa=.777, P<.001). The SWDI showed high concurrent and construct validity as shown with significant correlations between the CSA (CT) of the subcutaneous and muscle areas of the affected limb and the affected arm volume (P>.001). There was a high agreement between those subjects who were diagnosed with arm lymphedema by using the SWDI and the increased signal intensity on MRI, with a kappa value of .777 (P<.001). High construct validity for the SWDI was confirmed for arm lymphedema as a volume increase, but it was not confirmed for lymphedema without an increase in arm volume (swelling). The SWDI is a simple and valid tool for estimating arm volume and arm lymphedema after breast cancer surgery.
Pierella, C; De Luca, A; Tasso, E; Cervetto, F; Gamba, S; Losio, L; Quinland, E; Venegoni, A; Mandraccia, S; Muller, I; Massone, A; Mussa-Ivaldi, F A; Casadio, M
2017-07-01
Body machine interfaces (BMIs) are used by people with severe motor disabilities to control external devices, but they also offer the opportunity to focus on rehabilitative goals. In this study we introduced in a clinical setting a BMI that was integrated by the therapists in the rehabilitative treatments of 2 spinal cord injured (SCI) subjects for 5 weeks. The BMI mapped the user's residual upper body mobility onto the two coordinates of a cursor on a screen. By controlling the cursor, the user engaged in playing computer games. The BMI allowed the mapping between body and cursor spaces to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change our subjects' behavior, who initially used almost exclusively their proximal upper body-shoulders and arms - for using the BMI. By the end of training, cursor control was shifted toward more distal body regions - forearms instead of upper arms - with an increase of mobility and strength of all the degrees of freedom involved in the control. The clinical tests and the electromyographic signals from the main muscles of the upper body confirmed the positive effect of the training. Encouraging the subjects to explore different and sometimes unusual movement combinations was beneficial for recovering distal arm functions and for increasing their overall mobility.
Adam, Garret; Wang, Kevin; Demaree, Christopher J.; Jiang, Jenny S.; Cheung, Mathew; Bechara, Carlos F.
2018-01-01
Thoracic outlet syndrome (TOS) is a neurovascular condition involving the upper extremity, which is known to occur in individuals who perform chronic repetitive upper extremity activities. We prospectively evaluate the incidence of TOS in high-performance musicians who played bowed string musicians. Sixty-four high-performance string instrument musicians from orchestras and professional musical bands were included in the study. Fifty-two healthy volunteers formed an age-matched control group. Bilateral upper extremity duplex scanning for subclavian vessel compression was performed in all subjects. Provocative maneuvers including Elevated Arm Stress Test (EAST) and Upper Limb Tension Test (ULTT) were performed. Abnormal ultrasound finding is defined by greater than 50% subclavian vessel compression with arm abduction, diminished venous waveforms, or arterial photoplethysmography (PPG) tracing with arm abduction. Bowed string instruments performed by musicians in our study included violin (41%), viola (33%), and cello (27%). Positive EAST or ULTT test in the musician group and control group were 44%, and 3%, respectively (p = 0.03). Abnormal ultrasound scan with vascular compression was detected in 69% of musicians, in contrast to 15% of control subjects (p = 0.03). TOS is a common phenomenon among high-performance bowed string instrumentalists. Musicians who perform bowed string instruments should be aware of this condition and its associated musculoskeletal symptoms. PMID:29370085
The role of upper torso and pelvis rotation in driving performance during the golf swing.
Myers, Joseph; Lephart, Scott; Tsai, Yung-Shen; Sell, Timothy; Smoliga, James; Jolly, John
2008-01-15
While the role of the upper torso and pelvis in driving performance is anecdotally appreciated by golf instructors, their actual biomechanical role is unclear. The aims of this study were to describe upper torso and pelvis rotation and velocity during the golf swing and determine their role in ball velocity. One hundred recreational golfers underwent a biomechanical golf swing analysis using their own driver. Upper torso and pelvic rotation and velocity, and torso-pelvic separation and velocity, were measured for each swing. Ball velocity was assessed with a golf launch monitor. Group differences (groups based on ball velocity) and moderate relationships (r > or = 0.50; P < 0.001) were observed between an increase in ball velocity and the following variables: increased torso-pelvic separation at the top of the swing, maximum torso-pelvic separation, maximum upper torso rotation velocity, upper torso rotational velocity at lead arm parallel and last 40 ms before impact, maximum torso-pelvic separation velocity and torso-pelvic separation velocity at both lead arm parallel and at the last 40 ms before impact. Torso-pelvic separation contributes to greater upper torso rotation velocity and torso-pelvic separation velocity during the downswing, ultimately contributing to greater ball velocity. Golf instructors can consider increasing ball velocity by maximizing separation between the upper torso and pelvis at the top of and initiation of the downswing.
Glove box on vehicular instrument panel
Atarashi, Kazuya
1985-01-01
A glove box for the upper surface of an automobile dashboard whereby it may be positioned close to the driver. The glove box lid is pivotally supported by arms extending down either side to swing forwardly for opening. A hook is pivotally support adjacent an arm and weighted to swing into engagement with the arm to prevent opening of the lid during abrupt deceleration. A toggle spring assists in maintaining the lid in either the open or closed position.
Physical Fitness as It Pertains to Sustained Military Operations
1986-05-01
Vogel and his colleagues (Vogel et al., 1983, Murphy et al., 1985) measured initial V02 max, and 2-mile run time, anaerobic power of the arms and...trial, and troop performance was evaluated by observers. Vogel and his co-workers found arm strength and arm anaerobic p,4er to decrease following...defense from infantry ground attack. Measurements of isometric, handgrip strength and upper and lower body anaerobic power (using the Wingate test) were
Kwakkel, Gert; van Wegen, Erwin E; Meskers, Carel M
2015-06-01
In this issue of Archives of Physical Medicine and Rehabilitation, Jessica McCabe and colleagues report findings from their methodologically sound, dose-matched clinical trial in 39 patients beyond 6 months poststroke. In this phase II trial, the effects of 60 treatment sessions, each involving 3.5 hours of intensive practice plus either 1.5 hours of functional electrical stimulation (FES) or a shoulder-arm robotic therapy, were compared with 5 hours of intensive daily practice alone. Although no significant between-group differences were found on the primary outcome measure of Arm Motor Ability Test and the secondary outcome measure of Fugl-Meyer Arm motor score, 10% to 15% within-group therapeutic gains were on the Arm Motor Ability Test and Fugl-Meyer Arm. These gains are clinically meaningful for patients with stroke. However, the underlying mechanisms that drive these improvements remain poorly understood. The approximately $1000 cost reduction per patient calculated for the use of motor learning (ML) methods alone or combined with FES, compared with the combination of ML and shoulder-arm robotics, further emphasizes the need for cost considerations when making clinical decisions about selecting the most appropriate therapy for the upper paretic limb in patients with chronic stroke. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Selionov, V A; Solopova, I A; Zhvansky, D S
2016-01-01
We studied the effect of arm movements and movements of separate arm joints on the electrophysiological and kinematic characteristics of voluntary and vibration-triggered stepping-like leg movements under the conditions of horizontal support of upper and lower limbs. The horizontal support of arms provided a significantly increase in the rate of activation of locomotor automatism by non-invasive impact on tonic sensory inputs. The addition of active arm movements during involuntary rhytmic stepping-like leg movements led to an increase in EMG activity of hip muscles and was accompanied by an increase in the amplitude of hip and shin movements. Passive arm movements had the same effect on induced leg movements. The movement of the shoulder joints led to an increase in the activity of hip muscles and an increase in the amplitude of movements of the knee and hip joints. At the same time, the movement of forearms. and wrists had similar facilitating effect on electrophysiological and kinematic characteristics of rhytmic stepping-like movements, but influenced the distal segments of legs to a greater extent. Under the conditions of sub-threshold vibration of leg muscles, voluntary arm movements led to the activation of involuntary rhytmic stepping movements. During voluntary leg movements, the addition of arm movements had a significantly smaller impact on the parameters of rhytmic stepping than during involuntary leg movements. Thus, the simultaneous movements of upper and lower limbs are an effective method of activation of neural networks connecting the rhythm generators of arms and legs. Under the conditions of arm and leg unloading, the interactions between the cervical and lumbosacral segments of the spinal cord seem to play the major role in the impact of arm movements on the patterns of leg movements. The described methods of activation of interlimb interactions can be used in the rehabilitation of post-stroke patients and patients with spinal cord injuries, Parkinson's disease and other neurological diseases.
The Effect of Three Methods of Supporting the Double Bass on Muscle Tension.
ERIC Educational Resources Information Center
Dennis, Allan
1984-01-01
Using different methods of holding the double bass, college students performed Beethoven's Symphony No. 9. Audio recordings of performance were rated. Muscle tension readings from the left arm, right arm, upper back, and lower back were taken, using electromyography. Results suggest nonsignificant differences in both performance quality and muscle…
Upper Limb Asymmetries in the Perception of Proprioceptively Determined Dynamic Position Sense
ERIC Educational Resources Information Center
Goble, Daniel J.; Brown, Susan H.
2010-01-01
Recent studies of position-related proprioceptive sense have provided evidence of a nonpreferred left arm advantage in right-handed individuals. The present study sought to determine whether similar asymmetries might exist in "dynamic position" sense. Thirteen healthy, right-handed adults were blindfolded and seated with arms placed on…
Characterization of Upper Troposphere Water Vapor Measurements during AFWEX using LASE
NASA Technical Reports Server (NTRS)
Ferrare, R. A.; Browell, E. V.; Ismail, S.; Kooi, S.; Brasseur, L. H.; Brackett, V. G.; Clayton, M.; Barrick, J.; Linne, H.; Lammert, A.
2002-01-01
Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere water vapor (UTWV) measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. We show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived from the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UTWV measurements.
Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Saleh, Soha; Lafond, Ian; Davidow, Amy; Adamovich, Sergei V
2011-05-16
Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training.
2011-01-01
Background Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Methods Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. Results The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Conclusions Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training. PMID:21575185
A robotic workstation for stroke rehabilitation of the upper extremity using FES.
Freeman, C T; Hughes, A-M; Burridge, J H; Chappell, P H; Lewin, P L; Rogers, E
2009-04-01
An experimental test facility is developed for use by stroke patients in order to improve sensory-motor function of their upper limb. Subjects are seated at the workstation and their task is to repeatedly follow reaching trajectories that are projected onto a target above their arm. To do this they use voluntary control with the addition of electrical stimulation mediated by advanced control schemes applied to muscles in their impaired shoulder and arm. Full details of the design of the workstation and its periphery systems are given, together with a description of its use during the treatment of stroke patients.
Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A.
2016-01-01
Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation. PMID:27583121
Manaan, Qazi; Bashir, Adil; Zahoor, Adnan; Mokhdomi, Taseem A; Danish, Qazi
2016-09-01
Floating arm injury represents a common yet complicated injury of the childhood severely associated with limb deformation and even morbidity, if not precisely addressed and credibly operated. Here, we report a rare floating upper limb case of a 9-year-old boy with multiple injuries of ipsilateral proximal humeral, supracondylar and distal radial limb. This is the first report to document such a combined floating elbow and floating arm injury in the same limb. In this report, we discuss the surgical procedures used and recovery of the patient monitored to ascertain the effectiveness of the method in limb reorganisation.
Wu, Lili; Jiao, Yinghui; Wang, Chengdong; Chen, Lei; Di, Dalin; Zhang, Haiyan
2015-08-01
This study aimed to validate the Andon KD-5851 upper arm blood pressure (BP) monitor according to the European Society of Hypertension International Protocol (ESH-IP) revision 2010. A total of 33 eligible participants were included in the study. Sequential measurements of BPs were performed using a mercury sphygmomanometer and the device, and the data analysis was carried out following precisely the ESH-IP revision 2010. The device had 82, 98, and 99 measurements within 5, 10, and 15 mmHg for systolic blood pressure and 85, 95, and 99 measurements for diastolic blood pressure, respectively. The average device-observer difference was -0.53±4.00 mmHg for systolic blood pressure and -1.15±4.06 mmHg for diastolic blood pressure. The device passed all the criteria according to the ESH-IP revision 2010. According to the validation results on the basis of the ESH-IP revision 2010, the Andon KD-5851 upper arm BP monitor can be recommended for self/home measurement in adults. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Erdem, Emre; Aydogdu, Türkan; Akpolat, Tekin
2011-02-01
Standard validation protocols are objective guides for healthcare providers, physicians, and patients. The purpose of this study was to test validation of the Medisana MTP Plus upper arm blood pressure (BP) measuring monitor for self-measurement according to the European Society of Hypertension International Protocol (ESH-IP2) in adults. The Medisana MTP Plus monitor is an automated and oscillometric upper arm device for home BP monitoring. Nine consecutive measurements were made according to the ESH-IP2. Overseen by an independent supervisor, measurements were recorded by two observers blinded from both each other's readings and from the device readings. The Medisana MTP Plus device fulfills the validation criteria of the ESH-IP2 for the general population. The mean (standard deviation) of the difference between the observers and the device measurements was 0.6 mmHg (5.1 mmHg) for systolic and 2.7 mmHg (3.4 mmHg) for diastolic pressures, respectively. As the Medisana MTP Plus device has achieved the required standards, it is recommended for home BP monitoring in an adult population.
Lei, Lei; Chen, Yi; Chen, Qi; Li, Yan; Wang, Ji-Guang
2017-12-01
The present study aimed to evaluate the accuracy of the automated oscillometric upper-arm blood pressure monitor SEJOY BP-1307 (also called JOYTECH DBP-1307) for home blood pressure monitoring according to the International Protocol of the European Society of Hypertension revision 2010. Systolic and diastolic blood pressures were sequentially measured in 33 adult Chinese individuals (13 women, 45.1 years of mean age) using a mercury sphygmomanometer (two observers) and the SEJOY BP-1307 device (one supervisor). Ninety-nine pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. The average±SD of the device-observer differences was 0.2±4.1 and -1.7±4.7 mmHg for systolic and diastolic blood pressure, respectively. The SEJOY BP-1307 device achieved the criteria in both part 1 and part 2 of the validation study. The SEJOY upper-arm blood pressure monitor BP-1307 has passed the requirements of the International Protocol revision 2010, and hence can be recommended for home use in adults.
Milligan, Alexandra; Mills, Chris; Corbett, Jo; Scurr, Joanna
2015-08-01
Many women wear sports bras due to positive benefits associated with these garments (i.e. reduction in breast movement and breast pain), however the effects these garments have on upper body running kinematics has not been investigated. Ten female participants (32 DD or 34 D) completed two five kilometer treadmill runs (9 km h(-1)), once in a low and once in a high breast support. The range of motion (ROM) and peak torso, pelvis, and upper arm Cardan joint angles were calculated over five gait cycles during a five kilometer run. Peak torso yaw, peak rotation of the pelvis, peak pelvis obliquity, ROM in rotation of the pelvis, and ROM in upper arm extension were significant, but marginally reduced when participants ran in the high breast support. The running kinematics reported in the high breast support condition more closely align with economical running kinematics previously defined in the literature, therefore, running in a high breast support may be more beneficial to female runners, with a high breast support advocated for middle distance runners. Copyright © 2015 Elsevier B.V. All rights reserved.
Monitoring elbow isometric contraction by novel wearable fabric sensing device
NASA Astrophysics Data System (ADS)
Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying
2016-12-01
Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.
Ostlie, Kristin; Franklin, Rosemary J; Skjeldal, Ola H; Skrondal, Anders; Magnus, Per
2011-10-01
To describe physical function in adult acquired major upper-limb amputees (ULAs) by combining self-assessed arm function and physical measures obtained by clinical examinations; to estimate associations between background factors and self-assessed arm function in ULAs; and to assess whether clinical examination findings may be used to detect reduced arm function in unilateral ULAs. postal questionnaires and clinical examinations. Norwegian ULA population. Clinical examinations performed at 3 clinics. Questionnaires: population-based sample (n=224; 57.4% response rate). Clinical examinations: combined referred sample and convenience sample of questionnaire responders (n=70; 83.3% of those invited). SURVEY inclusion criteria: adult acquired major upper-limb amputation, resident in Norway, mastering of spoken and written Norwegian. Not applicable. The Disabilities of the Arm, Shoulder and Hand (DASH) Outcome Questionnaire, and clinical examination of joint motion and muscle strength with and without prostheses. Mean DASH score was 22.7 (95% confidence interval [CI], 20.3-25.0); in bilateral amputees, 35.7 (95% CI, 23.0-48.4); and in unilateral amputees, 22.1 (95% CI, 19.8-24.5). A lower unilateral DASH score (better function) was associated with paid employment (vs not in paid employment: adjusted regression coefficient [aB]=-5.40, P=.033; vs students: aB=-13.88, P=.022), increasing postamputation time (aB=-.27, P=.001), and Norwegian ethnicity (aB=-14.45, P<.001). At clinical examination, we found a high frequency of impaired neck mobility and varying frequencies of impaired joint motion and strength at the shoulder, elbow, and forearm level. Prosthesis wear was associated with impaired joint motion in all upper-limb joints (P<.006) and with reduced shoulder abduction strength (P=.002). Impaired without-prosthesis joint motion in shoulder flexion (ipsilateral: aB=12.19, P=.001) and shoulder abduction (ipsilateral: aB=12.01, P=.005; contralateral: aB=28.82, P=.004) was associated with increased DASH scores. Upper-limb loss clearly affects physical function. DASH score limitation profiles may be useful in individual clinical assessments. Targeted clinical examination may indicate patients with extra rehabilitational needs. Such examinations may be of special importance in relation to prosthesis function. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinson, B.D.
1963-06-01
Results are reported of autoplastic transplantation of parts of nonirradiated, regenerated forelimb to the contralateral x-irradiated forelimb in adult Triturus viridescens. The right forelimbs were exposed to various doses of localized irradiation (1000 to 5000 r) followed by amputation of both left and right forelimbs through the mid forearm. Left limbs regenerated normally, but irradiated right limbs failed to exhibit any significant degree of regenerative activity over a 3-month period. Both forelimbs were reamputated through the distal humerus and observed for an additional two months. Left limbs produced normal regenerates, but irradiated right limbs gave no gross evidence of regenerationmore » at any of the radiation dose levels. Normal left regenerates were reamputated immediately distal to the elbow on the 60th day after the second amputation; the severed forearm was trimmed with scissors along anterior and posterior borders and denuded of skin over its proximal half, leaving an essentially complete forearm region as a normal autograft. This was implanted into the irradiated right upper arm stump, after ablation of the distal half of its humerus, with normal proximodistal polarity in all cases. The irradiated stump was reamputated through the distal portion of the implanted normal autograft two weeks after implantation, and was observed for four months. Periodic gross observations showed that over 90% of irradiated upper arms formed regenerates at a rate which paralleled that of nonirradiated controls. However, regenerates formed on irradiated upper arms exhibited a restriction of morphogenetic capacity, only 60% attaining 3- and 4-digit stages. Most of the morphologically more complex regenerates which developed on the irradiated upper arm stumps manifested left limb asymmetry despite their formation on right irradiated stumps, suggesting a relation between the asymmetry of the normal graft and that of the resulting regenerate. All regenerates which developed on irradiated upper arms showed marked deficiencies in the restoration of a complete proximodistal structural pattern appropriate to the level of amputation through the irradiated stump. However, the actual pattern produced was appropriate to the level of amputation through the implanted normal autograft. These findings support the hypothesis that normal grafts promote the formation of regenerates on irradiated limbs through the autonomous developmental activity of the transected graft. (BBB)« less
Boström, Maria; Dellve, Lotta; Thomée, Sara; Hagberg, Mats
2008-04-01
This study prospectively assessed the importance of individual conditions and computer use during school or work and leisure time as risk factors for self-reported generally reduced productivity due to musculoskeletal complaints among young adults with musculoskeletal symptoms in the neck or upper extremities. A cohort of 2914 young adults (18-25 years, vocational school and college or university students) responded to an internet-based questionnaire concerning musculoskeletal symptoms related to individual conditions and computer use during school or work and leisure time that possibly affected general productivity. Prevalence ratios (PR) were used to assess prospective risk factors for generally reduced productivity. The selected study sample (N=1051) had reported neck or upper-extremity symptoms. At baseline, 280 of them reported reduced productivity. A follow-up of the 771 who reported no reduced productivity was carried out after 1 year. Risk factors for self-reported generally reduced productivity for those followed-up were symptoms in two or three locations or dimensions for the upper back or neck and the shoulders, arms, wrists, or hands [PR 2.30, 95% confidence interval (95% CI) 1.40-3.78], symptoms persisting longer than 90 days in the shoulders, arms, wrists, or hands (PR 2.50, 95% CI 1.12-5.58), current symptoms in the shoulders, arms, wrists, or hands (PR 1.78, 95% CI 1.10-2.90) and computer use 8-14 hours/week during leisure time (PR 2.32, 95% CI 1.20-4.47). A stronger relationship was found if three or four risk factors were present. For women, a relationship was found between generally reduced productivity and widespread and current symptoms in the upper extremities. The main risk factors for generally reduced productivity due to musculoskeletal symptoms among young adults in this study were chronic symptoms in the upper extremities and widespread symptoms in the neck and upper extremities.
Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo
2016-01-01
Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008
"Ballistic Six" Upper-Extremity Plyometric Training for the Pediatric Volleyball Players.
Turgut, Elif; Cinar-Medeni, Ozge; Colakoglu, Filiz F; Baltaci, Gul
2017-09-19
The Ballistic Six exercise program includes commonly used upper-body exercises, and the program is recommended for overhead throwing athletes. The purpose of the current study was to investigate the effects of a 12-week the Ballistic Six upper-extremity plyometric training program on upper-body explosive power, endurance, and reaction time in pediatric overhead athletes. Twenty-eight female pediatric volleyball players participated in the study. The participants were randomly divided into 2 study groups: an intervention group (upper-extremity plyometric training in addition to the volleyball training; n = 14) and a control group (the volleyball training only; n = 14). All the participants were assessed before and after a 12-week training program for upper-body power, strength and endurance, and reaction time. Statistical comparison was performed using an analysis of variance test. Comparisons showed that after a 12-week training program, the Ballistic Six upper-body plyometric training program resulted in more improvements in an overhead medicine ball throwing distance and a push-up performance, as well as greater improvements in the reaction time in the nonthrowing arm when compared with control training. In addition, a 12-week training program was found to be effective in achieving improvements in the reaction time in the throwing arm for both groups similarly. Compared with regular training, upper-body plyometric training resulted in additional improvements in upper-body power and strength and endurance among pediatric volleyball players. The findings of the study provide a basis for developing training protocols for pediatric volleyball players.
Nunes, Gonçalo; Santos, Carla Adriana; Barosa, Rita; Fonseca, Cristina; Barata, Ana Teresa; Fonseca, Jorge
2017-01-01
Protein-calorie malnutrition is common in chronic liver disease (CLD) but adequate clinical tools for nutritional assessment are not defined. In CLD patients, it was aimed: 1. Characterize protein-calorie malnutrition; 2. Compare several clinical, anthropometric and functional tools; 3. Study the association malnutrition/CLD severity and malnutrition/outcome. Observational, prospective study. Consecutive CLD ambulatory/hospitalised patients were recruited from 01-03-2012 to 31-08-2012, studied according with age, gender, etiology, alcohol consumption and CLD severity defined by Child-Turcotte-Pugh. Nutritional assessment used subjective global assessment, anthropometry, namely body-mass index (BMI), triceps skinfold, mid upper arm circumference, mid arm muscular circumference and handgrip strength. Patients were followed during two years and survival data was recorded. A total of 130 CLD patients (80 men), aged 22-89 years (mean 60 years) were included. Most suffered from alcoholic cirrhosis (45%). Hospitalised patients presented more severe disease ( P <0.001) and worst nutritional status defined by BMI ( P =0.002), mid upper arm circumference ( P <0.001), mid arm muscular circumference ( P <0.001), triceps skinfold ( P =0.07) and subjective global assessment ( P <0.001). A third presented deficient/low handgrip strength. Alcohol consumption ( P =0.03) and malnutrition detected by BMI ( P =0.03), mid upper arm circumference ( P =0.001), triceps skinfold ( P =0.06), mid arm muscular circumference ( P =0.02) and subjective global assessment ( P <0.001) were associated with CLD severity. From 25 patients deceased during follow-up, 17 patients were severely malnourished according with triceps skinfold. Malnutrition defined by triceps skinfold predicted mortality ( P <0.001). Protein-calorie malnutrition is common in CLD patients and alcohol plays an important role. Triceps skinfold is the most efficient anthropometric parameter and is associated with mortality. Nutritional assessment should be considered mandatory in the routine care of CLD patients.
DEET Insect Repellent: Effects on Thermoregulatory Sweating and Physiological Strain
2011-01-01
local measures of mean sweat rate of upper arm and forearm during 70 min of cycling exercise in *44C. They reported a significant increase in rectal...right arm of four volunteers and the left arm of the remaining five. The mid-point of the ventral forearm , between the antecubital space and the wrist...acclimation (45_C, 20% rh; 545 watts; 100 min/day) and performed three trials: control (CON); DEET applied to forearm (DEETLOC, 12 cm2 ); and DEET
Manders, Emmy; Bonta, Peter I.; Kloek, Jaap J.; Symersky, Petr; Bogaard, Harm-Jan; Hooijman, Pleuni E.; Jasper, Jeff R.; Malik, Fady I.; Stienen, Ger J. M.; Vonk-Noordegraaf, Anton; de Man, Frances S.
2016-01-01
Patients with pulmonary hypertension (PH) suffer from inspiratory muscle weakness. However, the pathophysiology of inspiratory muscle dysfunction in PH is unknown. We hypothesized that weakness of the diaphragm, the main inspiratory muscle, is an important contributor to inspiratory muscle dysfunction in PH patients. Our objective was to combine ex vivo diaphragm muscle fiber contractility measurements with measures of in vivo inspiratory muscle function in chronic thromboembolic pulmonary hypertension (CTEPH) patients. To assess diaphragm muscle contractility, function was studied in vivo by maximum inspiratory pressure (MIP) and ex vivo in diaphragm biopsies of the same CTEPH patients (N = 13) obtained during pulmonary endarterectomy. Patients undergoing elective lung surgery served as controls (N = 15). Muscle fiber cross-sectional area (CSA) was determined in cryosections and contractility in permeabilized muscle fibers. Diaphragm muscle fiber CSA was not significantly different between control and CTEPH patients in both slow-twitch and fast-twitch fibers. Maximal force-generating capacity was significantly lower in slow-twitch muscle fibers of CTEPH patients, whereas no difference was observed in fast-twitch muscle fibers. The maximal force of diaphragm muscle fibers correlated significantly with MIP. The calcium sensitivity of force generation was significantly reduced in fast-twitch muscle fibers of CTEPH patients, resulting in a ∼40% reduction of submaximal force generation. The fast skeletal troponin activator CK-2066260 (5 μM) restored submaximal force generation to levels exceeding those observed in control subjects. In conclusion, diaphragm muscle fiber contractility is hampered in CTEPH patients and contributes to the reduced function of the inspiratory muscles in CTEPH patients. PMID:27190061
Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen
2011-01-01
Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234
49 CFR 572.181 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... assembly Drawing number Head Assembly 175-1000 Neck Assembly Test/Cert 175-2000 Neck Bracket Including..., dated February 2008. (c) Weights of body segments (head, neck, upper and lower torso, arms and upper and... the convenience of the user, the added and revised text is set forth as follows: § 572.181 General...
Allometric associations between body size, shape, and 100-m butterfly speed performance.
Sammoud, Senda; Nevill, Alan M; Negra, Yassine; Bouguezzi, Raja; Chaabene, Helmi; Hachana, Younés
2018-05-01
This study aimed to estimate the optimal body size, limb-segment length, and girth or breadth ratios associated with 100-m butterfly speed performance in swimmers. One-hundred-sixty-seven swimmers as subjects (male: N.=103; female: N.=64). Anthropometric measurements comprised height, body-mass, skinfolds, arm-span, upper-limb-length, upper-arm, forearm, hand-lengths, lower-limb-length, thigh-length, leg-length, foot-length, arm-relaxed-girth, forearm-girth, wrist-girth, thigh-girth, calf-girth, ankle-girth, biacromial and biiliocristal-breadths. To estimate the optimal body size and body composition components associated with 100-m butterfly speed performance, we adopted a multiplicative allometric log-linear regression model, which was refined using backward elimination. Fat-mass was the singularly most important whole-body characteristic. Height and body-mass did not contribute to the model. The allometric model identified that having greater limb segment length-ratio (arm-ratio = [arm-span]/[forearm]) and limb girth-ratio (girth-ratio = [calf-girth]/[ankle-girth]) were key to butterfly speed performance. A greater arm-span to forearm-length ratio and a greater calf to ankle-girth-ratio suggest that a combination of larger arm-span and shorter forearm-length and the combination of larger calves and smaller ankles-girth may benefit butterfly swim speed performance. In addition having greater biacromial and biliocristal breadths is also a major advantage in butterfly swimming speed performance. Finally, the estimation of these ratios was made possible by adopting a multiplicative allometric model that was able to confirm, theoretically, that swim speeds are nearly independent of total body size. The 100-m butterfly speed performance was strongly negatively associated with fat mass and positively associated with the segment length ratio (arm-span/forearm-length) and girth ratio (calf-girth)/(ankle-girth), having controlled for the developmental changes in age.
Erdogan, Okan
2007-01-01
The present case report describes a patient who underwent successful dual-chamber pacemaker implantation with active ventricular lead fixation at a high septal region in the right ventricular outflow tract. Unexpectedly, stimulation at a high output in the right ventricular outflow tract caused an unusual extracardiac stimulation, specifically, intercostal muscle twitching. PMID:17703261
ERIC Educational Resources Information Center
Head, S. I.; Arber, M. B.
2013-01-01
The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…
NASA Technical Reports Server (NTRS)
Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.
1984-01-01
Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.
NASA Astrophysics Data System (ADS)
Brill-Karniely, Yifat; Jin, Fan; Wong, Gerard C. L.; Frenkel, Daan; Dobnikar, Jure
2017-04-01
Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.
Ochi, Kento; Kamiura, Moto
2015-09-01
A multi-armed bandit problem is a search problem on which a learning agent must select the optimal arm among multiple slot machines generating random rewards. UCB algorithm is one of the most popular methods to solve multi-armed bandit problems. It achieves logarithmic regret performance by coordinating balance between exploration and exploitation. Since UCB algorithms, researchers have empirically known that optimistic value functions exhibit good performance in multi-armed bandit problems. The terms optimistic or optimism might suggest that the value function is sufficiently larger than the sample mean of rewards. The first definition of UCB algorithm is focused on the optimization of regret, and it is not directly based on the optimism of a value function. We need to think the reason why the optimism derives good performance in multi-armed bandit problems. In the present article, we propose a new method, which is called Overtaking method, to solve multi-armed bandit problems. The value function of the proposed method is defined as an upper bound of a confidence interval with respect to an estimator of expected value of reward: the value function asymptotically approaches to the expected value of reward from the upper bound. If the value function is larger than the expected value under the asymptote, then the learning agent is almost sure to be able to obtain the optimal arm. This structure is called sand-sifter mechanism, which has no regrowth of value function of suboptimal arms. It means that the learning agent can play only the current best arm in each time step. Consequently the proposed method achieves high accuracy rate and low regret and some value functions of it can outperform UCB algorithms. This study suggests the advantage of optimism of agents in uncertain environment by one of the simplest frameworks. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
The effects of below-elbow immobilization on driving performance.
Jones, Evan M; Barrow, Aaron E; Skordas, Nic J; Green, David P; Cho, Mickey S
2017-02-01
There is limited research to guide physicians and patients in deciding whether it is safe to drive while wearing various forms of upper extremity immobilization. The purpose of this study is to evaluate the effect of below-elbow removable splints and fiberglass casts on automobile driving performance. 20 healthy subjects completed 10 runs through a closed, cone-marked driving course while wearing a randomized sequence of four different types of immobilization on each extremity (short arm thumb spica fiberglass cast, short arm fiberglass cast, short arm thumb spica splint, and short arm wrist splint). The first and last driving runs were without immobilization and served as controls. Performance was measured based on evaluation by a certified driving instructor (pass/fail scoring), cones hit, run time, and subject-perceived driving difficulty (1-10 analogue scoring). The greatest number of instructor-scored failures occurred while immobilized in right arm spica casts (n=6; p=0.02) and left arm spica casts (n=5; p=0.049). The right arm spica cast had the highest subject-perceived difficulty (5.2±1.9; p<0.001). All forms of immobilization had significantly increased perceived difficulty compared to control, except for the left short arm splint (2.5±1.6; p>0.05). There was no significant difference in number of cones hit or driving time between control runs and runs with any type of immobilization. Drivers should use caution when wearing any of the forms of upper extremity immobilization tested in this study. All forms of immobilization, with exception of the left short arm splint significantly increased perceived driving difficulty. However, only the fiberglass spica casts (both left and right arm), significantly increased drive run failures due to loss of vehicle control. We recommend against driving when wearing a below-elbow fiberglass spica cast on either extremity. Copyright © 2016. Published by Elsevier Ltd.
Legaye, Jean; Duval-Beaupere, Ginette
2017-11-01
To evaluate the influence of the position of the arms on the location of the body's gravity line. The sagittal balance of the pelvi-spinal unit is organized so that the gravity line is localized in a way that limits the mechanical loads and the muscle efforts. This position of the gravity line was analyzed in vivo, in standing position, the arms dangling, by the barycentremeter, a gamma rays scanner. Then, several teams had the same purpose but using a force platform combined with radiographies. Their results differed significantly among themselves and with the data of the barycentremetry. However, in these studies, the positions of the arms varied noticeably, either slightly bent forwards on a support, or the fingers on the clavicles or on the cheeks. We estimated, for each varied posture of the arms, the sagittal coordinates of the masses of the upper limbs and their influence on the anatomical position of the gravity line of the whole body. Using a simple equation and the data of the barycentremeter, we observed that the variations in the location of the gravity line were proportionally connected to the changes of the sagittal position of the mass of the upper limbs induced by the various positions of the arms. We conclude in a validation of the data of the barycentremeter, as well as of the data obtained by the force platforms as long as the artifact of the position of the arms is taken into account.
Fife, Caroline E; Davey, Suzanne; Maus, Erik A; Guilliod, Renie; Mayrovitz, Harvey N
2012-12-01
Pneumatic compression devices (PCDs) are used in the home setting as adjunctive treatment for lymphedema after acute treatment in a clinical setting. PCDs range in complexity from simple to technologically advanced. The objective of this prospective, randomized study was to determine whether an advanced PCD (APCD) provides better outcomes as measured by arm edema and tissue water reductions compared to a standard PCD (SPCD) in patients with arm lymphedema after breast cancer treatment. Subjects were randomized to an APCD (Flexitouch system, HCPCS E0652) or SPCD (Bio Compression 2004, HCPCS E0651) used for home treatment 1 h/day for 12 weeks. Pressure settings were 30 mmHg for the SPCD and upper extremity treatment program (UE01) with standard pressure for the APCD. Thirty-six subjects (18 per group) with unilateral upper extremity lymphedema with at least 5% arm edema volume at the time of enrollment, completed treatments over the 12-week period. Arm volumes were determined from arm girth measurements and suitable model calculations, and tissue water was determined based on measurements of the arm tissue dielectric constant (TDC). The APCD-treated group experienced an average of 29% reduction in edema compared to a 16% increase in the SPCD group. Mean changes in TDC values were a 5.8% reduction for the APCD group and a 1.9% increase for the SPCD group. This study suggests that for the home maintenance phase of treatment of arm lymphedema secondary to breast cancer therapy, the adjuvant treatment with an APCD provides better outcomes than with a SPCD.
Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types
NASA Technical Reports Server (NTRS)
Riley, Danny A.; Bain, James L. W.; Ellis, Stanley
1988-01-01
The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.
Robitaille, Arnaud; Perron, Roger; Germain, Jean-François; Tanoubi, Issam; Georgescu, Mihai
2015-04-01
Transcutaneous cardiac pacing (TCP) is a potentially lifesaving technique that is part of the recommended treatment for symptomatic bradycardia. Transcutaneous cardiac pacing however is used uncommonly, and its successful application is not straightforward. Simulation could, therefore, play an important role in the teaching and assessment of TCP competence. However, even the highest-fidelity mannequins available on the market have important shortcomings, which limit the potential of simulation. Six criteria defining clinical competency in TCP were established and used as a starting point in the creation of an improved TCP simulator. The goal was a model that could be used to assess experienced clinicians, an objective that justifies the additional effort required by the increased fidelity. The proposed 2-mannequin model (TMM) combines a highly modified Human Patient Simulator with a SimMan 3G, the latter being used solely to provide the electrocardiography (ECG) tracing. The TMM improves the potential of simulation to assess experienced clinicians (1) by reproducing key features of TCP, like using the same multifunctional pacing electrodes used clinically, allowing dual ECG monitoring, and responding with upper body twitching when stimulated, but equally importantly (2) by reproducing key pitfalls of the technique, like allowing pacing electrode misplacement and reproducing false signs of ventricular capture, commonly, but erroneously, used clinically to establish that effective pacing has been achieved (like body twitching, electrical artifact on the ECG, and electrical capture without ventricular capture). The proposed TMM uses a novel combination of 2 high-fidelity mannequins to improve TCP simulation until upgraded mannequins become commercially available.
Schuster-Amft, Corina; Henneke, Andrea; Hartog-Keisker, Birgit; Holper, Lisa; Siekierka, Ewa; Chevrier, Edith; Pyk, Pawel; Kollias, Spyros; Kiper, Daniel; Eng, Kynan
2015-01-01
To evaluate feasibility and neurophysiological changes after virtual reality (VR)-based training of upper limb (UL) movements. Single-case A-B-A-design with two male stroke patients (P1:67 y and 50 y, 3.5 and 3 y after onset) with UL motor impairments, 45-min therapy sessions 5×/week over 4 weeks. Patients facing screen, used bimanual data gloves to control virtual arms. Three applications trained bimanual reaching, grasping, hand opening. Assessments during 2-week baseline, weekly during intervention, at 3-month follow-up (FU): Goal Attainment Scale (GAS), Chedoke Arm and Hand Activity Inventory (CAHAI), Chedoke-McMaster Stroke Assessment (CMSA), Extended Barthel Index (EBI), Motor Activity Log (MAL). Functional magnetic resonance imaging scans (FMRI) before, immediately after treatment and at FU. P1 executed 5478 grasps (paretic arm). Improvements in CAHAI (+4) were maintained at FU. GAS changed to +1 post-test and +2 at FU. P2 executed 9835 grasps (paretic arm). CAHAI improvements (+13) were maintained at FU. GAS scores changed to -1 post-test and +1 at FU. MAL scores changed from 3.7 at pre-test to 5.5 post-test and 3.3 at FU. The VR-based intervention was feasible, safe, and intense. Adjustable application settings maintained training challenge and patient motivation. ADL-relevant UL functional improvements persisted at FU and were related to changed cortical activation patterns. Implications for Rehabilitation YouGrabber trains uni- and bimanual upper motor function. Its application is feasible, safe, and intense. The control of the virtual arms can be done in three main ways: (a) normal (b) virtual mirror therapy, or (c) virtual following. The mirroring feature provides an illusion of affected limb movements during the period when the affected upper limb (UL) is resting. The YouGrabber training led to ADL-relevant UL functional improvements that were still assessable 12 weeks after intervention finalization and were related to changed cortical activation patterns.
Waheed, Waqar; Nathan, Muriel H; Allen, Gilman B; Borden, Neil M; Babi, M Ali; Tandan, Rup
2015-11-03
A 37-year-old man with a known history of neurofibromatosis 1 (NF1) presented within 2 days of diarrhoeal illness followed by encephalopathy, facial twitching, hypoglycaemia, hypotension, tachycardia and low-grade fever. Examination showed multiple café-au-lait spots and neurofibromas over the trunk, arms and legs and receptive aphasia with right homonymous hemianopia, which resolved. Workup for cardiac, inflammatory and infectious aetiologies was unrevealing. A brain MRI showed gyral swelling with increased T2 fluid-attenuated inversion recovery signal and diffusion restriction in the left cerebral cortex. Neuroendocrine findings suggested panhypopituitarism with centrally derived adrenal insufficiency. Supportive treatment, hormone supplementation, antibiotics, antivirals and levetiracetam yielded clinical improvement. A follow-up brain MRI showed focal left parieto-occipital atrophy with findings of cortical laminar necrosis. In conclusion, we describe a case of NF1-associated panhypopituitarism presenting as hypoglycaemic seizures and stroke-like findings, hitherto unreported manifestations of NF1. Prompt recognition and treatment of these associated conditions can prevent devastating complications. 2015 BMJ Publishing Group Ltd.
Waheed, Waqar; Nathan, Muriel H; Allen, Gilman B; Borden, Neil M; Babi, M Ali; Tandan, Rup
2015-01-01
A 37-year-old man with a known history of neurofibromatosis 1 (NF1) presented within 2 days of diarrhoeal illness followed by encephalopathy, facial twitching, hypoglycaemia, hypotension, tachycardia and low-grade fever. Examination showed multiple café-au-lait spots and neurofibromas over the trunk, arms and legs and receptive aphasia with right homonymous hemianopia, which resolved. Workup for cardiac, inflammatory and infectious aetiologies was unrevealing. A brain MRI showed gyral swelling with increased T2 fluid-attenuated inversion recovery signal and diffusion restriction in the left cerebral cortex. Neuroendocrine findings suggested panhypopituitarism with centrally derived adrenal insufficiency. Supportive treatment, hormone supplementation, antibiotics, antivirals and levetiracetam yielded clinical improvement. A follow-up brain MRI showed focal left parieto-occipital atrophy with findings of cortical laminar necrosis. In conclusion, we describe a case of NF1-associated panhypopituitarism presenting as hypoglycaemic seizures and stroke-like findings, hitherto unreported manifestations of NF1. Prompt recognition and treatment of these associated conditions can prevent devastating complications. PMID:26531733
Cardiac troponin T and fast skeletal muscle denervation in ageing.
Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan
2017-10-01
Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast-twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age-related decline in muscle function. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
NASA Technical Reports Server (NTRS)
Massie, B. M.; Simonini, A.; Sahgal, P.; Wells, L.; Dudley, G. A.
1996-01-01
OBJECTIVES. The present study was undertaken to further characterize changes in skeletal muscle morphology and histochemistry in congestive heart failure and to determine the relation of these changes to abnormalities of systemic and local muscle exercise capacity. BACKGROUND. Abnormalities of skeletal muscle appear to play a role in the limitation of exercise capacity in congestive heart failure, but information on the changes in muscle morphology and biochemistry and their relation to alterations in muscle function is limited. METHODS. Eighteen men with predominantly mild to moderate congestive heart failure (mean +/- SEM New York Heart Association functional class 2.6 +/- 0.2, ejection fraction 24 +/- 2%) and eight age- and gender-matched sedentary control subjects underwent measurements of peak systemic oxygen consumption (VO2) during cycle ergometry, resistance to fatigue of the quadriceps femoris muscle group and biopsy of the vastus lateralis muscle. RESULTS. Peak VO2 and resistance to fatigue were lower in the patients with heart failure than in control subjects (15.7 +/- 1.2 vs. 25.1 +/- 1.5 ml/min-kg and 63 +/- 2% vs. 85 +/- 3%, respectively, both p < 0.001). Patients had a lower proportion of slow twitch, type I fibers than did control subjects (36 +/- 3% vs. 46 +/- 5%, p = 0.048) and a higher proportion of fast twitch, type IIab fibers (18 +/- 3% vs. 7 +/- 2%, p = 0.004). Fiber cross-sectional area was smaller, and single-fiber succinate dehydrogenase activity, a mitochondrial oxidative marker, was lower in patients (both p < or = 0.034). Likewise, the ratio of average fast twitch to slow twitch fiber cross-sectional area was lower in patients (0.780 +/- 0.06 vs. 1.05 +/- 0.08, p = 0.019). Peak VO2 was strongly related to integrated succinate dehydrogenase activity in patients (r = 0.896, p = 0.001). Peak VO2, resistance to fatigue and strength also correlated significantly with several measures of fiber size, especially of fast twitch fibers, in patients. None of the skeletal muscle characteristics examined correlated with exercise capacity in control subjects. CONCLUSIONS. These results indicate that congestive heart failure is associated with changes in the characteristics of skeletal muscle and local as well as systemic exercise performance. There are fewer slow twitch fibers, smaller fast twitch fibers and lower succinate dehydrogenase activity. The latter finding suggests that mitochondrial content of muscle is reduced in heart failure and that impaired aerobic-oxidative capacity may play a role in the limitation of systemic exercise capacity.
Al-Halimi, Reem K; Moussa, Medhat
2017-06-01
In this paper, we report on the results of a study that was conducted to examine how users suffering from severe upper-extremity disabilities can control a 6 degrees-of-freedom (DOF) robotics arm to complete complex activities of daily living. The focus of the study is not on assessing the robot arm but on examining the human-robot interaction patterns. Three participants were recruited. Each participant was asked to perform three tasks: eating three pieces of pre-cut bread from a plate, drinking three sips of soup from a bowl, and opening a right-handed door with lever handle. Each of these tasks was repeated three times. The arm was mounted on the participant's wheelchair, and the participants were free to move the arm as they wish to complete these tasks. Each task consisted of a sequence of modes where a mode is defined as arm movement in one DOF. Results show that participants used a total of 938 mode movements with an average of 75.5 (std 10.2) modes for the eating task, 70 (std 8.8) modes for the soup task, and 18.7 (std 4.5) modes for the door opening task. Tasks were then segmented into smaller subtasks. It was found that there are patterns of usage per participant and per subtask. These patterns can potentially allow a robot to learn from user's demonstration what is the task being executed and by whom and respond accordingly to reduce user effort.
Workplace management of upper limb disorders: a systematic review.
Dick, F D; Graveling, R A; Munro, W; Walker-Bone, K
2011-01-01
Upper limb pain is common among working-aged adults and a frequent cause of absenteeism. To systematically review the evidence for workplace interventions in four common upper limb disorders. Systematic review of English articles using Medline, Embase, Cinahl, AMED, Physiotherapy Evidence Database PEDro (carpal tunnel syndrome and non-specific arm pain only) and Cochrane Library. Study inclusion criteria were randomized controlled trials, cohort studies or systematic reviews employing any workplace intervention for workers with carpal tunnel syndrome, non-specific arm pain, extensor tenosynovitis or lateral epicondylitis. Papers were selected by a single reviewer and appraised by two reviewers independently using methods based on Scottish Intercollegiate Guidelines Network (SIGN) methodology. 1532 abstracts were identified, 28 papers critically appraised and four papers met the minimum quality standard (SIGN grading + or ++) for inclusion. There was limited evidence that computer keyboards with altered force displacement characteristics or altered geometry were effective in reducing carpal tunnel syndrome symptoms. There was limited, but high quality, evidence that multi-disciplinary rehabilitation for non-specific musculoskeletal arm pain was beneficial for those workers absent from work for at least four weeks. In adults with tenosynovitis there was limited evidence that modified computer keyboards were effective in reducing symptoms. There was a lack of high quality evidence to inform workplace management of lateral epicondylitis. Further research is needed focusing on occupational management of upper limb disorders. Where evidence exists, workplace outcomes (e.g. successful return to pre-morbid employment; lost working days) are rarely addressed.
Muscle Contractile Properties in Severely Burned Rats
2010-01-01
slow - twitch muscles such as sloeus (data not shown). In rats, the TA contains predominantly fast ...Hasselgren PO. The molecular regulation of protein breakdown following burn injury is different in fast - and slow - twitch skeletal muscle . Int J Mol Med 1998;1...burn model, it was reported that only fast muscle fibers are affected and slow muscle fibers were mostly preserved [30–32]. We found similar results
NASA Technical Reports Server (NTRS)
Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.
1994-01-01
Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate growth of hindlimb bones in the absence of mechanical load.
[Upper extremities, neck and back symptoms in office employees working at computer stations].
Zejda, Jan E; Bugajska, Joanna; Kowalska, Małgorzata; Krzych, Lukasz; Mieszkowska, Marzena; Brozek, Grzegorz; Braczkowska, Bogumiła
2009-01-01
To obtain current data on the occurrence ofwork-related symptoms of office computer users in Poland we implemented a questionnaire survey. Its goal was to assess the prevalence and intensity of symptoms of upper extremities, neck and back in office workers who use computers on a regular basis, and to find out if the occurrence of symptoms depends on the duration of computer use and other work-related factors. Office workers in two towns (Warszawa and Katowice), employed in large social services companies, were invited to fill in the Polish version of Nordic Questionnaire. The questions included work history and history of last-week symptoms of pain of hand/wrist, elbow, arm, neck and upper and lower back (occurrence and intensity measured by visual scale). Altogether 477 men and women returned the completed questionnaires. Between-group symptom differences (chi-square test) were verified by multivariate analysis (GLM). The prevalence of symptoms in individual body parts was as follows: neck, 55.6%; arm, 26.9%; elbow, 13.3%; wrist/hand, 29.9%; upper back, 49.6%; and lower back, 50.1%. Multivariate analysis confirmed the effect of gender, age and years of computer use on the occurrence of symptoms. Among other determinants, forearm support explained pain of wrist/hand, wrist support of elbow pain, and chair adjustment of arm pain. Association was also found between low back pain and chair adjustment and keyboard position. The findings revealed frequent occurrence of symptoms of pain in upper extremities and neck in office workers who use computers on a regular basis. Seating position could also contribute to the frequent occurrence of back pain in the examined population.
Advances in upper extremity prosthetics.
Zlotolow, Dan A; Kozin, Scott H
2012-11-01
Until recently, upper extremity prostheses had changed little since World War II. In 2006, the Defense Advanced Research Projects Agency responded to an increasing number of military amputees with the Revolutionizing Prosthetics program. The program has yielded several breakthroughs both in the engineering of new prosthetic arms and in the control of those arms. Direct brain-wave control of a limb with 22° of freedom may be within reach. In the meantime, advances such as individually powered digits have opened the door to multifunctional full and partial hand prostheses. Restoring sensation to the prosthetic limb remains a major challenge to full integration of the limb into a patient's self-image. Copyright © 2012 Elsevier Inc. All rights reserved.
Multibody system of the upper limb including a reverse shoulder prosthesis.
Quental, C; Folgado, J; Ambrósio, J; Monteiro, J
2013-11-01
The reverse shoulder replacement, recommended for the treatment of several shoulder pathologies such as cuff tear arthropathy and fractures in elderly people, changes the biomechanics of the shoulder when compared to the normal anatomy. Although several musculoskeletal models of the upper limb have been presented to study the shoulder joint, only a few of them focus on the biomechanics of the reverse shoulder. This work presents a biomechanical model of the upper limb, including a reverse shoulder prosthesis, to evaluate the impact of the variation of the joint geometry and position on the biomechanical function of the shoulder. The biomechanical model of the reverse shoulder is based on a musculoskeletal model of the upper limb, which is modified to account for the properties of the DELTA® reverse prosthesis. Considering two biomechanical models, which simulate the anatomical and reverse shoulder joints, the changes in muscle lengths, muscle moment arms, and muscle and joint reaction forces are evaluated. The muscle force sharing problem is solved for motions of unloaded abduction in the coronal plane and unloaded anterior flexion in the sagittal plane, acquired using video-imaging, through the minimization of an objective function related to muscle metabolic energy consumption. After the replacement of the shoulder joint, significant changes in the length of the pectoralis major, latissimus dorsi, deltoid, teres major, teres minor, coracobrachialis, and biceps brachii muscles are observed for a reference position considered for the upper limb. The shortening of the teres major and teres minor is the most critical since they become unable to produce active force in this position. Substantial changes of muscle moment arms are also observed, which are consistent with the literature. As expected, there is a significant increase of the deltoid moment arms and more fibers are able to elevate the arm. The solutions to the muscle force sharing problem support the biomechanical advantages attributed to the reverse shoulder design and show an increase in activity from the deltoid, teres minor, and coracobrachialis muscles. The glenohumeral joint reaction forces estimated for the reverse shoulder are up to 15% lower than those in the normal shoulder anatomy. The data presented here complements previous publications, which, all together, allow researchers to build a biomechanical model of the upper limb including a reverse shoulder prosthesis.
Sivan, Manoj; Gallagher, Justin; Makower, Sophie; Keeling, David; Bhakta, Bipin; O'Connor, Rory J; Levesley, Martin
2014-12-12
Home-based robotic technologies may offer the possibility of self-directed upper limb exercise after stroke as a means of increasing the intensity of rehabilitation treatment. The current literature has a paucity of robotic devices that have been tested in a home environment. The aim of this research project was to evaluate a robotic device Home-based Computer Assisted Arm Rehabilitation (hCAAR) that can be used independently at home by stroke survivors with upper limb weakness. hCAAR device comprises of a joystick handle moved by the weak upper limb to perform tasks on the computer screen. The device provides assistance to the movements depending on users ability. Nineteen participants (stroke survivors with upper limb weakness) were recruited. Outcome measures performed at baseline (A0), at end of 8-weeks of hCAAR use (A1) and 1 month after end of hCAAR use (A2) were: Optotrak kinematic variables, Fugl Meyer Upper Extremity motor subscale (FM-UE), Action Research Arm Test (ARAT), Medical Research Council (MRC) and Modified Ashworth Scale (MAS), Chedoke Arm and Hand Activity Inventory (CAHAI) and ABILHAND. Two participants were unable to use hCAAR: one due to severe paresis and the other due to personal problems. The remaining 17 participants were able to use the device independently in their home setting. No serious adverse events were reported. The median usage time was 433 minutes (IQR 250 - 791 min). A statistically significant improvement was observed in the kinematic and clinical outcomes at A1. The median gain in the scores at A1 were by: movement time 19%, path length 15% and jerk 19%, FM-UE 1 point, total MAS 1.5 point, total MRC 2 points, ARAT 3 points, CAHAI 5.5 points and ABILHAND 3 points. Three participants showed clinically significant improvement in all the clinical outcomes. The hCAAR feasibility study is the first clinical study of its kind reported in the current literature; in this study, 17 participants used the robotic device independently for eight weeks in their own homes with minimal supervision from healthcare professionals. Statistically significant improvements were observed in the kinematic and clinical outcomes in the study.
2011-01-01
Background Recovery patterns of upper extremity motor function have been described in several longitudinal studies, but most of these studies have had selected samples, short follow up times or insufficient outcomes on motor function. The general understanding is that improvements in upper extremity occur mainly during the first month after the stroke incident and little if any, significant recovery can be gained after 3-6 months. The purpose of this study is to describe the recovery of upper extremity function longitudinally in a non-selected sample initially admitted to a stroke unit with first ever stroke, living in Gothenburg urban area. Methods/Design A sample of 120 participants with a first-ever stroke and impaired upper extremity function will be consecutively included from an acute stroke unit and followed longitudinally for one year. Assessments are performed at eight occasions: at day 3 and 10, week 3, 4 and 6, month 3, 6 and 12 after onset of stroke. The primary clinical outcome measures are Action Research Arm Test and Fugl-Meyer Assessment for Upper Extremity. As additional measures, two new computer based objective methods with kinematic analysis of arm movements are used. The ABILHAND questionnaire of manual ability, Stroke Impact Scale, grip strength, spasticity, pain, passive range of motion and cognitive function will be assessed as well. At one year follow up, two patient reported outcomes, Impact on Participation and Autonomy and EuroQol Quality of Life Scale, will be added to cover the status of participation and aspects of health related quality of life. Discussion This study comprises a non-selected population with first ever stroke and impaired arm function. Measurements are performed both using traditional clinical assessments as well as computer based measurement systems providing objective kinematic data. The ICF classification of functioning, disability and health is used as framework for the selection of assessment measures. The study design with several repeated measurements on motor function will give us more confident information about the recovery patterns after stroke. This knowledge is essential both for optimizing rehabilitation planning as well as providing important information to the patient about the recovery perspectives. Trial registration ClinicalTrials.gov: NCT01115348 PMID:21612620
49 CFR 572.196 - Thorax without arm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in paragraphs (b)(3) and (4) of this...
49 CFR 572.195 - Thorax with arm.
Code of Federal Regulations, 2010 CFR
2010-10-01
... dummy is in vertical orientation. (4) Push the dummy at the knees and at mid-sternum of the upper torso with just sufficient horizontally oriented force towards the seat back until the back of the upper torso is in contact with the seat back. (5) While maintaining the dummy's position as specified in...
Quantification of human upper extremity nerves and fascicular anatomy.
Brill, Natalie A; Tyler, Dustin J
2017-09-01
In this study we provide detailed quantification of upper extremity nerve and fascicular anatomy. The purpose is to provide values and trends in neural features useful for clinical applications and neural interface device design. Nerve cross-sections were taken from 4 ulnar, 4 median, and 3 radial nerves from 5 arms of 3 human cadavers. Quantified nerve features included cross-sectional area, minor diameter, and major diameter. Fascicular features analyzed included count, perimeter, area, and position. Mean fascicular diameters were 0.57 ± 0.39, 0.6 ± 0.3, 0.5 ± 0.26 mm in the upper arm and 0.38 ± 0.18, 0.47 ± 0.18, 0.4 ± 0.27 mm in the forearm of ulnar, median, and radial nerves, respectively. Mean fascicular diameters were inversely proportional to fascicle count. Detailed quantitative anatomy of upper extremity nerves is a resource for design of neural electrodes, guidance in extraneural procedures, and improved neurosurgical planning. Muscle Nerve 56: 463-471, 2017. © 2016 Wiley Periodicals, Inc.
Preliminary research of a novel center-driven robot for upper extremity rehabilitation.
Cao, Wujing; Zhang, Fei; Yu, Hongliu; Hu, Bingshan; Meng, Qiaoling
2018-01-19
Loss of upper limb function often appears after stroke. Robot-assisted systems are becoming increasingly common in upper extremity rehabilitation. Rehabilitation robot provides intensive motor therapy, which can be performed in a repetitive, accurate and controllable manner. This study aims to propose a novel center-driven robot for upper extremity rehabilitation. A new power transmission mechanism is designed to transfer the power to elbow and shoulder joints from three motors located on the base. The forward and inverse kinematics equations of the center-driven robot (CENTROBOT) are deduced separately. The theoretical values of the scope of joint movements are obtained with the Denavit-Hartenberg parameters method. A prototype of the CENTROBOT is developed and tested. The elbow flexion/extension, shoulder flexion/extension and shoulder adduction/abduction can be realized of the center-driven robot. The angles value of joints are in conformity with the theoretical value. The CENTROBOT reduces the overall size of the robot arm, the influence of motor noise, radiation and other adverse factors by setting all motors on the base. It can satisfy the requirements of power and movement transmission of the robot arm.
Borgeat, A; Ekatodramis, G; Guzzella, S; Ruland, P; Votta-Velis, G; Aguirre, J
2012-12-01
The influence of the muscular response elicited by neurostimulation on the success rate of interscalene block using a catheter (ISC) is unknown. In this investigation, we compared the success rate of ISC placement as indicated by biceps or deltoid, triceps, or both twitches. Three hundred (ASA I-II) patients presenting for elective arthroscopic rotator cuff repair were prospectively randomized to assessment by biceps (Group B) or deltoid, triceps, or both twitches (Group DT). All ISCs were placed with the aid of neurostimulation. The tip of the stimulating needle was placed after disappearance of either biceps or deltoid, triceps, or both twitches at 0.3 mA. The catheter was advanced 2-3 cm past the tip of the needle and the block was performed using 40 ml ropivacaine 0.5%. Successful block was defined as sensory block of the supraclavicular nerve and sensory and motor block involving the axillary, radial, median, and musculocutaneous nerves within 30 min. Success rate was 98.6% in Group DT compared with 92.5% in Group B (95% confidence interval 0.01-0.11; P<0.02). Supplemental analgesics during handling of the posterior part of the shoulder capsule were needed in two patients in Group DT and seven patients in Group B. Three patients in Group B had an incomplete radial nerve distribution anaesthesia necessitating general anaesthesia. One patient in Group B had an incomplete posterior block extension of the supraclavicular nerve. No acute or late complications were observed. Eliciting deltoid, triceps, or both twitches was associated with a higher success rate compared with eliciting biceps twitches during continuous interscalene block.
Rowan, Sharon L; Purves-Smith, Fennigje M; Solbak, Nathan M; Hepple, Russell T
2011-08-01
The age-related decline in muscle mass, known as sarcopenia, exhibits a marked acceleration in advanced age. Although many studies have remarked upon the accumulation of very small myofibers, particularly at advanced stages of sarcopenia, the significance of this phenomenon in the acceleration of sarcopenia has never been examined. Furthermore, although mitochondrial dysfunction characterized by a lack of cytochrome oxidase (COX) activity has been implicated in myofiber atrophy in sarcopenia, the contribution of this phenotype to the accumulation of severely atrophied fibers in aged muscles has never been determined. To this end, we examined the fiber size distribution in the slow twitch soleus (Sol) and fast twitch gastrocnemius (Gas) muscles between young adulthood (YA) and senescence (SEN). We also quantified the abundance of COX deficient myocytes and their size attributes to gain insight into the contribution of this phenotype to myofiber atrophy with aging. Our data showed that the progression of muscle atrophy, particularly its striking acceleration between late middle age and SEN, was paralleled by an accumulation of severely atrophic myofibers (≤ 1000 μm(2) in size) in both Sol and Gas. On the other hand, we observed no COX deficient myofibers in Sol, despite nearly 20% of the myofibers being severely atrophic. Similarly, only 0.17 ± 0.06% of all fibers in Gas were COX deficient, and their size was generally larger (2375 ± 319 μm(2)) than the severely atrophied myofibers noted above. Collectively, our results suggest that similar processes likely contribute to the acceleration of sarcopenia in both slow twitch and fast twitch muscles, and that COX deficiency is not a major contributor to this phenomenon. Copyright © 2011 Elsevier Inc. All rights reserved.
Marsili, Alessandro; Ramadan, Waile; Harney, John W; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J Enrique; Larsen, P Reed
2010-12-01
Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T(3) in skeletal muscle physiology than previously assumed.
Marsili, Alessandro; Ramadan, Waile; Harney, John W.; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A.; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J. Enrique; Larsen, P. Reed
2010-01-01
Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T4 to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P < 0.001). These levels are greater than those previously reported. Hypothyroidism caused a 40% (P < 0.01) and 300% (P < 0.001) increase in D2 activity after 4 and 8 wk treatment with antithyroid drugs, respectively, with no changes in D2 mRNA. Neither D2 mRNA nor activity increased after an overnight 4 C exposure despite a 10-fold increase in D2 activity in brown adipose tissue in the same mice. The magnitude of the activity, the fiber specificity, and the robust posttranslational response to hypothyroidism argue for a more important role for D2-generated T3 in skeletal muscle physiology than previously assumed. PMID:20881246
Single muscle fiber adaptations with marathon training.
Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David
2006-09-01
The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P < 0.05) with the training program. Muscle fiber size declined (P < 0.05) by approximately 20% in both fiber types after training. P(o) was maintained in both fiber types with training and increased (P < 0.05) by 18% in the MHC IIa fibers after taper. This resulted in >60% increase (P < 0.05) in force per cross-sectional area in both fiber types. Fiber V(o) increased (P < 0.05) by 28% in MHC I fibers with training and was unchanged in MHC IIa fibers. Peak power increased (P < 0.05) in MHC I and IIa fibers after training with a further increase (P < 0.05) in MHC IIa fiber power after taper. These data show that marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.
Measuring up: A Simple Lesson That Engages Students in Scientific Practices and Mathematics
ERIC Educational Resources Information Center
Capps, Daniel
2012-01-01
A well-known lesson taught by many upper-elementary and early-middle-school teachers at the beginning of the school year asks students to compare how arm span relates to height. Students measure their height and arm span and compare their measurements to those of their classmates. This lesson gets students measuring, graphing, and practicing…
Ren, Yupeng; Kang, Sang Hoon; Park, Hyung-Soon; Wu, Yi-Ning; Zhang, Li-Qun
2013-05-01
Arm impairments in patients post stroke involve the shoulder, elbow and wrist simultaneously. It is not very clear how patients develop spasticity and reduced range of motion (ROM) at the multiple joints and the abnormal couplings among the multiple joints and the multiple degrees-of-freedom (DOF) during passive movement. It is also not clear how they lose independent control of individual joints/DOFs and coordination among the joints/DOFs during voluntary movement. An upper limb exoskeleton robot, the IntelliArm, which can control the shoulder, elbow, and wrist, was developed, aiming to support clinicians and patients with the following integrated capabilities: 1) quantitative, objective, and comprehensive multi-joint neuromechanical pre-evaluation capabilities aiding multi-joint/DOF diagnosis for individual patients; 2) strenuous and safe passive stretching of hypertonic/deformed arm for loosening up muscles/joints based on the robot-aided diagnosis; 3) (assistive/resistive) active reaching training after passive stretching for regaining/improving motor control ability; and 4) quantitative, objective, and comprehensive neuromechanical outcome evaluation at the level of individual joints/DOFs, multiple joints, and whole arm. Feasibility of the integrated capabilities was demonstrated through experiments with stroke survivors and healthy subjects.
Hesse, S; Werner, C; Pohl, M; Mehrholz, J; Puzich, U; Krebs, H I
2008-10-01
To test whether training with a new mechanical arm trainer leads to better outcomes than electrical stimulation of the paretic wrist extensors in subacute stroke patients with severe upper limb paresis. Electrical stimulation is a standard and reimbursable form of therapy in Germany. Randomized controlled trial of 54 inpatients enrolled 4-8 wks from stroke onset, mean upper-extremity subsection of Fugl-Meyer assessment (0-66) at admission less than 18. In addition to standard care, all patients practiced 20-30 mins arm trainer or electrical stimulation every workday for 6 wks, totaling 30 sessions. Primary outcome was the Fugl-Meyer assessment, secondary outcomes were the Box and Block test, the Medical Research Council and the modified Ashworth scale, blindly assessed at enrollment, after 6 wks, and at 3-mo follow-up. Both groups were homogeneous at study onset. Shoulder pain occurred in two arm trainer patients. The primary Fugl-Meyer assessment outcome improved for both groups over time (P < 0.001), but this improvement did not differ between groups. The initial (terminal) mean Fugl-Meyer assessment scores were 8.8 +/- 4.8 (19.2 +/- 14.5) for the arm trainer and 8.6 +/- 3.5 (13.6 +/- 7.9) for the electrical stimulation group. No patient could transport a block initially, but at completion significantly more arm trainer patients were able to transport at least three blocks (five vs. zero, P = 0.023). No significant differences were observed between the groups on the secondary Box and Block outcome at follow-up (eight vs. four patients). All Box and Block responders had an initial Fugl-Meyer assessment > or =10. Arm trainer training did not lead to a superior primary outcome over electrical stimulation training. However, "good performers" on the secondary outcome seemed to benefit more from the arm trainer training.
Johnson, M A; Turnbull, D M
1984-04-01
Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.
Effect of Aging on Tongue Protrusion Forces in Rats
Nagai, Hiromi; Russell, John A.; Jackson, Michelle A.
2010-01-01
The purpose of this study was to ascertain the effect of aging on muscle contractile properties associated with tongue protrusion in a rat model. Fischer 344/Brown Norway hybrid rats, ten young (9 months old) and ten old (32 months old), were used to measure protrusive contractile properties. Results showed a significant reduction in tetanic forces in the old animals. The following measures of muscle contraction were not different between age groups: mean twitch contraction force, twitch contraction time, twitch contraction half-decay time, and a calculated measure of fatigability. In conclusion, aging influenced protrusive tongue muscle contractions in a rat model such that tetanic forces were reduced. The reduction of tetanus force may parallel findings in human subjects relative to isometric tongue force generation and may be associated with age-related disorders of swallowing. PMID:17694408
Fujimura, Tsutomu; Miyauchi, Yuki; Shima, Kyoko; Hotta, Mitsuyuki; Tsujimura, Hisashi; Kitahara, Takashi; Takema, Yoshinori; Palungwachira, Pakhawadee; Laohathai, Diane; Chanthothai, Jetchawa; Nararatwanchai, Thamthiwat
2018-01-01
Ethnic and racial differences in infant skin have not been well characterized. The purpose of this study was to establish whether there are ethnic differences and similarities in the stratum corneum (SC) functions of Thai and Chinese infants. Healthy infants 6 to 24 months of age (N = 60; 30 Thai, 30 Chinese) who resided in Bangkok, Thailand, were enrolled. Transepidermal water loss (TEWL) and SC hydration (capacitance) on the thigh, buttock, and upper arm were measured. Ceramide content was determined in the SC on the upper arm. SC hydration was not remarkably different between the two ethnicities at any site measured, but TEWL was significantly higher in Chinese infants than in Thai infants at all sites. Hydration of the SC was not significantly correlated with age in either ethnicity. TEWL had significant but weak correlations with age on the thigh and upper arm in Thai infants. Ceramide content was significantly higher in Chinese SC than in Thai SC. No relationship between ceramide content and TEWL or hydration was observed in either ethnicity. The significant differences in TEWL and ceramide contents between Chinese and Thai infant skin could prove useful in designing skin care and diapering products that are best suited for each ethnicity. © 2017 Wiley Periodicals, Inc.
Disability in the upper extremity and quality of life in hand-arm vibration syndrome.
Poole, Kerry; Mason, Howard
2005-11-30
To investigate whether hand-arm vibration syndrome (HAVS) leads to disability in the upper extremity or deficit in quality of life (QoL) using validated questionnaire tools, and to establish whether these effects are related to the Stockholm Workshop Staging (SWS). This was a postal cross-sectional questionnaire study with a 50% response rate. Four hundred and forty-four males, who had been diagnosed and staged according to the SWS were sent the Disability in the Arm, Shoulder and Hand (DASH) and the SF-36v2 QoL questionnaires. HAVS cases had significantly greater DASH disability scores and reduced QoL physical and mental component scores compared to published normal values. Those HAVS cases with a presumptive diagnosis of Carpal Tunnel Syndrome(CTS) had even higher disability scores. There was a clear, linear relationship between both the DASH disability score and the physical component of the QoL and sensorineural SWS, but not with the vascular SWS. HAVS has a significant effect on an individual's perceived ability to perform everyday tasks involving the upper extremity, and their quality of life. Physical capability may be further compromised in those individuals who have a presumptive diagnosis of CTS. These findings may have important implications regarding management of the affected worker.
Timmermans, Annick AA; Seelen, Henk AM; Willmann, Richard D; Kingma, Herman
2009-01-01
Background It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning. Methods A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007). Results One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems. Conclusion This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills. PMID:19154570
Reference values of anthropometric measurements in Dutch children. The Oosterwolde Study.
Gerver, W J; Drayer, N M; Schaafsma, W
1989-03-01
In the period 1979-1980 the following anthropometric measurements were recorded in 2351 healthy Dutch children from 0-17 years of age: height, weight, sitting height, arm span, lengths of upper-arm, lower-arm and hand, tibial length, foot length, biacromial diameter, biiliacal diameter, and head circumference. Corresponding percentile values were constructed on the basis of normality assumptions, the mean and standard deviation at age t being determined by a cubic spline approximation. The results are compared with other studies and given in the form of growth charts.
Survey of upper extremity injuries among martial arts participants.
Diesselhorst, Matthew M; Rayan, Ghazi M; Pasque, Charles B; Peyton Holder, R
2013-01-01
To survey participants at various experience levels of different martial arts (MA) about upper extremity injuries sustained during training and fighting. A 21-s question survey was designed and utilised. The survey was divided into four groups (Demographics, Injury Description, Injury Mechanism, and Miscellaneous information) to gain knowledge about upper extremity injuries sustained during martial arts participation. Chi-square testing was utilised to assess for significant associations. Males comprised 81% of respondents. Involvement in multiple forms of MA was the most prevalent (38%). The hand/wrist was the most common area injured (53%), followed by the shoulder/upper arm (27%) and the forearm/elbow (19%). Joint sprains/muscle strains were the most frequent injuries reported overall (47%), followed by abrasions/bruises (26%). Dislocations of the upper extremity were reported by 47% of participants while fractures occurred in 39%. Surgeries were required for 30% of participants. Females were less likely to require surgery and more likely to have shoulder and elbow injuries. Males were more likely to have hand injuries. Participants of Karate and Tae Kwon Do were more likely to have injuries to their hands, while participants of multiple forms were more likely to sustain injuries to their shoulders/upper arms and more likely to develop chronic upper extremity symptoms. With advanced level of training the likelihood of developing chronic upper extremity symptoms increases, and multiple surgeries were required. Hand protection was associated with a lower risk of hand injuries. Martial arts can be associated with substantial upper extremity injuries that may require surgery and extended time away from participation. Injuries may result in chronic upper extremity symptoms. Hand protection is important for reducing injuries to the hand and wrist.
Polatajko, Helene; Baum, Carolyn; Rios, Jorge; Cirone, Dianne; Doherty, Meghan; McEwen, Sara
2016-01-01
The purpose of this study was to estimate the effect of Cognitive Orientation to Daily Occupational Performance (CO–OP) compared with usual occupational therapy on upper-extremity movement, cognitive flexibility, and stroke impact in people less than 3 mo after stroke. An exploratory, single-blind randomized controlled trial was conducted with people referred to outpatient occupational therapy services at two rehabilitation centers. Arm movement was measured with the Action Research Arm Test, cognitive flexibility with the Delis–Kaplan Executive Function System Trail Making subtest, and stroke impact with subscales of the Stroke Impact Scale. A total of 35 participants were randomized, and 26 completed the intervention. CO–OP demonstrated measurable effects over usual care on all measures. These data provide early support for the use of CO–OP to improve performance and remediate cognitive and arm movement impairments after stroke over usual care; however, future study is warranted to confirm the effects observed in this trial. PMID:26943113
Midha, M; Schmitt, J K; Sclater, M
1999-03-01
To determine the effect of exercise with the wheelchair aerobic fitness trainer (WAFT) on anthropometric indices, conditioning, and endocrine and metabolic parameters in persons with lower extremity disability. Exercise sessions with the WAFT lasted 20 to 30 minutes for two to three sessions. Tertiary-care Veterans Administration medical center. Twelve subjects (3 with quadriplegia, 7 with paraplegia, 1 with cerebrovascular accident, 1 with bilateral above-knee amputation). Anthropometric indices (heart rate, blood pressure, weight, oxygen utilization, body mass index, upper arm and abdominal circumference, arm power) and endocrine and metabolic parameters (fasting serum glucose, lipids, and thyroid function) were determined before and after 10 weeks of exercise with the WAFT. All patients noted improved feelings of well-being after training. Mean resting heart rate, upper arm fat area, and fasting serum cholesterol level decreased significantly. Peak oxygen consumption, midarm circumference, and free thyroxine index increased significantly with training. WAFT improves quality of life, conditioning, and endocrine-metabolic parameters in disabled persons.
Characterization of upper troposphere water vapor measurements during AFWEX using LASE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrare, R. A.; Browell, E. V.; Ismail, I.
2002-07-15
Water vapor profiles from NASA's Lidar Atmospheric Sensing Experiment (LASE) system acquired during the ARM/FIRE Water Vapor Experiment (AFWEX) are used to characterize upper troposphere (UT) water vapor measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. Initial comparisons showed the average Vaisala radiosonde measurements to be 5-15% drier than the average LASE, Raman lidar, and DC-8 in situ diode laser hygrometer measurements. They show that corrections to the Raman lidar and Vaisala measurements significantly reduce these differences. Precipitable water vapor (PWV) derived from the LASE water vapor profiles agrees within 3% on average with PWV derived frommore » the ARM ground-based microwave radiometer (MWR). The agreement among the LASE, Raman lidar, and MWR measurements demonstrates how the LASE measurements can be used to characterize both profile and column water vapor measurements and that ARM Raman lidar, when calibrated using the MWR PWV, can provide accurate UT water vapor measurements.« less
A musculoskeletal model of the upper extremity for use in the development of neuroprosthetic systems
Blana, Dimitra; Hincapie, Juan G.; Chadwick, Edward K.; Kirsch, Robert F.
2008-01-01
Upper extremity neuroprostheses use functional electrical stimulation (FES) to restore arm motor function to individuals with cervical level spinal cord injury. For the design and testing of these systems, a biomechanical model of the shoulder and elbow has been developed, to be used as a substitute for the human arm. It can be used to design and evaluate specific implementations of FES systems, as well as FES controllers. The model can be customized to simulate a variety of pathological conditions. For example, by adjusting the maximum force the muscles can produce, the model can be used to simulate an individual with tetraplegia and to explore the effects of FES of different muscle sets. The model comprises six bones, five joints, nine degrees of freedom, and 29 shoulder and arm muscles. It was developed using commercial, graphics-based modeling and simulation packages that are easily accessible to other researchers and can be readily interfaced to other analysis packages. It can be used for both forward-dynamic (inputs: muscle activation and external load; outputs:motions) and inverse-dynamic (inputs: motions and external load; outputs: muscle activation) simulations. Our model was verified by comparing the model-calculated muscle activations to electromyographic signals recorded from shoulder and arm muscles of five subjects. As an example of its application to neuroprosthesis design, the model was used to demonstrate the importance of rotator cuff muscle stimulation when aiming to restore humeral elevation. It is concluded that this model is a useful tool in the development and implementation of upper extremity neuroprosthetic systems. PMID:18420213
Blana, Dimitra; Hincapie, Juan G; Chadwick, Edward K; Kirsch, Robert F
2008-01-01
Upper extremity neuroprostheses use functional electrical stimulation (FES) to restore arm motor function to individuals with cervical level spinal cord injury. For the design and testing of these systems, a biomechanical model of the shoulder and elbow has been developed, to be used as a substitute for the human arm. It can be used to design and evaluate specific implementations of FES systems, as well as FES controllers. The model can be customized to simulate a variety of pathological conditions. For example, by adjusting the maximum force the muscles can produce, the model can be used to simulate an individual with tetraplegia and to explore the effects of FES of different muscle sets. The model comprises six bones, five joints, nine degrees of freedom, and 29 shoulder and arm muscles. It was developed using commercial, graphics-based modeling and simulation packages that are easily accessible to other researchers and can be readily interfaced to other analysis packages. It can be used for both forward-dynamic (inputs: muscle activation and external load; outputs: motions) and inverse-dynamic (inputs: motions and external load; outputs: muscle activation) simulations. Our model was verified by comparing the model calculated muscle activations to electromyographic signals recorded from shoulder and arm muscles of five subjects. As an example of its application to neuroprosthesis design, the model was used to demonstrate the importance of rotator cuff muscle stimulation when aiming to restore humeral elevation. It is concluded that this model is a useful tool in the development and implementation of upper extremity neuroprosthetic systems.
Arm and neck pain in ultrasonographers.
Claes, Frank; Berger, Jan; Stassijns, Gaëtane
2015-03-01
The aim of this study was to evaluate the prevalence of upper-body-quadrant pain among ultrasonographers and to evaluate the association between individual ergonomics, musculoskeletal disorders, and occurrence of neck pain. A hundred and ten (N = 110) Belgian and Dutch male and female hospital ultrasonographers were consecutively enrolled in the study. Data on work-related ergonomic and musculoskeletal disorders were collected with an electronic inquiry, including questions regarding ergonomics (position of the screen, high-low table, and ergonomic chair), symptoms (neck pain, upper-limb pain), and work-related factors (consecutive working hours a day, average working hours a week). Subjects with the screen on their left had significantly more neck pain (odds ratio [OR] = 3.6, p = .0286). Depending on the workspace, high-low tables increased the chance of developing neck pain (OR = 12.9, p = .0246). A screen at eye level caused less neck pain (OR = .22, p = .0610). Employees with a fixed working space were less susceptible to arm pain (OR = 0.13, p = .0058). The prevalence of arm pain was significantly higher for the vascular department compared to radiology, urology, and gynecology departments (OR = 9.2, p = .0278). Regarding prevention of upper-limb pain in ultrasonograph, more attention should be paid to the work environment and more specialty to the ultrasound workstation layout. Primary ergonomic prevention could provide a painless work situation for the ultrasonographer. Further research on the ergonomic conditions of ultrasonography is necessary to develop ergonomic solutions in the work environment that will help to alleviate neck and arm pain. © 2014, Human Factors and Ergonomics Society.
Muscle atrophy associated with microgravity in rat: Basic data for countermeasures
NASA Astrophysics Data System (ADS)
Falempin, M.; Mounier, Y.
Morphological, contractile properties and myosin heavy chain (MHC) composition of rat soleus muscles were studied after 2 weeks of unloading (HS) and after 2 weeks of HS associated with selective deafferentation (HS + DEAF) at the level L4 and L5. The same significant reductions in muscle mass and tetanic tension were found after HS and HS + DEAF. However, the transformation of the slow-twitch soleus muscle towards a faster type characterized by a decrease in twitch time parameters and an increase in fast-twitch type MHC isoforms in HS did not appear in HS + DEAF conditions. Our results also showed that a pattern similar to firing rate of motoneurones innervating slow-twitch muscles inhibited the slow to fast fiber changes observed during HS. Nevertheless, neither the loss of mass or force output in the HS muscles were prevented by electrostimulation. Immobilization in a stretched position during HS maintained the muscle wet weight, mechanical and electrophoretical characteristics close to control values. We concluded that the decrease in mechanical strains imposed on the muscle during unloading was the main factor for the development of atrophy, while the kinetic changes might be predominantly modulated by the nervous command. These basic data suggested that some experimental conditions such as electrostimulation or stretching, could participate in countermeasure programmes.
Force generation by groups of migrating bacteria
Koch, Matthias D.; Liu, Guannan; Stone, Howard A.; Shaevitz, Joshua W.
2017-01-01
From colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups. PMID:28655845
Force generation by groups of migrating bacteria.
Sabass, Benedikt; Koch, Matthias D; Liu, Guannan; Stone, Howard A; Shaevitz, Joshua W
2017-07-11
From colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. Although considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus , namely, twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching bacterial groups also produce traction hotspots, but with forces around 100 pN that fluctuate rapidly on timescales of <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified approximately fivefold in groups. Advancing protrusions of gliding cells push, on average, in the direction of motion. Together, these results show that the forces generated during twitching and gliding have complementary characters, and both forces have higher values when cells are in groups.
Adaptive responses of GLUT-4 and citrate synthase in fast-twitch muscle of voluntary running rats
NASA Technical Reports Server (NTRS)
Henriksen, E. J.; Halseth, A. E.
1995-01-01
Glucose transporter (GLUT-4) protein, hexokinase, and citrate synthase (proteins involved in oxidative energy production from blood glucose catabolism) increase in response to chronically elevated neuromuscular activity. It is currently unclear whether these proteins increase in a coordinated manner in response to this stimulus. Therefore, voluntary wheel running (WR) was used to chronically overload the fast-twitch rat plantaris muscle and the myocardium, and the early time courses of adaptative responses of GLUT-4 protein and the activities of hexokinase and citrate synthase were characterized and compared. Plantaris hexokinase activity increased 51% after just 1 wk of WR, whereas GLUT-4 and citrate synthase were increased by 51 and 40%, respectively, only after 2 wk of WR. All three variables remained comparably elevated (+50-64%) through 4 wk of WR. Despite the overload of the myocardium with this protocol, no substantial elevations in these variables were observed. These findings are consistent with a coordinated upregulation of GLUT-4 and citrate synthase in the fast-twitch plantaris, but not in the myocardium, in response to this increased neuromuscular activity. Regulation of hexokinase in fast-twitch muscle appears to be uncoupled from regulation of GLUT-4 and citrate synthase, as increases in the former are detectable well before increases in the latter.
Koç, Nevra; Gündüz, Mehmet; Tavil, Betül; Azik, M Fatih; Coşkun, Zeynep; Yardımcı, Hülya; Uçkan, Duygu; Tunç, Bahattin
2017-08-01
The aim of this study was to evaluate nutritional status in children who underwent hematopoietic stem cell transplant compared with a healthy control group. A secondary aim was to utilize mid-upper arm circumference as a measure of nutritional status in these groups of children. Our study group included 40 children (18 girls, 22 boys) with mean age of 9.2 ± 4.6 years (range, 2-17 y) who underwent hematopoietic stem cell transplant. Our control group consisted of 20 healthy children (9 girls, 11 boys). The children were evaluated at admission to the hospital and followed regularly 3, 6, 9, and 12 months after discharge from the hospital. In the study group, 27 of 40 patients (67.5%) received nutritional support during hematopoietic stem cell transplant, with 15 patients (56%) receiving enteral nutrition, 6 (22%) receiving total parenteral nutrition, and 6 (22%) receiving enteral and total parenteral nutrition. Chronic malnutrition rate in the study group was 47.5% on admission to the hospital, with the control group having a rate of 20%. One year after transplant, the rate decreased to 20% in the study group and 5% in the control group. The mid-upper arm circumference was lower in children in the study group versus the control group at the beginning of the study (P < .05). However, there were no significant differences in mid-upper arm circumference measurements between groups at follow-up examinations (P > .05). During follow-up, all anthropometric measurements increased significantly in both groups. Monitoring nutritional status and initiating appropriate nutritional support improved the success of hematopoietic stem cell transplant and provided a more comfortable process during the transplant period. Furthermore, mid-upper arm circumference is a more sensitive, useful, and safer parameter that can be used to measure nutritional status of children who undergo hematopoietic stem cell transplant.
Bosboom, E. Marielle H.; Kroon, Wilco; van der Linden, Wim P. M.; Planken, R. Nils; van de Vosse, Frans N.; Tordoir, Jan H. M.
2012-01-01
Introduction Inadequate flow enhancement on the one hand, and excessive flow enhancement on the other hand, remain frequent complications of arteriovenous fistula (AVF) creation, and hamper hemodialysis therapy in patients with end-stage renal disease. In an effort to reduce these, a patient-specific computational model, capable of predicting postoperative flow, has been developed. The purpose of this study was to determine the accuracy of the patient-specific model and to investigate its feasibility to support decision-making in AVF surgery. Methods Patient-specific pulse wave propagation models were created for 25 patients awaiting AVF creation. Model input parameters were obtained from clinical measurements and literature. For every patient, a radiocephalic AVF, a brachiocephalic AVF, and a brachiobasilic AVF configuration were simulated and analyzed for their postoperative flow. The most distal configuration with a predicted flow between 400 and 1500 ml/min was considered the preferred location for AVF surgery. The suggestion of the model was compared to the choice of an experienced vascular surgeon. Furthermore, predicted flows were compared to measured postoperative flows. Results Taken into account the confidence interval (25th and 75th percentile interval), overlap between predicted and measured postoperative flows was observed in 70% of the patients. Differentiation between upper and lower arm configuration was similar in 76% of the patients, whereas discrimination between two upper arm AVF configurations was more difficult. In 3 patients the surgeon created an upper arm AVF, while model based predictions allowed for lower arm AVF creation, thereby preserving proximal vessels. In one patient early thrombosis in a radiocephalic AVF was observed which might have been indicated by the low predicted postoperative flow. Conclusions Postoperative flow can be predicted relatively accurately for multiple AVF configurations by using computational modeling. This model may therefore be considered a valuable additional tool in the preoperative work-up of patients awaiting AVF creation. PMID:22496816
Chronic Pseudomonas aeruginosa infection and respiratory muscle impairment in cystic fibrosis.
Dassios, Theodore G; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel
2014-03-01
Chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis (CF) is associated with increased morbidity. Chronic infection can cause limb and respiratory muscle compromise. Respiratory muscle function can be assessed via maximal inspiratory pressure (PImax), maximal expiratory pressure (PEmax), and the pressure-time index of the respiratory muscles (PTImus). We studied the effect of chronic P. aeruginosa infection on respiratory muscle function in patients with CF. This cross-sectional study assessed PImax, PEmax, PTImus, FEV1, FVC, maximum expiratory flow during the middle half of the FVC maneuver, body mass index, and upper arm muscle area in 122 subjects with CF, in 4 subgroups matched for age and sex at different stages of P. aeruginosa infection, according to the Leeds criteria. We compared respiratory muscle function in the subgroups according to P. aeruginosa infection state. Median PImax was significantly lower in CF subjects with chronic P. aeruginosa infection (PImax = 62 cm H2O), compared to subjects who were never infected (PImax = 86 cm H2O, P = .02), free of infection (PImax = 74 cm H2O, P = .01), or intermittently infected (PImax = 72 cm H2O, P = .02). Median PTImus was significantly increased in CF subjects with chronic P. aeruginosa infection (PTImus = .142), compared to subjects who were free of infection (PTImus = .102, P = .006). Median upper-arm muscle area was significantly lower in CF subjects with chronic P. aeruginosa infection (upper-arm muscle area = 2,219 mm(2)), compared to subjects who were never infected (2,754 mm(2), P = .03), free of infection (2,678 mm(2), P = .01), or intermittently infected (2,603 mm(2), P = .04). Multivariate logistic regression revealed P. aeruginosa state of infection as a significant determinant of PTImus (P = .03) independently of sex, upper-arm muscle area, and FEV1. CF subjects with chronic P. aeruginosa infection exhibited impaired respiratory muscle function and decreased inspiratory muscle strength, and chronic P. aeruginosa infection independently impacts respiratory muscle function in subjects with CF.
Finger muscle attachments for an OpenSim upper-extremity model.
Lee, Jong Hwa; Asakawa, Deanna S; Dennerlein, Jack T; Jindrich, Devin L
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements.
Finger Muscle Attachments for an OpenSim Upper-Extremity Model
Lee, Jong Hwa; Asakawa, Deanna S.; Dennerlein, Jack T.; Jindrich, Devin L.
2015-01-01
We determined muscle attachment points for the index, middle, ring and little fingers in an OpenSim upper-extremity model. Attachment points were selected to match both experimentally measured locations and mechanical function (moment arms). Although experimental measurements of finger muscle attachments have been made, models differ from specimens in many respects such as bone segment ratio, joint kinematics and coordinate system. Likewise, moment arms are not available for all intrinsic finger muscles. Therefore, it was necessary to scale and translate muscle attachments from one experimental or model environment to another while preserving mechanical function. We used a two-step process. First, we estimated muscle function by calculating moment arms for all intrinsic and extrinsic muscles using the partial velocity method. Second, optimization using Simulated Annealing and Hooke-Jeeves algorithms found muscle-tendon paths that minimized root mean square (RMS) differences between experimental and modeled moment arms. The partial velocity method resulted in variance accounted for (VAF) between measured and calculated moment arms of 75.5% on average (range from 48.5% to 99.5%) for intrinsic and extrinsic index finger muscles where measured data were available. RMS error between experimental and optimized values was within one standard deviation (S.D) of measured moment arm (mean RMS error = 1.5 mm < measured S.D = 2.5 mm). Validation of both steps of the technique allowed for estimation of muscle attachment points for muscles whose moment arms have not been measured. Differences between modeled and experimentally measured muscle attachments, averaged over all finger joints, were less than 4.9 mm (within 7.1% of the average length of the muscle-tendon paths). The resulting non-proprietary musculoskeletal model of the human fingers could be useful for many applications, including better understanding of complex multi-touch and gestural movements. PMID:25853869
Miljkovic-Gacic, Iva; Wang, Xiaojing; Kammerer, Candace M; Bunker, Clareann H; Patrick, Alan L; Wheeler, Victor W; Kuller, Lewis H; Evans, Rhobert W; Zmuda, Joseph M
2008-06-01
Very few studies have comprehensively defined the genetic and environmental influences on body fat storage in the arms and legs and their association with diabetes, especially in families of African heritage. We analyzed body fat distribution by dual-energy x-ray absorptiometry (percentage total fat, percentage trunk fat, percentage arm fat, and percentage leg fat) and fasting serum glucose in 471 individuals (mean age, 43 years) from 8 multigenerational Afro-Caribbean families (mean family size = 51; 3535 relative pairs). Diabetes was inversely associated with percentage leg fat (P = .009) and, to some extent, positively associated with percentage arm fat independent of age, sex, and body size (P = .08), but not with anthropometric or dual-energy x-ray absorptiometric measures of total and central adiposity. Furthermore, percentage leg fat was inversely, whereas percentage arm fat was positively, associated with body mass index, waist circumference, and serum glucose (P < .01). Residual heritability (h2r) for arm and leg fat was significant (P < .01) and high: 62% (for percentage arm fat) and 40% (for percentage leg fat). Moreover, sex-specific h2r for leg fat was considerably higher (P = .02) in women than in men (h2r values, 58% vs 17%, respectively). Genetic correlation (rho(G)) between arm and leg fat was -0.61 (P < .01), suggesting that only 37% of the covariation between these 2 adipose tissue depots may be due to shared genetic influences. This study provides new evidence for a strong genetic and sex contribution to upper and lower body fat, with relatively little covariation between these traits due to shared genes. Our findings also suggest that, in this population, leg fat is associated with diabetes independent of overall adiposity.
Altunkan, Sekip; Ilman, Nevzat; Kayatürk, Nur; Altunkan, Erkan
2007-08-01
Electronic blood pressure (BP) measurement devices are the preferred choice of patients owing to their user-friendly nature; however, there is a requirement to investigate the accuracy and reliability of these devices. The objective of this study is to evaluate the accuracy of the Omron M6 upper-arm BP device against the mercury sphygmomanometer in adults and obese adults according to the International Protocol criteria. One hundred and twenty-one patients, older than 30 years of age, were studied and classified on the basis of the range of the International Protocol. BP measurements at the upper arm with the Omron M6 were compared with the results obtained by two trained observers using a mercury sphygmomanometer. Nine sequential BP measurements were taken. A total of 33 participants were selected for each validation study. During the validation study, 99 measurements were performed on 33 participants for comparison. The first phase was performed on 15 participants, and if the device passed this phase, 18 more participants were selected. Having a two-fold purpose, this study was conducted on both adult and obese adult patients. Mean discrepancies and standard deviations of the monitor-mercury sphygmomanometer were 1.1+/-4.0 mmHg for systolic BP (SBP) and -0.5+/-3.5 mmHg for diastolic BP (DBP) in the adult group. The device passed phase 1 in 15 participants. In phase 2.1, out of a total of 99 comparisons, 88, 96, and 97 for SBP, and 88, 98, and 99 for DBP were <5, <10, and <15 mmHg, respectively. Mean discrepancies and standard deviations of the monitor-mercury sphygmomanometer were 1.7+/-4.8 mmHg for SBP and -0.8+/-4.3 mmHg for DBP in the obese adult group. The device passed phase 1 in 15 participants. In phase 2.1, out of a total of 99 comparisons, 82, 90, and 97 for SBP, and 80, 97, and 99 for DBP were <5, <10, and <15 mmHg, respectively. It was found that the Omron M6 automatic monitor, which measures BP at the upper arm, produced results in accordance with the criteria of phases 2.1 and 2.2 in both SBP and DBP, when applied to adults and to obese adults. It was concluded that the Omron M6 device, which measures BP at the upper arm, was deemed to be in accordance with the International Protocol criteria and can be recommended for use by adults and obese adults.
Torsionally rigid support apparatus for marine seismic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, W.J.; Cole, J.H.
1989-11-14
This patent describes apparatus for supporting a marine seismic transducer from a vessel. It comprises: an elongated substantially rigid towing arm; a connector means for connecting the transducer to a lower end of the towing arm; a swivel member which is secured to the vessel and is pivotable about a generally horizontal first axis transverse to a length of the vessel; and a support means for pivotally connecting an upper end of the towing arm to the swivel member. The support means being pivotal relative to the swivel member about a second axis transverse to a longitudinal axis of themore » towing arm. The support means being substantially rigid so as to prevent any substantial rotation of the towing arm about its the longitudinal axis.« less
The effect of arm sling on balance in patients with hemiplegia.
Acar, Merve; Karatas, Gulcin Kaymak
2010-10-01
The aim of this study was to investigate the effect of an arm sling on balance in patients with, hemiplegia following a stroke. Twenty-six patients with hemiplegia (11 men, 15 women) who had, shoulder subluxation were enrolled in the study. Balance was evaluated by the Berg Balance Scale, the, Functional Reach test, and a static balance index which was measured by the Kinesthetic Ability, Trainer 3000. Balance tests were performed twice, with arm sling and without arm sling use. Results of, this study show that the Berg Balance Scores and static balance index ameliorated with arm sling use (p=0.005 and p=0.004, respectively). Likewise, the Functional Reach test was better when performed with an arm sling (p=0.039). In conclusion, arm slings have a beneficial effect on balance in patients, with hemiplegia. An arm sling may be applied for its possible beneficial effect on balance especially in, the early phases of stroke rehabilitation while the upper extremity is still flaccid and arm swing is, reduced. Copyright © 2010 Elsevier B.V. All rights reserved.
Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations
ERIC Educational Resources Information Center
Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto
2011-01-01
The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…
Punnett, L.
1998-01-01
OBJECTIVE: To evaluate the association between upper extremity soft tissue disorders and exposure to preventable ergonomic stressors in vehicle manufacturing operations. METHODS: A cross sectional study was conducted in one vehicle stamping plant and one engine assembly plant. A standardised physical examination of the upper extremities was performed on all subjects. An interviewer administered questionnaire obtained data on demographics, work history, musculoskeletal symptoms, non-occupational covariates, and psycho-physical (relative intensity) ratings of ergonomic stressors. The primary exposure score was computed by summing the responses to the psychophysical exposure items. Multivariate regression analysis was used to model the prevalence of disorders of the shoulders or upper arms, wrists or hands, and all upper extremity regions (each defined both by symptoms and by physical examination plus symptoms) as a function of exposure quartile. RESULTS: A total of 1315 workers (85% of the target population) was examined. The prevalence of symptom disorders was 22% for the wrists or hands and 15% for the shoulders or upper arms; cases defined on the basis of a physical examination were about 80% as frequent. Disorders of the upper extremities, shoulders, and wrists or hands all increased markedly with exposure score, after adjustment for plant, acute injury, sex, body mass index, systemic disease, and seniority. CONCLUSIONS: Musculoskeletal disorders of the upper extremities were strongly associated with exposure to combined ergonomic stressors. The exposure- response trend was very similar for symptom cases and for physical examination cases. It is important to evaluate all dimensions of ergonomic exposure in epidemiological studies, as exposures often occur in combination in actual workplaces. PMID:9764102
Characterisation and Outcomes of Upper Extremity Amputations
2014-06-01
military service members from 1 October 2001 to 30 July 2011 was conducted. Data from the Department of Defense Trauma Registry, the Armed Forces... Trauma Registry, the Armed Forces Health Longitudinal Technology Application, and the Physical Evaluation Board Liaison Offices were queried in order to...without associated lower extremity amputation. This cohort was cross-referenced with the Department of Defense Trauma Registry (DoDTR, Joint Base
A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements
NASA Astrophysics Data System (ADS)
Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji
2017-02-01
Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81 ± 0.09, 0.85 ± 0.09, and 0.76 ± 0.13, respectively) and the patients (e.g. 0.91 ± 0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.
A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji
2017-02-01
Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81 ± 0.09, 0.85 ± 0.09, and 0.76 ± 0.13, respectively) and the patients (e.g. 0.91 ± 0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.
Czihal, M; Paul, S; Rademacher, A; Bernau, C; Hoffmann, U
2015-03-01
To explore the association of the postthrombotic syndrome with venous hemodynamics and morphological abnormalities after upper extremity deep venous thrombosis. Thirty-seven patients with a history of upper extremity deep venous thrombosis treated with anticoagulation alone underwent a single study visit (mean time after diagnosis: 44.4 ± 28.1 months). Presence and severity postthrombotic syndrome were classified according to the modified Villalta score. Venous volume and venous emptying were determined by strain-gauge plethysmography. The arm veins were assessed for postthrombotic abnormalities by ultrasonography. The relationship between postthrombotic syndrome and hemodynamic and morphological sequelae was evaluated using univariate significance tests and Spearman's correlation analysis. Fifteen of 37 patients (40.5%) developed postthrombotic syndrome. Venous volume and venous emptying of the arm affected by upper extremity deep venous thrombosis did not correlate with the Villalta score (rho = 0.17 and 0.19; p = 0.31 and 0.25, respectively). Residual morphological abnormalities, as assessed by ultrasonography, did not differ significantly between patients with and without postthrombotic syndrome (77.3% vs. 86.7%, p = 0.68). Postthrombotic syndrome after upper extremity deep venous thrombosis is not associated with venous hemodynamics or residual morphological abnormalities. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
MERIANS, A. S.; TUNIK, E.; FLUET, G. G.; QIU, Q.; ADAMOVICH, S. V.
2017-01-01
Aim Upper-extremity interventions for hemiparesis are a challenging aspect of stroke rehabilitation. Purpose of this paper is to report the feasibility of using virtual environments (VEs) in combination with robotics to assist recovery of hand-arm function and to present preliminary data demonstrating the potential of using sensory manipulations in VE to drive activation in targeted neural regions. Methods We trained 8 subjects for 8 three hour sessions using a library of complex VE’s integrated with robots, comparing training arm and hand separately to training arm and hand together. Instrumented gloves and hand exoskeleton were used for hand tracking and haptic effects. Haptic Master robotic arm was used for arm tracking and generating three-dimensional haptic VEs. To investigate the use of manipulations in VE to drive neural activations, we created a “virtual mirror” that subjects used while performing a unimanual task. Cortical activation was measured with functional MRI (fMRI) and transcranial magnetic stimulation. Results Both groups showed improvement in kinematics and measures of real-world function. The group trained using their arm and hand together showed greater improvement. In a stroke subject, fMRI data suggested virtual mirror feedback could activate the sensorimotor cortex contralateral to the reflected hand (ipsilateral to the moving hand) thus recruiting the lesioned hemisphere. Conclusion Gaming simulations interfaced with robotic devices provide a training medium that can modify movement patterns. In addition to showing that our VE therapies can optimize behavioral performance, we show preliminary evidence to support the potential of using specific sensory manipulations to selectively recruit targeted neural circuits. PMID:19158659
[Effects of massage on delayed-onset muscle soreness].
Bakowski, Paweł; Musielak, Bartosz; Sip, Paweł; Biegański, Grzegorz
2008-01-01
Delayed onset muscle soreness (DOMS) is the pain or discomfort often felt 12 to 24 hours after exercising and subsides generally within 4 to 6 days. Once thought to be caused by lactic acid buildup, a more recent theory is that it is caused by inflammatory process or tiny tears in the muscle fibers caused by eccentric contraction, or unaccustomed training levels. Exercises that involve many eccentric contractions will result in the most severe DOMS. Fourteen healthy men with no history of upper arm injury and no experience in resistance training were recruited. The mean age, height, and mass of the subjects were 22.8 +/- 1.2 years, 178.3 +/- 10.3 cm, and 75.0 +/- 14.2 kg, respectively. Subjects performed 8 sets of concentric and eccentric actions of the elbow flexors with each arm according to Stay protocol. One arm received 10 minutes of massage 30 minutes after exercise, the contralateral arm received no treatment. Measurements were taken at 9 assessment times: pre-exercise and postexercise at 10 min, 6, 12, 24, 36, 48, 72 and 96 hours. Dependent variables were range of motion, perceived soreness and upper arm circumference. There was noticed difference in perceived soreness across time between groups. The analysis indicated that massage resulted in a 10% to 20% decrease in the severity of soreness, but the differences were not significant. Difference in range of motion and arm circumference was not observed. Massage administered 30 minutes after exercises could have a beneficial influence on DOMS but without influence on muscle swelling and range of motion.
Kinematics of preferred and non-preferred handballing in Australian football.
Parrington, Lucy; Ball, Kevin; MacMahon, Clare
2015-01-01
In Australian football (AF), handballing proficiently with both the preferred and non-preferred arm is important at elite levels; yet, little information is available for handballing on the non-preferred arm. This study compared preferred and non-preferred arm handballing techniques. Optotrak Certus (100 Hz) collected three-dimensional data for 19 elite AF players performing handballs with the preferred and non-preferred arms. Position data, range of motion (ROM), and linear and angular velocities were collected and compared between preferred and non-preferred arms using dependent t-tests. The preferred arm exhibited significantly greater forearm and humerus ROM and angular velocity and significantly greater shoulder angular velocity at ball contact compared to the non-preferred arm. In addition, the preferred arm produced a significantly greater range of lateral bend and maximum lower-trunk speed, maximum strike-side hip speed and hand speed at ball contact than the non-preferred arm. The non-preferred arm exhibited a significantly greater shoulder angle and lower- and upper-trunk orientation angle, but significantly lower support-elbow angle, trunk ROM, and trunk rotation velocity compared to the preferred arm. Reduced ROM and angular velocities found in non-preferred arm handballs indicates a reduction in the degrees of freedom and a less developed skill. Findings have implication for development of handballing on the non-preferred arm.
2014-01-01
Background Distal upper limb pain (pain affecting the elbow, forearm, wrist, or hand) can be non-specific, or can arise from specific musculoskeletal disorders. It is clinically important and costly, the best approach to clinical management is unclear. Physiotherapy is the standard treatment and, while awaiting treatment, advice is often given to rest and avoid strenuous activities, but there is no evidence base to support these strategies. This paper describes the protocol of a randomised controlled trial to determine, among patients awaiting physiotherapy for distal arm pain, (a) whether advice to remain active and maintain usual activities results in a long-term reduction in arm pain and disability, compared with advice to rest; and (b) whether immediate physiotherapy results in a long-term reduction in arm pain and disability, compared with physiotherapy delivered after a seven week waiting list period. Methods/Design Between January 2012 and January 2014, new referrals to 14 out-patient physiotherapy departments were screened for potential eligibility. Eligible and consenting patients were randomly allocated to one of the following three groups in equal numbers: 1) advice to remain active, 2) advice to rest, 3) immediate physiotherapy. Patients were and followed up at 6, 13, and 26 weeks post-randomisation by self-complete postal questionnaire and, at six weeks, patients who had not received physiotherapy were offered it at this time. The primary outcome is the proportion of patients free of disability at 26 weeks, as determined by the modified DASH (Disabilities of the Arm, Shoulder and Hand) questionnaire. We hypothesise (a) that advice to maintain usual activities while awaiting physiotherapy will be superior than advice to rest the arm; and (b) that fast-track physiotherapy will be superior to normal (waiting list) physiotherapy. These hypotheses will be examined using an intention-to-treat analysis. Discussion Results from this trial will contribute to the evidence base underpinning the clinical management of patients with distal upper limb pain, and in particular, will provide guidance on whether they should be advised to rest the arm or remain active within the limits imposed by their symptoms. Trial registration Registered on http://www.controlled-trials.com (reference number: ISRCTN79085082). PMID:24612447
Jones, Gareth T; Mertens, Kathrin; Macfarlane, Gary J; Palmer, Keith T; Coggon, David; Walker-Bone, Karen; Burton, Kim; Heine, Peter J; McCabe, Candy; McNamee, Paul; McConnachie, Alex
2014-03-10
Distal upper limb pain (pain affecting the elbow, forearm, wrist, or hand) can be non-specific, or can arise from specific musculoskeletal disorders. It is clinically important and costly, the best approach to clinical management is unclear. Physiotherapy is the standard treatment and, while awaiting treatment, advice is often given to rest and avoid strenuous activities, but there is no evidence base to support these strategies. This paper describes the protocol of a randomised controlled trial to determine, among patients awaiting physiotherapy for distal arm pain, (a) whether advice to remain active and maintain usual activities results in a long-term reduction in arm pain and disability, compared with advice to rest; and (b) whether immediate physiotherapy results in a long-term reduction in arm pain and disability, compared with physiotherapy delivered after a seven week waiting list period. Between January 2012 and January 2014, new referrals to 14 out-patient physiotherapy departments were screened for potential eligibility. Eligible and consenting patients were randomly allocated to one of the following three groups in equal numbers: 1) advice to remain active, 2) advice to rest, 3) immediate physiotherapy. Patients were and followed up at 6, 13, and 26 weeks post-randomisation by self-complete postal questionnaire and, at six weeks, patients who had not received physiotherapy were offered it at this time. The primary outcome is the proportion of patients free of disability at 26 weeks, as determined by the modified DASH (Disabilities of the Arm, Shoulder and Hand) questionnaire.We hypothesise (a) that advice to maintain usual activities while awaiting physiotherapy will be superior than advice to rest the arm; and (b) that fast-track physiotherapy will be superior to normal (waiting list) physiotherapy. These hypotheses will be examined using an intention-to-treat analysis. Results from this trial will contribute to the evidence base underpinning the clinical management of patients with distal upper limb pain, and in particular, will provide guidance on whether they should be advised to rest the arm or remain active within the limits imposed by their symptoms. Registered on http://www.controlled-trials.com (reference number: ISRCTN79085082).
The Effect of Rapacuronium or Succinylcholine on the Duration of Action of Rocuronium
2001-10-01
of the pre-determined rocuronium dose, supramaximal TOF sequence was evoked every 12 seconds to the anterior branch of the recurrent laryngeal nerve ...Paragraph™ Nerve Stimulator was used to observe the neuromuscular response (return of the second twitch) during the first maintenance dose of...of the train-of-four (TOF) twitch response is 62 seconds at the laryngeal muscles and 96 seconds at the adductor pollicis muscle. Similar to
Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, D.A.; Ellis, S.; Giometti, C.S.
1992-08-01
Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to accountmore » for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.« less
Cao, B J; Chen, Z K; Chi, Z Q
1990-05-01
The neuromuscular blocking and respiratory depressing actions of the new insecticide sodium ammonium dimethyl-2-(propano-1,3-dithiosulfate) monohydrate (SCD) were investigated. In peroneal-tibialis anterior nerve-muscle preparations of urethane anesthetized rabbit, SCD 6.5 mg/kg iv completely depressed the indirectly elicited twitch tension but not the directly elicited one. This compound also caused initial potentiation of the indirectly elicited twitch tension. In the partially paralyzed preparations, potentiation of contractions occurred following a brief period of indirectly tetanic stimulation. Nereistoxin but not SCD blocked the indirectly elicited twitch tension of isolated rat diaphragm. The neuromuscular blockade induced by SCD and nereistoxin was antagonized by neostigmine and 4-aminopyridine. SCD and nereistoxin had little or no effect on arterial blood pressure and phrenic nerve discharge of rabbits. The results indicated that SCD-poisoned rabbits died of respiratory paralysis following the neuromuscular blockade.
Responses of neuromuscular systems under gravity or microgravity environment.
Ishihara, Akihiko; Kawano, Fuminori; Wang, Xiao Dong; Ohira, Yoshinobu
2004-11-01
Hindlimb suspension of rats induces induces fiber atrophy and type shift of muscle fibers. In contrast, there is no change in the cell size or oxidative enzyme activity of spinal motoneurons innervating muscle fibers. Growth-related increases in the cell size of muscle fibers and their spinal motoneurons are inhibited by hindlimb suspension. Exposure to microgravity induces atrophy of fibers (especially slow-twitch fibers) and shift of fibers from slow- to fast-twitch type in skeletal muscles (especially slow, anti-gravity muscles). In addition, a decrease in the oxidative enzyme activity of spinal motoneurons innervating slow-twitch fibers and of sensory neurons in the dorsal root ganglion is observed following exposure to microgravity. It is concluded that neuromuscular activities are important for maintaining metabolism and function of neuromuscular systems at an early postnatal development and that gravity effects both efferent and afferent neural pathways.
The influence of rat suspension-hypokinesia on the gastrocnemius muscle
NASA Technical Reports Server (NTRS)
Templeton, G. H.; Padalino, M.; Manton, J.; Leconey, T.; Hagler, H.; Glasberg, M.
1984-01-01
Hind-limb hypokinesia was induced in rats by the Morey method to characterize the response of the gastrocnemius muscle. A comparison of rats suspended for 2 weeks with weight, sex, and litter-matched control rats indicate no difference in gastrocnemius wet weight, contraction, or one-half relaxation times, but less contractile function as indicated by lowered dP/dt. Myosin ATPase staining identified uniform Type I (slow-twitch) and II (fast-twitch) atrophy in the muscles from 4 of 10 rats suspended for 2 weeks and 1 of 12 rats suspended for 4 weeks; muscles from three other rats of the 4-week group displayed greater Type I atrophy. Other histochemical changes were characteristic of a neuropathy. These data together with recently acquired soleus data (29) indicate the Morey model, like space flight, evokes greater changes in the Type I or slow twitch fibers of the gastrocnemius and soleus muscles.
Morphometric analysis of rat muscle fibers following space flight and hypogravity
NASA Technical Reports Server (NTRS)
Chui, L. A.; Castleman, K. R.
1982-01-01
The effect of hypogravity on striate muscles, containing both fast twitch glycolytic and slow twitch oxidative fibers, was studied in rats aboard two Cosmos biosatellites. Results of a computer-assisted image analysis of extensor digitorum muscles from five rats, exposed to 18.5 days of hypogravity and processed for the alkaline ATPase reaction, showed a reduction of the mean fiber diameter (41.32 + or - 0.55 microns), compared to synchronous (46.32 + or - 0.55 microns) and vivarium (49 + or - 0.5 microns) controls. A further experiment studied the ratio of fast to slow twitch fibers in 25 rats exposed to 18.5 days of hypogravity and analyzed at four different periods of recovery following the space flight. Using the previous techniques, the gastrocnemius muscle showed a reduction of the total muscle fiber area in square microns and a reduction in the percentage of slow fibers of flight animals compared to the control animals.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.
2004-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 km domain (with 2-kilometer resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (ie., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.
2004-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain (with 2-km resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM Southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (i.e., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.
Dalbøge, Annett; Frost, Poul; Andersen, Johan Hviid; Svendsen, Susanne Wulff
2018-03-01
We aimed to identify intensities of occupational mechanical exposures (force, arm elevation and repetition) that do not entail an increased risk of surgery for subacromial impingement syndrome (SIS) even after prolonged durations of exposure. Additionally, we wanted to evaluate if exposure to hand-arm vibration (HAV) is an independent risk factor. We used data from a register-based cohort study of the entire Danish working population (n=2 374 403). During follow-up (2003-2008), 14 118 first-time events of surgery for SIS occurred. For each person, we linked register-based occupational codes (1993-2007) to a general population job exposure matrix to obtain year-by-year exposure intensities on measurement scales for force, upper arm elevation >90° and repetition and expert rated intensities of exposure to HAV. For 10-year exposure time windows, we calculated the duration of exposure at specific intensities above minimal (low, medium and high). We used a logistic regression technique equivalent to discrete survival analysis adjusting for cumulative effects of other mechanical exposures. We found indications of safe exposure intensities for repetition (median angular velocity <45°/s), while force exertion ≥10% of maximal voluntary electrical activity and upper arm elevation >90° >2 min/day implied an increased risk reaching ORs of 1.7 and 1.5 after 10 years at low intensities. No associations were found for HAV. We found indications of safe exposure intensities for repetition. Any intensities of force and upper arm elevation >90° above minimal implied an increased risk across 10-year exposure time windows. No independent associations were found for HAV. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott
2002-01-01
On 4 December 2002, a failure of the Refurbished Manipulator Arm System (RMAS) occurred in the Manipulator Development Facility (MDF) at Johnson Space Center. When the Test Director commanded a should pitch maneuver to lift the arm from its payload bay pedestal, the yaw controls failed. This, coupled with a gravitational forces (due to the angle of the shoulder joint with respect to vertical), resulted in uncontrolled arm motion. The shoulder yaw joint moved approximately 20 degrees, causing the extended arm to strike and severely damage the port side MDF catwalk handrails. The arm motion stopped after impact with the handrails. On 10-12 January 2001, inspections were performed on the port face of the lower and upper arms of the RMAS using a infrared thermography developed at Langley Research Center. This paper presents the results of those nondestructive inspections and provides a complete description of the anomalies found and their locations.
Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: A case study.
Ding, W L; Zheng, Y Z; Su, Y P; Li, X L
2018-04-19
To help patients with disabilities of the arm and shoulder recover the accuracy and stability of movements, a novel and simple virtual rehabilitation and evaluation system called the Kine-VRES system was developed using Microsoft Kinect. First, several movements and virtual tasks were designed to increase the coordination, control and speed of the arm movements. The movements of the patients were then captured using the Kinect sensor, and kinematics-based interaction and real-time feedback were integrated into the system to enhance the motivation and self-confidence of the patient. Finally, a quantitative evaluation method of upper limb movements was provided using the recorded kinematics during hand-to-hand movement. A preliminary study of this rehabilitation system indicates that the shoulder movements of two participants with ataxia became smoother after three weeks of training (one hour per day). This case study demonstrated the effectiveness of the designed system, which could be promising for the rehabilitation of patients with upper limb disorders.
Ottenheimer Carrier, Lydia; Leca, Jean-Baptiste; Pellis, Sergio; Vasey, Paul L
2015-10-01
In certain populations, female Japanese macaques (Macaca fuscata) mount both males and females. Vasey (2007) proposed that female-female sexual mounting in Japanese macaques may be a neutral evolutionary by-product of a purported adaptation, namely, female-male mounting. In this study, we aim to further examine the proposed link between female-male and female-female mounting in Japanese macaques by comparing the structural characteristics that define both forms of mounting. We do so using Eshkol-Wachman Movement Notation (EWMN), a globographic reference system that can be used to describe the position of body segments. No significant differences were observed in the female mounters' positioning of eight different body segments (i.e., lower torso, mid-torso, upper torso, upper arm, lower arm, upper leg, lower leg, and foot) during female-male and female-female mounting. This finding lends support to the conclusion that female-female and female-male mounting are structurally, and thus, evolutionarily, related. Copyright © 2015 Elsevier B.V. All rights reserved.
Similar metabolic response to lower- versus upper-body interval exercise or endurance exercise.
Francois, Monique E; Graham, Matthew J; Parr, Evelyn B; Rehrer, Nancy J; Lucas, Samuel J E; Stavrianeas, Stasinos; Cotter, James D
2017-03-01
To compare energy use and substrate partitioning arising from repeated lower- versus upper-body sprints, or endurance exercise, across a 24-h period. Twelve untrained males (24±4 y) completed three trials in randomized order: (1) repeated sprints (five 30-s Wingate, 4.5-min recovery) on a cycle ergometer (SIT Legs ); (2) 50-min continuous cycling at 65% V̇O 2 max (END); (3) repeated sprints on an arm-crank ergometer (SIT Arms ). Respiratory gas exchange was assessed before and during exercise, and at eight points across 22h of recovery. Metabolic rate was elevated to greater extent in the first 8h after SIT Legs than SIT Arms (by 0.8±1.1kJ/min, p=0.03), and tended to be greater than END (by 0.7±1.3kJ/min, p=0.08). Total 24-h energy use (exercise+recovery) was equivalent between SIT Legs and END (p = 0.55), and SIT Legs and SIT Arms (p=0.13), but 24-h fat use was higher with SIT Legs than END (by 26±38g, p=0.04) and SIT Arms (by 27±43g, p=0.05), whereas carbohydrate use was higher with SIT Arms than SIT Legs (by 32±51g, p=0.05). Plasma volume-corrected post-exercise and fasting glucose and lipid concentrations were unchanged. Despite much lower energy use during five sprints than 50-min continuous exercise, 24-h energy use was not reliably different. However, (i) fat metabolism was greater after sprints, and (ii) carbohydrate metabolism was greater in the hours after sprints with arms than legs, while 24-h energy usage was comparable. Thus, sprints using arms or legs may be an important adjunct exercise mode for metabolic health. Copyright © 2016 Elsevier Inc. All rights reserved.
Resnik, Linda; Klinger, Shana
2017-11-01
(1) Describe study attrition; (2) identify reasons for attrition, and (3) discuss implications for prosthetic prescription and design of future device studies. Design and methodological procedures used: Completion phase (during in-laboratory training, after training, or home use) was identified for 42 participants. Qualitative data were analyzed to identify attrition reasons. Reasons were classified as related to the DEKA arm, or not. Study attrition was 57%, with 43% completing the full study. Attrition during the in-laboratory portion was 21%. Reasons for attrition were related to the DEKA arm entirely or in-part for 42%, 25%, respectively. Most common reasons were scheduling/personal (54%); device weight (29%); and dissatisfaction with device (25%). About 21% withdrew because of concerns about compliance with study protocol. This study had a high attrition rate with evidence of selective attrition due to device characteristics. Strategies to minimize attrition and the importance of tracking reasons for withdrawal are discussed. Given that retention could be an indicator of willingness to adopt the DEKA arm, findings suggest that it would be prudent to provide patients with the opportunity to train with the DEKA arm before a decision is made regarding the appropriateness of the device for the patient. Implications for Rehabilitation This study of a new upper limb prosthesis, the DEKA arm, had a 57% attrition rate with evidence of selective attrition due to characteristics of the DEKA arm. Findings point to the need for strategies to minimize attrition in future studies. Findings also illustrate the importance of tracking reasons for subject withdrawal in longitudinal prosthesis device studies. Because participant retention in longitudinal device studies may be an indicator of future willingness to adopt a device, our findings suggest that it would be prudent to provide patients with the opportunity to train with the DEKA arm before a final decision is made regarding the appropriateness of the device for the patient.
Differential expression of the skeletal muscle proteome in grazed cattle.
Shibata, M; Matsumoto, K; Oe, M; Ohnishi-Kameyama, M; Ojima, K; Nakajima, I; Muroya, S; Chikuni, K
2009-08-01
The objective of this study was to investigate the differences in the muscle proteome of grass-fed and grain-fed cattle. Eight Japanese Black Cattle 10 mo of age were separated randomly into 2 groups: 1) grazing (grass-fed) and 2) concentrate (grain-fed) groups. All cattle were first housed individually in a stall barn and fed a combination of concentrate ad libitum and Italian ryegrass hay until 21 mo of age. After this control period, the 4 grass-fed cattle were placed on outdoor pasture, whereas the other 4 grain-fed cattle continued on the concentrate diet. The cattle were slaughtered at 27 mo of age, and tissues from the semitendinosus muscle were obtained for use in proteome analysis. Differential expression of muscle proteins in the 2 groups was carried out using 2-dimensional gel electrophoresis (2DE) and Western blot analyses, with subsequent mass spectrometry. Approximately 200 individual protein spots were detected and compared in each group using 2DE, of which 20 and 9 spots, respectively, showed differences in the spot intensity for the sarcoplasmic fraction and myofibrillar fraction. In the grazing group, the relative intensity of spots was significantly greater for adenylate kinase 1 and myoglobin in the sarcoplasmic fraction, and for slow-twitch myosin light chain 2 in the myofibrillar fraction (P < 0.05), than the concentrate group. The relative spot intensity of several glycolytic enzymes was significantly greater in the grazing group, such as beta-enolase 3, fructose-1,6-bisphosphate aldolase A, triosephosphate isomerase, and heat shock 27 kDa protein (P < 0.05). Moreover, significantly greater slow twitch of troponin T, troponin I, and myosin heavy chain of semitendinosus muscle was detected in the grazing group than in the concentrate group using Western blot analysis (P < 0.05). Several previous reports have described that the slow-twitch muscle contents affect elements of nutrition, flavor, and food texture of meat. This study revealed muscle fiber type conversion to slow-twitch tissues from fast-twitch tissues occurring with change in the energy metabolic enzyme when cattle were grazed in the latter fattening period. Although analyses of the influence on elements of nutrition, flavor, and food texture were not done for this study, these results show that slow-twitch converted muscle resulting from the grazing of cattle might modify several meat characteristics.
Benvenga, Mark J.; Chaney, Stephen F.; Baez, Melvyn; Britton, Thomas C.; Hornback, William J.; Monn, James A.; Marek, Gerard J.
2018-01-01
There is substantial evidence that glutamate can modulate the effects of 5-hydroxytryptamine2A (5-HT2A) receptor activation through stimulation of metabotropic glutamate2/3 (mGlu2/3) receptors in the prefrontal cortex. Here we show that constitutive deletion of the mGlu2 gene profoundly attenuates an effect of 5-HT2A receptor activation using the mouse head twitch response (HTR). MGlu2 and mGlu3 receptor knockout (KO) as well as age-matched ICR (CD-1) wild type (WT) mice were administered (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and observed for head twitch activity. DOI failed to produce significant head twitches in mGlu2 receptor KO mice at a dose 10-fold higher than the peak effective dose in WT or mGlu3 receptor KO mice. In addition, the mGlu2/3 receptor agonist LY379268, and the mGlu2 receptor positive allosteric modulator (PAM) CBiPES, potently blocked the HTR to DOI in WT and mGlu3 receptor KO mice. Conversely, the mGlu2/3 receptor antagonist LY341495 (10 mg/kg) increased the HTR produced by DOI (3 mg/kg) in mGlu3 receptor KO mice. Finally, the mGlu2 receptor potentiator CBiPES was able to attenuate the increase in the HTR produced by LY341495 in mGlu3 receptor KO mice. Taken together, all of these results are consistent with the hypothesis that that DOI-induced head twitches are modulated by mGlu2 receptor activation. These results also are in keeping with a critical autoreceptor function for mGlu2 receptors in the prefrontal cortex with differential effects of acute vs. chronic perturbation (e.g., constitutive mGlu2 receptor KO mice). The robust attenuation of DOI-induced head twitches in the mGlu2 receptor KO mice appears to reflect the critical role of glutamate in ongoing regulation of 5-HT2A receptors in the prefrontal cortex. Future experiments with inducible knockouts for the mGlu2 receptor and/or selective mGlu3 receptor agonists/PAMs/antagonists could provide an important tools in understanding glutamatergic modulation of prefrontal cortical 5-HT2A receptor function. PMID:29599719
Skeletal muscle responses to unloading with special reference to man
NASA Technical Reports Server (NTRS)
Dudley, G. A.; Hather, B. M.; Buchanan, P.
1992-01-01
The limited space flight data suggest that exposure to microgravity decreases muscle strength in humans and muscle mass in lower mammals. Several earth-based models have been used to address the effect of unloading on the human neuromuscular system due to the limited access of biological research to long-term space flight. Bedrest eliminates body weight bearing of both lower limbs. Unilateral lower limb suspension (ULLS), where all ambulatory activity is performed on crutches with an elevated sole on the shoe of one foot, has recently been used to unload one lower limb. The results from studies using these two models support their efficacy. The decrease in strength of m. quadriceps femoris, for example, after four to six weeks of bedrest, ULLS or space flight is 20 to 25 percent. The results from the earth-based studies show that this response can be attributed in part to a decrease in the cross-sectional area of the KE which reflects muscle fiber atrophy. The results from the ground based studies also support the limited flight data and show that reductions in strength are larger in lower than upper limbs and in extensor than flexor muscle groups. They also raise issue with the generally held concept that postural muscle is most affected by unweighting. Slow-twitch fibers in lower limb muscles of mixed fiber type composition and muscle composed mainly of slow-twitch fibers do not preferentially atrophy after bedrest or ULLS. Taken together, the data suggest that unloading causes remarkable adaptations in the neuromuscular system of humans. It should be appreciated, however, that this area of research is in its infancy.
Rodgers, Helen; Shaw, Lisa; Bosomworth, Helen; Aird, Lydia; Alvarado, Natasha; Andole, Sreeman; Cohen, David L; Dawson, Jesse; Eyre, Janet; Finch, Tracy; Ford, Gary A; Hislop, Jennifer; Hogg, Steven; Howel, Denise; Hughes, Niall; Krebs, Hermano Igo; Price, Christopher; Rochester, Lynn; Stamp, Elaine; Ternent, Laura; Turner, Duncan; Vale, Luke; Warburton, Elizabeth; van Wijck, Frederike; Wilkes, Scott
2017-07-20
Loss of arm function is a common and distressing consequence of stroke. We describe the protocol for a pragmatic, multicentre randomised controlled trial to determine whether robot-assisted training improves upper limb function following stroke. Study design: a pragmatic, three-arm, multicentre randomised controlled trial, economic analysis and process evaluation. NHS stroke services. adults with acute or chronic first-ever stroke (1 week to 5 years post stroke) causing moderate to severe upper limb functional limitation. Randomisation groups: 1. Robot-assisted training using the InMotion robotic gym system for 45 min, three times/week for 12 weeks 2. Enhanced upper limb therapy for 45 min, three times/week for 12 weeks 3. Usual NHS care in accordance with local clinical practice Randomisation: individual participant randomisation stratified by centre, time since stroke, and severity of upper limb impairment. upper limb function measured by the Action Research Arm Test (ARAT) at 3 months post randomisation. upper limb impairment (Fugl-Meyer Test), activities of daily living (Barthel ADL Index), quality of life (Stroke Impact Scale, EQ-5D-5L), resource use, cost per quality-adjusted life year and adverse events, at 3 and 6 months. Blinding: outcomes are undertaken by blinded assessors. Economic analysis: micro-costing and economic evaluation of interventions compared to usual NHS care. A within-trial analysis, with an economic model will be used to extrapolate longer-term costs and outcomes. Process evaluation: semi-structured interviews with participants and professionals to seek their views and experiences of the rehabilitation that they have received or provided, and factors affecting the implementation of the trial. allowing for 10% attrition, 720 participants provide 80% power to detect a 15% difference in successful outcome between each of the treatment pairs. Successful outcome definition: baseline ARAT 0-7 must improve by 3 or more points; baseline ARAT 8-13 improve by 4 or more points; baseline ARAT 14-19 improve by 5 or more points; baseline ARAT 20-39 improve by 6 or more points. The results from this trial will determine whether robot-assisted training improves upper limb function post stroke. ISRCTN, identifier: ISRCTN69371850 . Registered 4 October 2013.
NASA Technical Reports Server (NTRS)
Jones, Jeff; Hoffman, Ron; Harvey, Craig; Bowen, C. K.; Hudy, C. E.; Tuxhorn, Jennifer; Gernhardt, Mike; Scheuring, Richard A.
2007-01-01
The goal of this study is to determine the role that moisture plays in the injury to the fingers and fingernails during EVA training operations in the Neutral Buoyancy Laboratory. Current Extravehicular Mobility Unit (EMU, with a PLSS) as configured in the NBL was used for all testing and a vent tube was extended down a single arm of the crewmember during the test; vent tube was moved between left and right arm to serve as experimental condition being investigated and the other arm served as control condition.
Hutchinson, Douglas T
2014-06-01
The current state of research of upper extremity prosthetic devices is focused on creating a complete prosthesis with full motor and sensory function that will provide amputees with a near-normal human arm. Although advances are being made rapidly, many hurdles remain to be overcome before a functional, so-called bionic arm is a reality. Acquiring signals via nerve or muscle inputs will require either a reliable wireless device or direct wiring through an osseous-integrated implant. The best way to tap into the "knowledge" present in the peripheral nerve is yet to be determined. Copyright 2014 by the American Academy of Orthopaedic Surgeons.
Equivalence Reliability among the FITNESSGRAM[R] Upper-Body Tests of Muscular Strength and Endurance
ERIC Educational Resources Information Center
Sherman, Todd; Barfield, J. P.
2006-01-01
This study was designed to investigate the equivalence reliability between the suggested FITNESSGRAM[R] muscular strength and endurance test, the 90[degrees] push-up (PSU), and alternate FITNESSGRAM[R] tests of upper-body strength and endurance (i.e., modified pull-up [MPU], flexed-arm hang [FAH], and pull-up [PU]). Children (N = 383) in Grades 3…
Factors in Maximal Power Production and in Exercise Endurance Relative to Maximal Power
1988-10-13
Mechanical efficiency of fast -and slow - twitch muscle fibers in mnan during cycling. J. ADLi Physiol.:Reespirat. Environ. Exercise Physiol. 47: 263- 267...R.S. Hikida, and F.C. Hagerman. Myofibrillar ATPase activity in hu-man muscle fast - twitch subtypes. Histochem. 78: 405-408, 1983. 31. Suzuki, Y...capacity and muscle fibre composition in mnan. J. Physiol (London) 354: 73P, 1984. 21. Margaria, R., P. Aghemo, and E. Rovelli. Measurement of muscular
Conversion of muscle fiber types in regenerating chicken muscles following cross-reinnervation.
Kikuchi, T; Akiba, T; Ashmore, C R
1986-01-01
Slow-tonic anterior latissimus dorsi (ALD) and fast-twitch posterior latissimus dorsi (PLD) muscles of 7 to 10-day-old White Leghorn chickens were crushed and allowed to be reinnervated by their own nerve, or crushed and transplanted to the other side and allowed to be reinnervated by the nerve of the side to which they were transplanted. Following transplantation, changes in the weight of the muscle, fiber-type composition and innervation pattern during regeneration were investigated. Normal growth rate of PLD was about twice that of ALD. Regenerating PLD, however, atrophied rapidly after crushing and denervation whether innervated by its own nerve or the other nerve type, whereas ALD reinnervated by its own nerve showed marked hypertrophy. PLD fibers transformed rapidly to fast-twitch alpha or slow-tonic (ST) fibers when they were reinnervated by PLD or ALD nerve, respectively. When ALD fibers were reinnervated by their own nerve, they differentiated into ST fibers that were surrounded by smaller immature fibers. ALD fibers were, however, resistant to complete control by fast-twitch PLD nerve and contained a large number of slow fibers (ST and beta) long after transplantation. Slow fibers in regenerates were initially multiply innervated, but later transformed into fast-twitch alpha fibers that were focally innervated. The mode of differentiation and innervation pattern of different muscle fiber types in regenerating muscles are discussed.
Changes of contractile responses due to simulated weightlessness in rat soleus muscle
NASA Astrophysics Data System (ADS)
Elkhammari, A.; Noireaud, J.; Léoty, C.
1994-08-01
Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orans, Jillian; Johnson, Michael D.L.; Coggan, Kimberly A.
Several bacterial pathogens require the 'twitching' motility produced by filamentous type IV pili (T4P) to establish and maintain human infections. Two cytoplasmic ATPases function as an oscillatory motor that powers twitching motility via cycles of pilus extension and retraction. The regulation of this motor, however, has remained a mystery. We present the 2.1 {angstrom} resolution crystal structure of the Pseudomonas aeruginosa pilus-biogenesis factor PilY1, and identify a single site on this protein required for bacterial translocation. The structure reveals a modified {beta}-propeller fold and a distinct EF-hand-like calcium-binding site conserved in pathogens with retractile T4P. We show that preventing calciummore » binding by PilY1 using either an exogenous calcium chelator or mutation of a single residue disrupts Pseudomonas twitching motility by eliminating surface pili. In contrast, placing a lysine in this site to mimic the charge of a bound calcium interferes with motility in the opposite manner - by producing an abundance of nonfunctional surface pili. Our data indicate that calcium binding and release by the unique loop identified in the PilY1 crystal structure controls the opposing forces of pilus extension and retraction. Thus, PilY1 is an essential, calcium-dependent regulator of bacterial twitching motility.« less
Fisher, L E; Tyler, D J; Anderson, J S; Triolo, R J
2009-08-01
This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 +/- 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 N m. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 N m in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications.
Fisher, L E; Tyler, D J; Anderson, J S; Triolo, R J
2010-01-01
This study describes the stability and selectivity of four-contact spiral nerve-cuff electrodes implanted bilaterally on distal branches of the femoral nerves of a human volunteer with spinal cord injury as part of a neuroprosthesis for standing and transfers. Stimulation charge threshold, the minimum charge required to elicit a visible muscle contraction, was consistent and low (mean threshold charge at 63 weeks post-implantation: 23.3 ± 8.5 nC) for all nerve-cuff electrode contacts over 63 weeks after implantation, indicating a stable interface with the peripheral nervous system. The ability of individual nerve-cuff electrode contacts to selectively stimulate separate components of the femoral nerve to activate individual heads of the quadriceps was assessed with fine-wire intramuscular electromyography while measuring isometric twitch knee extension moment. Six of eight electrode contacts could selectively activate one head of the quadriceps while selectively excluding others to produce maximum twitch responses of between 3.8 and 8.1 Nm. The relationship between isometric twitch and tetanic knee extension moment was quantified, and selective twitch muscle responses scaled to between 15 and 35 Nm in tetanic response to pulse trains with similar stimulation parameters. These results suggest that this nerve-cuff electrode can be an effective and chronically stable tool for selectively stimulating distal nerve branches in the lower extremities for neuroprosthetic applications. PMID:19602729
Carpinella, Ilaria; Cattaneo, Davide; Bertoni, Rita; Ferrarin, Maurizio
2012-05-01
In this pilot study, we compared two protocols for robot-based rehabilitation of upper limb in multiple sclerosis (MS): a protocol involving reaching tasks (RT) requiring arm transport only and a protocol requiring both objects' reaching and manipulation (RMT). Twenty-two MS subjects were assigned to RT or RMT group. Both protocols consisted of eight sessions. During RT training, subjects moved the handle of a planar robotic manipulandum toward circular targets displayed on a screen. RMT protocol required patients to reach and manipulate real objects, by moving the robotic arm equipped with a handle which left the hand free for distal tasks. In both trainings, the robot generated resistive and perturbing forces. Subjects were evaluated with clinical and instrumental tests. The results confirmed that MS patients maintained the ability to adapt to the robot-generated forces and that the rate of motor learning increased across sessions. Robot-therapy significantly reduced arm tremor and improved arm kinematics and functional ability. Compared to RT, RMT protocol induced a significantly larger improvement in movements involving grasp (improvement in Grasp ARAT sub-score: RMT 77.4%, RT 29.5%, p=0.035) but not precision grip. Future studies are needed to evaluate if longer trainings and the use of robotic handles would significantly improve also fine manipulation.
Cornwell, Andrew S.; Liao, James Y.; Bryden, Anne M.; Kirsch, Robert F.
2013-01-01
We have developed a set of upper extremity functional tasks to guide the design and test the performance of rehabilitation technologies that restore arm motion in people with high tetraplegia. Our goal was to develop a short set of tasks that would be representative of a much larger set of activities of daily living while also being feasible for a unilateral user of an implanted Functional Electrical Stimulation (FES) system. To compile this list of tasks, we reviewed existing clinical outcome measures related to arm and hand function, and were further informed by surveys of patient desires. We ultimately selected a set of five tasks that captured the most common components of movement seen in these tasks, making them highly relevant for assessing FES-restored unilateral arm function in individuals with high cervical spinal cord injury (SCI). The tasks are intended to be used when setting design specifications and for evaluation and standardization of rehabilitation technologies under development. While not unique, this set of tasks will provide a common basis for comparing different interventions (e.g., FES, powered orthoses, robotic assistants) and testing different user command interfaces (e.g., sip-and-puff, head joysticks, brain-computer interfaces). PMID:22773199
Adamovich, Sergei; Fluet, Gerard G.; Merians, Alma S.; Mathai, Abraham; Qiu, Qinyin
2010-01-01
Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic / virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subject's hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study. PMID:19666345
Miller, Michelle; Wong, Wing Ki; Wu, Jing; Cavenett, Sally; Daniels, Lynne; Crotty, Maria
2008-10-01
To evaluate the utility of body mass index (BMI) and corrected-arm-muscle area (CAMA) as measures of nutritional health for lower-limb amputees attending prosthetics clinics. Cross-sectional study. Prosthetics clinic in Australia. Unilateral lower-extremity amputees (N=58; age range, 21-91y; 37 transtibial, 21 transfemoral) attending a regional prosthetics clinic between May and November 2003. Not applicable. Weight (without prosthesis), corrected and uncorrected for the amputated limb was used with height estimated from knee height to calculate corrected BMI (cBMI) and uncorrected BMI (uBMI). CAMA was calculated using the mean of triplicate mid-upper-arm circumference (MUAC) and triceps skinfold thickness (TST) measurements. The Mini Nutritional Assessment (MNA) and Assessment of Quality of Life were administered according to recommended protocols. The Pearson correlation was used to determine the strength and significance of associations between variables, and bivariate regression analyses were performed to determine whether an association existed between the nutritional variables (BMI, CAMA, MNA) and quality of life (QOL). There were no statistically significant differences in the measures of nutritional health according to site (transtibial, transfemoral) of amputation. MUAC, TST, and CAMA all showed moderate to high positive correlations (r range, .541-.782) with both cBMI and uBMI. The strength of the relationship between the MNA and cBMI/uBMI was weaker (r=.383, r=.380, respectively) but remained positive and statistically significant (P=.003). QOL was not associated with cBMI or uBMI but was related to CAMA (beta=-.132; P=.030) and MNA (beta=-.561; P=.017). For persons with unilateral lower-extremity amputation, measurement of upper-arm anthropometry may be a more useful indicator of nutritional health and its consequences than BMI.
Eshoj, H; Juul-Kristensen, Birgit; Jørgensen, Rene Gam Bender; Søgaard, Karen
2017-02-01
For the lower limbs, the Nintendo Wii Balance Board (NWBB) has been widely used to measure postural control. However, this has not been performed for upper limb measurements. Further, the NWBB has shown to produce more background noise with decreasing loads, which may be of concern when used for upper limb testing. The aim was to investigate reproducibility and validity of the NWBB. A test-retest design was performed with 68 subjects completing three different prone lying, upper limb weight-bearing balance tasks on a NWBB: two-arms, eyes closed (1) one-arm, non-dominant/non-injured (2) and one-arm, dominant/injured (3). Each task was repeated three times over the course of two test sessions with a 30-min break in between. Further, the level of background noise from a NWBB was compared with a force platform through systematic loading of both boards with increasing deadweights ranging from 5 to 90kg. Test-retest reproducibility was high with ICCs ranging from 0.95 to 0.97 (95% CI 0.92 to 0.98). However, systematic bias and tendencies for funnel effects in the Bland Altman plots for both one-armed tests were present. The concurrent validity of the NWBB was low (CCC 0.17 (95% CI 0.12-0.22)) due to large differences between the NWBB and force platform in noise sensitivity at low deadweights (especially below 50kg). The NWBB prone lying, shoulder sensorimotor control test was highly reproducible. Though, concurrent validity of the NWBB was poor compared to a force platform. Further investigation of the impact of the background noise, especially at low loads, is needed. Copyright © 2016 Elsevier B.V. All rights reserved.
Hefter, Harald; Rosenthal, Dietmar
2017-03-01
It has been hypothesized that altered trunk movements during gait in post-stroke patients or children with cerebral palsy are compensatory to lower limb impairment. Improvement of trunk movements and posture after injections of botulinum toxin into the affected arm would be at variance with this hypothesis and hint towards a multifactorial trunk control deficit. Clinical gait analysis was performed in 11 consecutively recruited hemiplegic patients immediately before and 4weeks after a botulinum toxin type A-injection into the affected arm. Kinematic data were collected using an 8 camera optical motion-capturing system and reflective skin-markers were attached according to a standard plug-in-gait model. Deviation of the trunk in lateral and forward direction and the trajectory of the C7-marker in a sacrum-fixed horizontal plane were analyzed in addition to classical gait parameters. The Wilson-signed-rank test was used for pre/post-botulinum toxin comparisons. After botulinum toxin injections a significant improvement of forearm flexion scores from 2.57 to 2.0 (p<0.014), and a reduced lateral deviation of the upper trunk from 3.5degrees to 2.5degrees (p<0.014) were observed. Free-walkers tended to walk faster (p<0.046, 1-sided), with reduced pre-swing duration of both legs and an increased step length of the non-affected leg. The C7-marker trajectory was shifted towards the midline. Injections of botulinum toxin into the affected arm of hemiplegic patients improve abnormal trunk lateral flexion. This shift of the center of mass of the upper body towards the midline improves various gait parameters including gait speed. Copyright © 2017. Published by Elsevier Ltd.
Byun, Sang-Young; Kwon, Soon-Hyo; Heo, Su-Hak; Shim, Jae-Seong; Du, Mi-Hee
2015-01-01
Background Cellulite is a 'cottage cheese-like' cutaneous change caused by subcutaneous fat bulging into the dermis that usually leads to cosmetic problems. Slimming cream containing 3.5% water-soluble caffeine and xanthenes exhibits a lipolytic effect with penetration into the dermis. Objective To evaluate the efficacy and safety of slimming cream for the treatment of cellulite. Methods Fifteen subjects with cellulite applied slimming cream to the thighs and inner side of the upper arms twice daily for 6 weeks. Efficacy was assessed using a standard visual scale, changes in the circumferences of the thighs and upper arms, and patient satisfaction by a questionnaire at baseline, week 3, and week 6. Safety was assessed by inquiring about adverse events through questionnaires. Results The standard visual scale score improved significantly by 0.49 points (19.8%) at week 6. Thigh and upper-arm circumferences decreased by 0.7 cm (1.7%) and 0.8 cm (2.3%), respectively, at week 6. Slight itching and transient flushing were commonly reported, but no serious adverse event occurred. Conclusion The slimming cream tested appears to be effective for the treatment of cellulitis without serious adverse effects. However, additional large clinical trials are required to confirm the efficacy and safety of slimming cream for the treatment of cellulitis. PMID:26082579
Akpolat, Tekin; Erdem, Emre; Aydogdu, Türkan
2012-01-01
Encouragement of home blood pressure (BP) monitoring has a great potential to improve hypertension control rates. The purpose of this study was to test validation of the Omron M3 Intellisense (HEM-7051-E) upper arm BP measuring monitor for self-measurement according to the European Society of Hypertension International Protocol revision 2010 (ESH-IP2) in stage 3-5 chronic kidney disease (CKD) patients. 66 patients having CKD stage 3-5 were included in the study. Nine consecutive measurements were made according to the ESH-IP2 protocol. The Omron M3 Intellisense device fulfills the validation criteria of the ESH-IP2 for stage 3-5 CKD patients. Although arterial stiffness can affect accurate BP measurement, there are limited data regarding the use of automated oscillometric devices in CKD. To our knowledge, this is the first study investigating validation of an oscillometric device in stage 3-5 predialysis CKD patients. This study validates the Omron M3 Intellisense upper arm device for stage 3-5 CKD patients. New validation studies investigating other oscillometric sphygmomanometers for CKD patients and involvement of nephrologists in these studies have great potential to increase patient care in CKD. Copyright © 2011 S. Karger AG, Basel.
Shang, Fujun; Zhu, Yizheng; Zhu, Zhenlai; Liu, Lei; Wan, Yi
2013-10-01
The aim of this study was to validate the iHealth BP5 wireless upper arm blood pressure (BP) monitor according to the European Society of Hypertension International Protocol (ESH-IP) revision 2010. The ESH-IP revision 2010 for validation of BP measuring devices in adults was followed precisely. A total of 99 pairs of test device and reference BP measurements (three pairs for each of the 33 participants) were obtained in the study. The device produced 71, 89, and 97 measurements within 5, 10, and 15 mmHg for systolic blood pressure (SBP) and 73, 90, and 99 mmHg for diastolic blood pressure (DBP), respectively. The mean ± SD device-observer difference was -1.21 ± 5.87 mmHg for SBP and -1.04 ± 5.28 mmHg for DBP. The number of participants with two or three device-observer differences within 5 mmHg was 25 for SBP and 28 for DBP. In addition, three participants had no device-observer difference within 5 mmHg for SBP and none of the participants had the same for DBP. According to the validation results on the basis of the ESH-IP revision 2010, the iHealth BP5 wireless upper arm BP monitor can be recommended for self/home measurement in an adult population.
Yip, Gabriel Wai-Kwok; So, Hung-Kwan; Li, Albert Martin; Tomlinson, Brian; Wong, Sik-Nin; Sung, Rita Yn-Tz
2012-04-01
The A&D TM-2430 ambulatory blood pressure (BP) monitor has been validated in adults but not in a young population. We sought to validate the device monitoring in children and adolescents, according to the British Hypertension Society (BHS) protocol. The A&D TM-2430 is an automated oscillometric upper-arm device for ambulatory BP monitoring. Nine consecutive measurements were taken in 61 children (mean age, 9.8 years; range, 5-15 years) according to the BHS criteria. Overseen by an independent supervisor, measurements were recorded by two observers blinded from each other's readings and from the device readings. The mean difference ± SD between the observers and device measurements was 0.73 ± 1.64 mmHg for systolic blood pressure (SBP) and -1.23 ± 1.65 mmHg for diastolic blood pressure (DBP), respectively, with an interobserver difference of 4 mmHg. The cumulative percentages of differences within 5, 10, and 15 mmHg were 89, 95, and 98% for SBP and 67, 88, and 98% for DBP. The device achieved a grade A rating for SBP and a B grade for DBP. The A&D TM-2430 upper-arm BP monitor has fulfilled the required BHS standards and can be recommended for measuring ambulatory BP in children and adolescent populations.
The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke.
Uswatte, G; Taub, E; Morris, D; Light, K; Thompson, P A
2006-10-10
Data from monkeys with deafferented forelimbs and humans after stroke indicate that tests of the motor capacity of impaired extremities can overestimate their spontaneous use. Before the Motor Activity Log (MAL) was developed, no instruments assessed spontaneous use of a hemiparetic arm outside the treatment setting. To study the MAL's reliability and validity for assessing real-world quality of movement (QOM scale) and amount of use (AOU scale) of the hemiparetic arm in stroke survivors. Participants in a multisite clinical trial completed a 30-item MAL before and after treatment (n = 106) or an equivalent no-treatment period (n = 116). Participants also completed the Stroke Impact Scale (SIS) and wore accelerometers that monitored arm movement for three consecutive days outside the laboratory. All were 3 to 12 months post-stroke and had mild to moderate paresis of an upper extremity. After an item analysis, two MAL tasks were eliminated. Revised participant MAL QOM scores were reliable (r =0.82). Validity was also supported. During the first observation period, the correlation between QOM and SIS Hand Function scale scores was 0.72. The corresponding correlation for QOM and accelerometry values was 0.52. Participant QOM and AOU scores were highly correlated (r = 0.92). The participant Motor Activity Log is reliable and valid in individuals with subacute stroke. It might be employed to assess the real-world effects of upper extremity neurorehabilitation and detect deficits in spontaneous use of the hemiparetic arm in daily life.