Sample records for upper atmosphere caused

  1. Upper atmosphere has cooled steadily for three decades

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-11-01

    Increasing amounts of greenhouse gases released by human activities do not just affect only the lower atmosphere: Scientists project that anthropogenic carbon emissions have caused a cooling trend in the upper atmosphere, between 200 and 400 kilometers, over the past few decades. Cooling in this atmospheric region can affect the operations of satellites and the orbits of space junk. However, data about cooling trends in the upper atmosphere are still incomplete, and better data are needed to confirm this projection.

  2. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  3. Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley.

    PubMed

    Rahul, P R C; Bhawar, R L; Ayantika, D C; Panicker, A S; Safai, P D; Tharaprabhakaran, V; Padmakumari, B; Raju, M P

    2014-01-14

    First ever 3-day aircraft observations of vertical profiles of Black Carbon (BC) were obtained during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted on 30(th) August, 4(th) and 6(th) September 2009 over Guwahati (26° 11'N, 91° 44'E), the largest metropolitan city in the Brahmaputra River Valley (BRV) region. The results revealed that apart from the surface/near surface loading of BC due to anthropogenic processes causing a heating of 2 K/day, the large-scale Walker and Hadley atmospheric circulations associated with the Indian summer monsoon help in the formation of a second layer of black carbon in the upper atmosphere, which generates an upper atmospheric heating of ~2 K/day. Lofting of BC aerosols by these large-scale circulating atmospheric cells to the upper atmosphere (4-6 Km) could also be the reason for extreme climate change scenarios that are being witnessed in the BRV region.

  4. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summaries 1997- 1999. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1999 An Assessment Report.

  5. The Geospace Dynamics Observatory; a Mission of Discovery for Geospace

    NASA Technical Reports Server (NTRS)

    Spann, James; Paxton, Larry; Burch, James; Reardon, Patrick; Krause, Linda; Gallagher, Dennis; Hopkins, Randall

    2013-01-01

    A few examples of potential advances include: 1. Unparalleled advances in the connection of the upper atmosphere to the Sun. In the aurora and lower latitudes, extending the duration of uninterrupted images would advance understanding of the transfer of energy from the Sun to the upper atmosphere and the response of the space environment. 2. Advances in the influence of waves and tides on the upper atmosphere. Increasing both the signal to noise and the duration ofthe observations would reveal contributions that are not identifiable using other approaches. 3. The ability to probe the mechanisms that control the evolution of planetary atmospheres. The vantage point provided by this mission allows the flux of hydrogen (which is tied to the escape of water from a planet) to be mapped globally. It also allows unique observations of changes in the atmospheric structure and their causes.

  6. The Escaping Upper Atmospheres of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Davidson, Eric; Jones, Gabrielle; Uribe, Ana; Carson, Joseph

    2017-01-01

    Hot Jupiters are massive gaseous planets which orbit closely to their parent star. The strong stellar irradiation at these small orbital separations causes the temperature of the upper atmosphere of the planet to rise. This can cause the planet's atmosphere to escape into space, creating an exoplanet outflow. We ascertained which factors determine the presence and structure of these outflows by creating one dimensional simulations of the density, pressure, velocity, optical depth, and neutral fraction of hot Jupiter atmospheres. This was done for planets of masses and radii ranging from 0.5-1.5 Mj and 0.5-1.5 Rj. We found the outflow rate to be highest for a planet of 0.5 Mj and 1.5 Rj at 5.3×10-14 Mj/Yr. We also found that the higher the escape velocity, the lower the chance of the planet having an outflow.

  7. Study of internal gravity waves in the meteor zone

    NASA Technical Reports Server (NTRS)

    Gavrilov, N. M.

    1987-01-01

    An important component of the dynamical regime of the atmosphere at heights near 100 km are internal gravity waves (IGW) with periods from about 5 min to about 17.5 hrs which propagate from the lower atmospheric layers and are generated in the uppermost region of the atmosphere. As IGW propagate upwards, their amplitudes increase and they have a considerable effect on upper atmospheric processes: (1) they provide heat flux divergences comparable with solar heating; (2) they influence the gaseous composition and produce wave variations of the concentrations of gaseous components and emissions of the upper atmosphere; and (3) they cause considerable acceleration of the mean stream. It was concluded that the periods, wavelengths, amplitudes and velocities of IGW propagation in the meteor zone are now measured quite reliably. However, for estimating the influence of IGW on the thermal regime and the circulation of the upper atmosphere these parameters are not as important as the values of wave fluxes of energy, heat, moment and mass.

  8. Preliminary Results on Mars and the Siding Spring Meteor Shower from MAVEN’s Imaging UV Spectrograph

    NASA Astrophysics Data System (ADS)

    Deighan, Justin; Schneider, Nicholas

    2015-04-01

    The MAVEN mission to Mars is designed to study the upper atmosphere and its response to external drivers, searching for clues to the cause of long-term atmospheric loss. MAVEN carries the Imaging UV Spectrograph (IUVS) for remote sensing studies of the atmosphere through vertical scans from the limb through the corona, UV imaging of the planet and stellar occultations. Each observational mode has successfully observed the spectral features and spatial distributions as intended, confirming and expanding our understanding of the Mars upper atmosphere as observed by the Mariner spacecraft and Mars Express. Furthermore, IUVS witnessed the aftermath of an intense meteor shower on Mars caused by Comet Siding Spring. For a period of many hours, the planet’s UV spectrum was dominated by emission from ionized magnesium deposited by meteor ablation in the upper atmosphere. Initial results from the originally-planned Mars observations include:• Significant persistent structures in the thermospheric day glow emissions, dependent primarily on solar zenith angle, along with significant variability on daily timescales• Nitric oxide nightglow and low-level auroral emissions of substantially greater nightside extent than previously seen• The first vertical profiles of the D/H ratio in the atmosphere and their evolution with Mars season• The most complete maps and vertical profiles of H, C and O in the Mars corona• The first global snapshot of the middle atmosphere obtained by a day-long stellar occultation campaignOther results from the missions’s preliminary phases will be included.

  9. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  10. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  11. Observations of seasonal variations in atmospheric greenhouse trapping and its enhancement at high sea surface temperature

    NASA Technical Reports Server (NTRS)

    Hallberg, Robert; Inamdar, Anand K.

    1993-01-01

    Greenhouse trapping is examined theoretically using a version of the radiative transfer equations that demonstrates how atmospheric greenhouse trapping can vary. Satellite observations of atmospheric greenhouse trapping are examined for four months representing the various seasons. The cause of the super greenhouse effect at the highest SSTs is examined, and four processes are found to contribute. The middle and upper troposphere must be particularly moist and the temperature lapse rate must be increasingly unstable over the warmest regions to explain the observed distribution of atmospheric greenhouse trapping. Since the highest SSTs are generally associated with deep convection, this suggests that deep convection acts to moisten the middle and upper troposphere in regions of the highest SSTs relative to other regions. The tropical atmospheric circulation acts to both increase the temperature lapse rate and greatly increase the atmospheric water vapor concentration with spatially increasing SST.

  12. Atmospheric Photochemistry

    NASA Technical Reports Server (NTRS)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  13. Preface to Long-term trends in the upper atmosphere and ionosphere

    NASA Astrophysics Data System (ADS)

    Laštovička, J.; Lübken, F.-J.

    2017-10-01

    The anthropogenic emissions of greenhouse gases influence the atmosphere at nearly all altitudes between the ground and the topside ionosphere and upper thermosphere, thus affecting not only life on the surface, but also the space-based technological systems on which we increasingly rely. This special issue deals with long-term trends in the mesosphere, thermosphere, ionosphere, and partly also in the stratosphere, which are predominantly (but not only) caused by anthropogenic factors, particularly by the increasing concentration of carbon dioxide in the atmosphere. The special issue is based on selected papers from the 9th IAGA/ICMA/SCOSTEP workshop ;Long-Term Changes and Trends in the Atmosphere; held in September 2016 in Kühlungsborn, Germany. The 10th workshop will be held in June 2018 in Hefei, China.

  14. Thermospheric Airglow Perturbations in the Upper Atmosphere Caused by Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.

    2017-12-01

    The Midlatitude Allsky imaging Network for Geophysical Observations (MANGO) consists of seven allsky imagers distributed across the United States recording observations of large-scale airglow perturbations. The imagers are filtered at 630 nm, a forbidden oxygen line, in order to record the predominant source of airglow at 250 km altitude. While the ubiquitous airglow layer is challenging to observe when under uniform conditions, waves in the upper atmosphere cause ripples in the airglow layer which can easily be imaged by appropriate instrumentation. MANGO is the first network to record perturbations in the airglow layer on a continent-size scale. Large and Mid-scale Traveling Ionospheric Disturbances (LSTIDs and MSTIDs) are recorded that are caused by auroral forcing, mountain turbulence, and tidal variations. On August 25, airglow perturbations centered on the Hurricane Harvey path were observed by MANGO. These images and connections to other complimentary data sets such as GPS will be presented.

  15. Preliminary Results on Mars and the Siding Spring Meteor Shower from MAVEN's Imaging UV Spectrograph

    NASA Astrophysics Data System (ADS)

    Schneider, Nicholas

    2015-04-01

    The MAVEN mission to Mars is designed to study the upper atmosphere and its response to external drivers, searching for clues to the cause of long-term atmospheric loss. MAVEN carries the Imaging UV Spectrograph (IUVS) for remote sensing studies of the atmosphere through vertical scans from the limb through the corona, UV imaging of the planet and stellar occultations. Each observational mode has successfully observed the spectral features and spatial distributions as intended, confirming and expanding our understanding of the Mars upper atmosphere as observed by the Mariner spacecraft and Mars Express. Furthermore, IUVS witnessed the aftermath of an intense meteor shower on Mars caused by Comet Siding Spring. For a period of many hours, the planet's UV spectrum was dominated by emission from ionized magnesium deposited by meteor ablation in the upper atmosphere. Initial results from the originally-planned Mars observations include: • Significant persistent structures in the thermospheric day glow emissions, dependent primarily on solar zenith angle, along with significant variability on daily timescales; • Nitric oxide nightglow and low-level auroral emissions of substantially greater nightside extent than previously seen; • Confirmation of N2 emission in the VK band, as first reported by MEX/SPICAM; • The first vertical profiles of the D/H ratio in the atmosphere and their evolution with Mars season; • The most complete maps and vertical profiles of H, C and O in the Mars corona; • The first global snapshot of the middle atmosphere obtained by a day-long stellar occultation campaign; • Global ozone maps spanning several months of seasonal evolution. Other results from the missions's preliminary phases will be included.

  16. Lightning driven EMP in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Rowland, H. L.; Fernsler, R. F.; Huba, J. D.; Bernhardt, P. A.

    1995-01-01

    Large lightning discharges can drive electromagnetic pulses (EMP) that cause breakdown of the neutral atmosphere between 80 and 95 km leading to order of magnitude increases in the plasma density. The increase in the plasma density leads to increased reflection and absorption, and limits the pulse strength that propagates higher into the ionosphere.

  17. ScienceCast 218: Twinkle Twinkle GPS

    NASA Image and Video Library

    2016-06-14

    Dynamic bubbles of ionization in Earth's upper atmosphere can cause GPS signals to "twinkle" like stars, affecting the quality of navigation on Earth below. NASA recently conducted a mission called CINDI to investigate this phenomenon.

  18. NIR-Driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.

    2017-01-01

    H2O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H2O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H2O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H2O signatures may be strengthened by a factor of a few, loosening the observational demands for a H2O detection.

  19. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1996.- An Assessment Report. It consists primarily of the Executive Summary and Chapter Summaries of the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 37, Scientific Assessment of Ozone Depletion: 1994, sponsored by NASA, the National Oceanic and Atmospheric Administration (NOAA), the UK Department of the Environment, the United Nations Environment Program, and the World Meteorological Organization. Other sections of Part 11 include summaries of the following: an Atmospheric Ozone Research Plan from NASA's Office of Mission to Planet Earth; summaries from a series of Space Shuttle-based missions and two recent airborne measurement campaigns; the Executive Summary of the 1995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, and the most recent evaluation of photochemical and chemical kinetics data (Evaluation No. 12 of the NASA Panel for Data Evaluation) used as input parameters for atmospheric models.

  20. Surface Wind and Upper-Ocean Variability Associated with the Madden-Julian Oscillation Simulated by the Coupled Ocean-Atmosphere Mesoscale Prediction System

    DTIC Science & Technology

    2013-07-01

    observed data at one location include variability caused by small -scale atmospheric convec- tion and wind variations that cannot be resolved by the... data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this...high-resolution nested grid (9 km) for the atmospheric component is used for the central Indian Ocean. While observational data are assimilated into the

  1. An interpretation of induced electric currents in long pipelines caused by natural geomagnetic sources of the upper atmosphere

    USGS Publications Warehouse

    Campbell, W.H.

    1986-01-01

    Electric currents in long pipelines can contribute to corrosion effects that limit the pipe's lifetime. One cause of such electric currents is the geomagnetic field variations that have sources in the Earth's upper atmosphere. Knowledge of the general behavior of the sources allows a prediction of the occurrence times, favorable locations for the pipeline effects, and long-term projections of corrosion contributions. The source spectral characteristics, the Earth's conductivity profile, and a corrosion-frequency dependence limit the period range of the natural field changes that affect the pipe. The corrosion contribution by induced currents from geomagnetic sources should be evaluated for pipelines that are located at high and at equatorial latitudes. At midlatitude locations, the times of these natural current maxima should be avoided for the necessary accurate monitoring of the pipe-to-soil potential. ?? 1986 D. Reidel Publishing Company.

  2. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model

    Treesearch

    W. J. Massman

    2006-01-01

    Advective flows within soils and snowpacks caused by pressure fluctuations at the upper surface of either medium can significantly influence the exchange rate of many trace gases from the underlying substrate to the atmosphere. Given the importance of many of these trace gases in understanding biogeochemical cycling and global change, it is crucial to quantify (as much...

  3. Mesospheric Dynamical Changes Induced by the Solar Proton Events in October-November 2003

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Roble, Raymond G.; Fleming, Eric L.

    2007-01-01

    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth that impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization, as well as dissociation processes, and ultimately produced odd hydrogen (HOx) and odd nitrogen (NOy). Significant short-lived ozone decreases (10-70%) followed these enhancements of HOx and NOy and led to a cooling of most of the lower mesosphere. This cooling caused an atmospheric circulation change that led to adiabatic heating of the upper mesosphere. Temperature changes up to plus or minus 2.6 K were computed as well as wind (zonal, meridional, vertical) perturbations up to 20-25% of the background winds as a result of 22 the solar protons. The solar proton-induced mesospheric temperature and wind perturbations diminished over a period of 4-6 weeks after the SPEs. The Joule heating in the mesosphere, induced by the solar protons, was computed to be relatively insignificant for these solar storms with most of the temperature and circulation perturbations caused by ozone depletion in the sunlit hemisphere.

  4. Upper Atmosphere Research Satellite (UARS): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A general overview of NASA's Upper Atmosphere Research Satellite (UARS) program is presented in a broad based informational publication. The UARS will be responsible for carrying out the first systematic, comprehensive study of the stratosphere and will furnish important new data on the mesosphere and thermosphere. The UARS mission objectives are to provide an increased understanding of energy input into the upper atmosphere; global photochemistry of the upper atmosphere; dynamics of the upper atmosphere; coupling among these processes; and coupling between the upper and lower atmosphere. These mission objectives are briefly described along with the UARS on-board instrumentation and related data management systems.

  5. Model simulations of the impact of energetic particle precipitation onto the upper and middle atmosphere

    NASA Astrophysics Data System (ADS)

    Wieters, Nadine; Sinnhuber, Miriam; Winkler, Holger; Berger, Uwe; Maik Wissing, Jan; Stiller, Gabriele; Funke, Bernd; Notholt, Justus

    Solar eruptions and geomagnetic storms can produce fluxes of high-energy protons and elec-trons, so-called Solar Energetic Particle Events, which can enter the Earth's atmosphere espe-cially in polar regions. These particle fluxes primarily cause ionisation and excitation in the upper atmosphere, and thereby the production of HOx and NOx species, which are catalysts for the reduction of ozone. To simulate such particle events, ionisation rates, calculated by the Atmospheric Ionization Module Osnabrück AIMOS (University of Osnabrück), have been implemented into the Bremen 3D Chemistry and Transport Model. To cover altitudes up to the mesopause, the model is driven by meteorological data, provided by the Leibniz-Institute Middle Atmosphere Model LIMA (IAP Kühlungsborn). For several electron and proton events during the highly solar-active period 2003/2004, model calculations have been carried out. To investigate the accordance of modeled to observed changes for atmospheric constituents like NO, NO2 , HNO3 , N2 O5 , ClO, and O3 , results of these calculations will be compared to measurements by the Michelson Interferometer for Passive Atmospheric Sounding MIPAS (ENVISAT) instrument. Computed model results and comparisons with measurements will be presented.

  6. NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.

    H{sub 2}O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H{sub 2}O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H{sub 2}O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapormore » mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H{sub 2}O signatures may be strengthened by a factor of a few, loosening the observational demands for a H{sub 2}O detection.« less

  7. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  8. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2015-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  9. Magnetic tornadoes as energy channels into the solar corona.

    PubMed

    Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert

    2012-06-27

    Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.

  10. An upper limit on Early Mars atmospheric pressure from small ancient craters

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.

    2012-12-01

    Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These craters are interbedded with river deposits, and so the atmospheric state they record corresponds to an era when Mars was substantially wetter than the present, probably >3.7 Ga. An important caveat is that our technique cannot exclude atmospheric collapse-reinflation cycles on timescales much shorter than the sedimentary basin-filling time, so it sets an upper limit on the density of a thick stable paleoatmosphere. We will discuss our results in relation to previous estimates of ancient atmospheric pressure, and place new constraints on models of Early Mars climate.

  11. Transport and Mixing in the Stratosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    2000-01-01

    Long-term changes in the composition of the atmosphere are known to have significant effects on atmospheric chemistry and stratospheric ozone. Increasing levels of greenhouse gases have the potential to change the global climate in the middle and upper atmospheres, as well as in the troposphere. Volcanic eruptions, El Nino events, and other natural variations can also cause changes in atmospheric composition and climate. Whether the causes are natural or manmade, changes in the global climate system can have impacts on human society. In order to understand and predict the consequences of these changes, and of control measures such as the Montreal Protocol, it is necessary to understand the complex interactions between radiation, chemistry, and dynamics in the atmosphere. Much of the uncertainty in our understanding of atmospheric processes comes from an incomplete understanding of atmospheric transport. A complete and self-consistent model of transport requires not only an understanding of trace-species transport, but also the transport of dynamically active quantities such as heat and potential vorticity. Therefore, the goal of the proposed research is to better understand large-scale transport and mixing processes in the middle atmosphere and troposphere.

  12. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  13. Present state of knowledge of the upper atmosphere: An assessment report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.

  14. The Upper Atmosphere; Threshold of Space.

    ERIC Educational Resources Information Center

    Bird, John

    This booklet contains illustrations of the upper atmosphere, describes some recent discoveries, and suggests future research questions. It contains many color photographs. Sections include: (1) "Where Does Space Begin?"; (2) "Importance of the Upper Atmosphere" (including neutral atmosphere, ionized regions, and balloon and investigations); (3)…

  15. The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizon's flyby in 2015.

  16. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, M. J.; Bosh, A. S.; Levine, S. E.

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event withmore » a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizon's flyby in 2015.« less

  17. MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.

    2017-09-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars has been operating in orbit for more than a full Martian year. Observations are dramatically changing our view of the Mars upper atmosphere system, which includes the upper atmosphere, ionosphere, coupling to the lower atmosphere, magnetosphere, and interactions with the Sun and the solar wind. The data are allowing us to understand the processes controlling the present-day structure of the upper atmosphere and the rates of escape of gas to space. These will tell us the role that escape to space has played in the evolution of the Mars atmosphere and climate.

  18. The NASA program on upper atmospheric research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The purpose of the NASA Upper Atmospheric Research Program is to develop a better understanding of the physical and chemical processes that occur in the earth's upper atmosphere with emphasis on the stratosphere.

  19. Aerosols in the Atmosphere: Sources, Transport, and Multi-decadal Trends

    NASA Technical Reports Server (NTRS)

    Chin, M.; Diehl, T.; Bian, H.; Kucsera, T.

    2016-01-01

    We present our recent studies with global modeling and analysis of atmospheric aerosols. We have used the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and satellite and in situ data to investigate (1) long-term variations of aerosols over polluted and dust source regions and downwind ocean areas in the past three decades and the cause of the changes and (2) anthropogenic and volcanic contributions to the sulfate aerosol in the upper tropospherelower stratosphere.

  20. Nonlinear coseismic infrasound waves in the upper atmosphere and ionosphere

    NASA Astrophysics Data System (ADS)

    Chum, J.; Liu, J. Y.; Cabrera, M. A.

    2017-12-01

    Vertical motion of the ground surface caused by seismic waves generates acoustic waves that propagate nearly vertically upward because of supersonic speed of seismic waves. As the air density decreases with height, the amplitude of acoustic waves increases to conserve the energy flux. If the initial perturbation is large enough (larger than 10 mm/s) and the period of waves is long (>10 s), then the amplitude reaches significant values in the upper atmosphere (e.g. oscillation velocities of the air particles become comparable with sound speed) and the nonlinear phenomena start to play an important role before the wave is dissipated. The nonlinear phenomena lead to changes of spectral content of the wave packet. The energy is transferred to lower frequencies, which can cause the formation of roughly bipolar N-shaped pulse in the vicinity of the epicenters (up to distance about 1000-1500 km) of strong, M>7, earthquakes. The nonlinear propagation is studied on the basis of numerical solution of continuity, momentum and heat equations in 1D (along vertical axis) for viscous compressible atmosphere. Boundary conditions on the ground are determined by real measurements of the vertical motion of the ground surface. The results of numerical simulations are in a good agreement with atmospheric fluctuations observed by continuous Doppler sounding at heights of about 200 km and epicenter distance around 800 km. In addition, the expected fluctuations of GSP-TEC are calculated.

  1. THE EMERGING RELATIONSHIP BETWEEN GROUND LEVEL OZONE AND LANDSCAPE CHARACTERISTICS

    EPA Science Inventory

    One of the most serious environmental health problems facing our society is that of poor air quality caused primarily by the formation of ground level ozone. Although natural ozone is beneficial in the upper atmosphere as a filter for ultraviolet radiation, ground- level ozone is...

  2. iss053e023915

    NASA Image and Video Library

    2017-09-15

    While orbiting 216 nautical miles (400 km) above earth, astronauts and cosmonauts had this view of aurora borealis above Canada. Auroras are a weather phenomenon caused by electrically-charged electrons and protons colliding with neutral atoms in the upper atmosphere. From space, the aurora show appears to blanket Earth with dancing lights.

  3. In situ measurements of Saturn’s ionosphere show that it is dynamic and interacts with the rings

    NASA Astrophysics Data System (ADS)

    Wahlund, J.-E.; Morooka, M. W.; Hadid, L. Z.; Persoon, A. M.; Farrell, W. M.; Gurnett, D. A.; Hospodarsky, G.; Kurth, W. S.; Ye, S.-Y.; Andrews, D. J.; Edberg, N. J. T.; Eriksson, A. I.; Vigren, E.

    2018-01-01

    The ionized upper layer of Saturn’s atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet’s rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings. Plasma densities reached up to 1000 cubic centimeters, and electron temperatures were below 1160 kelvin near closest approach. The density varied between orbits by up to two orders of magnitude. Saturn’s A- and B-rings cast a shadow on the planet that reduced ionization in the upper atmosphere, causing a north-south asymmetry.

  4. The upper atmosphere layer height changes as a precursor of the Padang earthquake on 30 September 2009

    NASA Astrophysics Data System (ADS)

    Ednofri, Ednofri; Wu, Falin; Ahmed, Wasiu Akande; Zhao, Yan

    2017-09-01

    This research investigated the potential of the upper atmosphere layer height changes as precursor of the Padang Earthquake on 30 September 2009. We analyzed the occurrence of atmospheric gravity wave (AGW) in all-sky imager (ASI) images and h'F in ionosonde mounted on Kototabang (0.2°S, 100.3°E, -10.4° magnetic latitude) Indonesia from seven days before and after the earthquake and found that there was an unusual evening in h'F variation on 24 and 29 September 2009. A positive h'F deviation on 24 and 29 September 2009 are with a maximum value of 42 and 31.5. For both these dates, the maximum h'F value reached 234 km and 261 km at 00:30 LT and 20:30 LT with the median value of 192 km and 229.5 km, respectively. The increase in h'F on 24 September 2009 before the midnight was caused by encouragement from AGW observed at a wavelength of OH bands ( 86 km) that happened a few minutes earlier. While the increase in h'F on 29 September 2009, suspected to be caused by the emergence of the AGW, though it cannot be proven because ASI does not operate due to rainy weather over Kototabang. For Dst index during the month of September 2009, there is nothing worth under -50 nT, this means a change of altitude h'F six and one days before the earthquake is not caused by the influence of magnetic storm but caused by AGW resulting from the epicenter.

  5. The robustness of using near-UV observations to detect and study exoplanet magnetic fields

    NASA Astrophysics Data System (ADS)

    Turner, J.; Christie, D.; Arras, P.; Johnson, R.

    2015-10-01

    Studying the magnetic fields of exoplanets will allow for the investigation of their formation history, evolution, interior structure, rotation period, atmospheric dynamics, moons, and potential habitability. We previously observed the transits of 16 exoplanets as they crossed the face of their host-star in the near-UV in an attempt to detect their magnetic fields (Turner et al. 2013; Pearson et al. 2014; Turner et al. in press). It was postulated that the magnetic fields of all our targets could be constrained if their near-UV light curves start earlier than in their optical light curves (Vidotto et al. 2011). This effect can be explained by the presence of a bow shock in front of the planet formed by interactions between the stellar coronal material and the planet's magnetosphere. Furthermore, if the shocked material in the magnetosheath is optically thick, it will absorb starlight and cause an early ingress in the near- UV light curve. We do not observe an early ingress in any of our targets (See Figure 1 for an example light curve in our study), but determine upper limits on their magnetic field strengths. All our magnetic field upper limits are well below the predicted magnetic field strengths for hot Jupiters (Reiners & Christensen 2010; Sanchez-Lavega 2004). The upper limits we derived assume that there is an absorbing species in the near-UV. Therefore, our upper limits cannot be trusted if there is no species to cause the absorption. In this study we simulate the atomic physics, chemistry, radiation transport, and dynamics of the plasma characteristics in the vicinity of a hot Jupiter using the widely used radiative transfer code CLOUDY (Ferland et al. 2013). Using CLOUDY we have investigated whether there is an absorption species in the near-UV that can exist to cause an observable early ingress. The number density of hydrogen in the bow shock was varied from 104 - -108 cm-3 and the output spectrum was calculated (Figure 2) and compared to the input spectrum to mimic a transit like event (Figure 3). We find that there isn't a species in the near-UV that can cause an absorption under the conditions (T = 1×106 K, semi-major axis of 0.02 AU, solar input spectrum, solar metallicity) of a transiting hot Jupiter (Figure 3). Therefore, our upper limits can not be trusted. We can eventually use CLOUDY to explore the escaping atmospheres from hot Jupiters. We can still use our data to constrain the atmospheric proprieties of the exoplanets.

  6. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Kshevetskii, S. P.

    2017-11-01

    The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.

  7. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which will be discussed in this presentation.

  8. The Influence of Solar Proton Events in Solar Cycle 23 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; vonKonig, Miriam; Anderson, John; Roble, Raymond G.; McPeters, Richard D.; Fleming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth's middle atmosphere. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HO(x) (H, OH, HO2) and NO(y) (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HO(x) increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HO, constituents. The NO(x) increases lead to long-lived stratospheric ozone changes because of the long lifetime of NO(y) constituents in this region. Solar cycle 23 was quite active with SPEs and very large fluxes of high energy protons occurred in July and November 2000, November 200 1, and April 2002. Smaller, but still substantial, proton fluxes impacted the Earth during other months in the 1997-2003 time period. The impact of the very large SPEs on the neutral middle atmosphere during solar cycle 23 will be discussed, including the HO(x), NO(y), ozone variations and induced atmospheric transport changes. Two multi-dimensional models, the Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model and the Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM), were used in computing the influence of the SPEs. The results of the GSFC 2D Model and the TIME-GCM will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  9. The great American solar eclipse of August 21, 2017; new understanding of the response of the upper atmosphere and ionosphere.

    NASA Astrophysics Data System (ADS)

    Drob, D. P.; Huba, J.; Kordella, L.; Earle, G. D.; Ridley, A. J.

    2017-12-01

    The great American solar eclipse of August 21, 2017 provides a unique opportunity to study the basic physics of the upper atmosphere and ionosphere. While the effects of solar eclipses on the upper atmosphere and ionosphere have been studied since the 1930s, and later matured in the last several decades, recent advances in first principles numerical models and multi-instrument observational capabilities continue to provide new insights. Upper atmospheric eclipse phenomena such as ionospheric conjugate effects and the generation of a thermospheric bow wave that propagates into the nightside are simulated with high-resolution first principles upper atmospheric models and compared with observations to validate this understanding.

  10. Late Veneer consequences on Venus' long term evolution

    NASA Astrophysics Data System (ADS)

    Gillmann, C.; Golabek, G.; Tackley, P. J.; Raymond, S. N.

    2017-12-01

    Modelling of Venus' evolution is able to produce scenarios consistent with present-day observation. These results are however heavily dependent on atmosphere escape and initial volatile inventory. This primordial history (the first 500 Myr) is heavily influenced by collisions. We investigate how Late Veneer impacts change the initial state of Venus and their consequences on its coupled mantle/atmosphere evolution. We focus on volatile fluxes: atmospheric escape and mantle degassing. Mantle dynamics is simulated using the StagYY code. Atmosphere escape covers both thermal and non-thermal processes. Surface conditions are calculated with a radiative-convective model. Feedback of the atmosphere on the mantle through surface temperature is included. Large impacts are capable of contributing to atmospheric escape, volatile replenishment and energy transfer. We use the SOVA hydrocode to take into account volatile loss and deposition during a collision. Large impacts are not numerous enough to substantially erode Venus' atmosphere. Single impacts don't have enough eroding power. Swarms of small bodies (<50km radius) might be a better candidate for this process. The amount of volatiles brought by large ordinary chondrite impactors is superior to losses and comparable to the degassing caused by the impact. Carbonaceous chondrite impactors are unlikely: they release too many volatiles, causing surface temperature to stay above 900K up to present-day. Mantle dynamics can also be modified by the heating caused by impacts. Heated material propagates by spreading across the upper mantle due to its buoyancy. Old crust is destroyed or remixed in the mantle. A large part of the upper mantle melts, leading to its depletion and degassing. With enough evenly distributed high energy impacts, the mantle can be depleted by more than 90% of its volatiles during Late Veneer. This drastically cuts down degassing in the late history of the planet and leads to lower present-day surface temperatures. Total depletion of the mantle seems unlikely, meaning either few large impacts (1 to 4) or low energy (slow, grazing…) collisions. Combined with the lack of plate tectonics and volatile recycling in the interior of Venus, Late Veneer collisions could help explain why Venus seems dry today.

  11. Investigation of the solar UV/EUV heating effect on the Jovian radiation belt by GMRT-IRTF observation

    NASA Astrophysics Data System (ADS)

    Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Uno, T.; Kondo, T.; Morioka, A.

    2012-12-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent intensive observations of JSR revealed short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed a scenario for the short term variations; i.e, the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. The purpose of this study is to investigate whether sufficient solar UV/EUV heating in Jupiter's upper atmosphere can actually causes variation in the JSR total flux and brightness distribution. Previous JSR observations using the Giant Metrewave Radio Telescope (GMRT) suggested important characteristics of short term variations; relatively low energy particles are accelerated by some acceleration processes which might be driven by solar UV/EUV heating and/or Jupiter's own magnetic activities. In order to evaluate the effect of solar UV/EUV heating on JSR variations, we made coordinated observations using the GMRT and NASA Infra-Red Telescope Facility (IRTF). By using IRTF, we can estimate the temperature of Jupiter's upper atmosphere from spectroscopic observation of H_3^+ infrared emission. Hence, we can evaluate the relationship between variations in Jupiter's upper atmosphere initiated by the solar UV/EUV heating and its linkage with the JSR. The GMRT observations were made during Nov. 6-17, 2011 at the frequency of 235/610MHz. The H_3^+ 3.953 micron line was observed using the IRTF during Nov. 7-12, 2011. During the observation period, the solar UV/EUV flux variations expected on Jupiter showed monotonic increase. A preliminary analysis of GMRT 610MHz band showed a radio flux variation similar to that in the solar UV/EUV. Radio images showed that the emission intensity increased at the outer region and the position of equatorial peak emission moved in the outward direction. If radial diffusion increases globally by the solar UV/EUV heating, it is expected that the peak intensity would increase and the peak position move inwards. However, our results are not consistent with the global enhancement of radial diffusion. In addition to that, the equatorial H_3^+ emission indicated that emission intensity decreased from the first day of observation to the last day. It is expected that equatorial temperature of Jupiter's atmosphere decreases during this observation period. Therefore, we propose that radial diffusion increased not globally but only at the outer region around L=2-3 during this period. From this hypothesis, it is expected that enhancement of radial diffusion at the outer region is caused by high latitude temperature enhancement. We discuss possible causes of the short term variations of JSR from the IRTF observation results at high latitude.

  12. Trajectory Software With Upper Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Barrett, Charles

    2012-01-01

    The Trajectory Software Applications 6.0 for the Dec Alpha platform has an implementation of the Jacchia-Lineberry Upper Atmosphere Density Model used in the Mission Control Center for International Space Station support. Previous trajectory software required an upper atmosphere to support atmosphere drag calculations in the Mission Control Center. The Functional operation will differ depending on the end-use of the module. In general, the calling routine will use function-calling arguments to specify input to the processor. The atmosphere model will then compute and return atmospheric density at the time of interest.

  13. Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Yigit, Erdal

    2018-01-01

    The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).

  14. Efficiency and limitations of the upper airway mucosa as an air conditioner evaluated from the mechanisms of bronchoconstriction in asthmatic subjects.

    PubMed

    Konno, A; Terada, N; Okamoto, Y; Togawa, K

    1985-01-01

    To elucidate a limit to the efficiency of the upper airway mucosa as an air conditioner, the temperatures of the inspiratory air and mucosa were measured in the cervical trachea. Both of them were affected only minimally by change of atmospheric air temperature during resting nose breathing, but were affected greatly by change of mode of breathing. During hyperventilation through the mouth, when the atmospheric air temperature was 1 degree C, a temperature difference of 9 degrees C was noted between inspiratory air in the cervical trachea and body temperature, together with a mucosal temperature fall by 1.86 +/- 0.61 degree C. Wearing of a mask caused a rise of 3 degrees C in the inspiratory air temperature in the cervical trachea.

  15. Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Fahey, D. W.; Schumann, U.; Prather, M. J.; Penner, J. E.; Ko, M. K. W.; Weisenstein, D. K.; Jackman, C. H.; Pitari, G.; Koehler, I.; hide

    1998-01-01

    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key findings are that subsonic aircraft emissions: (1) have not been responsible for the observed water vapor trends at 40degN; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.

  16. In situ measurements of Saturn's ionosphere show that it is dynamic and interacts with the rings.

    PubMed

    Wahlund, J-E; Morooka, M W; Hadid, L Z; Persoon, A M; Farrell, W M; Gurnett, D A; Hospodarsky, G; Kurth, W S; Ye, S-Y; Andrews, D J; Edberg, N J T; Eriksson, A I; Vigren, E

    2018-01-05

    The ionized upper layer of Saturn's atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet's rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings. Plasma densities reached up to 1000 cubic centimeters, and electron temperatures were below 1160 kelvin near closest approach. The density varied between orbits by up to two orders of magnitude. Saturn's A- and B-rings cast a shadow on the planet that reduced ionization in the upper atmosphere, causing a north-south asymmetry. Copyright © 2018, American Association for the Advancement of Science.

  17. Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Fahey, D. W.; Schumann, U.; Prather, M. J.; Penner, J. E.; Ko, M. K. W.; Weisenstein, D. K.; Jackman, C. H.; Pitari, G.; Koehler, I.; hide

    1998-01-01

    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.

  18. Procedures for minimizing the effects of high solar activity on satellite tracking and ephemeris generation

    NASA Technical Reports Server (NTRS)

    Bredvik, Gordon D.

    1990-01-01

    We are currently experiencing a period of high solar radiation combined with wide short-term fluctuations in the radiation. The short-term fluctuations, especially when combined with highly energetic solar flares, can adversely affect the mission of U.S. Space Command's Space Surveillance Center (SSC) which catalogs and tracks the satellites in orbit around the Earth. Rapidly increasing levels of solar electromagnetic and/or particle radiation (solar wind) causes atmospheric warming, which, in turn, causes the upper-most portions of the atmosphere to expand outward, into the regime of low altitude satellites. The increased drag on satellites from this expansion can cause large, unmodeled, in-track displacements, thus undermining the SSC's ability to track and predict satellite position. On 13 March 1989, high solar radiation levels, combined with a high-energy solar flare, caused an exceptional amount of short-term atmospheric warming. The SSC temporarily lost track of over 1300 low altitude satellites--nearly half of the low altitude satellite population. Observational data on satellites that became lost during the days following the 13 March 'solar event' was analyzed and compared with the satellites' last element set prior to the event (referred to as a geomagnetic storm because of the large increase in magnetic flux in the upper atmosphere). The analysis led to a set of procedures for reducing the impact of future geomagnetic storms. These procedures adjust selected software limit parameters in the differential correction of element sets and in the observation association process and must be manually initiated at the onset of a geomagnetic storm. Sensor tasking procedures must be adjusted to ensure that a minimum of four observations per day are received for low altitude satellites. These procedures have been implemented and, thus far, appear to be successful in minimizing the effect of subsequent geomagnetic storms on satellite tracking and ephemeris computation.

  19. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed modelmore » of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.« less

  20. The UARS (Upper Atmosphere Research Satellite): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Upper Atmosphere Research Satellite (UARS) program, its goals and objectives are described. Also included are its significance to upper atmosphere science, the experimental and theoretical investigations that comprise it, and the compelling issues of global change, driven by human activities, that led NASA to plan and implement it.

  1. Facilitating atmosphere oxidation through mantle convection

    NASA Astrophysics Data System (ADS)

    Lee, K. K. M.; Gu, T.; Creasy, N.; Li, M.; McCammon, C. A.; Girard, J.

    2017-12-01

    Earth's mantle connects the surface with the deep interior through convection, and the evolution of its redox state will affect the distribution of siderophile elements, recycling of refractory isotopes, and the oxidation state of the atmosphere through volcanic outgassing. While the rise of oxygen in the atmosphere, i.e., the Great Oxidation Event (GOE) occurred 2.4 billion years ago (Ga), multiple lines of evidence point to oxygen production in the atmosphere well before 2.4 Ga. In contrast to the fluctuations of atmospheric oxygen, vanadium in Archean mantle lithosphere suggests that the mantle redox state has been constant for 3.5 Ga. Indeed, the connection between the redox state of the deep Earth and the atmosphere is enigmatic as is the effect of redox state on mantle dynamics. Here we show a redox-induced density contrast affects mantle convection and may potentially cause the oxidation of the upper mantle. We compressed two synthetic enstatite chondritic samples with identical bulk compositions but formed under different oxygen fugacities (fO2) to lower mantle pressures and temperatures and find Al2O3 forms its own phase separate from the dominant bridgmanite phase in the more reduced composition, in contrast to a more Al-rich, bridgmanite-dominated assemblage for a more oxidized starting composition. As a result, the reduced material is 1-1.5% denser than the oxidized material. Subsequent experiments on other plausible mantle compositions, which differ only in redox state of the starting glass materials, show similar results: distinct mineral assemblages and density contrasts up to 4%. Our geodynamic simulations suggest that such a density contrast causes a rapid ascent and accumulation of oxidized material in the upper mantle, with descent of the denser reduced material to the core-mantle boundary. The resulting heterogeneous redox conditions in Earth's interior may have contributed to the large low-shear velocity provinces in the lower mantle and the rise of oxygen in Earth's atmosphere.

  2. The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bloom, Stephen; Otterman, Joseph

    2000-01-01

    Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.

  3. The acoustic field in the ionosphere caused by an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.

    2005-07-01

    The problem of describing the generation and propagation of an infrasonic wave emitted by a finite extended source in the inhomogeneous absorbing atmosphere is the focus of this paper. It is of interest since the role of infrasonic waves in the energy balance of the upper atmosphere remains largely unknown. We present an algorithm, which allows adaptation of a point source model for calculating the infrasonic field from an underground nuclear explosion at ionospheric altitudes. Our calculations appear to agree remarkably well with HF Doppler sounding data measured for underground nuclear explosions at the Semipalatinsk Test Site. We show that the temperature and ionospheric electron density perturbation caused by an acoustic wave from underground nuclear explosion can reach 10% of background levels.

  4. SUMMARY REVIEW OF THE HEALTH EFFECTS ASSOCIATED WITH SODIUM HYDROXIDE: HEALTH ISSUE ASSESSMENT

    EPA Science Inventory

    Sodium hydroxide (NaOH) is produced in large quantities in the U.S. and the aerosol may be rebased into the atmosphere. Inhalation of aerosolized NaOH can cause damage to the upper respiratory tract and to the lungs. Rats exposed to a 40% NaOH aerosol in a chronic study showed br...

  5. Microbial Isolates from the Upper Atmosphere Support Panspermia Hypothesis

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    Terrestrial microbes may be transported into the upper atmosphere via various means. Due to the environmental similarity of the upper atmosphere to outer space, knowledge of microbes in the upper atmosphere would be valuable for assessing the chances and limits of microbial transfer from the earth to extraterrestrial bodies (i.e., Panspermia of terrestrial microbes). We collected air dust samples in the upper troposphere and the stratosphere over Japan by using aircrafts or balloons. Microbial isolates from the samples were endospore-forming species (Bacillus, Paenibacillus, Streptomyces) and non-spore-forming Deinococci. Besides the evidence of microbial presence in the upper atmosphere, we show the possible presence of terrestrial microbes in space by extrapolated height-dependent distribution of microbes. High resistance to radiation and desiccation was common for our upper-atmospheric isolates and likely the most important feature enabled their survival in the environment of elevated radiation and desiccation. In this regard, Panspermia of viable Deinococci and endospores would be more likely than other terrestrial microbes. Specifically, the Deinococcus isolates exhibited extreme resistance to radiation (several times higher than bacterial endospores), the principle threat for microbial survival during interplanetary transfer. Based on detailed characterization of the Deinococcus isolates, we proposed two new species Deinococcus aerius sp. nov. and Deinococcus aetherius sp. nov., which are now candidate microbes for exposure experiment in space.

  6. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2015-10-08

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon

  7. Visible Jovian Aurora

    NASA Image and Video Library

    1997-09-23

    Jupiter's aurora on the night side of the planet is seen here at five different wavelengths. Jupiter's bright crescent, which is about half illuminated, is out of view to the right. North is at the top. The images are centered at 57 degrees north and 184 degrees West and were taken on April 2, 1997 at a range of 1.7 million kilometers (1.05 million miles) by the Solid State Imaging (SSI) camera system aboard NASA's Galileo spacecraft. Although Jupiter's aurora had been imaged from Earth in the ultraviolet and infrared, these are the first images at visible wavelengths, where most of the emission takes place. CLR stands for clear (no filter) and shows the integrated brightness at all wavelengths. The other panels show the violet, green, red, and 889 nanometer-wavelength filtered images. The brightness of the aurora is roughly independent of wavelength, at least at the spectral resolution obtainable with these filters. As on Earth, the aurora is caused by electrically charged particles striking the upper atmosphere, causing the molecules of the atmosphere to glow. The brightness in the different filters contains information about the energy of the impinging particles and the composition of the upper atmosphere. If atomic hydrogen were the only emitter, the light would be much stronger in the red filter, which is not consistent with the observed distribution. http://photojournal.jpl.nasa.gov/catalog/PIA00605

  8. The thermal structure and energy balance of the Uranian upper atmosphere

    NASA Technical Reports Server (NTRS)

    French, R. G.; Dunham, E. W.; Allen, D. A.; Elias, J. H.; Frogel, J. A.; Elliot, J. L.; Liller, W.

    1983-01-01

    Uranus upper atmosphere occultation observations are reported for August 15-16, 1980, and April 26, 1981. Mean atmospheric light curves of 154 + or - 15 K and 132 + or - 15 K, respectively, are derived from the light curves. A comparison of all available Uranus occultation data since March 1977 suggests a significant mean atmospheric temperature change, with a typical 15 K/year variation. It is suggested that molecular and eddy diffusion, together with atmospheric dynamics, are potentially as important as radiation in the upper atmosphere heat balance of Uranus. The close agreement of occultation immersion and emersion temperatures further suggests that effective meridional transport occurs on Uranus.

  9. The influence of orographic waves and quasi-biennial oscillations on vertical ozone flux in the model of general atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2017-11-01

    A parameterization of the dynamical and thermal effects of orographic gravity waves (OGWs) and assimilation quasibiennial oscillations (QBOs) of the zonal wind in the equatorial lower atmosphere are implemented into the numerical model of the general circulation of the middle and upper atmosphere MUAM. The sensitivity of vertical ozone fluxes to the effects of stationary OGWs at different QBO phases at altitudes up to 100 km for January is investigated. The simulated changes in vertical velocities produce respective changes in vertical ozone fluxes caused by the effects of the OGW parameterization and the transition from the easterly to the westerly QBO phase. These changes can reach 40 - 60% in the Northern Hemisphere at altitudes of the middle atmosphere.

  10. Upper atmosphere pollution measurements (GASP)

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Holdeman, J. D.

    1975-01-01

    The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis

  11. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  12. Upper Ocean Response to the Atmospheric Cold Pools Associated With the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Pei, Suyang; Shinoda, Toshiaki; Soloviev, Alexander; Lien, Ren-Chieh

    2018-05-01

    Atmospheric cold pools are frequently observed during the Madden-Julian Oscillation events and play an important role in the development and organization of large-scale convection. They are generally associated with heavy precipitation and strong winds, inducing large air-sea fluxes and significant sea surface temperature (SST) fluctuations. This study provides a first detailed investigation of the upper ocean response to the strong cold pools associated with the Madden-Julian Oscillation, based on the analysis of in situ data collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign and one-dimensional ocean model simulations validated by the data. During strong cold pools, SST drops rapidly due to the atmospheric cooling in a shoaled mixed layer caused by the enhanced near-surface salinity stratification generated by heavy precipitation. Significant contribution also comes from the component of surface heat flux produced by the cold rain temperature. After the period of heavy rain, while net surface cooling remains, SST gradually recovers due to the enhanced entrainment of warmer waters below the mixed layer.

  13. Middle Atmospheric Changes Caused by the January and March 2012 Solar Proton Events

    NASA Astrophysics Data System (ADS)

    Jackman, Charles; Bernath, Peter; Fleming, Eric; Randall, Cora; Harvey, V. Lynn; Funke, Bernd; Lopez-Puertas, Manuel; Wang, Shuhui

    Solar proton events (SPEs) can cause changes in constituents in the Earth’s polar middle atmosphere. The 23-30 January and 7-11 March 2012 solar proton event (SPE) periods were substantial and caused significant impacts on the middle atmosphere. These were the two largest SPE periods of solar cycle 24 so far. The highly energetic protons caused ionizations, excitations, dissociations, and dissociative ionizations of the background constituents. Complicated ion chemistry led to HOx (H, OH, HO2) production and dissociation of N2 leads to NOy (N, NO, NO2, NO3, N2O5, HNO2, HNO3, HO2NO2, ClONO2, BrONO2) production. Both the HOx and NOy increases resulted in changes to ozone in the stratosphere and mesosphere. The HOx increases led to short-lived (~days) ozone decreases in the mesosphere and upper stratosphere. These short-lived impacts on the atmosphere will be illustrated using Aura Microwave Limb Sounder (MLS) observations of the peroxy radical, HO2, and ozone. The longer-lived (~several months) atmospheric changes were coupled with the SPE-caused NOy increases. We computed a NOy production of 1.9 and 2.1 Gigamoles due to these SPE periods in January and March 2012, respectively, which placed these SPE periods among the 12 largest in the past 50 yrs. SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instruments observations of NO and NO2 will be used to illustrate these longer-lived SPE-caused changes. The satellite observations will be compared with Goddard Space Flight Center (GSFC) two-dimensional (2-D) model and Global Modeling Initiative three-dimensional chemistry and transport model predictions. Polar total ozone reductions were predicted to be a maximum of 1.5 percent in 2012 due to these SPEs.

  14. Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2018-04-01

    Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50-70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40-60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.

  15. Diagnostic Analysis of Second Strengthen Heavy Rain in Western Guangdong for NO.1011 Typhoon Fanapi

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2013-12-01

    In order to learn more about the development mechanism of the rainstorm which is caused by No.1101 super typhoon "Fanapi", this paper use weather diagnostic methods to study two processes of heavy rain after "Fanapi" landed in the western part of Guangdong by applying Ncep1 ° × 1 ° reanalysis data and observed precipitation data. Through the preliminary analysis of this typhoon rainstorm, the result shows that cold air and water vapor transmission mainly cause the second strengthen precipitation ,the isoline slope of pseudoequivalent potential temperature reflect the second strengthen precipitation ,the upper troposphere high potential vorticity pass down and the cold dry air in the upper atomosphere confronts with the warm moist air in the lower atmosphere so that the precipitation increase.

  16. Earth Observations taken by Expedition 30 crewmember

    NASA Image and Video Library

    2012-01-30

    ISS030-E-060478 (30 Jan. 2012) --- The city lights of Madrid (just right of center) stand out in this photograph from the International Space Station. Recorded by one of the Expedition 30 crew members, the view shows almost the entire Iberian Peninsula (both Spain and Portugal) with the Strait of Gibraltar and Morocco appearing at lower left. What is thought to be a blur of the moon appears in upper left corner. The faint gold or brownish line of airglow?caused by ultraviolet radiation exciting the gas molecules in the upper atmosphere?parallels the horizon or Earth limb.

  17. A dynamical perspective on the energetic particles precipitation-middle atmosphere interaction

    NASA Astrophysics Data System (ADS)

    Karami, Khalil; Sinnhuber, Miriam; Versick, Stefan; Braesicke, Peter

    2015-04-01

    Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over polar region of both hemispheres, where the geomagnetic lines are considered to be open and connected to the interplanetary medium. This condition allows direct access for energetic particles of solar or galactic origin to directly deposit their own energy into the middle and upper atmosphere. Such particle precipitations can greatly disturb the chemical composition of the upper and middle atmosphere. At polar latitudes, these particles have the potential to penetrate from thermosphere deep into the mesosphere and in rare occasions into the stratosphere. The most important are changes to the budget of atmospheric nitric oxides, NOy, and to atmospheric reactive hydrogen oxides, HOx, which both contribute to ozone loss in the stratosphere and mesosphere. The chemistry-climate general circulation model ECHAM5/MESSy is used to investigate the impact of changed ozone concentration due to energetic particles precipitation on temperatures and wind fields. The simulated anomalies of both zonal mean temperature and zonal wind suggest that these changes are very unlikely to be caused in situ by ozone depletion and indirect dynamical condition is important. The results of our simulations suggests that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes in many areas of the atmosphere. Different dynamical analysis (e.g., frequency of sudden stratospheric warming, dates of stratospheric final warming, divergence of Eliassen-Palm flux and refractive index of planetary waves) are performed to investigate the impact of ozone anomaly originated from high energetic particle precipitation on middle atmospheric temperature and circulation.

  18. Studies in upper and lower atmosphere coupling

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Rice, C. J.; Sharp, L. R.

    1979-01-01

    The theoretical and data-analytic work on upper and lower atmosphere coupling performed under a NASA Headquarters contract during the period April 1978 to March 1979 are summarized. As such, this report is primarily devoted to an overview of various studies published and to be published under this contract. Individual study reports are collected as exhibits. Work performed under the subject contract are in the following four areas of upper-lower atmosphere coupling: (1) Magnetosphere-ionosphere electrodynamic coupling in the aurora; (2) Troposphere-thermosphere coupling; (3) Ionosphere-neutral-atmosphere coupling; and (4) Planetary wave dynamics in the middle atmosphere.

  19. Ion neutral mass spectrometer results from the first flyby of Titan.

    PubMed

    Waite, J Hunter; Niemann, Hasso; Yelle, Roger V; Kasprzak, Wayne T; Cravens, Thomas E; Luhmann, Janet G; McNutt, Ralph L; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken

    2005-05-13

    The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

  20. Improved Statistical Model Of 10.7-cm Solar Radiation

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  1. DIAS Project: The establishment of a European digital upper atmosphere server

    NASA Astrophysics Data System (ADS)

    Belehaki, A.; Cander, Lj.; Zolesi, B.; Bremer, J.; Juren, C.; Stanislawska, I.; Dialetis, D.; Hatzopoulos, M.

    2005-08-01

    The main objective of DIAS (European Digital Upper Atmosphere Server) project is to develop a pan-European digital data collection on the state of the upper atmosphere, based on real-time information and historical data collections provided by most operating ionospheric stations in Europe. A DIAS system will distribute information required by various groups of users for the specification of upper atmospheric conditions over Europe suitable for nowcasting and forecasting purposes. The successful operation of the DIAS system will lead to the development of new European added-value products and services, to the effective use of observational data in operational applications and consequently to the expansion of the relevant European market.

  2. On the Causes of and Long Term Changes in Eurasian Heat Waves

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max

    2012-01-01

    The MERRA reanalysis, other observations, and the GEOS-S model have been used to diagnose the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The results show that such extreme events are an amplification of natural patterns of atmospheric variability (in this case a particular large-scale atmospheric planetary wave) that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. Model experiments suggest that forcing from both the ocean (SST) and land playa role phase-locking the waves. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more extreme in the last thirty years as a result of the overall warming of the Asian continent.

  3. Prediction of three sigma maximum dispersed density for aerospace applications

    NASA Technical Reports Server (NTRS)

    Charles, Terri L.; Nitschke, Michael D.

    1993-01-01

    Free molecular heating (FMH) is caused by the transfer of energy during collisions between the upper atmosphere molecules and a space vehicle. The dispersed free molecular heating on a surface is an important constraint for space vehicle thermal analyses since it can be a significant source of heating. To reduce FMH to a spacecraft, the parking orbit is often designed to a higher altitude at the expense of payload capability. Dispersed FMH is a function of both space vehicle velocity and atmospheric density, however, the space vehicle velocity variations are insignificant when compared to the atmospheric density variations. The density of the upper atmosphere molecules is a function of altitude, but also varies with other environmental factors, such as solar activity, geomagnetic activity, location, and time. A method has been developed to predict three sigma maximum dispersed density for up to 15 years into the future. This method uses a state-of-the-art atmospheric density code, MSIS 86, along with 50 years of solar data, NASA and NOAA solar activity predictions for the next 15 years, and an Aerospace Corporation correlation to account for density code inaccuracies to generate dispersed maximum density ratios denoted as 'K-factors'. The calculated K-factors can be used on a mission unique basis to calculate dispersed density, and hence dispersed free molecular heating rates. These more accurate K-factors can allow lower parking orbit altitudes, resulting in increased payload capability.

  4. ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, David S.; Burrows, Adam, E-mail: dsp@astro.princeton.ed, E-mail: burrows@astro.princeton.ed

    2010-10-10

    We develop atmosphere models of two of the three Kepler-field planets that were known prior to the start of the Kepler mission (HAT-P-7b and TrES-2). We find that published Kepler and Spitzer data for HAT-P-7b appear to require an extremely hot upper atmosphere on the dayside, with a strong thermal inversion and little day-night redistribution. The Spitzer data for TrES-2 suggest a mild thermal inversion with moderate day-night redistribution. We examine the effect of nonequilibrium chemistry on TrES-2 model atmospheres and find that methane levels must be adjusted by extreme amounts in order to cause even mild changes in atmosphericmore » structure and emergent spectra. Our best-fit models to the Spitzer data for TrES-2 lead us to predict a low secondary eclipse planet-star flux ratio ({approx}<2 x 10{sup -5}) in the Kepler bandpass, which is consistent with what very recent observations have found. Finally, we consider how the Kepler-band optical flux from a hot exoplanet depends on the strength of a possible extra optical absorber in the upper atmosphere. We find that the optical flux is not monotonic in optical opacity, and the non-monotonicity is greater for brighter, hotter stars.« less

  5. Direct EPP Affects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.

    2011-01-01

    Energetic precipitating particles (EPPs) can cause significant direct constituent changes in the mesosphere and stratosphere (middle atmosphere) during certain periods. Both protons and electrons can influence the polar middle atmosphere through ionization and dissociation processes. EPPs can enhance HOx (H, OH, HO2) through the formation of positive ions followed by complex ion chemistry and NOx (N, NO, NO2) through the dissociation of molecular nitrogen. The HOx increases result in direct ozone destruction in the mesosphere and upper stratosphere via several catalytic loss cycles. Such middle atmospheric HOx-caused ozone loss is rather short-lived due to the relatively short lifetime (hours) of the HOx constituents. The NOx family has a considerably longer lifetime than the HOx family and can also lead to catalytic ozone destruction. EPP-caused enhancements of the NOx family can affect ozone directly, if produced in the stratosphere. Ozone decreases from the EPPs lead to a reduction in atmospheric heating and, subsequent atmospheric cooling. Conversely, EPPs can cause direct atmospheric heating through Joule heating. Measured HOx constituents OH and HO2 showed increases due to solar protons. Observed NOx constituents NO and NO2 were enhanced due to both solar protons and precipitating electrons. Other hydrogen- and nitrogen-ocntaining constituents were also measured to be directly influenced by EPPs, including N2O, HNO3, HO2NO2, N2OS, H2O2, ClONO2, HCl, and HOCl. Observed constituents ClO and CO were directly affected by EPPs as well. Many measurements indicated significant direct ozone decreases. A significant number of satellites housed instruments, which observed direct EPP-caused atmospheric effects, including Nimbus 4 (BUV), Nimbus 7 (SBUV), several NOAA platforms (SBUV/2), SME, UARS (HALOE, CLAES), SCISAT-1 (ACE-FTS), Odin (OSIRIS), Envisat-l (GOMOS, MIPAS, SCIAMACHY), and Aura (MLS). Measurements by rockets and ground-based radar also indicated EPP direct impacts. Atmospheric models have been used with some success in predicting the direct EPP impacts on the mesosphere and stratosphere. A review of the observed direct effects of EPP on the middle atmosphere will be given in this presentation.

  6. Lunar tidal effects during the 2013 stratospheric sudden warming as simulated by the TIME-GCM

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Forbes, J. M.; Zhang, X.; Fejer, B. G.; Yudin, V. A.; Pedatella, N. M.

    2015-12-01

    Stratospheric Sudden Warmings (SSW) are associated with strong planetary wave activity in the winterpolar stratosphere which result in a very disturbed middle atmosphere. The changes in the middle atmospherealter the propagation conditions and the nonlinear interactions of waves and tides, and result in SSW signals in the upper atmosphere in e.g., neutral winds, electric fields, ionospheric currents and plasma distribution. The upper atmosphere changes can be significant at low-latitudes even during medium solar flux conditions. Observationsalso reveal a strong lunar signal during SSW periods in the low latitude vertical drifts and in ionospheric quantities. Forbes and Zhang [2012] demonstrated that during the 2009 SSW period the Pekeris resonance peak of the atmosphere was altered such that the M2 and N2 lunar tidal componentsgot amplified. This study focuses on the effect of the lunar tidal forcing on the thermosphere-ionosphere system during theJanuary 2013 SSW period. We employthe NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM)with a nudging scheme using the Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of meteorological forcing on the upper atmosphere. Additionally lunar tidal forcingis included at the lower boundary of the model. To delineate the lunar tidal effects a base simulation without lunar forcingis employed. Interestingly, Jicamarca observations of that period reveal a suppression of the daytime vertical drift before and after the drift enhancement due the SSW. The simulation suggests that the modulation of the vertical driftmay be caused by the interplay of the migrating solar and lunar semidiurnal tide, and therefore can only be reproduced by the inclusion of both lunar and solar tidal forcings in the model. In this presentation the changes due to the lunar tidal forcing will be quantified, and compared to observations.

  7. Modelling of plasma processes in cometary and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.

    2013-02-01

    Electrons from the Sun, often accelerated by magnetospheric processes, produce low-density plasmas in the upper atmospheres of planets and their satellites. The secondary electrons can produce further ionization, dissociation and excitation, leading to enhancement of chemical reactions and light emission. Similar processes are driven by photoelectrons produced by sunlight in upper atmospheres during daytime. Sunlight and solar electrons drive the same processes in the atmospheres of comets. Thus for both understanding of planetary atmospheres and in predicting emissions for comparison with remote observations it is necessary to simulate the processes that produce upper atmosphere plasmas. In this review, we describe relevant models and their applications and address the importance of electron-impact excitation cross sections, towards gaining a quantitative understanding of the phenomena in question.

  8. Impacts of space weather events on the structure of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.

    2017-12-01

    Due to the absence of the intrinsic magnetic field, Mars' upper atmosphere is vulnerable to the solar wind, which directly strips away the Martian upper atmosphere via various mechanisms, resulting in interesting global phenomena that are observable. The Mars Atmosphere and Volatile EvolutioN (MAVEN) has observed the responses of the upper atmosphere such as Interplanetary Coronal Mass Ejections (ICMEs) and Solar flare events spanning from November 2014 to the present. A comprehensive set of observations taken by the MAVEN instrument package enables the better characterization of the thermospheric and ionospheric behavior affected by various space weather events. The observed impacts include changes in the upper atmospheric and ionospheric density and temperature, enhancements of atmospheric loss rate of ions and neutrals, and changes in important boundary layers. The measurements by plasma and field instruments allows the upstream monitoring of the solar EUV, solar energetic particles, and Interplanetary Magnetic Field (IMF) simultaneously and provide additional information of the near-Mars space weather disturbances. In addition, at low altitudes near the periapsis of the spacecraft, the simultaneous measurements of the magnetic field and properties of the thermosphere and ionosphere allow the analysis of the effects of the local crustal magnetic fields. Here, adding to the reported MAVEN observations of the space weather impacts at Mars, we analyze the responses of the upper atmosphere to the mars-impacting space weather events observed by MAVEN. We focus mainly on the responses of the density and temperature structures, which in turn allow us to examine the effects on the important atmospheric layers such as the M2 layer and transition region from the thermosphere to exosphere.

  9. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado

    NASA Astrophysics Data System (ADS)

    Nishioka, Michi; Tsugawa, Takuya; Kubota, Minoru; Ishii, Mamoru

    2013-11-01

    We detected clear concentric waves and short-period oscillations in the ionosphere after an Enhanced Fujita scale (EF)5 tornado hit Moore, Oklahoma, U.S., on 20 May 2013 using dense wide-coverage ionospheric total electron content (TEC) observations in North America. These concentric waves were nondispersive, with a horizontal wavelength of ~120 km and a period of ~13 min. They were observed for more than 7 h throughout North America. TEC oscillations with a period of ~4 min were also observed to the south of Moore for more than 8 h. A comparison between the TEC observations and infrared cloud image from the GOES satellite indicates that the concentric waves and short-period oscillations are caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. This observational result provides the first clear evidence of a severe meteorological event causing atmospheric waves propagating upward in the upper atmosphere and reaching the ionosphere.

  10. Wildfires and animal extinctions at the Cretaceous/Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Adair, Robert K.

    2010-06-01

    Persuasive models of the ejection of material at high velocities from the Chicxulub asteroid impact marking the Cretaceous/Tertiary boundary have led to the conclusion that upon return, that material, heated in passage through the upper atmosphere, generated a high level of infrared energy density over the Earth's surface. That radiant energy has been considered to be a direct source of universal wildfires, which were presumed to be a major cause of plant and animal species extinctions. The extinction of many animal species, especially the dinosaurs, has also been attributed to the immediate lethal effects of the radiation. I find that the absorption of the radiation by the atmosphere, by cloud formations, and by ejecta drifting in the lower atmosphere reduced the radiation at the surface to a level that cannot be expected to have generated universal fires. Although the reduced radiation will have likely caused severe injuries to many animals, such insults alone seem unlikely to have generated the overall species extinctions that have been deduced.

  11. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  12. Upper Atmospheric Response to the April 2010 Storm as Observed by GOCE, CHAMP, and GRACE and Modeled by TIME-GCM

    NASA Astrophysics Data System (ADS)

    Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean

    2014-05-01

    We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.

  13. Preface: C/NOFS Results and Equatorial Ionospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; de La Beaujardiere, O.; Gentile, L. C.; Retterer, J.; Rodrigues, F. S.; Stoneback, R. A.

    2014-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) satellite was launched into orbit in April 2008 as part of an ongoing effort to understand and identify plasma irregularities that adversely impact the propagation of radio waves in the upper atmosphere. Combined with recent improvements in radar, airglow, and ground-based studies, as well as state-of-the-art modeling techniques, the C/NOFS mission has led to new insights into equatorial ionospheric electrodynamics. In order to document these advances, the C/NOFS Results and Equatorial Dynamics Technical Interchange Meeting was held in Albuquerque, New Mexico from 12 to 14 March 2013. The meeting was a great success with 55 talks and 22 posters, and covered topics including the numerical simulations of plasma irregularities, the effects of atmospheric tides, stratospheric phenomena, and magnetic storms on the upper atmosphere, causes and predictions of scintillation-causing ionospheric irregularities, current and future instrumentation efforts in the equatorial region. The talks were broken into the following three topical sessions: A. Ambient Ionosphere and Thermosphere B. Transient Phenomena in the Low-Latitude Ionosphere C. New Missions, New Sensors, New Science and Engineering Issues. The following special issue was planned as a follow-up to the meeting. We would like to thank Mike Pinnock, the editors and staff of Copernicus, and our reviewers for their work in bringing this special issue to the scientific community. Our thanks also go to Patricia Doherty and the meeting organizing committee for arranging the C/NOFS Technical Interchange Meeting.

  14. NASA's upper atmosphere research satellite: A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.

    1992-01-01

    The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.

  15. BOREAS AFM-08 ECMWF Hourly Surface and Upper Air Data for the SSA and NSA

    NASA Technical Reports Server (NTRS)

    Viterbo, Pedro; Betts, Alan; Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-8 team focused on modeling efforts to improve the understanding of the diurnal evolution of the convective boundary layer over the boreal forest. This data set contains hourly data from the European Center for for Medium-Range Weather Forecasts (ECMWF) operational model from below the surface to the top of the atmosphere, including the model fluxes at the surface. Spatially, the data cover a pair of the points that enclose the rawinsonde sites at Candle Lake, Saskatchewan, in the Southern Study Area (SSA) and Thompson, Manitoba, in the Northern Study Area (NSA). Temporally, the data include the two time periods of 13 May 1994 to 30 Sept 1994 and 01 Mar 1996 to 31 Mar 1997. The data are stored in tabular ASCII files. The number of records in the upper air data files may exceed 20,000, causing a problem for some software packages. The ECMWF hourly surface and upper air data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  16. The Influence of Large Solar Proton Events on the Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.

    2012-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth s polar middle atmosphere. A number of large SPEs have occurred over the past 50 years and tend to happen most frequently near solar maximum. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents. Complicated ion chemistry leads to HOx (H, OH, HO2) production and dissociation of N2 leads to NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2) production. Both the HOx and NOy increases can result in changes to ozone in the stratosphere and mesosphere. The HOx increases lead to short-lived (days) ozone decreases in the mesosphere and upper stratosphere. The NOy increases lead to long-lived (several months) stratospheric ozone changes because of the long lifetime of NOy constituents in this region. UARS HALogen Occultation Experiment (HALOE) instrument observations showed SPE-caused polar stratospheric NOx (NO+NO2) increases over 10 ppbv in September 2000 due to the very large SPE of July 2000, which are reasonably well simulated with the Whole Atmosphere Community Climate Model (WACCM). WACCM-computed SPE-caused polar stratospheric ozone decreases >10% continued for up to 5 months past the largest events in the past 50 years, however, SPE-caused total ozone changes were not found to be statistically significant. Small polar middle atmospheric temperature changes of <4 K have also been predicted to occur as a result of the larger SPEs. The polar atmospheric effects of large SPEs during solar cycle 23 and 24 will be emphasized in this presentation.

  17. Maui Analysis of Upper Atmospheric Injections

    NASA Technical Reports Server (NTRS)

    Dressler, Rainer A.

    2008-01-01

    Maui Analysis of Upper Atmospheric Injections (MAUI) will observe the Space Shuttle engine exhaust plumes from the Maui Space Surveillance Site in Hawaii. The observations will occur when the Space Shuttle fires its engines at night or twilight. A telescope and all-sky imagers will take images and data while the Space Shuttle flies over the Maui site. The images will be analyzed to better understand the interaction between the spacecraft plume and the upper atmosphere of Earth.

  18. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  19. A comparative study of Venus and Mars - Upper atmospheres, ionospheres and solar wind interactions

    NASA Technical Reports Server (NTRS)

    Mahajan, K. K.; Kar, J.

    1990-01-01

    The neutral atmospheres of Mars and Venus are discussed. A comparative study is presented of the upper atmospheres, ionospheres, and solar wind interactions of these two planets. The review is mainly concerned with the region about 100 km above the surface of the planets.

  20. The Impact of ENSO on Trace Gas Composition in the Upper Troposphere to Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Douglass, Anne; Ziemke, Jerry; Waugh, Darryn Warwick

    2016-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical troposphere and its effects extend well into the stratosphere. Its impact on atmospheric dynamics and chemistry cause important changes to trace gas constituent distributions. A comprehensive suite of satellite observations, reanalyses, and chemistry climate model simulations are illuminating our understanding of processes like ENSO. Analyses of more than a decade of observations from NASAs Aura and Aqua satellites, combined with simulations from the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) and other Chemistry Climate Modeling Initiative (CCMI) models, and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis have provided key insights into the response of atmospheric composition to ENSO. While we will primarily focus on ozone and water vapor responses in the upper troposphere to lower stratosphere, the effects of ENSO ripple through many important trace gas species throughout the atmosphere. The very large 2015-2016 El Nino event provides an opportunity to closely examine these impacts with unprecedented observational breadth. An improved quantification of natural climate variations, like those from ENSO, is needed to detect and quantify anthropogenic climate changes.

  1. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    NASA Astrophysics Data System (ADS)

    Abel, Bob; Thorne, Richard M.

    1994-10-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  2. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    NASA Technical Reports Server (NTRS)

    Abel, Bob; Thorne, Richard M.

    1994-01-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  3. Eurasian Heat Waves: Mechanisms and Predictability

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Schubert, Siegfried; Koster, Randal; Suarez, Max

    2012-01-01

    This study uses the NASA MERRA reanalysis and GEOS 5 model simulations to examine the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The focus is on the warm season and the part of the Eurasian continent that extends north of about 40oN, or roughly to the north of the mean upper tropospheric jet stream. The results show that such extreme events are an amplification of natural patterns of atmospheric variability that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more intense in the last thirty years as a result of the overall warming of the Asian continent. Sensitivity experiments with perturbed initial conditions indicate that these events have limited predictability.

  4. Multi-Satellite Measurements and Model Predictions of Mesospheric and Upper Stratospheric Influences from the Very Large July 14-16, 2000, Solar Proton Event

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; McPeters, Richard D.; Russell, James M.; Bevilacqua, Richard; Labow, Gordon J.; Fleming, Eric L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A large solar flare with an associated coronal mass ejection occurred in mid-July and caused a very large solar proton event at the earth in the time period July 14-16, 2000. So far this is the largest solar storm of solar cycle 23. The solar proton fluxes were measured by instruments aboard the GOES-10 satellite and used in our proton energy deposition model to help quantify the energy input to the middle atmosphere during this large solar event. Using this computed energy deposition in the GSFC 2D atmospheric model resulted in a prediction of $>$ 20\\% increases in HO$-(x)$ (H, OH, HO$-(2)$) and $>$ 100\\% increases in NO$-(x)$ (N, NO, NO$-(2)$) constituents in the mesosphere and upper stratosphere at polar latitudes ($>$ 60 degrees geomagnetic). Both the HO$-(x)$ and NO$_fx)$ increases impacted ozone. Large atmospheric impacts have been measured with the NOAA 14 SBUV/2 instrument (0$_(3)$), the UARS HALOE instrument (NO, NO$-(2)$, 0$-(3)$), and the POAM III instrument (0$_{3}$, NO$-(2)$). Preliminary analysis indicates that measured (SBUV/2) and modelled 0$_{3}$ decreases from this solar event are generally in agreement in the Northern Hemisphere. Short-term ozone changes (during the event) indicate $\\sim$ 15% reduction at 2 hPa ($\\sim$ 45 km) up to $\\sim$ 40% reduction at 0.5 hPa ($\\sim$ 55 km). A longer-term ozone depletion of $\\sim$ 5% is indicated between 4 and 2 hPa ($\\sim$ 40-45 km). The middle atmospheric changes caused by this solar event were very large and occurred fairly quickly ($\\sim$ 1-2 days). Such a significant natural perturbation provides a good test of our understanding of the middle atmosphere. The measured and modelled impacts of this solar event will be compared and discussed in this paper.

  5. The abiotically driven biological pump in the ocean and short-term fluctuations in atmospheric CO 2 contents

    NASA Astrophysics Data System (ADS)

    Ittekkot, Venugopalan

    1993-07-01

    Current debates on the significance of the oceanic "biological pump" in the removal of atmospheric CO 2 pay more attention to the act of biological carbon-dioxide fixation (primary productivity) in the sea, but pay less or no attention to the equally relevant aspect of the transfer of the fixed carbon to a sink before its oxidation back to CO 2. The upper ocean obviously disqualifies as a sink for biologically fixed CO 2 because of gas-exchange with the atmosphere. The deep ocean, on the other hand, can be a sink at least at time scales of the ocean turnover. Transfer of newly-fixed CO 2 to the deep sea can be accelerated by abiogenic matter introduced to the sea surface from terrestrial sources. This matter acts as ballast and increases the density and settling rates of aggregates of freshly synthesized organic matter thereby facilitating their rapid removal from the upper ocean. Higher supply of abiogenic matter enhances the sequestering of fresh organic matter and in effect shifts the zone of organic matter remineralization from the upper ocean to the deep sea. Consistent with this abiogenic forcing, the rate of organic matter remineralization and the subsequent storage of the remineralized carbon in the deep sea are linked to bulk fluxes (mass accumulation rates) in the deep sea. This mechanism acts as an "abiotic boost" in the workings of the oceanic "biological pump" and results in an increase in deep sea carbon storage; the magnitude of carbon thus stored could have caused the observed short term fluctuations in atmospheric CO 2-contents during the glacial-interglacial cycles.

  6. The Influence of the Several Very Large Solar Proton Events in Years 2000-2003 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Sinnhuber, Miriam; Anderson, John; McPeters, Richard D.; FLeming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) are known to have caused changes in constituents in the Earth's neutral middle atmosphere. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. The NOy increases lead to long-lived stratospheric ozone changes because of the long lifetime of the NOy family in this region. The past four years, 2000-2003, have been replete with SPEs and huge fluxes of high energy protons occurred in July and November 2000, September and November 2001, April 2002, and October 2003. Smaller, but still substantial, proton fluxes impacted the Earth during other months from year 2000 to 2003. The Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model was used in computing the influence of the SPEs. The impact of these extremely large SPEs was calculated to be especially large in the upper stratosphere and mesosphere. The results of the GSFC 2D Model will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  7. Lidar investigations of M-zone

    NASA Technical Reports Server (NTRS)

    Ovezgeldiyev, O. G.; Kurbanmuradov, K.; Lagutin, M. F.; Zarudny, A. A.; Meghel, Yu. E.; Torba, A. A.; Melnikov, V. E.

    1987-01-01

    The creation of pulse dye lasers tuned to resonant line of meteor produced admixtures of atmospheric constituents has made it possible to begin lidar investigations of the vertical distribution of mesospheric sodium concentration and its dynamics in the upper atmosphere. The observed morning increase of sodium concentration in the vertical column is probably caused by diurnal variations of sporadic meteors. The study of the dynamics of the sodium column concentration in the period of meteor streams activity confirms the suggestion of cosmic origin of these atoms. The short lived increase of sodium concentration brought about by a meteor stream, however, exceeds by one order the level of the sporadic background.

  8. A quasi-static model of global atmospheric electricity. II - Electrical coupling between the upper and lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.

  9. Thermosphere Extension of the Whole Atmosphere Community Climate Model

    DTIC Science & Technology

    2010-12-04

    tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108(D24), 4784, doi:10.1029/2002JD002853. Immel, T... troposphere to the upper thermosphere and their variability on interannual, seasonal, and daily scales. These quantities are compared with observational and...gravity waves are excited by tropospheric processes. As their amplitudes grow exponen- tially with altitude, they will cause larger variability

  10. The Upper Atmosphere Research Satellite In-Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.

    1997-01-01

    Upper Atmosphere Research Satellite flight data from the first 737 days after launch (September 1991) was used to investigate spacecraft disturbances and responses. The investigation included two in-flight dynamics experiments (approximately three orbits each). Orbital and configuration influences on spacecraft dynamic response were also examined. Orbital influences were due to temperature variation from crossing the Earth's terminator and variation of the solar incident energy as the orbit precessed. During the terminator crossing, the rapid ambient temperature change caused the spacecraft's two flexible appendages to experience thermal elastic bending (thermal snap). The resulting response was dependent upon the orientation of the solar array and the solar incident energy. Orbital influences were also caused by on-board and environmental disturbances and spacecraft configuration changes resulting in dynamic responses which were repeated each orbit. Configuration influences were due to solar array rotation changing spacecraft modal properties. The investigation quantified the spacecraft dynamic response produced by the solar array and high gain antenna harmonic drive disturbances. The solar array's harmonic drive output resonated two solar array modes. Friction in the solar array gear drive provided sufficient energy dissipation which prevented the solar panels from resonating catastrophically; however, the solar array vibration amplitude was excessively large. The resulting vibration had a latitude-specific pattern.

  11. Studies of planetary upper atmospheres through occultations

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1982-01-01

    The structure, composition, dynamics and energy balance of planetary upper atmospheres through interpretation of steller occultation data from Uranus is discussed. The wave-optical problem of modelling strong scintillation for arbitrary turbulent atmospheres is studied, as well as influence of turbulence. It was concluded that quasi-global features of atmospheric structure are accurately determined by numerical inversion. Horizontally inhomogeneous structures are filtered out and have little effect on temperature profiles.

  12. Simulations of the effect of a warmer climate on atmospheric humidity

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Lacis, Andrew A.; Ruedy, Reto A.

    1991-01-01

    Increases in the concentration of water vapor constitute the single largest positive feedback in models of global climate warming caused by greenhouse gases. It has been suggested that sinking air in the regions surrounding deep cumulus clouds will dry the upper troposphere and eliminate or reverse the direction of water vapor feedback. This hypothesis has been tested by performing an idealized simulation of climate change with two different versions of a climate model which both incorporate drying due to subsidence of clear air but differ in their parameterization of moist convection and stratiform clouds. Despite increased drying of the upper troposphere by cumulus clouds, upper-level humidity increases in the warmer climate because of enhanced upward moisture transport by the general circulation and increased accumulation of water vapor and ice at cumulus cloud tops.

  13. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    NASA Astrophysics Data System (ADS)

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  14. Study of Atmospheric Forcing and Responses (SAFAR) campaign: overview

    NASA Astrophysics Data System (ADS)

    Jayaraman, A.; Venkat Ratnam, M.; Patra, A. K.; Narayana Rao, T.; Sridharan, S.; Rajeevan, M.; Gadhavi, H.; Kesarkar, A. P.; Srinivasulu, P.; Raghunath, K.

    2010-01-01

    Study of Atmospheric Forcing and Responses (SAFAR) is a five year (2009-2014) research programme specifically to address the responses of the earth's atmosphere to both natural and anthropogenic forcings using a host of collocated instruments operational at the National Atmospheric Research Laboratory, Gadanki (13.5° N, 79.2° E), India from a unified viewpoint of studying the vertical coupling between the forcings and responses from surface layer to the ionosphere. As a prelude to the main program a pilot campaign was conducted at Gadanki during May-November 2008 using collocated observations from the MST radar, Rayleigh lidar, GPS balloonsonde, and instruments measuring aerosol, radiation and precipitation, and supporting satellite data. We show the importance of the large radiative heating caused by absorption of solar radiation by soot particles in the lower atmosphere, the observed high vertical winds in the convective updrafts extending up to tropopause, and the difficulty in simulating the same with existing models, the upward traveling waves in the middle atmosphere coupling the lower atmosphere with the upper atmosphere, their manifestation in the mesospheric temperature structure and inversion layers, the mesopause height extending up to 100 km, and the electro-dynamical coupling between mesosphere and the ionosphere which causes irregularities in the ionospheric F-region. The purpose of this communication is not only to share the knowledge that we gained from the SAFAR pilot campaign, but also to inform the international atmospheric science community about the SAFAR program as well as to extend our invitation to join in our journey.

  15. Climate and atmospheric modeling studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.

  16. Factors favorable to frequent extreme precipitation in the upper Yangtze River Valley

    NASA Astrophysics Data System (ADS)

    Tian, Baoqiang; Fan, Ke

    2013-08-01

    Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land-sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.

  17. MAVEN observations of the response of Mars to an interplanetary coronal mass ejection.

    PubMed

    Jakosky, B M; Grebowsky, J M; Luhmann, J G; Connerney, J; Eparvier, F; Ergun, R; Halekas, J; Larson, D; Mahaffy, P; McFadden, J; Mitchell, D F; Schneider, N; Zurek, R; Bougher, S; Brain, D; Ma, Y J; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D; Bell, J M; Benna, M; Chaffin, M; Chamberlin, P; Chaufray, Y-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R

    2015-11-06

    Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  18. Composition and structure of the martian upper atmosphere: analysis of results from viking.

    PubMed

    McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O

    1976-12-11

    Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.

  19. Investigation of Dynamic and Physical Processes in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Pfister, Leonhard (Technical Monitor)

    2002-01-01

    Research under this Cooperative Agreement has been funded by several NASA Earth Science programs: the Atmospheric Effects of Radiation Program (AEAP), the Upper Atmospheric Research Program (UARP), and most recently the Atmospheric Chemistry and Modeling Assessment Program (ACMAP). The purpose of the AEAP was to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The ACMAP is a more general program of modeling and data analysis in the general area of atmospheric chemistry and dynamics, and the Radiation Sciences program.

  20. Artist Concept of MAVEN Imaging Ultraviolet Spectrograph at Work

    NASA Image and Video Library

    2014-11-07

    This artist concept depicts the Imaging Ultraviolet Spectrograph IUVS on NASA MAVEN spacecraft scanning the upper atmosphere of Mars. IUVS uses limb scans to map the chemical makeup and vertical structure across Mars upper atmosphere.

  1. Performance analysis for the cryogenic etalon spectrometer on the Upper Atmospheric Research Satellite

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Forney, P. B.; Kumer, J. B.; Naes, L. G.; Nast, T. C.

    1983-01-01

    The Upper Atmospheric Research Satellite (UARS) program has the objective of providing an 18-month to 2-year platform for observations of the upper atmosphere, giving particular attention to the stratosphere, mesosphere, and lower thermosphere. The primary aims of the mission are related to the measurement of the solar energy input between 120 and 500 km, the acquisition of global maps of the vertical and horizontal distribution of a series of critical trace and minor species, and the investigation of the dynamics of the upper atmosphere. One of several instruments designed to perform neutral species measurements on board the satellite is the Cryogenic Limb Array Etalon Spectrometer (CLAES). The CLAES experiment is concerned with measurements of concentrations of species of interest to the ozone layer balance. Attention is given to the performance requirements of the instrument and the effects of these requirements on the cryogenic design.

  2. Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Chandler, M. O.; Yelle, R. V.; Sandel, B. R.

    1987-01-01

    Strong ultraviolet emissions from the upper atmosphere of Uranus suggest that both auroral and electroglow phenomena are of significant aeronomical consequences in the structure of the upper atmosphere. Combined modeling and data analysis were performed to determine the effect of electroglow and auroral phenomena on the global heat and atomic hydrogen budgets in the Uranus upper atmosphere. The results indicate that the auroral and electroglow heat sources are not adequate to explain the high exospheric temperature observed at Uranus, but that the atomic hydrogen supplied by these processes is more than sufficient to explain the observations. The various superthermal electron distributions modeled have significantly different efficiencies for the various processes such as UV emission, heating, ionization, and atomic hydrogen production, and produce quite different H2 band spectra. However, additional information on the UV spectra and global parameters is needed before modeling can be used to distinguish between the possible mechanisms for electroglow.

  3. The Earth's Middle Atmosphere: COSPAR Plenary Meeting, 29th, Washington, DC, 28 Aug.-5 Sep., 1992

    NASA Technical Reports Server (NTRS)

    Grosse, W. L. (Editor); Ghazi, A. (Editor); Geller, M. A. (Editor); Shepherd, G. G. (Editor)

    1994-01-01

    The conference presented the results from the Upper Atmosphere Research Satellite (UARS) in the areas of wind, temperature, composition, and energy input into the upper atmosphere. Also presented is the current status of validation of the UARS temperature and wind instruments measuring at and above the menopause. The two UARS instruments involved were the High Resolution Doppler Imager (HRDI) and the WIND Imaging Interferometer (WINDII). Papers are presented covering almost all aspects of middle atmospheric science, including dynamics, layering in the middle atmosphere, atmospheric composition, solar and geomagnetic effects, electrodynamics, and the ionosphere.

  4. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  5. Wave-mean flow interactions in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.

    1973-01-01

    The nature of internal gravity waves is described with special emphasis on their ability to transport energy and momentum. The conditions under which these fluxes interact with the mean state of the atmosphere are described and the results are applied to various problems of the upper atmosphere, including the quasi-biennial oscillation, the heat budget of the thermosphere, the general circulation of the mesosphere, turbulence in the mesosphere, and the 4-day circulation of the Venusian atmosphere.

  6. Microwave Limb Sounder/El Niño Watch - Water Vapor Measurement, October, 1997

    NASA Image and Video Library

    1997-10-30

    This image shows atmospheric water vapor in Earth upper troposphere, about 10 kilometers 6 miles above the surface, as measured by NASA Microwave Limb Sounder MLS instrument flying aboard the Upper Atmosphere Research Satellite.

  7. Review of spectroscopic parameters for upper atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H. (Editor)

    1985-01-01

    The workshop included communication of spectroscopic data requirements for the planned upper atmosphere research satellite (UARS) mission, review of the status of currently available spectroscopic parameters, and recommendation of additional studies. The objectives were accomplished and resulted in a series of general and specific recommendations for laboratory spectroscopy research to meet the needs of UARS and other atmospheric remote sensing programs.

  8. Space Shuttle ice nuclei

    NASA Astrophysics Data System (ADS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.

    1982-08-01

    Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average ice nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle ice nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the extent of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/ice supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.

  9. Wave transience in a compressible atmosphere. I - Transient internal wave, mean-flow interaction. II - Transient equatorial waves in the quasi-biennial oscillation

    NASA Technical Reports Server (NTRS)

    Dunkerton, T. J.

    1981-01-01

    Analytical and numerical solutions are obtained in an approximate quasi-linear model, to describe the way in which vertically propagating waves give rise to mean flow accelerations in an atmosphere due to the effects of wave transience. These effects in turn result from compressibility and vertical group velocity feedback, and culminate in the spontaneous formation and descent of regions of strong mean wind shear. The numerical solutions display mean flow accelerations due to Kelvin waves in the equatorial stratosphere, with wave absorption altering the transience mechanism in such significant respects as causing the upper atmospheric mean flow acceleration to be very sensitive to the precise magnitude and distribution of the damping mechanisms. The numerical simulations of transient equatorial waves in the quasi-biennial oscillation are also considered.

  10. In Brief: Observing the Sun from a giant balloon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    A solar telescope, borne by a balloon larger than a Boeing 747, was successfully launched to an altitude of 120,000 feet, the National Center for Atmospheric Research (NCAR) announced on 23 October. NCAR, working with a team of research partners, indicated that the test clears the way for long-duration polar balloon flights beginning in 2009 to capture unprecedented details of the Sun's surface. ``We hope to unlock important mysteries about the Sun's magnetic field structures, which at times can cause electromagnetic storms in our upper atmosphere and may have an impact on Earth's climate,'' said Michael Knölker, director of NCAR's High Altitude Observatory and a principal investigator on the project known as Sunrise. ``This is a very economical way of rising above the atmosphere and capturing images that cannot be captured from Earth.''

  11. The importance of energetic particle precipitation on the chemical composition of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Thorne, R. M.

    1980-01-01

    The present review deals with the importance of three distinct classes of precipitation which directly deposit energy into the middle atmosphere, viz. galactic cosmic radiation, energetic solar protons and relativistic electron precipitation from the earth's radiation belts. Chemical considerations during particle precipitation are discussed, with special emphasis on the relative production rate of odd nitrogen and odd hydrogen species during ionizing particle precipitation. The long residence time of NO in the upper stratosphere, where catalytic interaction with O3 is most effective, requires that this mechanism be included in future modeling of global distribution of O3. Other situations causing O3 depletion are also identified.

  12. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  13. Effects of Lightning in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Sentman, Davis D.; Pasko, Victor P.; Morrill, Jeff S.

    2010-02-01

    AGU Chapman Conference on Effects of Thunderstorms and Lightning in the Upper Atmosphere; University Park, Pennsylvania, 10-14 May 2009; The serendipitous observation in 1989 of electrical discharge in the high atmosphere induced by thundercloud lightning launched a new field of geophysical investigation. From this single unexpected observation sprang a vigorous and fertile new research field that simultaneously encompasses geophysical disciplines that are normally pursued independently, such as meteorology and lightning, plasma and gas discharge physics, atmospheric chemistry, ionospheric physics, and energetic particle physics. Transient electrical discharge in the upper atmosphere spans the full range of altitudes between the tropopause and the ionosphere and takes a variety of forms that carry the whimsical names red sprites, blue jets, gigantic jets, elves (emissions of light and very low frequency perturbations from electromagnetic pulse sources), and sprite halos, collectively known as transient luminous events (TLEs). To date, TLEs have been observed from ground and airborne or spaceborne platforms above thunderstorm systems worldwide, and radio observations made concomitantly with optical observations have shown that they are produced by the transient far fields of thundercloud lightning. TLEs appear to be large-scale (tens of kilometers in dimension), upper atmospheric versions of conventional gas discharge akin to weakly ionized, collision-dominated systems found in laboratory discharge devices (millimeter-centimeter dimensions), with characteristic energies of a few electron volts. The dominant physical processes have been identified as described by the familiar kinetic theory of the photochemistry of the upper atmosphere, but with electric field-driven electron impact ionization playing the role of photolysis or energetic precipitating particle-induced ionization.

  14. The precipitation of energetic heavy ions into the upper atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Cravens, T. E.; Waite, J. H., Jr.

    1987-01-01

    Evidence for auroral particle precipitation at Jupiter was provided by the ultraviolet spectrometers onboard the Voyagers 1 and 2 spacecraft and by the International Ultraviolet Explorer (IUE). Magnetospheric measurements made by instruments onboard the Voyager spacecraft show that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of Jupiter. A theoretical model has been constructed describing the interaction of precipitating oxygen with the Jovian atmosphere. The auroral energy is deposited in the atmosphere by means of ionization, excitation, and dissociation and heating of the atmospheric gas. Energetic ion and electron precipitation are shown to have similar effects on the atmosphere and ionosphere of Jupiter.

  15. The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.

    2013-12-01

    With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed needed to determine where and how fast the life-capable atmosphere disappeared. Or was it thought that other orbiting missions like MEx or MGS that sampled the ionosphere were inadequate to the task? In a way the delay in executing a Mars aeronomy mission has a positive side; i.e. instruments are better developed than in earlier proposals and we have the benefit of MEx and MGS better defining the science objectives for an aeronomy mission. The bumps and potholes that planners of missions to Mars encountered makes an interesting story

  16. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b

    NASA Astrophysics Data System (ADS)

    Bourrier, V.; Lecavelier des Etangs, A.; Wheatley, P. J.; Dupuy, H.; Ehrenreich, D.; Vidal-Madjar, A.; Hébrard, G.; Ballester, G. E.; Désert, J.-M.; Ferlet, R.; Sing, D. K.

    2012-12-01

    Transit observations of the hydrogen Lyman-α line allowed the detection of atmospheric escape from the exoplanet HD209458b (Vidal-Madjar et al. 2003). Using spectrally resolved Lyman-α transit observations of the exoplanet HD 189733b at two different epochs, Lecavelier des Etangs et al. (2012) detected for the first time temporal variations in the physical conditions of an evaporating planetary atmosphere. Here we summarized the results obtained with the HST/STIS observations as presented in June 2012 at the SF2A 2012 meeting. While atmospheric hydrogen cannot be detected in the STIS observations of April 2010, it is clearly detected in the September 2011 observations. The atomic hydrogen cloud surrounding the transiting planet produces a transit absorption depth of 14.4±3.6% between velocities of -230 to -140 km s^{-1}. These high velocities cannot arise from radiation pressure alone and, contrary to HD 209458b, this requires an additional acceleration mechanism, such as interactions with stellar wind protons. The spectral and temporal signature of the absorption is fitted by an atmospheric escape rate of neutral hydrogen atoms of about 10^9 g s^{-1}, a stellar wind with a velocity of 190 km s^{-1} and a temperature of ˜10^5 K. We also illustrate the power of multi-wavelengths approach with simultaneous observations in the X-rays obtained with Swift/XRT. We detected an X-ray flare about 8 hours before the transit of September 2011. This suggests that the observed changes within the upper part of the escaping atmosphere can be caused by variations in the stellar wind properties, or/and by variations in the stellar energy input to the planet's escaping gas. This multi-wavelengths approach allowed the simultaneous detection of temporal variations both in the stellar X-ray and in the planetary upper atmosphere, providing first observational constraints on the interaction between the exoplanet's atmosphere and the star.

  17. Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System (Vps)

    NASA Technical Reports Server (NTRS)

    Marz, Bryan E.; Ash, Robert L.

    1996-01-01

    This document provides a summary of the launch and post-launch activities of Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System, V(ps). It is a comprehensive overview covering launch activities, post-launch activities, experimental results, and future flight recommendations.

  18. Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Minobe, S.; Ida, T.; Takatama, K.

    2016-12-01

    Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.

  19. IMPACT: Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking

    NASA Astrophysics Data System (ADS)

    Koller, J.; Brennan, S.; Godinez, H. C.; Higdon, D. M.; Klimenko, A.; Larsen, B.; Lawrence, E.; Linares, R.; McLaughlin, C. A.; Mehta, P. M.; Palmer, D.; Ridley, A. J.; Shoemaker, M.; Sutton, E.; Thompson, D.; Walker, A.; Wohlberg, B.

    2013-12-01

    Low-Earth orbiting satellites suffer from atmospheric drag due to thermospheric density which changes on the order of several magnitudes especially during space weather events. Solar flares, precipitating particles and ionospheric currents cause the upper atmosphere to heat up, redistribute, and cool again. These processes are intrinsically included in empirical models, e.g. MSIS and Jacchia-Bowman type models. However, sensitivity analysis has shown that atmospheric drag has the highest influence on satellite conjunction analysis and empirical model still do not adequately represent a desired accuracy. Space debris and collision avoidance have become an increasingly operational reality. It is paramount to accurately predict satellite orbits and include drag effect driven by space weather. The IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), funded with over $5 Million by the Los Alamos Laboratory Directed Research and Development office, has the goal to develop an integrated system of atmospheric drag modeling, orbit propagation, and conjunction analysis with detailed uncertainty quantification to address the space debris and collision avoidance problem. Now with over two years into the project, we have developed an integrated solution combining physics-based density modeling of the upper atmosphere between 120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several novel approaches including a unique observational sensor developed at Los Alamos; machine learning with a support-vector machine approach of the coupling between solar drivers of the upper atmosphere and satellite drag; rigorous data assimilative modeling using a physics-based approach instead of empirical modeling of the thermosphere; and a computed-tomography method for extracting temporal maps of thermospheric densities using ground based observations. The developed IMPACT framework is an open research framework enabling the exchange and testing of a variety of atmospheric density models, orbital propagators, drag coefficient models, ground based observations, etc. and study their effect on conjunctions and uncertainty predictions. The framework is based on a modern service-oriented architecture controlled by a web interface and providing 3D visualizations. The goal of this project is to revolutionize the ability to monitor and track space objects during highly disturbed space weather conditions, provide suitable forecasts for satellite drag conditions and conjunction analysis, and enable the exchange of models, codes, and data in an open research environment. We will present capabilities and results of the IMPACT framework including a demo of the control interface and visualizations.

  20. An analysis of the upper atmospheric wind observed by LOGACS. [satellite Low-G Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Matsushita, S.; Devries, L. L.

    1974-01-01

    Wind velocities at 140 to 200 km altitude were observed by a low-g accelerometer calibration system (LOGACS) flown on an Agena satellite during a geomagnetic storm. An interesting wind reversal observed by the satellite at auroral latitudes is satisfactorily explained by the neutral air motion caused by the E x B drift deduced from the ground-based geomagnetic data recorded at stations near the meridian of the satellite orbit.

  1. Satellite ozone measurements and the detection of trends

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest

    1990-01-01

    Due to the international scientific community's concern with the problem of anthropogenic gas-caused depletion of the ozone layer, an international observational program has been established to conduct stratospheric studies for at least a decade. These observations, which will be performed both by the Space Shuttle and the Upper Atmosphere Research Satellite, will encompass the energy input by solar UV irradiance, source and intermediate gases in ozone chemistry, and the global distributions of these ozone-affecting gases by winds.

  2. Pulsating aurora from electron scattering by chorus waves

    NASA Astrophysics Data System (ADS)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  3. The upper atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Yelle, Roger V.; Shemansky, Donald E.; Atreya, Sushil K.

    1991-01-01

    Voyager measurements of the upper atmosphere of Uranus are analyzed and developed. The upper atmosphere of Uranus is predominantly H2, with at most 10 percent He by volume, and the dominant constituent of the exosphere is H. The thermosphere is warm, with an asymptotic isothermal temperature of about 800 K. Atomic hydrogen at this temperature forms an extensive thermal corona and creates gas drag that severely limits the lifetime of small ring particles. The upper atmosphere emits copious amounts of UV radiation from pressures greater than 0.01 microbar. The depth of this emission level imposes a powerful constraint on permissible emission mechanisms. Electron excitation from a thin layer near the exobase appears to violate this constraint. Solar fluorescence is consistent with the observed trend in solar zenith-angle variation of the emissions and is absent from the night side of the planet. On Uranus, it accounts for the observed Lyman beta to H2 bands intensity ratio and an important fraction of the observed intensity (about 55 percent).

  4. Stratospheric Sudden Warming Effects on the Upper Thermosphere

    NASA Astrophysics Data System (ADS)

    Yamazaki, Y.; Kosch, M. J.; Emmert, J. T.

    2015-12-01

    It has been controversial whether a stratospheric sudden warming (SSW) event has any measurable impact on the upper thermosphere. In this study, we use long-term records of the global average thermospheric total mass density derived from satellite orbital decay data during 1967-2013. This enables, for the first time, a statistical investigation of the thermospheric density response to SSW events. A superposed epoch analysis of 37 SSW events reveals a density reduction of 3-7% at 250-575 km around the time of polar vortex weakening. The temperature perturbation is estimated to be -7.0 K at 400 km. We suggest enhanced wave forcing from the lower atmosphere as a possible cause for the density reduction observed during SSWs.

  5. Effects of plasma drag on low Earth orbiting satellites due to solar forcing induced perturbations and heating

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip K.; Weigel, Robert S.

    2015-07-01

    The upper atmosphere changes significantly in temperature, density and composition as a result of solar cycle variations, which causes severe storms and flares, and increases in the amount of absorbed solar radiation from solar energetic events. Satellite orbits are consequently affected by this process, especially those in low Earth orbit (LEO). In this paper, we present a model of atmospheric drag effects on the trajectory of two hypothetical LEO satellites of different ballistic coefficients, initially injected at h = 450 km. We investigate long-term trends of atmospheric drag on LEO satellites due to solar forcing induced atmospheric perturbations and heating at different phases of the solar cycle, and during short intervals of strong geomagnetic disturbances or magnetic storms. We show dependence of orbital decay on the severity of both solar cycle and phase and the extent of geomagnetic perturbations. The result of the model compares well with observed decay profile of some existing LEO satellites and provide a justification of the theoretical considerations used here.

  6. Sunrise, Earth Limb, SW Pacific Ocean

    NASA Image and Video Library

    1992-09-20

    STS047-54-018 (12-20 Sept. 1992) --- The colors in this photograph provide insight into the relative density of the atmosphere. The crew members had many opportunities to witness sunrises and sunsets, considering they orbit the Earth every 90 minutes, but few, they said, compared to this scene. It captures the silhouette of several mature thunderstorms with their cirrus anvil tops spreading out against the tropopause (the top of the lowest layer of Earth's atmosphere) at sunset. The lowest layer (troposphere) is the densest and refracts light at the red end of the visible spectrum (7,400 Angstroms), while the blues (4,000 Angstroms) are separated in the least dense portion of the atmosphere (middle and upper atmosphere, or stratosphere and mesosphere). Several layers of blue can be seen. NASA scientists studying the photos believe this stratification to be caused by the scattering of light by particulate trapped in the stratosphere and mesosphere particulate that generally originate from volcanic eruptions, such as those of Mt. Pinatubo in the Philippines and, most recently, Mt. Spurr in Alaska.

  7. Spectroscopy of chromospheric lines of giants in the globular cluster

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, Lee; Smith, Graeme H.; Rodgers, A. W.; Roberts, W. H.; Zucker, D. B.

    1994-01-01

    Spectroscopic observations of chromospheric transitions (Mg II, H-alpha, and Ca II K) from two red giants (A31 and A59) in the globular cluster NGC 6572 were made with the Goddard High Resolution Spectrograph on the Hubble Space Telescope and the coude spectrograph of the 1.9 m telescope at the Mount Stromlo Observatory. These measurements give evidence for chromospheric activity and outward motions within the atmospheres. The surface flux of the Mg II emission is comparable to that in disk population giants of similar (B-V) color. The Mg II profiles are asymmetric, which is most likely caused by absorption in an expanding stellar atmosphere and/or by possible interstellar features. Notches are found in the core of the H-alpha line of A59, which are similar to those found in Cepheids. This suggests that shocks are present in the atmosphere of A59 and indicates that hydrodynamic phenomena are influencing the levvel of chromospheric emission and producing upper atmospheric motions which may lead to mass loss.

  8. Present state of knowledge of the upper atmosphere 1990: An assessment report

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Kurylo, M. J.; Prather, M. J.; Ormond, F. M.

    1990-01-01

    NASA is charged with the responsibility to report on the state of the knowledge of the Earth's upper atmosphere, particularly the stratosphere. Part 1 of this report, issued earlier this year, summarized the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program during the last two years. New findings since the last report to Congress was issued in 1988 are presented. Several scientific assessments of the current understanding of the chemical composition and physical structure of the stratosphere are included, in particular how the abundance and distribution of ozone is predicted to change in the future. These reviews include: a summary of the most recent international assessment of stratospheric ozone; a study of future chlorine and bromine loading of the atmosphere; a review of the photochemical and chemical kinetics data that are used as input parameters for the atmospheric models; a new assessment of the impact of Space Shuttle launches on the stratosphere; a summary of the environmental issues and needed research to evaluate the impact of the newly re-proposed fleet of stratospheric supersonic civil aircraft; and a list of the contributors to this report and the science assessments which have formed our present state of knowledge of the upper atmosphere and ozone depletion.

  9. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.

    2013-12-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1992-09-12

    This STS-48 onboard photo is of the Upper Atmosphere Research Satellite (UARS) in the grasp of the RMS (Remote Manipulator System) during deployment, September 1991. UARS gathers data related to the chemistry, dynamics, and energy of the ozone layer. UARS data is used to study energy input, stratospheric photo chemistry, and upper atmospheric circulation. UARS helps us understand and predict how the nitrogen and chlorine cycles, and the nitrous oxides and halo carbons which maintain them, relate to the ozone balance. It also observes diurnal variations in short-lived stratospheric chemical species important to ozone destruction. Data from UARS enables scientists to study ozone depletion in the upper atmosphere.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1991-09-12

    This STS-48 onboard photo is of the Upper Atmosphere Research Satellite (UARS) in the grasp of the RMS (Remote Manipulator System) during deployment, September 1991. UARS gathers data related to the chemistry, dynamics, and energy of the ozone layer. UARS data is used to study energy input, stratospheric photo chemistry, and upper atmospheric circulation. UARS helps us understand and predict how the nitrogen and chlorine cycles, and the nitrous oxides and halo carbons which maintain them, relate to the ozone balance. It also observes diurnal variations in short-lived stratospheric chemical species important to ozone destruction. Data from UARS enables scientists to study ozone depletion in the upper atmosphere.

  12. Global warming and ocean stratification: A potential result of large extraterrestrial impacts

    NASA Astrophysics Data System (ADS)

    Joshi, Manoj; von Glasow, Roland; Smith, Robin S.; Paxton, Charles G. M.; Maycock, Amanda C.; Lunt, Daniel J.; Loptson, Claire; Markwick, Paul

    2017-04-01

    The prevailing paradigm for the climatic effects of large asteroid or comet impacts is a reduction in sunlight and significant short-term cooling caused by atmospheric aerosol loading. Here we show, using global climate model experiments, that the large increases in stratospheric water vapor that can occur upon impact with the ocean cause radiative forcings of over +20 W m-2 in the case of 10 km sized bolides. The result of such a positive forcing is rapid climatic warming, increased upper ocean stratification, and potentially disruption of upper ocean ecosystems. Since two thirds of the world's surface is ocean, we suggest that some bolide impacts may actually warm climate overall. For impacts producing both stratospheric water vapor and aerosol loading, radiative forcing by water vapor can reduce or even cancel out aerosol-induced cooling, potentially causing 1-2 decades of increased temperatures in both the upper ocean and on the land surface. Such a response, which depends on the ratio of aerosol to water vapor radiative forcing, is distinct from many previous scenarios for the climatic effects of large bolide impacts, which mostly account for cooling from aerosol loading. Finally, we discuss how water vapor forcing from bolide impacts may have contributed to two well-known phenomena: extinction across the Cretaceous/Paleogene boundary and the deglaciation of the Neoproterozoic snowball Earth.

  13. Theoretical and experimental investigations of upper atmosphere dynamics

    NASA Technical Reports Server (NTRS)

    Roper, R. G.; Edwards, H. D.

    1980-01-01

    A brief overview of the significant contributions made to the understanding of the dynamics of the Earth's upper atmosphere is presented, including the addition of winds and diffusion to the semi-empirical Global Reference Atmospheric Model developed for the design phase of the Space Shuttle, reviews of turbulence in the lower thermosphere, the dynamics of the equatorial mesopause, stratospheric warming effects on mesopause level dynamics, and the relevance of these studies to the proposed Middle Atmosphere Program (1982-85). A chronological bibliography, with abstracts of all papers published, is also included.

  14. An assessment of thermal, wind, and planetary wave changes in the middle and lower atmosphere due to 11-year UV flux variations

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Alpert, J. C.; Geller, M. A.

    1985-01-01

    Hines (1974) speculated that solar-induced modifications of the middle and upper atmosphere may alter the transmissivity of the stratosphere to upwardly propagating atmospheric waves. It was suggested that subsequent constructive or destructive interference may result in a change of phase or amplitude of these waves in the troposphere leading to weather or climate changes. The present investigation has the objective to bring together both radiative transfer and planetary wave studies in an effort to assess specifically whether Hines mechanism can be initiated by the solar ultraviolet flux variability assumed to be associated with the 11-year solar cycle. The obtained results suggest that the presently studied mechanism, which links solar-induced zonal wind changes in the stratosphere and mesosphere to planetary wave changes in the troposphere, is not strong enough to cause substantive changes in the troposphere.

  15. Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Rafkin, S.; Drossart, P.

    2006-11-01

    A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).

  16. Spatial and Temporal Variability of Surface Energy Fluxes During Autumn Ice Advance: Observations and Model Validation

    NASA Astrophysics Data System (ADS)

    Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.

    2016-12-01

    From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.

  17. Synergism of Saturn, Enceladus and Titan and Formation of HCNO Exobiological Molecules

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Cooper, John F.

    2010-01-01

    Saturn as a system has two very exotic moons Titan and Enceladus. Titan with energy input from Saturn's magnetosphere, solar UV irradiation, and cosmic rays can make HCN based molecules as discussed in earlier paper by [1]. Space radiation effects at both moons, and as coupled by the Saturn magnetosphere could cause an unexpected series of events leading to the evolution of biological models at Titan composed of HCNO with oxygen as the new ingredient. The "Old Faithful" model by [2] suggests that Enceladus, highly irradiated by Saturn magnetospheric electrons, has episodic ejections of water vapor driven by radiolytic oxidation gas products into Saturn's magnetosphere. At Titan Cassini discovered 1) that keV oxygen ions, evidently from Enceladus, are bombarding Titan's upper atmosphere [3] and 2) the discovery of heavy positive and negative ions within Titan's upper atmosphere [4]. Initial models of heavy ion formation in Titan's upper atmosphere invoked polymerization of aromatics such as Benzenes and their radicals to make PAHs [5], while a more recent model by [6] has raised the possibility of carbon chains forming from the polymerization of acetylene and its radicals to eventually make fullerenes. Laboratory measurements indicate that fullerenes, which are hollow carbon shells, can trap the keV oxygen and with the clustering of fullerenes and possible mixture with PAHs, some with nitrogen molecules, can make the larger aerosols with oxygen within them. Then with further ionizing irradiation from cosmic rays deep in the atmosphere "tholin" molecules are produced with all the molecular components present from which organic molecules can form. Among the molecular components are amino acids, the fundamental building blocks of life as we know it. This process maybe a common chemical pathway, both at the system level and at the molecular level, to form prebiotic and perhaps even biotic molecules. Such processes can be occurring throughout our universe, such as molecular clouds in the ISM.

  18. Internal gravity waves in the upper atmosphere, generated by tropospheric jet streams

    NASA Technical Reports Server (NTRS)

    Chunchuzov, Y. P.; Torgashin, Y. M.

    1979-01-01

    A mechanism of internal gravity wave generation by jet streams in the troposphere is considered. Evaluations of the energy and pulse of internal gravity waves emitted into the upper atmosphere are given. The obtained values of flows can influence the thermal and dynamic regime of these layers.

  19. Gone with the Wind: Three Years of MAVEN Measurements of Atmospheric Loss at Mars

    NASA Astrophysics Data System (ADS)

    Brain, David; MAVEN Team

    2017-10-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is making measurements of the Martian upper atmosphere and near space environment, and their interactions with energy inputs from the Sun. A major goal of the mission is to evaluate the loss of atmospheric gases to space in the present epoch, and over Martian history. MAVEN is equipped with instruments that measure both the neutral and charged upper atmospheric system (thermosphere, ionosphere, exosphere, and magnetosphere), inputs from the Sun (extreme ultraviolet flux, solar wind and solar energetic particles, and interplanetary magnetic field), and escaping atmospheric particles. The MAVEN instruments, coupled with models, allow us to more completely understand the physical processes that control atmospheric loss and the particle reservoirs for loss.Here, we provide an overview of the significant results from MAVEN over approximately 1.5 Mars years (nearly three Earth years) of observation, from November 2014 to present. We argue that the MAVEN measurements tell us that the loss of atmospheric gases to space was significant over Martian history, and present the seasonal behavior of the upper atmosphere and magnetosphere. We also discuss the influence of extreme events such as solar storms, and a variety of new discoveries and observations of the Martian system made by MAVEN.

  20. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  1. Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star

    NASA Astrophysics Data System (ADS)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchère, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Braukhane, A.; Casini, R.; Curdt, W.; Davila, J.; Dittus, H.; Fineschi, S.; Fludra, A.; Gandorfer, A.; Griffin, D.; Inhester, B.; Lagg, A.; Landi Degl'Innocenti, E.; Maiwald, V.; Sainz, R. Manso; Martínez Pillet, V; Matthews, S.; Moses, D.; Parenti, S.; Pietarila, A.; Quantius, D.; Raouafi, N.-E.; Raymond, J.; Rochus, P.; Romberg, O.; Schlotterer, M.; Schühle, U.; Solanki, S.; Spadaro, D.; Teriaca, L.; Tomczyk, S.; Trujillo Bueno, J.; Vial, J.-C.

    2012-04-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.

  2. Stability characteristics of the mesopause region above the Andes

    NASA Astrophysics Data System (ADS)

    Yang, F.; Liu, A. Z.

    2017-12-01

    The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.

  3. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the heights corresponding to the middle atmosphere and ionosphere. The results of numerical modeling based on the solution of the equation of geophysical hydrodynamics agree with the observations.

  4. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    NASA Astrophysics Data System (ADS)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.

  5. Cupid's Arrow: An Innovative Nanosat to Sample Venus' Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernie; Darrach, Murray; Madzunkov, Stojan; Sotin, Christophe

    2016-01-01

    In NASA's Discovery 2014 AO, the opportunity to propose a Technology Demonstration Opportunity (TDO) to enhance the primary mission was specified. For the Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy (VERITAS) mission, we elected to include the Cupid's Arrow nanosat TDO to sample and measure the abundances of noble gases and their isotopic ratios in Venus's upper atmosphere below the homopause. This paper will provide a basic overview of the VERITAS mission, with a focus on the Cupid's Arrow concept including a description of the mission, spacecraft design, and JPL's quadrupole ion trap mass spectrometer (QITMS) instrument specifications and design. In previous planetary entry probe mission designs, particularly at Venus, engineers w ere focused on entry and descent. A landed probe was also proposed for the New Frontiers SAGE mission. For Cupid's Arrow, the nanosat is designed to skim through the upper atmosphere, just below the homopause, in order to sample the atmosphere, perform the analysis, and then exit the atmosphere to transmit its data to the orbiting VERITAS spacecraft. Cupid's Arrow is a compelling addition to the VERITAS geology mission. A key missing link in our understanding of Venus' evolution is the noble gas abundances and their isotopic ratios. Not since Pioneer Venus have these measurements been made in the Venus atmosphere and never in the upper atmosphere, just below the homopause, to the degree of accuracy that will be accomplished by VERITAS' Cupid's Arrow nanosat.Such measurements were ranked as the number 1 investigation of the number 1 objective of the goal "Atmospheric Formation, Evolution, and Climate History ".

  6. Lidar investigations of ozone in the upper troposphere - lower stratosphere: technique and results of measurements

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. A.; Nevzorov, A. V.; Kharchenko, O. V.

    2016-12-01

    Prediction of atmospheric ozone layer, which is the valuable and irreplaceable geo asset, is currently the important scientific and engineering problem. The relevance of the research is caused by the necessity to develop laser remote methods for sensing ozone to solve the problems of controlling the environment and climatology. The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The report introduces the technique of recovering profiles of ozone vertical distribution considering temperature and aerosol correction in atmosphere lidar sounding by differential absorption method. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. Sensing is performed according to the method of differential absorption at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-18 km. The recovered ozone profiles were compared with IASI satellite data and Kruger model. The results of applying the developed technique to recover the profiles of ozone vertical distribution considering temperature and aerosol correction in the altitude range of 6-18 km in lidar atmosphere sounding by differential absorption method confirm the prospects of using the selected wavelengths of ozone sensing 341 and 299 nm in the ozone lidar.

  7. Satellite Measurements of Middle Atmospheric Impacts by Solar Proton Events in Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Jackman, C.; Labow, G.; DeLand, M.; Fleming, E.; Sinnhuber, M.; Russell, J.

    2005-01-01

    Solar proton events (SPEs) are known to have caused changes in constituents in the Earth's neutral polar middle atmosphere in the most recent solar maximum period (solar cycle 23). The highly energetic protons produced ionizations, excitations, dissociations, and dissociative ionizations of the background constituents in the polar cap regions (greater than 60 degrees geomagnetic latitude), which led to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases led to short-lived ozone decreases in the polar mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. Polar middle mesospheric ozone decreases greater than 50% were observed and computed to last for hours to days due to the enhanced HOx. The NOy increases led to long-lived polar stratospheric ozone changes because of the long lifetime of the NOy family in this region. Upper stratospheric ozone decreases of greater than 10% were computed to last for several months past the solar events in the winter polar regions because of the enhanced NOy. Solar cycle 23 was especially replete with SPEs and huge fluxes of high energy protons occurred in July and November 2000, September and November 2001, April 2002, October 2003, and January 2005. Smaller, but still substantial, proton fluxes impacted the Earth during other months in this cycle. Observations by the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments along with GSFC 2D Model predictions will be shown in this talk.

  8. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; hide

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  9. An Ionospheric Response to the 2013 Moore EF5 Tornad, Detected By High-Resolution GPS-TEC Observations

    NASA Astrophysics Data System (ADS)

    Kubota, M.; Nishioka, M.; Tsugawa, T.; Ishii, M.

    2014-12-01

    We observed clear concentric waves and short-period oscillations in the ionosphere after the EF5 tornado hit Moore, Oklahoma, USA, on 20 May 2013 using a dense wide-coverage ionospheric total electron content (TEC) observation in North America. These concentric waves were non-dispersive waves with a horizontal wavelength of ~120 km and a period of ~13 minutes. They were observed for more than seven hours throughout North America. TEC oscillations with a period of ~4 minutes were also observed in the south of Moore for more than eight hours. Comparison between the TEC observation and the infrared cloud image from the GOES satellite indicates that the concentric waves were caused by supercells rather than the tornados themselves. Backward ray-tracing analysis suggests that the leaking of atmospheric waves in a thermal duct excited AGWs in the ionosphere. The short-period TEC oscillation could be explained by the acoustic resonance triggered by strong long-lasting supercells. This observational result provides the first clear evidence of a severe meteorological event causing atmospheric waves propagating upward in the upper atmosphere and reaching the ionosphere.

  10. Solar and terrestrial physics. [effects of solar activities on earth environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  11. MAVEN - Mars Atmosphere and Volatile EvolutioN Mission

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Jakosky, Bruce M.

    2011-01-01

    NASA's MAVEN mission (to be launched in late 2013) is the first mission to Mars devoted to sampling all of the upper atmosphere neutral and plasma environments, including the well-mixed atmosphere, the exosphere, ionosphere, outer magnetosphere and near-Mars solar wind. It will fill in some measurement gaps remaining from the successful Mars Global Surveyor and the on-going Mars Express missions. The primary science objectives of MAVEN are: 1. Provide a comprehensive picture of the present state of the upper atmosphere and ionosphere of Mars; 2. Understand the processes controlling the present state; and 3. Determine how loss of volatiles to outer space in the present epoch varies with changing solar condition - EUY, solar wind and interplanetary magnetic field measurements will provide the varying solar energy inputs into the system. Knowing how these processes respond to the Sun's energy inputs in the current epoch will provide a framework for projecting atmospheric processes back in time to profile MARS' atmospheric evolution and to explore "where the water went", A description will be given of the science objectives, the instruments, and the current status of the project, emphasizing the value of having collaborations between the MAVEN project and the Mars upper atmosphere science community.

  12. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerst, S. M.; Brown, M. E., E-mail: sarah.horst@colorado.edu

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium,more » or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.« less

  13. Spectroscopic database

    NASA Technical Reports Server (NTRS)

    Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.

    1985-01-01

    Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.

  14. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  15. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  16. Atmospheric carbon dioxide and chlorofluoromethanes - Combined effects on stratospheric ozone, temperature, and surface temperature

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Natarajan, M.

    1981-01-01

    The effects of combined CO2 and CFCl3 and CF2Cl2 time-dependent scenarios on atmospheric O3 and temperature are described; the steady-state levels of O3 and surface temperature, to which the chlorofluoromethane scenario tends in the presence of twice and four time ambient CO2, are examined; and surface temperature changes, caused by the combined effects, are established. A description of the model and of the experiments is presented. Results indicate that (1) the total ozone time history is significantly different from that due to the chlorofluoromethane alone; (2) a local ozone minimum occurs in the upper stratosphere about 45 years from the present with a subsequent ozone increase, then decline; and (3) steady-state solutions indicate that tropospheric temperature and water vapor increases, associated with increased infrared opacity, cause significant changes in tropospheric ozone levels for 2 x CO2 and 4 x CO2, without the addition of chlorofluoromethanes.

  17. Variability of Lyman-alpha emission from Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Jovian Lyman-alpha emission line was again observed in 1978 using the high resolution spectrometer on the Copernicus satellite. In intensity of 8.4+3.0 kilo Rayleighs was measured. This value represents a significant increase in intensity over previous (1976) Copernicus observations, but is lower than the recent (1979) values obtained by Voyager I and IUE. The increase in intensity was accompanied by a significant increase in line width, giving strong support to the theory that the emission results from resonant scattering of the solar Ly-alpha line by H atoms in the upper Jovian atmosphere. The strength of Jovian Ly-alpha emission correlates well with the level of solar activity. The solar extreme ultraviolet radiation varies with the solar cycle. This radiation causes the dissociation of H2 and CH4 into H atoms in the Jovian atmosphere. Therefore, in times of high solar activity, the H column density will increase, causing the observed stronger Jovian Ly-alpha emission.

  18. Variability of Lyman-alpha emission from Jupiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, W.D.; Barker, E.S.

    1979-12-01

    The Jovian L..cap alpha.. emission line was reobserved in 1978 March using the high-resolution spectrometer of the Copernicus satellite. An intensity of 8.3 +- 2.9 kilorayleighs was measured. This value represents a significant increase in intensity over previous (1976) Copernicus observations, but is lower than the recent (1979) values obtained by Voyager 1 and IUE. The increase in intensity has been accompanied by a significant increase in line width givin strong support to the theory that the emission results from resonant scattering of the solar L..cap alpha.. line by H atoms in the upper Jovian atmosphere. The strength of Jovianmore » L..cap alpha.. emission correlates well with the level of solar activity. The solar extreme ultraviolet radiation varies with the solar cycle. This radiation causes the dissociation of H/sub 2/ and CH/sub 4/ into H atoms in the Jovian atmosphere. Therefore, in times of high solar activity, the H column density will increase, causing the observed stronger Jovian L..cap alpha.. emission.« less

  19. Neutron spectral measurements in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Zobel, W.; Love, T. A.; Delorenzo, J. T.; Mcnew, C. O.

    1972-01-01

    An experiment to measure neutrons in the upper atmosphere was performed on a balloon flight from Palestine, Texas, at an altitude of about 32 km. The experimental arrangement is discussed briefly, and results of a preliminary analysis of the data for neutrons in the energy range 3 to 30 MeV are given.

  20. Aeronomy of the Venus Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gérard, J.-C.; Bougher, S. W.; López-Valverde, M. A.; Pätzold, M.; Drossart, P.; Piccioni, G.

    2017-11-01

    We present aeronomical observations collected using remote sensing instruments on board Venus Express, complemented with ground-based observations and numerical modeling. They are mostly based on VIRTIS and SPICAV measurements of airglow obtained in the nadir mode and at the limb above 90 km. They complement our understanding of the behavior of Venus' upper atmosphere that was largely based on Pioneer Venus observations mostly performed over thirty years earlier. Following a summary of recent spectral data from the EUV to the infrared, we examine how these observations have improved our knowledge of the composition, thermal structure, dynamics and transport of the Venus upper atmosphere. We then synthesize progress in three-dimensional modeling of the upper atmosphere which is largely based on global mapping and observations of time variations of the nitric oxide and O2 nightglow emissions. Processes controlling the escape flux of atoms to space are described. Results based on the VeRA radio propagation experiment are summarized and compared to ionospheric measurements collected during earlier space missions. Finally, we point out some unsolved and open questions generated by these recent datasets and model comparisons.

  1. Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.

    2013-12-01

    Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable impact on the upper atmosphere and describe techniques for experimental verification of this finding.

  2. The Role of Atmospheric Heating over the South China Sea and Western Pacific Regions in Modulating Asian Summer Climate under the Global Warming Background

    NASA Astrophysics Data System (ADS)

    He, B.

    2015-12-01

    Global warming is one of the most significant climate change signals at the earth's surface. However, the responses of monsoon precipitation to global warming show very distinct regional features, especially over the South China Sea (SCS) and surrounding regions during boreal summer. To understand the possible dynamics in these specific regions under the global warming background, the changes in atmospheric latent heating and their possible influences on global climate are investigated by both observational diagnosis and numerical sensitivity simulations. Results indicate that summertime latent heating has intensified in the SCS and western Pacific, accompanied by increased precipitation, cloud cover, lower-tropospheric convergence, and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS-western Pacific and South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia and leading to a warm and dry climate. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The results highlight the important role of latent heating in adjusting the changes in sea surface temperature through atmospheric dynamics.

  3. Role of atmospheric heating over the South China Sea and western Pacific regions in modulating Asian summer climate under the global warming background

    NASA Astrophysics Data System (ADS)

    He, Bian; Yang, Song; Li, Zhenning

    2016-05-01

    The response of monsoon precipitation to global warming, which is one of the most significant climate change signals at the earth's surface, exhibits very distinct regional features, especially over the South China Sea (SCS) and adjacent regions in boreal summer. To understand the possible atmospheric dynamics in these specific regions under the global warming background, changes in atmospheric heating and their possible influences on Asian summer climate are investigated by both observational diagnosis and numerical simulations. Results indicate that heating in the middle troposphere has intensified in the SCS and western Pacific regions in boreal summer, accompanied by increased precipitation, cloud cover, and lower-tropospheric convergence and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS and western Pacific and continental South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The result highlights the important role of air-sea interaction in understanding the changes in Asian climate.

  4. Cassini versus Saturn Illustration

    NASA Image and Video Library

    2017-04-04

    As depicted in this illustration, Cassini will plunge into Saturn's atmosphere on Sept. 15, 2017. Using its attitude control thrusters, the spacecraft will work to keep its antenna pointed at Earth while it sends its final data, including the composition of Saturn's upper atmosphere. The atmospheric torque will quickly become stronger than what the thrusters can compensate for, and after that point, Cassini will begin to tumble. When this happens, its radio connection to Earth will be severed, ending the mission. Following loss of signal, the spacecraft will burn up like a meteor in Saturn's upper atmosphere. https://photojournal.jpl.nasa.gov/catalog/PIA21440

  5. Concentrations of ethane (C2H6) in the lower stratosphere and upper troposphere and acetylene (C2H2) in the upper troposphere deduced from Atmospheric Trace Molecule Spectroscopy/Spacelab 3 spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Russell, J. M., III; Zander, R.; Farmer, C. B.; Norton, R. H.

    1987-01-01

    This paper reports the results of the spectroscopic analysis of C2H6 and C2H2 absorption spectra obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument flown on the Shuttle as part of the Spacelab 3 mission. The spectra were recorded during sunset occultations occurring between 25 deg N and 31 deg N latitudes, yielding volume-mixing ratio profiles of C2H6 in the lower stratosphere and the upper troposphere, and an upper tropospheric profile of C2H2. These results compare well with previous in situ and remote sounding data obtained at similar latitudes and with model calculations. The results demonstrate the feasibility of the ATMOS instrument to sound the lower atmosphere from space.

  6. Role of upper-ocean on the intensity of Bay of Bengal cyclone `Phailin' as revealed by coupled simulation using Mesoscale Coupled Modeling System (WRF-ROMS)

    NASA Astrophysics Data System (ADS)

    Mani, B.; Mandal, M.

    2016-12-01

    Numerical prediction of tropical cyclone (TC) track has improved significantly in recent years, but not the intensity. It is well accepted that TC induced sea surface temperature (SST) cooling in conjunction with pre-existing upper-ocean features have major influences on tropical cyclone intensity. Absence of two-way atmosphere-ocean feedback in the stand-alone atmosphere models has major consequences on their prediction of TC intensity. The present study investigates the role of upper-ocean on prediction of TC intensity and track based on coupled and uncoupled simulation of the Bay of Bengal (BoB) cyclone `Phailin'. The coupled simulation is conducted with the Mesoscale Coupled Modeling System (MCMS) which is a fully coupled atmosphere-ocean modeling system that includes the non-hydrostatic atmospheric model (WRF-ARW) and the three-dimensional hydrostatic ocean model (ROMS). The uncoupled simulation is performed using the atmosphere component of MCMS i.e., the customized version of WRF-ARW for BoB cyclones with prescribed (RTG) SST. The track and intensity of the storm is significantly better simulated by the MCMS and closely followed the observation. The peak intensity, landfall position and time are accurately predicted by MCMS, whereas the uncoupled simulation over predicted the storm intensity. Validation of storm induced SST cooling with the merged microwave-infrared satellite SST indicates that the MCMS simulation shows better correlation both in terms of spatial spread of cold wake and its magnitude. The analysis also suggests that the Pre-existing Cyclonic Eddy (PCE) observed adjacent to the storm enhanced the TC induced SST cooling. It is observed that the response of SST (i.e., cooling) to storm intensity is 12hr with 95% statistical significance. The air-sea enthalpy flux shows a clear asymmetry between Front Left (FL) and Rear Right (RR) regime to the storm center where TC induced cooling is more than 0.5K/24hr. The analysis of atmospheric boundary layer reveals the formation of persistent stable boundary layer (SBL) over the cold wake, which caused asymmetry in TC structure by quelling convection in the rainbands downstream to the cold wake. The present study signifies the importance of using MCMS in prediction of the BoB cyclone and encourages further investigation with more cyclone cases.

  7. Investigation of subsidence event over multiple seam mining area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohli, K.K.

    1999-07-01

    An investigation was performed to determine the sequence of events which caused the 1987 surface subsidence and related damage to several homes in Walker County, Alabama, USA. Surface affects compared to mine maps indicated the subsidence to be mine related. However, two coal seams had been worked under this area. The upper seam, the American seam, ranged from 250 to 280 feet beneath the surface in the area in question. It was mined-out before 1955 by room-and-pillar method leaving in place narrow-long pillars to support the overburden strata, and abandoned in 1955. The lower seam, the Mary Lee seam, rangedmore » from 650 to 700 feet beneath the surface. The Mary Lee seam had been abandoned in 1966 and subsequently became flooded. The dewatering of the Mary Lee seam workings in 1985 caused the submerged pillars to be exposed to the atmosphere. Due to multiple seam mining and the fact that workings had been inundated then dewatered, a subsurface investigation ensued to determine the sequence and ultimate cause of surface subsidence. Core sample tests with fracture analysis in conjunction with down-the-hole TV camera inspections provided necessary information to determine that the subsidence started in the lower seam and progressed through the upper coal seam to the surface. Evidence from the investigation program established that dewatering of the lower seam workings caused the marginally stable support pillars and the roof to collapse. This failure triggered additional subsidence in the upper seam which broadened the area of influence at the surface.« less

  8. Doppler Data and Density Profile from Cassini Saturn Atmospheric Entry

    NASA Astrophysics Data System (ADS)

    Wong, M.; Boone, D.; Roth, D. C.

    2017-12-01

    After thirteen years of surveying the Saturnian system and providing a multitude of ground-breaking science data, the Cassini spacecraft will perform its final act on September 15, 2017 when it plunges into Saturn's upper atmosphere. This `close contact' with uncharted territory will deliver sets of data about Saturn that were not previously obtainable. In addition to new information obtained from various science instruments onboard, the doppler signal, primarily used for navigation purposes throughout the tour, will in this circumstance furnish a glimpse of the atmospheric density along Cassini's path through the upper atmosphere. In this talk we will discuss preliminary results from our analysis of the doppler data and its implication on the atmospheric density.

  9. Assessing the effect of the relative atmospheric angular momentum (AAM) on length-of-day (LOD) variations under climate warming

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Hansen, F.; Ulbrich, U.; Nevir, P.; Leckebusch, G. C.

    2009-04-01

    While most studies on model-projected future climate warming discuss climatological quantities, this study investigates the response of the relative atmospheric angular momentum (AAM) to climate warming for the 21th century and discusses its possible effects on future length-of-day variations. Following the derivation of the dynamic relation between atmosphere and solid earth by Barnes et al. (Proc. Roy. Soc., 1985) this study relates the axial atmospheric excitation function X3 to changes in length-of-day that are proportional to variations in zonal winds. On interannual time scales changes in the relative AAM (ERA40 reanalyses) are well correlated with observed length-of-day (LOD, IERS EOP CO4) variability (r=0.75). The El Niño-Southern Oscillation (ENSO) is a prominent coupled ocean-atmosphere phenomenon to cause global climate variability on interannual time scales. Correspondingly, changes in observed LOD relate to ENSO due to observed strong wind anomalies. This study investigates the varying effect of AAM anomalies on observed LOD by relating AAM to variations to ENSO teleconnections (sea surface temperatures, SSTs) and the Pacific North America (PNA) oscillation for the 20th and 21st century. The differently strong effect of strong El Niño events (explained variance 71%-98%) on present time (1962-2000) observed LOD-AAM relation can be associated to variations in location and strength of jet streams in the upper troposphere. Correspondingly, the relation between AAM and SSTs in the NIÑO 3.4 region also varies between explained variances of 15% to 73%. Recent coupled ocean-atmosphere projections on future climate warming suggest changes in frequency and amplitude of ENSO events. Since changes in the relative AAM indicate shifts in large-scale atmospheric circulation patterns due to climate change, AAM - ENSO relations are assessed in coupled atmosphere-ocean (ECHAM5-OM1) climate warming projections (A1B) for the 21st century. A strong rise (+31%) in relative AAM is observed with major contributions in the upper troposphere where increased jet streams cause large AAM anomalies. Due to increasing westerly winds, an eastward shift can be observed during strong El Niño events for the Pacific and North America centers of the PNA while its southeast center is less pronounced and shifts to the West. As a result, the PNA region during strong 21th century El Niño events is closely located to the PNA region of mean atmospheric conditions of present time. Further analyses on the climate warming scenario (A1B) determined a total of 28 strong El Niño events suggesting a steady increase in ENSO events, magnitude and duration during the last decades of the 21st century. Rising Niño 3.4 SSTs exceed global increases by 15%. Correspondingly to present times, the AAM-SST relation also indicates a range of explained variances from 8% to 82%. Ongoing analyses on 21st century climate warming relate zonal wind anomalies in the upper troposphere to SST patterns of individual strong El Niños to estimate a possible effect of the relative AAM on length-of-day variations.

  10. Role of Earth's plasmasphere in coupling of upper atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Mishra, Sandhya; Dohare, S. K.

    2010-02-01

    The near-Earth space environment is a complex, ever changing system of magnetized plasmas whose behaviour has a profound impact upon our technology dependent society. The exploration of the cold, relatively dense, inner region of upper atmosphere (the plasmasphere) and its unexpectedly sharp outer boundary (the plasma pause) has proceeded through a combination of in-situ observations and ground based whistler observations. Studies have shown that plasmasphere is highly variable both spatially and temporally responding to changes in geomagnetic indices, ring current, penetration and shielding electric fields and subauroral electric fields. Consequently the plasmasphere exhibits erosion, emptying and refilling during active times. Infact, it is the electric field that plays one of the most important roles in coupling of upper atmosphere. The atmospheric dynamo is the main generator of the large-scale electric field in the upper atmosphere. It arises because of a special situation which electrons and ions move with different velocities across the magnetic field because of different collisions between electrons and neutral particles and ions with neutral particles. This process leads to charge separation and consequently to an electric field. In the present paper, storm/ quiet period VLF whistler data recorded at lower latitudes/mid latitudes are analyzed and attempt has been made to look at plasmasphere response on coupling of ionosphere and magnetosphere.

  11. Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.

    2013-10-01

    The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.

  12. Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases

    NASA Astrophysics Data System (ADS)

    Bani Shahabadi, Maziar; Huang, Yi; Garand, Louis; Heilliette, Sylvain; Yang, Ping

    2016-09-01

    An established radiative transfer model (RTM) is adapted for simulating all-sky infrared radiance spectra from the Canadian Global Environmental Multiscale (GEM) model in order to validate its forecasts at the radiance level against Atmospheric InfraRed Sounder (AIRS) observations. Synthetic spectra are generated for 2 months from short-term (3-9 h) GEM forecasts. The RTM uses a monthly climatological land surface emissivity/reflectivity atlas. An updated ice particle optical property library was introduced for cloudy radiance calculations. Forward model brightness temperature (BT) biases are assessed to be of the order of ˜1 K for both clear-sky and overcast conditions. To quantify GEM forecast meteorological variables biases, spectral sensitivity kernels are generated and used to attribute radiance biases to surface and atmospheric temperatures, atmospheric humidity, and clouds biases. The kernel method, supplemented with retrieved profiles based on AIRS observations in collocation with a microwave sounder, achieves good closure in explaining clear-sky radiance biases, which are attributed mostly to surface temperature and upper tropospheric water vapor biases. Cloudy-sky radiance biases are dominated by cloud-induced radiance biases. Prominent GEM biases are identified as: (1) too low surface temperature over land, causing about -5 K bias in the atmospheric window region; (2) too high upper tropospheric water vapor, inducing about -3 K bias in the water vapor absorption band; (3) too few high clouds in the convective regions, generating about +10 K bias in window band and about +6 K bias in the water vapor band.

  13. The atmosphere of Pluto as observed by New Horizons

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie A.; Summers, Michael E.; Strobel, Darrell F.; Hinson, David P.; Kammer, Joshua A.; Parker, Alex H.; Steffl, Andrew J.; Linscott, Ivan R.; Parker, Joel Wm.; Cheng, Andrew F.; Slater, David C.; Versteeg, Maarten H.; Greathouse, Thomas K.; Retherford, Kurt D.; Throop, Henry; Cunningham, Nathaniel J.; Woods, William W.; Singer, Kelsi N.; Tsang, Constantine C. C.; Schindhelm, Eric; Lisse, Carey M.; Wong, Michael L.; Yung, Yuk L.; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F.; Tyler, G. Leonard; Bagenal, F.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Ore, C. M. Dalle; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Holdridge, M. E.; Horanyi, M.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Ryschkewitsch, M. G.; Schenk, P.; Sepan, B.; Showalter, M. R.; Soluri, M.; Stanbridge, D.; Stryk, T.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Zangari, A. M.; Zirnstein, E.

    2016-03-01

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state - over seasonal or geologic time scales.

  14. The atmosphere of Pluto as observed by New Horizons.

    PubMed

    Gladstone, G Randall; Stern, S Alan; Ennico, Kimberly; Olkin, Catherine B; Weaver, Harold A; Young, Leslie A; Summers, Michael E; Strobel, Darrell F; Hinson, David P; Kammer, Joshua A; Parker, Alex H; Steffl, Andrew J; Linscott, Ivan R; Parker, Joel Wm; Cheng, Andrew F; Slater, David C; Versteeg, Maarten H; Greathouse, Thomas K; Retherford, Kurt D; Throop, Henry; Cunningham, Nathaniel J; Woods, William W; Singer, Kelsi N; Tsang, Constantine C C; Schindhelm, Eric; Lisse, Carey M; Wong, Michael L; Yung, Yuk L; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F; Tyler, G Leonard

    2016-03-18

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales. Copyright © 2016, American Association for the Advancement of Science.

  15. The Effect of Solar Proton Events on Ozone and Other Constituents

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; McPeters, Richard D.; Bhartia, P. K. (Technical Monitor)

    2000-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth's middle atmosphere. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents. Complicated ion chemistry leads to HO(x) production and dissociation of N2 leads to NO(y) production. Both the HO(x) and NO(y) increases can result in changes to ozone in the stratosphere and mesosphere. The HO(x) increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HO(x) constituents. The NO(y) increases lead to long-lived stratospheric ozone changes because of the long lifetime of NO(y) constituents in this region. The NO(y) induced ozone changes are generally decreases, however, the NO(y) constituents can interfere with chlorine and bromine radicals in the lowest part of the stratosphere and cause ozone increases. Temperature changes have been predicted to occur as a result of the larger SPEs. Eleven SPEs have caused measurable atmospheric variations since 1969. Neutral wind variations were measured shortly after the July 1982 and April 1984 SPEs. The recent July 2000 SPE caused NO(x) increases that lasted for two months past the event. The two periods of largest SPEs (August 1972 and October 1989) caused ozone decreases that lasted for several weeks past the events.

  16. Comparisons of planetary wave propagation to the upper atmosphere during stratospheric warming events at different QBO phases

    NASA Astrophysics Data System (ADS)

    Koval, Andrey V.; Gavrilov, Nikolai M.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2018-06-01

    The dynamical coupling of the lower and upper atmosphere by planetary waves (PWs) is studied. Numerical simulations of planetary wave (PW) amplitudes during composite sudden stratospheric warming (SSW) events in January-February are made using a model of general circulation of the middle and upper atmosphere with initial and boundary conditions typical for the westerly and easterly phases of quasi-biennial oscillation (QBO). The changes in PW amplitudes in the middle atmosphere before, during and after SSW event for the different QBO phases are considered. Near the North Pole, the increase in the mean temperature during SSW reaches 10-30 K at altitudes 30-50 km for four pairs of the model runs with the eQBO and wQBO, which is characteristic for the sudden stratospheric warming event. Amplitudes of stationary PWs in the middle atmosphere of the Northern hemisphere may differ up to 30% during wQBO and eQBO before and during the SSW. After the SSW event SPW amplitudes are substantially larger during wQBO phase. PW refractivity indices and Eliassen-Palm flux vectors are calculated. The largest EP-fluxes in the middle atmosphere correspond to PWs with zonal wavenumber m=1. Simulated changes in PW amplitudes correspond to inhomogeneities of the global circulation, refractivity index and EP-flux produced by the changes in QBO phases. Comparisons of differences in PW characteristics and circulation between the wQBO and eQBO show that PWs could provide effective coupling mechanism and transport dynamical changes from local regions of the lower atmosphere to distant regions of the upper atmosphere of both hemispheres.

  17. Three-dimensional dynamical and chemical modelling of the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.

    1976-01-01

    Progress in coding a 3-D upper atmospheric model and in modeling the ozone perturbation resulting from the shuttle booster exhaust is reported. A time-dependent version of a 2-D model was studied and the sulfur cycle in the stratosphere was investigated. The role of meteorology in influencing stratospheric composition measurements was also studied.

  18. Ultraviolet emissions from the upper atmospheres of the planets

    NASA Technical Reports Server (NTRS)

    Moos, H. W.

    1981-01-01

    Some recent results on planetary upper atmospheres obtained by means of orbiting ultraviolet observatories are reviewed with emphasis on Jupiter and Io torus. Consideration is given to long-term variation in Jovian Ly alpha emission, UV polar auroras on Jupiter, and UV emission from the Io torus. Requirements for UV planetary astronomy are briefly discussed.

  19. The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.

    PubMed

    Zhang, Chunmin; He, Jian

    2006-12-25

    The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines.

  20. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  1. High-resolution optical measurements of atmospheric winds from space. I - Lower atmosphere molecular absorption

    NASA Technical Reports Server (NTRS)

    Hays, P. B.

    1982-01-01

    A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.

  2. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Shapiro Griffin, Kristen L.; Sokol, D.; Dailey, D.; Lee, G.; Polidan, R.

    2013-10-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In this presentation we report results from our ongoing study and plans for future analyses and prototyping. We discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We discuss interdependencies of the above factors and the manner in which the VAMP strawman’s characteristics affect the CONOPs and the science objectives. We show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3.

  3. New Discoveries Resulted from Lidar Investigation of Middle and Upper Atmosphere Temperature, Composition, Chemistry and Dynamics at McMurdo, Antarctica

    NASA Astrophysics Data System (ADS)

    Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Huang, W.; Lu, X.; Gardner, C. S.; McDonald, A.; Fuller-Rowell, T. J.; Vadas, S.

    2013-12-01

    The scientific motivation to explore the neutral properties of the polar middle and upper atmosphere is compelling. Human-induced changes in the Earth's climate system are one of the most challenging social and scientific issues in this century. Besides monitoring climate change, to fully explore neutral-ion coupling in the critical region between 100 and 200 km is an objective of highest priority for the upper atmosphere science community. Meteorological sources of wave energy from the lower atmosphere are responsible for producing significant variability in the upper atmosphere. Energetic particles and fields originating from the magnetosphere regularly alter the state of the ionosphere. These influences converge through the tight coupling between the ionosphere plasma and neutral thermosphere gas in the space-atmosphere interaction region (SAIR). Unfortunately measurements of the neutral thermosphere are woefully incomplete and in critical need to advance our understanding of and ability to predict the SAIR. Lidar measurements of neutral thermospheric winds, temperatures and species can enable these explorations. To help address these issues, in December 2010 we deployed an Fe Boltzmann temperature lidar to McMurdo (77.8S, 166.7E), Antarctica via collaboration between the United States Antarctic Program and Antarctica New Zealand. Since then an extensive dataset (~3000 h) has been collected by this lidar during its first 32 months of operation, leading to several important new discoveries. The McMurdo lidar campaign will continue for another five years to acquiring long-term datasets for polar geospace research. In this paper we provide a comprehensive overview of the lidar campaign and scientific results, emphasizing several new discoveries in the polar middle and upper atmosphere research. In particular, the lidar has detected neutral Fe layers reaching 170 km in altitude, and derived neutral temperature from 30 to 170 km for the first time in the world. Such discoveries may have opened the new door to observing the neutral thermosphere with ground-based instruments. Extreme Fe events in summer were observed and understood as the interesting interactions among the meteoric metal atoms, sub-visible ice particles and energetic particles during aurora precipitation. Furthermore, the McMurdo middle and upper atmosphere is found to be very dynamical, especially in winter when inertia-gravity waves and eastward propagating planetary waves are predominant in the mesosphere and lower thermosphere and in the stratosphere, respectively. Despite small amplitudes below 100 km, the diurnal and semidiurnal tidal amplitudes exhibit fast growth from 100 to 110 km depending on the geomagnetic activities. These observations pose great challenges to our understanding of the Earth's upper atmosphere but also provide excellent opportunities to exploring how the electrodynamics and neutral dynamics work together at this high southern latitude to produce many intriguing geophysical phenomena.

  4. Atmosphere-Ionosphere Electrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.

  5. Development of a model to simulate the impact of atmospheric stability on N2O-fluxes from soil

    NASA Astrophysics Data System (ADS)

    Thieme, Christoph; Klein, Christian; Biernath, Christian; Heinlein, Florian; Priesack, Eckart

    2014-05-01

    The trace gas N2O, mainly produced by microorganisms in agricultural soils, is a very stable and thus potent greenhouse gas and is the main contributor for the recent depletion of ozone in the stratosphere. Therefore N2O-emissions need to be mitigated and thus much effort has been made to reveal the causes of N2O-formation in soils. At present some crucial drivers for N2O-fluxes are known, but underlying processes of N2O-fluxes are not yet understood or described adequately. An important shortcoming is the description of the upper boundary layer at the soil-atmosphere interface. Therefore, the aim of this study is to develop a mechanistic simulation model, which considers both the formation of N2O in agricultural soils, and the impact of the atmospheric conditions on the transport of soil-born N2O into the atmosphere. The new model simulates N2O-flux as a function of meteorological values instead of a model that just releases the whole amount of N2O into the atmosphere. For this purpose the modular ecosystem model framework Expert-N, which allows to simulate the formation of N2O in the soils will be extended to a model with a more detailed description of the upper boundary condition at the soil-atmosphere interface. In detail, this is realized in the form of a resistance approach, where N2O-fluxes are constrained by a land-air resistance that depends on a Bulk-Exchange Coefficient, wind speed and a gradient of N2O concentrations in the lower atmosphere. Descriptions of atmospheric stability follow the Monin-Obhukov Similarity Theory. The newly developed model will be validated using Eddy Covariance measurements of N2O-fluxes. Measurement device for the N2O concentrations is a Quantum-Cascade-Dual-Laser produced by Aerodyne Research Inc. (Billerca, Mass., USA). The measurements were conducted on an intensively managed field at the TERENO research farm Scheyern (Germany), which is part of the TERENO Bavarian Alps / Pre-Alps observatory.

  6. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands (Prikryl et al., Ann. Geophys., 27, 31-57, 2009). It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  7. Kinetics of Static Strain Aging in Polycrystalline NiAl-based Alloys

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The kinetics of yield point return have been studied in two NiAl-based alloys as a function of aging time at temperatures between 300 and 700 K. The results indicate that the upper yield stress increment, Delta sigma(sub u) (i.e., stress difference between the upper yield point and the final flow stress achieved during prestraining), in conventional purity (CP-NiAl) and in high purity carbon-doped (NiAl-C) material first increased with a t(exp 2/3) relationship before reaching a plateau. This behavior suggests that a Cottrell locking mechanism is the cause for yield points in NiAl. In addition, positive y-axis intercepts were observed in plots of Delta sigma(sub u) versus t(exp 2/3) suggesting the operation of a Snoek mechanism. Analysis according to the Cottrell Bilby model of atmosphere formation around dislocations yields an activation energy for yield point return in the range 70 to 76 kJ/mol which is comparable to the activation energy for diffusion of interstitial impurities in bcc metals. It is, thus, concluded that the kinetics of static strain aging in NiAl are controlled by the locking of dislocations by Cottrell atmospheres of carbon atoms around dislocations.

  8. The microwave limb sounder for the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  9. Short-term cyclic variations and diurnal variations of the Venus upper atmosphere

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Taylor, F. W.; Nicholson, J. Y.; Hinson, E. W.

    1979-01-01

    The vertical structure of the nighttime thermosphere and exosphere of Venus was discussed. A comparison of the day and nighttime profiles indicates, contrary to the model of Dickinson and Riley (1977), that densities (principally atomic oxygen) dropped sharply from day to night. It was suggested either that the lower estimates were related to cooler exospheric temperatures at night or that the atomic bulge was flatter than expected at lower altitudes. Large periodic oscillations, in both density and inferred exospheric temperatures, were detected with periods of 5 to 6 days. The possibility that cyclic variations in the thermosphere and stratosphere were caused by planetary-scale waves, propagated upward from the lower atmosphere, was investigated using simultaneous temperature measurements obtained by the Venus radiometric temperature experiment (VORTEX). Inferred exospheric temperatures in the morning were found to be lower than in the evening as if the atmosphere rotated in the direction of the planet's rotation, similar to that of earth. Superrotation of the thermosphere and exosphere was discussed as a possible extension of the 4-day cyclic atmospheric rotation near the cloud tops.

  10. Earth views and an illuminated earth limb

    NASA Image and Video Library

    1998-11-20

    STS047-54-016 (12 - 20 Sept 1992) --- The colors in this photograph provide insight into the relative density of the atmosphere. The crew members had many opportunities to witness sunrises and sunsets, considering they orbit the Earth every 90 minutes, but few, they said, compared to this scene. It captures the silhouette of several mature thunderstorms with their cirrus anvil tops spreading out against the tropopause (the top of the lowest layer of Earth's atmosphere) at sunset. The lowest layer (troposphere) is the densest and refracts light at the red end of the visible spectrum (7,400 Angstroms), while the blues (4,000 Angstroms) are separated in the least dense portion of the atmosphere (middle and upper atmosphere, or stratosphere and mesosphere). Several layers of blue can be seen. NASA scientists studying the photos believe this stratification to be caused by the scattering of light by particulate trapped in the stratosphere and mesosphere particulate that generally originate from volcanic eruptions, such as those of Mt. Pinatubo in the Philippines and, most recently, Mt. Spurr in Alaska.

  11. GPS, Earthquakes, the Ionosphere, and the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Calais, Eric; Minster, J. Bernard

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements are known to produce infrasonic pressure waves in the atmosphere. Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic waves induce variations of the ionospheric electron density. The Global Positioning System provides a way of directly measuring the Total Electron Content in the ionosphere and, therefore. of detecting such perturbations in the upper atmosphere. In this work, we demonstrate the capabilities of the GPS technique to detect ionospheric perturbations caused by the January 17. 1994, M (sub w) =6.7, Northridge earthquake and the STS-58 Space Shuttle ascent. In both cases, we observe a perturbation of the ionospheric electron density lasting for about 30 m, with periods less than 10 m. The perturbation is complex and shows two sub-events separated by about 15 m. The phase velocities and waveform characteristics of the two sub-events lead us to interpret the first arrival as the direct propagation of 2 free wave, followed by oscillatory guided waves propagating along horizontal atmospheric interfaces at 120 km altitude and below.

  12. Occultation of Epsilon Geminorum by Mars. II - The structure and extinction of the Martian upper atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; French, R. G.; Dunham, E.; Gierasch, P. J.; Veverka, J.; Church, C.; Sagan, C.

    1977-01-01

    The occultation of Epsilon Geminorum by Mars on April 8, 1976, was observed at three wavelengths and 4-ms time resolution with the 91-cm telescope aboard NASA's G. P. Kuiper Airborne Observatory. Temperature, pressure, and number-density profiles of the Martian atmosphere were obtained for both the immersion and emersion events. Within the altitude range 50-80 km above the mean surface, the mean temperature is about 145 K, and the profiles exhibit wavelike structures with a peak-to-peak amplitude of 35 K and a vertical scale of about 20 km. The ratio of the refractivity of the atmosphere at 4500 A and 7500 A is consistent with the atmospheric composition measured by Viking 1. From the 'central flash' - a bright feature in the light curve midway between immersion and emersion - an optical depth at 4500 A of 3.3 + or - 1.7 per km atm (about 0.23 per equivalent Martian air mass) is found for the atmosphere about 25 km above the mean surface near the south polar region. This large value and its weak wavelength dependence rule out Rayleigh scattering as the principal cause of the observed extinction.

  13. Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    NASA Technical Reports Server (NTRS)

    Vincent, R. A. (Editor)

    1984-01-01

    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.

  14. Whole Atmosphere Simulation of Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.

    2018-02-01

    We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.

  15. H20 and CH4 abundances under non-LTE conditions from MIPAS upper atmosphere measurements.

    NASA Astrophysics Data System (ADS)

    Koukouli, M. E.; Imk-Iaa Mipas/Envisat Team

    Vertical profiles of water vapour and methane have been retrieved from measurements of the Earth's Upper Atmosphere made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the polar orbiting ENVISAT satellite. The spectral range targeted is 685-2410 cm-1 (4.1-14.6 μm) and the retrieval altitude range is ˜25-80 km. The Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA), jointly developed by IAA and IMK, has been used to analyse two days' worth of upper atmosphere orbits, from July 2002 and June 2003. The vertical profiles retrieved are compared and calibrated against other known water vapour experiments (e.g. HALOE) in the corresponding vertical and spacial co-locations. Global three-dimensional maps are also presented and validated against modelling results (e.g. Garcia and Solomon). The total hydrogen content of the Earth's middle atmosphere will also be investigated as means of identifying possible sinks or sources in the water vapour and methane day-night variability. A comprehensive systematic error analysis will complement the presentation of the results.

  16. Incorporating Planetary-Scale Waves Into the VTGCM: Understanding the Waves Impact on the Upper Atmosphere of Venus.

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.

    2017-01-01

    Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.

  17. Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.; Douglass, Anne (Technical Monitor)

    2002-01-01

    The third year and final report on the physical mechanisms controlling upper tropospheric water vapor revealed by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is presented.

  18. Winds and Waves (4 Min - 11 Yrs) in the Upper Middle Atmosphere (60-110 Km) at Saskatoon, Canada (52 Deg N, 107 Deg W): MF Radar (2.2 Mhz) Soundings 1973 - 1983

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.; Gregory, J. B.

    1984-01-01

    Examples of gravity waves (GW), tides, planetary waves (PW), and circulation effects in the upper middle atmosphere are presented. Energy densities of GW, tides, and PW are compared. Fourier and spectral analyses are applied to the data.

  19. Enhancements in lower stratospheric CH3CN observed by the upper atmosphere research Sattellite Microwave Limb Sounder following boreal forest fires

    NASA Technical Reports Server (NTRS)

    Livesey, N. J.; Fromm, M. D.; Waters, J. W.; Manney, G. L.; Santee, M. L.; Read, W. G.

    2004-01-01

    On 25 August 1992, the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite observed a significant enhancement in the abundance of lower stratospheric methyl cyanide (CH3CN) at 100??hPa (16??km altitude) in a small region off the east coast of Florida.

  20. View-angle-dependent AIRS Cloudiness and Radiance Variance: Analysis and Interpretation

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.

    2013-01-01

    Upper tropospheric clouds play an important role in the global energy budget and hydrological cycle. Significant view-angle asymmetry has been observed in upper-level tropical clouds derived from eight years of Atmospheric Infrared Sounder (AIRS) 15 um radiances. Here, we find that the asymmetry also exists in the extra-tropics. It is larger during day than that during night, more prominent near elevated terrain, and closely associated with deep convection and wind shear. The cloud radiance variance, a proxy for cloud inhomogeneity, has consistent characteristics of the asymmetry to those in the AIRS cloudiness. The leading causes of the view-dependent cloudiness asymmetry are the local time difference and small-scale organized cloud structures. The local time difference (1-1.5 hr) of upper-level (UL) clouds between two AIRS outermost views can create parts of the observed asymmetry. On the other hand, small-scale tilted and banded structures of the UL clouds can induce about half of the observed view-angle dependent differences in the AIRS cloud radiances and their variances. This estimate is inferred from analogous study using Microwave Humidity Sounder (MHS) radiances observed during the period of time when there were simultaneous measurements at two different view-angles from NOAA-18 and -19 satellites. The existence of tilted cloud structures and asymmetric 15 um and 6.7 um cloud radiances implies that cloud statistics would be view-angle dependent, and should be taken into account in radiative transfer calculations, measurement uncertainty evaluations and cloud climatology investigations. In addition, the momentum forcing in the upper troposphere from tilted clouds is also likely asymmetric, which can affect atmospheric circulation anisotropically.

  1. Detection of CO and HCN in Pluto's atmosphere with ALMA

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Gurwell, M.; Butler, B.; Fouchet, T.; Lavvas, P.; Strobel, D. F.; Sicardy, B.; Moullet, A.; Moreno, R.; Bockelée-Morvan, D.; Biver, N.; Young, L.; Lis, D.; Stansberry, J.; Stern, A.; Weaver, H.; Young, E.; Zhu, X.; Boissier, J.

    2017-04-01

    Observations of the Pluto-Charon system, acquired with the ALMA interferometer on June 12-13, 2015, have led to the detection of the CO(3-2) and HCN(4-3) rotational transitions from Pluto (including the hyperfine structure of HCN), providing a strong confirmation of the presence of CO, and the first observation of HCN in Pluto's atmosphere. The CO and HCN lines probe Pluto's atmosphere up to ∼450 km and ∼900 km altitude, respectively, with a large contribution due to limb emission. The CO detection yields (i) a much improved determination of the CO mole fraction, as 515 ± 40 ppm for a 12 μbar surface pressure (ii) strong constraints on Pluto's mean atmospheric dayside temperature profile over ∼50-400 km, with clear evidence for a well-marked temperature decrease (i.e., mesosphere) above the 30-50 km stratopause and a best-determined temperature of 70 ± 2 K at 300 km, somewhat lower than previously estimated from stellar occultations (81 ± 6 K), and in agreement with recent inferences from New Horizons / Alice solar occultation data. The HCN line shape implies a high abundance of this species in the upper atmosphere, with a mole fraction >1.5 × 10-5 above 450 km and a value of 4 × 10-5 near 800 km. Assuming HCN at saturation, this would require a warm (>92 K) upper atmosphere layer; while this is not ruled out by the CO emission, it is inconsistent with the Alice-measured CH4 and N2 line-of-sight column densities. Taken together, the large HCN abundance and the cold upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of magnitude) hitherto unseen in planetary atmospheres, probably due to a lack of condensation nuclei above the haze region and the slow kinetics of condensation at the low pressure and temperature conditions of Pluto's upper atmosphere. HCN is also present in the bottom ∼100 km of the atmosphere, with a 10-8-10-7 mole fraction; this implies either HCN saturation or undersaturation there, depending on the precise stratopause temperature. The HCN column is (1.6 ± 0.4)× 1014 cm-2 , suggesting a surface-referred vertically-integrated net production rate of ∼2 × 107 cm-2 s-1. Although HCN rotational line cooling affects Pluto's atmosphere heat budget, the amounts determined in this study are insufficient to explain the well-marked mesosphere and upper atmosphere's ∼70 K temperature, which if controlled by HCN cooling would require HCN mole fractions of (3-7) ×10-4 over 400-800 km. We finally report an upper limit on the HC3N column density (<2 × 1013 cm-2) and on the HC15N / HC14N ratio (<1/125).

  2. The upper atmosphere and ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1992-01-01

    The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.

  3. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1974-01-01

    The charged particle observations proposed for the new low altitude weather satellites, TIROS-N, are described that will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance in distinguishing between solar and geomagnetic activity as possible causative sources.

  4. The high-resolution Doppler imager on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, Vincent J.; Dobbs, Michael E.; Gell, David A.; Grassl, Heinz J.; Skinner, Wilbert R.

    1993-01-01

    The high-resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite is a triple-etalon Fabry-Perot interferometer designed to measure winds in the stratosphere, mesosphere, and lower thermosphere. Winds are determined by measuring the Doppler shifts of rotational lines of the O2 atmospheric band, which are observed in emission in the mesosphere and lower thermosphere and in absorption in the stratosphere. The interferometer has high resolution (0.05/cm), good offhand rejection, aud excellent stability. This paper provides details of the design and capabilities of the HRDI instrument.

  5. Aircraft Configured for Flight in an Atmosphere Having Low Density

    NASA Technical Reports Server (NTRS)

    Teter, Jr., John E. (Inventor); Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Hunter, Craig A. (Inventor); Riddick, Steven E. (Inventor); Guynn, Mark D. (Inventor); Paddock, David A. (Inventor)

    2012-01-01

    An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

  6. Modes of North Atlantic Decadal Variability in the ECHAM1/LSG Coupled Ocean-Atmosphere General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Zorita, Eduardo; Frankignoul, Claude

    1997-02-01

    The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes, the surface heat flux acts neutrally on the associated SST anomalies once they have been generated, so that their persistence appears to be due in part to an overall adjustment of the air-sea heat exchanges to the SST patterns.

  7. Short- and Medium-term Atmospheric Effects of Very Large Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Fleming, Eric L.; Labow, Gordon J.; Randall, Cora E.; Lopez-Puertas, Manuel; Funke, Bernd

    2007-01-01

    Long-term variations in ozone have been caused by both natural and humankind related processes. In particular, the humankind or anthropogenic influence on ozone from chlorofluorocarbons and halons (chlorine and bromine) has led to international regulations greatly limiting the release of these substances. These anthropogenic effects on ozone are most important in polar regions and have been significant since the 1970s. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the short- and medium-term (days to a few months) influences of solar proton events between 1963 and 2005 on stratospheric ozone. The four largest events in the past 45 years (August 1972; October 1989; July 2000; and October-November 2003) caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen- containing compounds, which led to the polar ozone destruction. The hydrogen-containing compounds have very short lifetimes and lasted for only a few days (typically the duration of the solar proton event). On the other hand, the nitrogen-containing compounds lasted much longer, especially in the Winter. The nitrogen oxides were predicted to increase substantially due to these solar events and led to mid- to upper polar stratospheric ozone decreases of over 20%. These WACCM results generally agreed with satellite measurements. Both WACCM and measurements showed enhancements of nitric acid, dinitrogen pentoxide, and chlorine nitrate, which were indirectly caused by these solar events. Solar proton events were shown to cause a significant change in the polar stratosphere and need to be considered in understanding variations during years of strong solar activity.

  8. Initial tsunami signals in the lithosphere-ocean-atmosphere medium

    NASA Astrophysics Data System (ADS)

    Novik, O.; Ershov, S.; Mikhaylovskaya, I.

    Satellite and ground based instrumentations for monitoring of dynamical processes under the Ocean floor 3 4 of the Earth surface and resulting catastrophic events should be adapted to unknown physical nature of transformation of the oceanic lithosphere s energy of seismogenic deformations into measurable acoustic electromagnetic EM temperature and hydrodynamic tsunami waves To describe the initial up to a tsunami wave far from a shore stage of this transformation and to understand mechanism of EM signals arising above the Ocean during seismic activation we formulate a nonlinear mathematical model of seismo-hydro-EM geophysical field interaction in the lithosphere-Ocean-atmosphere medium from the upper mantle under the Ocean up to the ionosphere domain D The model is based on the theory of elasticity electrodynamics fluid dynamics thermodynamics and geophysical data On the basis of this model and its mathematical investigation we calculate generation and propagation of different see above waves in the basin of a model marginal sea the data on the central part of the Sea of Japan were used At the moment t 0 the dynamic interaction process is supposed to be caused by weak may be precursory sub-vertical elastic displacements with the amplitude duration and main frequency of the order of a few cm sec and tenth of Hz respectively at the depth of 37 km under the sea level i e in the upper mantle Other seismic excitations may be considered as well The lithosphere EM signal is generated in the upper mantle conductive

  9. Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar

    NASA Astrophysics Data System (ADS)

    Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.

    2017-12-01

    Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.

  10. Pluto's Atmosphere, Then and Now

    NASA Astrophysics Data System (ADS)

    Elliot, J. L.; Buie, M.; Person, M. J.; Qu, S.

    2002-09-01

    The KAO light curve for the 1988 stellar occultation by Pluto exhibits a sharp drop just below half light, but above this level the light curve is consistent with that of an isothermal atmosphere (T = 105 +/- 8 K, with N2 as its major constituent). The sharp drop in the light curve has been interpreted as being caused by: (i) a haze layer, (ii) a large thermal gradient, or (iii) some combination of these two. Modeling Pluto's atmosphere with a haze layer yields a normal optical depth >= 0.145 (Elliot & Young 1992, AJ 103, 991). On the other hand, if Pluto's atmosphere is assumed to be clear, the occultation light curve can be inverted with a new method that avoids the large-body approximations. Inversion of the KAO light curve with this method yields an upper isothermal part, followed by a sharp thermal gradient that reaches a maximum magnitude of -3.9 +/- 0.6 K km-1 at the end of the inversion (r = 1206 +/- 10 km). Even though we do not yet understand the cause of the sharp drop, the KAO light curve can be used as a benchmark for examining subsequent Pluto occultation light curves to determine whether Pluto's atmospheric structure has changed since 1988. As an example, the Mamiña light curve for the 2002 July 20 Pluto occultation of P126A was compared with the KAO light curve by Buie et al. (this conference), who concluded that Pluto's atmospheric structure has changed significantly since 1988. Further analysis and additional light curves from this and subsequent occultations (e.g. 2002 August 21) will allow us to elucidate the nature of these changes. This work was supported, in part, by grants from NASA (NAG5-9008 and NAG5-10444) and NSF (AST-0073447).

  11. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1) Bands

    NASA Astrophysics Data System (ADS)

    Won, Young-In; Cho, Young-Min; Lee, Bang Yong; Kim, J.

    2001-06-01

    As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1) bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E). These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1) airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  12. NASA’s MAVEN Mission Observes Ups and Downs of Water Escape from Mars

    NASA Image and Video Library

    2017-12-08

    After investigating the upper atmosphere of the Red Planet for a full Martian year, NASA’s MAVEN mission has determined that the escaping water does not always go gently into space. Sophisticated measurements made by a suite of instruments on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft revealed the ups and downs of hydrogen escape – and therefore water loss. The escape rate peaked when Mars was at its closest point to the sun and dropped off when the planet was farthest from the sun. The rate of loss varied dramatically overall, with 10 times more hydrogen escaping at the maximum. “MAVEN is giving us unprecedented detail about hydrogen escape from the upper atmosphere of Mars, and this is crucial for helping us figure out the total amount of water lost over billions of years,” said Ali Rahmati, a MAVEN team member at the University of California at Berkeley who analyzed data from two of the spacecraft’s instruments. Hydrogen in Mars’ upper atmosphere comes from water vapor in the lower atmosphere. An atmospheric water molecule can be broken apart by sunlight, releasing the two hydrogen atoms from the oxygen atom that they had been bound to. Several processes at work in Mars’ upper atmosphere may then act on the hydrogen, leading to its escape. Read more: go.nasa.gov/2dAgAV4 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.; Barnes, N.

    2014-04-01

    Over the past years we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semibuoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. VAMP targets the global Venus atmosphere between 55 and 70 km altitude and would be a platform to address VEXAG goals I.A, I.B, and I.C. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Science payload accommodation, constraints, and opportunities 2. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance, performance sensitivity to payload weight 3. Feasibility of and options for the deployment of the vehicle in space 4. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals I.A, I.B, and I.C.. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  14. Solar Effects on Global Climate Due to Cosmic Rays and Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Raeder, J.; DAuria, R.

    2005-01-01

    Although the work reported here does not directly connect solar variability with global climate change, this research establishes a plausible quantitative causative link between observed solar activity and apparently correlated variations in terrestrial climate parameters. Specifically, we have demonstrated that ion-mediated nucleation of atmospheric particles is a likely, and likely widespread, phenomenon that relates solar variability to changes in the microphysical properties of clouds. To investigate this relationship, we have constructed and applied a new model describing the formation and evolution of ionic clusters under a range of atmospheric conditions throughout the lower atmosphere. The activation of large ionic clusters into cloud nuclei is predicted to be favorable in the upper troposphere and mesosphere, and possibly in the lower stratosphere. The model developed under this grant needs to be extended to include additional cluster families, and should be incorporated into microphysical models to further test the cause-and-effect linkages that may ultimately explain key aspects of the connections between solar variability and climate.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, W.; Tuleya, R.E.; Ginis, I.

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic inmore » the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.« less

  16. MAVEN Contamination Venting and Outgassing Analysis

    NASA Technical Reports Server (NTRS)

    Petro, Elaine M.; Hughes, David W.; Secunda, Mark S.; Chen, Philip T.; Morrissey, James R.; Riegle, Catherine A.

    2014-01-01

    Mars Atmosphere and Volatile EvolutioN (MAVEN) is the first mission to focus its study on the Mars upper atmosphere. MAVEN will study the evolution of the Mars atmosphere and climate, by examining the conduit through which the atmosphere has to pass as it is lost to the upper atmosphere. An analysis was performed for the MAVEN mission to address two distinct concerns. The first goal of the analysis was to perform an outgassing study to determine where species outgassed from spacecraft materials would redistribute to and how much of the released material might accumulate on sensitive surfaces. The second portion of the analysis serves to predict what effect, if any, Mars atmospheric gases trapped within the spacecraft could have on instrument measurements when re-released through vents. The re-release of atmospheric gases is of interest to this mission because vented gases from a higher pressure spacecraft interior could bias instrument measurements of the Mars atmosphere depending on the flow rates and directions.

  17. Computational Model of D-Region Ion Production Caused by Energetic Electron Precipitations Based on General Monte Carlo Transport Calculations

    NASA Astrophysics Data System (ADS)

    Kouznetsov, A.; Cully, C. M.

    2017-12-01

    During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.

  18. The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Parkinson, C. D.

    2017-01-01

    Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions.

  19. Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability.

    PubMed

    Bougher, S; Jakosky, B; Halekas, J; Grebowsky, J; Luhmann, J; Mahaffy, P; Connerney, J; Eparvier, F; Ergun, R; Larson, D; McFadden, J; Mitchell, D; Schneider, N; Zurek, R; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D N; Bell, J M; Benna, M; Brain, D; Chaffin, M; Chamberlin, P; Chaufray, J-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Ma, Y; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R

    2015-11-06

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability. Copyright © 2015, American Association for the Advancement of Science.

  20. Overview of the Upper Atmosphere Research Satellite: Observations from 1991 to 2002

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Douglass, Anne R.

    2003-01-01

    The Upper Atmosphere Research Satellite (UARS) was launched in September 1991 by the Space Shuttle Discovery and continues to make relevant atmospheric measurements (as of October 2002). This successful satellite has fostered a better understanding of the middle atmospheric processes, especially those important in the control of ozone. Seven of the original ten instruments aboard the UARS are still functional and six instruments regularly make measurements. The UARS is in a stable observing configuration, in spite of experiencing several anomalies over its lifetime. It is expected that the UARS will overlap the Earth Observing System (EOS) Aura satellite (scheduled launch in January 2004) for several months before the end of the UARS mission.

  1. Model of the vertical structure of the optical parameters of the Neptune atmosphere.

    NASA Astrophysics Data System (ADS)

    Morozhenko, A. V.

    Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.

  2. Biologically induced initiation of Neoproterozoic snowball-Earth events.

    PubMed

    Tziperman, Eli; Halevy, Itay; Johnston, David T; Knoll, Andrew H; Schrag, Daniel P

    2011-09-13

    The glaciations of the Neoproterozoic Era (1,000 to 542 MyBP) were preceded by dramatically light C isotopic excursions preserved in preglacial deposits. Standard explanations of these excursions involve remineralization of isotopically light organic matter and imply strong enhancement of atmospheric CO(2) greenhouse gas concentration, apparently inconsistent with the glaciations that followed. We examine a scenario in which the isotopic signal, as well as the global glaciation, result from enhanced export of organic matter from the upper ocean into anoxic subsurface waters and sediments. The organic matter undergoes anoxic remineralization at depth via either sulfate- or iron-reducing bacteria. In both cases, this can lead to changes in carbonate alkalinity and dissolved inorganic pool that efficiently lower the atmospheric CO(2) concentration, possibly plunging Earth into an ice age. This scenario predicts enhanced deposition of calcium carbonate, the formation of siderite, and an increase in ocean pH, all of which are consistent with recent observations. Late Neoproterozoic diversification of marine eukaryotes may have facilitated the episodic enhancement of export of organic matter from the upper ocean, by causing a greater proportion of organic matter to be partitioned as particulate aggregates that can sink more efficiently, via increased cell size, biomineralization or increased CN of eukaryotic phytoplankton. The scenario explains isotopic excursions that are correlated or uncorrelated with snowball initiation, and suggests that increasing atmospheric oxygen concentrations and a progressive oxygenation of the subsurface ocean helped to prevent snowball glaciation on the Phanerozoic Earth.

  3. Quenching of CO2(ν2) by O: New Results and Analysis

    NASA Astrophysics Data System (ADS)

    Dodd, J. A.; Castle, K. J.; Rhinehart, J. M.; Hwang, E. S.

    2005-12-01

    New results from ongoing laboratory measurements of CO2(ν2) + O vibrational energy transfer (VET) will be presented. The process is a key contributor to both the CO2 15-μm emission intensity and to upper atmospheric cooling in the 75-120 km altitude range. A 266-nm laser pulse photolyzes O3, producing O atoms and initiating a temperature jump, while transient diode laser absorption spectroscopy is used to monitor the CO2(ν2) level population. We report the latest measurement results, including improvements in the experiment that have mitigated vibrational cascading effects, and the development of a powerful global kinetic fitting routine to allow the simultaneous determination of the appropriate rate parameters from a large body of data. Predictions of upper atmospheric density and temperature are sensitive to the input value of the CO2(ν2) + O relaxation rate constant ko(ν2), including its temperature dependence. Aeronomic models imply that increasing CO2 levels from anthropogenic sources will cause the thermosphere to cool and contract over time. The model results are supported by analyses of satellite orbital motion data over the past 40 years, which are consistent with a few percent thermospheric density decrease per decade. This has important implications for spacecraft drag and orbital longevity. It also provides an interesting connection between a molecular-level parameter, the CO2 + O VET efficiency, and the macroscopic effects of atmospheric density and temperature.

  4. Biologically induced initiation of Neoproterozoic snowball-Earth events

    PubMed Central

    Tziperman, Eli; Halevy, Itay; Johnston, David T.; Knoll, Andrew H.; Schrag, Daniel P.

    2011-01-01

    The glaciations of the Neoproterozoic Era (1,000 to 542 MyBP) were preceded by dramatically light C isotopic excursions preserved in preglacial deposits. Standard explanations of these excursions involve remineralization of isotopically light organic matter and imply strong enhancement of atmospheric CO2 greenhouse gas concentration, apparently inconsistent with the glaciations that followed. We examine a scenario in which the isotopic signal, as well as the global glaciation, result from enhanced export of organic matter from the upper ocean into anoxic subsurface waters and sediments. The organic matter undergoes anoxic remineralization at depth via either sulfate- or iron-reducing bacteria. In both cases, this can lead to changes in carbonate alkalinity and dissolved inorganic pool that efficiently lower the atmospheric CO2 concentration, possibly plunging Earth into an ice age. This scenario predicts enhanced deposition of calcium carbonate, the formation of siderite, and an increase in ocean pH, all of which are consistent with recent observations. Late Neoproterozoic diversification of marine eukaryotes may have facilitated the episodic enhancement of export of organic matter from the upper ocean, by causing a greater proportion of organic matter to be partitioned as particulate aggregates that can sink more efficiently, via increased cell size, biomineralization or increased C∶N of eukaryotic phytoplankton. The scenario explains isotopic excursions that are correlated or uncorrelated with snowball initiation, and suggests that increasing atmospheric oxygen concentrations and a progressive oxygenation of the subsurface ocean helped to prevent snowball glaciation on the Phanerozoic Earth. PMID:21825156

  5. Impacts of snow darkening by absorbing aerosols on South Asian monsoon

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Lau, W. K. M.; Kim, M. K.; Sang, J.; Yasunari, T. J.; Koster, R. D.

    2016-12-01

    Seasonal heating over the Tibetan Plateau is a main driver of the onset of the South Asian Monsoon. Aerosols can play an important role in pre- and early monsoon seasonal heating process over the Tibetan Plateau by increasing atmospheric heating in the northern India, and by heating of the surface of the Tibetan Plateau and Himalayan slopes, via reduction of albedo of the snow surface through surface deposition - the so call snow-darkening effect (SDE). To examine the impact of SDE on weather and climate during late spring and early summer, two sets of NASA/GEOS-5 model simulations with and without SDE are conducted. Results show that SDE-induced surface heating accelerates snow melts and increases surface temperature over 4K in the entire Tibetan Plateau regions during boreal summer. Warmer Tibetan Plateau further accelerates seasonal warming in the upper troposphere and increases the north-south temperature gradient between the Tibetan Plateau and the equatorial Indian Ocean. This reversal of the north-south temperature gradient is a primary cause of the onset of the South Asian monsoon. SDE-induced increase of the meridional temperature gradient drives meridional circulation and enhanced upper tropospheric easterlies and lower tropospheric westerlies, and intensifies monsoon circulation and rainfall. This pattern enhances the EHP-like circulation anomalies induced by atmospheric heating of absorbing aerosols over the northern India. SDE-induced change in the India subcontinent differs that in Eurasia. SDE-induced land-atmospheric interactions in two regions will be also compared.

  6. Improved Mars Upper Atmosphere Climatology

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the upcoming MRO aerobraking exercises in 2006. A Michigan website, containing MTGCM output fields from previous climate simulations, is being expanded to include new MGCM-MTGCM simulations addressing planetary wave influences upon thermospheric aerobraking fields (densities and temperatures). In addition, similar MTGCM output fields have been supplied to the MSFC MARSGRAM - 200X empirical model, which will be used in mission operations for conducting aerobraking maneuvers.

  7. An analysis of heat effects in different subpopulations of Bangladesh

    NASA Astrophysics Data System (ADS)

    Burkart, Katrin; Breitner, Susanne; Schneider, Alexandra; Khan, Md. Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2014-03-01

    A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit. Within the scope of this study, we aimed to investigate the effects of heat in a multi-stratified manner, distinguishing by the cause of death, age, gender, location and socio-economic status. We examined 22,840 death counts using semi-parametric Poisson regression models, adjusting for a multitude of potential confounders. Although Bangladesh is dominated by an increase of mortality with decreasing (equivalent) temperatures over a wide range of values, the findings demonstrated the existence of partly strong heat effects at the upper end of the temperature distribution. Moreover, the study demonstrated that the strength of these heat effects varied considerably over the investigated subgroups. The adverse effects of heat were particularly pronounced for males and the elderly above 65 years. Moreover, we found increased adverse effects of heat for urban areas and for areas with a high socio-economic status. The increase in, and acceleration of, urbanisation in Bangladesh, as well as the rapid aging of the population and the increase in non-communicable diseases, suggest that the relevance of heat-related mortality might increase further. Considering rising global temperatures, the adverse effects of heat might be further aggravated.

  8. Partitioning the effects of Global Warming on the Hydrological Cycle with Stable Isotopes in Water Vapor

    NASA Astrophysics Data System (ADS)

    Dee, S. G.; Russell, J. M.; Nusbaumer, J. M.; Konecky, B. L.; Buenning, N. H.; Lee, J. E.; Noone, D.

    2016-12-01

    General circulation models (GCMs) suggest that much of the global hydrological cycle's response to anthropogenic warming will be caused by increased lower-tropospheric water vapor concentrations and associated feedbacks. However, fingerprinting changes in the global hydrological cycle due to anthropogenic warming remains challenging. Held and Soden (2006) predicted that as lower-tropospheric water vapor increases, atmospheric circulation will weaken as climate warms to maintain the surface energy budget. Unfortunately, the strength of this feedback and the fallout for other branches of the hydrological cycle is difficult to constrain in situ or with GCMs alone. We demonstrate the utility of stable hydrogen isotope ratios in atmospheric water vapor to quantitatively trace changes in atmospheric circulation and convective mass flux in a warming world. We compare water isotope-enabled GCM experiments for control (present-day) CO2 vs. high CO2(2x, 4x) atmospheres in two GCMs, IsoGSM and iCAM5. We evaluate changes in the distribution of water vapor, vertical velocity (omega), and the stream function between these experiments in order to identify spatial patterns of circulation change over the tropical Pacific (where vertical motion is strong) and map the δD of water vapor associated with atmospheric warming. We also probe the simulations to isolate isotopic signatures associated with water vapor residence time, precipitation efficiency, divergence, and cloud physics. We show that there are robust mechanisms that moisten the troposphere and weaken convective mass flux, and that these mechanisms can be tracked using the δD of water vapor. Further, we find that these responses are most pronounced in the upper troposphere. These findings provide a framework to develop new metrics for the detection of global warming impacts to the hydrological cycle. Further, currently available satellite missions measure δD in the atmospheric boundary layer, the free atmosphere, or the total column; our study suggests that more accurate upper troposphere measurements (above 500hPa) may be needed to detect changes in convective mass flux using water vapor isotope ratios.

  9. Assessment of upper-ocean variability and the Madden-Julian Oscillation in extended-range air-ocean coupled mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Hong, Xiaodong; Reynolds, Carolyn A.; Doyle, James D.; May, Paul; O'Neill, Larry

    2017-06-01

    Atmosphere-ocean interaction, particular the ocean response to strong atmospheric forcing, is a fundamental component of the Madden-Julian Oscillation (MJO). In this paper, we examine how model errors in previous Madden-Julian Oscillation (MJO) events can affect the simulation of subsequent MJO events due to increased errors that develop in the upper-ocean before the MJO initiation stage. Two fully coupled numerical simulations with 45-km and 27-km horizontal resolutions were integrated for a two-month period from November to December 2011 using the Navy's limited area Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). There are three MJO events that occurred subsequently in early November, mid-November, and mid-December during the simulations. The 45-km simulation shows an excessive warming of the SSTs during the suppressed phase that occurs before the initiation of the second MJO event due to erroneously strong surface net heat fluxes. The simulated second MJO event stalls over the Maritime Continent which prevents the recovery of the deep mixed layer and associated barrier layer. Cross-wavelet analysis of solar radiation and SSTs reveals that the diurnal warming is absent during the second suppressed phase after the second MJO event. The mixed layer heat budget indicates that the cooling is primarily caused by horizontal advection associated with the stalling of the second MJO event and the cool SSTs fail to initiate the third MJO event. When the horizontal resolution is increased to 27-km, three MJOs are simulated and compare well with observations on multi-month timescales. The higher-resolution simulation of the second MJO event and more-realistic upper-ocean response promote the onset of the third MJO event. Simulations performed with analyzed SSTs indicate that the stalling of the second MJO in the 45-km run is a robust feature, regardless of ocean forcing, while the diurnal cycle analysis indicates that both 45-km and 27-km ocean resolutions respond realistically when provided with realistic atmospheric forcing. Thus, the problem in the 45-km simulation appears to originate in the atmosphere. Additional simulations show that while the details of the simulations are sensitive to small changes in the initial integration time, the large differences between the 45-km and 27-km runs during the suppressed phase in early December are robust.

  10. Sensitivity of idealised baroclinic waves to mean atmospheric temperature and meridional temperature gradient changes

    NASA Astrophysics Data System (ADS)

    Rantanen, Mika; Räisänen, Jouni; Sinclair, Victoria A.; Järvinen, Heikki

    2018-06-01

    The sensitivity of idealised baroclinic waves to different atmospheric temperature changes is studied. The temperature changes are based on those which are expected to occur in the Northern Hemisphere with climate change: (1) uniform temperature increase, (2) decrease of the lower level meridional temperature gradient, and (3) increase of the upper level temperature gradient. Three sets of experiments are performed, first without atmospheric moisture, thus seeking to identify the underlying adiabatic mechanisms which drive the response of extra-tropical storms to changes in the environmental temperature. Then, similar experiments are performed in a more realistic, moist environment, using fixed initial relative humidity distribution. Warming the atmosphere uniformly tends to decrease the kinetic energy of the cyclone, which is linked both to a weaker capability of the storm to exploit the available potential energy of the zonal mean flow, and less efficient production of eddy kinetic energy in the wave. Unsurprisingly, the decrease of the lower level temperature gradient weakens the resulting cyclone regardless of the presence of moisture. The increase of the temperature gradient in the upper troposphere has a more complicated influence on the storm dynamics: in the dry atmosphere the maximum eddy kinetic energy decreases, whereas in the moist case it increases. Our analysis suggests that the slightly unexpected decrease of eddy kinetic energy in the dry case with an increased upper tropospheric temperature gradient originates from the weakening of the meridional heat flux by the eddy. However, in the more realistic moist case, the diabatic heating enhances the interaction between upper- and low-level potential vorticity anomalies and hence helps the surface cyclone to exploit the increased upper level baroclinicity.

  11. The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence

    NASA Astrophysics Data System (ADS)

    Mayyasi, Majd; Clarke, John; Bhattacharyya, Dolon; Deighan, Justin; Jain, Sonal; Chaffin, Michael; Thiemann, Edward; Schneider, Nick; Jakosky, Bruce

    2017-10-01

    The enhanced ratio of deuterium to hydrogen on Mars has been widely interpreted as indicating the loss of a large column of water into space, and the hydrogen content of the upper atmosphere is now known to be highly variable. The variation in the properties of both deuterium and hydrogen in the upper atmosphere of Mars is indicative of the dynamical processes that produce these species and propagate them to altitudes where they can escape the planet. Understanding the seasonal variability of D is key to understanding the variability of the escape rate of water from Mars. Data from a 15 month observing campaign, made by the Mars Atmosphere and Volatile Evolution Imaging Ultraviolet Spectrograph high-resolution echelle channel, are used to determine the brightness of deuterium as observed at the limb of Mars. The D emission is highly variable, with a peak in brightness just after southern summer solstice. The trends of D brightness are examined against extrinsic as well as intrinsic sources. It is found that the fluctuations in deuterium brightness in the upper atmosphere of Mars (up to 400 km), corrected for periodic solar variations, vary on timescales that are similar to those of water vapor fluctuations lower in the atmosphere (20-80 km). The observed variability in deuterium may be attributed to seasonal factors such as regional dust storm activity and subsequent circulation lower in the atmosphere.

  12. [The response of the upper respiratory tract to the impact of atmospheric pollution].

    PubMed

    Mukhamadiev, R A; Ismagilov, Sh M

    2015-01-01

    The present literature review characterizes the environmental conditions in the Russian Federation in general and the Republic of Tatarstan in particular with special reference to the influence of atmospheric pollution on the development and the clinical picture of the diseases of the respiratory organs including pathology of the upper respiratory tract in the populations of the industrial centres and other environmentally unfriendly areas. The views of the domestic and foreign authors concerning the role of the environmental factors in the clinical picture of the upper respiratory tract disorders are described in detail. The authors emphasize the necessity of the further investigationsinto this problem and the development of the methods for the prevention of diseases of the upper respiratory react.

  13. Planet-B: A Japanese Mars aeronomy observer

    NASA Technical Reports Server (NTRS)

    Tsuruda, K.

    1992-01-01

    An introduction is given to a Japanese Mars mission (Planet-B) which is being planned at the Institute of Space and Aeronautical Science (ISAS), Japan. Planet-B aims to study the upper atmosphere of Mars and its interaction with the solar wind. The launch of Planet-B is planned for 1996 on a new launcher, M-L, which is being developed at ISAS. In addition to the interaction with the solar wind, the structure of the Martian upper atmosphere is thought to be controlled by the meteorological condition in the lower atmosphere. The orbit of Planet-B was chosen so that it will pass two important regions, the region where the solar wind interacts with the Martian upper atmosphere and the tail region where ion acceleration is taking place. Considering the drag due to the Martian atmosphere, the periapsis altitude of 150 km and apoapsis of 10 Martian radii are planned. The orbit plane will be nearly parallel to the ecliptic plane. The altitude of the spacecraft will be spin stabilized and its spin axis will be controlled to the point of the earth. The dry weight of the spacecraft will be about 250 kg, including the scientific payload which consists of a magnetometer, plasma instruments, HF sounder, UV imaging spectrometer, and lower atmosphere monitor.

  14. Searching for possible effects on midlatitude sporadic E layer, caused by tropospheric lightning.

    NASA Astrophysics Data System (ADS)

    Barta, Veronika; Haldoupis, Christos; Sátori, Gabriella; Buresova, Dalia

    2016-07-01

    Thunderstorms in the troposphere may affect the overlying ionosphere through electrodynamic and/or neutral atmosphere wave coupling processes. For example, it is well known that lightning discharges may impact upper atmosphere through quasi-electrostatic fields and strong electromagnetic pulses, leading to transient luminous phenomena, such as sprites and elves, along with electron heating and ionization changes in the upper D and lower E-region ionosphere that have been detected in VLF transmissions propagating in the earth-ionosphere waveguide. On the other hand, mechanical coupling between the troposphere and the ionosphere may be caused by neutral atmosphere gravity waves which are known to have their origin in massive thunderstorms. The effects of troposphere-ionosphere coupling during thunderstorms, are not yet fully established and understood, therefore there is need for more correlative studies, for example by using concurrent ionospheric and lightning observations. In the present work an effort is made to investigate a possible relationship between tropospheric lighting and sporadic E layer, which are known to dominate at bottomside ionosphere and at middle latitudes during summer. For this, a correlative analysis was undertaken using lightning data obtained with the LINET lightning detection network in Central Europe, and E region ionospheric parameters (fmin, foE, foEs, fbEs) measured with the Pruhonice (50° N, 14.5° E) DPS-4D digisonde in the summer of 2009. For direct correlation with the digisonde data, the lightning activity was quantified every 15 minutes in coincidence with the measured ionogram parameters. In the search for relation between lightning and sporadic E, the digisonde observations during lightning were also compared with those taken during a number of tropospheric storm-free days in Pruhonice. The results of this correlative study did not provide evidence of significance that favors a relationship between tropospheric lightning and midlatitude sporadic E layer.

  15. Effects of Subsonic Aircraft on Aerosols and Cloudiness in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Detwiler, Andrew G.

    1997-01-01

    This work was accomplished primarily by Allison G. Wozniak, a graduate research assistant who has completed the Master of Science in Meteorology program at the South Dakota School of Mines and Technology. Ms. Wozniak was guided and assisted in her work by L. R. Johnson and the principal investigator. Invaluable guidance was supplied by Dr. James Holdeman, NASA Lewis, the manager of the Global Atmospheric Sampling Program (GASP). Dr. Gregory Nastrom, St. Cloud (Minnesota) State University, who has used the GASP data set to provide unique views of the distribution of ozone, clouds, and atmospheric waves and turbulence, in the upper troposphere/lower stratosphere region, was also extremely helpful. Finally, Dr. Terry Deshler, University of Wyoming, supplied observations from the university's upper atmospheric monitoring program for comparison to GASP data.

  16. The upper atmosphere of Venus: A tentative explanation of its rotation

    NASA Technical Reports Server (NTRS)

    Boyer, C.

    1986-01-01

    The upper atmosphere of Venus seems to revolve every 4 days, while the planet rotates in 243 days. Mariner 10 UV data on the changing positions of dark spots in the upper Venusian clouds have supported estimations of speeds ranging from 120-240 m/s. High rates of acceleration and deceleration occur on the night side, the former between -110 to -90 deg and the latter continuing to -50 deg. Arch and Y formations have been seen repeatedly between -110 to -70 deg. The highest are seen at about -90 deg and the lowest at about -30 deg. The temperature of the cloud layer at 60 km altitude is about 20 C, the pressure is nearly one earth atmosphere, and complex molecules, including O, C, H, N and S and combinations of these are present in abundance.

  17. The Solar-Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Hargreaves, John Keith

    1995-05-01

    The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.

  18. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gascoyne, A.; Jain, R.; Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation ofmore » Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).« less

  19. Energy Loss of Solar p Modes due to the Excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-07-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).

  20. Dynamical buoyancy of hydrodynamic eddies. [in solar atmosphere

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1991-01-01

    The dynamical pressure reduction within a vortex tube produces both a tension along the tube and a general buoyancy, analogous to magnetic flux tubes. The dynamical buoyancy causes convective cells to rise at speeds comparable to the rms fluid velocity within the cell. Consequently, the convective cells in a stratified atmosphere are more active than indicated by the standard anelastic approximation. The coherent convective cells at each level actively crowd upward into the convective cells above, elbowing weaker cells out of the way and flattening themselves and others against the upper surface of the convective region. These effects can be seen in the recent SOUP observations of the solar granulation. Deeper in the convective zone the inhomogeneity of the buoyancy may explain the random character of the convective motions that turns up in recent numerical simulations.

  1. ENSO Weather and Coral Bleaching on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish; Theobald, Alison

    2017-10-01

    The most devastating mass coral bleaching has occurred during El Niño events, with bleaching reported to be a direct result of increased sea surface temperatures (SSTs). However, El Niño itself does not cause SSTs to rise in all regions that experience bleaching. Nor is the upper ocean warming trend of 0.11°C per decade since 1971, attributed to global warming, sufficient alone to exceed the thermal tolerance of corals. Here we show that weather patterns during El Niño that result in reduced cloud cover, higher than average air temperatures and higher than average atmospheric pressures, play a crucial role in determining the extent and location of coral bleaching on the world's largest coral reef system, the World Heritage Great Barrier Reef (GBR), Australia. Accordingly, synoptic-scale weather patterns and local atmosphere-ocean feedbacks related to El Niño-Southern Oscillation (ENSO) and not large-scale SST warming due to El Niño alone and/or global warming are often the cause of coral bleaching on the GBR.

  2. Preliminary survey of propulsion using chemical energy stored in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Baldwin, Lionel V; Blackshear, Perry L

    1958-01-01

    Ram-jet cycles that use the chemical energy of dissociated oxygen for propulsion in the ionosphere are presented. After a review of the properties and compositions of the upper atmosphere, the external drag, recombination kinetics, and aerodynamic-heating problems of an orbiting ram jet are analyzed. The study indicates that the recombination ram jet might be useful for sustaining a satellite at an altitude of about 60 miles. Atmospheric composition and recombination-rate coefficients were too uncertain for more definite conclusions. The ram jet is a marginal device even in the optimistic view.

  3. Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean

    DTIC Science & Technology

    2010-06-01

    meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by

  4. Vertically Propagating Waves in the Upper Atmosphere of Saturn From Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Schinder, P. J.; Flasar, F. M.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.

    2005-12-01

    We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. We determine the properties and spectra of these waves, and speculate on their origins and their dynamical effects on the upper atmosphere.

  5. Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Jee, Geonhwa; Kim, Jeong-Han; Lee, Changsup; Kim, Yong Ha

    2014-06-01

    Since the operation of the King Sejong Station (KSS) started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI) and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI) was installed to observe the temperature in the mesosphere and lower thermosphere (MLT) region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere

  6. Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets

    NASA Astrophysics Data System (ADS)

    Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.

    2018-03-01

    We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

  7. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  8. [Analysis on concentration variety characteristics of atmospheric ozone under the boundary layer in Beijing].

    PubMed

    Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian

    2007-11-01

    Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.

  9. Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    1998-01-01

    The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.

  10. Solar Magnetism eXplorer (Solme X)

    NASA Technical Reports Server (NTRS)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.; hide

    2011-01-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations

  11. A Model of Titan-like Chemistry to Connect Experiments and Cassini Observations

    NASA Astrophysics Data System (ADS)

    Raymond, Alexander W.; Sciamma-O’Brien, Ella; Salama, Farid; Mazur, Eric

    2018-02-01

    A numerical model is presented for interpreting the chemical pathways that lead to the experimental mass spectra acquired in the Titan Haze Simulation (THS) laboratory experiments and for comparing the electron density and temperature of the THS plasma to observations made at Titan by the Cassini spacecraft. The THS plasma is a pulsed glow-discharge experiment designed to simulate the reaction of N2/CH4-dominated gas in Titan's upper atmosphere. The transient, one-dimensional model of THS chemistry tracks the evolution of more than 120 species in the direction of the plasma flow. As the minor species C2H2 and C2H4 are added to the N2/CH4-based mixture, the model correctly predicts the emergence of reaction products with up to five carbon atoms in relative abundances that agree well with measured mass spectra. Chemical growth in Titan's upper atmosphere transpires through ion–neutral and neutral–neutral chemistry, and the main reactions involving a series of known atmospheric species are retrieved from the calculation. The model indicates that the electron density and chemistry are steady during more than 99% of the 300 μs long discharge pulse. The model also suggests that the THS ionization fraction and electron temperature are comparable to those measured in Titan's upper atmosphere. These findings reaffirm that the THS plasma is a controlled analog environment for studying the first and intermediate steps of chemistry in Titan's upper atmosphere.

  12. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) Model - An Unified Concept for Earthquake Precursors Validation

    NASA Technical Reports Server (NTRS)

    Pulinets, S.; Ouzounov, D.

    2010-01-01

    The paper presents a conception of complex multidisciplinary approach to the problem of clarification the nature of short-term earthquake precursors observed in atmosphere, atmospheric electricity and in ionosphere and magnetosphere. Our approach is based on the most fundamental principles of tectonics giving understanding that earthquake is an ultimate result of relative movement of tectonic plates and blocks of different sizes. Different kind of gases: methane, helium, hydrogen, and carbon dioxide leaking from the crust can serve as carrier gases for radon including underwater seismically active faults. Radon action on atmospheric gases is similar to the cosmic rays effects in upper layers of atmosphere: it is the air ionization and formation by ions the nucleus of water condensation. Condensation of water vapor is accompanied by the latent heat exhalation is the main cause for observing atmospheric thermal anomalies. Formation of large ion clusters changes the conductivity of boundary layer of atmosphere and parameters of the global electric circuit over the active tectonic faults. Variations of atmospheric electricity are the main source of ionospheric anomalies over seismically active areas. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model can explain most of these events as a synergy between different ground surface, atmosphere and ionosphere processes and anomalous variations which are usually named as short-term earthquake precursors. A newly developed approach of Interdisciplinary Space-Terrestrial Framework (ISTF) can provide also a verification of these precursory processes in seismically active regions. The main outcome of this paper is the unified concept for systematic validation of different types of earthquake precursors united by physical basis in one common theory.

  13. On the chemistry of Jupiter's upper atmosphere

    USGS Publications Warehouse

    Saslaw, W.C.; Wildey, R.L.

    1967-01-01

    We conduct a first investigation into the ion-molecule chemistry of the upper Jovian atmosphere. Experimental results show that intense ultraviolet radiation reacts with the constituents of the Jovian atmosphere to produce C2H4, C2H6, C3H8, and higher polymers. The general procedure for calculating both equilibrium and nonequilibrium abundances of these products is formulated and applied to the case of the surface passage of a satellite shadow. A specific example is made of ethylene, for which an analytical approximation gives 1010 molecules in an atmospheric column of 1 cm2 cross section after a very rapid rise to equilibrium. Such a concentration of ethylene does not substantially affect the infrared radiation in the shadow. ?? 1967.

  14. A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.

    1982-01-01

    A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.

  15. How Many Convective Zones Are There in the Atmosphere of Venus?

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Rodin, A. V.

    2002-11-01

    The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.

  16. Subtropical westerly jet waveguide and winter persistent heavy rainfall in south China

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Li, Chun

    2017-07-01

    Using observed daily precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis data, what induced winter large spatial persistent heavy rainfall (PHR) events in south China was examined, based on composite analyses of 30 large spatial PHR events during 1951-2015. The results showed that wave trains within North Africa-Asia (NAA) westerly jet existed in upper troposphere during these PHR processes. The wave trains shared the characteristic of a Rossby wave. The Rossby wave originated from northwest Europe, entered into the NAA jet through strong cold air advection to form convergence over the Mediterranean, and then propagated eastward along subtropical NAA jet. The Rossby wave propagated toward Southeast Asia and caused strong divergence in the upper troposphere. The strong divergence in the upper troposphere induced vertical convection and favored large spatial PHR events in south China. In addition, the enhanced India-Burma trough and subtropical high in the northwestern Pacific supplied enough water vapor transportation. This mechanism would be useful to the medium-range forecast of such winter rainfall processes over south China.

  17. 46 CFR 154.1345 - Gas detection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... detector; (iii) If the vessel carries cargo that is heavier than the atmosphere of the space, each tube's... atmosphere of the space, each tube's open end in the upper part of the space; (v) If the vessel carries cargo that is heavier than the atmosphere of the space and another cargo that is lighter than the atmosphere...

  18. 46 CFR 154.1345 - Gas detection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... detector; (iii) If the vessel carries cargo that is heavier than the atmosphere of the space, each tube's... atmosphere of the space, each tube's open end in the upper part of the space; (v) If the vessel carries cargo that is heavier than the atmosphere of the space and another cargo that is lighter than the atmosphere...

  19. 46 CFR 154.1345 - Gas detection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... detector; (iii) If the vessel carries cargo that is heavier than the atmosphere of the space, each tube's... atmosphere of the space, each tube's open end in the upper part of the space; (v) If the vessel carries cargo that is heavier than the atmosphere of the space and another cargo that is lighter than the atmosphere...

  20. Natural variability of tropical upper stratospheric ozone inferred from the Atmosphere Explorer backscatter ultraviolet experiment

    NASA Technical Reports Server (NTRS)

    Frederick, J. E.; Abrams, R. B.; Dasgupta, R.; Guenther, B.

    1981-01-01

    Analysis of backscattered ultraviolet radiances observed at tropical latitudes by the Atmosphere Explorer-E satellite reveals both annual and semiannual cycles in upper stratospheric ozone. The annual variation dominates the signal at wavelengths which sense ozone primarily above 45 km while below this, to the lowest altitude sensed, 35 km, the semiannual component has comparable amplitude. Comparison of radiance measurements taken with the same instrument at solar minimum during 1976 and solar maximum in 1979 show no significant differences. This suggests that variations in upper stratospheric ozone over the solar cycle are small, although the data presently available do not allow a definite conclusion.

  1. Overview on recent upper atmosphere atomic oxygen measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Kaufmann, Martin; Chen, Qiuyu; Martin, Riese

    2017-04-01

    In recent years, new global datasets of atomic oxygen in the upper mesosphere and lower thermosphere have been presented. They are based on airglow measurements from low earth satellites. Surprisingly, the atomic oxygen abundance differs by 30-50% for similar atmospheric conditions. This paper gives an overview on the various atomic oxygen datasets available so far and presents most recent results obtained from measurements on Envisat. Differences between the datasets are discussed.

  2. An implementation plan for priorities in solar-system space physics

    NASA Technical Reports Server (NTRS)

    Krimigis, Stamatios M.; Athay, R. Grant; Baker, Daniel; Fisk, Lennard A.; Fredricks, Robert W.; Harvey, John W.; Jokipii, Jack R.; Kivelson, Margaret; Mendillo, Michael; Nagy, Andrew F.

    1985-01-01

    The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described.

  3. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE PAGES

    Bowman, D. C.; Lees, J. M.

    2018-04-27

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  4. THE VARIABILITY OF HCN IN TITAN’S UPPER ATMOSPHERE AS IMPLIED BY THE CASSINI ION-NEUTRAL MASS SPECTROMETER MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, J.; Cao, Y.-T.; Lavvas, P. P.

    2016-07-20

    HCN is an important constituent in Titan’s upper atmosphere, serving as the main coolant in the local energy budget. In this study, we derive the HCN abundance at the altitude range of 960–1400 km, combining the Ion-Neutral Mass Spectrometer data acquired during a large number of Cassini flybys with Titan. Typically, the HCN abundance declines modestly with increasing altitude and flattens to a near constant level above 1200 km. The data reveal a tendency for dayside depletion of HCN, which is clearly visible below 1000 km but weakens with increasing altitude. Despite the absence of convincing anti-correlation between HCN volumemore » mixing ratio and neutral temperature, we argue that the variability in HCN abundance makes an important contribution to the large temperature variability observed in Titan’s upper atmosphere.« less

  5. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D. C.; Lees, J. M.

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  6. Monitoring Saturn's Upper Atmosphere Density Variations Using Helium 584 Airglow

    NASA Astrophysics Data System (ADS)

    Parkinson, Chris

    2017-10-01

    The study of He 584 Å brightnesses is interesting as the EUV (Extreme UltraViolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Resonance scattering of sunlight by He atoms is the principal source of the planetary emission of He 585 Å. The principal parameter involved in determining the He 584 Å albedo are the He volume mixing ratio, f_He, well below the homopause. Our main science objective is to estimate the helium mixing ratio in the lower atmosphere. Specifically, He emissions come from above the homopause where optical depth trau=1 in H2 and therefore the interpretation depends mainly on two parameters: He mixing ratio of the lower atmosphere and K_z. The occultations of Koskinen et al (2015) give K_z with an accuracy that has never been possible before and the combination of occultations and airglow therefore provide estimates of the mixing ratio in the lower atmosphere. We make these estimates at several locations that can be reasonably studied with both occultations and airglow and then average the results. Our results lead to a greatly improved estimate of the mixing ratio of He in the upper atmosphere and below. The second objective is to constrain the dynamics in the atmosphere by using the estimate of the He mixing ratio from the main objective. Once we have an estimate of the He mixing ratio in the lower atmosphere that agrees with both occultations and airglow, helium becomes an effective tracer species as any variations in the Cassini UVIS helium data are direct indicator of changes in K_z i.e., dynamics. Our third objective is to connect this work to our Cassini UVIS data He 584 Å airglow analyses as they both cover the time span of the observations and allow us to monitor changes in the airglow observations that may correlate with changes in the state of the atmosphere as revealed by the occultations Saturn's upper thermosphere. This work helps to determine the mixing ratio of He and constrain dynamics in the upper atmosphere, both of which are high level science objectives of the Cassini mission.

  7. Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: Implications for soil acidification.

    PubMed

    Duan, Lei; Chen, Xiao; Ma, Xiaoxiao; Zhao, Bin; Larssen, Thorjørn; Wang, Shuxiao; Ye, Zhixiang

    2016-11-01

    Following Europe and North America, East Asia has become a global hotspot for acid deposition, with very high deposition of both sulfur (S) and nitrogen (N) occurring in large areas of southwest and southeast China. This study shows that the outflow flux of sulfate (SO 4 2- ) in three major tributaries of the Upper Yangtze River in the Sichuan Basin in southwest China has been increasing over the last three decades, which implies the regional soil acidification caused by increasing sulfur dioxide (SO 2 ) emissions. Since 2005, the outflow of SO 4 2- to the Upper Yangtze River from the Sichuan Basin has even reached the atmospheric SO 2 emission from the basin. In contrast to S emissions, the rapid increase in nitrogen (N) emissions, including nitrogen oxides (NOx) and ammonia (NH 3 ), have resulted in only a slight increase in nitrate (NO 3 - ) concentrations in surface waters, indicating a large retention of N in the basin. Although N deposition currently contributes much less than S to soil acidification in this area, it is possible that catchments receiving a high input of N may be unable to retain a large fraction of the N deposition over long periods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Sideband characterization and atmospheric observations with various 340 GHz heterodyne receivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renker, Matthias, E-mail: renker@iap.unibe.ch; Murk, Axel; Rea, Simon P.

    2014-08-15

    This paper describes sideband response measurements and atmospheric observations with a double sideband and two Single Sideband (SSB) receiver prototypes developed for the multi-beam limb sounder instrument stratosphere-troposphere exchange and climate monitor radiometer. We first show an advanced Fourier-Transform Spectroscopy (FTS) method for sideband response and spurious signal characterization. We then present sideband response measurements of the different prototype receivers and we compare the results of the SSB receivers with sideband measurements by injecting a continuous wave signal into the upper and lower sidebands. The receivers were integrated into a total-power radiometer and atmospheric observations were carried out. The observedmore » spectra were compared to forward model spectra to conclude on the sideband characteristics of the different receivers. The two sideband characterization methods show a high degree of agreement for both SSB receivers with various local oscillator settings. The measured sideband response was used to correct the forward model simulations. This improves the agreement with the atmospheric observations and explains spectral features caused by an unbalanced sideband response. The FTS method also allows to quantify the influence of spurious harmonic responses of the receiver.« less

  9. HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009

    NASA Astrophysics Data System (ADS)

    Funke, Bernd; Ball, William; Bender, Stefan; Gardini, Angela; Harvey, V. Lynn; Lambert, Alyn; López-Puertas, Manuel; Marsh, Daniel R.; Meraner, Katharina; Nieder, Holger; Päivärinta, Sanna-Mari; Pérot, Kristell; Randall, Cora E.; Reddmann, Thomas; Rozanov, Eugene; Schmidt, Hauke; Seppälä, Annika; Sinnhuber, Miriam; Sukhodolov, Timofei; Stiller, Gabriele P.; Tsvetkova, Natalia D.; Verronen, Pekka T.; Versick, Stefan; von Clarmann, Thomas; Walker, Kaley A.; Yushkov, Vladimir

    2017-03-01

    We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx = NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05-0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.

  10. Present State of Knowledge of the Upper Atmosphere 1996: An Assessment Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Kaye, J. A.; Decola, P. L.; Friedl, R. R.; Peterson, D. B.

    1997-01-01

    This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial report to congress and the Environmental Protection Agency. NASA is charged with the responsibility to report on the state of our knowledge of the Earth's upper atmosphere, particularly the Stratosphere. Part 1 of this report summarizes the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program and Atmospheric Chemistry Modeling and Analysis Program for the period of 1994-1996. Part 2 (this document) presents summaries of several scientific assessments, reviews, and summaries. These include the executive summaries of two scientific assessments: (Section B) 'Scientific Assessment of Ozone Depletion: 1994'; (Section C) 'l995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft); end of mission/series statements for three stratospherically-focused measurement campaigns: (Section D) 'ATLAS End-of-Series Statement'; (Section E) 'ASHOE/MAESA End-of-Mission Statement'; (Section F) 'TOTE/VOTE End-of-Mission Statement'; a summary of NASA's latest biennial review of fundamental photochemical processes important to atmospheric chemistry 'Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling'; and (Section H) the section 'Atmospheric Ozone Research" from the Mission to Planet Earth Science Research Plan, which describes NASA's current and future research activities related to both tropospheric and stratospheric chemistry.

  11. Fiber-Optic Coupled Lidar Receiver System to Measure Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Harper, David Brent; Elsayed-Ali, Hani

    1998-01-01

    The measurement of ozone in the atmosphere has become increasingly important over the past two decades. Significant increases of ozone concentrations in the lower atmosphere, or troposphere, and decreases in the upper atmosphere, or stratosphere, have been attributed to man-made causes. High ozone concentrations in the troposphere pose a health hazard to plants and animals and can add to global warming. On the other hand, ozone in the stratosphere serves as a protective barrier against strong ultraviolet (UV) radiation from the sun. Man-made CFC's (chlorofluorocarbons) act as a catalyst with a free oxygen atom and an ozone molecule to produce two oxygen molecules therefore depleting the protective layer of ozone in the stratosphere. The beneficial and harmful effects of ozone require the study of ozone creation and destruction processes in the atmosphere. Therefore, to provide an accurate model of these processes, an ozone lidar system must be able to be used frequently with as large a measurement range as possible. Various methods can be used to measure atmospheric ozone concentrations. These include different airborne and balloon measurements, solar occulation satellite techniques, and the use of lasers in lidar (high detection and ranging,) systems to probe the atmosphere. Typical devices such as weather balloons can only measure within the direct vicinity of the instrument and are therefore used infrequently. Satellites use solar occulation techniques that yield low horizontal and vertical resolution column densities of ozone.

  12. First ever in-situ density measurements in Venus' polar upper atmosphere by combined drag and torque measurements

    NASA Astrophysics Data System (ADS)

    Svedhem, Håkan; Mueller, Michael; Mueller-Wodarg, Ingo

    Information on the atmospheric density in the altitude range 150-200 km in the atmosphere of Venus is difficult to gather remotely. The Pioneer Venus Orbiter Neutral Mass Spectrometer measured gas densities in the equatorial upper atmosphere in-situ, but no such measurements have ever been made in the polar regions of Venus. The Venus Express spacecraft on its orbit approaches the planet in the northern polar region, but is not equipped with a mass spectrometer instrument for in-situ gas density measurements. By reducing the pericentre altitude the total mass density can however be measured in situ by monitoring the orbital decay caused by the drag on the spacecraft by the atmosphere via direct tracking of the Doppler signal on the telecommunication link. Such measurements have been performed with Venus Express several times during the last year as part of the Venus Express Atmospheric Drag Experiment (VExADE). The results indicate a large variability within only a few days and have led to questions if these variations are real or within the uncertainty of the measurements. A completely different and independent measurement is given by monitoring the torque asserted by the atmosphere on the spacecraft. This is done by monitoring the momentum accumulated in the reaction wheels during the pericentre pass and at the same time considering all other perturbing forces. This requires the spacecraft to fly in an asymmetric attitude with respect to the centre of gravity, centre of drag and the velocity vector. This technique has proven very sensitive, in particular if the asymmetry is large, and offers a further method of measuring atmospheric densities in-situ that previously had not been explored with the Venus Express spacecraft. Similar measurements have been done in the past by Magellan at Venus and by Cassini at Titan. First torque measurements carried out during last years' low pericentre passes have confirmed the density measurements by the VExADE drag measurements to an amazingly good accuracy and added to the confidence in the results from these measurements. New combined measurements, where the asymmetry is increased by rotating the solar panels, are planned for February and April 2010. The new results will be discussed at the meeting.

  13. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    NASA Technical Reports Server (NTRS)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  14. Bragg scattering of electromagnetic waves by microwave-produced plasma layers

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.

    1990-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.

  15. Reversing Flows and Heat Spike: Caused by Solar g-Modes?

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Wolff, Charles L.

    2003-01-01

    The Quasi Biennial Oscillation in the Earth s upper atmosphere has an analog deep inside the Sun. As on Earth, the flow is east or west, it is at low latitude, and it reverses direction in a roughly periodic manner. The period in the solar case is 1.3 years. It was detected using solar oscillations similar to the way earthquakes are used to study the Earth's interior. But its cause was not known. We showed that global oscillations (g-modes) can supply enough angular momentum to drive zonal flows with the observed reversal period. This required a calculation of wave dissipation rates inside each flow and in the turbulent layer that separates any two flows of opposite sign. Heat that this process leaves behind causes a thermal spike inside the Sun at the same depth. This may explain an anomaly in observed sound speed that has had no sure explanation.

  16. The satellite power system - Assessment of the environmental impact on middle atmosphere composition and on climate

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Park, C.; Pfister, L.; Woodward, H. T.; Turco, R. P.; Capone, L. A.; Riegel, C. A.; Kropp, T.

    1982-01-01

    Numerical models were developed to calculate the total deposition of watervapor, hydrogen, CO2, CO, SO2, and NO in the middle atmosphere from operation of heavy lift launch vehicles (HLLV) used to build a satellite solar power system (SPS). The effects of the contaminants were examined for their effects on the upper atmosphere. One- and two-dimensional models were formulated for the photochemistry of the upper atmosphere and for rocket plumes and reentry. An SPS scenario of 400 launches per year for 10 yr was considered. The build-up of the contaminants in the atmosphere was projected to have no significant effects, even at the launch latitude. Neither would there by any dangerous ozone depletion. It was found that H, OH, and HO2 species would double in the thermosphere. No measurable changes in climate were foreseen.

  17. International cooperation between Japanese IUGONET and EU ESPAS projects on development of the metadata database for upper atmospheric study

    NASA Astrophysics Data System (ADS)

    Yatagai, Akiyo; Ritschel, Bernd; Iyemori, Tomohiko; Koyama, Yukinobu; Hori, Tomoaki; Abe, Shuji; Tanaka, Yoshimasa; Shinbori, Atsuki; UeNo, Satoru; Sato, Yuka; Yagi, Manabu

    2013-04-01

    The upper atmospheric observational study is the area which an international collaboration is crucially important. The Japanese Inter-university Upper atmosphere Global Observation NETwork project (2009-2014), IUGONET, is an inter-university program by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. In order to investigate the mechanism of long-term variations in the upper atmosphere, we need to combine various types of in-situ observations and to accelerate data exchange. The IUGONET institutions have been archiving observed data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. in various altitude layers from the Earth's surface to the Sun. The IUGONET has been developing systems for searching metadata of these observational data, and the metadata database (MDB) has already been operating since 2011. It adopts DSPACE system for registering metadata, and it uses an extension of the SPASE data model of describing metadata, which is widely used format in the upper atmospheric society including that in USA. The European Union project ESPAS (2011-2015) has the same scientific objects with IUGONET, namely it aims to provide an e-science infrastructure for the retrieval and access to space weather relevant data, information and value added services. It integrates 22 partners in European countries. The ESPAS also plans to adopt SPASE model for defining their metadata, but search system is different. Namely, in spite of the similarity of the data model, basic system ideas and techniques of the system and web portal are different between IUGONET and ESPAS. In order to connect the two systems/databases, we are planning to take an ontological method. The SPASE keyword vocabulary, derived from the SPASE data model shall be used as standard for the description of near-earth and space data content and context. The SPASE keyword vocabulary is modeled as Simple Knowledge Organizing System (SKOS) ontology. The SPASE keyword vocabulary also can be reused in domain-related but also cross-domain projects. The implementation of the vocabulary as ontology enables the direct integration into semantic web based structures and applications, such as linked data and the new Information System and Data Center (ISDC) data management system.

  18. Evidence for disequilibrium of ortho and para hydrogen on Jupiter from Voyager IRIS measurements

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Gierasch, P. J.

    1983-01-01

    Preliminary results of an analysis of the ortho state/para state ratio (parallel/antiparallel) for molecular H2 in the Jovian atmosphere using Voyager IR spectrometer (IRIS) data are reported. The study was undertaken to expand the understanding of the thermodynamics of a predominantly H2 atmosphere, which takes about 100 million sec to reach equilibrium. IRIS data provided 4.3/cm resolution in the 300-700/cm spectral range dominated by H2 lines. Approximately 600 spectra were examined to detect any disequilibrium between the hydrogen species. The results indicate that the ortho-para ratio is not in an equilibrium state in the upper Jovian troposphere. A thorough mapping of the para-state molecules in the upper atmosphere could therefore aid in mapping the atmospheric flowfield.

  19. ISAMS and MLS for NASA's Upper Atmosphere Research Satellite

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, D.; Dickinson, P. H. G.

    1990-04-01

    The primary goal of NASA's Upper Atmosphere Research Satellite (UARS), planned to be launched in 1991, is to compile data about the structure and behavior of the stratospheric ozone layer, and especially about the threat of the chlorine-based pollutants to its stablility. Two of the payload instruments, manufactured in the UK, are described: the Improved Stratospheric and Mesospheric Sounder (ISAMS), a radiometer designed to measure thermal emission from selected atmospheric constituents at the earth's limb, then making it possible to obtain nearly global coverage of the vertical distribution of temperature and composition from 80 deg S to 80 deg N latitude; and the Microwave Limb Sounder (MLS), a limb sounding radiometer, measuring atmospheric thermal emission from selected molecular spectral lines at mm wavelength, in the frequency regions of 63, 183, and 205 GHz.

  20. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    PubMed Central

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  1. Upper atmospheric gravity wave details revealed in nightglow satellite imagery.

    PubMed

    Miller, Steven D; Straka, William C; Yue, Jia; Smith, Steven M; Alexander, M Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T

    2015-12-08

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼ 90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation.

  2. Aerosol Constraints on the Atmosphere of the Hot Saturn-mass Planet WASP-49b

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio E.; Fossati, Luca; Erkaev, Nikolai V.; Malik, Matej; Tokano, Tetsuya; Lendl, Monika; Johnstone, Colin P.; Lammer, Helmut; Wyttenbach, Aurélien

    2017-11-01

    The strong, nearly wavelength-independent absorption cross section of aerosols produces featureless exoplanet transmission spectra, limiting our ability to characterize their atmospheres. Here, we show that even in the presence of featureless spectra, we can still characterize certain atmospheric properties. Specifically, we constrain the upper and lower pressure boundaries of aerosol layers, and present plausible composition candidates. We study the case of the bloated Saturn-mass planet WASP-49 b, where near-infrared observations reveal a flat transmission spectrum between 0.7 and 1.0 μm. First, we use a hydrodynamic upper-atmosphere code to estimate the pressure reached by the ionizing stellar high-energy photons at {10}-8 bar, setting the upper pressure boundary where aerosols could exist. Then, we combine HELIOS and Pyrat Bay radiative-transfer models to constrain the temperature and photospheric pressure of atmospheric aerosols, in a Bayesian framework. For WASP-49 b, we constrain the transmission photosphere (hence, the aerosol deck boundaries) to pressures above {10}-5 bar (100× solar metallicity), {10}-4 bar (solar), and {10}-3 bar (0.1× solar) as the lower boundary, and below {10}-7 bar as the upper boundary. Lastly, we compare condensation curves of aerosol compounds with the planet’s pressure-temperature profile to identify plausible condensates responsible for the absorption. Under these circumstances, we find these candidates: {{Na}}2{{S}} (at 100× solar metallicity); Cr and MnS (at solar and 0.1× solar) and forsterite, enstatite, and alabandite (at 0.1× solar).

  3. NASA upper atmosphere research program: Research summaries, 1990 - 1991. Report to the Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives, status, and accomplishments of the research tasks supported under the NASA Upper Atmosphere Research Program (UARP) are presented. The topics covered include the following: balloon-borne in situ measurements; balloon-borne remote measurements; ground-based measurements; aircraft-borne measurements; rocket-borne measurements; instrument development; reaction kinetics and photochemistry; spectroscopy; stratospheric dynamics and related analysis; stratospheric chemistry, analysis, and related modeling; and global chemical modeling.

  4. Spatial and temporal variations in infrared emissions of the upper atmosphere. 2. 15-μm carbon dioxide emission

    NASA Astrophysics Data System (ADS)

    Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.; Zheleznov, Yu. A.

    2017-09-01

    The results of rocket and satellite measurements of carbon dioxide emissions at a wavelength of 15 μm in the upper atmosphere have been systematized and analyzed. Analytical expressions describing the dependence of the altitude distribution of 15-μm CO2 emission intensity and its variation in the altitude range from 100 to 130 km on the season, latitude, and solar activity have been obtained.

  5. A prototype Upper Atmospheric Research Collaboratory (UARC)

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Atkins, D. E; Weymouth, T. E.; Olson, G. M.; Niciejewski, R.; Finholt, T. A.; Prakash, A.; Rasmussen, C. E.; Killeen, T.; Rosenberg, T. J.

    1995-01-01

    The National Collaboratory concept has great potential for enabling 'critical mass' working groups and highly interdisciplinary research projects. We report here on a new program to build a prototype collaboratory using the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland and a group of associated scientists. The Upper Atmospheric Research Collaboratory (UARC) is a joint venture of researchers in upper atmospheric and space science, computer science, and behavioral science to develop a testbed for collaborative remote research. We define the 'collaboratory' as an advanced information technology environment which enables teams to work together over distance and time on a wide variety of intellectual tasks. It provides: (1) human-to-human communications using shared computer tools and work spaces; (2) group access and use of a network of information, data, and knowledge sources; and (3) remote access and control of instruments for data acquisition. The UARC testbed is being implemented to support a distributed community of space scientists so that they have network access to the remote instrument facility in Kangerlussuaq and are able to interact among geographically distributed locations. The goal is to enable them to use the UARC rather than physical travel to Greenland to conduct team research campaigns. Even on short notice through the collaboratory from their home institutions, participants will be able to meet together to operate a battery of remote interactive observations and to acquire, process, and interpret the data.

  6. The Relative Importance of Random Error and Observation Frequency in Detecting Trends in Upper Tropospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.

    2011-01-01

    Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.

  7. The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.

    2011-11-01

    Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.

  8. Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes

    NASA Astrophysics Data System (ADS)

    O'Malley-James, Jack T.; Cockell, Charles S.; Greaves, Jane S.; Raven, John A.

    2014-07-01

    The biosignatures of life on Earth do not remain static, but change considerably over the planet's habitable lifetime. Earth's future biosphere, much like that of the early Earth, will consist of predominantly unicellular microorganisms due to the increased hostility of environmental conditions caused by the Sun as it enters the late stage of its main sequence evolution. Building on previous work, the productivity of the biosphere is evaluated during different stages of biosphere decline between 1 and 2.8 Gyr from present. A simple atmosphere-biosphere interaction model is used to estimate the atmospheric biomarker gas abundances at each stage and to assess the likelihood of remotely detecting the presence of life in low-productivity, microbial biospheres, putting an upper limit on the lifetime of Earth's remotely detectable biosignatures. Other potential biosignatures such as leaf reflectance and cloud cover are discussed.

  9. Geocoronal hydrogen studies using Fabry Perot interferometers, part 2: Long-term observations

    NASA Astrophysics Data System (ADS)

    Nossal, S. M.; Mierkiewicz, E. J.; Roesler, F. L.; Reynolds, R. J.; Haffner, L. M.

    2006-09-01

    Long-term data sets are required to investigate sources of natural variability in the upper atmosphere. Understanding the influence of sources of natural variability such as the solar cycle is needed to characterize the thermosphere + exosphere, to understand coupling processes between atmospheric regions, and to isolate signatures of natural variability from those due to human-caused change. Multi-year comparisons of thermospheric + exospheric Balmer α emissions require cross-calibrated and well-understood instrumentation, a stable calibration source, reproducible observing conditions, separation of the terrestrial from the Galactic emission line, and consistent data analysis accounting for differences in viewing geometry. We discuss how we address these criteria in the acquisition and analysis of a mid-latitude geocoronal Balmer α column emission data set now spanning two solar cycles and taken mainly from Wisconsin and Kitt Peak, Arizona. We also discuss results and outstanding challenges for increasing the accuracy and use of these observations.

  10. C-14 content of ten meteorites measured by tandem accelerator mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, R. M.; Andrews, H. R.; Ball, G. C.; Burn, N.; Imahori, Y.; Milton, J. C. D.; Fireman, E. L.

    1984-01-01

    Measurements of C-14 in three North American and seven Antarctic meteorites show in most cases that this cosmogenic isotope, which is tightly bound, was separated from absorbed atmospheric radiocarbon by stepwise heating extractions. The present upper limit to age determination by the accelerator method varies from 50,000 to 70,000 years, depending on the mass and carbon content of the sample. The natural limit caused by cosmic ray production of C-14 in silicate rocks at 2000 m elevation is estimated to be 55,000 + or - 5000 years. An estimation is also made of the 'weathering ages' of the Antarctic meteorites from the specific activity of loosely bound CO2 which is thought to be absorbed from the terrestrial atmosphere. Accelerator measurements are found to agree with previous low level counting measurements, but are more sensitive and precise.

  11. Mass extinction caused by large bolide impacts

    NASA Technical Reports Server (NTRS)

    Alvarez, Luis W.

    1987-01-01

    A history and development status assessment is presented for the hypothesis that the great extinction of living species 65 million years ago, at the boundary between the Tertiary and Cretaceous geological ages, was due to the collision of a meteoroid, asteroid, or comet with the earth. The initial, deeply suggestive indication of the extraterrestial origin of the extinction-initiating mechanism was the detection of an exceptionally high concentration of iridium at the stratigraphic position of the extinction. Detailed computer modeling of the atmospheric effect of such a bolide impact has shown that the earth would have first grown intensely cold during a period of darkness due to particulate debris clouds in the upper atmosphere, followed by an enormous increase in global temperatures as the debris cleared, created by the persistence of greenhouse-effect gases; this heating would have been especially lethal to numerous forms of life.

  12. Titan's Upper Atmosphere from Cassini/UVIS Solar Occultations

    NASA Astrophysics Data System (ADS)

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N2 in the range 1100-1600 km and vertical profiles of CH4 in the range 850-1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH4 mole fractions, and average temperatures for the upper atmosphere obtained from the N2 profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  13. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations

    NASA Astrophysics Data System (ADS)

    Koskinen, T. T.; Guerlet, S.

    2018-06-01

    We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.

  14. Noble gas systematics of the Skaergaard intrusion

    NASA Astrophysics Data System (ADS)

    Horton, F.; Farley, K. A.; Taylor, H. P.

    2017-12-01

    The noble gas isotopic compositions of olivines from the Skaergaard layered mafic intrusion in Greenland reveal that magmas readily exchange noble gases with their environment after emplacement. Although Skaergaard magmas are thought to have derived from the upper mantle, all of the olivine separates we analyzed have 3He/4He ratios less than that of the upper mantle ( 8 Ra, where Ra = 3He/4He of the atmosphere, 1.39 x 10-6). This suggests that crustal and/or atmospheric noble gases have contaminated all Skaergaard magmas to some extent. We obtained the highest 3He/4He ratios ( 2 Ra) from olivines found in the lowermost exposed layers of the intrusion away from the margins. Excess radiogenic 4He (indicated by Ra<1) along the margin of the intrusion indicates that noble gases from the Archean host-rock were incorporated into the cooling magma chamber, probably via magmatic assimilation. Noble gases in olivines from the upper portions of the intrusion have atmospheric isotopic compositions, but higher relative helium abundances than the atmosphere. We suggest that post-crystallization hydrothermal circulation introduced atmosphere-derived noble gases into uppermost layers of the intrusion. Such high temperature exchanges of volatiles between plutons and their immediate surroundings may help explain why so few mantle-derived rocks retain mantle-like noble gas signatures.

  15. Fate of Ice Grains in Saturn's Ionosphere

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Cravens, T. E.; Reedy, N. L.; Sakai, S.

    2018-02-01

    It has been proposed that the rings of Saturn can contribute both material (i.e., water) and energy to its upper atmosphere and ionosphere. Ionospheric models require the presence of molecular species such as water that can chemically remove ionospheric protons, which otherwise are associated with electron densities that greatly exceed those from observation. These models adopt topside fluxes of water molecules. Other models have shown that ice grains from Saturn's rings can impact the atmosphere, but the effects of these grains have not been previously studied. In the current paper, we model how ice grains deposit both material and energy in Saturn's upper atmosphere as a function of grain size, initial velocity (at the "top" of the atmosphere, defined at an altitude above the cloud tops of 3,000 km), and incident angle. Typical grain speeds are expected to be roughly 15-25 km/s. Grains with radii on the order of 1-10 nm deposit most of their energy in the altitude range of 1,700-1,900 km, and can vaporize, depending on initial velocity and impact angle, contributing water mass to the upper atmosphere. We show that grains in this radius range do not significantly vaporize in our model at initial velocities lower than about 20 km/s.

  16. Variation in the terrestrial isotopic composition and atomic weight of argon

    USGS Publications Warehouse

    Böhlke, John Karl

    2014-01-01

    The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.

  17. An analysis of heat effects in different subpopulations of Bangladesh.

    PubMed

    Burkart, Katrin; Breitner, Susanne; Schneider, Alexandra; Khan, Md Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2014-03-01

    A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit. Within the scope of this study, we aimed to investigate the effects of heat in a multi-stratified manner, distinguishing by the cause of death, age, gender, location and socio-economic status. We examined 22,840 death counts using semi-parametric Poisson regression models, adjusting for a multitude of potential confounders. Although Bangladesh is dominated by an increase of mortality with decreasing (equivalent) temperatures over a wide range of values, the findings demonstrated the existence of partly strong heat effects at the upper end of the temperature distribution. Moreover, the study demonstrated that the strength of these heat effects varied considerably over the investigated subgroups. The adverse effects of heat were particularly pronounced for males and the elderly above 65 years. Moreover, we found increased adverse effects of heat for urban areas and for areas with a high socio-economic status. The increase in, and acceleration of, urbanisation in Bangladesh, as well as the rapid aging of the population and the increase in non-communicable diseases, suggest that the relevance of heat-related mortality might increase further. Considering rising global temperatures, the adverse effects of heat might be further aggravated.

  18. Performance limitations of temperature-emissivity separation techniques in long-wave infrared hyperspectral imaging applications

    NASA Astrophysics Data System (ADS)

    Pieper, Michael; Manolakis, Dimitris; Truslow, Eric; Cooley, Thomas; Brueggeman, Michael; Jacobson, John; Weisner, Andrew

    2017-08-01

    Accurate estimation or retrieval of surface emissivity from long-wave infrared or thermal infrared (TIR) hyperspectral imaging data acquired by airborne or spaceborne sensors is necessary for many scientific and defense applications. This process consists of two interwoven steps: atmospheric compensation and temperature-emissivity separation (TES). The most widely used TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the atmospheric transmission function. We develop a model to explain and evaluate the performance of TES algorithms using a smoothing approach. Based on this model, we identify three sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise. For each TES smoothing technique, we analyze the bias and variability of the temperature errors, which translate to emissivity errors. The performance model explains how the errors interact to generate temperature errors. Since we assume exact knowledge of the atmosphere, the presented results provide an upper bound on the performance of TES algorithms based on the smoothness assumption.

  19. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  20. Upper limits to trace constituents in Jupiter's atmosphere from an analysis of its 5 micrometer spectrum

    NASA Technical Reports Server (NTRS)

    Treffers, R. R.; Larson, H. P.; Fink, U.; Gautier, T. N.

    1978-01-01

    A high-resolution spectrum of Jupiter at 5 micrometers recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4) of molecules with mixing ratios with hydrogen as low as 10 to the minus 9th power. In future observations at 5 micrometers the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10 to the minus 10th power, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.

  1. Mathematical modeling of chemical composition modification and etching of polymers under the atomic oxygen influence

    NASA Astrophysics Data System (ADS)

    Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina

    2016-07-01

    Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.

  2. Societal Impacts of Solar Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Lean, J. L.

    2000-05-01

    Changes in solar electromagnetic radiation, which occur continuously and at all wavelengths of the spectrum, can have significant societal impacts on a wide range of time scales. Detection of climate change and ozone depletion requires reliable specification of solar-induced processes that mask or exacerbate anthropogenic effects. Living with, and mitigating, climate change and ozone depletion has significant economic, habitat and political impacts of international extent. As an example, taxes to restrict carbon emission may cause undue economic stress if the role of greenhouse gases in global warming is incorrectly diagnosed. Ignoring solar-induced ozone changes in the next century may lead to incorrect assessment of the success of the Montreal Protocol in protecting the ozone layer by limiting the use of ozone-destroying chlorofluorocarbons. Societal infrastructure depends in many ways on space-based technological assets. Communications and navigation for commerce, industry, science and defense rely on satellite signals transmitted through, and reflected by, electrons in the ionosphere. Electron densities change in response to solar flares, and by orders of magnitude in response to EUV and X-ray flux variations during the Sun's 11-year activity cycle. Spacecraft and space debris experience enhanced drag on their orbits when changing EUV radiation causes upper atmosphere densities to increase. Especially affected are spacecraft and debris in lower altitude orbits, such as Iridium-type communication satellites, and the International Space Station (ISS). Proper specification of solar-induced fluctuations in the neutral upper atmosphere can, for example, aid in tracking the ISS and surrounding space debris, reducing the chance of ISS damage from collisions, and maximizing its operations. Aspects of solar electromagnetic radiation variability will be briefly illustrated on a range of time scales, with specific identification of the societal impacts of different spectral regions.

  3. Ozone in the Atmosphere: I. The Upper Atmosphere.

    ERIC Educational Resources Information Center

    Phillips, Paul S.

    1990-01-01

    Research concerning the role of stratospheric ozone and the effect of chlorofluorocarbons on stratospheric ozone are discussed. The consequences of global ozone depletion are projected. The Montreal Protocol is reviewed. (CW)

  4. Adaptive amplifier for probe diagnostics of charged-particle temperature in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Chkalov, V. G.

    An amplifier for probe experiments in the upper atmosphere is described which is based on a linear current-voltage converter design. Specifically, the amplifier is used as the input unit in a rocket-borne ionospheric probe for the measurement of electron temperature. The range of measured currents is from 10 to the -10th to 10 to the -6th A; the amplifier current range can be shifted up or down depending on the requirements of the experiment.

  5. Upper Atmosphere Research Report Number 21. Summary of Upper Atmosphere Rocket Research Firings

    DTIC Science & Technology

    1954-02-01

    computer . The sky screens are essentially theodolites which view the rocket through a pair of - crossed rods which are driven closed by an electric motor...positions are electrically measured and fed into a computer . The computer continously predicts the point of impact of the rocket 411 were its thrust...Without such equipment it is neces- sary to rely on optical ’fixes’, sound ranging, or the Impact Point Computer to provide such information. In the early

  6. Upper atmosphere research: Reaction rate and optical measurements

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.

    1990-01-01

    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.

  7. Spatial and Temporal Variations of Infrared Emissions in the Upper Atmosphere. 3. 5.3-μm Nitric Oxide Emission

    NASA Astrophysics Data System (ADS)

    Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.

    2018-03-01

    The results of rocket and satellite measurements available in the literature of 5.3-μm nitric oxide emission in the upper atmosphere have been systematized and analyzed. Analytical dependences describing the height distribution of volumetric intensity of 5.3-μm emission of the NO molecule and its variations in a range of heights from 100 to 130 km as a function of the time of year, day, latitude, and solar activity have been obtained.

  8. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  9. Pluto's Extended Atmosphere: New Horizons Alice Lyman-α Imaging

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Gladstone, G. Randall; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly A.; Olkin, Cathy B.; Cheng, Andy F.; Greathouse, Thomas K.; Hinson, David P.; Kammer, Joshua A.; Linscott, Ivan R.; Parker, Alex H.; Parker, Joel Wm.; Pryor, Wayne R.; Schindhelm, Eric; Singer, Kelsi N.; Steffl, Andrew J.; Strobel, Darrell F.; Summers, Michael E.; Tsang, Constantine C. C.; Tyler, G. Len; Versteeg, Maarten H.; Woods, William W.; Cunningham, Nathaniel J.; Curdt, Werner

    2015-11-01

    Pluto's upper atmosphere is expected to extend several planetary radii, proportionally more so than for any planet in our solar system. Atomic hydrogen is readily produced at lower altitudes due to photolysis of methane and transported upward to become an important constituent. The Interplanetary Medium (IPM) provides a natural light source with which to study Pluto's atomic hydrogen atmosphere. While direct solar Lyman-α emissions dominate the signal at 121.6 nm at classical solar system distances, the contribution of diffuse illumination by IPM Lyman-α sky-glow is roughly on par at Pluto (Gladstone et al., Icarus, 2015). Hydrogen atoms in Pluto's upper atmosphere scatter these bright Lyα emission lines, and detailed simulations of the radiative transfer for these photons indicate that Pluto would appear dark against the IPM Lyα background. The Pluto-Alice UV imaging spectrograph on New Horizons conducted several observations of Pluto during the encounter to search for airglow emissions, characterize its UV reflectance spectra, and to measure the radial distribution of IPM Lyα near the disk. Our early results suggest that these model predictions for the darkening of IPM Lyα with decreasing altitude being measureable by Pluto-Alice were correct. We'll report our progress toward extracting H and CH4 density profiles in Pluto's upper atmosphere through comparisons of these data with detailed radiative transfer modeling. These New Horizons findings will have important implications for determining the extent of Pluto's atmosphere and related constraints to high-altitude vertical temperature structure and atmospheric escape.This work was supported by NASA's New Horizons project.

  10. Atmospheric forcing of the upper ocean transport in the Gulf of Mexico: From seasonal to diurnal scales

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.; Curcic, Milan

    2016-06-01

    The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.

  11. Simulations of the Boreal Winter Upper Mesosphere and Lower Thermosphere With Meteorological Specifications in SD-WACCM-X

    NASA Astrophysics Data System (ADS)

    Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.

    2018-04-01

    We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.

  12. Titan tholins formed from simuolated upper and lower atmosphere

    NASA Astrophysics Data System (ADS)

    Taniuchi, Toshinori; Hosogai, Tomohiro; Takano, Yoshinori; Kaneko, Takeo; Kobayashi, Kensei; Khare, Bishun; McKay, Chris

    Titan, the biggest satellite of Saturn, has dense atmosphere that mainly consists of nitrogen and methane. In this study, we irradiated proton beams to the mixture of nitrogen and methane, and analyzed the structure, the chemical composition, and molecular weight of the resulting aerosols (named PI-tholins), in order to simulate possible reactions in the lower Titan atmosphere. On the other hand, magnetosphere electrons could be effective for the formation of organic molecules in the upper atmosphere of Titan. Thus we compared PI-tholin with the tholin formed by plasma discharge (named PD-tholins). A mixture of methane and nitrogen was irradiated with 3 MeV protons from a van de Graaff accelerator (Tokyo Institute of Technology). Many nitriles and nitrogen-containing heterocyclic compounds were detected by Py-GC/MS, showing that quite complex organics were formed from the simulated Titan atmosphere by proton irradiation. Microscopic observation showed that the complex organic aerosols had the structure bigger than 0.01 mm. G-value of Gly was 0.03. PD-tholins were produced by plasma discharge in 1 Torr of a mixture of methane and nitrogen by using plasma discharge facility RFX-600 (NASA Ames Research Center). Discharges were continued at 100 W for 72 hours. PD-tholins had similar chemical structures to PI-tholins. But the G-value of Gly in PD-tholins was 0.000091, which was much less thatn that in PI-tholins. It was implied that cosmic rays in the lower Titan atmosphere was much more effective to form complex organics yielding amino acids than other energies in the upper Titan atmosphere.

  13. Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides

    Treesearch

    Eric A. Davidson; Michael Keller; Heather E. Erickson; Verchot NO-VALUE; Edzo Veldkamp

    2000-01-01

    Nitrous and nitric oxides are often studied separately by atmospheric chemists because they play such different roles in the atmosphere. N2O is a stable greenhouse gas in the lower atmosphere (the troposphere; Ramanathan et al. 1985), but it participates in photochemical reactions in the upper atmosphere (the stratosphere) that destroy ozone (Crutzen 1970). In contrast...

  14. The Upper Atmosphere Research Satellite (UARS)

    NASA Technical Reports Server (NTRS)

    Reber, Carl A.

    1993-01-01

    The Upper Atmosphere Research Satellite (UARS) was launched by the Space Shuttle on September 12, 1991 into a near circular orbit at 585 km altitude inclined 57 degrees to the Equator. Measurements were initiated a few days later, including solar energy inputs to the atmosphere and vertical profiles of temperature, important minor gas species, and wind fields. The orbital parameters, combined with the sensor measurements characteristics, yield a measurement pattern that produces near global coverage with a duty cycle that periodically favors the Northern or the Southern Hemispheres. A few spacecraft and instrument anomalies have impacted the total amount of data obtained to date, but the overall performance of the mission has been very good.

  15. From Hot to Hottest

    NASA Image and Video Library

    2017-10-31

    This sequence of images shows the sun from its surface to its upper atmosphere all taken at about the same time (Oct. 27, 2017). The first shows the surface of the sun in filtered white light; the other seven images were taken in different wavelengths of extreme ultraviolet light. Note that each wavelength reveals somewhat different features. They are shown in order of temperature from the first one at 6,000 degree C. surface out to about 10 million degrees C. in the upper atmosphere. Yes, the sun's outer atmosphere is much, much hotter than the surface. Scientists are getting closer to solving the processes that generate this phenomenon. https://photojournal.jpl.nasa.gov/catalog/PIA22055

  16. The thermosphere and ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.

    1992-01-01

    Our knowledge of the upper atmosphere and ionosphere of Venus and its interaction with the solar wind has advanced dramatically over the last decade, largely due to the data obtained during the Pioneer Venus mission and to the theoretical work that was motivated by this data. Most of this information was obtained during the period 1978 through 1981, when the periapsis of the Pioneer Venus Orbiter (PVO) was still in the measurable atmosphere. However, solar gravitational perturbations will again lower the PVO periapsis into the upper atmosphere in September 1992, prior to the destruction of the spacecraft toward the end of this year. The physics and chemistry of the thermosphere and ionosphere of Venus are reviewed.

  17. Ionization of the Earth's Upper Atmosphere in Large Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Wolff, E.; Burrows, J.; Kallenrode, M.; von Koenig, M.; Kuenzi, K. F.; Quack, M.

    2001-12-01

    Energetic charged particles ionize the upper terrestrial atmosphere. Sofar, chemical consequences of precipitating particles have been discussed for solar protons with energies up to a few hundred MeV. We present a refined model for the interaction of energetic particles with the atmosphere based on a Monte-Carlo simulation. The model includes higher energies and other particle species, such as energetic solar electrons. Results are presented for well-known solar events, such as July 14, 2000, and are extrapolated to extremely large events, such as Carrington's white light flare in 1859, which from ice cores has been identified ass the largest impulsive NO3 event in the interval 1561 -- 1994 (McCracken et al., 2001).

  18. MAVEN at Mars Artist Concept

    NASA Image and Video Library

    2011-11-18

    This artist concept depicts NASA Mars Atmosphere and Volatile EvolutioN MAVEN spacecraft near Mars. MAVEN is in development for launch in 2013 and will be the first mission devoted to understanding the Martian upper atmosphere.

  19. Middle Atmospheric Changes Caused by the January and March 2012 Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Jackman, C. H.; Randall, C. E.; Harvey, V. L.; Wang, S.; Fleming, E. L.; Lopez-Puertas, M.; Funke, B.; Bernath, P. F.

    2014-01-01

    The recent 23-30 January and 7-11 March 2012 solar proton event (SPE) periods were substantial and caused significant impacts on the middle atmosphere. These were the two largest SPE periods of solar cycle 24 so far. The highly energetic solar protons produced considerable ionization of the neutral atmosphere as well as HOx (H, OH, HO2) and NOx (N, NO, NO2). We compute a NOx production of 1.9 and 2.1 Gigamoles due to these SPE periods in January and March 2012, respectively, which places these SPE periods among the 12 largest in the past 50 years. Aura Microwave Limb Sounder (MLS) observations of the peroxy radical, HO2, show significant enhancements of 0.9 ppbv in the northern polar mesosphere as a result of these SPE periods. Both MLS measurements and Goddard Space Flight Center (GSFC) two-dimensional (2D) model predictions indicated middle mesospheric ozone decreases of 20 percent for several days in the northern polar region with maximum depletions 60 percent as a result of the HOx produced in both the January and March 2012 SPE periods. The SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instruments measured NO and NO2 (NOx), which indicated enhancements of over 20 ppbv in most of the northern polar mesosphere for several days as a result of these SPE periods. The GSFC 2D model was used to predict the medium-term (months) influence and found that the polar Southern Hemisphere middle atmosphere ozone was most affected by these solar events due to the increased downward motion in the fall and early winter. The downward transport moved the SPE-produced NOy to lower altitudes and led to predicted modest destruction of ozone (5-9 percent) in the upper stratosphere days to weeks after the March 2012 event. Total ozone reductions were predicted to be a maximum of 1 percent in 2012 due to these SPEs.

  20. Martian Meteorology: Determination of Large Scale Weather Patterns from Surface Measurements

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Haberle, Robert M.; Bridger, Alison F. C.

    1998-01-01

    We employed numerical modelling of the martian atmosphere, and our expertise in understanding martian atmospheric processes, to better understand the coupling between lower and upper atmosphere processes. One practical application of this work has been our involvement with the ongoing atmospheric aerobraking which the Mars Global Surveyor (MGS) spacecraft is currently undergoing at Mars. Dr. Murphy is currently a member of the Mars Global Surveyor (MGS) Aerobraking Atmospheric Advisory Group (AAG). He was asked to participate in this activity based upon his knowledge of martian atmospheric dynamical processes. Aerobraking is a process whereby a spacecraft, in an elliptical orbit, passes through the upper layers of the atmosphere (in this instance Mars). This passage through the atmosphere 'drags'upon the spacecraft, gradually reducing its orbital velocity. This has the effect, over time, of converting the elliptical orbit to a circular orbit, which is the desired mapping orbit for MGS. Carrying out aerobraking eliminates the need for carrying large amounts of fuel on the spacecraft to execute an engine burn to achieve the desired orbit. Eliminating the mass of the fuel reduces the cost of launch. Damage to one of MGS's solar panels shortly after launch has resulted in a less aggressive extended in time aerobraking phase which will not end until March, 1999. Phase I extended from Sept. 1997 through March 1998. During this time period, Dr. Murphy participated almost daily in the AAG meetings, and beginning in December 1997 lead the meeting several times per week. The leader of each of the daily AAG meetings took the results of that meeting (current state of the atmosphere, identification of any time trends or spatial patterns in upper atmosphere densities, etc.) forward to the Aerobraking Planning Group (APG) meeting, at which time the decision was made to not change MGS orbit, to lower the orbit to reach higher densities (greater 'drag'), or raise the orbit to avoid experiencing excessive, possibly damaging densities.

  1. An Aerobraking Strategy for Determining Mars Upper Atmospheric Structure

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Murphy, J. R.; Haberle, R. M.

    1997-07-01

    The Mars Global Surveyor (MGS) spacecraft will enter Mars orbit on Sept. 12, 1997, and thereafter undergo aerobraking for roughly 4-months. The final data-taking orbit to be achieved is sun-synchronous (2PM/2AM). An aerobraking strategy has been developed that not only will provide the walk-in capability needed to safely achieve the required Mars orbit, but also will provide a careful monitoring of the atmospheric structure. In particular, the linkage between the lower (0-100 km) and upper (100- 150 km) Mars atmospheres will be investigated. A suite of complementary measurements is planned that will probe the atmosphere over 0-150 km, including : (1) MGS Accelerometer density and inferred temperatures (100-150 km), (2) MGS Thermal Emission Spectrometer (TES) nadir (25-30 km) and limb (up to about 55 km) temperatures, (3) MGS Electron Reflectometer (ER) F1-peak heights (near 130 km), (4) ground-based microwave disk-averaged temperatures (0-70 km), and (5) Mars Pathfinder (MPF) surface meteorological data at 20 N latitude. These datasets acquired during the aerobraking phase will enable the current state of the atmosphere to be examined. Potential dust storm activity and its manifestations throughout the atmosphere can be monitored over Ls = 184 to 250. A corresponding library of coupled 3-D model simulations, based upon the NASA Ames Mars GCM and the NCAR Mars Thermospheric GCM (MTGCM), will be used to : (1) validate the current state of the Mars atmosphere, (2) investigate the various orbital, seasonal, LAT-LT-LON, and potential dust storm trends, and (3) predict the structure of the Mars atmosphere in the aerobraking corridor that is approaching in future MGS orbits. The in-situ accelerometer and ER data will eventually be used to construct a Mars empirical model covering 100-150 km. We will present a few selected GCM simulations to illustrate the expected atmospheric response to a dust storm event. In addition, we will discuss why these upper atmosphere datasets are important to future Mars missions.

  2. Remote sensing of mesospheric winds with the High-Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.

    1992-01-01

    Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.

  3. The structure of Venus' middle atmosphere and ionosphere.

    PubMed

    Pätzold, M; Häusler, B; Bird, M K; Tellmann, S; Mattei, R; Asmar, S W; Dehant, V; Eidel, W; Imamura, T; Simpson, R A; Tyler, G L

    2007-11-29

    The atmosphere and ionosphere of Venus have been studied in the past by spacecraft with remote sensing or in situ techniques. These early missions, however, have left us with questions about, for example, the atmospheric structure in the transition region from the upper troposphere to the lower mesosphere (50-90 km) and the remarkably variable structure of the ionosphere. Observations become increasingly difficult within and below the global cloud deck (<50 km altitude), where strong absorption greatly limits the available investigative spectrum to a few infrared windows and the radio range. Here we report radio-sounding results from the first Venus Express Radio Science (VeRa) occultation season. We determine the fine structure in temperatures at upper cloud-deck altitudes, detect a distinct day-night temperature difference in the southern middle atmosphere, and track day-to-day changes in Venus' ionosphere.

  4. Present state of knowledge of the upper atmosphere: An assessment report; processes that control ozone and other climatically important trace gases

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Geller, M. A.; Stolarski, R. S.; Hampson, R. F.

    1986-01-01

    The state of knowledge of the upper atmosphere was assessed as of January 1986. The physical, chemical, and radiative processes which control the spatial and temporal distribution of ozone in the atmosphere; the predicted magnitude of ozone perturbations and climate changes for a variety of trace gas scenarios; and the ozone and temperature data used to detect the presence or absence of a long term trend were discussed. This assessment report was written by a small group of NASA scientists, was peer reviewed, and is based primarily on the comprehensive international assessment document entitled Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, to be published as the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 16.

  5. Analysis and Hindcast Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+DART

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Liu, H.-L.; Marsh, D. R.; Raeder, K.; Anderson, J. L.; Chau, J. L.; Goncharenko, L. P.; Siddiqui, T. A.

    2018-04-01

    The ability to perform data assimilation in the Whole Atmosphere Community Climate Model eXtended version (WACCMX) is implemented using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. Results are presented demonstrating that WACCMX+DART analysis fields reproduce the middle and upper atmosphere variability during the 2009 major sudden stratospheric warming (SSW) event. Compared to specified dynamics WACCMX, which constrains the meteorology by nudging toward an external reanalysis, the large-scale dynamical variability of the stratosphere, mesosphere, and lower thermosphere is improved in WACCMX+DART. This leads to WACCMX+DART better representing the downward transport of chemical species from the mesosphere into the stratosphere following the SSW. WACCMX+DART also reproduces most aspects of the observed variability in ionosphere total electron content and equatorial vertical plasma drift during the SSW. Hindcast experiments initialized on 5, 10, 15, 20, and 25 January are used to assess the middle and upper atmosphere predictability in WACCMX+DART. A SSW, along with the associated middle and upper atmosphere variability, is initially predicted in the hindcast initialized on 15 January, which is ˜10 days prior to the warming. However, it is not until the hindcast initialized on 20 January that a major SSW is forecast to occur. The hindcast experiments reveal that dominant features of the total electron content can be forecasted ˜10-20 days in advance. This demonstrates that whole atmosphere models that properly account for variability in lower atmosphere forcing can potentially extend the ionosphere-thermosphere forecast range.

  6. Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity

    NASA Astrophysics Data System (ADS)

    Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.

    2018-03-01

    Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.

  7. Multiple climate regimes in an idealized lake-ice-atmosphere model

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the (occasionally wintertime ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding characteristics of the forced transitions between colder and warmer lake regimes. Since the regime behavior in our models arises due to nonlinear dynamics rooted in the ice-albedo feedback, this feedback is also the root cause of the accelerated lake warming simulated by these models. In addition, our results imply that if Lake Superior eventually becomes largely ice-free (<10% maximum ice cover every winter) under continuing global warming, the surface warming trends of the deeper regions of the lake will become modest, similar to those of the shallower regions of the lake.

  8. Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland

    NASA Technical Reports Server (NTRS)

    Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.

    2004-01-01

    We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.

  9. Synergism of Saturn, Enceladus and Titan and Formation of HCNO Prebiotic Molecules

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C.; Cooper, John F.

    2011-01-01

    Saturn as a system has two very exotic moons Titan and Enceladus. Titan, taking in energy from Saturn's magnetosphere, solar UV irradiation, and cosmic rays, can make HCN based molecules as discussed in earlier paper by Raulin and Owen. Space radiation effects at both moons, and as coupled by the Saturn magnetosphere, could cause an unexpected series of events potentially leading to prebiotic chemical evolution at Titan with HCNO from magnetospheric oxygen as the new ingredient. The "Old Faithful" model suggests that Enceladus, highly irradiated by Saturn magnetospheric electrons and thus having a source of chemical energy from radiolytic gas production, has episodic ejections of water vapor, carbon dioxide, and various hydrocarbons into Saturn's magnetosphere. The hydrocarbons do not survive transport through the plasma environment, but oxygen ions from Enceladus water molecules become the dominant ion species in the outer magnetosphere. At Titan, Cassini discovered that 1) keV oxygen ions, evidently from Enceladus, are bombarding Titan's upper atmosphere and 2) heavy positive and negative ions exist in significant abundances within Titan's upper atmosphere. Initial models of heavy ion formation in Titan's upper atmosphere invoked polymerization of aromatics such as benzenes and their radicals to make polycyclic aromatic hydrocarbons (PAH) , while a more recent model by Sittler et al., has raised the possibility of carbon chains forming from the polymerization of acetylene and its radicals to make fullerenes. Laboratory measurements indicate that fullerenes, which are hollow carbon shells, can trap keV oxygen ions. Clustering of the fullerenes with aerosol mixtures from PAHs and the dominant nitrogen molecules could form larger aerosols enriched in trapped oxygen. Aerosol precipitation could then convey these chemically complex structures deeper into the atmosphere and to the moon surface. Ionizing solar UV, magnetospheric electron, and galactic cosmic ray irradiation would provide further energy for processing into more complex organic forms. Further ionizing irradiation from cosmic rays deep in the atmosphere "tho lin" molecules are produced with all the molecular components present from which prebiotic organic molecules can form. This synergy of Saturn system, exogenic irradiation, and molecular processes provides a potential pathway for accumulation of prebiotic chemistry on the surface of Titan. Since fullerenes are also thought to exist in interstellar space, similar processes may also occur there to seed molecular clouds with prebiotic chemical species. We will also discuss possible future laboratory experiments that could be done to investigate fullerene formation at Titan and the trapping of oxygen in fullerenes.

  10. Tsunami process: From upper mantle to atmosphere

    NASA Astrophysics Data System (ADS)

    Ershov, S.; Mikhaylovskaya, I.; Novik, O.

    Earthquakes in near sea regions and/or tsunamis are manifestations of powerful geodynamic processes beneath the Ocean floor (75 % of the Earth' surface). An effective monitoring of these large-scale processes is not possible without satellites as well as without understanding of physical nature of signals accompanying these processes, e.g. connection between parameters of a seismic excitation in ocean lithosphere and electromagnetic (EM) signals in atmosphere. Basing on the theory of elasticity, electrodynamics, fluid dynamics and geophysical data we formulate a nonlinear mathematical model of generation and propagation of seismo-EM signals in the basin of a marginal sea including transfer of seismic and EM energy from upper mantle to hydrosphere and EM emission into atmosphere up to ionosphere domain D. For a model basin approximately similar to the central part of the Sea of Japan, we calculate signals caused by moderate elastic displacements (EDs): the ampl of a few cm, the main freq. 0.01-10 Hz and duration up to 10 sec (by runs with different acceptable data) which are supposed to be arising at the moment t=0 at the bottom of the upper mantle layer M. The EM signal appears near the bottom of the conductive (0.02 S/m) layer M and reaches for the sea bottom by t=3.5 sec with the ampl. Of 50 pT. This signal propagate in sea water (4 S/m) rather slowly and seems to be "frozen": its front is located near the sea bottom and is replicating the bottom's configuration up to the moment (t=5.2 sec) of the seismic P wave (from M) arrival at the sea bottom. The EM field is generated in seismically disturbed sea water in presence of the geomagnetic field" a specific structure of a seismo-hydrodynamic flow, a spatial break of the diffusive magnetic field, joining of its contours, and other details of the seismo-hydro-EM tsunami process are shown to clear out the out the physical nature of its signals. By the moderate EDs (above), the magnetic signal (freq. 0.01-10 Hz, i.e. the same as the EDs' freq.) is of order of a few hundreds of pT at the ocean-atmosphere interface and of order of a few tens of hydrodynamic wave's amplitude far from the shore is too small (20 cm) and EM observations are needed to discover this threatening wave. The computed signals' characteristics are of orders observed. The recommendations for the EM monitoring (at a sea bottom, surface, and atmosphere) of seismic excitations in ocean lithosphere and tsunamis are given.

  11. Effects of the planetary-scale waves on the temporal variations of the O2-1.27μm nightglow in the Venusian upper atmosphere

    NASA Astrophysics Data System (ADS)

    Hoshino, N.; Fujiwara, H.; Takagi, M.; Kasaba, Y.; Takahashi, Y.

    2009-12-01

    The O2-1.27 μm nightglow distribution, which has the peak intensity in the depression region of the day-to-night flow, gives us information of the wind field at about 95 km in Venus. The past nightglow observations [Crisp et al., 1996] showed that the intensity of the nightglow in the brightness region changed by 20 % in about one hour, and the brightness region disappeared in less than one day. The observation results obtained by Venus Express (VEX) also showed the temporal variations of the nightglow emission. Some simulation studies suggested contributions of gravity waves generated in the cloud deck (50-70 km) to the temporal variations. However, the causes of the temporal variations are still unknown. In recent years, the importance of planetary-scale waves for the dynamics of the Venusian atmosphere has been recognized. For example, Takagi and Matsuda [2006] suggested that the atmospheric superrotation was driven by the momentum transport due to the vertical propagation of the thermal tides generated in the Venus cloud deck. In order to estimate effects of the planetary-scale waves on the temporal variations of the nightglow, we have performed numerical simulations with a general circulation model (GCM), which includes the altitude region of 80 - about 200 km. The planetary-scale waves (thermal tides, Kelvin wave and Rosbby wave) are imposed at the lower boundary. The amplitudes and phase velocities of the waves are assumed from the study by Del Genio and Rossow [1990]. The nightglow intensity and its global distribution are calculated from the GCM results assuming the chemical equilibration. In this study, we investigate contributions of the planetary-scale waves on the temporal variations of the nightglow shown by past observations. In addition, we show the characteristics of the wave propagation and the interactions between the waves in the Venusian upper atmosphere. Venus Climate Orbiter (VCO), which will be launched in 2010 as the second Japanese planetary mission, is expected to provide precious information about the atmospheric waves at the cloud top (about 70 km) and the nightglow distributions in the thermosphere. We can understand effects of the atmospheric waves on the Venusian thermosphere quantitatively by performing simulations with new information about the atmospheric waves obtained from the detailed nightglow observations.

  12. Intraseasonal variability of upper-ocean currents and photosynthetic primary production along the U.S. west coast associated with the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.

    2017-12-01

    In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.

  13. Estimation of the global climate effect of brown carbon

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.

    2017-12-01

    Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.

  14. Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.

    PubMed

    Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro

    2018-02-13

    We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.

  15. Arctic Strato-Mesospheric Temperature and Wind Variations

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2004-01-01

    Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.

  16. Observations of Highly Variable Deuterium in the Martian Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Clarke, John T.; Mayyasi-Matta, Majd A.; Bhattacharyya, Dolon; Chaufray, Jean-Yves; Chaffin, Michael S.; Deighan, Justin; Schneider, Nicholas M.; Jain, Sonal; Jakosky, Bruce

    2017-10-01

    One of the key pieces of evidence for historic high levels of water on Mars is the present elevated ratio of deuterium/hydrogen (D/H) in near-surface water. This can be explained by the loss of large amounts of water into space, with the lighter H atoms escaping faster than D atoms. Understanding the specific physical processes and controlling factors behind the present escape of H and D is the key objective of the MAVEN IUVS echelle channel. This knowledge can then be applied to an accurate extrapolation back in time to understand the water history of Mars. Observations of D in the martian upper atmosphere over the first martian year of the MAVEN mission have shown highly variable amounts of D, with a short-lived maximum just after perihelion and during southern summer. The timing and nature of this increase provide constraints on its possible origin. These results will be presented and compared with other measurements of the upper atmosphere of Mars.

  17. Characteristics of skylight at the zenith during twilight as indicators of atmospheric turbidity. 2: Intensity and color ratio.

    PubMed

    Coulson, K L

    1981-05-01

    This is the second of two papers based on an extensive series of measurements of the intensity and polarization of light from the zenith sky during periods of twilight made at an altitude of 3400 m on the island of Hawaii. Part 1 dealt with the skylight polarization; part 2 is on the measured intensity and quantities derived from the intensity. The principal results are that (1) the polarization and intensity of light from the zenith during twilight are sensitive indicators of the existence of turbid layers in the stratosphere and upper troposphere, and (2) at least at Mauna Loa primary scattering of the sunlight incident on the upper atmosphere during twilight is strongly dominant over secondary or multiple scattering at wavelengths beyond ~0.60microm, whereas this is much less true at shorter wavelengths. It is suggested that the development and general use of a simple twilight polarimeter would greatly facilitate determinations of turbidity in the upper layers of the atmosphere.

  18. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  19. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  20. A Study on Various Meteoroid Disintegration Mechanisms as Observed from the Resolute Bay Incoherent Scatter Radar (RISR)

    NASA Technical Reports Server (NTRS)

    Malhotra, A.; Mathews, J. D.

    2011-01-01

    There has been much interest in the meteor physics community recently regarding the form that meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in the meteoroid mass flux observed by the Incoherent Scatter Radars (ISR). We present here the first-ever statistical study showing the relative contribution of the above-mentioned three mechanisms. These are also one of the first meteor results from the newly-operational Resolute Bay ISR. These initial results emphasize that meteoroid disintegration into the upper atmosphere is a complex process in which all the three above-mentioned mechanisms play an important role though fragmentation seems to be the dominant mechanism. These results prove vital in studying how meteoroid mass is deposited in the upper atmosphere which has important implications to the aeronomy of the region and will also contribute in improving current meteoroid disintegration/ablation models.

  1. An analysis of Solar Mesospheric Explorer temperatures for the upper stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.

    1993-01-01

    We proposed to analyze Solar Mesosphere Explorer (SME) limb profiles of Rayleigh scattered solar flux at wavelengths of 304, 313, and 443 nm to retrieve atmospheric temperature profiles over the 40-65 km altitude region. These temperatures can be combined with the previous analysis of SME 296 nm limb radiances to construct a monthly average climatology of atmospheric temperatures over the 40-90 km, upper stratosphere-mesosphere region, with approximately 4 km vertical resolution. We proposed to investigate the detailed nature of the global temperature structure of this poorly measured region, based on these 1982-1986 SME temperatures. The average vertical structure of temperatures between the stratopause and mesopause has never been determined globally with vertical resolution sufficient to retrieve even scale-height structures. Hence, the SME temperatures provided a unique opportunity to study the detailed thermal structure of the mesosphere, in advance of Upper Atmosphere Research Satellite (UARS) measurements and the Thermosphere Ionosphere Mesosphere Energy and Dynamics (TIMED) mission.

  2. Non-thermal hydrogen atoms in the terrestrial upper thermosphere.

    PubMed

    Qin, Jianqi; Waldrop, Lara

    2016-12-06

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.

  3. Non-thermal hydrogen atoms in the terrestrial upper thermosphere

    PubMed Central

    Qin, Jianqi; Waldrop, Lara

    2016-01-01

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere. PMID:27922018

  4. Dynamics of Venus Upper Atmosphere from Infrared Heterodyne Spectroscopy of CO2

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Sonnabend, G.; Kroetz, P. J.; Stupar, D.; Schieder, R. T.; Sandor, B.; Clancy, T.

    2009-09-01

    Wind velocities in the upper atmosphere of Venus can be determined from Doppler-shifts of narrow non-LTE emission lines of CO2 at 10 µm with an precision of up to 10 m/s using infrared heterodyne spectroscopy. Such observations address a narrow altitude region in the upper atmosphere of Venus around 110 km. At the University of Cologne we developed a Tunable Infrared Heterodyne Spectrometer (THIS) capable of accomplishing such ground-based measurements of planetary atmospheres. Beside high spectral resolution (R>107) this method also guarantees high spatial resolution on the planet (FOV of 1.7 arcsec on an apparent diameter of Venus of 20 arcsec using the McMath-Pierce-Solar Telescope on Kitt Peak). Over the last two years we observed wind velocities with THIS at several characteristic orbital positions of Venus. In May and November 2007 Venus was at its maximum eastern and western elongation, respectively. This specific observing geometry with an illumination of about 50% of the apparent planetary disk allows us to detect dominantly the superrotation component in Venus upper atmosphere. So far results indicate surprisingly low wind velocities of a few tens of m/s with almost no wind at the equator and highest values at mid latitudes. Observations close to inferior conjunction have been accomplished in March and April 2009. This observing geometry gives wind velocities consisting of a combination of the superrotation and the SS-AS flow close to the terminator. Data analysis is still ongoing but first analysis indicate a higher wind velocity than found in the results from maximum elongation. We are going to present data and results from these runs as well as results from a first coordinated observation between our infrared group and JCMT sub-mm observations in March 2009.

  5. Rarefied gas dynamic simulation of transfer and escape in the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Hoey, William A.; Yeoh, Seng Keat; Trafton, Laurence M.; Goldstein, David B.; Varghese, Philip L.

    2017-05-01

    We apply the direct simulation Monte Carlo rarefied gas dynamic technique to simulations of Pluto's rarefied upper atmosphere motivated by the need to better understand New Horizons (NH) data. We present a novel three-dimensional DSMC model of the atmosphere that spans from several hundred km below the exobase - where continuum flow transitions to the rarefied regime - to fully free-molecular flow hundreds of thousands of km from Pluto's center. We find molecular collisions in Pluto's upper atmosphere to be significant in shaping the flowfield, both by promoting flux from the plutonian exobase to Charon and by increasing the proportion of that flux generated on the exobase's anti-Charon hemisphere. Our model accounts for the gravitational fields of both Pluto and Charon, the centripetal and Coriolis forces due to the rotation of Pluto in our reference frame, and the presence of Charon as a temporary sink for impacting particles. Using this model, we analyze the escape processes of N2 and CH4 from Pluto across different solar heating conditions, and evaluate the three-dimensional structure of the upper plutonian atmosphere, including gas transfer to and deposition on Charon. We find results consistent with the NH-determined escape rate, upper atmospheric temperature, and lack of a detectable Charon atmosphere. Gas-transfer structures are noted in a binary atmospheric configuration, including preferential deposition of material from Pluto's escaping atmosphere onto Charon's leading hemisphere that peaks at 315° E on the equator. As the moon gravitationally focuses incident flow, a high density structure forms in its wake. If molecules are permitted to escape from Charon in diffuse reflections from its surface, a returning flux forms to Pluto's exobase, preferentially directed toward its trailing hemisphere. Charon is capable of supporting a thin atmosphere at column densities as high as 1.5 × 1017 m-2 in simulations with a plutonian exobase condition similar to the NH encounter. Results computed from a fit to the NH encounter exobase (Gladstone et al., 2016) predict a system escape rate of 7 × 1025 CH4 s-1 in close agreement with those reported by NH (Bagenal et al., 2016; Gladstone et al., 2016), and a net depositional flux to Charon of 2 × 1024 s-1, of which ∼98% is methane.

  6. Characterizing the UV environment of GJ1214b

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel

    2010-09-01

    The recent detection of a super-Earth transiting a nearby low-mass star GJ1214 {Charbonneau et al., 2009} has opened the door to testing the predictions of low mass planet atmosphere theories. Theoretical models predict that low mass planets are likely to exist with atmospheres that can vary widely in their composition and structure. Some super-Earths may be able to retain massive hydrogen-rich atmospheres. Others might never accumulate hydrogen or experience significant escape of lightweight elements, resulting in atmospheres more like those of the terrestrial planets in our Solar System. Planets which orbit close to their parent stars, such as close-in hot-Jupiters and super-Earths, are exposed to strong XEUV flux that influence their atmospheres and may trigger atmospheric escape processes. This phenomenon, which shapes planetary atmospheres, determines the evolution of the planet. This can also dramatically enhance the detectability of a heavily irradiated hydrogen atmosphere when the planet transits in front of its parent star. We propose to use HST/STIS/G140M to determine the intensity and variability of the Lyman-alpha chromospheric emission line and provide observational constraints to super-Earth atmospheric models. We propose to coordinate this measurement with a planetary transit in order to detect large upper atmospheric signatures if present. This short measurement also enables us to determine whether a larger program dedicated to upper atmospheric study is feasible for a following cycle.

  7. Acetone in the atmosphere: Distribution, sources, and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Sachse, W.; Blake, D. R.; Bradshaw, J. D.; Kanakidou, M.; Crutzen, P. J.

    1994-01-01

    Acetone (CH3COCH3) was found to be the dominant nonmethane organic species present in the atmosphere sampled primarily over eastern Canada (0-6 km, 35 deg-65 deg N) during ABLE3B (July to August 1990). A concentration range of 357 to 2310 ppt (= 10(exp -12) v/v) with a mean value of 1140 +/- 413 ppt was measured. Under extremely clean conditions, generally involving Arctic flows, lowest (background) mixing ratios of 550 +/- 100 ppt were present in much of the troposphere studied. Correlations between atmospheric mixing ratios of acetone and select species such as C2H2, CO, C3H8, C2Cl4 and isoprene provided important clues to its possible sources and to the causes of its atmospheric variability. Biomass burning as a source of acetone has been identified for the first time. By using atmospheric data and three-dimensional photochemical models, a global acetone source of 40-60 Tg (= 10(exp 12) g)/yr is estimated to be present. Secondary formation from the atmospheric oxidation of precursor hydrocarbons (principally propane, isobutane, and isobutene) provides the single largest source (51%). The remainder is attributable to biomass burning (26%), direct biogenic emissions (21%), and primary anthropogenic emissions (3%). Atmospheric removal of acetone is estimated to be due to photolysis (64%), reaction with OH radicals (24%), and deposition (12%). Model calculations also suggest that acetone photolysis contributed significantly to PAN formation (100-200 ppt) in the middle and upper troposphere of the sampled region and may be important globally. While the source-sink equation appears to be roughly balanced, much more atmospheric and source data, especially from the southern hemisphere, are needed to reliably quantify the atmospheric budget of acetone.

  8. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  9. Forecasting Space Weather Events for a Neighboring World

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Mason, Tom; Wood, Erin L.

    2015-01-01

    Shortly after NASA's Mars Atmosphere and Volatile EvolutioN mission (MAVEN) spacecraft entered Mars' orbit on 21 September 2014, scientists glimpsed the Martian atmosphere's response to a front of solar energetic particles (SEPs) and an associated coronal mass ejection (CME). In response to some solar flares and CMEs, streams of SEPs burst from the solar atmosphere and are further accelerated in the interplanetary medium between the Sun and the planets. These particles deposit their energy and momentum into anything in their path, including the Martian atmosphere and MAVEN particle detectors. MAVEN scientists had been alerted to the likely CME-Mars encounter by a space weather prediction system that had its origins in space weather forecasting for Earth but now forecasts space weather for Earth's neighboring planets. The two Solar Terrestrial Relations Observatory spacecraft and Solar Heliospheric Observatory observed a CME on 26 September, with a trajectory that suggested a Mars intercept. A computer model developed for solar wind prediction, the Wang-Sheeley-Arge-Enlil cone model [e.g., Zheng et al., 2013; Parsons et al., 2011], running in real time at the Community Coordinated Modeling Center (CCMC) located at NASA Goddard since 2006, showed the CME propagating in the direction of Mars (Figure 1). According to MAVEN particle detectors, the disturbance and accompanying SEP enhancement at the leading edge of the CME reached Mars at approximately 17 hours Universal Time on 29 September 2014. Such SEPs may have a profound effect on atmospheric escape - they are believed to be a possible means for driving atmospheric loss. SEPs can cause loss of Mars' upper atmosphere through several loss mechanisms including sputtering of the atmosphere. Sputtering occurs when atoms are ejected from the atmosphere due to impacts with energetic particles.

  10. Dynamics of the Mesopause Region as Revealed in Images of Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Bailey, Scott; Thurairajah, Brentha; Nielsen, Kim; Lumpe, Jerry; Randall, Cora; Taylor, Michael J.; Zhao, Yucheng

    Studying the geospace response to variable inputs and waves from the lower atmosphere is particularly important since the induced variability competes with the solar and magnetic driving from above. Consequences for telecommunications, re-entry and satellite operations still need to be explored. The extent to which the effects of this quiescent atmospheric variability are transmitted to the magnetosphere is yet to be resolved. We thus stand right now at an exciting research frontier: understanding the cause-and-effect chain that connects tropospheric and strato-/mesospheric variability with geospace processes. CAWSES-II Task Group 4 (TG4) will therefore elucidate the dynamical coupling from the low and middle atmosphere to geospace including the upper atmosphere, ionosphere, and magnetosphere, for various frequencies and scales, such as gravity waves, tides, and planetary waves, and for equatorial, middle, and high latitudes. Attacking the problem clearly requires a systems approach involving experimentalists, data analysts and modelers from different communities. For that purpose, the most essential part of TG4 is to encourage interactions between atmospheric scientists and plasma scientists on all occasions. Four project are established in TG4, i.e., Project 1: How do atmospheric waves connect tropospheric weather with ITM variability?, Project 2: What is the relation between atmospheric waves and ionospheric instabilities?, Project 3: How do the different types of waves interact as they propagate through the stratosphere to the ionosphere?, and Project 4: How do thermospheric disturbances generated by auroral processes interact with the neutral and ionized atmosphere? A joint project with TG2 is also proposed for the topic of Project 5: How does climate change affects atmospheric waves in the ITM? In this presentation we show current status and future plan of CAWSES-II TG4 activities of 2009-2013.

  11. Metals from deep atmosphere to exosphere in hot-Jupiters

    NASA Astrophysics Data System (ADS)

    Lecavelier des Etangs, Alain

    2017-08-01

    With STIS/UV observations we detected magnesium atoms at high altitude in the atmosphere of the hot-Jupiter HD209458b, probing lower regions in the atmosphere than previously done with Lyman-alpha observations (Vidal-Madjar et al. 2013). With the present program, we will search for magnesium and other heavy species in escaping atmospheres of 2 giant planets orbiting hot A and F-type stars: WASP-94Ab and WASP-33b.The observations will provide unprecedented information on the physical conditions (velocity, temperature, and density) in the upper atmosphere of these two hot-Jupiters. Targets have been selected for the expected high significance level of the atmospheric detections (>10 sigma). These exoplanets present favorable configuration for upper atmosphere observations because of the combination of high escape rates and large spatial extensions of the magnesium clouds surrounding them. The atmospheric signatures of the magnesium and other metals are therefore expected to be easily detectable. Moreover, the two selected exoplanets have highly different equilibrium temperatures, below and above the MgSiO3 condensation temperature. Consequently, because the metals observed in the escaping flow originate from deeper in the atmosphere where haze can condensate, the observations will constrain the physical processes taking place in the clouds that cannot be observed directly.

  12. NASA/MSFC FY-80 Atmospheric Processes Research Review

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Compiler)

    1980-01-01

    Three general areas of research were discussed: Global Weather, Upper Atmosphere, and Severe Storms and Local Weather. Research project summaries, in narrative outline form, stating objectives, significant accomplishments, and recommendations for future research are presented.

  13. NASA/MSFC FY-81 Atmospheric Processes Research Review

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Compiler)

    1981-01-01

    Progress in ongoing research programs and future plans for satellite investigations into global weather, upper atmospheric phenomena, and severe storms and local weather are summarized. Principle investigators and publications since June 1980 are listed.

  14. Deceleration of Mars Science Laboratory in Martian Atmosphere, Artist Concept

    NASA Image and Video Library

    2011-10-03

    This artist concept depicts the interaction of NASA Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.

  15. UA-ICON - A non-hydrostatic global model for studying gravity waves from the troposphere to the thermosphere

    NASA Astrophysics Data System (ADS)

    Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa

    2017-04-01

    In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378

  16. The statistical properties of vortex flows in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Kato, Yoshiaki; Steiner, Oskar

    2015-08-01

    Rotating magnetic field structures associated with vortex flows on the Sun, also known as “magnetic tornadoes”, may serve as waveguides for MHD waves and transport mass and energy upwards through the atmosphere. Magnetic tornadoes may therefore potentially contribute to the heating of the upper atmospheric layers in quiet Sun regions.Magnetic tornadoes are observed over a large range of spatial and temporal scales in different layers in quiet Sun regions. However, their statistical properties such as size, lifetime, and rotation speed are not well understood yet because observations of these small-scale events are technically challenging and limited by the spatial and temporal resolution of current instruments. Better statistics based on a combination of high-resolution observations and state-of-the-art numerical simulations is the key to a reliable estimate of the energy input in the lower layers and of the energy deposition in the upper layers. For this purpose, we have developed a fast and reliable tool for the determination and visualization of the flow field in (observed) image sequences. This technique, which combines local correlation tracking (LCT) and line integral convolution (LIC), facilitates the detection and study of dynamic events on small scales, such as propagating waves. Here, we present statistical properties of vortex flows in different layers of the solar atmosphere and try to give realistic estimates of the energy flux which is potentially available for heating of the upper solar atmosphere

  17. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations,more » and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.« less

  18. The fate of water within Earth and super-Earths and implications for plate tectonics

    PubMed Central

    2017-01-01

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416729

  19. The fate of water within Earth and super-Earths and implications for plate tectonics.

    PubMed

    Tikoo, Sonia M; Elkins-Tanton, Linda T

    2017-05-28

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  20. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm-1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  2. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2014-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra. 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line-of-sight. Simultaneous in-situ observations by the BAsic HALO Measurement And Sensor System (BAHAMAS), the Fast In-Situ Stratospheric Hygrometer (FISH), FAIRO, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in-situ trace gas data, and discrepancies can to a large fraction be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  3. Long-period humidity variability in the Arctic atmosphere from upper-air observations

    NASA Astrophysics Data System (ADS)

    Agurenko, A.; Khokhlova, A.

    2014-12-01

    Under climate change, atmospheric water content also tends to change. This gives rise to changes in the amount of moisture transferred, clouds and precipitation, as well as in hydrological regime. This work analyzes seasonal climatic characteristics of precipitated water in the Arctic atmosphere, by using 1972-2011 data from 55 upper-air stations located north of 60°N. Regions of maximum and minimum mean values and variability trends are determined. In the summer, water amount is shown to increase in nearly the whole of the latitudinal zone. The comparison with the similar characteristics of reanalysis obtained by the other authors shows a good agreement. Time variation in the atmosphere moisture transport crossing 70°N, which is calculated from observation data, is presented and compared with model results. The work is supported by the joint EC ERA.Net RUS and Russian Fundamental Research Fund Project "Arctic Climate Processes Linked Through the Circulation of the Atmosphere" (ACPCA) (project 12-05-91656-ЭРА_а).

  4. Data Needs and Modeling of the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Campbell, L.

    2007-04-01

    We present results from our enhanced statistical equilibrium and time-step codes for atmospheric modeling. In particular we use these results to illustrate the role of electron-driven processes in atmospheric phenomena and the sensitivity of the model results to data inputs such as integral cross sections, dissociative recombination rates and chemical reaction rates.

  5. NASA/MSFC FY-83 Atmospheric Processes Research Review

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Compiler)

    1983-01-01

    The atmospheric processes research program was reviewed. Research tasks sponsored by the NASA Office of Space Science and Applications, Earth Sciences and Applications Division in the areas of upper atmosphere, global weather, and mesoscale processes are discussed. The are: the research project summaries, together with the agenda and other information about the meeting.

  6. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1975-01-01

    Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.

  7. STOCHASTIC TRANSIENTS AS A SOURCE OF QUASI-PERIODIC PROCESSES IN THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Walsh, Robert W.; Su, Jiangtao

    2016-06-01

    Solar dynamics and turbulence occur at all heights of the solar atmosphere and could be described as stochastic processes. We propose that finite-lifetime transients recurring at a certain place could trigger quasi-periodic processes in the associated structures. In this study, we developed a mathematical model for finite-lifetime and randomly occurring transients, and found that quasi-periodic processes with periods longer than the timescale of the transients, are detectable intrinsically in the form of trains. We simulate their propagation in an empirical solar atmospheric model with chromosphere, transition region, and corona. We found that, due to the filtering effect of the chromosphericmore » cavity, only the resonance period of the acoustic resonator is able to propagate to the upper atmosphere; such a scenario is applicable to slow magnetoacoustic waves in sunspots and active regions. If the thermal structure of the atmosphere is less wild and acoustic resonance does not take place, the long-period oscillations could propagate to the upper atmosphere. Such a case would be more likely to occur in polar plumes.« less

  8. The 2014-2015 warming anomaly in the Southern California Current System observed by underwater gliders

    NASA Astrophysics Data System (ADS)

    Zaba, Katherine D.; Rudnick, Daniel L.

    2016-02-01

    Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.

  9. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  10. Pluto’s Atmosphere from the 23 June 2011 Stellar Occultation: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Dunham, E. W.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Armhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedermann, M.; Roesser, H.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. L.; Miceli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J.; Rapoport, S.; Ritchie, I.

    2012-10-01

    The double stellar occultation by Pluto and Charon of 2011 June 23 was observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 resulted in the best occultation chords recorded for the event, in three optical wavelength bands. The data obtained from SOFIA were combined with chords obtained from the ground at the IRTF (including a full spectral light curve), the USNO--Flagstaff Station, and Leeward Community College to give a detailed profile of Pluto’s atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee, or kink in the light curves separating them as was observed in 1988 (Millis et al. 1993), rather than the smoothly transitioning bowl-shaped light curves of recent years (Elliot et al. 2007). We analyze the upper atmosphere by fitting a model to all of the light curves obtained, resulting in a half-light radius of 1288 ± 1 km. We analyze the lower atmosphere with two different methods to provide results under the separate assumptions of particulate haze and a strong thermal gradient. Results indicate that the lower atmosphere evolves on short seasonal timescales, changing between 1988 and 2006, and then returning to approximately the 1988 state in 2011, though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again excepting the overall pressure changes. No evidence of the onset of atmospheric collapse predicted by frost migration models is yet seen, and the atmosphere appears to be remaining at a stable pressure level. This work was supported in part by NASA Planetary Astronomy grants to MIT (NNX10AB27G) and Williams College (NNX08AO50G, NNH11ZDA001N), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory.

  11. Electrodynamics on extrasolar giant planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of Hmore » and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be used to constrain electrodynamics in the future.« less

  12. Oxidation and evaporation of sulfur species at atmospheric entry of iron sulfide fine particles

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Murozono, K.

    2017-12-01

    Micrometeorites have the most abundant flux in current accumulation of planetary materials to the Earth. Micrometeorites are heated and reacted with upper atmosphere at atmospheric entry. Evaporation of meteoritic materials, especially sulfur species, may have environmental effect at upper atmosphere (e.g. Court and Sephton, 2011; Tomkins et al., 2016). Troilite is typical FeS phase in chondritic meteorites. In this study, quick heating and cooling experiments of FeS reagent particles were carried out with a fine particles free falling apparatus with controlled gas flow (Isobe and Gondo, 2013). Starting material reagent is inhomogeneous mixture of troilite, iron oxide and iron metal. Oxygen fugacity was controlled to FMQ +1.5 log unit. Maximum temperature of the particles was higher than 1400°C for approximately 0.5 seconds. Run products with rounded shape and smooth surface show the particles were completely melted. Chemical compositions of particles analyzed on cross sections are generally well homogenized from inhomogeneous starting materials by complete melting. Molar ratios of Fe in melted regions are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Distribution of compositions of melted regions in Fe-S-O system is plotted in liquidus compositions of FeO and FeS saturated melt. Troilite in micrometeorite is melted and oxidized by atmospheric entry. Compositions of FeS melt in fine spherules are following Fe-S-O phase relations even in a few seconds. Molar ratios of Fe in melt are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Evaporation of sulfur from meteoritic materials in atmospheric entry heating may depend on oxygen fugacity of the upper atmosphere. Sulfur supply from meteoritic materials to atmosphere may be limited on planets with oxygen-free atmosphere.

  13. Venus Atmospheric Maneuverable Platform (VAMP) - A Low Cost Venus Exploration Concept

    NASA Astrophysics Data System (ADS)

    Lee, G.; Polidan, R. S.; Ross, F.

    2015-12-01

    The Northrop Grumman Aerospace Systems and L-Garde team has been developing an innovative mission concept: a long-lived, maneuverable platform to explore the Venus upper atmosphere. This capability is an implementation of our Lifting Entry Atmospheric Flight (LEAF) system concept, and the Venus implementation is called the Venus Atmospheric Maneuverable Platform (VAMP). The VAMP concept utilizes an ultra-low ballistic coefficient (< 50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters without an aeroshell, and provides a long-lived (months to a year) maneuverable vehicle capable of carrying science instruments to explore the Venus upper atmosphere. In this presentation we provide an update on the air vehicle design and a low cost pathfinder mission concept that can be implemented in the near-term. The presentation also provides an overview of our plans for future trade studies, analyses, and prototyping to advance and refine the concept. We will discuss the air vehicle's entry concepts of operations (CONOPs) and atmospheric science operations. We will present a strawman concept of a VAMP pathfinder, including ballistic coefficient, planform area, percent buoyancy, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, and instruments accommodation. In this context, we will discuss the following key factors impacting the design and performance of VAMP: Entry into the Venus atmosphere, including descent profile, heating rate, total heat load, stagnation, and acreage temperatures Impact of maximum altitude on air vehicle design and entry heating Candidate thermal protection system (TPS) requirements We will discuss the interdependencies of the above factors and the manner in which the VAMP pathfinder concept's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support Venus science goals. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  14. Magnetic Shocks and Substructures Excited by Torsional Alfvén Wave Interactions in Merging Expanding Flux Tubes

    NASA Astrophysics Data System (ADS)

    Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.

    2018-04-01

    Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.

  15. Structure of the middle atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila

    Middle atmosphere of Venus (55-100 km), its mesosphere, is the important layer of atmosphere, where 70 % of the solar energy is absorbed. Most of this absorption takes place in the upper clouds in the altitude range 58-68 km in the spectral range 0.32-0.5 µm. It leads to generation of the thermal tides, playing important role in support of the superrotation. In the frame of COSPAR model VIRA (ASR, 11,1985) the model of the thermal structure of the middle atmosphere was constructed for 5 latitude ranges, based mainly on the Pioneer Venus ORO and OIR data. Using Venera-15 Fourier Spectrometry data, which allow to retrieve the temperature and aerosol profiles in a self consistent way from each spectrum, we enable to update the model of the middle atmosphere, including the local time variation of the temperature for VIRA latitude ranges (Cosmic Research, 44, 4, 2006). From Venera-15 data it was shown that variation of temperature in the middle atmosphere is well described by thermal tides with harmonics 1, 1/2, 1/3, 1/4 Venusian day, the amplitudes and phases of which depend on latitude and altitude. The model of the upper clouds (VIRA) may also be updated using Venera-15 data. It was shown that the main latitude trend is the decreasing of the upper cloud boundary from 68 km at low latitudes to 60-62 km at high latitudes. Local time variation has a solar related dependence: 1 and 1/2 day components were revealed. Venus Express continues to obtain a lot of data, which may be used for the improvement of the model of the middle atmosphere and the clouds.

  16. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheresmore » are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.« less

  17. Atmospheric products from the Upper Atmosphere Research Satellite (UARS)

    NASA Technical Reports Server (NTRS)

    Ahmad, Suraiya P.; Johnson, James E.; Jackman, Charles H.

    2003-01-01

    This paper provides information on the products available at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) from the Upper Atmosphere Research Satellite (UARS) mission. The GES DAAC provides measurements from the primary UARS mission, which extended from launch in September 1991 through September 2001. The ten instruments aboard UARS provide measurements of atmospheric trace gas species, dynamical variables, solar irradiance input, and particle energy flux. All standard Level 3 UARS products from all ten instruments are offered free to the public and science user community. The Level 3 data are geophysical parameters, which have been transformed into a common format and equally spaced along the measurement trajectory. The UARS data have been reprocessed several times over the years following improvements to the processing algorithms. The UARS data offered from the GES DAAC are the latest versions of each instrument. The UARS data may be accessed through the GES DAAC website at

  18. 29 CFR Appendix A to Subpart B of... - Compliance Assistance Guidelines for Confined and Enclosed Spaces and Other Dangerous Atmospheres

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... interchangeably in fire science literature. Section 1915.11(b)Definition of “Upper explosive limit.” The terms upper flammable limit (UFL) and upper explosive limit (UEL) are used interchangeably in fire science... life and is adequate for entry. However, any oxygen level greater than 20.8 percent by volume should...

  19. 29 CFR Appendix A to Subpart B of... - Compliance Assistance Guidelines for Confined and Enclosed Spaces and Other Dangerous Atmospheres

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... interchangeably in fire science literature. Section 1915.11(b)Definition of “Upper explosive limit.” The terms upper flammable limit (UFL) and upper explosive limit (UEL) are used interchangeably in fire science... life and is adequate for entry. However, any oxygen level greater than 20.8 percent by volume should...

  20. New project to support scientific collaboration electronically

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Rasmussen, C. E.; Niciejewski, R. J.; Killeen, T. L.; Kelly, J. D.; Zambre, Y.; Rosenberg, T. J.; Stauning, P.; Friis-Christensen, E.; Mende, S. B.; Weymouth, T. E.; Prakash, A.; McDaniel, S. E.; Olson, G. M.; Finholt, T. A.; Atkins, D. E.

    A new multidisciplinary effort is linking research in the upper atmospheric and space, computer, and behavioral sciences to develop a prototype electronic environment for conducting team science worldwide. A real-world electronic collaboration testbed has been established to support scientific work centered around the experimental operations being conducted with instruments from the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland. Such group computing environments will become an important component of the National Information Infrastructure initiative, which is envisioned as the high-performance communications infrastructure to support national scientific research.

  1. Spatial and temporal variations in infrared emissions of the upper atmosphere. 1. Atomic oxygen (λ 63 μm) emission

    NASA Astrophysics Data System (ADS)

    Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.; Khomich, V. Yu.

    2016-09-01

    Rocket and balloon measurement data on atomic-oxygen (λ 63 µm) emission in the upper atmosphere are presented. The data from the longest (1989-2003) period of measurements of the atomic-oxygen (λ 63 µm) emission intensity obtained by spectral instruments on sounding balloons at an altitude of 38 km at midlatitudes have been systematized and analyzed. Regularities in diurnal and seasonal variations in the intensity of this emission, as well as in its relation with solar activity, have been revealed.

  2. On the existence of tropical anvil clouds

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Langhans, W.; Romps, D.

    2017-12-01

    In the deep tropics, extensive anvil clouds produce a peak in cloud cover below the tropopause. The dominant paradigm for cloud cover attributes this anvil peak to a layer of enhanced mass convergence in the clear-sky upper-troposphere, which is presumed to force frequent detrainment of convective anvils. However, cloud cover also depends on the lifetime of cloudy air after it detrains, which raises the possibility that anvil clouds may be the signature of slow cloud decay rather than enhanced detrainment. Here we measure the cloud decay timescale in cloud-resolving simulations, and find that cloudy updrafts that detrain in the upper troposphere take much longer to dissipate than their shallower counterparts. We show that cloud lifetimes are long in the upper troposphere because the saturation specific humidity becomes orders of magnitude smaller than the typical condensed water loading of cloudy updrafts. This causes evaporative cloud decay to act extremely slowly, thereby prolonging cloud lifetimes in the upper troposphere. As a consequence, extensive anvil clouds still occur in a convecting atmosphere that is forced to have no preferential clear-sky convergence layer. On the other hand, when cloud lifetimes are fixed at a characteristic lower-tropospheric value, extensive anvil clouds do not form. Our results support a revised understanding of tropical anvil clouds, which attributes their existence to the microphysics of slow cloud decay rather than a peak in clear-sky convergence.

  3. Pluto's Ultraviolet Airglow and Detection of Ions in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Steffl, A.; Young, L. A.; Kammer, J.; Gladstone, R.; Hinson, D. P.; Summers, M. E.; Strobel, D. F.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    In July 2015, the Alice ultraviolet spectrograph aboard the New Horizons spacecraft made numerous observations of Pluto and its atmosphere. We present here the far ultraviolet reflectance spectrum of Pluto and airglow emissions from its atmosphere. At wavelengths greater than 1400Å, Pluto's spectrum is dominated by sunlight reflected from the surface of the planet. Various hydrocarbon species such as C2H4 are detected in absorption of the solar continuum. Below 1400Å, Pluto's atmosphere is opaque and the surface cannot be detected. However, after carefully removing various sources of background light, we see extremely faint airglow emissions (<0.05 Rayleighs/Ångstrom) from Pluto's atmosphere. All of the emissions are produced by nitrogen in various forms: molecular, atomic, and singly ionized. The detection of N+ at 1086Å is the first, and thus far only, direct detection of ions in Pluto's atmosphere. This N+ emission line is produced primarily by dissociative photoionization of molecular N2 by solar EUV photons (energy > 34.7 eV; wavelength < 360Å). Notably absent from Pluto's spectrum are emission lines from argon at 1048 and 1067Å. We place upper limits on the amount of argon in Pluto's atmosphere above the tau=1 level (observed to be at 750km tangent altitude) that are significantly lower than pre-encounter atmospheric models.

  4. Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River

    USGS Publications Warehouse

    Turner, P.A.; Griffis, T.J.; Baker, J.M.; Lee, X.; Crawford, John T.; Loken, Luke C.; Venterea, R.T.

    2016-01-01

    The U.S. Corn Belt is one of the most intensive agricultural regions of the world and is drained by the Upper Mississippi River (UMR), which forms one of the largest drainage basins in the U.S. While the effects of agricultural nitrate (NO3-) on water quality in the UMR have been well documented, its impact on the production of nitrous oxide (N2O) has not been reported. Using a novel equilibration technique, we present the largest data set of freshwater dissolved N2O concentrations (0.7 to 6 times saturation) and examine the controls on its variability over a 350 km reach of the UMR. Driven by a supersaturated water column, the UMR was an important atmospheric N2O source (+68 mg N2ONm-2 yr-1) that varies nonlinearly with the NO3-concentration. Our analyses indicated that a projected doubling of the NO3-concentration by 2050 would cause dissolved N2O concentrations and emissions to increase by about 40%.

  5. An analysis of selected cases of derecho in Poland

    NASA Astrophysics Data System (ADS)

    Celiński-Mysław, Daniel; Matuszko, Dorota

    2014-11-01

    The paper analyses six cases of the derecho phenomena, which occurred in Poland between 2007 and 2012. The input data included reports on dangerous meteorological phenomena, SYNOP and METAR reports, MSL pressure maps, upper air maps at 500 hPa and 850 hPa, radar depictions and satellite images, upper air sounding plots and data from a system locating atmospheric discharges. Derechos are caused directly by the activity of mesoscale convective systems linked up with either, in winter, a cold front of a deep low-pressure system, or, in summer, with an area of wind convergence in a warm sector of a cyclone or with an articulated cold front which, moving within a low-pressure embayment, develops a very active secondary depression. It was found that southern and central Poland were the regions most frequently affected by derechos. Mid-level and high-level jet streams, augmented by high thermodynamic instability of air masses, were found to be conducive to the development of derechos.

  6. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  7. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  8. Microwave boundary conditions on the atmosphere and clouds of Venus

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.; Sagan, C.

    1975-01-01

    The dielectric properties of H2O/H2SO4 mixtures are deduced from the Debye equations and, for a well-mixed atmosphere, the structure of H2O and H2O/H2SO4 clouds is calculated. Various data on the planet together set an upper limit on the mixing ratio by number for H2O of about 0.001 in the lower Venus atmosphere, and for H2SO4 of about 0.00001. The polarization value of the real part of the refractive index of the clouds, the spectroscopic limits on the abundance of water vapor above the clouds, and the microwave data together set corresponding upper limits on H2O of approximately 0.0002 and on H2SO4 of approximately 0.000009. Upper limits on the surface density of total cloud constituents and of cloud liquid water are, respectively, about 0.1 g/sq cm and about 0.01 g/sq cm. The infrared opacities of 90 bars of CO2, together with the derived upper limits to the amounts of water vapor and liquid H2O/H2SO4, may be sufficient to explain the high surface temperatures through the greenhouse effect.

  9. Mass motion in upper solar chromosphere detected from solar eclipse observation

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang

    2016-05-01

    The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.

  10. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  11. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia Anna; Paetzold, Martin; Häusler, Bernd; Hinson, David P.; Peter, Kerstin; Tyler, G. Leonard

    2017-10-01

    Atmospheric waves play a crucial role for the dynamics in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and the coupling of the different atmospheric regions on Mars.Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, and gravity waves). Atmospheric waves are also known to exist in the middle atmosphere of Mars (~70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars.Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to ~ 40-50 km) and electron density profiles in the ionosphere of Mars.Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement.A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations.The MaRS experiment is funded by DLR under grant 50QM1401.

  12. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; hide

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper tropospheric water vapor profiles to be consistently measured by Raman lidar within NDACC (Network for the Detection of Atmospheric Composition Change) and elsewhere, despite the prevalence of instrumental and atmospheric effects that can contaminate the very low signal to noise measurements in the UT.

  13. A coupled ion-neutral photochemical model for the Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Yelle, R. V.; Klippenstein, S. J.; Horst, S. M.; Lavvas, P.

    2013-12-01

    Recent observations from the Cassini-Huygens spacecraft and the Herschel space observatory drastically increased our knowledge of Titan's chemical composition. The combination of data retrieved by Cassini INMS, UVIS, and CIRS allows deriving the vertical profiles of half a dozen species from 1000 to 100 km, while the HIFI instrument on Herschel reported on the first identification of HNC. Partial data or upper limits are available for almost 20 other CHON neutral species. The INMS and CAPS instruments onboard Cassini also revealed the existence of numerous positive and negative ions in Titan's upper atmosphere. We present the results of a 1D coupled ion-neutral photochemical model intended for the interpretation of the distribution of gaseous species in the Titan atmosphere. The model extends from the surface to the exobase. The atmospheric background, boundary conditions, vertical transport and aerosol opacity are all constrained by the Cassini-Huygens observations. The chemical network includes reactions between hydrocarbons, nitrogen and oxygen bearing species (including some species containing both nitrogen and oxygen, such as NO). It takes into account neutrals and both positive and negative ions with m/z extending up to about 100 u. Ab initio Transition State Theory calculations are performed in order to evaluate the rate coefficients and products for critical reactions. The production of minor nitrogen-bearing species and hydrocarbons is initiated by the dissociation and ionization of N2 and CH4 by solar VUV/EUV photons and associated photoelectrons in the upper atmosphere. We incorporate new high-resolution isotopic photoabsorption and photodissociation cross sections for N2 as well as new photodissociation branching ratios for CH4 and C2H2. The photodissociation of hydrocarbon radicals is taken into account and its impact on the chemistry is discussed for the first time. The presence of oxygen-bearing species is explained by an influx of oxygen originating from Enceladus in the upper atmosphere. The calculated vertical profiles of neutral and ion species generally agree with the existing observational data; some differences are highlighted. We discuss the chemical and physical processes responsible for the production and loss of some key species. We find that the production of neutral species in the upper atmosphere from electron-ion recombination reactions and neutral-neutral radiative association reactions is significant. In the stratosphere, the vertical profile of (cyano)polyynes is extremely sensitive to their heterogeneous loss on aerosols, a process that remains to be constrained experimentally and/or theoretically. This work was performed in the framework of the Marie Curie International Research Staff Exchange Scheme PIRSES-GA-2009-247509.

  14. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's "warm ponds" on Titan.

  15. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  16. HST STIS Images of the H-Lyman Alpha Emission and Disk-Reflected FUV Sunlight from the Upper Atmosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Ballester, G. E.; Ben-Jaffel, L.; Clarke, J. T.; Gladstone, R.; Miller, S.; Trafton, L. M.; Trauger, J. T.

    1998-09-01

    An excess of H-Lyalpha emission from Uranus' sunlit hemisphere was detected by the IUE satellite in 1982, and some excess was confirmed with the Voyager 2 UVS during the 1986 encounter with Uranus. Radiative transfer modeling has shown that the Voyager H-Lyalpha observations did require emission additional to the scattered solar and IPM H-Lyalpha , and thus produced by internal processes in the upper atmosphere, such as aurora or other unidentified mechanisms. Subsequent IUE observations showed very large short- and long-term intensity variations that support an auroral source. However, although Voyager did identify UV auroral emissions by H_2 in the sunlit hemisphere, it did not detect a large H-Lyalpha auroral emission there, making it impossible to provide conclusive evidence that the H-Lyalpha enhancements observed by IUE are due to aurora. Auroral emissions are spatially confined, and resolution of the emission distribution could yield the needed evidence, or could alternatively provide observational clues to other possible causes of dayglow variations in the upper atmosphere. Uranus intrinsically weak H-Lyalpha emission ( ~ 1600 R on average) had not allowed for such an experiment in the past, but the high sensitivity in the FUV of the Space Telescope Imaging Spectrograph (STIS) on HST has now provided first images of Uranus in the FUV. The observations made on 29-30 July 1998 consisted of a FUV MAMA image in the open mode (25MAMA) and a consecutive image filtering out the H-Lyalpha (F25SRF2) to measure and subtract the disk reflected sunlight above 1250 Ang. A quick look at the data shows the H-Lyalpha emission and disk-reflected sunlight, with additional noise from the geocoronal background. We will present the results from these data, taking advantage of the time-tagging information to subtract the geocoronal background, and modeling of the underlying disk background. Four new observations will hopefully be made before October 1998 which will cover the full planet in longitude, and will use a different technique to improve the s/n of the H-Lyalpha detection.

  17. The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica

    NASA Astrophysics Data System (ADS)

    Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander

    2016-04-01

    At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is calculated from the observed time series, demonstrating that changes in nitrogen dioxide content cause subsequent changes in the ozone layer. Attempt to explain this phenomenon as influence upper atmosphere on ozone layer is under discussed.

  18. Dayglow and night glow of the Venusian upper atmosphere. Modelling and observations

    NASA Astrophysics Data System (ADS)

    Gronoff, G.; Lilensten, J.; Simon, C.; Barthélemy, M.; Leblanc, F.

    2007-08-01

    Aims. We present the modelling of the production of excited states of O, CO and N2 in the Venusian upper atmosphere, which allows to compute the nightglow emissions. In the dayside, we also compute several emissions, taking advantage of the small influence of resonant scattering for forbidden transitions. Methods. We compute the photoionisation and the photodissociation mechanisms, and thus the photoelectron production. We compute electron impact excitation and ionisation through a multi-stream stationary kinetic transport code. Finally, we compute the ion recombination with a stationary chemical model. Results.We predict altitude density profiles for O(1S) and O(1D) states and the emissions corresponding to their different transitions. They are found to be very comparable to the observations without the need for stratospheric emissions. In the nightside, we highlight the role of the N + O+2 reaction in the creation of the O(1S) state. This reaction has been suggested by Rees in 1975 (Frederick, 1976). It has been discussed several times afterwhile and in spite of different studies, is still controversial. However, when we take it in consideration in Venus, it is shown to be the cause of almost 90% of the state production. We calculate the production intensities of O(3S) and O(5S) states, which are needed for radiative transfer models. For CO we compute the Cameron band and the fourth positive band emissions. For N2 we compute the LBH, first and second positive bands. All these values are successfully compared to the experiment when data are available. Conclusions. For the first time, a comprehensive model is proposed to compute dayglow and nightglow emissions of the Venusian upper atmosphere. It relies on previous works with noticeable improvements, both on the transport and on the chemical aspects. In the near future, a radiative transfer model will be used to compute optically thick lines in the dayglow, and a fluid model will be added to compute ionosphere densities and temperatures. We will present the first observational results from the Pic du Midi telescope in June 2007, in order to compare with our modelling.

  19. How do Greenhouse Gases Warm the Ocean? Investigation of the Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes.

    NASA Astrophysics Data System (ADS)

    Wong, E.; Minnett, P. J.

    2016-12-01

    There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.

  20. Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species

    NASA Technical Reports Server (NTRS)

    Megie, G.; Menzies, R. T.

    1980-01-01

    An analysis of the potential capabilities of a spectrally diversified DIAL technique for monitoring atmospheric species is presented assuming operation from an earth-orbiting platform. Emphasis is given to the measurement accuracies and spatial and temporal resolutions required to meet present atmospheric science objectives. The discussion points out advantages of spectral diversity to perform comprehensive studies of the atmosphere; in general it is shown that IR systems have an advantage in lower atmospheric measurements, while UV systems are superior for middle and upper atmospheric measurements.

  1. Chemical Composition of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Grewe, Volker; Roiger, Anke

    Atmospheric trace gases have an important impact on Earth's radiative budget, the oxidative or cleansing ability of the atmosphere, the formation, growth and properties of aerosols, air quality, and human health. During recent years, the coupling between atmospheric chemistry and climate has received particular attention. Therefore, research is now focused on the composition and processes in the upper troposphere and lower stratosphere, a key region in this respect. In this chapter the chemical composition of the atmosphere is addressed and selected examples of significant advances in this field are presented.

  2. Cosmic Rays over the Upper Mid-West. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Rygg, T. A.

    1972-01-01

    Differential energy spectra of cosmic ray protons and helium nuclei in the 100 to 260 MeV/nucleon were measured on balloon flights in the upper midwestern (U.S.) area. Solar cycle variations of atmospheric secondary protons were also investigated.

  3. Influence of the North Atlantic dipole on climate changes over Eurasia

    NASA Astrophysics Data System (ADS)

    Serykh, I. V.

    2016-11-01

    In this paper, some hydrophysical and meteorological characteristics of negative (1948-1976 and 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics- Eurasia system of ocean-atmosphere interactions is discussed.

  4. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water

    NASA Astrophysics Data System (ADS)

    Chaffin, M. S.; Deighan, J.; Schneider, N. M.; Stewart, A. I. F.

    2017-01-01

    Atmospheric loss has controlled the history of Martian habitability, removing most of the planet’s initial water through atomic hydrogen and oxygen escape from the upper atmosphere to space. In standard models, H and O escape in a stoichiometric 2:1 ratio because H reaches the upper atmosphere via long-lived molecular hydrogen, whose abundance is regulated by a photochemical feedback sensitive to atmospheric oxygen content. The relatively constant escape rates these models predict are inconsistent with known H escape variations of more than an order of magnitude on seasonal timescales, variation that requires escaping H to have a source other than H2. The best candidate source is high-altitude water, detected by the Mars Express spacecraft in seasonally variable concentrations. Here we use a one-dimensional time-dependent photochemical model to show that the introduction of high-altitude water can produce a large increase in the H escape rate on a timescale of weeks, quantitatively linking these observations. This H escape pathway produces prompt H loss that is not immediately balanced by O escape, influencing the oxidation state of the atmosphere for millions of years. Martian atmospheric water loss may be dominated by escape via this pathway, which may therefore potentially control the planet’s atmospheric chemistry. Our findings highlight the influence that seasonal atmospheric variability can have on planetary evolution.

  5. Atmospheric science on the Galileo mission

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Colin, L.; Hansen, J. E.

    1986-01-01

    The atmospheric science goals of the Galileo mission, and instruments of the probe and orbiter are described. The current data available, and the goals of the Galileo mission concerning the chemical composition of the Jovian atmosphere; the thermal structure of the atmosphere; the nature of cloud particles and cloud layering; the radiative energy balance; atmospheric dynamics; and the upper atmosphere are discussed. The objectives and operations of the atmospheric structure instrument, neutral mass spectrometer, helium abundance interferometer, nephelometer, net flux radiometer, lightning and radio emission detector, solid state imaging system, NIR mapping spectrometer, photopolarimeter radiometer, and UV spectrometer are examined.

  6. Synoptic climatology of the long-distance dispersal of white pine blister rust I. Development of an upper level synoptic classification

    Treesearch

    K. L. Frank; L. S. Kalkstein; B. W. Geils; H. W. Thistle

    2008-01-01

    This study developed a methodology to temporally classify large scale, upper level atmospheric conditions over North America, utilizing a newly-developed upper level synoptic classification (ULSC). Four meteorological variables: geopotential height, specific humidity, and u- and v-wind components, at the 500 hPa level over North America were obtained from the NCEP/NCAR...

  7. Mesoscale Waves in Jupiter Atmosphere

    NASA Image and Video Library

    1997-09-07

    These two images of Jupiter atmosphere were taken with the violet filter of the Solid State Imaging CCD system aboard NASA Galileo spacecraft. Mesoscale waves can be seen in the center of the upper image. The images were obtained on June 26, 1996.

  8. Optical Properties of atmospheric dust from twilight observations

    NASA Technical Reports Server (NTRS)

    Divari, N. B.; Zaginayilo, Y. I.; Kovalchuk, L. V.

    1973-01-01

    Three methods of approximation are described and used to separate the primary twilight brightness from the observed brightness. Photoelectric observations obtained are combined with observations from a balloon and from the observatory to derive the atmospheric scattering phase functions of 0.37 micron and 0.58 micron as a function of height. Comparison of these data with data for a Rayleigh atmosphere provide information on the optical properties of dust in the upper atmosphere.

  9. 3rd IAGA/ICMA Workshop on Vertical Coupling in the Atmosphere/Ionosphere System/ Abstract

    DTIC Science & Technology

    2007-01-10

    energy and momentum from the lower atmosphere to the upper atmosphere and ionosphere and vice versa. The programme focussed on various aspects and...ICMA Workshop Vertical Coupling in the Atmosphere/Ionosphere System - 6 - The influence of global dependence of gravity wave energy in the troposphere...transport during the polar night of thermospheric odd nitrogen produced by lower- energy electron precipitation and solar extreme UV fluxes. However, at low

  10. Science Enhancements by the MAVEN Participating Scientists

    NASA Technical Reports Server (NTRS)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.

    2014-01-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  11. Science Enhancements by the MAVEN Participating Scientists

    NASA Astrophysics Data System (ADS)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.; Stevens, M.; Withers, P.

    2015-12-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  12. Multimodel Assessment of the Factors Driving Stratospheric Ozone Evolution over the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Plummer, D. A.; Waugh, D. W.; Austin, J.; Scinocca, J. F.; Douglass, A. R.; Salawitch, R. J.; Canty, T.; Akiyoshi, H.; Bekki, S.; hide

    2010-01-01

    The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from 14 chemistry-climate models, driven by prescribed levels of halogens and greenhouse gases. There is general agreement among the models that total column ozone reached a minimum around year 2000 at all latitudes, projected to be followed by an increase over the first half of the 21st century. In the second half of the 21st century, ozone is projected to continue increasing, level off, or even decrease depending on the latitude. Separation into partial columns above and below 20 hPa reveals that these latitudinal differences are almost completely caused by differences in the model projections of ozone in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and is projected to return to 1960 levels well before the end of the century, although there is a spread among models in the dates that ozone returns to specific historical values. We find decreasing halogens and declining upper atmospheric temperatures, driven by increasing greenhouse gases, contribute almost equally to increases in upper stratospheric ozone. In the tropical lower stratosphere, an increase in upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in most of the models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century, returning to 1960 levels well before the end of the century in most models.

  13. Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Sheng, Zhuping

    2011-11-01

    SummaryAtmospheric water, surface water, and groundwater interact very actively through hydrologic processes such as precipitation, infiltration, seepage, irrigation, drainage, evaporation, and evapotranspiration in the Upper Rio Grande Basin. A trend-outflow method has been developed in this paper to gain a better understanding of the interactions based on cumulated inflow and outflow data for any river reaches of interest. A general trend-outflow equation was derived by associating the net interaction of surface water with atmospheric water as a polynomial of inflow and the net interaction of surface water with groundwater as a constant based on surface water budget. Linear and quadratic relations are probably two common trend-outflow types in the real world. It was found that trend-outflows of the Upper Rio Grande reaches, Española, Albuquerque, Socorro-Engle, Palomas, and Rincon are linear with inflow, while those of reaches, Belen, Mesilla and Hueco are quadratic. Reaches Belen, Mesilla and Hueco are found as water deficit reaches mainly for irrigated agriculture in extreme drought years.

  14. Comparison of the Seasonal Change in Cloud-Radiative Forcing from Atmospheric General Circulation Models and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Potter, G. L.; Alekseev, V.; Barker, H. W.; Bony, S.; Colman, R. A.; Dazlich, D. A.; DelGenio, A. D.; Deque, M.; hide

    1997-01-01

    We compare seasonal changes in cloud-radiative forcing (CRF) at the top of the atmosphere from 18 atmospheric general circulation models, and observations from the Earth Radiation Budget Experiment (ERBE). To enhance the CRF signal and suppress interannual variability, we consider only zonal mean quantities for which the extreme months (January and July), as well as the northern and southern hemispheres, have been differenced. Since seasonal variations of the shortwave component of CRF are caused by seasonal changes in both cloudiness and solar irradiance, the latter was removed. In the ERBE data, seasonal changes in CRF are driven primarily by changes in cloud amount. The same conclusion applies to the models. The shortwave component of seasonal CRF is a measure of changes in cloud amount at all altitudes, while the longwave component is more a measure of upper level clouds. Thus important insights into seasonal cloud amount variations of the models have been obtained by comparing both components, as generated by the models, with the satellite data. For example, in 10 of the 18 models the seasonal oscillations of zonal cloud patterns extend too far poleward by one latitudinal grid.

  15. Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects

    NASA Astrophysics Data System (ADS)

    Wu, Guoxiong; He, Bian; Duan, Anmin; Liu, Yimin; Yu, Wei

    2017-10-01

    To cherish the memory of the late Professor Duzheng YE on what would have been his 100th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau (TP) meteorology, this review paper provides an assessment of the atmospheric heat source (AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land-sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan-Iranian Plateau plays a significant role in generating the Asian summer monsoon (ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon-type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.

  16. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields

    PubMed Central

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H.

    2016-01-01

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field’s thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability. PMID:27929097

  17. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields.

    PubMed

    Dagan, Guy; Koren, Ilan; Altaratz, Orit; Heiblum, Reuven H

    2016-12-08

    Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.

  18. The Hazards of Our Star

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2011-01-01

    The Sun's magnetic field permeates its atmosphere - ranging from the solar photosphere (the visible "surface") to the corona above. Think of this field as a collection of invisible rubber bands that are slowly stretched and twisted until they eventually reach a breaking point, When the field breaks, it releases a small amount of energy, known as a nanoflare. Millions of nanoflares occur every second, and the combined effect heats the solar corona to more than 1 million kelvins, hundreds of times hotter than the photosphere. The super-heated gas emits X-ray and ultraviolet radiation; Earth's upper atmosphere absorbs it, which changes our atmosphere's properties. This can disrupt communication, navigation, and surveillance systems, and also alter the orbits of satellites. On much larger scales, huge sections of the corona explosively erupt in coronal mass ejections (CMEs) and solar flares. CMEs directed toward Earth cause geomagnetic storms, which can wreck havoc on electrical power grids and produce widespread blackouts. Highly energetic particles can damage or even disable critical spacecraft components. Intense radiation from flares has the same effects as nanoflares, but to a greater degree. The need to understand how solar phenomena impact Earth has led to an important science field called space weather.

  19. Signature of Metallic ion in the upper atmosphere of Mars following the passage of comet C/2013 A1 (Siding Spring)

    NASA Astrophysics Data System (ADS)

    Benna, M.; Grebowsky, J. M.; Mahaffy, P. R.; Plane, J. M. C.; Yelle, R. V.; Jakosky, B. M.

    2017-09-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of metal ions in the upper atmosphere of Mars. These ions result from the ablation of dust particles from comet Siding Spring. This detection was carried out by the Neutral Gas and Ion Mass Spectrometer (NGIMS) on board the MAVEN spacecraft. Metal ions of Na, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Zn, and possibly of Si, and Ca, were identified in the ion spectra collected at altitudes of 185 km. The measurements revealed that Na ion was the most abundant species, and that the remaining metals were depleted with respect to the CI (type 1 carbonaceous Chondrites) abundance of Na ion.

  20. Correlation of Upper-Atmospheric 7-Be with Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; Share, G. H.; King, S. E.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskij, B. M.; Kulikauskas, V. S.; hide

    2001-01-01

    A surprisingly large concentration of radioactive 7-Be was observed in the upper atmosphere at altitudes above 320 km on the LDEF satellite that was recovered in January 1990. We report on follow-up experiments on Russian spacecraft at altitudes of 167 to 370 km during the period of 1996 to 1999, specifically designed to measure 7-Be concentrations in low earth orbit. Our data show a significant correlation between the 7-Be concentration and the solar energetic proton fluence at Earth, but not with the overall solar activity. During periods of low solar proton fluence, the concentration is correlated with the galactic cosmic ray fluence. This indicates that spallation of atmospheric N by both solar energetic particles and cosmic rays is the primary source of 7-Be in the ionosphere.

  1. A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

  2. Gas-geochemical condition and ecological functions of urban soils in areas with gas generating grounds

    NASA Astrophysics Data System (ADS)

    Mozharova, Nadezhda; Lebed-Sharlevich, Iana; Kulachkova, Svetlana

    2014-05-01

    Rapid urbanization and expansion of city borders lead to development of new areas, often following with relief changes, covering of gully-ravine systems and river beds with technogenic grounds containing construction and municipal waste. Decomposition of organic matter in these grounds is a source of methane and carbon dioxide. Intensive generation and accumulation of CO2 and CH4 into grounds may cause a fire and explosion risk for constructed objects. Gases emission to the atmosphere changes the global balance of GHGs and negatively influences on human health. The aim of this investigation is to study gas-geochemical condition and ecological functions of urban soils in areas with gas generating grounds. Studied areas are the gully-ravine systems or river beds, covered with technogenic grounds during land development. Stratigraphic columns of these grounds are 5-17 meters of man-made loamy material with inclusion of construction waste. Gas generating layer with increased content of organic matter, reductive conditions and high methanogenic activity (up to 1.0 ng*g-1*h-1) is situated at the certain depth. Maximum CH4 and CO2 concentrations in this layer reach dangerous values (2-10% and 11%, respectively) in the current standards. In case of disturbance of ground layer (e.g. well-drilling) methane is rapidly transferred by convective flux to atmosphere. The rate of CH4 emission reaches 100 mg*m-2*h-1 resulting in its atmospheric concentration growth by an order of magnitude compared with background. In normal occurrence of grounds methane gradually diffuses into the upper layers by pore space, consuming on different processes (e.g. formation of organic matter, nitrogen compounds or specific particles of magnetite), and emits to atmosphere. CH4 emission rate varies from 1 to 40 mg*m-2*h-1 increasing with depth of grounds. Carbon dioxide emission is about 100 mg*m-2*h-1. During soil formation on gas generating grounds bacterial oxidation of methane, one of the most important ecological functions of such soils, is initiated. Due to high rate of this process (25-30 ng*g-1*h-1) accumulation of methane in the profile does not observed, its content in soil averages 2-5 ppm. Methane emission from soils is low (0.01-0.03 mg*m-2*h-1) or there is a weak consumption of atmospheric CH4, whereby its concentration in the air corresponds to the average content of this gas. Active methane oxidation and decomposition of organic matter under aerobic conditions result to intensive formation of carbon dioxide and, thus, increase its emission (600 mg*m-2*h-1), concentration in soils (0.2-0.9%) and in atmosphere (up to 0.5%). Fixed concentration of CO2 in the air is dangerous for human health. Thus, presence of gas generating grounds with high content of organic matter leads to methane formation, causing its intensive emission to atmosphere. At upper layers of soils and grounds bacterial oxidation of methane occurs and results in complete CH4 utilization. During this process significant amounts of carbon dioxide are released and accumulated in the atmosphere up to concentration dangerous for people. Carbon dioxide emission increases current level of this gas in the urban atmosphere.

  3. Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.

    1982-01-01

    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.

  4. Defining the Space Atmosphere Interaction Region (SAIR)

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Schunk, R. W.

    2016-12-01

    Is there a unique region between space and a planet's atmosphere in which the majority of the interactions exist? Does the location of this region depend on the intensity of space weather events, i.e., solar flares or geomagnetic storms? Present day research has developed the term "Space Atmosphere Interactions Region" (SAIR) to express the idea that our understanding is least developed in regions of the upper atmosphere where incoming energy is transformed into some form of thermal energy of the local particle populations. During such processes, both the atmosphere and ionosphere are locally modified resulting in dynamics and modified chemistry that impacts a large part of the upper atmosphere and ionosphere. We consider energy sources from the lower atmosphere (waves), the Sun (flares), and magnetosphere (magnetic storms) and the locations of their energy transformation processes. From below, the atmospheric waves of different scales from gravity waves to planetary waves, while from above solar irradiance, auroral precipitation, and Joule heating are discussed as they determine the SAIR location. Of specific emphasis will be the dependence, or not, of the SAIR on the solar flare or geomagnetic storm intensity. This region will be identified as the location where local energy deposition equals or exceeds local thermal energy of the atmospheric constituents. This energy deposition impacts the atmosphere, ionosphere, and magnetosphere. Its impacts extend well beyond the SAIR. The relevance of the SAIR concept to other planets, and hence, exoplanet will be point out.

  5. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1983-01-01

    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.

  6. STS-48 official crew insignia

    NASA Image and Video Library

    1999-08-27

    STS048-S-001 (July 1991) --- Designed by the astronaut crew members, the patch represents the space shuttle orbiter Discovery in orbit about Earth after deploying the Upper Atmospheric Research Satellite (UARS) depicted in block letter style. The stars are those in the northern hemisphere as seen in the fall and winter when UARS will begin its study of Earth's atmosphere. The color bands on Earth's horizon, extending up to the UARS spacecraft, depict the study of Earth's atmosphere. The triangular shape represents the relationship among the three atmospheric processes that determine upper atmospheric structure and behavior: chemistry, dynamics and energy. In the words of the crew members, "This continuous process brings life to our planet and makes our planet unique in the solar system." The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced. Photo credit: NASA

  7. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.

  8. Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Lezberg, E. A.

    1976-01-01

    Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.

  9. Upper Atmosphere Research Satellite (UARS) science data processing center implementation history

    NASA Technical Reports Server (NTRS)

    Herring, Ellen L.; Taylor, K. David

    1990-01-01

    NASA-Goddard is responsible for the development of a ground system for the Upper Atmosphere Research Satellite (UARS) observatory, whose launch is scheduled for 1991. This ground system encompasses a dedicated Central Data Handling Facility (CDHF); attention is presently given to the management of software systems design and implementation phases for CDHF by the UARS organization. Also noted are integration and testing activities performed following software deliveries to the CDHF. The UARS project has an obvious requirement for a powerful and flexible data base management system; an off-the-shelf commercial system has been incorporated.

  10. Chemical and isotopic data collected from groundwater, surface-water, and atmospheric precipitation sites in Upper Kittitas County, Washington, 2010-12

    USGS Publications Warehouse

    Hinkle, Stephen R.; Ely, D. Matthew

    2013-01-01

    As part of a multidisciplinary U.S. Geological Survey study of water resources in Upper Kittitas County, Washington, chemical and isotopic data were collected from groundwater, surface-water, and atmospheric precipitation sites from 2010 to 2012. These data are documented here so that interested parties can quickly and easily find those chemical and isotopic data related to this study. The locations of the samples are shown on an interactive map of the study area. This report is dynamic; additional data will be added to it as they become available.

  11. On remote sounding of the upper atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Houghton, J. T.; Taylor, F. W.

    1975-01-01

    Some of the possibilities for remote sensing of the upper atmosphere of Venus from an orbiting spacecraft are studied quantitatively. Temperature sounding over a wide vertical range, from the main cloud top near 60 km altitude to the nanobar level near 160 km, is shown to be feasible. Techniques which deconvolve the cloud structure from the temperature profile measurements are examined. Humidity measurements by simple radiometry are feasible for column abundances greater than or equal to 10 precipitable micrometers. The information content of limb radiance measurements, in different wavelengths and for various viewing geometries, is also analyzed.

  12. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Mark Christopher; Holmes, Mark; Sailor, William C

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  13. Westward migration of tropical cyclone rapid-intensification over the Northwestern Pacific during short duration El Niño.

    PubMed

    Guo, Yi-Peng; Tan, Zhe-Min

    2018-04-17

    The El Niño-Southern Oscillation (ENSO) can significantly affect the rapid intensification of tropical cyclones over the western North Pacific (WNP). However, ENSO events have various durations, which can lead to different atmospheric and oceanic conditions. Here we show that during short duration El Niño events, the WNP tropical cyclone rapid-intensification mean occurrence position migrates westward by ~8.0° longitude, which is caused by reduced vertical wind shear, increased mid-tropospheric humidity, and enhanced tropical cyclone heat potential over the westernmost WNP. The changes in these factors are caused by westward advected upper ocean heat during the decaying phase of a short duration El Niño. As super El Niño events tend to have short durations and their frequency is projected to increase under global warming, our findings have important implications for future projections of WNP tropical cyclone activity.

  14. Synchronism of the Siberian Traps and the Permian-Triassic boundary

    USGS Publications Warehouse

    Campbell, I.H.; Czamanske, G.K.; Fedorenko, V.A.; Hill, R.I.; Stepanov, V.

    1992-01-01

    Uranium-lead ages from an ion probe were taken for zircons from the ore-bearing Noril'sk I intrusion that is comagmatic with, and intrusive to, the Siberian Traps. These values match, within an experimental error of ??4 million years, the dates for zircons extracted from a tuff at the Permian-Triassic (P-Tr) boundary. The results are consistent with the hypothesis that the P-Tr extinction was caused by the Siberian basaltic flood volcanism. It is likely that the eruption of these magmas was accompanied by the injection of large amounts of sulfur dioxide into the upper atmosphere, which may have led to global cooling and to expansion of the polar ice cap. The P-Tr extinction event may have been caused by a combination of acid rain and global cooling as well as rapid and extreme changes in sea level resulting from expansion of the polar ice cap.

  15. Flight performance of the Pioneer Venus Orbiter solar array

    NASA Technical Reports Server (NTRS)

    Goldhammer, L. J.; Powe, J. S.; Smith, Marcie

    1987-01-01

    The Pioneer Venus Orbiter (PVO) solar panel power output capability has degraded much more severely than has the power output capability of solar panels that have operated in earth-orbiting spacecraft for comparable periods of time. The incidence of solar proton events recorded by the spacecraft's scientific instruments accounts for this phenomenon only in part. It cannot explain two specific forms of anomalous behavior observed: 1) a variation of output per spin with roll angle, and 2) a gradual degradation of the maximum output. Analysis indicates that the most probable cause of the first anomaly is that the solar cells underneath the spacecraft's magnetometer boom have been damaged by a reverse biasing of the cells that occurs during pulsed shadowing of the cells by the boom as the spacecraft rotates. The second anomaly might be caused by the effects on the solar array of substances from the upper atmosphere of Venus.

  16. An Empirical Study of Atmospheric Correction Procedures for Regional Infrasound Amplitudes with Ground Truth.

    NASA Astrophysics Data System (ADS)

    Howard, J. E.

    2014-12-01

    This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.

  17. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  18. New Horizons Upper Limits on O{sub 2} in Pluto’s Present Day Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, J. A.; Gladstone, G. R.; Stern, S. A.

    The surprising discovery by the Rosetta spacecraft of molecular oxygen (O{sub 2}) in the coma of comet 67P/Churyumov–Gerasimenko challenged our understanding of the inventory of this volatile species on and inside bodies from the Kuiper Belt. That discovery motivated our search for oxygen in the atmosphere of Kuiper Belt planet Pluto, because O{sub 2} is volatile even at Pluto’s surface temperatures. During the New Horizons flyby of Pluto in 2015 July, the spacecraft probed the composition of Pluto’s atmosphere using a variety of observations, including an ultraviolet solar occultation observed by the Alice UV spectrograph. As described in these reports, absorptionmore » by molecular species in Pluto’s atmosphere yielded detections of N{sub 2}, as well as hydrocarbon species such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. Our work here further examines this data to search for UV absorption from molecular oxygen (O{sub 2}), which has a significant cross-section in the Alice spectrograph bandpass. We find no evidence for O{sub 2} absorption and place an upper limit on the total amount of O{sub 2} in Pluto’s atmosphere as a function of tangent height up to 700 km. In most of the atmosphere, this upper limit in line-of-sight abundance units is ∼3 × 10{sup 15} cm{sup −2}, which, depending on tangent height, corresponds to a mixing ratio of 10{sup −6} to 10{sup −4}, far lower than in comet 67P/CG.« less

  19. Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.

    2016-12-01

    Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.

  20. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part I: Atmospheric Expansion and Thermal Escape

    PubMed Central

    Lammer, Helmut; Odert, Petra; Kulikov, Yuri N.; Kislyakova, Kristina G.; Khodachenko, Maxim L.; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-01-01

    Abstract The recently discovered low-density “super-Earths” Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H2O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 REarth and a mass of 10 MEarth. We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1011–1029. PMID:24251443

  1. Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmer, Owen R.; Catling, David C., E-mail: info@lehmer.us

    Recent observations and analysis of low-mass (<10 M {sub ⊕}) exoplanets have found that rocky planets only have radii up to 1.5–2 R {sub ⊕}. Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low-mass planets do not necessarily form thick atmospheres of a few wt.%, or the thick atmospheres on these planets easily escape, driven by X-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here, we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at amore » mean radius of 1.76 ± 0.38 (2 σ ) R {sub ⊕} around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs, using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low-mass planets results in complete loss of atmospheres during the ∼100 Myr phase of stellar XUV saturation. In contrast, more-massive planets have less-distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation—and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a “valley”, or “radius gap”) in the 1.5–2 R {sub ⊕} range.« less

  2. The EISCAT_3D Project in Norway: E3DN

    NASA Astrophysics Data System (ADS)

    La Hoz, C.; Oksavik, K.

    2013-12-01

    EISCAT_3D (E3D) is a project to build the next generation of incoherent scatter radars endowed with 3-dimensional scalar and vector capabilities that will replace the current EISCAT radars in Northern Scandinavia. One active (transmitting) site in Norway and four passive (receiving) sites in the Nordic countries will provide 3-D vector imaging capabilities by rapid scanning and multi-beam forming. The unprecedented flexibility of the solid-state transmitter with high duty-cycle, arbitrary wave-forming and polarisation and its pulsed power of 10 MW will provide unrivalled experimental capabilities to investigate the highly non-stationary and non-homogeneous state of the polar upper atmosphere. Aperture Synthesis Imaging Radar (ASIR) will to endow E3D with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. The Norwegian scientific programme is inspired by the pioneer polar scientist Kristian Birkeland (picture) and includes pressing questions on polar upper atmospheric research, among others: (Q1) How to proceed beyond the present simplistic, static, stationary and homogeneous analysis of upper atmospheric and ionospheric processes? (Q2) How does space weather affect ionospheric processes and how to support modelling and space weather services? (Q3) How to advance fundamental plasma physics by employing the ionosphere as a natural plasma physics laboratory? (Q4) How does the influx of extraterrestrial material interact with the upper atmosphere and where does the material originate from? (Q5) How does solar activity couple from geospace into the lower atmosphere and climate system, and does this energy change the wave forcing of geospace from below? Kristian Birkeland, Norwegian scientist and pioneer in polar and auroral research.

  3. Accelerator-based chemical and elemental analysis of atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Mentes, Besim

    Aerosol particles have always been present in the atmosphere, arising from natural sources. But it was not until recently when emissions from anthropogenic (man made) sources began to dominate, that atmospheric aerosols came into focus and the aerosol science in the environmental perspective started to grow. These sources emit or produce particles with different elemental and chemical compositions, as well as different sizes of the individual aerosols. The effects of increased pollution of the atmosphere are many, and have different time scales. One of the effects known today is acid rain, which causes problems for vegetation. Pollution is also a direct human health risk, in many cities where traffic driven by combustion engines is forbidden at certain times when the meteorological conditions are unfavourable. Aerosols play an important role in the climate, and may have both direct and indirect effect which cause cooling of the planet surface, in contrast to the so-called greenhouse gases. During this work a technique for chemical and elemental analysis of atmospheric aerosols and an elemental analysis methodology for upper tropospheric aerosols have been developed. The elemental analysis is performed by the ion beam analysis (IBA) techniques, PIXE (elements heavier than Al). PESA (C, N and O), cPESA (H) and pNRA (Mg and Na). The chemical speciation of atmospheric aerosols is obtained by ion beam thermography (IBT). During thermography the sample temperature is stepwise increased and the IBA techniques are used to continuously monitor the elemental concentration. A thermogram is obtained for each element. The vaporisation of the compounds in the sample appears as a concentration decrease in the thermograms at characteristic vaporisation temperatures (CVTs). Different aspects of IBT have been examined in Paper I to IV. The features of IBT are: almost total elemental speciation of the aerosol mass, chemical speciation of the inorganic compounds, carbon content obtained as volatile and non-volatile fractions, analysis of acidic aerosols is possible, aerosols can be size-fractionated using a cascade impactor as collection device, total analysis time for a sample is around 45 min, the sample mass load is from around 1 to 30 μg/cm2. An intercomparison of IBT and ion chromatography (IC) when a DMPS system was used as a reference instrument has been performed (Paper IV). Ions of K, Na, SO4, NO3 and NH4 were determined and quantified by both IBT and IC. The intercomparison showed that the procedure used in IBT does not suffer from any selective losses, especially not from the NO3 and NH4 compounds, which exhibit an appreciable interaction with the gas phase as NH3 and HNO3. An impactor-based aerosol sampler for upper tropospheric conditions has been developed (Paper V). Despite the low aerosol concentration at that altitude the sulphur concentration can be measured, with a detection limit of 1 ng/m 3 for one hour sampling by optimising parameters in the use of PIXE analysis.

  4. Increase in the Stratospheric NO2 Content Derived from Results of Ground-Based Observations after the October 2003 Solar Proton Event

    NASA Astrophysics Data System (ADS)

    Ageyeva, V. Yu.; Gruzdev, A. N.; Elokhov, A. S.

    2018-04-01

    This paper reports on the first experimental evidence of the impact of a solar proton event on the stratospheric NO2 content derived from ground-based spectrometric measurements at middle and high latitudes of the Northern Hemisphere. In October 2003, a solar proton event caused an increase in the NO2 content in the upper stratosphere by 0.6 × 1015 cm-2, which accounted for about one-third of the increase in the column NO2 content. Solar proton events may be an essential factor for variability of the column NO2 content in the atmosphere of the high and middle latitudes.

  5. Variations of the earth's magnetic field and rapid climatic cooling: A possible link through changes in global ice volume

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1979-01-01

    A possible relationship between large scale changes in global ice volume, variations in the earth's magnetic field, and short term climatic cooling is investigated through a study of the geomagnetic and climatic records of the past 300,000 years. The calculations suggest that redistribution of the Earth's water mass can cause rotational instabilities which lead to geomagnetic excursions; these magnetic variations in turn may lead to short-term coolings through upper atmosphere effects. Such double coincidences of magnetic excursions and sudden coolings at times of ice volume changes have occurred at 13,500, 30,000, 110,000, and 135,000 YBP.

  6. The Contribution of TOMS and UARS Data to Our Understanding of Ozone Change

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Both TOMS (Total Ozone Mapping Spectrometer) and UARS (Upper Atmosphere Research Satellite) have operated over an extended period, and generated data sets of sufficient accuracy to be of use in determining ozone change (TOMS) and some of the underlying causes (UARS). The basic scientific products have been used for model validation and assimilation to extend our understanding of stratospheric processes. TOMS on Nimbus-7, Earth-Probe, and QuikTOMS, and UARS have led to the next generation of instruments onboard the EOS platforms. Algorithms used for TOMS and UARS are being applied to the new data sets and extended to analysis of European satellite data (e.g., GOME)

  7. Nitric oxide in the upper stratosphere - Measurements and geophysical interpretation

    NASA Technical Reports Server (NTRS)

    Harvath, J. J.; Frederick, J. E.; Orsini, N.; Douglass, A. R.

    1983-01-01

    A rocket-borne parachute-deployed chemiluminescence instrument has obtained seven new measurements of atmospheric nitric oxide for altitudes between 30 and 50 km at mid-latitudes. These results, when combined with profiles measured by an earlier version of the instrument, cover all four seasons and provide a more comprehensive picture of upper stratospheric nitric oxide than has been available previously. At the highest altitudes studied, the vertical gradient in mixing ratio displays positive and negative values during different observations, with the largest values tending to appear at the greatest heights in summer. Examination of the differences among the profiles, which exceed a factor of 3 near the stratopause, suggests that they arise from the action of transport processes which carry air into the mid-latitude upper stratosphere from regions of the atmosphere that contain widely different odd-nitrogen abundances.

  8. Scientific program in planetary atmospheric studies

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.

    1983-01-01

    The Voyager encounters with Jupiter led to two main areas of investigation: (1) the definition of the structure and composition of the upper atmosphere and the interaction of the magnetosphere and atmosphere, and (2) the study of the plasma torus using the EUV (Extreme Ultraviolet) data in conjunction with ground-based and in-situ measurements. In the course of these investigations, the atmosphere studies were extended to a comparative study with the bound atmospheres of Saturn and Titan; and the torus study expanded to include the extended atmospheres of Titan (the H torus) and the rings of Saturn.

  9. The atmospheric abundance of SO2 on Io

    NASA Technical Reports Server (NTRS)

    Ballester, Gilda E.; Strobel, Darrell F.; Moos, H. Warren; Feldman, Paul D.

    1990-01-01

    The IUE satellite has obtained near-UV spectra of Io with sufficient resolution to ascertain the east, or leading and west, or trailing hemispheres' dayside atmosphere SO2 abundance. The derived geometric albedos are compared with various model albedos that might result from proposed SO2 atmospheres, as well as from localized, sublimation- or volcanism-generated atmospheres. A homogeneous-layer alternative atmosphere is introduced whose upper limit on the average SO2 column density for both hemispheres implies that a collisionally thick SO2 atmosphere of intermediate density may have been present on Io's dayside during the present observations.

  10. Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts

    NASA Astrophysics Data System (ADS)

    Shonk, Jonathan K. P.; Guilyardi, Eric; Toniazzo, Thomas; Woolnough, Steven J.; Stockdale, Tim

    2018-02-01

    The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere-ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about 10 days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin.

  11. Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation

    NASA Astrophysics Data System (ADS)

    Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao

    2016-02-01

    Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.

  12. GNSS Signal Tracking Performance Improvement for Highly Dynamic Receivers by Gyroscopic Mounting Crystal Oscillator.

    PubMed

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-08-31

    In this paper, the efficiency of the gyroscopic mounting method is studied for a highly dynamic GNSS receiver's reference oscillator for reducing signal loss. Analyses are performed separately in two phases, atmospheric and upper atmospheric flights. Results show that the proposed mounting reduces signal loss, especially in parts of the trajectory where its probability is the highest. This reduction effect appears especially for crystal oscillators with a low elevation angle g-sensitivity vector. The gyroscopic mounting influences frequency deviation or jitter caused by dynamic loads on replica carrier and affects the frequency locked loop (FLL) as the dominant tracking loop in highly dynamic GNSS receivers. In terms of steady-state load, the proposed mounting mostly reduces the frequency deviation below the one-sigma threshold of FLL (1σ(FLL)). The mounting method can also reduce the frequency jitter caused by sinusoidal vibrations and reduces the probability of signal loss in parts of the trajectory where the other error sources accompany this vibration load. In the case of random vibration, which is the main disturbance source of FLL, gyroscopic mounting is even able to suppress the disturbances greater than the three-sigma threshold of FLL (3σ(FLL)). In this way, signal tracking performance can be improved by the gyroscopic mounting method for highly dynamic GNSS receivers.

  13. From Anti-greenhouse Effect of Solar Absorbers to Cooling Effect of Greenhouse Gases: A 1-D Radiative Convective Model Study

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2012-12-01

    The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al. 2009, http://vpl.astro.washington.edu/sci/AntiModels/models09.html McKay, C.P. et al. 1991, Titan: Greenhouse and Anti-greenhouse Effects on Titan. Science 253 (5024), 1118-21 Shia, R. 2011, Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient, American Geophysical Union, Fall Meeting 2012, abstract #A51A-0274 Shia, R. 2010, Mechanism of Radiative Forcing of Greenhouse Gas and its Implication to the Global Warming, American Geophysical Union, Fall Meeting 2010, abstract #A11J-02

  14. Satellite to measure equatorial ozone layer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The Atmosphere Explorer E (Explorer 55) Satellite is described. The satellite will gather information on the earth's upper atmosphere, particularly regarding the condition of the protective ozone layer. The satellite will also provide information concerning the earth's heat balance, and heat flow characteristics, and energy conversion mechanisms.

  15. Meteoric Material: An Important Component of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.

  16. Condition of the upper atmosphere of the Earth at the final stage of flight manned orbital facility (MOF) "Mir". The modeling description

    NASA Astrophysics Data System (ADS)

    Boyarchuk, K. A.; Ivanov-Kholodny, G. S.; Kolomiitsev, O. P.; Surotkin, V. A.

    At flooding MOF ``Mir'' the information on forecasting a condition of the upper atmosphere was used. The forecast was carried out on the basis of numerical model of an atmosphere, which was developed in IZMIRAN. This model allows reproducing and predicting a situation in an Earth space, in an atmosphere and an ionosphere, along an orbit of flight of a space vehicle in the various periods of solar-geophysical conditions. Thus preliminary forecasting solar and geomagnetic activity was carried out on the basis of an individual technique. Before the beginning of operation on flooding MOF ``Mir'' it was found out, that solar activity began to accrue catastrophically. The account of the forecast of its development has forced to speed up the moment of flooding to avoid dangerous development of events. It has allowed minimizing a risk factor - ``Mir'' was flooded successful in the commanded area of Pacific Ocean.

  17. Pluto's Solar Occultation from New Horizons

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Kammer, Joshua; Steffl, Andrew J.; Gladstone, Randy; Summers, Michael; Strobel, Darrell F.; Hinson, David P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; McComas, Dave; New Horizons Atmospheres Science Theme Team

    2017-10-01

    The Alice instrument on NASA’s New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. We derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Our major conclusions are that (1) we confirmed temperatures in Pluto’s upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the “C2Hx hydrocarbons” had non-exponential density profiles that compare favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.This work was supported by NASA’s New Horizons project.

  18. The cause of spatial structure in solar He I 1083 nm multiplet images

    NASA Astrophysics Data System (ADS)

    Leenaarts, Jorrit; Golding, Thomas; Carlsson, Mats; Libbrecht, Tine; Joshi, Jayant

    2016-10-01

    Context. The He I 1083 nm is a powerful diagnostic for inferring properties of the upper solar chromosphere, in particular for the magnetic field. The basic formation of the line in one-dimensional models is well understood, but the influence of the complex three-dimensional structure of the chromosphere and corona has however never been investigated. This structure must play an essential role because images taken in He I 1083 nm show structures with widths down to 100 km. Aims: We aim to understand the effect of the three-dimensional temperature and density structure in the solar atmosphere on the formation of the He I 1083 nm line. Methods: We solved the non-LTE radiative transfer problem assuming statistical equilibrium for a simple nine-level helium atom that nevertheless captures all essential physics. As a model atmosphere we used a snapshot from a 3D radiation-MHD simulation computed with the Bifrost code. Ionising radiation from the corona was self-consistently taken into account. Results: The emergent intensity in the He I 1083 nm is set by the source function and the opacity in the upper chromosphere. The former is dominated by scattering of photospheric radiation and does not vary much with spatial location. The latter is determined by the photonionisation rate in the He I ground state continuum, as well as the electron density in the chromosphere. The spatial variation of the flux of ionising radiation is caused by the spatially-structured emissivity of the ionising photons from material at T ≈ 100 kK in the transition region. The hotter coronal material produces more ionising photons, but the resulting radiation field is smooth and does not lead to small-scale variation of the UV flux. The corrugation of the transition region further increases the spatial variation of the amount of UV radiation in the chromosphere. Finally we find that variations in the chromospheric electron density also cause strong variation in He I 1083 nm opacity. We compare our findings to observations using SST, IRIS and SDO/AIA data. A movie associated to Fig. 4 is available at http://www.aanda.org

  19. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the total ion loss to space over Mars history, and thus enhance the science returned from the MAVEN mission.

  20. Impacts of atmospheric variability on a coupled upper-ocean/ecosystem model of the subarctic Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Monahan, Adam Hugh; Denman, Kenneth L.

    2004-06-01

    The biologically-mediated flux of carbon from the upper ocean to below the permanent thermocline (the biological pump) is estimated to be ˜10 PgC/yr [, 2001], and plays an important role in the global carbon cycle. A detailed quantitative understanding of the dynamics of the biological pump is therefore important, particularly in terms of its potential sensitivity to climate change and its role in this change via feedback processes. Previous studies of coupled upper-ocean/planktonic ecosystem dynamics have considered models forced by observed atmospheric variability or by smooth annual and diurnal cycles. The second approach has the drawback that environmental variability is ubiquitous in the climate system, and may have a nontrivial impact on the (nonlinear) dynamics of the system, while the first approach is limited by the fact that observed time series are generally too short to obtain statistically robust characterizations of variability in the system. In the present study, an empirical stochastic model of high-frequency atmospheric variability (with a decorrelation timescale of less than a week) is estimated from long-term observations at Ocean Station Papa in the northeast subarctic Pacific. This empirical model, the second-order statistics of which resemble those of the observations to a good approximation, is used to produce very long (1000-year) realizations of atmospheric variability which are used to drive a coupled upper-ocean/ecosystem model. It is found that fluctuations in atmospheric forcing do not have an essential qualitative impact on most aspects of the dynamics of the ecosystem when primary production is limited by the availability of iron, although pronounced interannual variability in diatom abundance is simulated (even in the absence of episodic iron fertilization). In contrast, the impacts of atmospheric variability are considerably more significant when phytoplankton growth is limited in the summer by nitrogen availability, as observed closer to the North American coast. Furthermore, the high-frequency variability in atmospheric forcing is associated with regions in parameter space in which the system alternates between iron and nitrogen limitation on interannual to interdecadal timescales. Both the mean and variability of export production are found to be significantly larger in the nitrogen-limited regime than in the iron-limited regime.

  1. Drivers of methane uptake by montane forest soils in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Diem, Torsten; Huaraca Quispe, Lidia; Cahuana, Adan; Meir, Patrick; Teh, Yit

    2016-04-01

    The exchange of methane between the soils of humid tropical forests and the atmosphere is relatively poorly documented. This is particularly true of montane settings where variations between uptake and emission of atmospheric methane have been observed. Whilst most of these ecosystems appear to function as net sinks for atmospheric methane, some act as considerable sources. In regions like the Andes, humid montane forests are extensive and a better understanding of the magnitude and controls on soil-atmosphere methane exchange is required. We report methane fluxes from upper montane cloud forest (2811 - 2962 m asl), lower montane cloud forest (1532 - 1786 m asl), and premontane forest (1070 - 1088 m asl) soils in south-eastern Peru. Between 1000 and 3000 m asl, mean annual air temperature and total annual precipitation decrease from 24 ° C and 5000 mm to 12 ° C and 1700 mm. The study region experiences a pronounced wet season between October and April. Monthly measurements of soil-atmosphere gas exchange, soil moisture, soil temperature, soil oxygen concentration, available ammonium and available nitrate were made from February 2011 in the upper and lower montane cloud forests and July 2011 in the premontane forest to June 2013. These soils acted as sinks for atmospheric methane with mean net fluxes for wet and dry season, respectively, of -2.1 (0.2) and -1.5 (0.1) mg CH4 m-2 d-1 in the upper montane forest; -1.5 (0.2) and -1.4 (0.1) mg CH4 m-2 d-1in the lower montane forest; and -0.3 (0.2) and -0.2 (0.2) mg CH4 m-2 d-1 in the premontane forest. Spatial variations among forest types were related to available nitrate and water-filled pore space suggesting that nitrate inhibition of oxidation or constraints on the diffusional supply of methane to methanotrophic communities may be important controls on methane cycling in these soils. Seasonality in methane exchange, with weaker uptake related to increased water-filled pore space and soil temperature during the wet season, was only apparent in the upper montane forest. Differences in patterns of soil-atmosphere methane exchange and environmental conditions here and in previous studies of similar ecosystems allow us to speculate that the interaction between soil structure and rainfall regimes may help explain observed variability.

  2. Atmospheric Chemistry Data Products

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This presentation poster covers data products from the Distributed Active Archive Center (DAAC) of the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Total Ozone Mapping Spectrometer products (TOMS) introduced in the presentation include TOMS Version 8 as well as Aura, which provides 25 years of TOMS and Upper Atmosphere Research Satellite (UARS) data. The presentation lists a number of atmospheric chemistry and dynamics data sets at DAAC.

  3. Additional flux of particles and albedo-electrons in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Aitbaev, F. B.; Dyuisembaev, B. M.; Kolomeets, E. V.

    1985-01-01

    The results are presented of the Monte Carlo simulation of albedo flux from the dense layers of the Earth's atmosphere and the dependence of angular distribution on the rigidity of geomagnetic cut off and additional flux of particles at the depth in the atmosphere 15-20 g/sq sm. Influence of geomagnetic field on the propagation of charged particles was not taken into account.

  4. MAVEN Atlas V Launch

    NASA Image and Video Library

    2013-11-18

    The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)

  5. NASA/MSFC FY-82 atmospheric processes research review

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Compiler)

    1982-01-01

    The NASA/MSFC FY-82 Atmospheric Processes Research Program was reviewed. The review covered research tasks in the areas of upper atmosphere, global weather, and severe storms and local weather. Also included was research on aviation safety environmental hazards. The research project summaries, in narrative outline form, supplied by the individual investigators together with the agenda and other information about the review are presented.

  6. Survival of a planet in short-period Neptunian desert under effect of photoevaporation

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitry E.; Pavlyuchenkov, Yaroslav N.; Shematovich, Valery I.

    2018-06-01

    Despite the identification of a great number of Jupiter-like and Earth-like planets at close-in orbits, the number of `hot Neptunes' - the planets with 0.6-18 times of Neptune mass and orbital periods less than 3 d - turned out to be very small. The corresponding region in the mass-period distribution was assigned as the `short-period Neptunian desert'. The common explanation of this fact is that the gaseous planet with few Neptune masses would not survive in the vicinity of host star due to intensive atmosphere outflow induced by heating from stellar radiation. To check this hypothesis, we performed numerical simulations of atmosphere dynamics for a hot Neptune. We adopt the previously developed self-consistent 1D model of hydrogen-helium atmosphere with suprathermal electrons accounted. The mass-loss rates as a function of orbital distances and stellar ages are presented. We conclude that the desert of short-period Neptunes could not be entirely explained by evaporation of planet atmosphere caused by the radiation from a host star. For the less massive Neptune-like planet, the estimated upper limits of the mass-loss may be consistent with the photoevaporation scenario, while the heavier Neptune-like planets could not lose the significant mass through this mechanism. We also found the significant differences between our numerical results and widely used approximate estimates of the mass-loss.

  7. Stably stratified canopy flow in complex terrain

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yi, C.; Kutter, E.

    2015-07-01

    Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.

  8. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  9. Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b

    NASA Astrophysics Data System (ADS)

    Kubyshkina, D.; Lendl, M.; Fossati, L.; Cubillos, P. E.; Lammer, H.; Erkaev, N. V.; Johnstone, C. P.

    2018-04-01

    The K2-33 planetary system hosts one transiting 5 R⊕ planet orbiting the young M-type host star. The planet's mass is still unknown, with an estimated upper limit of 5.4 MJ. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. We perform a series of 1D hydrodynamic simulations of the planet's upper atmosphere considering a range of possible planetary masses, from 2 to 40 M⊕, and equilibrium temperatures, from 850 to 1300 K, to account for internal heating as a result of contraction. We obtain temperature profiles mostly controlled by the planet's mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 M⊕, the atmosphere is subject to extremely high escape rates, driven by the planet's weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 M⊕.

  10. Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN

    NASA Astrophysics Data System (ADS)

    Evans, J. S.; Stevens, M. H.; Lumpe, J. D.; Schneider, N. M.; Stewart, A. I. F.; Deighan, J.; Jain, S. K.; Chaffin, M. S.; Crismani, M.; Stiepen, A.; McClintock, W. E.; Holsclaw, G. M.; Lefèvre, F.; Lo, D. Y.; Clarke, J. T.; Eparvier, F. G.; Thiemann, E. M. B.; Chamberlin, P. C.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.

    2015-11-01

    We present direct number density retrievals of carbon dioxide (CO2) and molecular nitrogen (N2) for the upper atmosphere of Mars using limb scan observations during October and November 2014 by the Imaging Ultraviolet Spectrograph on board NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We use retrieved CO2 densities to derive temperature variability between 170 and 220 km. Analysis of the data shows (1) low-mid latitude northern hemisphere CO2 densities at 170 km vary by a factor of about 2.5, (2) on average, the N2/CO2 increases from 0.042 ± 0.017 at 130 km to 0.12 ± 0.06 at 200 km, and (3) the mean upper atmospheric temperature is 324 ± 22 K for local times near 14:00.

  11. Freshwater and Saline Loads of Dissolved Inorganic Nitrogen to Hood Canal and Lynch Cove, Western Washington

    USGS Publications Warehouse

    Paulson, Anthony J.; Konrad, Christopher P.; Frans, Lonna M.; Noble, Marlene; Kendall, Carol; Josberger, Edward G.; Huffman, Raegan L.; Olsen, Theresa D.

    2006-01-01

    Hood Canal is a long (110 kilometers), deep (175 meters) and narrow (2 to 4 kilometers wide) fjord of Puget Sound in western Washington. The stratification of a less dense, fresh upper layer of the water column causes the cold, saltier lower layer of the water column to be isolated from the atmosphere in the late summer and autumn, which limits reaeration of the lower layer. In the upper layer of Hood Canal, the production of organic matter that settles and consumes dissolved oxygen in the lower layer appears to be limited by the load of dissolved inorganic nitrogen (DIN): nitrate, nitrite, and ammonia. Freshwater and saline loads of DIN to Hood Canal were estimated from available historical data. The freshwater load of DIN to the upper layer of Hood Canal, which could be taken up by phytoplankton, came mostly from surface and ground water from subbasins, which accounts for 92 percent of total load of DIN to the upper layer of Hood Canal. Although DIN in rain falling on land surfaces amounts to about one-half of the DIN entering Hood Canal from subbasins, rain falling directly on the surface of marine waters contributed only 4 percent of the load to the upper layer. Point-source discharges and subsurface flow from shallow shoreline septic systems contributed less than 4 percent of the DIN load to the upper layer. DIN in saline water flowing over the sill into Hood Canal from Admiralty Inlet was at least 17 times the total load to the upper layer of Hood Canal. In September and October 2004, field data were collected to estimate DIN loads to Lynch Cove - the most inland marine waters of Hood Canal that routinely contain low dissolved-oxygen waters. Based on measured streamflow and DIN concentrations, surface discharge was estimated to have contributed about one-fourth of DIN loads to the upper layer of Lynch Cove. Ground-water flow from subbasins was estimated to have contributed about one-half of total DIN loads to the upper layer. In autumn 2004, the relative contribution of DIN from shallow shoreline septic systems to the upper layer was higher in Lynch Cove (23 percent) than in the entire Hood Canal. Net transport of DIN into Lynch Cove by marine currents was measured during August and October 2004-a time of high biological productivity. The net transport of lower-layer water into Lynch Cove was significantly diminished relative to the flow entering Hood Canal at its entrance. Even though the net transport of saline water into the lower layer of Lynch Cove was only 119 cubic meters per second, estuarine currents between 33 and 47 m were estimated to have carried more than 35 times the total freshwater load of DIN to the upper layer from surface and ground water, shallow shoreline septic systems, and direct atmospheric rainfall. The subsurface maximums in measured turbidity, chlorophyll a, particulate organic carbon, and particulate organic nitrogen strongly suggest that the upward mixing of nitrate-rich deeper water is a limiting factor in supplying DIN to the upper layer that enhances marine productivity in Lynch Cove. The presence of phosphate in the upper layer in the absence of dissolved inorganic nitrogen also suggests that the biological productivity that leads to low dissolved-oxygen concentrations in the lower layer of Lynch Cove is limited by the supply of nitrogen rather than by phosphate loads. Although the near-shore zones of the shallow parts of Lynch Cove were sampled, a biogeochemical signal from terrestrial nitrogen was not found. Reversals in the normal estuarine circulation suggest that if the relative importance of the DIN load of freshwater terrestrial and atmospheric sources and the DIN load from transport of saline water by the estuarine circulation in controlling dissolved-oxygen concentrations in Lynch Cove is to be better understood, then the physical forces driving Hood Canal circulation must be better defined.

  12. Upper and Middle Atmospheric Density Modeling Requirements for Spacecraft Design and Operations

    NASA Technical Reports Server (NTRS)

    Davis, M. H. (Editor); Smith, R. E. (Editor); Johnson, D. L. (Editor)

    1987-01-01

    Presented and discussed are concerns with applications of neutral atmospheric density models to space vehicle engineering design and operational problems. The area of concern which the atmospheric model developers and the model users considered, involved middle atmosphere (50 to 90 km altitude) and thermospheric (above 90 km) models and their engineering application. Engineering emphasis involved areas such as orbital decay and lifetime prediction along with attitude and control studies for different types of space and reentry vehicles.

  13. Carbon dioxide in the atmosphere. [and other research projects

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1974-01-01

    Research projects for the period ending September 15, 1973 are reported as follows: (1) the abundances of carbon dioxide in the atmosphere, and the processes by which it is released from carbonate deposits in the earth and then transferred to organic material by photosynthesis; the pathways for movement of carbon and oxygen through the atmosphere; (2) space science computation assistance by PDP computer; the performance characteristics and user instances; (3) OGO-6 data analysis studies of the variations of nighttime ion temperature in the upper atmosphere.

  14. Cassini's Grand Finale Science Highlights

    NASA Astrophysics Data System (ADS)

    Spilker, Linda

    2017-10-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini returned its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere satisfying planetary protection requirements. Cassini's Grand Finale covered a period of roughly five months and ended with the first time exploration of the region between the rings and planet.The final close flyby of Titan in late April 2017 propelled Cassini across Saturn’s main rings and into its Grand Finale orbits; 22 orbits that repeatedly dove between Saturn’s innermost rings and upper atmosphere making Cassini the first spacecraft to explore this region. The last orbit turned the spacecraft into the first Saturn upper atmospheric probe.The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet.Science highlights and new mysteries gleaned to date from the Grand Finale orbits will be discussed.The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.

  15. Probing Venus' polar upper atmosphere in situ: Preliminary results of the Venus Express Atmospheric Drag Experiment (VExADE).

    NASA Astrophysics Data System (ADS)

    Rosenblatt, Pascal; Bruinsma, Sean; Mueller-Wodarg, Ingo; Haeusler, Bernd

    On its highly elliptical 24 hour orbit around Venus, the Venus Express (VEx) spacecraft briefly reaches a pericenter altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008 (campaign1), October 2009 (cam-paign2), February and April 2010 (campaign3), for which the pericenter altitude was lowered to about 175 km in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in-situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the pericenter pass, allowing us to infer total atmospheric mass density at the pericenter altitude. The GINS software (Géodésie par Intégration Numérique e e Simultanées) is used to accurately reconstruct the orbital motion of VEx through an iterative least-squares fitting process to the Doppler tracking data. The drag acceleration is modelled using an initial atmospheric density model (VTS model, A. Hedin). A drag scale factor is estimated for each pericenter pass, which scales Hedin's density model in order to best fit the radio tracking data. About 20 density scale factors have been obtained mainly from the second and third VExADE campaigns, which indicate a lower density by a factor of about one-third than Hedin's model predicts. These first ever polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements. The preliminary results of the VExADE cam-paigns show that it is possible to obtain reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEx pericenter altitude to below 170 Km.

  16. Ionospheric modification using relativistic electron beams

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Fraser-Smith, Anthony C.; Gilchrist, B. E.

    1990-01-01

    The recent development of comparatively small electron linear accelerators (linacs) now makes possible a new class of ionospheric modification experiments using beams of relativistic electrons. These experiments can potentially provide much new information about the interactions of natural relativistic electrons with other particles in the upper atmosphere, and it may also make possible new forms of ionization structures extending down from the lower ionosphere into the largely un-ionized upper atmosphere. The consequences of firing a pulsed 1 A, 5 Mev electron beam downwards into the upper atmosphere are investigated. If a small pitch angle with respect to the ambient geomagnetic field is selected, the beam produces a narrow column of substantial ionization extending down from the source altitude to altitudes of approximately 40 to 45 km. This column is immediately polarized by the natural middle atmosphere fair weather electric field and an increasingly large potential difference is established between the column and the surrounding atmosphere. In the regions between 40 to 60 km, this potential can amount to many tens of kilovolts and the associated electric field can be greater than the field required for breakdown and discharge. Under these conditions, it may be possible to initiate lightning discharges along the initial ionization channel. Filamentation may also occur at the lower end to drive further currents in the partially ionized gases of the stratosphere. Such discharges would derive their energy from the earth-ionosphere electrical system and would be sustained until plasma depletion and/or electric field reduction brought the discharge under control. It is likely that this artificially-triggered lightning would produce measurable low-frequency radiation.

  17. The role of nutricline depth in regulating the ocean carbon cycle.

    PubMed

    Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P; Follows, Mick; Schofield, Oscar; Falkowski, Paul G

    2008-12-23

    Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.

  18. Upper atmosphere differences between northern and southern high latitudes: The role of magnetic field asymmetry

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Cnossen, Ingrid

    2013-09-01

    The nondipolar portions of the Earth's main magnetic field constitute substantial differences between the two hemispheres. Beside the magnetic flux densities and patterns being different in the Northern Hemisphere (NH) and Southern Hemisphere (SH), also the offset between the invariant magnetic and the geographic poles is larger in the SH than in the NH. We investigated the effects of this magnetic field asymmetry on the high-latitude thermosphere and ionosphere using global numerical simulations and compared our results with recent observations. While the effects on the high-latitude plasma convection are small, the consequences for the neutral wind circulation are substantial. The cross-polar neutral wind and ion drift velocities are generally larger in the NH than the SH, and the hemispheric difference shows a semidiurnal variation. The neutral wind vorticity is likewise larger in the NH than in the SH, with the difference probably becoming larger for higher solar activity. In contrast, the spatial variance of the neutral wind is considerably larger in the SH polar region, with the hemispheric difference showing a strong semidiurnal variation. Its phase is similar to the phase of the semidiurnal variation of the hemispheric magnitude differences. Hemispheric differences in ion drift and neutral wind magnitude are most likely caused partly by the larger magnetic flux densities in the near-polar regions of the SH and partly by the larger offset between the invariant and geographic pole in the SH, while differences in spatial variance are probably just caused by the latter. We conclude that the asymmetry of the magnetic field, both in strength and in orientation, establishes substantial hemispheric differences in the neutral wind and plasma drift in the high-latitude upper atmosphere, which can help to explain observed hemispheric differences found with the Cluster/Electron Drift Instrument (EDI) and the Challenging Minisatellite Payload (CHAMP).

  19. The Sinuosity of Atmospheric Circulation over North America and its Relationship to Arctic Climate Change and Extreme Events

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.; Wang, F.; Martin, J. E.; Francis, J. A.

    2015-12-01

    Recent research has suggested a relationship between mid-latitude weather and Arctic amplification (AA) of global climate change via a slower and wavier extratropical circulation inducing more extreme events. To test this hypothesis and to quantify the waviness of the extratropical flow, we apply a novel application of the geomorphological concept of sinuosity (SIN) over greater North America. SIN is defined as the ratio of the curvilinear length of a geopotential height contour to the perimeter of its equivalent latitude, where the contour and the equivalent latitude enclose the same area. We use 500 hPa daily heights from reanalysis and model simulations to calculate past and future SIN. The circulation exhibits a distinct annual cycle of maximum SIN (waviness) in summer and a minimum in winter, inversely related to the annual cycle of zonal wind speed. Positive trends in SIN have emerged in recent decades during winter and summer at several latitude bands, generally collocated with negative trends in zonal wind speeds. High values of SIN coincide with many prominent extreme-weather events, including Superstorm Sandy. RCP8.5 simulations (2006-2100) project a dipole pattern of zonal wind changes that varies seasonally. In winter, AA causes inflated heights over the Arctic relative to mid-latitudes and an associated weakening (strengthening) of the westerlies north (south) of 40N. The AA signal in summer is strongest over upper-latitude land, promoting localized atmospheric ridging aloft with lighter westerlies to the south and stronger zonal winds to the north. The changes in wind speeds in both seasons are inversely correlated with SIN, indicating a wavier circulation where the flow weakens. In summer the lighter winds over much of the U. S. resemble circulation anomalies observed during extreme summer heat and drought. Such changes may be linked to enhanced heating of upper-latitude land surfaces caused by earlier snow melt during spring-summer.

  20. The impact of cut-off lows on ozone in the upper troposphere and lower stratosphere over Changchun from ozonesonde observations

    NASA Astrophysics Data System (ADS)

    Song, Yushan; Lü, Daren; Li, Qian; Bian, Jianchun; Wu, Xue; Li, Dan

    2016-02-01

    In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated ozone profiles shows the variation of ozone concentration in the upper troposphere and lower stratosphere (UTLS) caused by cut-off lows (COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed. Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere-troposphere exchange (STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause (LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere (LS) column ozone is -0.62, which implies a positive correlation between COL strength and LS ozone concentration.

Top