Sample records for upper atmosphere model

  1. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2015-10-08

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon

  2. Trajectory Software With Upper Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Barrett, Charles

    2012-01-01

    The Trajectory Software Applications 6.0 for the Dec Alpha platform has an implementation of the Jacchia-Lineberry Upper Atmosphere Density Model used in the Mission Control Center for International Space Station support. Previous trajectory software required an upper atmosphere to support atmosphere drag calculations in the Mission Control Center. The Functional operation will differ depending on the end-use of the module. In general, the calling routine will use function-calling arguments to specify input to the processor. The atmosphere model will then compute and return atmospheric density at the time of interest.

  3. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  4. Climate and atmospheric modeling studies

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.

  5. Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Yigit, Erdal

    2018-01-01

    The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).

  6. The great American solar eclipse of August 21, 2017; new understanding of the response of the upper atmosphere and ionosphere.

    NASA Astrophysics Data System (ADS)

    Drob, D. P.; Huba, J.; Kordella, L.; Earle, G. D.; Ridley, A. J.

    2017-12-01

    The great American solar eclipse of August 21, 2017 provides a unique opportunity to study the basic physics of the upper atmosphere and ionosphere. While the effects of solar eclipses on the upper atmosphere and ionosphere have been studied since the 1930s, and later matured in the last several decades, recent advances in first principles numerical models and multi-instrument observational capabilities continue to provide new insights. Upper atmospheric eclipse phenomena such as ionospheric conjugate effects and the generation of a thermospheric bow wave that propagates into the nightside are simulated with high-resolution first principles upper atmospheric models and compared with observations to validate this understanding.

  7. A quasi-static model of global atmospheric electricity. II - Electrical coupling between the upper and lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.

  8. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Kshevetskii, S. P.

    2017-11-01

    The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.

  9. Modelling of plasma processes in cometary and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Brunger, M. J.

    2013-02-01

    Electrons from the Sun, often accelerated by magnetospheric processes, produce low-density plasmas in the upper atmospheres of planets and their satellites. The secondary electrons can produce further ionization, dissociation and excitation, leading to enhancement of chemical reactions and light emission. Similar processes are driven by photoelectrons produced by sunlight in upper atmospheres during daytime. Sunlight and solar electrons drive the same processes in the atmospheres of comets. Thus for both understanding of planetary atmospheres and in predicting emissions for comparison with remote observations it is necessary to simulate the processes that produce upper atmosphere plasmas. In this review, we describe relevant models and their applications and address the importance of electron-impact excitation cross sections, towards gaining a quantitative understanding of the phenomena in question.

  10. Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow

    NASA Technical Reports Server (NTRS)

    Waite, J. H., Jr.; Chandler, M. O.; Yelle, R. V.; Sandel, B. R.

    1987-01-01

    Strong ultraviolet emissions from the upper atmosphere of Uranus suggest that both auroral and electroglow phenomena are of significant aeronomical consequences in the structure of the upper atmosphere. Combined modeling and data analysis were performed to determine the effect of electroglow and auroral phenomena on the global heat and atomic hydrogen budgets in the Uranus upper atmosphere. The results indicate that the auroral and electroglow heat sources are not adequate to explain the high exospheric temperature observed at Uranus, but that the atomic hydrogen supplied by these processes is more than sufficient to explain the observations. The various superthermal electron distributions modeled have significantly different efficiencies for the various processes such as UV emission, heating, ionization, and atomic hydrogen production, and produce quite different H2 band spectra. However, additional information on the UV spectra and global parameters is needed before modeling can be used to distinguish between the possible mechanisms for electroglow.

  11. Three-dimensional dynamical and chemical modelling of the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.

    1976-01-01

    Progress in coding a 3-D upper atmospheric model and in modeling the ozone perturbation resulting from the shuttle booster exhaust is reported. A time-dependent version of a 2-D model was studied and the sulfur cycle in the stratosphere was investigated. The role of meteorology in influencing stratospheric composition measurements was also studied.

  12. Upper Atmospheric Response to the April 2010 Storm as Observed by GOCE, CHAMP, and GRACE and Modeled by TIME-GCM

    NASA Astrophysics Data System (ADS)

    Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean

    2014-05-01

    We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.

  13. Investigation of Dynamic and Physical Processes in the Upper Troposphere and Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Pfister, Leonhard (Technical Monitor)

    2002-01-01

    Research under this Cooperative Agreement has been funded by several NASA Earth Science programs: the Atmospheric Effects of Radiation Program (AEAP), the Upper Atmospheric Research Program (UARP), and most recently the Atmospheric Chemistry and Modeling Assessment Program (ACMAP). The purpose of the AEAP was to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The ACMAP is a more general program of modeling and data analysis in the general area of atmospheric chemistry and dynamics, and the Radiation Sciences program.

  14. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summaries 1997- 1999. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1999 An Assessment Report.

  15. Studies of planetary upper atmospheres through occultations

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.

    1982-01-01

    The structure, composition, dynamics and energy balance of planetary upper atmospheres through interpretation of steller occultation data from Uranus is discussed. The wave-optical problem of modelling strong scintillation for arbitrary turbulent atmospheres is studied, as well as influence of turbulence. It was concluded that quasi-global features of atmospheric structure are accurately determined by numerical inversion. Horizontally inhomogeneous structures are filtered out and have little effect on temperature profiles.

  16. Aeronomy of the Venus Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gérard, J.-C.; Bougher, S. W.; López-Valverde, M. A.; Pätzold, M.; Drossart, P.; Piccioni, G.

    2017-11-01

    We present aeronomical observations collected using remote sensing instruments on board Venus Express, complemented with ground-based observations and numerical modeling. They are mostly based on VIRTIS and SPICAV measurements of airglow obtained in the nadir mode and at the limb above 90 km. They complement our understanding of the behavior of Venus' upper atmosphere that was largely based on Pioneer Venus observations mostly performed over thirty years earlier. Following a summary of recent spectral data from the EUV to the infrared, we examine how these observations have improved our knowledge of the composition, thermal structure, dynamics and transport of the Venus upper atmosphere. We then synthesize progress in three-dimensional modeling of the upper atmosphere which is largely based on global mapping and observations of time variations of the nitric oxide and O2 nightglow emissions. Processes controlling the escape flux of atoms to space are described. Results based on the VeRA radio propagation experiment are summarized and compared to ionospheric measurements collected during earlier space missions. Finally, we point out some unsolved and open questions generated by these recent datasets and model comparisons.

  17. The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Parkinson, C. D.

    2017-01-01

    Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions.

  18. A Model of Titan-like Chemistry to Connect Experiments and Cassini Observations

    NASA Astrophysics Data System (ADS)

    Raymond, Alexander W.; Sciamma-O’Brien, Ella; Salama, Farid; Mazur, Eric

    2018-02-01

    A numerical model is presented for interpreting the chemical pathways that lead to the experimental mass spectra acquired in the Titan Haze Simulation (THS) laboratory experiments and for comparing the electron density and temperature of the THS plasma to observations made at Titan by the Cassini spacecraft. The THS plasma is a pulsed glow-discharge experiment designed to simulate the reaction of N2/CH4-dominated gas in Titan's upper atmosphere. The transient, one-dimensional model of THS chemistry tracks the evolution of more than 120 species in the direction of the plasma flow. As the minor species C2H2 and C2H4 are added to the N2/CH4-based mixture, the model correctly predicts the emergence of reaction products with up to five carbon atoms in relative abundances that agree well with measured mass spectra. Chemical growth in Titan's upper atmosphere transpires through ion–neutral and neutral–neutral chemistry, and the main reactions involving a series of known atmospheric species are retrieved from the calculation. The model indicates that the electron density and chemistry are steady during more than 99% of the 300 μs long discharge pulse. The model also suggests that the THS ionization fraction and electron temperature are comparable to those measured in Titan's upper atmosphere. These findings reaffirm that the THS plasma is a controlled analog environment for studying the first and intermediate steps of chemistry in Titan's upper atmosphere.

  19. Whole Atmosphere Simulation of Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.

    2018-02-01

    We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.

  20. Energy loss of solar p modes due to the excitation of magnetic sausage tube waves: Importance of coupling the upper atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gascoyne, A.; Jain, R.; Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk

    2014-07-10

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation ofmore » Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).« less

  1. Energy Loss of Solar p Modes due to the Excitation of Magnetic Sausage Tube Waves: Importance of Coupling the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Gascoyne, A.; Jain, R.; Hindman, B. W.

    2014-07-01

    We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).

  2. NASA's upper atmosphere research satellite: A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    Luther, Michael R.

    1992-01-01

    The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.

  3. Improved Mars Upper Atmosphere Climatology

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.

    2004-01-01

    The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the upcoming MRO aerobraking exercises in 2006. A Michigan website, containing MTGCM output fields from previous climate simulations, is being expanded to include new MGCM-MTGCM simulations addressing planetary wave influences upon thermospheric aerobraking fields (densities and temperatures). In addition, similar MTGCM output fields have been supplied to the MSFC MARSGRAM - 200X empirical model, which will be used in mission operations for conducting aerobraking maneuvers.

  4. Spatial and Temporal Variability of Surface Energy Fluxes During Autumn Ice Advance: Observations and Model Validation

    NASA Astrophysics Data System (ADS)

    Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.

    2016-12-01

    From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.

  5. Estimation of the global climate effect of brown carbon

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.

    2017-12-01

    Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.

  6. Model simulations of the impact of energetic particle precipitation onto the upper and middle atmosphere

    NASA Astrophysics Data System (ADS)

    Wieters, Nadine; Sinnhuber, Miriam; Winkler, Holger; Berger, Uwe; Maik Wissing, Jan; Stiller, Gabriele; Funke, Bernd; Notholt, Justus

    Solar eruptions and geomagnetic storms can produce fluxes of high-energy protons and elec-trons, so-called Solar Energetic Particle Events, which can enter the Earth's atmosphere espe-cially in polar regions. These particle fluxes primarily cause ionisation and excitation in the upper atmosphere, and thereby the production of HOx and NOx species, which are catalysts for the reduction of ozone. To simulate such particle events, ionisation rates, calculated by the Atmospheric Ionization Module Osnabrück AIMOS (University of Osnabrück), have been implemented into the Bremen 3D Chemistry and Transport Model. To cover altitudes up to the mesopause, the model is driven by meteorological data, provided by the Leibniz-Institute Middle Atmosphere Model LIMA (IAP Kühlungsborn). For several electron and proton events during the highly solar-active period 2003/2004, model calculations have been carried out. To investigate the accordance of modeled to observed changes for atmospheric constituents like NO, NO2 , HNO3 , N2 O5 , ClO, and O3 , results of these calculations will be compared to measurements by the Michelson Interferometer for Passive Atmospheric Sounding MIPAS (ENVISAT) instrument. Computed model results and comparisons with measurements will be presented.

  7. Fate of Ice Grains in Saturn's Ionosphere

    NASA Astrophysics Data System (ADS)

    Hamil, O.; Cravens, T. E.; Reedy, N. L.; Sakai, S.

    2018-02-01

    It has been proposed that the rings of Saturn can contribute both material (i.e., water) and energy to its upper atmosphere and ionosphere. Ionospheric models require the presence of molecular species such as water that can chemically remove ionospheric protons, which otherwise are associated with electron densities that greatly exceed those from observation. These models adopt topside fluxes of water molecules. Other models have shown that ice grains from Saturn's rings can impact the atmosphere, but the effects of these grains have not been previously studied. In the current paper, we model how ice grains deposit both material and energy in Saturn's upper atmosphere as a function of grain size, initial velocity (at the "top" of the atmosphere, defined at an altitude above the cloud tops of 3,000 km), and incident angle. Typical grain speeds are expected to be roughly 15-25 km/s. Grains with radii on the order of 1-10 nm deposit most of their energy in the altitude range of 1,700-1,900 km, and can vaporize, depending on initial velocity and impact angle, contributing water mass to the upper atmosphere. We show that grains in this radius range do not significantly vaporize in our model at initial velocities lower than about 20 km/s.

  8. Composition and structure of the martian upper atmosphere: analysis of results from viking.

    PubMed

    McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O

    1976-12-11

    Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.

  9. Data Needs and Modeling of the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Brunger, M. J.; Campbell, L.

    2007-04-01

    We present results from our enhanced statistical equilibrium and time-step codes for atmospheric modeling. In particular we use these results to illustrate the role of electron-driven processes in atmospheric phenomena and the sensitivity of the model results to data inputs such as integral cross sections, dissociative recombination rates and chemical reaction rates.

  10. Upper atmosphere research: Reaction rate and optical measurements

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.

    1990-01-01

    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.

  11. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1996.- An Assessment Report. It consists primarily of the Executive Summary and Chapter Summaries of the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 37, Scientific Assessment of Ozone Depletion: 1994, sponsored by NASA, the National Oceanic and Atmospheric Administration (NOAA), the UK Department of the Environment, the United Nations Environment Program, and the World Meteorological Organization. Other sections of Part 11 include summaries of the following: an Atmospheric Ozone Research Plan from NASA's Office of Mission to Planet Earth; summaries from a series of Space Shuttle-based missions and two recent airborne measurement campaigns; the Executive Summary of the 1995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, and the most recent evaluation of photochemical and chemical kinetics data (Evaluation No. 12 of the NASA Panel for Data Evaluation) used as input parameters for atmospheric models.

  12. The precipitation of energetic heavy ions into the upper atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Cravens, T. E.; Waite, J. H., Jr.

    1987-01-01

    Evidence for auroral particle precipitation at Jupiter was provided by the ultraviolet spectrometers onboard the Voyagers 1 and 2 spacecraft and by the International Ultraviolet Explorer (IUE). Magnetospheric measurements made by instruments onboard the Voyager spacecraft show that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of Jupiter. A theoretical model has been constructed describing the interaction of precipitating oxygen with the Jovian atmosphere. The auroral energy is deposited in the atmosphere by means of ionization, excitation, and dissociation and heating of the atmospheric gas. Energetic ion and electron precipitation are shown to have similar effects on the atmosphere and ionosphere of Jupiter.

  13. MAVEN observations of the response of Mars to an interplanetary coronal mass ejection.

    PubMed

    Jakosky, B M; Grebowsky, J M; Luhmann, J G; Connerney, J; Eparvier, F; Ergun, R; Halekas, J; Larson, D; Mahaffy, P; McFadden, J; Mitchell, D F; Schneider, N; Zurek, R; Bougher, S; Brain, D; Ma, Y J; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D; Bell, J M; Benna, M; Chaffin, M; Chamberlin, P; Chaufray, Y-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R

    2015-11-06

    Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  14. Theoretical and experimental investigations of upper atmosphere dynamics

    NASA Technical Reports Server (NTRS)

    Roper, R. G.; Edwards, H. D.

    1980-01-01

    A brief overview of the significant contributions made to the understanding of the dynamics of the Earth's upper atmosphere is presented, including the addition of winds and diffusion to the semi-empirical Global Reference Atmospheric Model developed for the design phase of the Space Shuttle, reviews of turbulence in the lower thermosphere, the dynamics of the equatorial mesopause, stratospheric warming effects on mesopause level dynamics, and the relevance of these studies to the proposed Middle Atmosphere Program (1982-85). A chronological bibliography, with abstracts of all papers published, is also included.

  15. NASA upper atmosphere research program: Research summaries, 1990 - 1991. Report to the Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives, status, and accomplishments of the research tasks supported under the NASA Upper Atmosphere Research Program (UARP) are presented. The topics covered include the following: balloon-borne in situ measurements; balloon-borne remote measurements; ground-based measurements; aircraft-borne measurements; rocket-borne measurements; instrument development; reaction kinetics and photochemistry; spectroscopy; stratospheric dynamics and related analysis; stratospheric chemistry, analysis, and related modeling; and global chemical modeling.

  16. Upper and Middle Atmospheric Density Modeling Requirements for Spacecraft Design and Operations

    NASA Technical Reports Server (NTRS)

    Davis, M. H. (Editor); Smith, R. E. (Editor); Johnson, D. L. (Editor)

    1987-01-01

    Presented and discussed are concerns with applications of neutral atmospheric density models to space vehicle engineering design and operational problems. The area of concern which the atmospheric model developers and the model users considered, involved middle atmosphere (50 to 90 km altitude) and thermospheric (above 90 km) models and their engineering application. Engineering emphasis involved areas such as orbital decay and lifetime prediction along with attitude and control studies for different types of space and reentry vehicles.

  17. Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.

    2013-10-01

    The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.

  18. UA-ICON - A non-hydrostatic global model for studying gravity waves from the troposphere to the thermosphere

    NASA Astrophysics Data System (ADS)

    Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa

    2017-04-01

    In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378

  19. Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland

    NASA Technical Reports Server (NTRS)

    Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.

    2004-01-01

    We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.

  20. International cooperation between Japanese IUGONET and EU ESPAS projects on development of the metadata database for upper atmospheric study

    NASA Astrophysics Data System (ADS)

    Yatagai, Akiyo; Ritschel, Bernd; Iyemori, Tomohiko; Koyama, Yukinobu; Hori, Tomoaki; Abe, Shuji; Tanaka, Yoshimasa; Shinbori, Atsuki; UeNo, Satoru; Sato, Yuka; Yagi, Manabu

    2013-04-01

    The upper atmospheric observational study is the area which an international collaboration is crucially important. The Japanese Inter-university Upper atmosphere Global Observation NETwork project (2009-2014), IUGONET, is an inter-university program by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. In order to investigate the mechanism of long-term variations in the upper atmosphere, we need to combine various types of in-situ observations and to accelerate data exchange. The IUGONET institutions have been archiving observed data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. in various altitude layers from the Earth's surface to the Sun. The IUGONET has been developing systems for searching metadata of these observational data, and the metadata database (MDB) has already been operating since 2011. It adopts DSPACE system for registering metadata, and it uses an extension of the SPASE data model of describing metadata, which is widely used format in the upper atmospheric society including that in USA. The European Union project ESPAS (2011-2015) has the same scientific objects with IUGONET, namely it aims to provide an e-science infrastructure for the retrieval and access to space weather relevant data, information and value added services. It integrates 22 partners in European countries. The ESPAS also plans to adopt SPASE model for defining their metadata, but search system is different. Namely, in spite of the similarity of the data model, basic system ideas and techniques of the system and web portal are different between IUGONET and ESPAS. In order to connect the two systems/databases, we are planning to take an ontological method. The SPASE keyword vocabulary, derived from the SPASE data model shall be used as standard for the description of near-earth and space data content and context. The SPASE keyword vocabulary is modeled as Simple Knowledge Organizing System (SKOS) ontology. The SPASE keyword vocabulary also can be reused in domain-related but also cross-domain projects. The implementation of the vocabulary as ontology enables the direct integration into semantic web based structures and applications, such as linked data and the new Information System and Data Center (ISDC) data management system.

  1. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  2. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the total ion loss to space over Mars history, and thus enhance the science returned from the MAVEN mission.

  3. Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations

    NASA Astrophysics Data System (ADS)

    Koskinen, T. T.; Guerlet, S.

    2018-06-01

    We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.

  4. Structure of the middle atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Zasova, Ludmila

    Middle atmosphere of Venus (55-100 km), its mesosphere, is the important layer of atmosphere, where 70 % of the solar energy is absorbed. Most of this absorption takes place in the upper clouds in the altitude range 58-68 km in the spectral range 0.32-0.5 µm. It leads to generation of the thermal tides, playing important role in support of the superrotation. In the frame of COSPAR model VIRA (ASR, 11,1985) the model of the thermal structure of the middle atmosphere was constructed for 5 latitude ranges, based mainly on the Pioneer Venus ORO and OIR data. Using Venera-15 Fourier Spectrometry data, which allow to retrieve the temperature and aerosol profiles in a self consistent way from each spectrum, we enable to update the model of the middle atmosphere, including the local time variation of the temperature for VIRA latitude ranges (Cosmic Research, 44, 4, 2006). From Venera-15 data it was shown that variation of temperature in the middle atmosphere is well described by thermal tides with harmonics 1, 1/2, 1/3, 1/4 Venusian day, the amplitudes and phases of which depend on latitude and altitude. The model of the upper clouds (VIRA) may also be updated using Venera-15 data. It was shown that the main latitude trend is the decreasing of the upper cloud boundary from 68 km at low latitudes to 60-62 km at high latitudes. Local time variation has a solar related dependence: 1 and 1/2 day components were revealed. Venus Express continues to obtain a lot of data, which may be used for the improvement of the model of the middle atmosphere and the clouds.

  5. Comparisons of planetary wave propagation to the upper atmosphere during stratospheric warming events at different QBO phases

    NASA Astrophysics Data System (ADS)

    Koval, Andrey V.; Gavrilov, Nikolai M.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2018-06-01

    The dynamical coupling of the lower and upper atmosphere by planetary waves (PWs) is studied. Numerical simulations of planetary wave (PW) amplitudes during composite sudden stratospheric warming (SSW) events in January-February are made using a model of general circulation of the middle and upper atmosphere with initial and boundary conditions typical for the westerly and easterly phases of quasi-biennial oscillation (QBO). The changes in PW amplitudes in the middle atmosphere before, during and after SSW event for the different QBO phases are considered. Near the North Pole, the increase in the mean temperature during SSW reaches 10-30 K at altitudes 30-50 km for four pairs of the model runs with the eQBO and wQBO, which is characteristic for the sudden stratospheric warming event. Amplitudes of stationary PWs in the middle atmosphere of the Northern hemisphere may differ up to 30% during wQBO and eQBO before and during the SSW. After the SSW event SPW amplitudes are substantially larger during wQBO phase. PW refractivity indices and Eliassen-Palm flux vectors are calculated. The largest EP-fluxes in the middle atmosphere correspond to PWs with zonal wavenumber m=1. Simulated changes in PW amplitudes correspond to inhomogeneities of the global circulation, refractivity index and EP-flux produced by the changes in QBO phases. Comparisons of differences in PW characteristics and circulation between the wQBO and eQBO show that PWs could provide effective coupling mechanism and transport dynamical changes from local regions of the lower atmosphere to distant regions of the upper atmosphere of both hemispheres.

  6. The satellite power system - Assessment of the environmental impact on middle atmosphere composition and on climate

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Park, C.; Pfister, L.; Woodward, H. T.; Turco, R. P.; Capone, L. A.; Riegel, C. A.; Kropp, T.

    1982-01-01

    Numerical models were developed to calculate the total deposition of watervapor, hydrogen, CO2, CO, SO2, and NO in the middle atmosphere from operation of heavy lift launch vehicles (HLLV) used to build a satellite solar power system (SPS). The effects of the contaminants were examined for their effects on the upper atmosphere. One- and two-dimensional models were formulated for the photochemistry of the upper atmosphere and for rocket plumes and reentry. An SPS scenario of 400 launches per year for 10 yr was considered. The build-up of the contaminants in the atmosphere was projected to have no significant effects, even at the launch latitude. Neither would there by any dangerous ozone depletion. It was found that H, OH, and HO2 species would double in the thermosphere. No measurable changes in climate were foreseen.

  7. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; hide

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  8. Ionization of the Earth's Upper Atmosphere in Large Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Wolff, E.; Burrows, J.; Kallenrode, M.; von Koenig, M.; Kuenzi, K. F.; Quack, M.

    2001-12-01

    Energetic charged particles ionize the upper terrestrial atmosphere. Sofar, chemical consequences of precipitating particles have been discussed for solar protons with energies up to a few hundred MeV. We present a refined model for the interaction of energetic particles with the atmosphere based on a Monte-Carlo simulation. The model includes higher energies and other particle species, such as energetic solar electrons. Results are presented for well-known solar events, such as July 14, 2000, and are extrapolated to extremely large events, such as Carrington's white light flare in 1859, which from ice cores has been identified ass the largest impulsive NO3 event in the interval 1561 -- 1994 (McCracken et al., 2001).

  9. Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    1998-01-01

    The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.

  10. Initial Examination of the Long Term Thermosphere Changes As Seen in the Whole Atmosphere Community Climate Model - eXtended (WACCM-X) J. M. McInerney, L. Qian, and H.-L Liu

    NASA Astrophysics Data System (ADS)

    McInerney, J. M.; Qian, L.; Liu, H.

    2013-12-01

    It has been over two decades since the projection that, not only will the human induced increase in atmospheric CO2 produce a warming in the troposphere, it will also produce a cooling in the middle to upper atmosphere into the 21st century with significant consequences. The thermospheric density decrease associated with this projected upper atmosphere cooling due to greenhouse gases has been confirmed by observations, in particular satellite drag measurements, and by various modeling studies. Recent studies also suggest potential impacts from the lower atmosphere on thermosphere dynamics such as atmospheric thermal tides and gravity waves. With the current advance of whole atmosphere climate models which extend from the ground through the thermosphere, it is now possible to include effects of these and other lower atmosphere processes in modeling studies of long term thermospheric changes. One such whole atmosphere model under development at the National Center for Atmospheric Research (NCAR) is the Whole Atmosphere Community Climate Model - eXtended (WACCM-X). WACCM-X is a self consistent climate model extending from the ground to approximately 500 kilometers and is based on the Whole Atmosphere Community Climate Model (WACCM) / Community Atmosphere Model (CAM) component of the Community Earth System Model (CESM). Although an interactive ionosphere module is not complete, the globally averaged structure of thermosphere temperature and neutral species from WACCM-X are reasonable compared with the NCAR global mean model. In this study, we will examine a transient WACCM-X simulation from 1955 to 2005 with realistic tropospheric CO2 input and solar and geomagnetic forcing. The preliminary study will focus on the long term changes in the thermosphere from this simulation, in particular the secular changes of thermosphere neutral density and temperature due to anthropogenic forcing.

  11. Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.

    2013-01-01

    In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  12. Atmospheric forcing of the upper ocean transport in the Gulf of Mexico: From seasonal to diurnal scales

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.; Curcic, Milan

    2016-06-01

    The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.

  13. Concentrations of ethane (C2H6) in the lower stratosphere and upper troposphere and acetylene (C2H2) in the upper troposphere deduced from Atmospheric Trace Molecule Spectroscopy/Spacelab 3 spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Russell, J. M., III; Zander, R.; Farmer, C. B.; Norton, R. H.

    1987-01-01

    This paper reports the results of the spectroscopic analysis of C2H6 and C2H2 absorption spectra obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument flown on the Shuttle as part of the Spacelab 3 mission. The spectra were recorded during sunset occultations occurring between 25 deg N and 31 deg N latitudes, yielding volume-mixing ratio profiles of C2H6 in the lower stratosphere and the upper troposphere, and an upper tropospheric profile of C2H2. These results compare well with previous in situ and remote sounding data obtained at similar latitudes and with model calculations. The results demonstrate the feasibility of the ATMOS instrument to sound the lower atmosphere from space.

  14. Science Enhancements by the MAVEN Participating Scientists

    NASA Technical Reports Server (NTRS)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.

    2014-01-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  15. Science Enhancements by the MAVEN Participating Scientists

    NASA Astrophysics Data System (ADS)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.; Stevens, M.; Withers, P.

    2015-12-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  16. Use of an Existing Airborne Radon Data Base in the Verification of the NASA/AEAP Core Model

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.

    1998-01-01

    The primary objective of this project was to apply the tropospheric atmospheric radon (Rn222) measurements to the development and verification of the global 3-D atmospheric chemical transport model under development by NASA's Atmospheric Effects of Aviation Project (AEAP). The AEAP project had two principal components: (1) a modeling effort, whose goal was to create, test and apply an elaborate three-dimensional atmospheric chemical transport model (the NASA/AEAP Core model to an evaluation of the possible short and long-term effects of aircraft emissions on atmospheric chemistry and climate--and (2) a measurement effort, whose goal was to obtain a focused set of atmospheric measurements that would provide some of the observational data used in the modeling effort. My activity in this project was confined to the first of these components. Both atmospheric transport and atmospheric chemical reactions (as well the input and removal of chemical species) are accounted for in the NASA/AEAP Core model. Thus, for example, in assessing the effect of aircraft effluents on the chemistry of a given region of the upper troposphere, the model must keep track not only of the chemical reactions of the effluent species emitted by aircraft flying in this region, but also of the transport into the region of these (and other) species from other, remote sources--for example, via the vertical convection of boundary layer air to the upper troposphere. Radon, because of its known surface source and known radioactive half-life, and freedom from chemical production or loss, and from removal from the atmosphere by physical scavenging, is a recognized and valuable tool for testing the transport components of global transport and circulation models.

  17. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which will be discussed in this presentation.

  18. NIR-Driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.

    2017-01-01

    H2O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H2O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H2O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H2O signatures may be strengthened by a factor of a few, loosening the observational demands for a H2O detection.

  19. Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Rafkin, S.; Drossart, P.

    2006-11-01

    A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).

  20. Probing Venus' polar upper atmosphere in situ: Preliminary results of the Venus Express Atmospheric Drag Experiment (VExADE).

    NASA Astrophysics Data System (ADS)

    Rosenblatt, Pascal; Bruinsma, Sean; Mueller-Wodarg, Ingo; Haeusler, Bernd

    On its highly elliptical 24 hour orbit around Venus, the Venus Express (VEx) spacecraft briefly reaches a pericenter altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008 (campaign1), October 2009 (cam-paign2), February and April 2010 (campaign3), for which the pericenter altitude was lowered to about 175 km in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in-situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the pericenter pass, allowing us to infer total atmospheric mass density at the pericenter altitude. The GINS software (Géodésie par Intégration Numérique e e Simultanées) is used to accurately reconstruct the orbital motion of VEx through an iterative least-squares fitting process to the Doppler tracking data. The drag acceleration is modelled using an initial atmospheric density model (VTS model, A. Hedin). A drag scale factor is estimated for each pericenter pass, which scales Hedin's density model in order to best fit the radio tracking data. About 20 density scale factors have been obtained mainly from the second and third VExADE campaigns, which indicate a lower density by a factor of about one-third than Hedin's model predicts. These first ever polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements. The preliminary results of the VExADE cam-paigns show that it is possible to obtain reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEx pericenter altitude to below 170 Km.

  1. Non-thermal hydrogen atoms in the terrestrial upper thermosphere.

    PubMed

    Qin, Jianqi; Waldrop, Lara

    2016-12-06

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.

  2. Non-thermal hydrogen atoms in the terrestrial upper thermosphere

    PubMed Central

    Qin, Jianqi; Waldrop, Lara

    2016-01-01

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere. PMID:27922018

  3. Midnight Temperature Maximum (MTM) in Whole Atmosphere Model (WAM) Simulations

    DTIC Science & Technology

    2016-04-14

    naturally strongly dissipative medium, eliminating the need for ‘‘ sponge layers’’ and extra numerical dissipation often imposed in upper layers to...stabilize atmospheric model codes. WAM employs no ‘‘ sponge layers’’ and remains stable using a substantially reduced numerical Rayleigh friction coeffi

  4. The atmosphere of Pluto as observed by New Horizons

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie A.; Summers, Michael E.; Strobel, Darrell F.; Hinson, David P.; Kammer, Joshua A.; Parker, Alex H.; Steffl, Andrew J.; Linscott, Ivan R.; Parker, Joel Wm.; Cheng, Andrew F.; Slater, David C.; Versteeg, Maarten H.; Greathouse, Thomas K.; Retherford, Kurt D.; Throop, Henry; Cunningham, Nathaniel J.; Woods, William W.; Singer, Kelsi N.; Tsang, Constantine C. C.; Schindhelm, Eric; Lisse, Carey M.; Wong, Michael L.; Yung, Yuk L.; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F.; Tyler, G. Leonard; Bagenal, F.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Ore, C. M. Dalle; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Holdridge, M. E.; Horanyi, M.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Ryschkewitsch, M. G.; Schenk, P.; Sepan, B.; Showalter, M. R.; Soluri, M.; Stanbridge, D.; Stryk, T.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Zangari, A. M.; Zirnstein, E.

    2016-03-01

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state - over seasonal or geologic time scales.

  5. The atmosphere of Pluto as observed by New Horizons.

    PubMed

    Gladstone, G Randall; Stern, S Alan; Ennico, Kimberly; Olkin, Catherine B; Weaver, Harold A; Young, Leslie A; Summers, Michael E; Strobel, Darrell F; Hinson, David P; Kammer, Joshua A; Parker, Alex H; Steffl, Andrew J; Linscott, Ivan R; Parker, Joel Wm; Cheng, Andrew F; Slater, David C; Versteeg, Maarten H; Greathouse, Thomas K; Retherford, Kurt D; Throop, Henry; Cunningham, Nathaniel J; Woods, William W; Singer, Kelsi N; Tsang, Constantine C C; Schindhelm, Eric; Lisse, Carey M; Wong, Michael L; Yung, Yuk L; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F; Tyler, G Leonard

    2016-03-18

    Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales. Copyright © 2016, American Association for the Advancement of Science.

  6. Present state of knowledge of the upper atmosphere 1990: An assessment report

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Kurylo, M. J.; Prather, M. J.; Ormond, F. M.

    1990-01-01

    NASA is charged with the responsibility to report on the state of the knowledge of the Earth's upper atmosphere, particularly the stratosphere. Part 1 of this report, issued earlier this year, summarized the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program during the last two years. New findings since the last report to Congress was issued in 1988 are presented. Several scientific assessments of the current understanding of the chemical composition and physical structure of the stratosphere are included, in particular how the abundance and distribution of ozone is predicted to change in the future. These reviews include: a summary of the most recent international assessment of stratospheric ozone; a study of future chlorine and bromine loading of the atmosphere; a review of the photochemical and chemical kinetics data that are used as input parameters for the atmospheric models; a new assessment of the impact of Space Shuttle launches on the stratosphere; a summary of the environmental issues and needed research to evaluate the impact of the newly re-proposed fleet of stratospheric supersonic civil aircraft; and a list of the contributors to this report and the science assessments which have formed our present state of knowledge of the upper atmosphere and ozone depletion.

  7. Thermosphere-Ionosphere-Mesosphere Modeling Using the TIE-GCM, TIME-GCM, and WACCM That Will Lead to the Development of a Seamless Model of the Whole Atmosphere

    DTIC Science & Technology

    2006-09-30

    disturbances from the lower atmosphere and ocean affect the upper atmosphere and how this variability interacts with the variability generated by solar and...represents “ general circulation model.” Both models include self-consistent ionospheric electrodynamics, that is, a calculation of the electric fields...and currents generated by the ionospheric dynamo, and consideration of their effects on the neutral dynamics. The TIE-GCM is used for studies that

  8. Radio scintillations observed during atmospheric occultations of Voyager: Internal gravity waves at Titan and magnetic field orientations at Jupiter and Saturn. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.

    1983-01-01

    The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.

  9. Upper Atmosphere Research Satellite (UARS): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A general overview of NASA's Upper Atmosphere Research Satellite (UARS) program is presented in a broad based informational publication. The UARS will be responsible for carrying out the first systematic, comprehensive study of the stratosphere and will furnish important new data on the mesosphere and thermosphere. The UARS mission objectives are to provide an increased understanding of energy input into the upper atmosphere; global photochemistry of the upper atmosphere; dynamics of the upper atmosphere; coupling among these processes; and coupling between the upper and lower atmosphere. These mission objectives are briefly described along with the UARS on-board instrumentation and related data management systems.

  10. Semiempirical photospheric models of a solar flare on May 28, 2012

    NASA Astrophysics Data System (ADS)

    Andriets, E. S.; Kondrashova, N. N.

    2015-02-01

    The variation of the photosphere physical state during the decay phase of SF/B6.8-class solar flare on May 28, 2012 in active region NOAA 11490 is studied. We used the data of the spectropolarimetric observations with the French-Italian solar telescope THEMIS (Tenerife, Spain). Semi-empirical model atmospheres are derived from the inversion with SIR (Stokes Inversion based on Response functions) code. The inversion was based on Stokes profiles of six photospheric lines. Each model atmosphere has a two-component structure: a magnetic flux tube and non-magnetic surroundings. The Harvard Smithsonian Reference Atmosphere (HSRA) has been adopted for the surroundings. The macroturbulent velocity and the filling factor were assumed to be constant with the depth. The optical depth dependences of the temperature, magnetic field strength, and line-of-sight velocity are obtained from inversion. According to the received model atmospheres, the parameters of the magnetic field and the thermodynamical parameters changed during the decay phase of the flare. The model atmospheres showed that the photosphere remained in a disturbed state during observations after the maximum of the flare. There are temporal changes in the temperature and the magnetic field strength optical depth dependences. The temperature enhancement in the upper photospheric layers is found in the flaring atmospheres relative to the quiet-Sun model. The downflows are found in the low and upper photosphere at the decay phase of the flare.

  11. Condition of the upper atmosphere of the Earth at the final stage of flight manned orbital facility (MOF) "Mir". The modeling description

    NASA Astrophysics Data System (ADS)

    Boyarchuk, K. A.; Ivanov-Kholodny, G. S.; Kolomiitsev, O. P.; Surotkin, V. A.

    At flooding MOF ``Mir'' the information on forecasting a condition of the upper atmosphere was used. The forecast was carried out on the basis of numerical model of an atmosphere, which was developed in IZMIRAN. This model allows reproducing and predicting a situation in an Earth space, in an atmosphere and an ionosphere, along an orbit of flight of a space vehicle in the various periods of solar-geophysical conditions. Thus preliminary forecasting solar and geomagnetic activity was carried out on the basis of an individual technique. Before the beginning of operation on flooding MOF ``Mir'' it was found out, that solar activity began to accrue catastrophically. The account of the forecast of its development has forced to speed up the moment of flooding to avoid dangerous development of events. It has allowed minimizing a risk factor - ``Mir'' was flooded successful in the commanded area of Pacific Ocean.

  12. Model of the vertical structure of the optical parameters of the Neptune atmosphere.

    NASA Astrophysics Data System (ADS)

    Morozhenko, A. V.

    Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.

  13. Gone with the Wind: Three Years of MAVEN Measurements of Atmospheric Loss at Mars

    NASA Astrophysics Data System (ADS)

    Brain, David; MAVEN Team

    2017-10-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is making measurements of the Martian upper atmosphere and near space environment, and their interactions with energy inputs from the Sun. A major goal of the mission is to evaluate the loss of atmospheric gases to space in the present epoch, and over Martian history. MAVEN is equipped with instruments that measure both the neutral and charged upper atmospheric system (thermosphere, ionosphere, exosphere, and magnetosphere), inputs from the Sun (extreme ultraviolet flux, solar wind and solar energetic particles, and interplanetary magnetic field), and escaping atmospheric particles. The MAVEN instruments, coupled with models, allow us to more completely understand the physical processes that control atmospheric loss and the particle reservoirs for loss.Here, we provide an overview of the significant results from MAVEN over approximately 1.5 Mars years (nearly three Earth years) of observation, from November 2014 to present. We argue that the MAVEN measurements tell us that the loss of atmospheric gases to space was significant over Martian history, and present the seasonal behavior of the upper atmosphere and magnetosphere. We also discuss the influence of extreme events such as solar storms, and a variety of new discoveries and observations of the Martian system made by MAVEN.

  14. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheresmore » are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.« less

  15. Validation of Earth atmosphere models using solar EUV observations from the CORONAS and PROBA2 satellites in occultation mode

    NASA Astrophysics Data System (ADS)

    Slemzin, Vladimir; Ulyanov, Artyom; Gaikovich, Konstantin; Kuzin, Sergey; Pertsov, Andrey; Berghmans, David; Dominique, Marie

    2016-02-01

    Aims: Knowledge of properties of the Earth's upper atmosphere is important for predicting the lifetime of low-orbit spacecraft as well as for planning operation of space instruments whose data may be distorted by atmospheric effects. The accuracy of the models commonly used for simulating the structure of the atmosphere is limited by the scarcity of the observations they are based on, so improvement of these models requires validation under different atmospheric conditions. Measurements of the absorption of the solar extreme ultraviolet (EUV) radiation in the upper atmosphere below 500 km by instruments operating on low-Earth orbits (LEO) satellites provide efficient means for such validation as well as for continuous monitoring of the upper atmosphere and for studying its response to the solar and geomagnetic activity. Method: This paper presents results of measurements of the solar EUV radiation in the 17 nm wavelength band made with the SPIRIT and TESIS telescopes on board the CORONAS satellites and the SWAP telescope on board the PROBA2 satellite in the occulted parts of the satellite orbits. The transmittance profiles of the atmosphere at altitudes between 150 and 500 km were derived from different phases of solar activity during solar cycles 23 and 24 in the quiet state of the magnetosphere and during the development of a geomagnetic storm. We developed a mathematical procedure based on the Tikhonov regularization method for solution of ill-posed problems in order to retrieve extinction coefficients from the transmittance profiles. The transmittance profiles derived from the data and the retrieved extinction coefficients are compared with simulations carried out with the NRLMSISE-00 atmosphere model maintained by Naval Research Laboratory (USA) and the DTM-2013 model developed at CNES in the framework of the FP7 project ATMOP. Results: Under quiet and slightly disturbed magnetospheric conditions during high and low solar activity the extinction coefficients calculated by both models agreed with the measurements within the data errors. The NRLMSISE-00 model was not able to predict the enhancement of extinction above 300 km observed after 14 h from the beginning of a geomagnetic storm whereas the DTM-2013 model described this variation with good accuracy.

  16. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water

    NASA Astrophysics Data System (ADS)

    Chaffin, M. S.; Deighan, J.; Schneider, N. M.; Stewart, A. I. F.

    2017-01-01

    Atmospheric loss has controlled the history of Martian habitability, removing most of the planet’s initial water through atomic hydrogen and oxygen escape from the upper atmosphere to space. In standard models, H and O escape in a stoichiometric 2:1 ratio because H reaches the upper atmosphere via long-lived molecular hydrogen, whose abundance is regulated by a photochemical feedback sensitive to atmospheric oxygen content. The relatively constant escape rates these models predict are inconsistent with known H escape variations of more than an order of magnitude on seasonal timescales, variation that requires escaping H to have a source other than H2. The best candidate source is high-altitude water, detected by the Mars Express spacecraft in seasonally variable concentrations. Here we use a one-dimensional time-dependent photochemical model to show that the introduction of high-altitude water can produce a large increase in the H escape rate on a timescale of weeks, quantitatively linking these observations. This H escape pathway produces prompt H loss that is not immediately balanced by O escape, influencing the oxidation state of the atmosphere for millions of years. Martian atmospheric water loss may be dominated by escape via this pathway, which may therefore potentially control the planet’s atmospheric chemistry. Our findings highlight the influence that seasonal atmospheric variability can have on planetary evolution.

  17. Present State of Knowledge of the Upper Atmosphere 1996: An Assessment Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Kaye, J. A.; Decola, P. L.; Friedl, R. R.; Peterson, D. B.

    1997-01-01

    This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial report to congress and the Environmental Protection Agency. NASA is charged with the responsibility to report on the state of our knowledge of the Earth's upper atmosphere, particularly the Stratosphere. Part 1 of this report summarizes the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program and Atmospheric Chemistry Modeling and Analysis Program for the period of 1994-1996. Part 2 (this document) presents summaries of several scientific assessments, reviews, and summaries. These include the executive summaries of two scientific assessments: (Section B) 'Scientific Assessment of Ozone Depletion: 1994'; (Section C) 'l995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft); end of mission/series statements for three stratospherically-focused measurement campaigns: (Section D) 'ATLAS End-of-Series Statement'; (Section E) 'ASHOE/MAESA End-of-Mission Statement'; (Section F) 'TOTE/VOTE End-of-Mission Statement'; a summary of NASA's latest biennial review of fundamental photochemical processes important to atmospheric chemistry 'Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling'; and (Section H) the section 'Atmospheric Ozone Research" from the Mission to Planet Earth Science Research Plan, which describes NASA's current and future research activities related to both tropospheric and stratospheric chemistry.

  18. A methodology for reduced order modeling and calibration of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush M.; Linares, Richard

    2017-10-01

    Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.

  19. Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides

    Treesearch

    Eric A. Davidson; Michael Keller; Heather E. Erickson; Verchot NO-VALUE; Edzo Veldkamp

    2000-01-01

    Nitrous and nitric oxides are often studied separately by atmospheric chemists because they play such different roles in the atmosphere. N2O is a stable greenhouse gas in the lower atmosphere (the troposphere; Ramanathan et al. 1985), but it participates in photochemical reactions in the upper atmosphere (the stratosphere) that destroy ozone (Crutzen 1970). In contrast...

  20. IMPACT: Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking

    NASA Astrophysics Data System (ADS)

    Koller, J.; Brennan, S.; Godinez, H. C.; Higdon, D. M.; Klimenko, A.; Larsen, B.; Lawrence, E.; Linares, R.; McLaughlin, C. A.; Mehta, P. M.; Palmer, D.; Ridley, A. J.; Shoemaker, M.; Sutton, E.; Thompson, D.; Walker, A.; Wohlberg, B.

    2013-12-01

    Low-Earth orbiting satellites suffer from atmospheric drag due to thermospheric density which changes on the order of several magnitudes especially during space weather events. Solar flares, precipitating particles and ionospheric currents cause the upper atmosphere to heat up, redistribute, and cool again. These processes are intrinsically included in empirical models, e.g. MSIS and Jacchia-Bowman type models. However, sensitivity analysis has shown that atmospheric drag has the highest influence on satellite conjunction analysis and empirical model still do not adequately represent a desired accuracy. Space debris and collision avoidance have become an increasingly operational reality. It is paramount to accurately predict satellite orbits and include drag effect driven by space weather. The IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), funded with over $5 Million by the Los Alamos Laboratory Directed Research and Development office, has the goal to develop an integrated system of atmospheric drag modeling, orbit propagation, and conjunction analysis with detailed uncertainty quantification to address the space debris and collision avoidance problem. Now with over two years into the project, we have developed an integrated solution combining physics-based density modeling of the upper atmosphere between 120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several novel approaches including a unique observational sensor developed at Los Alamos; machine learning with a support-vector machine approach of the coupling between solar drivers of the upper atmosphere and satellite drag; rigorous data assimilative modeling using a physics-based approach instead of empirical modeling of the thermosphere; and a computed-tomography method for extracting temporal maps of thermospheric densities using ground based observations. The developed IMPACT framework is an open research framework enabling the exchange and testing of a variety of atmospheric density models, orbital propagators, drag coefficient models, ground based observations, etc. and study their effect on conjunctions and uncertainty predictions. The framework is based on a modern service-oriented architecture controlled by a web interface and providing 3D visualizations. The goal of this project is to revolutionize the ability to monitor and track space objects during highly disturbed space weather conditions, provide suitable forecasts for satellite drag conditions and conjunction analysis, and enable the exchange of models, codes, and data in an open research environment. We will present capabilities and results of the IMPACT framework including a demo of the control interface and visualizations.

  1. Mars global reference atmosphere model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.

    1992-01-01

    Mars-GRAM is an empirical model that parameterizes the temperature, pressure, density, and wind structure of the Martian atmosphere from the surface through thermospheric altitudes. In the lower atmosphere of Mars, the model is built around parameterizations of height, latitudinal, longitudinal, and seasonal variations of temperature determined from a survey of published measurements from the Mariner and Viking programs. Pressure and density are inferred from the temperature by making use of the hydrostatic and perfect gas laws relationships. For the upper atmosphere, the thermospheric model of Stewart is used. A hydrostatic interpolation routine is used to insure a smooth transition from the lower portion of the model to the Stewart thermospheric model. Other aspects of the model are discussed.

  2. Simulation of the August 21, 2017 Solar Eclipse Using the Whole Atmosphere Community Climate Model - eXtended (WACCM-X)

    NASA Astrophysics Data System (ADS)

    McInerney, J. M.; Liu, H.; Marsh, D. R.; Solomon, S. C.; Vitt, F.; Conley, A. J.

    2017-12-01

    The total solar eclipse of August 21, 2017 transited the entire continental United States. This presented an opportunity for model simulation of eclipse effects on the lower atmosphere, upper atmosphere, and ionosphere. The Community Earth System Model (CESM), v2.0, now includes a functional version of the Whole Atmosphere Community Climate Model - eXtended (WACCM-X) that has a fully interactive ionosphere and thermosphere. WACCM-X, with a model top up to 700 kilometers, is an atmospheric component of CESM and is being developed at the National Center for Atmospheric Research in Boulder, Colorado. Here we present results from simulations using this model during a total solar eclipse. This not only gives insights into the effects of the eclipse through the entire atmosphere from the surface through the ionosphere/thermosphere, but also serves as a validation tool for the model.

  3. Investigation of the external flow analysis for density measurements at high altitude. [shuttle upper atmosphere mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Bienkowski, G. K.

    1983-01-01

    A Monte Carlo program was developed for modeling the flow field around the space shuttle in the vicinity of the shuttle upper atmosphere mass spectrometer experiment. The operation of the EXTERNAL code is summarized. Issues associated with geometric modeling of the shuttle nose region and the modeling of intermolecular collisions including rotational energy exchange are discussed as well as a preliminary analysis of vibrational excitation and dissociation effects. The selection of trial runs is described and the parameters used for them is justified. The original version and the modified INTERNAL code for the entrance problem are reviewed. The code listing is included.

  4. NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.

    H{sub 2}O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H{sub 2}O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H{sub 2}O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapormore » mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H{sub 2}O signatures may be strengthened by a factor of a few, loosening the observational demands for a H{sub 2}O detection.« less

  5. STOCHASTIC TRANSIENTS AS A SOURCE OF QUASI-PERIODIC PROCESSES IN THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Walsh, Robert W.; Su, Jiangtao

    2016-06-01

    Solar dynamics and turbulence occur at all heights of the solar atmosphere and could be described as stochastic processes. We propose that finite-lifetime transients recurring at a certain place could trigger quasi-periodic processes in the associated structures. In this study, we developed a mathematical model for finite-lifetime and randomly occurring transients, and found that quasi-periodic processes with periods longer than the timescale of the transients, are detectable intrinsically in the form of trains. We simulate their propagation in an empirical solar atmospheric model with chromosphere, transition region, and corona. We found that, due to the filtering effect of the chromosphericmore » cavity, only the resonance period of the acoustic resonator is able to propagate to the upper atmosphere; such a scenario is applicable to slow magnetoacoustic waves in sunspots and active regions. If the thermal structure of the atmosphere is less wild and acoustic resonance does not take place, the long-period oscillations could propagate to the upper atmosphere. Such a case would be more likely to occur in polar plumes.« less

  6. Impacts of atmospheric variability on a coupled upper-ocean/ecosystem model of the subarctic Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Monahan, Adam Hugh; Denman, Kenneth L.

    2004-06-01

    The biologically-mediated flux of carbon from the upper ocean to below the permanent thermocline (the biological pump) is estimated to be ˜10 PgC/yr [, 2001], and plays an important role in the global carbon cycle. A detailed quantitative understanding of the dynamics of the biological pump is therefore important, particularly in terms of its potential sensitivity to climate change and its role in this change via feedback processes. Previous studies of coupled upper-ocean/planktonic ecosystem dynamics have considered models forced by observed atmospheric variability or by smooth annual and diurnal cycles. The second approach has the drawback that environmental variability is ubiquitous in the climate system, and may have a nontrivial impact on the (nonlinear) dynamics of the system, while the first approach is limited by the fact that observed time series are generally too short to obtain statistically robust characterizations of variability in the system. In the present study, an empirical stochastic model of high-frequency atmospheric variability (with a decorrelation timescale of less than a week) is estimated from long-term observations at Ocean Station Papa in the northeast subarctic Pacific. This empirical model, the second-order statistics of which resemble those of the observations to a good approximation, is used to produce very long (1000-year) realizations of atmospheric variability which are used to drive a coupled upper-ocean/ecosystem model. It is found that fluctuations in atmospheric forcing do not have an essential qualitative impact on most aspects of the dynamics of the ecosystem when primary production is limited by the availability of iron, although pronounced interannual variability in diatom abundance is simulated (even in the absence of episodic iron fertilization). In contrast, the impacts of atmospheric variability are considerably more significant when phytoplankton growth is limited in the summer by nitrogen availability, as observed closer to the North American coast. Furthermore, the high-frequency variability in atmospheric forcing is associated with regions in parameter space in which the system alternates between iron and nitrogen limitation on interannual to interdecadal timescales. Both the mean and variability of export production are found to be significantly larger in the nitrogen-limited regime than in the iron-limited regime.

  7. TOWARDS OPERATIONAL FORECASTING OF LOWER ATMOSPHERE EFFECTS ON THE UPPER ATMOSPHERE AND IONOSPHERE: INTEGRATED DYNAMICS IN EARTH’S ATMOSPHERE (IDEA)

    NASA Astrophysics Data System (ADS)

    Akmaev, R. A.; Fuller-Rowell, T. J.; Wu, F.; Wang, H.; Juang, H.; Moorthi, S.; Iredell, M.

    2009-12-01

    The upper atmosphere and ionosphere exhibit variability and phenomena that have been associated with planetary and tidal waves originating in the lower atmosphere. To study and be able to predict the effects of these global-scale dynamical perturbations on the coupled thermosphere-ionosphere-electrodynamics system a new coupled model is being developed under the IDEA project. To efficiently cross the infamous R2O “death valley”, from the outset the IDEA project leverages the natural synergy between NOAA’s National Weather Service’s (NWS) Space Weather Prediction and Environmental Modeling Centers and a NOAA-University of Colorado cooperative institute (CIRES). IDEA interactively couples a Whole Atmosphere Model (WAM) with ionosphere-plasmasphere and electrodynamics models. WAM is a 150-layer general circulation model (GCM) based on NWS’s operational weather prediction Global Forecast System (GFS) extended from its nominal top altitude of 62 km to over 600 km. It incorporates relevant physical processes including those responsible for the generation of tidal and planetary waves in the troposphere and stratosphere. Long-term simulations reveal realistic seasonal variability of tidal waves with a substantial contribution from non-migrating tidal modes, recently implicated in the observed morphology of the ionosphere. Such phenomena as the thermospheric Midnight Temperature Maximum (MTM), previously associated with the tides, are also realistically simulated for the first time.

  8. Modelling the isotopic evolution of the Earth.

    PubMed

    Paul, Debajyoti; White, William M; Turcotte, Donald L

    2002-11-15

    We present a flexible multi-reservoir (primitive lower mantle, depleted upper mantle, upper continental crust, lower continental crust and atmosphere) forward-transport model of the Earth, incorporating the Sm-Nd, Rb-Sr, U-Th-Pb-He and K-Ar isotope-decay systematics. Mathematically, the model consists of a series of differential equations, describing the changing abundance of each nuclide in each reservoir, which are solved repeatedly over the history of the Earth. Fluxes between reservoirs are keyed to heat production and further constrained by estimates of present-day fluxes (e.g. subduction, plume flux) and current sizes of reservoirs. Elemental transport is tied to these fluxes through 'enrichment factors', which allow for fractionation between species. A principal goal of the model is to reproduce the Pb-isotope systematics of the depleted upper mantle, which has not been done in earlier models. At present, the depleted upper mantle has low (238)U/(204)Pb (mu) and (232)Th/(238)U (kappa) ratios, but Pb-isotope ratios reflect high time-integrated values of these ratios. These features are reproduced in the model and are a consequence of preferential subduction of U and of radiogenic Pb from the upper continental crust into the depleted upper mantle. At the same time, the model reproduces the observed Sr-, Nd-, Ar- and He-isotope ratios of the atmosphere, continental crust and mantle. We show that both steady-state and time-variant concentrations of incompatible-element concentrations and ratios in the continental crust and upper mantle are possible. Indeed, in some cases, incompatible-element concentrations and ratios increase with time in the depleted mantle. Hence, assumptions of a progressively depleting or steady-state upper mantle are not justified. A ubiquitous feature of this model, as well as other evolutionary models, is early rapid depletion of the upper mantle in highly incompatible elements; hence, a near-chondritic Th/U ratio in the upper mantle throughout the Archean is unlikely. The model also suggests that the optimal value of the bulk silicate Earth's K/U ratio is close to 10000; lower values suggested recently seem unlikely.

  9. Simulation of the impact of thunderstorm activity on atmospheric gas composition

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.

    2010-08-01

    A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.

  10. H20 and CH4 abundances under non-LTE conditions from MIPAS upper atmosphere measurements.

    NASA Astrophysics Data System (ADS)

    Koukouli, M. E.; Imk-Iaa Mipas/Envisat Team

    Vertical profiles of water vapour and methane have been retrieved from measurements of the Earth's Upper Atmosphere made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the polar orbiting ENVISAT satellite. The spectral range targeted is 685-2410 cm-1 (4.1-14.6 μm) and the retrieval altitude range is ˜25-80 km. The Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA), jointly developed by IAA and IMK, has been used to analyse two days' worth of upper atmosphere orbits, from July 2002 and June 2003. The vertical profiles retrieved are compared and calibrated against other known water vapour experiments (e.g. HALOE) in the corresponding vertical and spacial co-locations. Global three-dimensional maps are also presented and validated against modelling results (e.g. Garcia and Solomon). The total hydrogen content of the Earth's middle atmosphere will also be investigated as means of identifying possible sinks or sources in the water vapour and methane day-night variability. A comprehensive systematic error analysis will complement the presentation of the results.

  11. Incorporating Planetary-Scale Waves Into the VTGCM: Understanding the Waves Impact on the Upper Atmosphere of Venus.

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.

    2017-01-01

    Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.

  12. Rarefied gas dynamic simulation of transfer and escape in the Pluto-Charon system

    NASA Astrophysics Data System (ADS)

    Hoey, William A.; Yeoh, Seng Keat; Trafton, Laurence M.; Goldstein, David B.; Varghese, Philip L.

    2017-05-01

    We apply the direct simulation Monte Carlo rarefied gas dynamic technique to simulations of Pluto's rarefied upper atmosphere motivated by the need to better understand New Horizons (NH) data. We present a novel three-dimensional DSMC model of the atmosphere that spans from several hundred km below the exobase - where continuum flow transitions to the rarefied regime - to fully free-molecular flow hundreds of thousands of km from Pluto's center. We find molecular collisions in Pluto's upper atmosphere to be significant in shaping the flowfield, both by promoting flux from the plutonian exobase to Charon and by increasing the proportion of that flux generated on the exobase's anti-Charon hemisphere. Our model accounts for the gravitational fields of both Pluto and Charon, the centripetal and Coriolis forces due to the rotation of Pluto in our reference frame, and the presence of Charon as a temporary sink for impacting particles. Using this model, we analyze the escape processes of N2 and CH4 from Pluto across different solar heating conditions, and evaluate the three-dimensional structure of the upper plutonian atmosphere, including gas transfer to and deposition on Charon. We find results consistent with the NH-determined escape rate, upper atmospheric temperature, and lack of a detectable Charon atmosphere. Gas-transfer structures are noted in a binary atmospheric configuration, including preferential deposition of material from Pluto's escaping atmosphere onto Charon's leading hemisphere that peaks at 315° E on the equator. As the moon gravitationally focuses incident flow, a high density structure forms in its wake. If molecules are permitted to escape from Charon in diffuse reflections from its surface, a returning flux forms to Pluto's exobase, preferentially directed toward its trailing hemisphere. Charon is capable of supporting a thin atmosphere at column densities as high as 1.5 × 1017 m-2 in simulations with a plutonian exobase condition similar to the NH encounter. Results computed from a fit to the NH encounter exobase (Gladstone et al., 2016) predict a system escape rate of 7 × 1025 CH4 s-1 in close agreement with those reported by NH (Bagenal et al., 2016; Gladstone et al., 2016), and a net depositional flux to Charon of 2 × 1024 s-1, of which ∼98% is methane.

  13. Characterizing the UV environment of GJ1214b

    NASA Astrophysics Data System (ADS)

    Desert, Jean-Michel

    2010-09-01

    The recent detection of a super-Earth transiting a nearby low-mass star GJ1214 {Charbonneau et al., 2009} has opened the door to testing the predictions of low mass planet atmosphere theories. Theoretical models predict that low mass planets are likely to exist with atmospheres that can vary widely in their composition and structure. Some super-Earths may be able to retain massive hydrogen-rich atmospheres. Others might never accumulate hydrogen or experience significant escape of lightweight elements, resulting in atmospheres more like those of the terrestrial planets in our Solar System. Planets which orbit close to their parent stars, such as close-in hot-Jupiters and super-Earths, are exposed to strong XEUV flux that influence their atmospheres and may trigger atmospheric escape processes. This phenomenon, which shapes planetary atmospheres, determines the evolution of the planet. This can also dramatically enhance the detectability of a heavily irradiated hydrogen atmosphere when the planet transits in front of its parent star. We propose to use HST/STIS/G140M to determine the intensity and variability of the Lyman-alpha chromospheric emission line and provide observational constraints to super-Earth atmospheric models. We propose to coordinate this measurement with a planetary transit in order to detect large upper atmospheric signatures if present. This short measurement also enables us to determine whether a larger program dedicated to upper atmospheric study is feasible for a following cycle.

  14. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  15. Analysis and Hindcast Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+DART

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Liu, H.-L.; Marsh, D. R.; Raeder, K.; Anderson, J. L.; Chau, J. L.; Goncharenko, L. P.; Siddiqui, T. A.

    2018-04-01

    The ability to perform data assimilation in the Whole Atmosphere Community Climate Model eXtended version (WACCMX) is implemented using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. Results are presented demonstrating that WACCMX+DART analysis fields reproduce the middle and upper atmosphere variability during the 2009 major sudden stratospheric warming (SSW) event. Compared to specified dynamics WACCMX, which constrains the meteorology by nudging toward an external reanalysis, the large-scale dynamical variability of the stratosphere, mesosphere, and lower thermosphere is improved in WACCMX+DART. This leads to WACCMX+DART better representing the downward transport of chemical species from the mesosphere into the stratosphere following the SSW. WACCMX+DART also reproduces most aspects of the observed variability in ionosphere total electron content and equatorial vertical plasma drift during the SSW. Hindcast experiments initialized on 5, 10, 15, 20, and 25 January are used to assess the middle and upper atmosphere predictability in WACCMX+DART. A SSW, along with the associated middle and upper atmosphere variability, is initially predicted in the hindcast initialized on 15 January, which is ˜10 days prior to the warming. However, it is not until the hindcast initialized on 20 January that a major SSW is forecast to occur. The hindcast experiments reveal that dominant features of the total electron content can be forecasted ˜10-20 days in advance. This demonstrates that whole atmosphere models that properly account for variability in lower atmosphere forcing can potentially extend the ionosphere-thermosphere forecast range.

  16. Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity

    NASA Astrophysics Data System (ADS)

    Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.

    2018-03-01

    Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.

  17. Microbes in the upper atmosphere and unique opportunities for astrobiology research.

    PubMed

    Smith, David J

    2013-10-01

    Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.

  18. Lunar tidal effects during the 2013 stratospheric sudden warming as simulated by the TIME-GCM

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Forbes, J. M.; Zhang, X.; Fejer, B. G.; Yudin, V. A.; Pedatella, N. M.

    2015-12-01

    Stratospheric Sudden Warmings (SSW) are associated with strong planetary wave activity in the winterpolar stratosphere which result in a very disturbed middle atmosphere. The changes in the middle atmospherealter the propagation conditions and the nonlinear interactions of waves and tides, and result in SSW signals in the upper atmosphere in e.g., neutral winds, electric fields, ionospheric currents and plasma distribution. The upper atmosphere changes can be significant at low-latitudes even during medium solar flux conditions. Observationsalso reveal a strong lunar signal during SSW periods in the low latitude vertical drifts and in ionospheric quantities. Forbes and Zhang [2012] demonstrated that during the 2009 SSW period the Pekeris resonance peak of the atmosphere was altered such that the M2 and N2 lunar tidal componentsgot amplified. This study focuses on the effect of the lunar tidal forcing on the thermosphere-ionosphere system during theJanuary 2013 SSW period. We employthe NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM)with a nudging scheme using the Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of meteorological forcing on the upper atmosphere. Additionally lunar tidal forcingis included at the lower boundary of the model. To delineate the lunar tidal effects a base simulation without lunar forcingis employed. Interestingly, Jicamarca observations of that period reveal a suppression of the daytime vertical drift before and after the drift enhancement due the SSW. The simulation suggests that the modulation of the vertical driftmay be caused by the interplay of the migrating solar and lunar semidiurnal tide, and therefore can only be reproduced by the inclusion of both lunar and solar tidal forcings in the model. In this presentation the changes due to the lunar tidal forcing will be quantified, and compared to observations.

  19. Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets

    NASA Astrophysics Data System (ADS)

    Barringer, Daniel; Zugger, M.; Kasting, J.

    2013-01-01

    Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.

  20. Pluto's Extended Atmosphere: New Horizons Alice Lyman-α Imaging

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Gladstone, G. Randall; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly A.; Olkin, Cathy B.; Cheng, Andy F.; Greathouse, Thomas K.; Hinson, David P.; Kammer, Joshua A.; Linscott, Ivan R.; Parker, Alex H.; Parker, Joel Wm.; Pryor, Wayne R.; Schindhelm, Eric; Singer, Kelsi N.; Steffl, Andrew J.; Strobel, Darrell F.; Summers, Michael E.; Tsang, Constantine C. C.; Tyler, G. Len; Versteeg, Maarten H.; Woods, William W.; Cunningham, Nathaniel J.; Curdt, Werner

    2015-11-01

    Pluto's upper atmosphere is expected to extend several planetary radii, proportionally more so than for any planet in our solar system. Atomic hydrogen is readily produced at lower altitudes due to photolysis of methane and transported upward to become an important constituent. The Interplanetary Medium (IPM) provides a natural light source with which to study Pluto's atomic hydrogen atmosphere. While direct solar Lyman-α emissions dominate the signal at 121.6 nm at classical solar system distances, the contribution of diffuse illumination by IPM Lyman-α sky-glow is roughly on par at Pluto (Gladstone et al., Icarus, 2015). Hydrogen atoms in Pluto's upper atmosphere scatter these bright Lyα emission lines, and detailed simulations of the radiative transfer for these photons indicate that Pluto would appear dark against the IPM Lyα background. The Pluto-Alice UV imaging spectrograph on New Horizons conducted several observations of Pluto during the encounter to search for airglow emissions, characterize its UV reflectance spectra, and to measure the radial distribution of IPM Lyα near the disk. Our early results suggest that these model predictions for the darkening of IPM Lyα with decreasing altitude being measureable by Pluto-Alice were correct. We'll report our progress toward extracting H and CH4 density profiles in Pluto's upper atmosphere through comparisons of these data with detailed radiative transfer modeling. These New Horizons findings will have important implications for determining the extent of Pluto's atmosphere and related constraints to high-altitude vertical temperature structure and atmospheric escape.This work was supported by NASA's New Horizons project.

  1. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    NASA Technical Reports Server (NTRS)

    Neubert, Torsten; Banks, Peter M.

    1990-01-01

    Analytical calculations and experimental observations relating to the interaction with the Earth's upper atmosphere of electron beams emitted from low altitude spacecraft are presented. The problem is described by two coupled nonlinear differential equations in the up-going (along a magnetic field line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results form the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere interaction are discussed. First, the limits on the electron beam current that can be emitted from a spacecraft without substantial spacecraft charging are investigated. This is important because the charging of the spacecraft to positive potentials limits the current and the escape energy of the beam electrons and thereby limits the ionization of the neutral atmosphere. As an example, we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1 to 10 keV electron beams from sounding rockets, completely balance the beam current, thereby allowing the emission of very high beam currents. Second, the amount of plasma production in the beam-streak is discussed. Results are shown for selected values of the beam energy, spacecraft velocity, and spacecraft altitude.

  2. Present state of knowledge of the upper atmosphere: An assessment report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.

  3. The Upper Atmosphere; Threshold of Space.

    ERIC Educational Resources Information Center

    Bird, John

    This booklet contains illustrations of the upper atmosphere, describes some recent discoveries, and suggests future research questions. It contains many color photographs. Sections include: (1) "Where Does Space Begin?"; (2) "Importance of the Upper Atmosphere" (including neutral atmosphere, ionized regions, and balloon and investigations); (3)…

  4. On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Chaufray, J. Y.; Modolo, R.; Leclercq, L.; Curry, S.; Luhmann, J.; Lillis, R.; Hara, T.; McFadden, J.; Halekas, J.; Schneider, N.; Deighan, J.; Mahaffy, P. R.; Benna, M.; Johnson, R. E.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M. A.; Eparvier, F. G.; Jakosky, B.

    2017-12-01

    The first measurements of the emission brightness of the oxygen atomic exosphere by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission have clearly shown that it is composed of a thermal component produced by the extension of the upper atmosphere and of a nonthermal component. Modeling these measurements allows us to constrain the origins of the exospheric O and, as a consequence, to estimate Mars' present oxygen escape rate. We here propose an analysis of three periods of MAVEN observations based on a set of three coupled models: a hybrid magnetospheric model (LATmos HYbrid Simulation (LatHyS)), an Exospheric General Model (EGM), and the Global Martian Circulation model of the Laboratoire de Météorologie Dynamique (LMD-GCM), which provide a description of Mars' environment from the surface up to the solar wind. The simulated magnetosphere by LatHyS is in good agreement with MAVEN Plasma and Field Package instruments data. The LMD-GCM modeled upper atmospheric profiles for the main neutral and ion species are compared to Neutral Gas and Ion Mass Spectrometer/MAVEN data showing that the LMD-GCM can provide a satisfactory global view of Mars' upper atmosphere. Finally, we were able to reconstruct the expected emission brightness intensity from the oxygen exosphere using EGM. The good agreement with the averaged measured profiles by Imaging Ultraviolet Spectrograph during these three periods suggests that Mars' exospheric nonthermal component can be fully explained by the reactions of dissociative recombination of the O2+ ion in Mars' ionosphere, limiting significantly our ability to extract information from MAVEN observations of the O exosphere on other nonthermal processes, such as sputtering.

  5. Atmospheric water vapor: Distribution and Empirical estimation in the atmosphere of Thailand

    NASA Astrophysics Data System (ADS)

    Phokate, S.

    2017-09-01

    Atmospheric water vapor is a crucial component of the Earth’s atmosphere, which is shown by precipitable water vapor. It is calculated from the upper air data. In Thailand, the data were collected from four measuring stations located in Chiang Mai, Ubon Ratchathani, Bangkok, and Songkhla during the years 1998-2013. The precipitable water vapor obtained from this investigation were used to define an empirical model associated with the vapor pressure, which is a surface data at the same stations. The result shows that the relationship has a relatively high level of reliability. The precipitable water vapor obtained from the upper air data is nearly equal to the value from the model. The model was used to calculate the precipitable water vapor from the surface data 85 stations across the country. The result shows that seasonal change of the precipitable water vapor was low in the dry season (November-April) and high in the rainy season (May-October). In addition, precipitable water vapor varies along the latitudes of the stations. The high value obtains for low latitudes, but it is low for high latitudes.

  6. MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.

    2017-09-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars has been operating in orbit for more than a full Martian year. Observations are dramatically changing our view of the Mars upper atmosphere system, which includes the upper atmosphere, ionosphere, coupling to the lower atmosphere, magnetosphere, and interactions with the Sun and the solar wind. The data are allowing us to understand the processes controlling the present-day structure of the upper atmosphere and the rates of escape of gas to space. These will tell us the role that escape to space has played in the evolution of the Mars atmosphere and climate.

  7. The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizon's flyby in 2015.

  8. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Person, M. J.; Bosh, A. S.; Levine, S. E.

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event withmore » a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizon's flyby in 2015.« less

  9. The NASA program on upper atmospheric research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The purpose of the NASA Upper Atmospheric Research Program is to develop a better understanding of the physical and chemical processes that occur in the earth's upper atmosphere with emphasis on the stratosphere.

  10. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE PAGES

    Bowman, D. C.; Lees, J. M.

    2018-04-27

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  11. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D. C.; Lees, J. M.

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  12. HEPPA-II model-measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008-2009

    NASA Astrophysics Data System (ADS)

    Funke, Bernd; Ball, William; Bender, Stefan; Gardini, Angela; Harvey, V. Lynn; Lambert, Alyn; López-Puertas, Manuel; Marsh, Daniel R.; Meraner, Katharina; Nieder, Holger; Päivärinta, Sanna-Mari; Pérot, Kristell; Randall, Cora E.; Reddmann, Thomas; Rozanov, Eugene; Schmidt, Hauke; Seppälä, Annika; Sinnhuber, Miriam; Sukhodolov, Timofei; Stiller, Gabriele P.; Tsvetkova, Natalia D.; Verronen, Pekka T.; Versick, Stefan; von Clarmann, Thomas; Walker, Kaley A.; Yushkov, Vladimir

    2017-03-01

    We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx = NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March-April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2-0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05-0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.

  13. The atmospheric emission method of calculating the neutral atmosphere and charged particle densities in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    McElroy, Kenneth L., Jr.

    1992-12-01

    A method is presented for the determination of neutral gas densities in the ionosphere from rocket-borne measurements of UV atmospheric emissions. Computer models were used to calculate an initial guess for the neutral atmosphere. Using this neutral atmosphere, intensity profiles for the N2 (0,5) Vegard-Kaplan band, the N2 Lyman-Birge-Hopfield band system, and the OI2972 A line were calculated and compared with the March 1990 NPS MUSTANG data. The neutral atmospheric model was modified and the intensity profiles recalculated until a fit with the data was obtained. The neutral atmosphere corresponding to the intensity profile that fit the data was assumed to be the atmospheric composition prevailing at the time of the observation. The ion densities were then calculated from the neutral atmosphere using a photochemical model. The electron density profile calculated by this model was compared with the electron density profile measured by the U.S. Air Force Geophysics Laboratory at a nearby site.

  14. Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.

    2013-12-01

    Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable impact on the upper atmosphere and describe techniques for experimental verification of this finding.

  15. Climate Simulations with an Isentropic Finite Volume Dynamical Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chih-Chieh; Rasch, Philip J.

    2012-04-15

    This paper discusses the impact of changing the vertical coordinate from a hybrid pressure to a hybrid-isentropic coordinate within the finite volume dynamical core of the Community Atmosphere Model (CAM). Results from a 20-year climate simulation using the new model coordinate configuration are compared to control simulations produced by the Eulerian spectral and FV dynamical cores of CAM which both use a pressure-based ({sigma}-p) coordinate. The same physical parameterization package is employed in all three dynamical cores. The isentropic modeling framework significantly alters the simulated climatology and has several desirable features. The revised model produces a better representation of heatmore » transport processes in the atmosphere leading to much improved atmospheric temperatures. We show that the isentropic model is very effective in reducing the long standing cold temperature bias in the upper troposphere and lower stratosphere, a deficiency shared among most climate models. The warmer upper troposphere and stratosphere seen in the isentropic model reduces the global coverage of high clouds which is in better agreement with observations. The isentropic model also shows improvements in the simulated wintertime mean sea-level pressure field in the northern hemisphere.« less

  16. An Aerobraking Strategy for Determining Mars Upper Atmospheric Structure

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Murphy, J. R.; Haberle, R. M.

    1997-07-01

    The Mars Global Surveyor (MGS) spacecraft will enter Mars orbit on Sept. 12, 1997, and thereafter undergo aerobraking for roughly 4-months. The final data-taking orbit to be achieved is sun-synchronous (2PM/2AM). An aerobraking strategy has been developed that not only will provide the walk-in capability needed to safely achieve the required Mars orbit, but also will provide a careful monitoring of the atmospheric structure. In particular, the linkage between the lower (0-100 km) and upper (100- 150 km) Mars atmospheres will be investigated. A suite of complementary measurements is planned that will probe the atmosphere over 0-150 km, including : (1) MGS Accelerometer density and inferred temperatures (100-150 km), (2) MGS Thermal Emission Spectrometer (TES) nadir (25-30 km) and limb (up to about 55 km) temperatures, (3) MGS Electron Reflectometer (ER) F1-peak heights (near 130 km), (4) ground-based microwave disk-averaged temperatures (0-70 km), and (5) Mars Pathfinder (MPF) surface meteorological data at 20 N latitude. These datasets acquired during the aerobraking phase will enable the current state of the atmosphere to be examined. Potential dust storm activity and its manifestations throughout the atmosphere can be monitored over Ls = 184 to 250. A corresponding library of coupled 3-D model simulations, based upon the NASA Ames Mars GCM and the NCAR Mars Thermospheric GCM (MTGCM), will be used to : (1) validate the current state of the Mars atmosphere, (2) investigate the various orbital, seasonal, LAT-LT-LON, and potential dust storm trends, and (3) predict the structure of the Mars atmosphere in the aerobraking corridor that is approaching in future MGS orbits. The in-situ accelerometer and ER data will eventually be used to construct a Mars empirical model covering 100-150 km. We will present a few selected GCM simulations to illustrate the expected atmospheric response to a dust storm event. In addition, we will discuss why these upper atmosphere datasets are important to future Mars missions.

  17. Constraining Centennial-Scale Ecosystem-Climate Interactions with a Pre-colonial Forest Reconstruction across the Upper Midwest and Northeastern United States

    NASA Astrophysics Data System (ADS)

    Matthes, J. H.; Dietze, M.; Fox, A. M.; Goring, S. J.; McLachlan, J. S.; Moore, D. J.; Poulter, B.; Quaife, T. L.; Schaefer, K. M.; Steinkamp, J.; Williams, J. W.

    2014-12-01

    Interactions between ecological systems and the atmosphere are the result of dynamic processes with system memories that persist from seconds to centuries. Adequately capturing long-term biosphere-atmosphere exchange within earth system models (ESMs) requires an accurate representation of changes in plant functional types (PFTs) through time and space, particularly at timescales associated with ecological succession. However, most model parameterization and development has occurred using datasets than span less than a decade. We tested the ability of ESMs to capture the ecological dynamics observed in paleoecological and historical data spanning the last millennium. Focusing on an area from the Upper Midwest to New England, we examined differences in the magnitude and spatial pattern of PFT distributions and ecotones between historic datasets and the CMIP5 inter-comparison project's large-scale ESMs. We then conducted a 1000-year model inter-comparison using six state-of-the-art biosphere models at sites that bridged regional temperature and precipitation gradients. The distribution of ecosystem characteristics in modeled climate space reveals widely disparate relationships between modeled climate and vegetation that led to large differences in long-term biosphere-atmosphere fluxes for this region. Model simulations revealed that both the interaction between climate and vegetation and the representation of ecosystem dynamics within models were important controls on biosphere-atmosphere exchange.

  18. A coupled ion-neutral photochemical model for the Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Yelle, R. V.; Klippenstein, S. J.; Horst, S. M.; Lavvas, P.

    2013-12-01

    Recent observations from the Cassini-Huygens spacecraft and the Herschel space observatory drastically increased our knowledge of Titan's chemical composition. The combination of data retrieved by Cassini INMS, UVIS, and CIRS allows deriving the vertical profiles of half a dozen species from 1000 to 100 km, while the HIFI instrument on Herschel reported on the first identification of HNC. Partial data or upper limits are available for almost 20 other CHON neutral species. The INMS and CAPS instruments onboard Cassini also revealed the existence of numerous positive and negative ions in Titan's upper atmosphere. We present the results of a 1D coupled ion-neutral photochemical model intended for the interpretation of the distribution of gaseous species in the Titan atmosphere. The model extends from the surface to the exobase. The atmospheric background, boundary conditions, vertical transport and aerosol opacity are all constrained by the Cassini-Huygens observations. The chemical network includes reactions between hydrocarbons, nitrogen and oxygen bearing species (including some species containing both nitrogen and oxygen, such as NO). It takes into account neutrals and both positive and negative ions with m/z extending up to about 100 u. Ab initio Transition State Theory calculations are performed in order to evaluate the rate coefficients and products for critical reactions. The production of minor nitrogen-bearing species and hydrocarbons is initiated by the dissociation and ionization of N2 and CH4 by solar VUV/EUV photons and associated photoelectrons in the upper atmosphere. We incorporate new high-resolution isotopic photoabsorption and photodissociation cross sections for N2 as well as new photodissociation branching ratios for CH4 and C2H2. The photodissociation of hydrocarbon radicals is taken into account and its impact on the chemistry is discussed for the first time. The presence of oxygen-bearing species is explained by an influx of oxygen originating from Enceladus in the upper atmosphere. The calculated vertical profiles of neutral and ion species generally agree with the existing observational data; some differences are highlighted. We discuss the chemical and physical processes responsible for the production and loss of some key species. We find that the production of neutral species in the upper atmosphere from electron-ion recombination reactions and neutral-neutral radiative association reactions is significant. In the stratosphere, the vertical profile of (cyano)polyynes is extremely sensitive to their heterogeneous loss on aerosols, a process that remains to be constrained experimentally and/or theoretically. This work was performed in the framework of the Marie Curie International Research Staff Exchange Scheme PIRSES-GA-2009-247509.

  19. Hot N2 in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Yelle, R. V.; Heays, A.; Campbell, L.; Brunger, M. J.; Galand, M.; Vuitton, V.

    2015-10-01

    We present a detailed model for the vibrational population of all non pre-dissociating excited electronic states of N2, as well as for the ground and ionic states,in Titan's atmosphere. Our model includes the detailed energy deposition calculations presented in the past [1] as well as the more recent developments in the high resolution N2 photo-absorption cross sections that allow us to calculate photo-excitation rates for different vibrational levels of singlet nitrogen states, and provide information for their pre-dissociation yields.In addition, we consider the effect of collisions and chemical reactions in the population of the different states. Our results demonstrate that a significant population of vibrationally excited ground state N2 survives in Titan's upper atmosphere. This hot N2population can improve the agreement between models and observations for the emission of the c'4 state that is significantly affected by resonant scattering. Moreover we discuss the potential implications of the vibrationally excited population on the ionospheric densities.

  20. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  1. Contributions of the atmosphere-land and ocean-sea ice model components to the tropical Atlantic SST bias in CESM1

    NASA Astrophysics Data System (ADS)

    Song, Z.; Lee, S. K.; Wang, C.; Kirtman, B. P.; Qiao, F.

    2016-02-01

    In order to identify and quantify intrinsic errors in the atmosphere-land and ocean-sea ice model components of the Community Earth System Model version 1 (CESM1) and their contributions to the tropical Atlantic sea surface temperature (SST) bias in CESM1, we propose a new method of diagnosis and apply it to a set of CESM1 simulations. Our analyses of the model simulations indicate that both the atmosphere-land and ocean-sea ice model components of CESM1 contain large errors in the tropical Atlantic. When the two model components are fully coupled, the intrinsic errors in the two components emerge quickly within a year with strong seasonality in their growth rates. In particular, the ocean-sea ice model contributes significantly in forcing the eastern equatorial Atlantic warm SST bias in early boreal summer. Further analysis shows that the upper thermocline water underneath the eastern equatorial Atlantic surface mixed layer is too warm in a stand-alone ocean-sea ice simulation of CESM1 forced with observed surface flux fields, suggesting that the mixed layer cooling associated with the entrainment of upper thermocline water is too weak in early boreal summer. Therefore, although we acknowledge the potential importance of the westerly wind bias in the western equatorial Atlantic and the low-level stratus cloud bias in the southeastern tropical Atlantic, both of which originate from the atmosphere-land model, we emphasize here that solving those problems in the atmosphere-land model alone does not resolve the equatorial Atlantic warm bias in CESM1.

  2. Data Assimilation with the Extended Cmam: Nudging to Re-Analyses of the Lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Fomichev, V. I.; Beagley, S. R.; Shepherd, M. G.; Semeniuk, K.; Mclandress, C. W.; Scinocca, J.; McConnell, J. C.

    2012-12-01

    The extended CMAM is currently being run in a forecast mode allowing the use of the model to simulate specific events. The current analysis period covers 1990-2010. The model is forced using ERA-Interim re-analyses via a nudging technique for the troposphere/stratosphere in combination with the GCM evolution in the lower atmosphere. Thus a transient forced model state is created in the lower atmosphere. The upper atmosphere is allowed to evolve in response to the observed conditions occurring in the lower atmosphere and in response to other transient forcing's such as SSTs, solar flux, and CO2 and CFC boundary changes. This methodology allows specific events and observations to be more successfully compared with the model. The model results compared to TOMS and ACE observations show a good agreement.

  3. Utilization of UARS Data in Validation of Photochemical and Dynamical Mechanism in Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jose M.; Hu, Wenjie; Ko, Malcolm K.W.

    1996-01-01

    The global three-dimensional measurement of long- and short-lived species from Upper Atmospheric Research Satellite (UARS) provides a unique opportunity to validate chemistry and dynamics mechanisms in the middle atmosphere. During the past three months, we focused on expanding our study of data-model comparisons to whole time periods when Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument were operating.

  4. ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spiegel, David S.; Burrows, Adam, E-mail: dsp@astro.princeton.ed, E-mail: burrows@astro.princeton.ed

    2010-10-10

    We develop atmosphere models of two of the three Kepler-field planets that were known prior to the start of the Kepler mission (HAT-P-7b and TrES-2). We find that published Kepler and Spitzer data for HAT-P-7b appear to require an extremely hot upper atmosphere on the dayside, with a strong thermal inversion and little day-night redistribution. The Spitzer data for TrES-2 suggest a mild thermal inversion with moderate day-night redistribution. We examine the effect of nonequilibrium chemistry on TrES-2 model atmospheres and find that methane levels must be adjusted by extreme amounts in order to cause even mild changes in atmosphericmore » structure and emergent spectra. Our best-fit models to the Spitzer data for TrES-2 lead us to predict a low secondary eclipse planet-star flux ratio ({approx}<2 x 10{sup -5}) in the Kepler bandpass, which is consistent with what very recent observations have found. Finally, we consider how the Kepler-band optical flux from a hot exoplanet depends on the strength of a possible extra optical absorber in the upper atmosphere. We find that the optical flux is not monotonic in optical opacity, and the non-monotonicity is greater for brighter, hotter stars.« less

  5. Pluto’s Atmosphere from the 23 June 2011 Stellar Occultation: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Dunham, E. W.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Armhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedermann, M.; Roesser, H.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. L.; Miceli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J.; Rapoport, S.; Ritchie, I.

    2012-10-01

    The double stellar occultation by Pluto and Charon of 2011 June 23 was observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 resulted in the best occultation chords recorded for the event, in three optical wavelength bands. The data obtained from SOFIA were combined with chords obtained from the ground at the IRTF (including a full spectral light curve), the USNO--Flagstaff Station, and Leeward Community College to give a detailed profile of Pluto’s atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee, or kink in the light curves separating them as was observed in 1988 (Millis et al. 1993), rather than the smoothly transitioning bowl-shaped light curves of recent years (Elliot et al. 2007). We analyze the upper atmosphere by fitting a model to all of the light curves obtained, resulting in a half-light radius of 1288 ± 1 km. We analyze the lower atmosphere with two different methods to provide results under the separate assumptions of particulate haze and a strong thermal gradient. Results indicate that the lower atmosphere evolves on short seasonal timescales, changing between 1988 and 2006, and then returning to approximately the 1988 state in 2011, though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again excepting the overall pressure changes. No evidence of the onset of atmospheric collapse predicted by frost migration models is yet seen, and the atmosphere appears to be remaining at a stable pressure level. This work was supported in part by NASA Planetary Astronomy grants to MIT (NNX10AB27G) and Williams College (NNX08AO50G, NNH11ZDA001N), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory.

  6. Electrodynamics on extrasolar giant planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of Hmore » and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be used to constrain electrodynamics in the future.« less

  7. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  8. Present state of knowledge of the upper atmosphere 1988: An assessment report

    NASA Astrophysics Data System (ADS)

    Watson, R. T.; Prather, M. J.; Kurylo, M. J.

    1988-06-01

    This document was issued in response to the Clean Air Act Amendments of 1977, Public Law 95-95, mandating that NASA and other key agencies submit biennial reports to Congress and EPA. NASA is to report on the state of our knowledge of the upper atmosphere, particularly the stratosphere. This is the sixth ozone assessment report submitted to Congress and the concerned regulatory agencies. Part 1 contains an outline of the NASA Upper Atmosphere Research Program and summaries of the research efforts supported during the last two years. An assessment is presented of the state of knowledge as of March 15, 1988 when the Ozone Trends Panel, organized by NASA and co-sponsored by the World Meteorological Organization, NOAA, FAA and the United Nations Environment Program released an executive summary of its findings from a critical in-depth study involving over 100 scientists from 12 countries. Chapter summaries of the International Ozone Trends Panel Report form the major part of this report. Two other sections are Model Predictions of Future Ozone Change and Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Each of these sections and the report in its entirety were peer reviewed.

  9. Present state of knowledge of the upper atmosphere 1988: An assessment report

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Prather, M. J.; Kurylo, M. J.

    1988-01-01

    This document was issued in response to the Clean Air Act Amendments of 1977, Public Law 95-95, mandating that NASA and other key agencies submit biennial reports to Congress and EPA. NASA is to report on the state of our knowledge of the upper atmosphere, particularly the stratosphere. This is the sixth ozone assessment report submitted to Congress and the concerned regulatory agencies. Part 1 contains an outline of the NASA Upper Atmosphere Research Program and summaries of the research efforts supported during the last two years. An assessment is presented of the state of knowledge as of March 15, 1988 when the Ozone Trends Panel, organized by NASA and co-sponsored by the World Meteorological Organization, NOAA, FAA and the United Nations Environment Program released an executive summary of its findings from a critical in-depth study involving over 100 scientists from 12 countries. Chapter summaries of the International Ozone Trends Panel Report form the major part of this report. Two other sections are Model Predictions of Future Ozone Change and Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Each of these sections and the report in its entirety were peer reviewed.

  10. Upper limits to trace constituents in Jupiter's atmosphere from an analysis of its 5 micrometer spectrum

    NASA Technical Reports Server (NTRS)

    Treffers, R. R.; Larson, H. P.; Fink, U.; Gautier, T. N.

    1978-01-01

    A high-resolution spectrum of Jupiter at 5 micrometers recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4) of molecules with mixing ratios with hydrogen as low as 10 to the minus 9th power. In future observations at 5 micrometers the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10 to the minus 10th power, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.

  11. Atmospheric Modeling Using Accelerometer Data During Mars Atmosphere and Volatile Evolution (MAVEN) Flight Operations

    NASA Technical Reports Server (NTRS)

    Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.

    2017-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.

  12. Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.

    PubMed

    Soerensen, Anne L; Mason, Robert P; Balcom, Prentiss H; Jacob, Daniel J; Zhang, Yanxu; Kuss, Joachim; Sunderland, Elsie M

    2014-10-07

    Air-sea exchange of elemental mercury (Hg(0)) is a critical component of the global biogeochemical Hg cycle. To better understand variability in atmospheric and oceanic Hg(0), we collected high-resolution measurements across large gradients in seawater temperature, salinity, and productivity in the Pacific Ocean (20°N-15°S). We modeled surface ocean Hg inputs and losses using an ocean general circulation model (MITgcm) and an atmospheric chemical transport model (GEOS-Chem). Observed surface seawater Hg(0) was much more variable than atmospheric concentrations. Peak seawater Hg(0) concentrations (∼ 130 fM) observed in the Pacific intertropical convergence zone (ITCZ) were ∼ 3-fold greater than surrounding areas (∼ 50 fM). This is similar to observations from the Atlantic Ocean. Peak evasion in the northern Pacific ITCZ was four times higher than surrounding regions and located at the intersection of high wind speeds and elevated seawater Hg(0). Modeling results show that high Hg inputs from enhanced precipitation in the ITCZ combined with the shallow ocean mixed layer in this region drive elevated seawater Hg(0) concentrations. Modeled seawater Hg(0) concentrations reproduce observed peaks in the ITCZ of both the Atlantic and Pacific Oceans but underestimate its magnitude, likely due to insufficient deep convective scavenging of oxidized Hg from the upper troposphere. Our results demonstrate the importance of scavenging of reactive mercury in the upper atmosphere driving variability in seawater Hg(0) and net Hg inputs to biologically productive regions of the tropical ocean.

  13. The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    1999-01-01

    The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).

  14. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  15. Atmospheric chemistry and transport modeling in the outer solar system

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Tai (Anthony)

    2001-11-01

    This thesis consists of 1-D and 2-D photochemical- dynamical modeling in the upper atmospheres of outer planets. For 1-D modeling, a unified hydrocarbon photochemical model has been studied in Jupiter, Saturn, Uranus, Neptune, and Titan, by comparing with the Voyager observations, and the recent measurements of methyl radicals by ISO in Saturn and Neptune. The CH3 observation implies a kinetically sensitive test to the measured and estimated hydrocarbon rate constants at low temperatures. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M --> C 2H6 + M, and the recycling reaction H + CH3 + M --> CH4 + M. The results show reasonable agreement with ISO values. In Chapter 4, the detection of PH3 in the lower stratosphere and upper troposphere of Jupiter has provided a photochemical- dynamical coupling model to derive the eddy diffusion coefficient in the upper troposphere of Jupiter. Using a two-layers photochemical model with updated photodissociation cross-sections and chemical rate constants for NH3 and PH 3, we find that the upper tropospheric eddy diffusion coefficient <10 5 cm2 sec-1, and the deeper tropospheric value >106 cm2 sec-1, are required to match the derived PH3 vertical profile by the observation. The best-fit functional form derivation of eddy diffusion coefficient in the upper troposphere of Jupiter above 400 mbar is K = 2.0 × 104 (n/2.2 × 1019)-0.5 cm 2 sec-1. On the other hand, Chapter 5 demonstrates a dynamical-only 2-D model of C2H6 providing a complete test for the current 2-D transport models in Jovian lower stratosphere and upper troposphere (270 to 0.1 mbar pressure levels). Different combinations of residual advection, horizontal eddy dispersion, and vertical eddy mixing are examined at different latitudes.

  16. Critical Evaluation of Chemical Reaction Rates and Collision Cross Sections of Importance in the Earth's Upper Atmosphere and the Atmospheres of Other Planets, Moons, and Comets

    NASA Technical Reports Server (NTRS)

    Huestis, David L.

    2006-01-01

    We propose to establish a long-term program of critical evaluation by domain experts of the rates and cross sections for atomic and molecular processes that are needed for understanding and modeling the atmospheres in the solar system. We envision data products resembling those of the JPL/NASA Panel for Data Evaluation and the similar efforts of the international combustion modeling community funded by US DoE and its European counterpart.

  17. An upper limit on Early Mars atmospheric pressure from small ancient craters

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.

    2012-12-01

    Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These craters are interbedded with river deposits, and so the atmospheric state they record corresponds to an era when Mars was substantially wetter than the present, probably >3.7 Ga. An important caveat is that our technique cannot exclude atmospheric collapse-reinflation cycles on timescales much shorter than the sedimentary basin-filling time, so it sets an upper limit on the density of a thick stable paleoatmosphere. We will discuss our results in relation to previous estimates of ancient atmospheric pressure, and place new constraints on models of Early Mars climate.

  18. Atmospheric refraction: a history.

    PubMed

    Lehn, Waldemar H; van der Werf, Siebren

    2005-09-20

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  19. A Study on Various Meteoroid Disintegration Mechanisms as Observed from the Resolute Bay Incoherent Scatter Radar (RISR)

    NASA Technical Reports Server (NTRS)

    Malhotra, A.; Mathews, J. D.

    2011-01-01

    There has been much interest in the meteor physics community recently regarding the form that meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in the meteoroid mass flux observed by the Incoherent Scatter Radars (ISR). We present here the first-ever statistical study showing the relative contribution of the above-mentioned three mechanisms. These are also one of the first meteor results from the newly-operational Resolute Bay ISR. These initial results emphasize that meteoroid disintegration into the upper atmosphere is a complex process in which all the three above-mentioned mechanisms play an important role though fragmentation seems to be the dominant mechanism. These results prove vital in studying how meteoroid mass is deposited in the upper atmosphere which has important implications to the aeronomy of the region and will also contribute in improving current meteoroid disintegration/ablation models.

  20. Multidisciplinary research in the space sciences

    NASA Technical Reports Server (NTRS)

    Broecker, W. S.; Flynn, G. W.

    1983-01-01

    Research activities were carried out in the following areas during this reporting period: (1) astrophysics; (2) climate and atmospheric modeling; and (3) climate applications of earth observations & geological studies. An ultra-low-noise 115 GHz receiver based upon a superconducting tunnel diode mixer has been designed and constructed. The first laboratory tests have yielded spectacular results: a single-sideband noise temperature of 75 K considerably more sensitive than any other receiver at this frequency. The receiver will replace that currently in use on the Columbia-GISS CO Sky Survey telescope. The 1.2 meter millimeter-wave telescope at Columbia University has been used to complete two large-scale surveys of molecular matter in the part of the inner galaxy which is visible from the Northern hemisphere (the first galactic quadrant); one of the distant galaxy and one of the solar neighborhood. The research conducted during the past year in the climate and atmospheric modeling programs has been focused on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. During the past year this project has focused on development of 2-channel satellite analysis methods and radiative transfer studies in support of multichannel analysis techniques.

  1. The atmospheric abundance of SO2 on Io

    NASA Technical Reports Server (NTRS)

    Ballester, Gilda E.; Strobel, Darrell F.; Moos, H. Warren; Feldman, Paul D.

    1990-01-01

    The IUE satellite has obtained near-UV spectra of Io with sufficient resolution to ascertain the east, or leading and west, or trailing hemispheres' dayside atmosphere SO2 abundance. The derived geometric albedos are compared with various model albedos that might result from proposed SO2 atmospheres, as well as from localized, sublimation- or volcanism-generated atmospheres. A homogeneous-layer alternative atmosphere is introduced whose upper limit on the average SO2 column density for both hemispheres implies that a collisionally thick SO2 atmosphere of intermediate density may have been present on Io's dayside during the present observations.

  2. Upper atmosphere has cooled steadily for three decades

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-11-01

    Increasing amounts of greenhouse gases released by human activities do not just affect only the lower atmosphere: Scientists project that anthropogenic carbon emissions have caused a cooling trend in the upper atmosphere, between 200 and 400 kilometers, over the past few decades. Cooling in this atmospheric region can affect the operations of satellites and the orbits of space junk. However, data about cooling trends in the upper atmosphere are still incomplete, and better data are needed to confirm this projection.

  3. Understanding and Forecasting Upper Atmosphere Nitric Oxide Through Data Mining Analysis of TIMED/SABER Data

    NASA Astrophysics Data System (ADS)

    Flynn, S.; Knipp, D. J.; Matsuo, T.; Mlynczak, M. G.; Hunt, L. A.

    2017-12-01

    Storm time energy input to the upper atmosphere is countered by infrared radiative emissions from nitric oxide (NO). The temporal profile of these energy sources and losses strongly control thermospheric density profiles, which in turn affect the drag experienced by low Earth orbiting satellites. Storm time processes create NO. In some extreme cases an overabundance of NO emissions unexpectedly decreases atmospheric temperature and density to lower than pre-storm values. Quantifying the spatial and temporal variability of the NO emissions using eigenmodes will increase the understanding of how upper atmospheric NO behaves, and could be used to increase the accuracy of future space weather and climate models. Thirteen years of NO flux data, observed at 100-250 km altitude by the SABER instrument onboard the TIMED satellite, is decomposed into five empirical orthogonal functions (EOFs) and their amplitudes to: 1) determine the strongest modes of variability in the data set, and 2) develop a compact model of NO flux. The first five EOFs account for 85% of the variability in the data, and their uncertainty is verified using cross-validation analysis. Although these linearly independent EOFs are not necessarily independent in a geophysical sense, the first three EOFs correlate strongly with different geophysical processes. The first EOF correlates strongly with Kp and F10.7, suggesting that geomagnetic storms and solar weather account for a large portion of NO flux variability. EOF 2 shows annual variations, and EOF 3 correlates with solar wind parameters. Using these relations, an empirical model of the EOF amplitudes can be derived, which could be used as a predictive tool for future NO emissions. We illustrate the NO model, highlight some of the hemispheric asymmetries, and discuss the geophysical associations of the EOFs.

  4. VOLATILE LOSS AND CLASSIFICATION OF KUIPER BELT OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R. E.; Schmidt, C.; Oza, A.

    Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase (e.g., Pluto), while others have surface volatiles that might support a seasonal atmosphere (e.g., Eris). Since the presence of an atmosphere can affect their reflectance spectra and thermal balance, Schaller and Brown examined the role of volatile escape driven by solar heating of the surface. Guided by recent simulations, we estimate the loss of primordial N{sub 2} for several large KBOs, accounting for escape driven by UV/EUV heating of the upper atmosphere as well as by solar heating of the surface. Formore » the latter we present new simulations and for the former we scale recent detailed simulations of escape from Pluto using the energy limited escape model validated recently by molecular kinetic simulations. Unlike what has been assumed to date, we show that unless the N{sub 2} atmosphere is thin (<∼10{sup 18} N{sub 2} cm{sup −2}) and/or the radius small (<∼200–300 km), escape is primarily driven by the UV/EUV radiation absorbed in the upper atmosphere. This affects the discussion of the relationship between atmospheric loss and the observed surface properties for a number of the KBOs examined. Our long-term goal is to connect detailed atmospheric loss simulations with a model for volatile transport for individual KBOs.« less

  5. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    NASA Technical Reports Server (NTRS)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  6. Titan's Upper Atmosphere from Cassini/UVIS Solar Occultations

    NASA Astrophysics Data System (ADS)

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N2 in the range 1100-1600 km and vertical profiles of CH4 in the range 850-1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH4 mole fractions, and average temperatures for the upper atmosphere obtained from the N2 profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  7. Long-period humidity variability in the Arctic atmosphere from upper-air observations

    NASA Astrophysics Data System (ADS)

    Agurenko, A.; Khokhlova, A.

    2014-12-01

    Under climate change, atmospheric water content also tends to change. This gives rise to changes in the amount of moisture transferred, clouds and precipitation, as well as in hydrological regime. This work analyzes seasonal climatic characteristics of precipitated water in the Arctic atmosphere, by using 1972-2011 data from 55 upper-air stations located north of 60°N. Regions of maximum and minimum mean values and variability trends are determined. In the summer, water amount is shown to increase in nearly the whole of the latitudinal zone. The comparison with the similar characteristics of reanalysis obtained by the other authors shows a good agreement. Time variation in the atmosphere moisture transport crossing 70°N, which is calculated from observation data, is presented and compared with model results. The work is supported by the joint EC ERA.Net RUS and Russian Fundamental Research Fund Project "Arctic Climate Processes Linked Through the Circulation of the Atmosphere" (ACPCA) (project 12-05-91656-ЭРА_а).

  8. The UARS (Upper Atmosphere Research Satellite): A program to study global ozone change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA's Upper Atmosphere Research Satellite (UARS) program, its goals and objectives are described. Also included are its significance to upper atmosphere science, the experimental and theoretical investigations that comprise it, and the compelling issues of global change, driven by human activities, that led NASA to plan and implement it.

  9. Meteoric Material: An Important Component of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.

  10. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  11. Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. VI. First chromosphere model of a late-type giant

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Kučinskas, Arūnas; Klevas, Jonas; Ludwig, Hans-Günter

    2017-10-01

    Aims: Although observational data unequivocally point to the presence of chromospheres in red giant stars, no attempts have been made so far to model them using 3D hydrodynamical model atmospheres. We therefore compute an exploratory 3D hydrodynamical model atmosphere for a cool red giant in order to study the dynamical and thermodynamic properties of its chromosphere, as well as the influence of the chromosphere on its observable properties. Methods: Three-dimensional radiation hydrodynamics simulations are carried out with the CO5BOLD model atmosphere code for a star with the atmospheric parameters (Teff ≈ 4010 K, log g = 1.5, [ M / H ] = 0.0), which are similar to those of the K-type giant star Aldebaran (α Tau). The computational domain extends from the upper convection zone into the chromosphere (7.4 ≥ log τRoss ≥ - 12.8) and covers several granules in each horizontal direction. Using this model atmosphere, we compute the emergent continuum intensity maps at different wavelengths, spectral line profiles of Ca II K, the Ca II infrared triplet line at 854.2 nm, and Hα, as well as the spectral energy distribution (SED) of the emergent radiative flux. Results: The initial model quickly develops a dynamical chromosphere that is characterised by propagating and interacting shock waves. The peak temperatures in the chromospheric shock fronts reach values of up to 5000 K, although the shock fronts remain quite narrow. Similar to the Sun, the gas temperature distribution in the upper layers of red giant stars is composed of a cool component due to adiabatic cooling in the expanding post-shock regions and a hot component due to shock waves. For this red giant model, the hot component is a rather flat high-temperature tail, which nevertheless affects the resulting average temperatures significantly. Conclusions: The simulations show that the atmospheres of red giant stars are dynamic and intermittent. Consequently, many observable properties cannot be reproduced with static 1D models, but require advanced 3D hydrodynamical modelling. Furthermore, including a chromosphere in the models might produce significant contributions to the emergent UV flux.

  12. Interplanetary Coronal Mass Ejection effects on thermospheric density as inferred from International Space Station orbital data

    NASA Astrophysics Data System (ADS)

    Mendaza, T.; Blanco-Ávalos, J. J.; Martín-Torres, J.

    2017-11-01

    The solar activity induces long term and short term periodical variations in the dynamics and composition of Earth's atmosphere. The Sun also shows non periodical (i.e., impulsive) activity that reaches the planets orbiting around it. In particular, Interplanetary Coronal Mass Ejections (ICMEs) reach Earth and interact with its magnetosphere and upper neutral atmosphere. Nevertheless, the interaction with the upper atmosphere is not well characterized because of the absence of regular and dedicated in situ measurements at high altitudes; thus, current descriptions of the thermosphere are based on semi empirical models. In this paper, we present the total neutral mass densities of the thermosphere retrieved from the orbital data of the International Space Station (ISS) using the General Perturbation Method, and we applied these densities to routinely compiled trajectories of the ISS in low Earth orbit (LEO). These data are explicitly independent of any atmospheric model. Our density values are consistent with atmospheric models, which demonstrates that our method is reliable for the inference of thermospheric density. We have inferred the thermospheric total neutral density response to impulsive solar activity forcing from 2001 to the end of 2006 and determined how solar events affect this response. Our results reveal that the ISS orbital parameters can be used to infer the thermospheric density and analyze solar effects on the thermosphere.

  13. A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; Viggiano, Albert; Caton, Ronald G.; Pedersen, Todd R.; Holmes, Jeffrey M.; Ard, Shaun; Shuman, Nicholas; Groves, Keith M.

    2017-05-01

    Atomic samarium has been injected into the neutral atmosphere for production of electron clouds that modify the ionosphere. These electron clouds may be used as high-frequency radio wave reflectors or for control of the electrodynamics of the F region. A self-consistent model for the photochemical reactions of Samarium vapor cloud released into the upper atmosphere has been developed and compared with the Metal Oxide Space Cloud (MOSC) experimental observations. The release initially produces a dense plasma cloud that that is rapidly reduced by dissociative recombination and diffusive expansion. The spectral emissions from the release cover the ultraviolet to the near infrared band with contributions from solar fluorescence of the atomic, molecular, and ionized components of the artificial density cloud. Barium releases in sunlight are more efficient than Samarium releases in sunlight for production of dense ionization clouds. Samarium may be of interest for nighttime releases but the artificial electron cloud is limited by recombination with the samarium oxide ion.

  14. Spectral studies related to dissociation of HBr, HCl and BrO

    NASA Technical Reports Server (NTRS)

    Ginter, M. L.

    1986-01-01

    Concern over halogen catalyzed decomposition of O3 in the upper atmosphere has generated need for data on the atomic and molecular species X, HX and XO (where X is Cl and Br). Of special importance are Cl produced from freon decomposition and Cl and Br produced from natural processes and from other industrial and agricultural chemicals. Basic spectral data is provided on HCl, HBr, and BrO necessary to detect specific states and energy levels, to enable detailed modeling of the processes involving molecular dissociation, ionization, etc., and to help evaluate field experiments to check the validity of model calculations for these species in the upper atmosphere. Results contained in four published papers and two major spectral compilations are summarized together with other results obtained.

  15. Modeling of plasma chemical processes in the artificial ionized layer in the upper atmosphere by the nanosecond corona discharge

    NASA Astrophysics Data System (ADS)

    Vikharev, A. L.; Gorbachev, A. M.; Ivanov, O. A.; Kolisko, A. L.; Litvak, A. G.

    1993-08-01

    The plasma chemical processes in the corona discharge formed in air by a series of high voltage pulses of nanosecond duration are investigated experimentally. The experimental conditions (reduced electric field, duration and repetition frequency of the pulses, gas pressure in the chamber) modeled the regime of creation of the artificial ionized layer (AIL) in the upper atmosphere by a nanosecond microwave discharge. It was found that in a nanosecond microwave discharge predominantly generation of ozone occurs, and that the production of nitrogen dioxide is not large. The energy expenditures for the generation of one O 3 molecule were about 15 eV. On the basis of the experimental results the prognosis of the efficiency of ozone generation in AIL was made.

  16. Present State of Knowledge of the Upper Atmosphere 1999: An Assessment Report. Part 2

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial reports to the Congress and the Environmental Protection Agency. NASA specifically is charged with the responsibility of reporting on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere. Part l of this report summarizes the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program and Atmospheric Chemistry Modeling and Analysis Program for the period of 1997-1999. Part 2 (this document) is a compilation of several scientific assessments, reviews, and summaries. Section B (Scientific Assessment of Ozone Depletion: 1998), Section C (a summary of the 1998 Stratospheric Processes and their Role in Climate, SPARC, ozone trends report), Section D (the policymakers summary of the Intergovernmental Panel on Climate Change, IPCC, report on Aviation and the Global Atmosphere), and Section E (the executive summary of the NASA Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998) are summaries of the most recent assessments of our current understanding of the chemical composition and the physical structure of the stratosphere, with particular emphasis on how the abundance and distribution of ozone is predicted to change in the future. Section F (the executive summary of NASA's Second Workshop on Stratospheric Models and Measurements, M&M 11) and Section G (the end-of-mission statement for the Photochemistry of ozone Loss in the Arctic Region in Summer, POLARIS, campaign) describe the scientific results for a comprehensive modeling intercomparison exercise and an aircraft and balloon measurement campaign, respectively. Section H (Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling: Update to Evaluation Number 12 of the NASA Panel for Data Evaluation) highlights the latest of NASA's reviews of this important aspect of the atmospheric sciences. A list of contributors to each of the included documents appears in Section I of this report.

  17. Atmosphere Expansion and Mass Loss of Close-orbit Giant Exoplanets Heated by Stellar XUV. I. Modeling of Hydrodynamic Escape of Upper Atmospheric Material

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

    2014-11-01

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H_3^ + cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ~9000 K with a hydrodynamic escape speed of ~9 km s-1, resulting in mass loss rates of ~(4-7) · 1010 g s-1. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  18. Orbit decay analysis of STS upper stage boosters

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Mueller, A. C.

    1979-01-01

    An orbit decay analysis of the space transportation system upper stage boosters is presented. An overview of the computer trajectory programs, DSTROB, algorithm is presented. Atmospheric drag and perturbation models are described. The development of launch windows, such that the transfer orbit will decay within two years, is discussed. A study of the lifetimes of geosynchronous transfer orbits is presented.

  19. The Impact of ENSO on Trace Gas Composition in the Upper Troposphere to Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Douglass, Anne; Ziemke, Jerry; Waugh, Darryn Warwick

    2016-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical troposphere and its effects extend well into the stratosphere. Its impact on atmospheric dynamics and chemistry cause important changes to trace gas constituent distributions. A comprehensive suite of satellite observations, reanalyses, and chemistry climate model simulations are illuminating our understanding of processes like ENSO. Analyses of more than a decade of observations from NASAs Aura and Aqua satellites, combined with simulations from the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) and other Chemistry Climate Modeling Initiative (CCMI) models, and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis have provided key insights into the response of atmospheric composition to ENSO. While we will primarily focus on ozone and water vapor responses in the upper troposphere to lower stratosphere, the effects of ENSO ripple through many important trace gas species throughout the atmosphere. The very large 2015-2016 El Nino event provides an opportunity to closely examine these impacts with unprecedented observational breadth. An improved quantification of natural climate variations, like those from ENSO, is needed to detect and quantify anthropogenic climate changes.

  20. Role of upper-ocean on the intensity of Bay of Bengal cyclone `Phailin' as revealed by coupled simulation using Mesoscale Coupled Modeling System (WRF-ROMS)

    NASA Astrophysics Data System (ADS)

    Mani, B.; Mandal, M.

    2016-12-01

    Numerical prediction of tropical cyclone (TC) track has improved significantly in recent years, but not the intensity. It is well accepted that TC induced sea surface temperature (SST) cooling in conjunction with pre-existing upper-ocean features have major influences on tropical cyclone intensity. Absence of two-way atmosphere-ocean feedback in the stand-alone atmosphere models has major consequences on their prediction of TC intensity. The present study investigates the role of upper-ocean on prediction of TC intensity and track based on coupled and uncoupled simulation of the Bay of Bengal (BoB) cyclone `Phailin'. The coupled simulation is conducted with the Mesoscale Coupled Modeling System (MCMS) which is a fully coupled atmosphere-ocean modeling system that includes the non-hydrostatic atmospheric model (WRF-ARW) and the three-dimensional hydrostatic ocean model (ROMS). The uncoupled simulation is performed using the atmosphere component of MCMS i.e., the customized version of WRF-ARW for BoB cyclones with prescribed (RTG) SST. The track and intensity of the storm is significantly better simulated by the MCMS and closely followed the observation. The peak intensity, landfall position and time are accurately predicted by MCMS, whereas the uncoupled simulation over predicted the storm intensity. Validation of storm induced SST cooling with the merged microwave-infrared satellite SST indicates that the MCMS simulation shows better correlation both in terms of spatial spread of cold wake and its magnitude. The analysis also suggests that the Pre-existing Cyclonic Eddy (PCE) observed adjacent to the storm enhanced the TC induced SST cooling. It is observed that the response of SST (i.e., cooling) to storm intensity is 12hr with 95% statistical significance. The air-sea enthalpy flux shows a clear asymmetry between Front Left (FL) and Rear Right (RR) regime to the storm center where TC induced cooling is more than 0.5K/24hr. The analysis of atmospheric boundary layer reveals the formation of persistent stable boundary layer (SBL) over the cold wake, which caused asymmetry in TC structure by quelling convection in the rainbands downstream to the cold wake. The present study signifies the importance of using MCMS in prediction of the BoB cyclone and encourages further investigation with more cyclone cases.

  1. Investigating TIME-GCM Atmospheric Tides for Different Lower Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Haeusler, K.; Hagan, M. E.; Lu, G.; Forbes, J. M.; Zhang, X.; Doornbos, E.

    2013-12-01

    It has been recently established that atmospheric tides generated in the lower atmosphere significantly influence the geospace environment. In order to extend our knowledge of the various coupling mechanisms between the different atmospheric layers, we rely on model simulations. Currently there exist two versions of the Global Scale Wave Model (GSWM), i.e. GSWM02 and GSWM09, which are used as a lower boundary (ca. 30 km) condition for the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and account for the upward propagating atmospheric tides that are generated in the troposphere and lower stratosphere. In this paper we explore the various TIME-GCM upper atmospheric tidal responses for different lower boundary conditions and compare the model diagnostics with tidal results from satellite missions such as TIMED, CHAMP, and GOCE. We also quantify the differences between results associated with GSWM02 and GSWM09 forcing and results of TIMEGCM simulations using Modern-Era Retrospective Analysis for Research and Application (MERRA) data as a lower boundary condition.

  2. Microbial Isolates from the Upper Atmosphere Support Panspermia Hypothesis

    NASA Astrophysics Data System (ADS)

    Yang, Yinjie; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    Terrestrial microbes may be transported into the upper atmosphere via various means. Due to the environmental similarity of the upper atmosphere to outer space, knowledge of microbes in the upper atmosphere would be valuable for assessing the chances and limits of microbial transfer from the earth to extraterrestrial bodies (i.e., Panspermia of terrestrial microbes). We collected air dust samples in the upper troposphere and the stratosphere over Japan by using aircrafts or balloons. Microbial isolates from the samples were endospore-forming species (Bacillus, Paenibacillus, Streptomyces) and non-spore-forming Deinococci. Besides the evidence of microbial presence in the upper atmosphere, we show the possible presence of terrestrial microbes in space by extrapolated height-dependent distribution of microbes. High resistance to radiation and desiccation was common for our upper-atmospheric isolates and likely the most important feature enabled their survival in the environment of elevated radiation and desiccation. In this regard, Panspermia of viable Deinococci and endospores would be more likely than other terrestrial microbes. Specifically, the Deinococcus isolates exhibited extreme resistance to radiation (several times higher than bacterial endospores), the principle threat for microbial survival during interplanetary transfer. Based on detailed characterization of the Deinococcus isolates, we proposed two new species Deinococcus aerius sp. nov. and Deinococcus aetherius sp. nov., which are now candidate microbes for exposure experiment in space.

  3. Upper atmospheric gravity wave details revealed in nightglow satellite imagery

    PubMed Central

    Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.

    2015-01-01

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004

  4. Upper atmospheric gravity wave details revealed in nightglow satellite imagery.

    PubMed

    Miller, Steven D; Straka, William C; Yue, Jia; Smith, Steven M; Alexander, M Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T

    2015-12-08

    Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼ 90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation.

  5. Aerosol Constraints on the Atmosphere of the Hot Saturn-mass Planet WASP-49b

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio E.; Fossati, Luca; Erkaev, Nikolai V.; Malik, Matej; Tokano, Tetsuya; Lendl, Monika; Johnstone, Colin P.; Lammer, Helmut; Wyttenbach, Aurélien

    2017-11-01

    The strong, nearly wavelength-independent absorption cross section of aerosols produces featureless exoplanet transmission spectra, limiting our ability to characterize their atmospheres. Here, we show that even in the presence of featureless spectra, we can still characterize certain atmospheric properties. Specifically, we constrain the upper and lower pressure boundaries of aerosol layers, and present plausible composition candidates. We study the case of the bloated Saturn-mass planet WASP-49 b, where near-infrared observations reveal a flat transmission spectrum between 0.7 and 1.0 μm. First, we use a hydrodynamic upper-atmosphere code to estimate the pressure reached by the ionizing stellar high-energy photons at {10}-8 bar, setting the upper pressure boundary where aerosols could exist. Then, we combine HELIOS and Pyrat Bay radiative-transfer models to constrain the temperature and photospheric pressure of atmospheric aerosols, in a Bayesian framework. For WASP-49 b, we constrain the transmission photosphere (hence, the aerosol deck boundaries) to pressures above {10}-5 bar (100× solar metallicity), {10}-4 bar (solar), and {10}-3 bar (0.1× solar) as the lower boundary, and below {10}-7 bar as the upper boundary. Lastly, we compare condensation curves of aerosol compounds with the planet’s pressure-temperature profile to identify plausible condensates responsible for the absorption. Under these circumstances, we find these candidates: {{Na}}2{{S}} (at 100× solar metallicity); Cr and MnS (at solar and 0.1× solar) and forsterite, enstatite, and alabandite (at 0.1× solar).

  6. Probing Protoplanetary Disk Upper Atmospheres for Heating and Dust Settling Using Synthetic CO Spectra

    NASA Astrophysics Data System (ADS)

    Lewis, Josiah; Brittain, S. D.

    2010-01-01

    CO emission is a useful probe of the warm gas distribution in the planet forming regions of disks around Herbig Ae/Be stars. We model UV fluoresced and thermally excited CO in the circumstellar disks of several HAeBes. We find indications of dust settling in the upper atmospheres of HD 141569 and HD 7048 and a correlation between PAH luminosity and gas heating in these two systems. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  7. Phase function, backscatter, extinction, and absorption for standard radiation atmosphere and El Chichon aerosol models at visible and near-infrared wavelengths

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Lecroy, S. R.

    1985-01-01

    Tabular values of phase function, Legendre polynominal coefficients, 180 deg backscatter, and extinction cross section are given for eight wavelengths in the atmospheric windows between 0.4 and 2.2 microns. Also included are single scattering albedo, asymmetry factor, and refractive indices. These values are based on Mie theory calculations for the standard rediation atmospheres (continental, maritime, urban, unperturbed stratospheric, volcanic, upper atmospheric, soot, oceanic, dust, and water-soluble) assest measured volcanic aerosols at several time intervals following the El Chichon eruption. Comparisons of extinction to 180 deg backscatter for different aerosol models are presented and related to lidar data.

  8. Moist Climates with an Ineffective Cold Trap

    NASA Astrophysics Data System (ADS)

    Ding, F.; Pierrehumbert, R.

    2016-12-01

    The tropopause of the Earth's atmosphere behaves as a cold trap, limiting the water vapor transport from the humid sea surface to the dry regions in the atmosphere including both the upper atmosphere and the highly sub-saturated places in the free troposphere. It is hypothesized that during some period of time on Earth, the cold trap mechanism would become less effective, due to either a reduced nitrogen inventory in the atmosphere or high surface temperatures. An ineffective cold trap favors a moist upper atmosphere and will lead to rapid water loss by the ultraviolet photodissociation, which was well studied in one-dimensional models. However, the effect of an ineffective cold trap on 3D climates has not yet received much attention. Here we explore the 3D effect with an idealized general circulation model especially designed for studying condensible-rich atmospheres. We consider two scenarios based on the orbital configuration of the planet. (a) With Earth's orbital parameters, sub-saturation in the free troposphere is difficult to be produced by large-scale atmospheric flows, which implies that an ineffective cold trap also favors the onset of the runaway greenhouse. (b) For synchronous-rotating planets, water vapor is easier to be transported to the nightside, building up an atmosphere with similar column water mass as the dayside. For extrasolar habitable planets detections around M dwarfs in the future, if the water vapor contrast between the day and night side could be provided by the phase-resolved emission spectra, the contrast might be useful as a constraint for evaluating the mass of the non-condensible components in the atmosphere.

  9. Aerosols in the Atmosphere: Sources, Transport, and Multi-decadal Trends

    NASA Technical Reports Server (NTRS)

    Chin, M.; Diehl, T.; Bian, H.; Kucsera, T.

    2016-01-01

    We present our recent studies with global modeling and analysis of atmospheric aerosols. We have used the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and satellite and in situ data to investigate (1) long-term variations of aerosols over polluted and dust source regions and downwind ocean areas in the past three decades and the cause of the changes and (2) anthropogenic and volcanic contributions to the sulfate aerosol in the upper tropospherelower stratosphere.

  10. The thermal structure and energy balance of the Uranian upper atmosphere

    NASA Technical Reports Server (NTRS)

    French, R. G.; Dunham, E. W.; Allen, D. A.; Elias, J. H.; Frogel, J. A.; Elliot, J. L.; Liller, W.

    1983-01-01

    Uranus upper atmosphere occultation observations are reported for August 15-16, 1980, and April 26, 1981. Mean atmospheric light curves of 154 + or - 15 K and 132 + or - 15 K, respectively, are derived from the light curves. A comparison of all available Uranus occultation data since March 1977 suggests a significant mean atmospheric temperature change, with a typical 15 K/year variation. It is suggested that molecular and eddy diffusion, together with atmospheric dynamics, are potentially as important as radiation in the upper atmosphere heat balance of Uranus. The close agreement of occultation immersion and emersion temperatures further suggests that effective meridional transport occurs on Uranus.

  11. Development of a model to simulate the impact of atmospheric stability on N2O-fluxes from soil

    NASA Astrophysics Data System (ADS)

    Thieme, Christoph; Klein, Christian; Biernath, Christian; Heinlein, Florian; Priesack, Eckart

    2014-05-01

    The trace gas N2O, mainly produced by microorganisms in agricultural soils, is a very stable and thus potent greenhouse gas and is the main contributor for the recent depletion of ozone in the stratosphere. Therefore N2O-emissions need to be mitigated and thus much effort has been made to reveal the causes of N2O-formation in soils. At present some crucial drivers for N2O-fluxes are known, but underlying processes of N2O-fluxes are not yet understood or described adequately. An important shortcoming is the description of the upper boundary layer at the soil-atmosphere interface. Therefore, the aim of this study is to develop a mechanistic simulation model, which considers both the formation of N2O in agricultural soils, and the impact of the atmospheric conditions on the transport of soil-born N2O into the atmosphere. The new model simulates N2O-flux as a function of meteorological values instead of a model that just releases the whole amount of N2O into the atmosphere. For this purpose the modular ecosystem model framework Expert-N, which allows to simulate the formation of N2O in the soils will be extended to a model with a more detailed description of the upper boundary condition at the soil-atmosphere interface. In detail, this is realized in the form of a resistance approach, where N2O-fluxes are constrained by a land-air resistance that depends on a Bulk-Exchange Coefficient, wind speed and a gradient of N2O concentrations in the lower atmosphere. Descriptions of atmospheric stability follow the Monin-Obhukov Similarity Theory. The newly developed model will be validated using Eddy Covariance measurements of N2O-fluxes. Measurement device for the N2O concentrations is a Quantum-Cascade-Dual-Laser produced by Aerodyne Research Inc. (Billerca, Mass., USA). The measurements were conducted on an intensively managed field at the TERENO research farm Scheyern (Germany), which is part of the TERENO Bavarian Alps / Pre-Alps observatory.

  12. Atmospheric turbulence simulation for Shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; Smith, S. R.

    1979-01-01

    An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4.

  13. Upper atmosphere pollution measurements (GASP)

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Holdeman, J. D.

    1975-01-01

    The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis

  14. Assessment of atmospheric models for tele-infrasonic propagation

    NASA Astrophysics Data System (ADS)

    McKenna, Mihan; Hayek, Sylvia

    2005-04-01

    Iron mines in Minnesota are ideally located to assess the accuracy of available atmospheric profiles used in infrasound modeling. These mines are located approximately 400 km away to the southeast (142) of the Lac-Du-Bonnet infrasound station, IS-10. Infrasound data from June 1999 to March 2004 was analyzed to assess the effects of explosion size and atmospheric conditions on observations. IS-10 recorded a suite of events from this time period resulting in well constrained ground truth. This ground truth allows for the comparison of ray trace and PE (Parabolic Equation) modeling to the observed arrivals. The tele-infrasonic distance (greater than 250 km) produces ray paths that turn in the upper atmosphere, the thermosphere, at approximately 120 km to 140 km. Modeling based upon MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and the NOGAPS (Navy Operational Global Atmospheric Prediction System) and NRL-GS2 (Naval Research Laboratory Ground to Space) augmented profiles are used to interpret the observed arrivals.

  15. Studies in upper and lower atmosphere coupling

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Rice, C. J.; Sharp, L. R.

    1979-01-01

    The theoretical and data-analytic work on upper and lower atmosphere coupling performed under a NASA Headquarters contract during the period April 1978 to March 1979 are summarized. As such, this report is primarily devoted to an overview of various studies published and to be published under this contract. Individual study reports are collected as exhibits. Work performed under the subject contract are in the following four areas of upper-lower atmosphere coupling: (1) Magnetosphere-ionosphere electrodynamic coupling in the aurora; (2) Troposphere-thermosphere coupling; (3) Ionosphere-neutral-atmosphere coupling; and (4) Planetary wave dynamics in the middle atmosphere.

  16. Ion neutral mass spectrometer results from the first flyby of Titan.

    PubMed

    Waite, J Hunter; Niemann, Hasso; Yelle, Roger V; Kasprzak, Wayne T; Cravens, Thomas E; Luhmann, Janet G; McNutt, Ralph L; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken

    2005-05-13

    The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.

  17. Numerical simulation of the circulation of the atmosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hourdin, F.; Levan, P.; Talagrand, O.; Courtin, Regis; Gautier, Daniel; Mckay, Christopher P.

    1992-01-01

    A three dimensional General Circulation Model (GCM) of Titan's atmosphere is described. Initial results obtained with an economical two dimensional (2D) axisymmetric version of the model presented a strong superrotation in the upper stratosphere. Because of this result, a more general numerical study of superrotation was started with a somewhat different version of the GCM. It appears that for a slowly rotating planet which strongly absorbs solar radiation, circulation is dominated by global equator to pole Hadley circulation and strong superrotation. The theoretical study of this superrotation is discussed. It is also shown that 2D simulations systemically lead to instabilities which make 2D models poorly adapted to numerical simulation of Titan's (or Venus) atmosphere.

  18. Simulations of the Boreal Winter Upper Mesosphere and Lower Thermosphere With Meteorological Specifications in SD-WACCM-X

    NASA Astrophysics Data System (ADS)

    Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.

    2018-04-01

    We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.

  19. Relativistic Electron Microburst Events: Modeling the Atmospheric Impact

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Douma, E.; Rodger, C. J.; Verronen, P. T.; Clilverd, M. A.; Bortnik, J.

    2018-01-01

    Relativistic electron microbursts are short-duration, high-energy precipitation events that are an important loss mechanism for radiation belt particles. Previous work to estimate their atmospheric impacts found no significant changes in atmospheric chemistry. Recent research on microbursts revealed that both the fluxes and frequency of microbursts are much higher than previously thought. We test the seasonal range of atmospheric impacts using this latest microburst information as input forcing to the Sodankylä Ion and Neutral Chemistry model. A modeled 6 h microburst storm increased mesospheric HOx by 15-25%/800-1,200% (summer/winter) and NOx by 1,500-2,250%/80-120%. Together, these drive 7-12%/12-20% upper mesospheric ozone losses, with a further 10-12% longer-term middle mesospheric loss during winter. Our results suggest that existing electron precipitation proxies, which do not yet take relativistic microburst energies into account, are likely missing a significant source of precipitation that contributes to atmospheric ozone balance.

  20. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations,more » and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.« less

  1. BOREAS AFM-08 ECMWF Hourly Surface and Upper Air Data for the SSA and NSA

    NASA Technical Reports Server (NTRS)

    Viterbo, Pedro; Betts, Alan; Hall, Forrest G. (Editor); Newcomer, Jeffrey A.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-8 team focused on modeling efforts to improve the understanding of the diurnal evolution of the convective boundary layer over the boreal forest. This data set contains hourly data from the European Center for for Medium-Range Weather Forecasts (ECMWF) operational model from below the surface to the top of the atmosphere, including the model fluxes at the surface. Spatially, the data cover a pair of the points that enclose the rawinsonde sites at Candle Lake, Saskatchewan, in the Southern Study Area (SSA) and Thompson, Manitoba, in the Northern Study Area (NSA). Temporally, the data include the two time periods of 13 May 1994 to 30 Sept 1994 and 01 Mar 1996 to 31 Mar 1997. The data are stored in tabular ASCII files. The number of records in the upper air data files may exceed 20,000, causing a problem for some software packages. The ECMWF hourly surface and upper air data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  2. Unstable behaviour of an upper ocean-atmosphere coupled model: role of atmospheric radiative processes and oceanic heat transport

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, E.; Le Treut, H.

    We describe the initial bias of the climate simulated by a coupled ocean-atmosphere model. The atmospheric component is a state-of-the-art atmospheric general circulation model, whereas the ocean component is limited to the upper ocean and includes a mixed layer whose depth is computed by the model. As the full ocean general circulation is not computed by the model, the heat transport within the ocean is prescribed. When modifying the prescribed heat transport we also affect the initial drift of the model. We analyze here one of the experiments where this drift is very strong, in order to study the key processes relating the changes in the ocean transport and the evolution of the model's climate. In this simulation, the ocean surface temperature cools by 1.5°C in 20 y. We can distinguish two different phases. During the first period of 5 y, the sea surface temperatures become cooler, particularly in the intertropical area, but the outgoing longwave radiation at the top-of-the-atmosphere increases very quickly, in particular at the end of the period. An off-line version of the model radiative code enables us to decompose this behaviour into different contributions (cloudiness, specific humidity, air and surface temperatures, surface albedo). This partitioning shows that the longwave radiation evolution is due to a decrease of high level cirrus clouds in the intertropical troposphere. The decrease of the cloud cover also leads to a decrease of the planetary albedo and therefore an increase of the net short wave radiation absorbed by the system. But the dominant factor is the strong destabilization by the longwave cooling, which is able to throw the system out of equilibrium. During the remaining of the simulation (second phase), the cooling induced by the destabilization at the top-of-the-atmosphere is transmitted to the surface by various processes of the climate system. Hence, we show that small variations of ocean heat transport can force the model from a stable to an unstable state via atmospheric processes which arise wen the tropics are cooling. Even if possibly overestimated by our GCM, this mechanism may be pertinent to the maintenance of present climatic conditions in the tropics. The simplifications inherent in our model's design allow us to investigate the mechanism in some detail.

  3. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing. However, the VLF diagnostic is complicated by the geometry of the problem, in that the perturbation in the upper atmosphere is much smaller than the VLF wavelength, so wide-angle scattering needs to be taken into account.

  4. An investigation of the processes controlling ozone in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Patten, Kenneth O., Jr.; Connell, Peter S.; Kinnison, Douglas E.; Wuebbles, Donald J.; Waters, Joe; Froidevaux, Lucien; Slanger, Tom G.

    1994-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory 2-D zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based upon recent information on vibrational distributions of excited oxygen and upon preliminary studies of energy transfer from the excited oxygen. When the energy transfer rate constants of previous work are assumed, increases in model ozone concentrations of up to 40 percent in the upper stratosphere are found, and the ozone concentrations of the model agree with measurements, including data from the Upper Atmosphere Research Satellite. However, the increase is about 0.4 percent when the larger energy transfer rate constants suggested by more recent experimental work are applied in the model. This indicates the importance of obtaining detailed information on vibrationally excited oxygen properties to evaluation of this process for stratospheric modelling.

  5. Revisit the modeling of the Saturnian ring atmosphere and ionosphere from the "Cassini Grand Finale" results

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Johnson, R. E.; Tucker, O. J.; Perry, M. E.; Ip, W. H.

    2017-12-01

    During the Cassini Grand Finale mission, this spacecraft, for the first time, has done the in-situ measurements of Saturn's upper atmosphere and its rings and provides critical information for understanding the coupling dynamics between the main rings and the Saturnian system. The ring atmosphere is the source of neutrals (i.e., O2, H2, H; Tseng et al., 2010; 2013a), which is primarily generated by photolytic decomposition of water ice (Johnson et al., 2006), and plasma (i.e., O2+ and H2+; Tseng et al., 2011) in the Saturnian magnetosphere. In addition, the main rings have strong interaction with Saturn's atmosphere and ionosphere (i.e., a source of oxygen into Saturn's upper atmosphere and/or the "ring rain" in O'Donoghue et al., 2013). Furthermore, the near-ring plasma environment is complicated by the neutrals from both the seasonally dependent ring atmosphere and Enceladus torus (Tseng et al., 2013b), and, possibly, from small grains from the main and tenuous F and G rings (Johnson et al.2017). The data now coming from Cassini Grand Finale mission already shed light on the dominant physics and chemistry in this region of Saturn's magnetosphere, for example, the presence of carbonaceous material from meteorite impacts in the main rings and each gas species have similar distribution in the ring atmosphere. We will revisit the details in our ring atmosphere/ionosphere model to study, such as the source mechanism for the organic material and the neutral-grain-plasma interaction processes.

  6. Pluto's Ultraviolet Airglow and Detection of Ions in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Steffl, A.; Young, L. A.; Kammer, J.; Gladstone, R.; Hinson, D. P.; Summers, M. E.; Strobel, D. F.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.

    2017-12-01

    In July 2015, the Alice ultraviolet spectrograph aboard the New Horizons spacecraft made numerous observations of Pluto and its atmosphere. We present here the far ultraviolet reflectance spectrum of Pluto and airglow emissions from its atmosphere. At wavelengths greater than 1400Å, Pluto's spectrum is dominated by sunlight reflected from the surface of the planet. Various hydrocarbon species such as C2H4 are detected in absorption of the solar continuum. Below 1400Å, Pluto's atmosphere is opaque and the surface cannot be detected. However, after carefully removing various sources of background light, we see extremely faint airglow emissions (<0.05 Rayleighs/Ångstrom) from Pluto's atmosphere. All of the emissions are produced by nitrogen in various forms: molecular, atomic, and singly ionized. The detection of N+ at 1086Å is the first, and thus far only, direct detection of ions in Pluto's atmosphere. This N+ emission line is produced primarily by dissociative photoionization of molecular N2 by solar EUV photons (energy > 34.7 eV; wavelength < 360Å). Notably absent from Pluto's spectrum are emission lines from argon at 1048 and 1067Å. We place upper limits on the amount of argon in Pluto's atmosphere above the tau=1 level (observed to be at 750km tangent altitude) that are significantly lower than pre-encounter atmospheric models.

  7. Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Fahey, D. W.; Schumann, U.; Prather, M. J.; Penner, J. E.; Ko, M. K. W.; Weisenstein, D. K.; Jackman, C. H.; Pitari, G.; Koehler, I.; hide

    1998-01-01

    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key findings are that subsonic aircraft emissions: (1) have not been responsible for the observed water vapor trends at 40degN; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.

  8. Aviation Fuel Tracer Simulation: Model Intercomparison and Implications

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Fahey, D. W.; Schumann, U.; Prather, M. J.; Penner, J. E.; Ko, M. K. W.; Weisenstein, D. K.; Jackman, C. H.; Pitari, G.; Koehler, I.; hide

    1998-01-01

    An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.

  9. Climate and atmospheric modeling studies. Climate applications of Earth and planetary observations. Chemistry of Earth and environment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.

  10. Uncertainty for calculating transport on Titan: A probabilistic description of bimolecular diffusion parameters

    NASA Astrophysics Data System (ADS)

    Plessis, S.; McDougall, D.; Mandt, K.; Greathouse, T.; Luspay-Kuti, A.

    2015-11-01

    Bimolecular diffusion coefficients are important parameters used by atmospheric models to calculate altitude profiles of minor constituents in an atmosphere. Unfortunately, laboratory measurements of these coefficients were never conducted at temperature conditions relevant to the atmosphere of Titan. Here we conduct a detailed uncertainty analysis of the bimolecular diffusion coefficient parameters as applied to Titan's upper atmosphere to provide a better understanding of the impact of uncertainty for this parameter on models. Because temperature and pressure conditions are much lower than the laboratory conditions in which bimolecular diffusion parameters were measured, we apply a Bayesian framework, a problem-agnostic framework, to determine parameter estimates and associated uncertainties. We solve the Bayesian calibration problem using the open-source QUESO library which also performs a propagation of uncertainties in the calibrated parameters to temperature and pressure conditions observed in Titan's upper atmosphere. Our results show that, after propagating uncertainty through the Massman model, the uncertainty in molecular diffusion is highly correlated to temperature and we observe no noticeable correlation with pressure. We propagate the calibrated molecular diffusion estimate and associated uncertainty to obtain an estimate with uncertainty due to bimolecular diffusion for the methane molar fraction as a function of altitude. Results show that the uncertainty in methane abundance due to molecular diffusion is in general small compared to eddy diffusion and the chemical kinetics description. However, methane abundance is most sensitive to uncertainty in molecular diffusion above 1200 km where the errors are nontrivial and could have important implications for scientific research based on diffusion models in this altitude range.

  11. The Influence of Solar Proton Events in Solar Cycle 23 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; vonKonig, Miriam; Anderson, John; Roble, Raymond G.; McPeters, Richard D.; Fleming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) can cause changes in constituents in the Earth's middle atmosphere. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HO(x) (H, OH, HO2) and NO(y) (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HO(x) increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HO, constituents. The NO(x) increases lead to long-lived stratospheric ozone changes because of the long lifetime of NO(y) constituents in this region. Solar cycle 23 was quite active with SPEs and very large fluxes of high energy protons occurred in July and November 2000, November 200 1, and April 2002. Smaller, but still substantial, proton fluxes impacted the Earth during other months in the 1997-2003 time period. The impact of the very large SPEs on the neutral middle atmosphere during solar cycle 23 will be discussed, including the HO(x), NO(y), ozone variations and induced atmospheric transport changes. Two multi-dimensional models, the Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model and the Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM), were used in computing the influence of the SPEs. The results of the GSFC 2D Model and the TIME-GCM will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  12. High-Resolution Regional Reanalysis in China: Evaluation of 1 Year Period Experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Pan, Yinong; Wang, Shuyu; Xu, Jianjun; Tang, Jianping

    2017-10-01

    Globally, reanalysis data sets are widely used in assessing climate change, validating numerical models, and understanding the interactions between the components of a climate system. However, due to the relatively coarse resolution, most global reanalysis data sets are not suitable to apply at the local and regional scales directly with the inadequate descriptions of mesoscale systems and climatic extreme incidents such as mesoscale convective systems, squall lines, tropical cyclones, regional droughts, and heat waves. In this study, by using a data assimilation system of Gridpoint Statistical Interpolation, and a mesoscale atmospheric model of Weather Research and Forecast model, we build a regional reanalysis system. This is preliminary and the first experimental attempt to construct a high-resolution reanalysis for China main land. Four regional test bed data sets are generated for year 2013 via three widely used methods (classical dynamical downscaling, spectral nudging, and data assimilation) and a hybrid method with data assimilation coupled with spectral nudging. Temperature at 2 m, precipitation, and upper level atmospheric variables are evaluated by comparing against observations for one-year-long tests. It can be concluded that the regional reanalysis with assimilation and nudging methods can better produce the atmospheric variables from surface to upper levels, and regional extreme events such as heat waves, than the classical dynamical downscaling. Compared to the ERA-Interim global reanalysis, the hybrid nudging method performs slightly better in reproducing upper level temperature and low-level moisture over China, which improves regional reanalysis data quality.

  13. CANOES II; Dynamics of Atmospheric Infrared Thermochemical Excitation. Volume 2

    DTIC Science & Technology

    1989-03-01

    similar modeling effort by Richards et al. 2 concluded that Frederick and Rusch underestimated N(2D) production rates and revised their value upwards...agreement with Richards et al.’s 2 model-derived value is acceptable. The major disagreement with the recent results of Jusinski et al. 9 indi- cates...J.P., "NO Infrared Radiation in the Upper Atmosphere," Planet. Space Sci. 30, 1043 (1982). 2. Richards , P.G., Torr, D.G., and Torr, M.R

  14. DIAS Project: The establishment of a European digital upper atmosphere server

    NASA Astrophysics Data System (ADS)

    Belehaki, A.; Cander, Lj.; Zolesi, B.; Bremer, J.; Juren, C.; Stanislawska, I.; Dialetis, D.; Hatzopoulos, M.

    2005-08-01

    The main objective of DIAS (European Digital Upper Atmosphere Server) project is to develop a pan-European digital data collection on the state of the upper atmosphere, based on real-time information and historical data collections provided by most operating ionospheric stations in Europe. A DIAS system will distribute information required by various groups of users for the specification of upper atmospheric conditions over Europe suitable for nowcasting and forecasting purposes. The successful operation of the DIAS system will lead to the development of new European added-value products and services, to the effective use of observational data in operational applications and consequently to the expansion of the relevant European market.

  15. Inter-University Upper Atmosphere Global Observation Network (IUGONET) Metadata Database and Its Interoperability

    NASA Astrophysics Data System (ADS)

    Yatagai, A. I.; Iyemori, T.; Ritschel, B.; Koyama, Y.; Hori, T.; Abe, S.; Tanaka, Y.; Shinbori, A.; Umemura, N.; Sato, Y.; Yagi, M.; Ueno, S.; Hashiguchi, N. O.; Kaneda, N.; Belehaki, A.; Hapgood, M. A.

    2013-12-01

    The IUGONET is a Japanese program to build a metadata database for ground-based observations of the upper atmosphere [1]. The project began in 2009 with five Japanese institutions which archive data observed by radars, magnetometers, photometers, radio telescopes and helioscopes, and so on, at various altitudes from the Earth's surface to the Sun. Systems have been developed to allow searching of the above described metadata. We have been updating the system and adding new and updated metadata. The IUGONET development team adopted the SPASE metadata model [2] to describe the upper atmosphere data. This model is used as the common metadata format by the virtual observatories for solar-terrestrial physics. It includes metadata referring to each data file (called a 'Granule'), which enable a search for data files as well as data sets. Further details are described in [2] and [3]. Currently, three additional Japanese institutions are being incorporated in IUGONET. Furthermore, metadata of observations of the troposphere, taken at the observatories of the middle and upper atmosphere radar at Shigaraki and the Meteor radar in Indonesia, have been incorporated. These additions will contribute to efficient interdisciplinary scientific research. In the beginning of 2013, the registration of the 'Observatory' and 'Instrument' metadata was completed, which makes it easy to overview of the metadata database. The number of registered metadata as of the end of July, totalled 8.8 million, including 793 observatories and 878 instruments. It is important to promote interoperability and/or metadata exchange between the database development groups. A memorandum of agreement has been signed with the European Near-Earth Space Data Infrastructure for e-Science (ESPAS) project, which has similar objectives to IUGONET with regard to a framework for formal collaboration. Furthermore, observations by satellites and the International Space Station are being incorporated with a view for making/linking metadata databases. The development of effective data systems will contribute to the progress of scientific research on solar terrestrial physics, climate and the geophysical environment. Any kind of cooperation, metadata input and feedback, especially for linkage of the databases, is welcomed. References 1. Hayashi, H. et al., Inter-university Upper Atmosphere Global Observation Network (IUGONET), Data Sci. J., 12, WDS179-184, 2013. 2. King, T. et al., SPASE 2.0: A standard data model for space physics. Earth Sci. Inform. 3, 67-73, 2010, doi:10.1007/s12145-010-0053-4. 3. Hori, T., et al., Development of IUGONET metadata format and metadata management system. J. Space Sci. Info. Jpn., 105-111, 2012. (in Japanese)

  16. Comparison of Heat and Moisture Fluxes from a Modified Soil-plant-atmosphere Model with Observations from BOREAS. Chapter 3

    NASA Technical Reports Server (NTRS)

    Lee, Young-Hee; Mahrt, L.

    2005-01-01

    This study evaluates the prediction of heat and moisture fluxes from a new land surface scheme with eddy correlation data collected at the old aspen site during the Boreal Ecosystem-Atmosphere Study (BOREAS) in 1994. The model used in this study couples a multilayer vegetation model with a soil model. Inclusion of organic material in the upper soil layer is required to adequately simulate exchange between the soil and subcanopy air. Comparisons between the model and observations are discussed to reveal model misrepresentation of some aspects of the diurnal variation of subcanopy processes. Evapotranspiration

  17. Pluto's Solar Occultation from New Horizons

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Kammer, Joshua; Steffl, Andrew J.; Gladstone, Randy; Summers, Michael; Strobel, Darrell F.; Hinson, David P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; McComas, Dave; New Horizons Atmospheres Science Theme Team

    2017-10-01

    The Alice instrument on NASA’s New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. We derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Our major conclusions are that (1) we confirmed temperatures in Pluto’s upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the “C2Hx hydrocarbons” had non-exponential density profiles that compare favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.This work was supported by NASA’s New Horizons project.

  18. Operational implications of a cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.

  19. Simulation of tropospheric ozone with MOZART-2: An evaluation study over East Asia

    NASA Astrophysics Data System (ADS)

    Liu, Qianxia; Zhang, Meigen; Wang, Bin

    2005-07-01

    Climate changes induced by human activities have attracted a great amount of attention. With this, a coupling system of an atmospheric chemistry model and a climate model is greatly needed in China for better understanding the interaction between atmospheric chemical components and the climate. As the first step to realize this coupling goal, the three-dimensional global atmospheric chemistry transport model MOZART-2 (the global Model of Ozone and Related Chemical Tracers, version 2) coupled with CAM2 (the Community Atmosphere Model, version 2) is set up and the model results are compared against observations obtained in East Asia in order to evaluate the model performance. Comparison of simulated ozone mixing ratios with ground level observations at Minamitorishima and Ryori and with ozonesonde data at Naha and Tateno in Japan shows that the observed ozone concentrations can be reproduced reasonably well at Minamitorishima but they tend to be slightly overestimated in winter and autumn while underestimated a little in summer at Ryori. The model also captures the general features of surface CO seasonal variations quite well, while it underestimates CO levels at both Minamitorishima and Ryori. The underestimation is primarily associated with the emission inventory adopted in this study. Compared with the ozonesonde data, the simulated vertical gradient and magnitude of ozone can be reasonably well simulated with a little overestimation in winter, especially in the upper troposphere. The model also generally captures the seasonal, latitudinal and altitudinal variations in ozone concentration. Analysis indicates that the underestimation of tropopause height in February contributes to the overestimation of winter ozone in the upper and middle troposphere at Tateno.

  20. Eurasian Heat Waves: Mechanisms and Predictability

    NASA Technical Reports Server (NTRS)

    Wang, Hailan; Schubert, Siegfried; Koster, Randal; Suarez, Max

    2012-01-01

    This study uses the NASA MERRA reanalysis and GEOS 5 model simulations to examine the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The focus is on the warm season and the part of the Eurasian continent that extends north of about 40oN, or roughly to the north of the mean upper tropospheric jet stream. The results show that such extreme events are an amplification of natural patterns of atmospheric variability that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more intense in the last thirty years as a result of the overall warming of the Asian continent. Sensitivity experiments with perturbed initial conditions indicate that these events have limited predictability.

  1. Temporal Variability of Atomic Hydrogen From the Mesopause to the Upper Thermosphere

    NASA Astrophysics Data System (ADS)

    Qian, Liying; Burns, Alan G.; Solomon, Stan S.; Smith, Anne K.; McInerney, Joseph M.; Hunt, Linda A.; Marsh, Daniel R.; Liu, Hanli; Mlynczak, Martin G.; Vitt, Francis M.

    2018-01-01

    We investigate atomic hydrogen (H) variability from the mesopause to the upper thermosphere, on time scales of solar cycle, seasonal, and diurnal, using measurements made by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite, and simulations by the National Center for Atmospheric Research Whole Atmosphere Community Climate Model-eXtended (WACCM-X). In the mesopause region (85 to 95 km), the seasonal and solar cycle variations of H simulated by WACCM-X are consistent with those from SABER observations: H density is higher in summer than in winter, and slightly higher at solar minimum than at solar maximum. However, mesopause region H density from the Mass-Spectrometer-Incoherent-Scatter (National Research Laboratory Mass-Spectrometer-Incoherent-Scatter 00 (NRLMSISE-00)) empirical model has reversed seasonal variation compared to WACCM-X and SABER. From the mesopause to the upper thermosphere, H density simulated by WACCM-X switches its solar cycle variation twice, and seasonal dependence once, and these changes of solar cycle and seasonal variability occur in the lower thermosphere ( 95 to 130 km), whereas H from NRLMSISE-00 does not change solar cycle and seasonal dependence from the mesopause through the thermosphere. In the upper thermosphere (above 150 km), H density simulated by WACCM-X is higher at solar minimum than at solar maximum, higher in winter than in summer, and also higher during nighttime than daytime. The amplitudes of these variations are on the order of factors of 10, 2, and 2, respectively. This is consistent with NRLMSISE-00.

  2. Aerosol growth in Titan’s ionosphere

    PubMed Central

    Lavvas, Panayotis; Yelle, Roger V.; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J.; Wahlund, Jan-Erik; Crary, Frank J.; Snowden, Darci

    2013-01-01

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan’s upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  3. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere.

  4. Advective transport of CO2 in permeable media induced by atmospheric pressure fluctuations: 1. An analytical model

    Treesearch

    W. J. Massman

    2006-01-01

    Advective flows within soils and snowpacks caused by pressure fluctuations at the upper surface of either medium can significantly influence the exchange rate of many trace gases from the underlying substrate to the atmosphere. Given the importance of many of these trace gases in understanding biogeochemical cycling and global change, it is crucial to quantify (as much...

  5. Impacts of space weather events on the structure of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.

    2017-12-01

    Due to the absence of the intrinsic magnetic field, Mars' upper atmosphere is vulnerable to the solar wind, which directly strips away the Martian upper atmosphere via various mechanisms, resulting in interesting global phenomena that are observable. The Mars Atmosphere and Volatile EvolutioN (MAVEN) has observed the responses of the upper atmosphere such as Interplanetary Coronal Mass Ejections (ICMEs) and Solar flare events spanning from November 2014 to the present. A comprehensive set of observations taken by the MAVEN instrument package enables the better characterization of the thermospheric and ionospheric behavior affected by various space weather events. The observed impacts include changes in the upper atmospheric and ionospheric density and temperature, enhancements of atmospheric loss rate of ions and neutrals, and changes in important boundary layers. The measurements by plasma and field instruments allows the upstream monitoring of the solar EUV, solar energetic particles, and Interplanetary Magnetic Field (IMF) simultaneously and provide additional information of the near-Mars space weather disturbances. In addition, at low altitudes near the periapsis of the spacecraft, the simultaneous measurements of the magnetic field and properties of the thermosphere and ionosphere allow the analysis of the effects of the local crustal magnetic fields. Here, adding to the reported MAVEN observations of the space weather impacts at Mars, we analyze the responses of the upper atmosphere to the mars-impacting space weather events observed by MAVEN. We focus mainly on the responses of the density and temperature structures, which in turn allow us to examine the effects on the important atmospheric layers such as the M2 layer and transition region from the thermosphere to exosphere.

  6. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  7. Laboratory Measurement of the Temperature Dependence of Gaseous Sulfur Dioxide (SO2) Microwave Absorption with Application to the Venus Atmosphere

    NASA Technical Reports Server (NTRS)

    Suleiman, Shady H.; Kolodner, Marc A.; Steffes, Paul G.

    1996-01-01

    High-accuracy laboratory measurements of the temperature dependence of the opacity from gaseous sulfur dioxide (SO2) in a carbon dioxide (CO2) atmosphere at temperatures from 290 to 505 K and at pressures from 1 to 4 atm have been conducted at frequencies of 2.25 GHz (13.3 cm), 8.5 GHz (3.5 cm), and 21.7 GHz (1.4 cm). Based on these absorptivity measurements, a Ben-Reuven (BR) line shape model has been developed that provides a more accurate characterization of the microwave absorption of gaseous S02 in the Venus atmosphere as compared with other formalisms. The developed BR formalism is incorporated into a radiative transfer model. The resulting microwave emission spectrum of Venus is then used to set an upper limit on the disk-averaged abundance of gaseous S02 below the main cloud layer. It is found that gaseous S02 has an upper limit of 150 ppm, which compares well with previous spacecraft in situ measurements and Earth-based radio astronomical observations.

  8. Solar Cycle Response and Long-Term Trends in the Mesospheric Metal Layers

    NASA Technical Reports Server (NTRS)

    Dawkins, E. C. M.; Plane, J. M. C.; Chipperfield, M.; Feng, W.; Marsh, D. R.; Hoffner, J.; Janches, D.

    2016-01-01

    The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer time scales (both the 11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.

  9. Shuttle Upper Atmosphere Mass Spectrometer Experimental Flight Results

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Ozoroski, Thomas A.; Nicholson, John Y.

    1994-01-01

    Calibrated pressure measurements for species with mass-to-charge ratios up to 50 amu/e(-) were obtained trom the shuttle upper atmosphere mass spectrometer experiment during re-entry on the STS-35 mission. The principal experimental objective is to obtain measurements of freestream density in the hypersonic rarefied flow flight regime. Data were collected from 180 to about 87 km. However, data above 115 km were contaminated from a source of gas emanating from pressure transdueers connected in parallel to the mass spectrometer. At lower altitudes, the pressure transducer data are compared to the mass spectrometer total pressure with excellent agreement. Near the orifice entrance, a significant amount of CO2 was generated from chemical reactions. The freestream density in the rarefied flow flight regime is calculated using an orifice pressure coefficient model based upon direct simulation Monte Carlo results. This density, when compared with the 1976 U.S. Standard Atmosphere model, exhibits the wavelike nature seen on previous flights using accelerometry. Selected spectra are presented at higher altitudes (320 km) showing the effects of the ingestion of gases from a forward fuselage fuel dump.

  10. Martian Meteorology: Determination of Large Scale Weather Patterns from Surface Measurements

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Haberle, Robert M.; Bridger, Alison F. C.

    1998-01-01

    We employed numerical modelling of the martian atmosphere, and our expertise in understanding martian atmospheric processes, to better understand the coupling between lower and upper atmosphere processes. One practical application of this work has been our involvement with the ongoing atmospheric aerobraking which the Mars Global Surveyor (MGS) spacecraft is currently undergoing at Mars. Dr. Murphy is currently a member of the Mars Global Surveyor (MGS) Aerobraking Atmospheric Advisory Group (AAG). He was asked to participate in this activity based upon his knowledge of martian atmospheric dynamical processes. Aerobraking is a process whereby a spacecraft, in an elliptical orbit, passes through the upper layers of the atmosphere (in this instance Mars). This passage through the atmosphere 'drags'upon the spacecraft, gradually reducing its orbital velocity. This has the effect, over time, of converting the elliptical orbit to a circular orbit, which is the desired mapping orbit for MGS. Carrying out aerobraking eliminates the need for carrying large amounts of fuel on the spacecraft to execute an engine burn to achieve the desired orbit. Eliminating the mass of the fuel reduces the cost of launch. Damage to one of MGS's solar panels shortly after launch has resulted in a less aggressive extended in time aerobraking phase which will not end until March, 1999. Phase I extended from Sept. 1997 through March 1998. During this time period, Dr. Murphy participated almost daily in the AAG meetings, and beginning in December 1997 lead the meeting several times per week. The leader of each of the daily AAG meetings took the results of that meeting (current state of the atmosphere, identification of any time trends or spatial patterns in upper atmosphere densities, etc.) forward to the Aerobraking Planning Group (APG) meeting, at which time the decision was made to not change MGS orbit, to lower the orbit to reach higher densities (greater 'drag'), or raise the orbit to avoid experiencing excessive, possibly damaging densities.

  11. Synergism of Saturn, Enceladus and Titan and Formation of HCNO Exobiological Molecules

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Cooper, John F.

    2010-01-01

    Saturn as a system has two very exotic moons Titan and Enceladus. Titan with energy input from Saturn's magnetosphere, solar UV irradiation, and cosmic rays can make HCN based molecules as discussed in earlier paper by [1]. Space radiation effects at both moons, and as coupled by the Saturn magnetosphere could cause an unexpected series of events leading to the evolution of biological models at Titan composed of HCNO with oxygen as the new ingredient. The "Old Faithful" model by [2] suggests that Enceladus, highly irradiated by Saturn magnetospheric electrons, has episodic ejections of water vapor driven by radiolytic oxidation gas products into Saturn's magnetosphere. At Titan Cassini discovered 1) that keV oxygen ions, evidently from Enceladus, are bombarding Titan's upper atmosphere [3] and 2) the discovery of heavy positive and negative ions within Titan's upper atmosphere [4]. Initial models of heavy ion formation in Titan's upper atmosphere invoked polymerization of aromatics such as Benzenes and their radicals to make PAHs [5], while a more recent model by [6] has raised the possibility of carbon chains forming from the polymerization of acetylene and its radicals to eventually make fullerenes. Laboratory measurements indicate that fullerenes, which are hollow carbon shells, can trap the keV oxygen and with the clustering of fullerenes and possible mixture with PAHs, some with nitrogen molecules, can make the larger aerosols with oxygen within them. Then with further ionizing irradiation from cosmic rays deep in the atmosphere "tholin" molecules are produced with all the molecular components present from which organic molecules can form. Among the molecular components are amino acids, the fundamental building blocks of life as we know it. This process maybe a common chemical pathway, both at the system level and at the molecular level, to form prebiotic and perhaps even biotic molecules. Such processes can be occurring throughout our universe, such as molecular clouds in the ISM.

  12. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bony, Sandrine; Stevens, Bjorn; Coppin, David

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  14. Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment

    NASA Technical Reports Server (NTRS)

    Festou, M. C.; Atreya, S. K.; Donahue, T. M.; Sandel, B. R.; Shemansky, D. E.; Broadfoot, A. L.

    1981-01-01

    During the occultation of the star Regulus (B7 type) by Jupiter as seen from the Voyager 2 spacecraft on July 9, 1979, two absorbing regions were detected. Between 911 and 1200 A, H2 was absorbing over a 600 km altitude range. Above 1300 A, the rapid increase of the absorption by the hydrocarbons was observed over an altitude interval of approximately 100 km with a height resolution of 3 km. The analysis of these absorption features has provided the height profiles of molecular hydrogen, methane, ethane, and acetylene, as well as the thermal profile in the upper atmosphere of Jupiter. Combining the Voyager ultraviolet spectrometer results with other data, such as those obtained by the Voyager infrared and radioscience instruments, has yielded a comprehensive model of the composition and structure of the atmosphere of Jupiter.

  15. New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN

    NASA Astrophysics Data System (ADS)

    Stevens, M. H.; Evans, J. S.; Schneider, N. M.; Stewart, A. I. F.; Deighan, J.; Jain, S. K.; Crismani, M.; Stiepen, A.; Chaffin, M. S.; McClintock, W. E.; Holsclaw, G. M.; Lefèvre, F.; Lo, D. Y.; Clarke, J. T.; Montmessin, F.; Bougher, S. W.; Jakosky, B. M.

    2015-11-01

    We identify molecular nitrogen (N2) emissions in the Martian upper atmosphere using the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. We report the first observations of the N2 Lyman-Birge-Hopfield (LBH) bands at Mars and confirm the tentative identification of the N2 Vegard-Kaplan (VK) bands. We retrieve N2 density profiles from the VK limb emissions and compare calculated limb radiances between 90 and 210 km against both observations and predictions from a Mars general circulation model (GCM). Contrary to earlier analyses using other satellite data, we find that N2 abundances exceed GCM results by about a factor of 2 at 130 km but are in agreement at 150 km. The analysis and interpretation are enabled by a linear regression method used to extract components of UV spectra from IUVS limb observations.

  16. The vertical distribution and origin of HCN in Neptune's atmosphere

    NASA Technical Reports Server (NTRS)

    Lellouch, Emmanuel; Romani, Paul N.; Rosenqvist, Jan

    1994-01-01

    Measurements and modeling of the (3-2) rotational line of hydrogen cyanide at 265.9 GHz in Neptune's atmosphere are presented. High signal-to-noise observations provide information on the HCN vertical distribution in Neptune's stratosphere. The HCN mixing ratio is found to be nearly uniform with height above the condensation level. Best fits occur for HCN distributions that have a slight increase with altitude. A least-squares analysis yields a mixing ratio of (3.2 +/- 0.8)10(exp -10) at 2 mbar and a mean mixing ratio scale height of 250(sup 750)(sub -110) km in the 0.1-3 mbar region. To interpret these results, we developed a photochemical model of HCN. HCN formation is initiated by the reaction between CH3 radicals, produced from methane photochemistry, and N atoms. The primary sink for HCN is condensation, with minor contributions from photolysis and chemical losses. Two possible sources of N atoms are investigated: (1) infall of N escaped from Triton's upper atmosphere, and (2) galactic cosmic ray (GCR) impact on internal N2. Given the uncertainties on (i) the transport and possible ionization of N in Neptune's magnetosphere, and the fate of N(+) reaching Neptune's upper atmosphere and (ii) the N2 mixing ratio in Neptune's deep atmosphere, we suggest that both sources of N atoms may significantly contibute to the formation of HCN.

  17. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape.

    PubMed

    Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-11-01

    The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.

  18. Magnetic Shocks and Substructures Excited by Torsional Alfvén Wave Interactions in Merging Expanding Flux Tubes

    NASA Astrophysics Data System (ADS)

    Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.

    2018-04-01

    Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.

  19. Satellite and ground based observations of a large-scale electron precipitation event

    NASA Astrophysics Data System (ADS)

    Gamble, R. J.; Rodger, C. J.; Clilverd, M.; Thomson, N. R.; Ulich, T.; Parrot, M.; Sauvaud, J.; Berthelier, J.

    2010-12-01

    In order to describe how geomagnetic storms couple to the upper atmosphere, and hence to atmospheric chemistry and dynamics, measurements are required of energetic electron precipitation into the atmosphere. However, satellite observations are currently poorly suited to providing measurements of energetic and relativistic electron precipitation. The AARDDVARK network (Antarctic-Arctic Radiation-belt (Dynamic) Deposition - VLF Atmospheric Research Konsortium) provides continuous long-range observations of ionisation levels from ~30-85 km altitude, with the goal of increasing the understanding of energy coupling between the Earth's atmosphere, Sun, and Space. In this study we combine AARDDVARK subionospheric VLF measurements with DEMETER electron spectra using modelling techniques to study >100 keV energetic and relativistic electron precipitation into the atmosphere for the 24-hour period beginning 0600UT 19 January during the 17-21 January 2005 geomagnetic storms. The study augments large-scale regional observations using VLF measurements of multiple subionospheric paths to our receiver at Sodankylä, Finland (67.4°N, 26.6°E, L=5.31), combined with detailed in situ measurements from the DEMETER satellite to allow the spatial extent, flux, and energy distribution of the precipitation to be determined. In contrast to other satellites, DEMETER’s electron spectrometer has excellent energy resolution. The DEMETER-measured precipitation spectrum is used to infer an altered electron density profile, modelled using a simple ionospheric electron model. This altered electron profile is then used in a subionospheric VLF model and compared with AARDDVARK VLF results. Matching model results with subionospheric VLF measurements allows calculation of both the intensity and geographic extent (in L) of the precipitation region required to produce such an effect. We find that a flux of 7000 elec.cm-2s-1 >100 keV electrons precipitates into the atmosphere over an L range of 3.5-4.0. An error analysis is also included. By providing a better picture of both the intensity and size of the precipitation region, we obtain a more complete picture of the net impact that such a precipitation event has on the upper atmosphere. The results of this analysis will become primary inputs to chemical modelling of the impact that this precipitation has on the neutral atmosphere.

  20. Registering upper atmosphere parameters in East Siberia with Fabry—Perot Interferometer KEO Scientific "Arinae"

    NASA Astrophysics Data System (ADS)

    Vasilyev, Roman; Artamonov, Maksim; Beletsky, Aleksandr; Zherebtsov, Geliy; Medvedeva, Irina; Mikhalev, Aleksandr; Syrenova, Tatyana

    2017-09-01

    We describe the Fabry–Perot interferometer designed to study Earth’s upper atmosphere. We propose a modification of the existing data processing method for determining the Doppler shift and Doppler widening and also for separating the observed line intensity and the background intensity. The temperature and wind velocity derived from these parameters are compared with physical characteristics obtained from modeling (NRLMSISE-00, HWM14). We demonstrate that the temperature is determined from the oxygen 630 nm line irrespective of the hydroxyl signal existing in interference patterns. We show that the interferometer can obtain temperature from the oxygen 557.7 nm line in case of additional calibration of the device. The observed wind velocity mainly agrees with model data. Night variations in the red and green oxygen lines quite well coincide with those in intensities obtained by devices installed nearby the interferometer.

  1. Exploring The Relation Between Upper Tropospheric (UT) Clouds and Convection

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Stubenrauch, C.

    2017-12-01

    The importance of knowing the vertical transports of water vapor and condensate by atmospheric moist convection cannot be overstated. Vertical convective transports have wide-ranging influences on the Earth system, shaping weather, climate, the hydrological cycle and the composition of the atmosphere. These transports also influence the upper tropospheric cloudiness that exerts profound effects on climate. Although there are presently no direct observations to quantify these transports on the large scale, and there are no observations to constrain model assumptions about them, it might be possible to derive useful observations proxies of these transports and their influence. This talk will present results derived from a large community effort that has developed important observations data records that link clouds and convection. Steps to use these observational metrics to examine the relation between convection, UT clouds in both cloud and global scale models are exemplified and important feedbacks between high clouds, radiation and convection will be elucidated.

  2. On the Sources and Sinks of Atmospheric VOCs: An Integrated Analysis of Recent Aircraft Campaigns over North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Millet, D. B.; Singh, H. B.; Wisthaler, A.

    2017-12-01

    We present an integrated analysis of the atmospheric VOC budget over North America using a high-resolution GEOS-Chem simulation and observations from a large suite of recent aircraft campaigns. Here, the standard model simulation is expanded to include a more comprehensive VOC treatment encompassing the best current understanding of emissions and chemistry. Based on this updated framework, we find in the model that biogenic emission dominate VOC carbon sources over North America (accounting for 71% of total primary emissions), and this is especially the case from a reactivity perspective (with biogenic VOCs accounting for 90% of reactivity-weighted emissions). Physical processes and chemical degradation make comparable contributions to the removal of VOC carbon over North America. We further apply this simulation to explore the impacts of different primary VOC sources on atmospheric chemistry in terms of OH reactivity and key atmospheric chemicals including NOx, HCHO, glyoxal, and ozone. The airborne observations show that the majority of detected VOC carbon is carried by oxygenated VOC throughout the North American troposphere, and this tendency is well captured by the model. Model-measurement comparisons along the campaign flight tracks show that the total observed VOC abundance is generally well-predicted by the model within the boundary layer (with some regionally-specific biases) but severely underestimated in the upper troposphere. The observations imply significant missing sources in the model for upper tropospheric methanol, acetone, peroxyacetic acid, and glyoxal, and for organic acids in the lower troposphere. Elemental ratios derived from airborne high-resolution mass spectrometry show only modest change in the ensemble VOC carbon oxidation state with aging (in NOx:NOy space), and the model successfully captures this behavior.

  3. Maui Analysis of Upper Atmospheric Injections

    NASA Technical Reports Server (NTRS)

    Dressler, Rainer A.

    2008-01-01

    Maui Analysis of Upper Atmospheric Injections (MAUI) will observe the Space Shuttle engine exhaust plumes from the Maui Space Surveillance Site in Hawaii. The observations will occur when the Space Shuttle fires its engines at night or twilight. A telescope and all-sky imagers will take images and data while the Space Shuttle flies over the Maui site. The images will be analyzed to better understand the interaction between the spacecraft plume and the upper atmosphere of Earth.

  4. Contributions of Lower Atmospheric Drivers to the Semiannual Oscillation in Thermospheric Global Mass Density

    NASA Astrophysics Data System (ADS)

    Jones, M., Jr.; Emmert, J. T.; Drob, D. P.; Siskind, D. E.

    2016-12-01

    The thermosphere exhibits intra-annual variations (IAV) in globally averaged mass density that noticeably impact the drag environment of satellites in low Earth orbit. Particularly, the annual and semiannual oscillations (AO and SAO) are collectively the second largest component, after solar variability, of thermospheric global mass density variations. Several mechanisms have been proposed to explain the oscillations, but they have yet to be reproduced by first-principles modeling simulations. Recent studies have focused on estimating the SAO in eddy diffusion required to explain the thermospheric SAO in mass density. Less attention has been paid to the effect of lower and middle atmospheric drivers on the lower boundary of the thermosphere. In this study, we utilize the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), to elucidate how the different lower atmospheric drivers influence IAV, and in particular the SAO of globally-averaged thermospheric mass density. We performed numerical simulations of a continuous calendar year assuming constant solar forcing, manipulating the lower atmospheric tidal forcing and gravity wave parameterization in order to quantify the SAO in thermospheric mass density attributable to different lower atmospheric drivers. The prominent initial results are as follows: (1) The "standard" TIME-GCM is capable of simulating the SAO in globally-averaged mass density at 400 km from first-principles, and its amplitude and phase compare well with empirical models; (2) The simulations suggest that seasonally varying Kzz driven by breaking GWs is not the primary driver of the SAO in upper thermospheric globally averaged mass density; (3) Preliminary analysis suggests that the SAO in the upper thermospheric mass density could be a by-product of dynamical wave transport in the mesopause region.

  5. Description and verification of a U.S. Naval Research Lab's loosely coupled data assimilation system for the Navy's Earth System Model

    NASA Astrophysics Data System (ADS)

    Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.

    2017-12-01

    The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.

  6. Estimating Collisionally-Induced Escape Rates of Light Neutrals from Early Mars

    NASA Astrophysics Data System (ADS)

    Gacesa, M.; Zahnle, K. J.

    2016-12-01

    Collisions of atmospheric gases with hot oxygen atoms constitute an important non-thermal mechanism of escape of light atomic and molecular species at Mars. In this study, we present revised theoretical estimates of non-thermal escape rates of neutral O, H, He, and H2 based on recent atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission and related theoretical models. As primary sources of hot oxygen, we consider dissociative recombination of O2+ and CO2+ molecular ions. We also consider hot oxygen atoms energized in primary and secondary collisions with energetic neutral atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases1,2. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism3. This approach allows us to construct distributions of vibrationally and rotationally excited states and predict the products' emission spectra. In addition, we estimate formation rates of excited, translationally hot hydroxyl molecules in the upper atmosphere of Mars. The escape rates are calculated from the kinetic energy distributions of the reaction products using an enhanced 1D model of the atmosphere for a range of orbital and solar parameters. Finally, by considering different scenarios, we estimate the influence of these escape mechanisms on the evolution of Mars's atmosphere throughout previous epochs and their impact on the atmospheric D/H ratio. M.G.'s research was supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Universities Space Research Association under contract with NASA. 1N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014) 2M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", arXiv:1607.03602 (2016) 3M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012).

  7. Particulate matter in the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Ragent, B.; Esposito, L. W.; Tomasko, M. G.; Marov, M. IA.; Shari, V. P.

    1985-01-01

    The paper presents a summary of the data currently available (June 1984) describing the planet-enshrouding particulate matter in the Venus atmosphere. A description and discussion of the state of knowledge of the Venus clouds and hazes precedes the tables and plots. The tabular material includes a precis of upper haze and cloud-top properties, parameters for model-size distributions for particles and particulate layers, and columnar masses and mass loadings.

  8. Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Nagy, A. F.; Kim, J.; Cravens, T. E.

    1990-04-01

    Optical observations of hot atoms in the atmospheres of Venus and Mars are briefly reviewed. A summary of hot hydrogen and oxygen production and loss processes is given. Results of some recent model calculations as well as a number of new results of the hot hydrogen and oxygen populations are presented and their implication in terms of solar wind interaction processes is discussed.

  9. SUMS preliminary design and data analysis development. [shuttle upper atmosphere mass spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Hinson, E. W.

    1981-01-01

    The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.

  10. A comparative study of Venus and Mars - Upper atmospheres, ionospheres and solar wind interactions

    NASA Technical Reports Server (NTRS)

    Mahajan, K. K.; Kar, J.

    1990-01-01

    The neutral atmospheres of Mars and Venus are discussed. A comparative study is presented of the upper atmospheres, ionospheres, and solar wind interactions of these two planets. The review is mainly concerned with the region about 100 km above the surface of the planets.

  11. The influence of orographic waves and quasi-biennial oscillations on vertical ozone flux in the model of general atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2017-11-01

    A parameterization of the dynamical and thermal effects of orographic gravity waves (OGWs) and assimilation quasibiennial oscillations (QBOs) of the zonal wind in the equatorial lower atmosphere are implemented into the numerical model of the general circulation of the middle and upper atmosphere MUAM. The sensitivity of vertical ozone fluxes to the effects of stationary OGWs at different QBO phases at altitudes up to 100 km for January is investigated. The simulated changes in vertical velocities produce respective changes in vertical ozone fluxes caused by the effects of the OGW parameterization and the transition from the easterly to the westerly QBO phase. These changes can reach 40 - 60% in the Northern Hemisphere at altitudes of the middle atmosphere.

  12. Environmental impacts of the satellite power system (SPS) on the middle atmosphere

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The heavy lift launch vehicles (HLLV) proposed for use in constructing satellite power systems (SPS) would deposit various contaminants in the middle atmosphere, contaminants that would conceivable have adverse effects on climate and upper air structure. These contaminants consist of the major constitutents of water vapor, hydrogen, carbon dioxide, and carbon monoxide, and the minor constituents of sulfur dioxide and nitric oxide in the rocket effluent, as well as nitric oxide formed during reentry. To assess the magnitudes of the effects, new models or modified existing models were constructed.

  13. A simple biosphere model (SiB) for use within general circulation models

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A.

    1986-01-01

    A simple realistic biosphere model for calculating the transfer of energy, mass and momentum between the atmosphere and the vegetated surface of the earth has been developed for use in atmospheric general circulation models. The vegetation in each terrestrial model grid is represented by an upper level, representing the perennial canopy of trees and shrubs, and a lower level, representing the annual cover of grasses and other heraceous species. The vegetation morphology and the physical and physiological properties of the vegetation layers determine such properties as: the reflection, transmission, absorption and emission of direct and diffuse radiation; the infiltration, drainage, and storage of the residual rainfall in the soil; and the control over the stomatal functioning. The model, with prescribed vegetation parameters and soil interactive soil moisture, can be used for prediction of the atmospheric circulation and precipitaion fields for short periods of up to a few weeks.

  14. Studies of satellite and planetary surfaces and atmospheres. [Jupiter, Saturn, and Mars and their satellites

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1978-01-01

    Completed or published research supported by NASA is summarized. Topics cover limb darkening and the structure of the Jovian atmosphere; the application of generalized inverse theory to the recovery of temperature profiles; models for the reflection spectrum of Jupiter's North Equatorial Belt; isotropic scattering layer models for the red chromosphore on Titan; radiative-convective equilibrium models of the Titan atmosphere; temperature structure and emergent flux of the Jovian planets; occultation of epsilon Geminorum by Mars and the structure and extinction of the Martian upper atmosphere; lunar occultation of Saturn; astrometric results and the normal reflectances of Rhea, Titan, and Iapetus; near limb darkening of solids of planetary interest; scattering light scattering from particulate surfaces; comparing the surface of 10 to laboratory samples; and matching the spectrum of 10: variations in the photometric properties of sulfur-containing mixtures.

  15. SPICAM: studying the global structure and composition of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2004-08-01

    The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.

  16. Whole Atmosphere Modeling and Data Analysis: Success Stories, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Yudin, V. A.; Akmaev, R. A.; Goncharenko, L. P.; Fuller-Rowell, T. J.; Matsuo, T.; Ortland, D. A.; Maute, A. I.; Solomon, S. C.; Smith, A. K.; Liu, H.; Wu, Q.

    2015-12-01

    At the end of the 20-th century Raymond Roble suggested an ambitious target of developing an atmospheric general circulation model (GCM) that spans from the surface to the thermosphere for modeling the coupled atmosphere-ionosphere with drivers from terrestrial meteorology and solar-geomagnetic inputs. He pointed out several areas of research and applications that would benefit highly from the development and improvement of whole atmosphere modeling. At present several research groups using middle and whole atmosphere models have attempted to perform coupled ionosphere-thermosphere predictions to interpret the "unexpected" anomalies in the electron content, ions and plasma drifts observed during recent stratospheric warming events. The recent whole atmosphere inter-comparison case studies also displayed striking differences in simulations of prevailing flows, planetary waves and dominant tidal modes even when the lower atmosphere domain of those models were constrained by similar meteorological analyses. We will present the possible reasons of such differences between data-constrained whole atmosphere simulations when analyses with 6-hour time resolution are used and discuss the potential model-data and model-model differences above the stratopause. The possible shortcomings of the whole atmosphere simulations associated with model physics, dynamical cores and resolutions will be discussed. With the increased confidence in the space-borne temperature, winds and ozone observations and extensive collections of ground-based upper atmosphere observational facilities, the whole atmosphere modelers will be able to quantify annual and year-to-variability of the zonal mean flows, planetary wave and tides. We will demonstrate the value of tidal and planetary wave variability deduced from the space-borne data and ground-based systems for evaluation and tune-up of whole atmosphere simulations including corrections of systematic model errors. Several success stories on the middle and whole atmosphere simulations coupled with the ionosphere models will be highlighted, and future perspectives for links of the space and terrestrial weather predictions constrained by current and scheduled ionosphere-thermosphere-mesosphere satellite missions will be presented

  17. Atmospheric consequences of cosmic ray variability in the extragalactic shock model: 2. Revised ionization levels and their consequences

    NASA Astrophysics Data System (ADS)

    Melott, Adrian L.; Atri, Dimitra; Thomas, Brian C.; Medvedev, Mikhail V.; Wilson, Graham W.; Murray, Michael J.

    2010-08-01

    It has been suggested that galactic shock asymmetry induced by our galaxy's infall toward the Virgo Cluster may be a source of periodicity in cosmic ray exposure as the solar system oscillates perpendicular to the galactic plane, thereby, inducing an observed terrestrial periodicity in biodiversity. There are a number of plausible mechanisms by which cosmic rays might affect terrestrial biodiversity. Here we investigate one of these mechanisms, the consequent ionization and dissociation in the atmosphere, resulting in changes in atmospheric chemistry that culminate in the depletion of ozone and a resulting increase in the dangerous solar UVB flux on the ground. We use a heuristic model of the cosmic ray intensity enhancement originally suggested by Medvedev and Melott (2007) to compute steady state atmospheric effects. This paper is a reexamination of an issue we have studied before with a simplified approximation for the distribution of incidence angles. The new results are based on an improved ionization background computation averaged over a massive ensemble (about 7 × 105) shower simulations at various energies and incidence angles. We adopt a range with a minimal model and a fit to full exposure to the postulated extragalactic background. The atmospheric effects are greater than they were with our earlier, simplified ionization model. At the lower end of the intensity range, we find that the effects are too small to be of serious consequence. At the upper end of this range, ˜6% global average loss of ozone column density exceeds that currently experienced due to anthropogenic effects such as accumulated chlorofluorocarbons. We discuss some of the possible effects. The intensity of the atmospheric effects is less than those of a nearby supernova or galactic γ ray burst, but the duration of the effects would be about 106 times longer. Present UVB enhancement from current ozone depletion ˜3% is a documented stress on the biosphere, but a depletion of the magnitude found at the upper end of our range would approximately double the global average UVB flux. We conclude that for estimates at the upper end of the reasonable range of the cosmic ray variability over geologic time, the mechanism of atmospheric ozone depletion may provide a major biological stress, which could easily bring about major loss of biodiversity. It is possible that future high-energy astrophysical observations will resolve the question of whether such depletion is likely.

  18. Atmosphere-Ionosphere Electrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.

  19. Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander

    2014-01-01

    Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.

  20. Does spectroscopic evidence require two scattering layers in the Venus atmosphere.

    NASA Technical Reports Server (NTRS)

    Regas, J. L.; Boese, R. W.; Giver, L. P.; Miller, J. H.

    1973-01-01

    Comments on Hunt's (1972) conclusion that the phase variation of lines in the 7820- and 7883-A CO2 bands is due to the presence of two scattering layers in the Venusian atmosphere. It is shown that the increase of equivalent width with phase between 0 and 90 deg noted by Hunt in the data by Gray Young et al. (1971) does not necessarily require a two-layer model of scattering in the Venusian atmosphere and that this increase may be due to the strong backward lobe in the Venusian cloud phase function. Hunt, in a reply, notes that Regas et al. incorrectly use in their analysis Hansen's (1969) data which are for a homogeneous planetary atmosphere, while Hunt used an inhomogeneous model of the Venusian atmosphere. In addition, further evidence to support Hunt's claim for a multilayered structure of the upper Venusian clouds is presented.

  1. The puzzling Venusian polar atmospheric structure reproduced by a general circulation model

    PubMed Central

    Ando, Hiroki; Sugimoto, Norihiko; Takagi, Masahiro; Kashimura, Hiroki; Imamura, Takeshi; Matsuda, Yoshihisa

    2016-01-01

    Unlike the polar vortices observed in the Earth, Mars and Titan atmospheres, the observed Venus polar vortex is warmer than the midlatitudes at cloud-top levels (∼65 km). This warm polar vortex is zonally surrounded by a cold latitude band located at ∼60° latitude, which is a unique feature called ‘cold collar' in the Venus atmosphere. Although these structures have been observed in numerous previous observations, the formation mechanism is still unknown. Here we perform numerical simulations of the Venus atmospheric circulation using a general circulation model, and succeed in reproducing these puzzling features in close agreement with the observations. The cold collar and warm polar region are attributed to the residual mean meridional circulation enhanced by the thermal tide. The present results strongly suggest that the thermal tide is crucial for the structure of the Venus upper polar atmosphere at and above cloud levels. PMID:26832195

  2. The limb-darkened Arcturus: imaging with the IOTA/IONIC interferometer

    NASA Astrophysics Data System (ADS)

    Lacour, S.; Meimon, S.; Thiébaut, E.; Perrin, G.; Verhoelst, T.; Pedretti, E.; Schuller, P. A.; Mugnier, L.; Monnier, J.; Berger, J. P.; Haubois, X.; Poncelet, A.; Le Besnerais, G.; Eriksson, K.; Millan-Gabet, R.; Ragland, S.; Lacasse, M.; Traub, W.

    2008-07-01

    Aims: We undertook an H band interferometric examination of Arcturus, a star frequently used as a spatial and spectral calibrator. Methods: Using the IOTA 3 telescope interferometer, we performed spectro-interferometric observations (R≈35) of Arcturus. Atmospheric models and prescriptions were fitted to the data to derive the brightness distribution of the photosphere. Image reconstruction was performed using two software algorithms: Wisard and Mira. Results: An achromatic power law proved to be a good model of the brightness distribution, with a limb darkening compatible with the one derived from atmospheric model simulations using our marcs model. A Rosseland diameter of 21.05±0.21 was derived, corresponding to an effective temperature of Teff = 4295±26 K. No companion was detected from the closure phases, with an upper limit on the brightness ratio of 8×10-4 at 1 AU. The dynamic range at such distance from the photosphere was established as 1.5×10-4 (1σ rms). An upper limit of 1.7×10-3 was also derived for the level of brightness asymmetries present in the photosphere.

  3. The New Horizons Ultraviolet Solar Occultation by Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Young, L. A.; Kammer, J.; Steffl, A.; Gladstone, R.; Summers, M. E.; Strobel, D. F.; Hinson, D. P.; Stern, A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; McComas, D. J.

    2017-12-01

    The Alice instrument on NASA's New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14, as the spacecraft flew nearly diametrically though the solar shadow. The resulting dataset was a time-series of spectra from 52 to 187 nm with a spectral resolution of 0.3 nm. From these, we derived line-of-sight abundances and local number densities for the major species (N2 and CH4) and minor hydrocarbons (C2H2, C2H4, C2H6), and line-of-sight optical depth and extinction coefficients for the haze. Analysis of these data imply that (1) temperatures in Pluto's upper atmosphere were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K, and subsequently lower escape rates, dominated by CH4 escape over N2; (2) the lower atmosphere was very stable, placing the homopause within 12 km of the surface, (3) the abundance profiles of the "C2Hx hydrocarbons" had non-exponential density profiles that compared favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, and (4) haze had an extinction coefficient approximately proportional to N2 density.

  4. A Semiarid Long-Term Hydrologic Observatory at the Continental Scale: The Upper Río Grande Basin

    NASA Astrophysics Data System (ADS)

    Hogan, J. F.; Vivoni, E. R.; Bowman, R. S.; Coonrod, J.; Thomson, B. M.; Samani, Z.; Ferre, P. T.; Phillips, F. M.; Rango, A.; Rasmussen, R.; Springer, E. P.; Small, E. E.

    2004-12-01

    Water availability is critical in arid and semiarid regions, which comprise 35 percent of the land area of the globe. In the Southwestern US, climate variability and landscape heterogeneity lead to strong gradients in hydrological processes, which in turn impact land-atmosphere interactions, ecological dynamics, biogeochemical cycles and geomorphic change. This complexity presents a fundamental challenge to our understanding of hydrology, one that is best addressed through long-term, systematic field and remote-sensing observations and numerical-model investigations. In this poster, we will present our plans to study the interaction of climate-landscape-vegetation and water using a nested set of instrumented sites within the Upper Río Grande, a continental-scale semiarid watershed. This complex watershed extends from the snow-dominated headwater basins in San Juan Mountains of southern Colorado, through the Chihuahuan Desert in New Mexico, Texas and Mexico, to the desert valley alluvial basins southeast of El Paso, Texas. As part of the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) plan for a network of Long-Term Hydrologic Observatories (LTHOs), the Upper Río Grande would represent the combination of mountain landscapes, semiarid to arid alluvial basin aquifers and riparian corridors that are characteristic of the Western United States. We will describe existing hydrologic, ecologic and atmospheric measurement infrastructure in the watershed and discuss plans for integrating these into a coherent network that provides a core set of scientific data products for the hydrologic community. Data products generated by the Upper Río Grande LTHO will also aid in the testing of coupled numerical models of the atmosphere-surface-groundwater system applied at high resolution over the region. The Upper Río Grande presents unique opportunities to test hydrologic hypotheses concerning surface water-groundwater interactions and their control on runoff response, solute transport and reactivity, and riparian ecological communities

  5. The global geochemistry of bomb-produced tritium - General circulation model compared to available observations and traditional interpretations

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Broecker, Wallace S.; Jouzel, Jean; Suozzo, Robert J.; Russell, Gary L.; Rind, David

    1989-01-01

    Observational evidence suggests that of the tritium produced during nuclear bomb tests that has already reached the ocean, more than twice as much arrived through vapor impact as through precipitation. In the present study, the Goddard Institute for Space Studies 8 x 10 deg atmospheric general circulation model is used to simulate tritium transport from the upper atmosphere to the ocean. The simulation indicates that tritium delivery to the ocean via vapor impact is about equal to that via precipitation. The model result is relatively insensitive to several imposed changes in tritium source location, in model parameterizations, and in model resolution. Possible reasons for the discrepancy are explored.

  6. Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b

    NASA Astrophysics Data System (ADS)

    Kubyshkina, D.; Lendl, M.; Fossati, L.; Cubillos, P. E.; Lammer, H.; Erkaev, N. V.; Johnstone, C. P.

    2018-04-01

    The K2-33 planetary system hosts one transiting 5 R⊕ planet orbiting the young M-type host star. The planet's mass is still unknown, with an estimated upper limit of 5.4 MJ. The extreme youth of the system (<20 Myr) gives the unprecedented opportunity to study the earliest phases of planetary evolution, at a stage when the planet is exposed to an extremely high level of high-energy radiation emitted by the host star. We perform a series of 1D hydrodynamic simulations of the planet's upper atmosphere considering a range of possible planetary masses, from 2 to 40 M⊕, and equilibrium temperatures, from 850 to 1300 K, to account for internal heating as a result of contraction. We obtain temperature profiles mostly controlled by the planet's mass, while the equilibrium temperature has a secondary effect. For planetary masses below 7-10 M⊕, the atmosphere is subject to extremely high escape rates, driven by the planet's weak gravity and high thermal energy, which increase with decreasing mass and/or increasing temperature. For higher masses, the escape is instead driven by the absorption of the high-energy stellar radiation. A rough comparison of the timescales for complete atmospheric escape and age of the system indicates that the planet is more massive than 10 M⊕.

  7. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  8. Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2014-12-01

    Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.

  9. Effect of intrinsic magnetic field decrease on the low- to middle-latitude upper atmosphere dynamics simulated by GAIA

    NASA Astrophysics Data System (ADS)

    Tao, C.; Jin, H.; Shinagawa, H.; Fujiwara, H.; Miyoshi, Y.

    2017-12-01

    The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.

  10. Effect of intrinsic magnetic field decrease on the low- to middle-latitude upper atmosphere dynamics simulated by GAIA

    NASA Astrophysics Data System (ADS)

    Tao, Chihiro; Jin, Hidekatsu; Shinagawa, Hiroyuki; Fujiwara, Hitoshi; Miyoshi, Yasunobu

    2017-09-01

    The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.

  11. Central role of carbonyl compounds in atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Lary, D. J.; Shallcross, D. E.

    2000-08-01

    With the exception of acetone it is not generally recognized how important atmospheric carbonyls and alkyl radicals are in the lower stratosphere and upper troposphere. Carbonyl compounds are the crucial intermediate species for the autocatalytic production of OH. For example, in the upper troposphere and lower stratosphere it is calculated based on data assimilation analysis of Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) data that CH3 production due to the degradation of carbonyls contributes around 40% to the overall production of CH3, a key initiation step for HOx production, with the contribution due to the photolysis of CH3CHO being comparable to that of acetone. So correctly modeling the alkyl radical concentrations is of central importance and has not be given the attention it deserves to date. The reactions of carbonyls with Br and Cl are also major sources of HBr and HCl. In short, carbonyl compounds play a central role in atmospheric chemistry close to the tropopause, and this is directly relevant to issues such as the assessment of the impact of air traffic, and ozone depletion.

  12. Constraints on atmospheric structure and helium abundance of Saturn from Cassini/UVIS and CIRS

    NASA Astrophysics Data System (ADS)

    Koskinen, Tommi; Guerlet, Sandrine

    2017-10-01

    We combine results from stellar occultations observed by Cassini/UVIS and infrared emissions observed by Cassini/CIRS to create empirical models of atmospheric structure on Saturn corresponding to the locations probed by the UVIS stellar occultations. These models span multiple occultation locations at different latitudes from 2005 to the end of 2015. In summary, we connect the temperature-pressure profiles retrieved from the CIRS data to the temperature-pressure profiles in the thermosphere retrieved from the occultations. A corresponding altitude scale is calculated and matched to the altitude scale of the density profiles that are retrieved directly from the occultations. In addition to the temperature structure, our ability to match the altitudes in the occultation light curves depends on the mean molecular weight of the atmosphere. We use the UVIS occultations to constrain the abundance of methane near the homopause, allowing us to constrain the eddy mixing rate of the atmosphere. In addition, our preliminary results are consistent with a mixing ratio of about 11% for helium in the lower atmosphere. Our results provide an important reference for future models of Saturn’s upper atmosphere.

  13. Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.; Oberheide, J.; Sutton, E. K.; Liu, H.-L.; Anderson, J. L.; Raeder, K.

    2016-04-01

    The intraseasonal variability of the eastward propagating nonmigrating diurnal tide with zonal wave number 3 (DE3) during 2007 in the mesosphere, ionosphere, and thermosphere is investigated using a whole atmosphere model reanalysis and satellite observations. The atmospheric reanalysis is based on implementation of data assimilation in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The tidal variability in the WACCM+DART reanalysis is compared to the observed variability in the mesosphere and lower thermosphere (MLT) based on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observations, in the ionosphere based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations, and in the upper thermosphere (˜475 km) based on Gravity Recovery and Climate Experiment (GRACE) neutral density observations. To obtain the short-term DE3 variability in the MLT and upper thermosphere, we apply the method of tidal deconvolution to the TIMED/SABER observations and consider the difference in the ascending and descending longitudinal wave number 4 structure in the GRACE observations. The results reveal that tidal amplitude changes of 5-10 K regularly occur on short timescales (˜10-20 days) in the MLT. Similar variability occurs in the WACCM+DART reanalysis and TIMED/SABER observations, demonstrating that the short-term variability can be captured in whole atmosphere models that employ data assimilation and in observations by the technique of tidal deconvolution. The impact of the short-term DE3 variability in the MLT on the ionosphere and thermosphere is also clearly evident in the COSMIC and GRACE observations. Analysis of the troposphere forcing in WACCM+DART and simulations of the Global Scale Wave Model (GSWM) show that the short-term DE3 variability in the MLT is not related to a single source; rather, it is due to a combination of changes in troposphere forcing, zonal mean atmosphere, and wave-wave interactions.

  14. The solar-terrestrial environment. An introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere.

    NASA Astrophysics Data System (ADS)

    Hargreaves, J. K.

    This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.

  15. Mantle redox evolution and the oxidation state of the Archean atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Eggler, D. H.; Raeburn, S. P.

    1993-01-01

    Current models predict that the early atmosphere consisted mostly of CO2, N2, and H2O, along with traces of H2 and CO. Such models are based on the assumption that the redox state of the upper mantle has not changed, so that volcanic gas composition has remained approximately constant with time. We argue here that this assumption is probably incorrect: the upper mantle was originally more reduced than today, although not as reduced as the metal arrest level, and has become progressively more oxidized as a consequence of the release of reduced volcanic gases and the subduction of hydrated, oxidized seafloor. Data on the redox state of sulfide and chromite inclusions in diamonds imply that the process of mantle oxidation was slow, so that reduced conditions could have prevailed for as much as half of the earth's history. To be sure, other oxybarometers of ancient rocks give different results, so the question of when the mantle redox state has changed remains unresolved. Mantle redox evolution is intimately linked to the oxidation state of the primitive atmosphere: A reduced Archean atmosphere would have had a high hydrogen escape rate and should correspond to a changing mantle redox state; an oxidized Archean atmosphere should be associated with a constant mantle redox state. The converses of these statements are also true. Finally, our theory of mantle redox evolution may explain why the Archean atmosphere remained oxygen-deficient until approximately 2.0 billion years ago (Ga) despite a probable early origin for photosynthesis.

  16. Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases

    NASA Astrophysics Data System (ADS)

    Bani Shahabadi, Maziar; Huang, Yi; Garand, Louis; Heilliette, Sylvain; Yang, Ping

    2016-09-01

    An established radiative transfer model (RTM) is adapted for simulating all-sky infrared radiance spectra from the Canadian Global Environmental Multiscale (GEM) model in order to validate its forecasts at the radiance level against Atmospheric InfraRed Sounder (AIRS) observations. Synthetic spectra are generated for 2 months from short-term (3-9 h) GEM forecasts. The RTM uses a monthly climatological land surface emissivity/reflectivity atlas. An updated ice particle optical property library was introduced for cloudy radiance calculations. Forward model brightness temperature (BT) biases are assessed to be of the order of ˜1 K for both clear-sky and overcast conditions. To quantify GEM forecast meteorological variables biases, spectral sensitivity kernels are generated and used to attribute radiance biases to surface and atmospheric temperatures, atmospheric humidity, and clouds biases. The kernel method, supplemented with retrieved profiles based on AIRS observations in collocation with a microwave sounder, achieves good closure in explaining clear-sky radiance biases, which are attributed mostly to surface temperature and upper tropospheric water vapor biases. Cloudy-sky radiance biases are dominated by cloud-induced radiance biases. Prominent GEM biases are identified as: (1) too low surface temperature over land, causing about -5 K bias in the atmospheric window region; (2) too high upper tropospheric water vapor, inducing about -3 K bias in the water vapor absorption band; (3) too few high clouds in the convective regions, generating about +10 K bias in window band and about +6 K bias in the water vapor band.

  17. Impact of climate warming on upper layer of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Delworth, Thomas L.; Rosati, Anthony; Zhang, Rong; Anderson, Whit G.; Zeng, Fanrong; Stock, Charles A.; Gnanadesikan, Anand; Dixon, Keith W.; Griffies, Stephen M.

    2013-01-01

    The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO2 at a rate of 1% per year until CO2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf.

  18. Multiple climate regimes in an idealized lake-ice-atmosphere model

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the (occasionally wintertime ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding characteristics of the forced transitions between colder and warmer lake regimes. Since the regime behavior in our models arises due to nonlinear dynamics rooted in the ice-albedo feedback, this feedback is also the root cause of the accelerated lake warming simulated by these models. In addition, our results imply that if Lake Superior eventually becomes largely ice-free (<10% maximum ice cover every winter) under continuing global warming, the surface warming trends of the deeper regions of the lake will become modest, similar to those of the shallower regions of the lake.

  19. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part I: Atmospheric Expansion and Thermal Escape

    PubMed Central

    Lammer, Helmut; Odert, Petra; Kulikov, Yuri N.; Kislyakova, Kristina G.; Khodachenko, Maxim L.; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried

    2013-01-01

    Abstract The recently discovered low-density “super-Earths” Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H2O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 REarth and a mass of 10 MEarth. We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1011–1029. PMID:24251443

  20. The Influence of the Several Very Large Solar Proton Events in Years 2000-2003 on the Neutral Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Sinnhuber, Miriam; Anderson, John; McPeters, Richard D.; FLeming, Eric L.; Russell, James M.

    2004-01-01

    Solar proton events (SPEs) are known to have caused changes in constituents in the Earth's neutral middle atmosphere. The highly energetic protons produce ionizations, excitations, dissociations, and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases lead to short-lived ozone decreases in the mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. The NOy increases lead to long-lived stratospheric ozone changes because of the long lifetime of the NOy family in this region. The past four years, 2000-2003, have been replete with SPEs and huge fluxes of high energy protons occurred in July and November 2000, September and November 2001, April 2002, and October 2003. Smaller, but still substantial, proton fluxes impacted the Earth during other months from year 2000 to 2003. The Goddard Space Flight Center (GSFC) Two-dimensional (2D) Model was used in computing the influence of the SPEs. The impact of these extremely large SPEs was calculated to be especially large in the upper stratosphere and mesosphere. The results of the GSFC 2D Model will be shown along with comparisons to the Upper Atmosphere Research Satellite (UARS) Halogen Occultation Experiment (HALOE) and Solar Backscatter Ultraviolet 2 (SBUV/2) instruments.

  1. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the heights corresponding to the middle atmosphere and ionosphere. The results of numerical modeling based on the solution of the equation of geophysical hydrodynamics agree with the observations.

  2. Simulation of the 21 August 2017 Solar Eclipse Using the Whole Atmosphere Community Climate Model-eXtended

    NASA Astrophysics Data System (ADS)

    McInerney, Joseph M.; Marsh, Daniel R.; Liu, Han-Li; Solomon, Stanley C.; Conley, Andrew J.; Drob, Douglas P.

    2018-05-01

    We performed simulations of the atmosphere-ionosphere response to the solar eclipse of 21 August 2017 using the Whole Atmosphere Community Climate Model-eXtended (WACCM-X v. 2.0) with a fully interactive ionosphere and thermosphere. Eclipse simulations show temperature changes in the path of totality up to -3 K near the surface, -1 K at the stratopause, ±4 K in the mesosphere, and -40 K in the thermosphere. In the F region ionosphere, electron density is depleted by about 55%. Both the temperature and electron density exhibit global effects in the hours following the eclipse. There are also significant effects on stratosphere-mesosphere chemistry, including an increase in ozone by nearly a factor of 2 at 65 km. Dynamical impacts of the eclipse in the lower atmosphere appear to propagate to the upper atmosphere. This study provides insight into coupled eclipse effects through the entire atmosphere from the surface through the ionosphere.

  3. Radiative and Thermal Impacts of Smoke Aerosol Longwave Absorption during Fires in the Moscow Region in Summer 2010

    NASA Astrophysics Data System (ADS)

    Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.

    2018-03-01

    The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.

  4. Collision cross sections and diffusion parameters for H and D in atomic oxygen. [in upper earth and Venus atmospheres

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1993-01-01

    Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.

  5. Near-infrared oxygen airglow from the Venus nightside

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.

    1992-01-01

    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  6. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling.

    PubMed

    Pisso, I; Myhre, C Lund; Platt, S M; Eckhardt, S; Hermansen, O; Schmidbauer, N; Mienert, J; Vadakkepuliyambatta, S; Bauguitte, S; Pitt, J; Allen, G; Bower, K N; O'Shea, S; Gallagher, M W; Percival, C J; Pyle, J; Cain, M; Stohl, A

    2016-12-16

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH 4 mixing ratios measured by the different platforms. To address uncertainty about where CH 4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH 4 emission areas. We found small differences between the CH 4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH 4 fluxes. The CH 4 flux during the campaign was small, with an upper limit of 2.5 nmol m -2  s -1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH 4 fluxes from the Svalbard continental platform below 0.2 Tg yr -1 . All estimates are in the lower range of values previously reported.

  7. Post sunset behavior of the 6300 A atomic oxygen airglow emission

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1976-01-01

    A theoretical model of the 6300 A OI airglow emission was developed based on the assumptions that both the charged and neutral portions of the Earth's upper atmosphere are in steady state conditions of diffusive equilibrium. Intensities of 6300 A OI emission line were calculated using electron density true height profiles from a standard C-4 ionosonde and exospheric temperatures derived from Fabry-Perot interferometer measurements of the Doppler broadened 6300 A emission line shape as inputs to the model. Reaction rate coefficient values, production mechanism efficiencies, solar radiation fluxes, absorption cross sections, and models of the neutral atmosphere were varied parametrically to establish a set of acceptable inputs which will consistently predict 6300 A emission intensities that closely agree with intensities observed during the post-sunset twilight period by an airglow observatory consisting of a Fabry-Perot interferometer and a turret photometer. Emission intensities that can only result from the dissociative recombination of molecular oxygen ions were observed during the latter portion of the observational period. Theoretical calculations indicate that contamination of the 6300 A OI emission should be on the order of or less than 3 percent; however, these results are very sensitive to the wavelengths of the individual lines and their intensities relative to the 6300 A OI intensity. This combination of a model atmosphere, production mechanism efficiencies, and quenching coefficient values was used when the dissociative photoexcitation and direct impact excitation processes were contributing to the intensity to establish best estimates of solar radiation fluxes in the Schumann--Runge continuum and associated absorption cross sections. Results show that the Jacchia 1971 model of the upper atmosphere combined with the Ackerman recommended solar radiation fluxes and associated absorption cross sections produces theoretically calculated intensities that more closely agree with the observed intensities than all the other combinations.

  8. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Myhre, C. Lund; Platt, S. M.; Eckhardt, S.; Hermansen, O.; Schmidbauer, N.; Mienert, J.; Vadakkepuliyambatta, S.; Bauguitte, S.; Pitt, J.; Allen, G.; Bower, K. N.; O'Shea, S.; Gallagher, M. W.; Percival, C. J.; Pyle, J.; Cain, M.; Stohl, A.

    2016-12-01

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol m-2 s-1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH4 fluxes from the Svalbard continental platform below 0.2 Tg yr-1. All estimates are in the lower range of values previously reported.

  9. Potential impact of climate change on coffee rust over Mexico and Central America

    NASA Astrophysics Data System (ADS)

    Calderon-Ezquerro, Maria del Carmen; Martinez-Lopez, Benjamin; Cabos Narvaez, William David; Sein, Dmitry

    2017-04-01

    In this work, some meteorological variables from a regional climate model are used to characterize the dispersion of coffee rust (a fungal disease) from Central America to Mexico, during the 20 Century. The climate model consists of the regional atmosphere model REMO coupled to the MPIOM global ocean model with increased resolution in the Atlantic Ocean. Lateral atmospheric and upper oceanic boundary conditions outside the coupled domain were prescribed using both ERA-40 and ERA-Interim reanalysis data. In addition to the historical simulation, a projection of the evolution of the coffee rust for the 21 Century was obtained from a REMO run using MPIESM data for the lateral forcing.

  10. The role of nutricline depth in regulating the ocean carbon cycle.

    PubMed

    Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P; Follows, Mick; Schofield, Oscar; Falkowski, Paul G

    2008-12-23

    Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the "biological pump"), lowers the partial pressure of carbon dioxide (pCO(2)) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO(2). Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO(2) and promotes its outgassing (i.e., the "alkalinity pump"). Over the past approximately 100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO(2) and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere-ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO(2), implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO(2) variations on time scales ranging from seasonal cycles to geological transitions.

  11. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.

  12. Artist Concept of MAVEN Imaging Ultraviolet Spectrograph at Work

    NASA Image and Video Library

    2014-11-07

    This artist concept depicts the Imaging Ultraviolet Spectrograph IUVS on NASA MAVEN spacecraft scanning the upper atmosphere of Mars. IUVS uses limb scans to map the chemical makeup and vertical structure across Mars upper atmosphere.

  13. Investigation of shortcomings in simulated aerosol vertical profiles

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.

    2017-12-01

    The vertical distribution of aerosols is one important factor for aerosol radiative forcing. Previous studies show that climate models poorly reproduce the aerosol vertical profile, with too much aerosol aloft in the upper troposphere. This bias may be related to several factors, including excessive convective mass flux and wet removal. In this study, we evaluate the aerosol vertical profile from several Coupled Model Intercomparison Project 5 (CMIP5) models, as well as the Community Atmosphere Model 5 (CAM5), relative to the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observation (CALIPSO). The results show that all models significantly underestimate extinction coefficient in the lower troposphere, while overestimating extinction coefficient in the upper troposphere. In addition, the majority of models indicate a land-ocean dependence in the relationship between aerosol extinction coefficient in the upper troposphere and convective mass flux. Over the continents, more convective mass flux is related to more aerosol aloft; over the ocean, more convective mass flux is associated with less aerosol in upper troposphere. Sensitivity experiments are conducted to investigate the role that convection and wet deposition have in contributing to the deficient simulation of the vertical aerosol profile, including the land-ocean dependence.

  14. Performance analysis for the cryogenic etalon spectrometer on the Upper Atmospheric Research Satellite

    NASA Technical Reports Server (NTRS)

    Roche, A. E.; Forney, P. B.; Kumer, J. B.; Naes, L. G.; Nast, T. C.

    1983-01-01

    The Upper Atmospheric Research Satellite (UARS) program has the objective of providing an 18-month to 2-year platform for observations of the upper atmosphere, giving particular attention to the stratosphere, mesosphere, and lower thermosphere. The primary aims of the mission are related to the measurement of the solar energy input between 120 and 500 km, the acquisition of global maps of the vertical and horizontal distribution of a series of critical trace and minor species, and the investigation of the dynamics of the upper atmosphere. One of several instruments designed to perform neutral species measurements on board the satellite is the Cryogenic Limb Array Etalon Spectrometer (CLAES). The CLAES experiment is concerned with measurements of concentrations of species of interest to the ozone layer balance. Attention is given to the performance requirements of the instrument and the effects of these requirements on the cryogenic design.

  15. A Novice-Expert Study of Modeling Skills and Knowledge Structures about Air Quality

    ERIC Educational Resources Information Center

    Hsu, Ying-Shao; Lin, Li-Fen; Wu, Hsin-Kai; Lee, Dai-Ying; Hwang, Fu-Kwun

    2012-01-01

    This study compared modeling skills and knowledge structures of four groups as seen in their understanding of air quality. The four groups were: experts (atmospheric scientists), intermediates (upper-level graduate students in a different field), advanced novices (talented 11th and 12th graders), and novices (10th graders). It was found that when…

  16. The Earth's Middle Atmosphere: COSPAR Plenary Meeting, 29th, Washington, DC, 28 Aug.-5 Sep., 1992

    NASA Technical Reports Server (NTRS)

    Grosse, W. L. (Editor); Ghazi, A. (Editor); Geller, M. A. (Editor); Shepherd, G. G. (Editor)

    1994-01-01

    The conference presented the results from the Upper Atmosphere Research Satellite (UARS) in the areas of wind, temperature, composition, and energy input into the upper atmosphere. Also presented is the current status of validation of the UARS temperature and wind instruments measuring at and above the menopause. The two UARS instruments involved were the High Resolution Doppler Imager (HRDI) and the WIND Imaging Interferometer (WINDII). Papers are presented covering almost all aspects of middle atmospheric science, including dynamics, layering in the middle atmosphere, atmospheric composition, solar and geomagnetic effects, electrodynamics, and the ionosphere.

  17. Multi-Satellite Measurements and Model Predictions of Mesospheric and Upper Stratospheric Influences from the Very Large July 14-16, 2000, Solar Proton Event

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; McPeters, Richard D.; Russell, James M.; Bevilacqua, Richard; Labow, Gordon J.; Fleming, Eric L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A large solar flare with an associated coronal mass ejection occurred in mid-July and caused a very large solar proton event at the earth in the time period July 14-16, 2000. So far this is the largest solar storm of solar cycle 23. The solar proton fluxes were measured by instruments aboard the GOES-10 satellite and used in our proton energy deposition model to help quantify the energy input to the middle atmosphere during this large solar event. Using this computed energy deposition in the GSFC 2D atmospheric model resulted in a prediction of $>$ 20\\% increases in HO$-(x)$ (H, OH, HO$-(2)$) and $>$ 100\\% increases in NO$-(x)$ (N, NO, NO$-(2)$) constituents in the mesosphere and upper stratosphere at polar latitudes ($>$ 60 degrees geomagnetic). Both the HO$-(x)$ and NO$_fx)$ increases impacted ozone. Large atmospheric impacts have been measured with the NOAA 14 SBUV/2 instrument (0$_(3)$), the UARS HALOE instrument (NO, NO$-(2)$, 0$-(3)$), and the POAM III instrument (0$_{3}$, NO$-(2)$). Preliminary analysis indicates that measured (SBUV/2) and modelled 0$_{3}$ decreases from this solar event are generally in agreement in the Northern Hemisphere. Short-term ozone changes (during the event) indicate $\\sim$ 15% reduction at 2 hPa ($\\sim$ 45 km) up to $\\sim$ 40% reduction at 0.5 hPa ($\\sim$ 55 km). A longer-term ozone depletion of $\\sim$ 5% is indicated between 4 and 2 hPa ($\\sim$ 40-45 km). The middle atmospheric changes caused by this solar event were very large and occurred fairly quickly ($\\sim$ 1-2 days). Such a significant natural perturbation provides a good test of our understanding of the middle atmosphere. The measured and modelled impacts of this solar event will be compared and discussed in this paper.

  18. The EISCAT_3D Project in Norway: E3DN

    NASA Astrophysics Data System (ADS)

    La Hoz, C.; Oksavik, K.

    2013-12-01

    EISCAT_3D (E3D) is a project to build the next generation of incoherent scatter radars endowed with 3-dimensional scalar and vector capabilities that will replace the current EISCAT radars in Northern Scandinavia. One active (transmitting) site in Norway and four passive (receiving) sites in the Nordic countries will provide 3-D vector imaging capabilities by rapid scanning and multi-beam forming. The unprecedented flexibility of the solid-state transmitter with high duty-cycle, arbitrary wave-forming and polarisation and its pulsed power of 10 MW will provide unrivalled experimental capabilities to investigate the highly non-stationary and non-homogeneous state of the polar upper atmosphere. Aperture Synthesis Imaging Radar (ASIR) will to endow E3D with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. The Norwegian scientific programme is inspired by the pioneer polar scientist Kristian Birkeland (picture) and includes pressing questions on polar upper atmospheric research, among others: (Q1) How to proceed beyond the present simplistic, static, stationary and homogeneous analysis of upper atmospheric and ionospheric processes? (Q2) How does space weather affect ionospheric processes and how to support modelling and space weather services? (Q3) How to advance fundamental plasma physics by employing the ionosphere as a natural plasma physics laboratory? (Q4) How does the influx of extraterrestrial material interact with the upper atmosphere and where does the material originate from? (Q5) How does solar activity couple from geospace into the lower atmosphere and climate system, and does this energy change the wave forcing of geospace from below? Kristian Birkeland, Norwegian scientist and pioneer in polar and auroral research.

  19. Studies of the chemistry of vibrationally and electronically excited species in planetary upper atmospheres

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1984-01-01

    The vibrational distribution of O2(+) in the atmospheres of Venus and Mars was investigated to compare with analogous values in the Earth's atmosphere. The dipole moment of the Z(2) Pi sub u - X(2) Pi sub g transition of O2(+) is calculated as a function of internuclear distance. The band absorption oscillator strengths and band transition probabilities of the second negative system are derived. The vibrational distribution of O2(+) in the ionosphere of Venus is calculated for a model based on data from the Pioneer Venus neutral mass spectrometer.

  20. Saturn/Titan Rendezvous: A Solar-Sail Aerocapture Mission

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Taylor, Travis; Powell, Conley

    2004-01-01

    A low-mass Titan orbiter is proposed that uses conservative or optimistic solar sails for all post-Earth-escape propulsion. After accelerating the probe onto a trans-Saturn trajectory, the sail is used parachute style for Saturn capture during a pass through Saturn's outer atmosphere. If the apoapsis of the Saturn-capture orbit is appropriate, the aerocapture maneuver can later be repeated at Titan so that the spacecraft becomes a satellite of Titan. An isodensity-atmosphere model is applied to screen aerocapture trajectories. Huygens/Cassini should greatly reduce uncertainties regarding the upper atmospheres of Saturn and Titan.

  1. Microwave emission and scattering from Earth surface and atmosphere

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Lee, M. C.

    1986-01-01

    Nonlinear Electromagnetic (EM) wave interactions with the upper atmosphere were investigated during the period 15 December 1985 to 15 June 1986. Topics discussed include: the simultaneous excitation of ionospheric density irregularities and Earth's magnetic field fluctuations; the electron acceleration by Langmuir wave turbulence; and the occurrence of artificial spread F. The role of thermal effects in generating ionospheric irregularities by Whistler waves, intense Quasi-DC electric fields, atmospheric gravity waves, and electrojets was investigated. A model was developed to explain the discrete spectrum of the resonant ultralow frequency (ULF) waves that are commonly observed in the magnetosphere.

  2. Thermodynamic control of anvil cloud amount

    PubMed Central

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; Becker, Tobias; Reed, Kevin A.; Voigt, Aiko

    2016-01-01

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, we show that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction. When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation. PMID:27412863

  3. Thermodynamic control of anvil cloud amount

    DOE PAGES

    Bony, Sandrine; Stevens, Bjorn; Coppin, David; ...

    2016-07-13

    General circulation models show that as the surface temperature increases, the convective anvil clouds shrink. By analyzing radiative–convective equilibrium simulations, our work shows that this behavior is rooted in basic energetic and thermodynamic properties of the atmosphere: As the climate warms, the clouds rise and remain at nearly the same temperature, but find themselves in a more stable atmosphere; this enhanced stability reduces the convective outflow in the upper troposphere and decreases the anvil cloud fraction. By warming the troposphere and increasing the upper-tropospheric stability, the clustering of deep convection also reduces the convective outflow and the anvil cloud fraction.more » When clouds are radiatively active, this robust coupling between temperature, high clouds, and circulation exerts a positive feedback on convective aggregation and favors the maintenance of strongly aggregated atmospheric states at high temperatures. This stability iris mechanism likely contributes to the narrowing of rainy areas as the climate warms. Whether or not it influences climate sensitivity requires further investigation.« less

  4. Polychlorinated Biphenyl (PCB) Bioaccumulation in Fish: A Look at Michigan's Upper Peninsula

    NASA Astrophysics Data System (ADS)

    Sokol, E. C.; Urban, N. R.; Perlinger, J. A.; Khan, T.; Friedman, C. L.

    2014-12-01

    Fish consumption is an important economic, social and cultural component of Michigan's UpperPeninsula, where safe fish consumption is threatened due to polychlorinated biphenyl (PCB)contamination. Despite its predominantly rural nature, the Upper Peninsula has a history of industrialPCB use. PCB congener concentrations in fish vary 50-fold in Upper Peninsula lakes. Several factors maycontribute to this high variability including local point sources, unique watershed and lakecharacteristics, and food web structure. It was hypothesized that the variability in congener distributionscould be used to identify factors controlling concentrations in fish, and then to use those factors topredict PCB contamination in fish from lakes that had not been monitored. Watershed and lakecharacteristics were acquired from several databases for 16 lakes sampled in the State's fishcontaminant survey. Species congener distributions were compared using Principal Component Analysis(PCA) to distinguish between lakes with local vs. regional, atmospheric sources; six lakes were predictedto have local sources and half of those have confirmed local PCB use. For lakes without local PCBsources, PCA indicated that lake size was the primary factor influencing PCB concentrations. The EPA'sbioaccumulation model, BASS, was used to predict PCB contamination in lakes without local sources as afunction of food web characteristics. The model was used to evaluate the hypothesis that deep,oligotrophic lakes have longer food webs and higher PCB concentrations in top predator fish. Based onthese findings, we will develop a mechanistic watershed-lake model to predict PCB concentrations infish as a function of atmospheric PCB concentrations, lake size, and trophic state. Future atmosphericconcentrations, predicted by modeling potential primary and secondary emission scenarios, will be usedto predict the time horizon for safe fish consumption.

  5. Interpretation of OAO-2 ultraviolet light curves of beta Doradus

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. L.; Lillie, C. F.; Hill, S. J.

    1975-01-01

    Middle-ultraviolet light curves of beta Doradus, obtained by OAO-2, are presented along with other evidence indicating that the small additional bumps observed on the rising branches of these curves have their origin in shock-wave phenomena in the upper atmosphere of this classical Cepheid. A simple piston-driven spherical hydrodynamic model of the atmosphere is developed to explain the bumps, and the calculations are compared with observations. The model is found to be consistent with the shapes of the light curves as well as with measurements of the H-alpha radial velocities.

  6. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  7. Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter

    NASA Astrophysics Data System (ADS)

    Yates, J. N.; Ray, L. C.; Achilleos, N.

    2017-12-01

    Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.

  8. Evaluation and Sensitivity Analysis of an Ocean Model Response to Hurricane Ivan (PREPRINT)

    DTIC Science & Technology

    2009-05-18

    analysis of upper-limb meridional overturning circulation interior ocean pathways in the tropical/subtropical Atlantic . In: Interhemispheric Water...diminishing returns are encountered when either resolution is increased. 3 1. Introduction Coupled ocean-atmosphere general circulation models have become...northwest Caribbean Sea 4 and GOM. Evaluation is difficult because ocean general circulation models incorporate a large suite of numerical algorithms

  9. Constraints on sea to air emissions from methane clathrates in the vicinity of Svalbard

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Vadakkepuliyambatta, Sunil; Platt, Stephen Matthew; Eckhardt, Sabine; Allen, Grant; Pitt, Joseph; Silyakova, Anna; Hermansen, Ove; Schmidbauer, Norbert; Mienert, Jurgen; Myhre, Cathrine Lund; Stohl, Andreas

    2016-04-01

    Methane stored in the seabed in the form of clathrates has the potential to be released into the atmosphere due to ongoing ocean warming. The Methane Emissions from Arctic Ocean to Atmosphere (MOCA, http://moca.nilu.no/) proje sct conducted measurement campaigns in the vicinity of Svalbard during the summers of 2014 and 2015 in collaboration with the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE, https://cage.uit.no/) and the MAMM (https://arcticmethane.wordpress.com) project . The extensive set of measurements includes air (BAe 146) and ship (RV Helmer Hansen) borne methane concentrations, complemented with the nearby monitoring site at Zeppelin mountain. In order to assess the atmospheric impact of emissions from seabed methane hydrates, we characterised the local and long range atmospheric transport during the aircraft campaign and different scenarios for the emission sources. We present a range of upper bounds for the CH4 emissions during the campaign period as well as the methodologies used to obtain them. The methodologies include a box model, Lagrangian transport and elementary inverse modelling. We emphasise the analysis of the aircraft data. We discuss in detail the different methodologies used for determining the upper flux bounds as well as its uncertainties and limitations. The additional information provided by the ship and station observations will be briefly mentioned.

  10. The Origin of Titan’s External Oxygen: Further Constraints from ALMA Upper Limits on CS and CH2NH

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.; Cordiner, M. A.; Nixon, C. A.; Irwin, P. G. J.; Hörst, S. M.; Sylvestre, M.; Serigano, J.; Thelen, A. E.; Richards, A. M. S.; Charnley, S. B.

    2018-06-01

    Titan’s atmospheric inventory of oxygen compounds (H2O, CO2, CO) are thought to result from photochemistry acting on externally supplied oxygen species (O+, OH, H2O). These species potentially originate from two main sources: (1) cryogenic plumes from the active moon Enceladus and (2) micrometeoroid ablation. Enceladus is already suspected to be the major O+ source, which is required for CO creation. However, photochemical models also require H2O and OH influx to reproduce observed quantities of CO2 and H2O. Here, we exploit sulphur as a tracer to investigate the oxygen source because it has very different relative abundances in micrometeorites (S/O ∼ 10‑2) and Enceladus’ plumes (S/O ∼ 10‑5). Photochemical models predict most sulphur is converted to CS in the upper atmosphere, so we use Atacama Large Millimeter/submillimeter Array (ALMA) observations at ∼340 GHz to search for CS emission. We determined stringent CS 3σ stratospheric upper limits of 0.0074 ppb (uniform above 100 km) and 0.0256 ppb (uniform above 200 km). These upper limits are not quite stringent enough to distinguish between Enceladus and micrometeorite sources at the 3σ level and a contribution from micrometeorites cannot be ruled out, especially if external flux is toward the lower end of current estimates. Only the high-flux micrometeorite source model of Hickson et al. can be rejected at 3σ. We determined a 3σ stratospheric upper limit for CH2NH of 0.35 ppb, which suggests cosmic rays may have a smaller influence in the lower stratosphere than predicted by some photochemical models. Disk-averaged C3H4 and C2H5CN profiles were determined and are consistent with previous ALMA and Cassini/CIRS measurements.

  11. Wave-mean flow interactions in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.

    1973-01-01

    The nature of internal gravity waves is described with special emphasis on their ability to transport energy and momentum. The conditions under which these fluxes interact with the mean state of the atmosphere are described and the results are applied to various problems of the upper atmosphere, including the quasi-biennial oscillation, the heat budget of the thermosphere, the general circulation of the mesosphere, turbulence in the mesosphere, and the 4-day circulation of the Venusian atmosphere.

  12. Microwave Limb Sounder/El Niño Watch - Water Vapor Measurement, October, 1997

    NASA Image and Video Library

    1997-10-30

    This image shows atmospheric water vapor in Earth upper troposphere, about 10 kilometers 6 miles above the surface, as measured by NASA Microwave Limb Sounder MLS instrument flying aboard the Upper Atmosphere Research Satellite.

  13. Review of spectroscopic parameters for upper atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H. (Editor)

    1985-01-01

    The workshop included communication of spectroscopic data requirements for the planned upper atmosphere research satellite (UARS) mission, review of the status of currently available spectroscopic parameters, and recommendation of additional studies. The objectives were accomplished and resulted in a series of general and specific recommendations for laboratory spectroscopy research to meet the needs of UARS and other atmospheric remote sensing programs.

  14. Non-LTE models of Titan's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.

    1991-01-01

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  15. THE FORMATION OF IRIS DIAGNOSTICS. II. THE FORMATION OF THE Mg II h and k LINES IN THE SOLAR ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.

    NASA's Interface Region Imaging Spectrograph (IRIS) small explorer mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations requires forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-magnetohydrodynamic (RMHD) models. This paper is the second in a series where we undertake this modeling. We compute the vertically emergent h and k intensity from a snapshot of a dynamic 3D RMHD model of the solar atmosphere, and investigate whichmore » diagnostic information about the atmosphere is contained in the synthetic line profiles. We find that the Doppler shift of the central line depression correlates strongly with the vertical velocity at optical depth unity, which is typically located less than 200 km below the transition region (TR). By combining the Doppler shifts of the h and k lines we can retrieve the sign of the velocity gradient just below the TR. The intensity in the central line depression is anti-correlated with the formation height, especially in subfields of a few square Mm. This intensity could thus be used to measure the spatial variation of the height of the TR. The intensity in the line-core emission peaks correlates with the temperature at its formation height, especially for strong emission peaks. The peaks can thus be exploited as a temperature diagnostic. The wavelength difference between the blue and red peaks provides a diagnostic of the velocity gradients in the upper chromosphere. The intensity ratio of the blue and red peaks correlates strongly with the average velocity in the upper chromosphere. We conclude that the Mg II h and k lines are excellent probes of the very upper chromosphere just below the TR, a height regime that is impossible to probe with other spectral lines. They also provide decent temperature and velocity diagnostics of the middle chromosphere.« less

  16. The role of chemistry in under-predictions of NO2 in the upper troposphere

    NASA Astrophysics Data System (ADS)

    Henderson, B. H.; Pinder, R. W.; Goliff, W. S.; Stockwell, W. R.; Fahr, A.; Sarwar, G.; Hutzell, W. T.; Mathur, R.; Vizuete, W.; Cohen, R. C.

    2009-12-01

    Global and regional atmospheric models under-predict upper troposphere NO2 compared to satellite and aircraft observations. The upper tropospheric under-prediction of NO2 could be a function of emissions, transport, chemistry or some combination. Previous researchers have linked poor performance in the model to over-prediction of the OH and under-prediction of the HO2 by chemistry (Olson et al. 2006, Bertram et al. 2007). This study isolates upper tropospheric chemistry to evaluate the chemical contribution to NO2 under-predictions and to diagnose OH and HO2 discrepancies.

    We use a 0-dimensional time dependent model to evaluate seven chemical mechanisms. Because chamber data representing upper tropospheric conditions does not exist, we evaluate the predictions based against an observation-based aging model. Following Bertram et al (2007), we use the NOx:HNO3 ratio to categorize the chemical age of thousands of 10 second average observations between 8 and 10km. Measurements of 10 inorganics and 32 hydrocarbons are translated to model species for each of seven chemical mechanisms. We chose mechanisms ranging from condensed to semi-explicit. The seven mechanisms' design scopes range from urban to global scale. Results include simulations from Model for OZone And Related chemical Tracers (MOZART), Carbon Bond 05 (CB05), State Air Pollution Research Center (SAPRC) 99, SAPRC 07, GEOS-Chem, Regional Atmospheric Chemical Mechanism version 2, and the LEEDS Master Chemical Mechanism.

    Results from each chemical mechanism are compared to aircraft observations and to those obtained with other chemical mechanisms. Each mechanism is then further evaluated using integrated reaction rate analysis to identify sources of NO2 bias. We find that the largest contributors to the NO2 bias are over-predictions of PAN and HNO3. The formation of PAN is sensitive to the acetone photolysis rate. The conversion of NOx to HNO3 is most sensitive to hydroxyl radical concentrations. Hydroxyl radical sources and sinks have been quantified for each chemical mechanism using IRR analysis. Based on our modeling experience and results, we make recommendations for better simulating upper tropospheric photochemistry and we identify future research needs.

    Bertram et al. Direct Measurements of the Convective Recycling of the Upper Troposphere. Science (2007)
    Olson et al. A reevaluation of airborne HOx observations from NASA field campaigns. J Geophys Res-Atmos (2006) vol. 111 pp. D10301

  17. Space Shuttle ice nuclei

    NASA Astrophysics Data System (ADS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.

    1982-08-01

    Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average ice nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle ice nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the extent of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/ice supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.

  18. SAO and Kelvin Waves in the EuroGRIPS GCMS and the UK Meteorological Offices Analyses

    NASA Technical Reports Server (NTRS)

    Amodei, M.; Pawson, S.; Scaife, A. A.; Lahoz, W.; Langematz, U.; Li, Ding Min; Simon, P.

    2000-01-01

    This work is an intercomparison of four tropospheric-stratospheric climate models, the Unified Model (UM) of the U.K. Meteorological Office (UKMO), the model of the Free University in Berlin (FUB). the ARPEGE-climat model of the National Center for Meteorological Research (CNRM), and the Extended UGAMP GCM (EUGCM) of the Center for Global Atmospheric Modelling (CGAM), against the UKMO analyses. This comparison has been made in the framework of the "GSM-Reality Intercomparison Project for SPARC" (GRIPS). SPARC (Stratospheric Processes and their Role in Climate) aims are to investigate the effects of the middle atmosphere on climate and the GRIPS purpose is to organized a comprehensive assessment of current Middle Atmosphere-Climate Models (MACMs). The models integrations were made without identical contraints e.g. boundary conditions, incoming solar radiation). All models are able to represent the dominant features of the extratropical circulation. In this paper, the structure of the tropical winds and the strengths of the Kelvin waves are examined. Explanations for the differences exhibited. between the models. as well as between models and analyses, are also proposed. In the analyses a rich spectrum of waves (eastward and westward) is present and contributes to drive the SAO (SemiAnnual Oscillation) and the QBO (Quasi-Biennal Oscillation). The amplitude of the Kelvin waves is close to the one observed in UARS (Upper Atmosphere Research Satellite) data. In agreement with observations, the Kelvin waves generated in the models propagate into the middle atmosphere as wave packets which underlines convective forcing origin. In most models, slow Kelvin waves propagate too high and are hence overestimated in the upper stratosphere and in the mesosphere, except for the UM which is more diffusive. These waves are not sufficient to force realistic westerlies of the QBO or SAO westerly phases. If the SAO is represented by all models only two of them are able to generate westerlies between 10 hPa and 50 hPa. The importance of the role played by subgrided gravity waves is more and more recognized. Actually, the EUGCM which includes a parametrization of gravity waves with a non-zero phase speed is able to simulate. with however some unrealistic features, clear easterly to westerly transitions as well as westerlies downward propagations. Thermal damping is also important in the westerlies forcing in the stratosphere. The model ARPEGE-climat shows more westerlies in the stratosphere than tile other three models probably due to the use of a simplified scheme to predict the ozone distribution in the middle atmosphere.

  19. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  20. Dayglow and night glow of the Venusian upper atmosphere. Modelling and observations

    NASA Astrophysics Data System (ADS)

    Gronoff, G.; Lilensten, J.; Simon, C.; Barthélemy, M.; Leblanc, F.

    2007-08-01

    Aims. We present the modelling of the production of excited states of O, CO and N2 in the Venusian upper atmosphere, which allows to compute the nightglow emissions. In the dayside, we also compute several emissions, taking advantage of the small influence of resonant scattering for forbidden transitions. Methods. We compute the photoionisation and the photodissociation mechanisms, and thus the photoelectron production. We compute electron impact excitation and ionisation through a multi-stream stationary kinetic transport code. Finally, we compute the ion recombination with a stationary chemical model. Results.We predict altitude density profiles for O(1S) and O(1D) states and the emissions corresponding to their different transitions. They are found to be very comparable to the observations without the need for stratospheric emissions. In the nightside, we highlight the role of the N + O+2 reaction in the creation of the O(1S) state. This reaction has been suggested by Rees in 1975 (Frederick, 1976). It has been discussed several times afterwhile and in spite of different studies, is still controversial. However, when we take it in consideration in Venus, it is shown to be the cause of almost 90% of the state production. We calculate the production intensities of O(3S) and O(5S) states, which are needed for radiative transfer models. For CO we compute the Cameron band and the fourth positive band emissions. For N2 we compute the LBH, first and second positive bands. All these values are successfully compared to the experiment when data are available. Conclusions. For the first time, a comprehensive model is proposed to compute dayglow and nightglow emissions of the Venusian upper atmosphere. It relies on previous works with noticeable improvements, both on the transport and on the chemical aspects. In the near future, a radiative transfer model will be used to compute optically thick lines in the dayglow, and a fluid model will be added to compute ionosphere densities and temperatures. We will present the first observational results from the Pic du Midi telescope in June 2007, in order to compare with our modelling.

  1. Effect of vibrationally excited oxygen on ozone production in the stratosphere

    NASA Technical Reports Server (NTRS)

    Patten, K. O., Jr.; Connell, P. S.; Kinnison, D. E.; Wuebbles, D. J.; Slanger, T. G.; Froidevaux, L.

    1994-01-01

    Photolysis of vibrationally excited oxygen produced by ultraviolet photolysis of ozone in the upper stratosphere is incorporated into the Lawrence Livermore National Laboratory two-dimensional zonally averaged chemical-radiative-transport model of the troposphere and stratosphere. The importance of this potential contributor of odd oxygen to the concentration of ozone is evaluated based on recent information on vibrational distributions of excited oxygen and on preliminary studies of energy transfer from the excited oxygen. When energy transfer rate constants similar to those of Toumi et al. (1991) are assumed, increases in model ozone concentrations of up to 4.0% in the upper stratosphere are found, and the model ozone concentrations are found to agree slightly better with measurements, including recent data from the Upper Atmosphere Research Satellite. However, the ozone increase is only 0.3% when the larger energy transfer rate constants indicated by recent experimental work are applied to the model. An ozone increase of 1% at 50 km requires energy transfer rate constants one-twentieth those of the preliminary observations. As a result, vibrationally excited oxygen processes probably do not contribute enough ozone to be significant in models of the upper stratosphere.

  2. Modeling of Jovian Auroral Polar Ion and Proton Precipitation

    NASA Astrophysics Data System (ADS)

    Houston, S. J.; Ozak, N. O.; Cravens, T.; Schultz, D. R.; Mauk, B.; Haggerty, D. K.; Young, J. T.

    2017-12-01

    Auroral particle precipitation dominates the chemical and physical environment of the upper atmospheres and ionospheres of the outer planets. Precipitation of energetic electrons from the middle magnetosphere is responsible for the main auroral oval at Jupiter, but energetic electron, proton, and ion precipitation take place in the polar caps. At least some of the ion precipitation is associated with soft X-ray emission with about 1 GW of power. Theoretical modeling has demonstrated that the incident sulfur and oxygen ion energies must exceed about 0.5 MeV/nucleon (u) in order to produce the measured X-ray emission. In this work we present a model of the transport of magnetospheric oxygen ions as they precipitate into Jupiter's polar atmosphere. We have revised and updated the hybrid Monte Carlo model originally developed by Ozak et al., 2010 to model the Jovian X-ray aurora. We now simulate a wider range of incident oxygen ion energies (10 keV/u - 5 MeV/u) and update the collision cross-sections to model the ionization of the atmospheric neutrals. The polar cap location of the emission and magnetosphere-ionosphere coupling both indicate the associated field-aligned currents must originate near the magnetopause or perhaps the distant tail. Secondary electrons produced in the upper atmosphere by ion precipitation could be accelerated upward to relativistic energies due to the same field-aligned potentials responsible for the downward ion acceleration. To further explore this, we simulate the effect of the secondary electrons generated from the heavy ion precipitation. We use a two-stream transport model that computes the secondary electron fluxes, their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission, including a predicted observable spectrum with the associated color ratio. Our model predicts that escaping electrons have an energy range from 1 eV to 6 keV, H2 band emission rates produced are on the order of 75 kR for an input of 10 mW/m2 of 2 MeV/u oxygen ions, and a color ratio of 10 is expected for this case. Moreover, recent Juno data indicates the presence of both upward and downward relativistic energy beams over the polar cap, hence we perform some preliminary calculations of the effect of proton precipitation into the polar atmosphere and its contributions to the aurora dynamics.

  3. Initial tsunami signals in the lithosphere-ocean-atmosphere medium

    NASA Astrophysics Data System (ADS)

    Novik, O.; Ershov, S.; Mikhaylovskaya, I.

    Satellite and ground based instrumentations for monitoring of dynamical processes under the Ocean floor 3 4 of the Earth surface and resulting catastrophic events should be adapted to unknown physical nature of transformation of the oceanic lithosphere s energy of seismogenic deformations into measurable acoustic electromagnetic EM temperature and hydrodynamic tsunami waves To describe the initial up to a tsunami wave far from a shore stage of this transformation and to understand mechanism of EM signals arising above the Ocean during seismic activation we formulate a nonlinear mathematical model of seismo-hydro-EM geophysical field interaction in the lithosphere-Ocean-atmosphere medium from the upper mantle under the Ocean up to the ionosphere domain D The model is based on the theory of elasticity electrodynamics fluid dynamics thermodynamics and geophysical data On the basis of this model and its mathematical investigation we calculate generation and propagation of different see above waves in the basin of a model marginal sea the data on the central part of the Sea of Japan were used At the moment t 0 the dynamic interaction process is supposed to be caused by weak may be precursory sub-vertical elastic displacements with the amplitude duration and main frequency of the order of a few cm sec and tenth of Hz respectively at the depth of 37 km under the sea level i e in the upper mantle Other seismic excitations may be considered as well The lithosphere EM signal is generated in the upper mantle conductive

  4. Piecewise Potential Vorticity Inversion for Intense Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Seiler, C.; Zwiers, F. W.

    2017-12-01

    Global climate models (GCMs) tend to simulate too few intense extratropical cyclones (ETCs) in the Northern Hemisphere (NH) under historic climate conditions. This bias may arise from the interactions of multiple drivers, including surface temperature gradients, latent heating in the lower troposphere, and the upper-level jet stream. Previous attempts to quantify the importance of these drivers include idealized model experiments or statistical approaches. The first method however cannot easily be implemented for a multi-GCM ensemble, and the second approach does not disentangle the interactions among drivers, nor does it prove causality. An alternative method that overcomes these limitations is piecewise potential vorticity inversion (PPVI). PPVI derives the wind and geopotential height fields by inverting potential vorticity (PV) for discrete atmospheric levels. Despite being a powerful diagnostic tool, PPVI has primarily been used to study the dynamics of individual events only. This study presents the first PPVI climatology for the 5% most intense NH ETCs that occurred from 1980 to 2016. Conducting PPVI to 3273 ETC tracks identified in ERA-Interim reanalysis, we quantified the contributions from 3 atmospheric layers to ETC intensity. The respective layers are the surface (1000 hPa), a lower atmospheric level (700-850 hPa) and an upper atmospheric level (100-500 hPa) that are associated with the contributions from surface temperature gradients, latent heating, and the jet stream, respectively. Results show that contributions are dominated by the lower level (40%), followed by the upper level (20%) and the surface (17%), while the remaining 23% are associated with the background flow. Contributions from the surface and the lower level are stronger in the western ocean basins owed to the presence of the warm ocean currents, while contributions from the upper level are stronger in the eastern basins. Vertical cross sections of ETC-centered composites show an undulation of the dynamic tropopause and the formation of a PV tower with values exceeding 1 PV unit during maximum ETC intensity. The dominant contribution from the lower level underlines the importance of latent heating for intense ETCs. The ability of GCMs to reproduce this mechanism remains to be assessed.

  5. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    NASA Astrophysics Data System (ADS)

    Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.

    2013-01-01

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  6. Investigating Alfvénic wave propagation in coronal open-field regions

    PubMed Central

    Morton, R. J.; Tomczyk, S.; Pinto, R.

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  7. The polar thermosphere of Venus

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, Ingo; Rosenblatt, Pascal; Bruinsma, Sean; Yelle, Roger; Svedhem, Håkan; Forbes, Jeffrey M.; Withers, Paul; Keating Sci. Gerald, Sr.; Lopez-Valverde, Miguel Angel

    The thermosphere of Venus has been extensively observed in-situ primarily by the Pioneer Venus Orbiter, but those measurements concentrated on the low latitude regions. Until recently, no in-situ observations were made of the polar thermosphere of Venus, and reference atmospheres such as the VTS3 and VIRA models relied on solar zenith angle trends inferred at low latitudes in order to extrapolate to polar latitudes. The Venus Express Atmospheric Drag Experiment (VExADE) carries out accurate orbital tracking in order to infer for the first time ever the densities in Venus' polar thermosphere near 180 km altitude at solar minimum. During 3 recent tracking campaigns we obtained density measurements that allow us to compare actual densities in those regions with those predicted by the reference atmosphere models. We constructed a hydrostatic diffusive equilibrium at-mosphere model that interpolates between the Venus Express remote sensing measurements in the upper mesosphere and lower thermosphere region and the in-situ drag measurements by VExADE. This paper will present and discuss our latest findings.

  8. Effects of Lightning in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Sentman, Davis D.; Pasko, Victor P.; Morrill, Jeff S.

    2010-02-01

    AGU Chapman Conference on Effects of Thunderstorms and Lightning in the Upper Atmosphere; University Park, Pennsylvania, 10-14 May 2009; The serendipitous observation in 1989 of electrical discharge in the high atmosphere induced by thundercloud lightning launched a new field of geophysical investigation. From this single unexpected observation sprang a vigorous and fertile new research field that simultaneously encompasses geophysical disciplines that are normally pursued independently, such as meteorology and lightning, plasma and gas discharge physics, atmospheric chemistry, ionospheric physics, and energetic particle physics. Transient electrical discharge in the upper atmosphere spans the full range of altitudes between the tropopause and the ionosphere and takes a variety of forms that carry the whimsical names red sprites, blue jets, gigantic jets, elves (emissions of light and very low frequency perturbations from electromagnetic pulse sources), and sprite halos, collectively known as transient luminous events (TLEs). To date, TLEs have been observed from ground and airborne or spaceborne platforms above thunderstorm systems worldwide, and radio observations made concomitantly with optical observations have shown that they are produced by the transient far fields of thundercloud lightning. TLEs appear to be large-scale (tens of kilometers in dimension), upper atmospheric versions of conventional gas discharge akin to weakly ionized, collision-dominated systems found in laboratory discharge devices (millimeter-centimeter dimensions), with characteristic energies of a few electron volts. The dominant physical processes have been identified as described by the familiar kinetic theory of the photochemistry of the upper atmosphere, but with electric field-driven electron impact ionization playing the role of photolysis or energetic precipitating particle-induced ionization.

  9. The Jovian atmospheric window at 2.7 microns: A search for H2S

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Davis, D. S.; Hofmann, R.; Bjoraker, G. L.

    1984-01-01

    The atmospheric transmission window at 2.7 microns in Jupiter's atmosphere was observed at a spectral resolution of 0.1/cm from the Kuiiper Airborne Observatory. From an analysis of the CH4 abundance (80 m-am) and the H2O abundance ( 0.0125 cm-am) it was determined that the penetration depth of solar flux at 2.7 microns is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 microns and other results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. A search for H2S in Jupiter's atmosphere yielded an upper limit of 0.1 cm-am. The corresponding limit to the element abundance ratio S/H was approx. 1.7x10(-8), about 10(-3) times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.

  10. Low simulated radiation limit for runaway greenhouse climates

    NASA Astrophysics Data System (ADS)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-08-01

    The atmospheres of terrestrial planets are expected to be in long-term radiation balance: an increase in the absorption of solar radiation warms the surface and troposphere, which leads to a matching increase in the emission of thermal radiation. Warming a wet planet such as Earth would make the atmosphere moist and optically thick such that only thermal radiation emitted from the upper troposphere can escape to space. Hence, for a hot moist atmosphere, there is an upper limit on the thermal emission that is unrelated to surface temperature. If the solar radiation absorbed exceeds this limit, the planet will heat uncontrollably and the entire ocean will evaporate--the so-called runaway greenhouse. Here we model the solar and thermal radiative transfer in incipient and complete runaway greenhouse atmospheres at line-by-line spectral resolution using a modern spectral database. We find a thermal radiation limit of 282Wm-2 (lower than previously reported) and that 294Wm-2 of solar radiation is absorbed (higher than previously reported). Therefore, a steam atmosphere induced by such a runaway greenhouse may be a stable state for a planet receiving a similar amount of solar radiation as Earth today. Avoiding a runaway greenhouse on Earth requires that the atmosphere is subsaturated with water, and that the albedo effect of clouds exceeds their greenhouse effect. A runaway greenhouse could in theory be triggered by increased greenhouse forcing, but anthropogenic emissions are probably insufficient.

  11. Tsunami normal modes with solid earth and atmospheric coupling and inversion of the TEC data to estimate tsunami water height in the case of the Queen Charlotte tsunami.

    NASA Astrophysics Data System (ADS)

    Rakoto, V.; Lognonne, P. H.; Rolland, L.

    2016-12-01

    Large underwater earthquakes (Mw > 7) can transmit part of their energy to the surrounding ocean through large sea-floor motions, generating tsunamis that propagate over long distances. The forcing effect of long period ocean surface vibrations due to tsunami waves on the atmosphere trigger atmospheric internal gravity waves (IGWs) that induce ionospheric disturbances when they reach the upper atmosphere. In this poster, we study the IGWs associated to tsunamis using a normal modes 1D modeling approach. Our model is first applied to the case of the October 2012 Haida Gwaii tsunami observed offshore Hawaii. We found three resonances between tsunami modes and the atmospheric gravity modes occurring around 1.5 mHz, 2 mHz and 2.5 mHz, with a large fraction of the energy of the tsunami modes transferred from the ocean to the atmosphere. At theses frequencies, the gravity branches are interacting with the tsunami one and have large amplitude in the ocean. As opposed to the tsunami, a fraction of their energy is therefore transferred from the atmosphere to the ocean. We also show that the fundamental of the gravity waves should arrive before the tsunami due to higher group velocity below 1.6 mHz. We demonstrate that only the 1.5 mHz resonance of the tsunami mode can trigger observable ionospheric perturbations, most often monitored using GPS dual-frequency measurements. Indeed, we show that the modes at 2 mHz and 2.5 mHz are already evanescent at the height of the F2 peak and have little energy in the ionosphere. This normal modes modeling offers a novel and comprehensive study of the transfer function from a propagating tsunami to the upper atmosphere. In particular, we can invert the perturbed TEC data induced by a tsunami in order to estimate the amplitude of the tsunami waveform using a least square method. This method has been performed in the case of the Haida Gwaii tsunami. The results showed a good agreement with the measurement of the dart buoy.

  12. The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)

    NASA Astrophysics Data System (ADS)

    Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.

    2013-12-01

    With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed needed to determine where and how fast the life-capable atmosphere disappeared. Or was it thought that other orbiting missions like MEx or MGS that sampled the ionosphere were inadequate to the task? In a way the delay in executing a Mars aeronomy mission has a positive side; i.e. instruments are better developed than in earlier proposals and we have the benefit of MEx and MGS better defining the science objectives for an aeronomy mission. The bumps and potholes that planners of missions to Mars encountered makes an interesting story

  13. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    PubMed Central

    Myhre, C. Lund; Platt, S. M.; Eckhardt, S.; Hermansen, O.; Schmidbauer, N.; Mienert, J.; Vadakkepuliyambatta, S.; Bauguitte, S.; Pitt, J.; Allen, G.; Bower, K. N.; O'Shea, S.; Gallagher, M. W.; Percival, C. J.; Pyle, J.; Cain, M.; Stohl, A.

    2016-01-01

    Abstract Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model‐supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol m−2 s−1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH4 fluxes from the Svalbard continental platform below 0.2 Tg yr−1. All estimates are in the lower range of values previously reported. PMID:28261536

  14. Improved Statistical Model Of 10.7-cm Solar Radiation

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  15. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Astrophysics Data System (ADS)

    Zahnle, K. J.

    2015-12-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced ~10 impacts bigger than Chicxulub between 2.5 Ga and 3.5 Ga, the biggest of which were ~30-100X more energetic than Chicxulub. To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A thermal wave propagates into the land at a rate set by conduction. Impacts larger than Chicxulub can raise the surface temperature by tens, hundreds, or even thousands of degrees, and evaporate meters to hundreds of meters of water. The biggest should have vitrified exposed dry land. More results - including shock chemistry - are for the talk, as here we have run out of space.

  16. The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.; Schmidt, H.; Brasseur, G. P.

    2009-01-01

    This paper analyzes the effects of the solar rotational (27-day) irradiance variations on the chemical composition and temperature of the stratosphere, mesosphere and lower thermosphere as simulated by the three-dimensional chemistry-climate model HAMMONIA. Different methods are used to analyze the model results, including high resolution spectral and cross-spectral techniques. To force the simulations, an idealized irradiance variation with a constant period of 27 days (apparent solar rotation period) and with constant amplitude is used. While the calculated thermal and chemical responses are very distinct and permanent in the upper atmosphere, the responses in the stratosphere and mesosphere vary considerably in time despite the constant forcing. The responses produced by the model exhibit a non-linear behavior: in general, the response sensitivities (not amplitudes) decrease with increasing amplitude of the forcing. In the extratropics the responses are, in general, seasonally dependent with frequently stronger sensitivities in winter than in summer. Amplitude and phase lag of the ozone response in the tropical stratosphere and lower mesosphere are in satisfactory agreement with available observations. The agreement between the calculated and observed temperature response is generally worse than in the case of ozone.

  17. The Upper Atmosphere Research Satellite: From Coffee Table Art to Quantitative Science

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.

    1999-01-01

    The Upper Atmosphere Research Satellite (UARS) has provided an unprecedented set of observations of constituents of the stratosphere. When used in combination with data from other sources and appropriate modeling tools, these observations are useful for quantitative evaluation of stratospheric photochemical processes. This is illustrated by comparing ozone observations from airborne Differential Absorption Lidar (DIAL), from the Polar Ozone and Aerosol Measurement (POAM), from the Microwave Limb Sounder (MLS), and from the Halogen occultation Experiment (HALOE) with ozone fields generated with a three dimensional model. For 1995-96, at polar latitudes, observations from DIAL flights on December 9 and January 30, and POAM and MLS between late December and late January are compared with ozone fields from the GSFC 3D chemistry and transport model. Data from the three platforms consistently show that the observed ozone has a negative trend relative to the modeled ozone, and that the trend is uniform in time between early and mid winter, with no obvious dependence on proximity to the vortex edge. The importance of chlorine catalyzed photochemistry to this ozone loss is explored by comparing observations from MLS and HALOE with simulations for other northern winters, particularly 1997-98.

  18. Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System (Vps)

    NASA Technical Reports Server (NTRS)

    Marz, Bryan E.; Ash, Robert L.

    1996-01-01

    This document provides a summary of the launch and post-launch activities of Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System, V(ps). It is a comprehensive overview covering launch activities, post-launch activities, experimental results, and future flight recommendations.

  19. Non-hydrostatic general circulation model of the Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Mingalev, Igor; Orlov, Konstantin; Ignatiev, Nikolay

    We present the first non-hydrostatic global circulation model of the Venus atmosphere based on the complete set of gas dynamics equations. The model employs a spatially uniform triangular mesh that allows to avoid artificial damping of the dynamical processes in the polar regions, with altitude as a vertical coordinate. Energy conversion from the solar flux into atmospheric motion is described via explicitly specified heating and cooling rates or, alternatively, with help of the radiation block based on comprehensive treatment of the Venus atmosphere spectroscopy, including line mixing effects in CO2 far wing absorption. Momentum equations are integrated using the semi-Lagrangian explicit scheme that provides high accuracy of mass and energy conservation. Due to high vertical grid resolution required by gas dynamics calculations, the model is integrated on the short time step less than one second. The model reliably repro-duces zonal superrotation, smoothly extending far below the cloud layer, tidal patterns at the cloud level and above, and non-rotating, sun-synchronous global convective cell in the upper atmosphere. One of the most interesting features of the model is the development of the polar vortices resembling those observed by Venus Express' VIRTIS instrument. Initial analysis of the simulation results confirms the hypothesis that it is thermal tides that provides main driver for the superrotation.

  20. Vertical Propagation and Temporal Growth of Perturbations in the Winter Atmosphere

    NASA Astrophysics Data System (ADS)

    Christiansen, B.

    2001-12-01

    We present a general circulation model study of the temporal growth and vertically propagation of perturbations following vertical confined forcings. Both transient and sustained forcings are considered. The motivation for the study is the recent recognition of downward propagation of anomalies from the stratosphere to the troposphere and its implications both for medium range forecasts and for a possible physical mechanism for stratospheric impacts on weather and climate. The dynamical link might also offer a mechanism for changes in the upper atmosphere to affect the tropospheric climate. Here we are thinking of changes in trace gases such as ozone, but also of modulations of the upper atmospheric structure related to the 11-year solar cycle. The model atmosphere is chaotic and shows growth of perturbations no matter which level is forced. The perturbations grow to a size comparable to the variability of the unperturbed atmosphere on a time-scale of 20 - 25 days in the troposphere and 30 - 40 days in the stratosphere. After the initial period of growth the perturbations have the same structure as the unperturbed atmosphere. Although the forcing is restricted to the northern hemisphere the perturbations encompass the whole atmosphere and develop on the same time scale on both hemispheres. Perturbations grow with time squared both when zonal mean and single cell values are considered. Such a power law growth suggest the existence of a finite predictability time which is independent of the initial perturbation as long as it is small. In the unperturbed atmosphere the stratospheric variability has the form of downward propagating stratospheric vacillations. However, in the initial period of growth the perturbations do not propagate downward and seem in general uncoupled to the background vacillations. This suggests that the downward propagation is a robust feature determined more by the processes in the troposphere than the state of the stratosphere. We note that downward propagation may still be a source for enhanced predictability of near-surface weather.

  1. The impact of nudging coefficient for the initialization on the atmospheric flow field and the photochemical ozone concentration of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Lee, Hwa Woon; Sung, Kyoung-Hee; Kim, Min-Jung; Kim, Yoo-Keun; Jung, Woo-Sik

    In order to incorporate correctly the large or local scale circulation in the model, a nudging term is introduced into the equation of motion. Nudging effects should be included properly in the model to reduce the uncertainties and improve the air flow field. To improve the meteorological components, the nudging coefficient should perform the adequate influence on complex area for the model initialization technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to evaluate the effects on air quality modeling by comparing the performance of the meteorological result with variable nudging coefficient experiment. All experiments are calculated by the upper wind conditions (synoptic or asynoptic condition), respectively. Consequently, it is important to examine the model response to nudging effect of wind and mass information. The MM5-CMAQ model was used to assess the ozone differences in each case, during the episode day in Seoul, Korea and we revealed that there were large differences in the ozone concentration for each run. These results suggest that for the appropriate simulation of large or small-scale circulations, nudging considering the synoptic and asynoptic nudging coefficient does have a clear advantage over dynamic initialization, so appropriate limitation of these nudging coefficient values on its upper wind conditions is necessary before making an assessment. The statistical verifications showed that adequate nudging coefficient for both wind and temperature data throughout the model had a consistently positive impact on the atmospheric and air quality field. On the case dominated by large-scale circulation, a large nudging coefficient shows a minor improvement in the atmospheric and air quality field. However, when small-scale convection is present, the large nudging coefficient produces consistent improvement in the atmospheric and air quality field.

  2. On the Effects of Bremsstrahlung Radiation During Energetic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Marshall, Robert A.; Fang, Xiaohua; Turunen, Esa; Kero, Antti

    2018-01-01

    Precipitation of energetic particles into the Earth's atmosphere can significantly change the properties, dynamics, as well as the chemical composition of the upper and middle atmosphere. In this paper, using Monte Carlo models, we simulate, from first principles, the interaction of monoenergetic beams of precipitating electrons with the atmosphere, with particular emphasis on the process of bremsstrahlung radiation and its resultant ionization production and atmospheric effects. The pitch angle dependence of the ionization rate profile has been quantified: the altitude of peak ionization rate depends on the pitch angle by a few kilometers. We also demonstrate that the transport of precipitating electron energy in the form of bremsstrahlung photons leads to ionization at altitudes significantly lower than the direct impact ionization, as low as ˜20 km for 1 MeV precipitating electrons. Moreover, chemical modeling results suggest that the chemical effects in the atmosphere due to bremsstrahlung-induced ionization production during energetic electron precipitation are likely insignificant.

  3. Chemistry and spectroscopy of the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Owen, T.

    1976-01-01

    A comprehensive review is given of the chemistry and spectroscopic studies of the Jovian atmosphere. Thermochemical equilibrium models for determining atmospheric composition are considered along with possible disequilibrating processes, and studies of the photochemistry of H2, CH4, NH3, H2S, and PH3 using the modeling methods are summarized. It is shown that photodissociation and advection are the major disequilibrating processes in Jupiter's atmosphere, that lightning and charged-particle bombardment are relatively minor factors in the planet's bulk chemistry, and that the existence of living organisms on the planet is highly improbable. Spectroscopic investigations of Jupiter are discussed, emphasizing recent observations of absorption bands due to CH4, NH3, H2, He, and D. Spectroscopic abundance determinations are examined for H2, HD, CH4, CH3D, NH3, C2H6, C2H2, and PH3. Upper limits are given for the abundances of several unobserved gases in the visible atmosphere, including H2S, HCl, SiH4, benzene, purines, pyrimidines, and their derivatives.

  4. Secretary of The Navy Professor

    DTIC Science & Technology

    1999-09-30

    goal of this research is to develop a predictive capability for the upper ocean circulation and atmospheric interactions using numerical models...assimilation techniques to be used in these models. In addition, we are continuing the task of preparing long-term global surface fluxes for use in ocean...NASA, NSF, and NOAA. APPROACH We are using a suite of models forced with estimates of real winds, with very fine horizontal resolution and realistic

  5. Present state of knowledge of the upper atmosphere1993: An assessment report, part 2

    NASA Technical Reports Server (NTRS)

    Kurylo, Michael J.; Kaye, Jack A.; Hampson, Robert F.; Schmoltner, Anne-Marie

    1994-01-01

    This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial reports to Congress and the Environmental Protection Agency. NASA is charged with the responsibility to report on the state of our knowledge of the earth's upper atmosphere, particularly the stratosphere. Part 2 (this document) presents summaries of several scientific assessments of our current understanding of the chemical composition and physical structure of the stratosphere, in particular how the abundance and distribution of ozone is predicted to change in the future. These reviews include: (Section B) 'Scientific Assessment of Ozone Depletion: 1991'; (Section C) 'Methyl bromide and the Ozone Layer: A Summary of Current Understanding', published in 1992; (Section D) 'Concentrations, Lifetimes, and Trends of Chlorofluorocarbons (CFC's), Halons, and Related Molecules in the Atmosphere'; (Section E) 'The Atmospheric Effects of Stratospheric Aircraft: Interim Assessment Report of the NASA High-Speed Research Program'; (Section F) 'Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling'; and (Section G) a list of the contributors to this report.

  6. A Reanalysis for the Seasonal and Longer-Period Cycles and the Trends in Middle Atmosphere Temperature from the HALOE

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.

    2007-01-01

    Previously published analyses for the seasonal and longer-period cycles in middle atmosphere temperature versus pressure (or T(p)) from the Halogen Occultation Experiment (HALOE) are extended to just over 14 years and updated to properly account for the effects of autocorrelation in its time series of zonally-averaged data. The updated seasonal terms and annual averages are provided, and they can be used to generate temperature distributions that are representative of the period 1991-2005. QBO-like terms have also been resolved and are provided, and they exhibit good consistency across the range of latitudes and pressure-altitudes. Further, exploratory analyses of the residuals from each of the 221 time series have yielded significant 11-yr solar cycle (or SC-like) and linear trend terms at a number of latitudes and levels. The amplitudes of the SC-like terms for the upper mesosphere agree reasonably with calculations of the direct solar radiative effects for T(p). Those SC amplitudes increase by about a factor of 2 from the lower to the upper mesosphere and are also larger at the middle than at the low latitudes. The diagnosed cooling trends for the subtropical latitudes are in the range, -0.5 to -1.0 K/decade, which is in good agreement with the findings from models of the radiative effects on pressure surfaces due to known increases in atmospheric CO2. The diagnosed trends are somewhat larger than predicted with models for the upper mesosphere of the northern hemisphere middle latitudes.

  7. Study of internal gravity waves in the meteor zone

    NASA Technical Reports Server (NTRS)

    Gavrilov, N. M.

    1987-01-01

    An important component of the dynamical regime of the atmosphere at heights near 100 km are internal gravity waves (IGW) with periods from about 5 min to about 17.5 hrs which propagate from the lower atmospheric layers and are generated in the uppermost region of the atmosphere. As IGW propagate upwards, their amplitudes increase and they have a considerable effect on upper atmospheric processes: (1) they provide heat flux divergences comparable with solar heating; (2) they influence the gaseous composition and produce wave variations of the concentrations of gaseous components and emissions of the upper atmosphere; and (3) they cause considerable acceleration of the mean stream. It was concluded that the periods, wavelengths, amplitudes and velocities of IGW propagation in the meteor zone are now measured quite reliably. However, for estimating the influence of IGW on the thermal regime and the circulation of the upper atmosphere these parameters are not as important as the values of wave fluxes of energy, heat, moment and mass.

  8. The Geospace Dynamics Observatory; a Mission of Discovery for Geospace

    NASA Technical Reports Server (NTRS)

    Spann, James; Paxton, Larry; Burch, James; Reardon, Patrick; Krause, Linda; Gallagher, Dennis; Hopkins, Randall

    2013-01-01

    A few examples of potential advances include: 1. Unparalleled advances in the connection of the upper atmosphere to the Sun. In the aurora and lower latitudes, extending the duration of uninterrupted images would advance understanding of the transfer of energy from the Sun to the upper atmosphere and the response of the space environment. 2. Advances in the influence of waves and tides on the upper atmosphere. Increasing both the signal to noise and the duration ofthe observations would reveal contributions that are not identifiable using other approaches. 3. The ability to probe the mechanisms that control the evolution of planetary atmospheres. The vantage point provided by this mission allows the flux of hydrogen (which is tied to the escape of water from a planet) to be mapped globally. It also allows unique observations of changes in the atmospheric structure and their causes.

  9. Searching for helium in the exosphere of HD 209458b

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Coustenis, A.; Schneider, J.; Queloz, D.; Mayor, M.

    2003-07-01

    Atmospheric models of the extrasolar, close-in giant planet HD 209458b predict strong absorption features from alkali metals (Seager & Sasselov \\cite{Seager00}; Brown 2001). This was confirmed by the discovery of NaI by HST observations (Charbonneau et al. \\cite{Charbonneau02}). In this study we focus on the search for the helium absorption feature at 10 830 Å, also predicted to be among the strongest ones. Helium is a major component of the planet's exosphere, for which models are yet not as robust as atmosphere models. One full transit was observed with the VLT/ISAAC instrument. We do not report the detection of the HeI feature. The data set is strongly affected by instrumental fringing, at a level up to 5% in the extracted spectra. After filtering, a residual noise of the order of 0.2% remains. An upper limit of the HeI line was derived, which further constrains future models of the HD 209458b planet exosphere. This upper limit, in terms of the feature depth, is 0.5% at 3sigma for a 3 Å bandwidth. Prospects are proposed to lower the detectability limit; the ultimate detectability limit with ISAAC in the absence of electronic fringing and in ideal atmospheric conditions could be as low as a line depth of 0.1% (3 Å width, 3sigma ). Based on data acquired on the Very Large Telescope at Paranal Observatory, ESO Chile.

  10. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Pant, Vimlesh

    2017-01-01

    A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.

  11. Temporal and spatial distribution of metallic species in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Correira, John Thomas

    2009-06-01

    Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.

  12. Elusive anion growth in Titan's atmosphere: Low temperature kinetics of the C3N- + HC3N reaction

    NASA Astrophysics Data System (ADS)

    Bourgalais, Jérémy; Jamal-Eddine, Nour; Joalland, Baptiste; Capron, Michael; Balaganesh, Muthiah; Guillemin, Jean-Claude; Le Picard, Sébastien D.; Faure, Alexandre; Carles, Sophie; Biennier, Ludovic

    2016-06-01

    Ion chemistry appears to be deeply involved in the formation of heavy molecules in the upper atmosphere of Titan. These large species form the seeds of the organic aerosols responsible for the opaque haze surrounding the biggest satellite of Saturn. The chemical pathways involving individual anions remain however mostly unknown. The determination of the rates of the elementary reactions with ions and the identification of the products are essential to the progress in our understanding of Titan's upper atmosphere. We have taken steps in that direction through the investigation of the low temperature reactivity of C3N- , which was tentatively identified in the spectra measured by the CAPS-ELS instrument of the Cassini spacecraft during its high altitude flybys. The reaction of this anion with HC3N, one of the most abundant trace organics in the atmosphere, has been studied over the 49-294 K temperature range in uniform supersonic flows using the CRESU technique. The proton transfer is found to be the main exit channel (>91%) of the C315N- + HC3N reaction. It remains however indistinguishable with the non-isotopically labeled C314N- reactant. The T - 1 / 2 temperature dependence of this proton transfer reaction and its global rate are reasonably well reproduced theoretically using an average dipole orientation model. A minor exit channel, reactive detachment (< 9%), has also been uncovered, although the nature of the neutral products has not been determined. It is concluded that the C314N- + HC3N reaction cannot contribute to the growth of molecular anions in the upper atmosphere of Titan. Due to the low branching into the neutral exit channel, it cannot contribute either to the growth of neutrals even assuming a complete mass transfer.

  13. Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2018-04-01

    Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50-70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40-60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.

  14. The ortho-para H2 distribution on Uranus: Constraints from the collision-induced 3-0 dipole band and 4-0 S(0) and S(1) quadrupole line profiles

    NASA Technical Reports Server (NTRS)

    Baines, K. H.; Bergstralh, J. T.

    1986-01-01

    Recent high quality spectral observations have allowed the derivation of constraints on the atmospheric structure of Uranus. The present analysis, which is based on the detailed modeling of a broadband geometric albedo spectrum and high resolution observations of the H2 4-0 quadrupole and 6818.9-A CH4 features, yields (1) a family of models which parameterize an upper tropospheric haze layer, (2) a lower, optically infinite cloud at a given pressure level, (3) the cloud-level methane molar fraction, and (4) the mean ortho/para ratio in the visible atmosphere. The single scattering albedo of atmospheric aerosols exhibits a steep darkening between 5890 and 6040 A.

  15. Modes of North Atlantic Decadal Variability in the ECHAM1/LSG Coupled Ocean-Atmosphere General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Zorita, Eduardo; Frankignoul, Claude

    1997-02-01

    The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes, the surface heat flux acts neutrally on the associated SST anomalies once they have been generated, so that their persistence appears to be due in part to an overall adjustment of the air-sea heat exchanges to the SST patterns.

  16. Observations of a free-energy source for intense electrostatic waves. [in upper atmosphere near upper hybrid resonance frequency

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Frank, L. A.; Gurnett, D. A.; Burek, B. G.; Ashour-Abdalla, M.

    1980-01-01

    Significant progress has been made in understanding intense electrostatic waves near the upper hybrid resonance frequency in terms of the theory of multiharmonic cyclotron emission using a classical loss-cone distribution function as a model. Recent observations by Hawkeye 1 and GEOS 1 have verified the existence of loss-cone distributions in association with the intense electrostatic wave events, however, other observations by Hawkeye and ISEE have indicated that loss cones are not always observable during the wave events, and in fact other forms of free energy may also be responsible for the instability. Now, for the first time, a positively sloped feature in the perpendicular distribution function has been uniquely identified with intense electrostatic wave activity. Correspondingly, we suggest that the theory is flexible under substantial modifications of the model distribution function.

  17. Simulations of the effect of a warmer climate on atmospheric humidity

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Lacis, Andrew A.; Ruedy, Reto A.

    1991-01-01

    Increases in the concentration of water vapor constitute the single largest positive feedback in models of global climate warming caused by greenhouse gases. It has been suggested that sinking air in the regions surrounding deep cumulus clouds will dry the upper troposphere and eliminate or reverse the direction of water vapor feedback. This hypothesis has been tested by performing an idealized simulation of climate change with two different versions of a climate model which both incorporate drying due to subsidence of clear air but differ in their parameterization of moist convection and stratiform clouds. Despite increased drying of the upper troposphere by cumulus clouds, upper-level humidity increases in the warmer climate because of enhanced upward moisture transport by the general circulation and increased accumulation of water vapor and ice at cumulus cloud tops.

  18. Influence of the Tibetan Plateau snow cover on East Asian winter upper-level jet streams at daily time scale

    NASA Astrophysics Data System (ADS)

    Guo, W.; Li, W.; Qiu, B.; Xue, Y.

    2017-12-01

    The Tibetan Plateau (TP) acts as an elevated cooling source in the middle troposphere at wintertime. We here present evidence that the intraseasonal variability of the TP snow cover (TPSC) controls part of the East Asian upper-level jet stream. This study found that there is significant positive lag correlation between the East Asian (EA) upper-level westerly jet and the TPSC in winter. When the TPSC increases/decreases, the EA upper-level westerly jet enhances/weakens in the following 8 days. We performed numerical experiments to prove that the lag correlation is causal relationship by using a regional climate model. Due to the high albedo of the snow cover, the increased/decreased snow cover increases/decreases the albedo and affects the surface energy balance over the TP. The energy absorbed by the surface is reduced/increased due to increased/decreased shortwave reflects to the atmosphere. There is anomalous cooling/heating effect over the TP. Such effect leads to anomalous geopotential height (GHT) field that propagates eastward with the zonal wind to the east. The anomalous GHT reaches key region of EA upper-level westerly jet at about 6 days. The adaptive modulation of GHT gradients affects wind fields (through geostrophic balance). As a result, the EA upper-level westerly jet is enhanced (weakened). Through the above process, the TPSC eventually influences the EA upper-level westerly jet. This report reveals that the intraseasonal variability of TPSC can server as an indicator of East Asia Atmospheric circulation on short-to-medium range.

  19. On the Causes of and Long Term Changes in Eurasian Heat Waves

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max

    2012-01-01

    The MERRA reanalysis, other observations, and the GEOS-S model have been used to diagnose the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The results show that such extreme events are an amplification of natural patterns of atmospheric variability (in this case a particular large-scale atmospheric planetary wave) that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. Model experiments suggest that forcing from both the ocean (SST) and land playa role phase-locking the waves. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more extreme in the last thirty years as a result of the overall warming of the Asian continent.

  20. The upper atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Yelle, Roger V.; Shemansky, Donald E.; Atreya, Sushil K.

    1991-01-01

    Voyager measurements of the upper atmosphere of Uranus are analyzed and developed. The upper atmosphere of Uranus is predominantly H2, with at most 10 percent He by volume, and the dominant constituent of the exosphere is H. The thermosphere is warm, with an asymptotic isothermal temperature of about 800 K. Atomic hydrogen at this temperature forms an extensive thermal corona and creates gas drag that severely limits the lifetime of small ring particles. The upper atmosphere emits copious amounts of UV radiation from pressures greater than 0.01 microbar. The depth of this emission level imposes a powerful constraint on permissible emission mechanisms. Electron excitation from a thin layer near the exobase appears to violate this constraint. Solar fluorescence is consistent with the observed trend in solar zenith-angle variation of the emissions and is absent from the night side of the planet. On Uranus, it accounts for the observed Lyman beta to H2 bands intensity ratio and an important fraction of the observed intensity (about 55 percent).

  1. A comparison of observed (HALOE) and modeled (CCM2) methane and stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Mote, Philip W.; Holton, James R.; Russell, James M., III; Boville, Byron A.

    1993-01-01

    Recent measurements (21 September-15 October 1992) of methane and water vapor by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) are compared with model results for the same season from a troposphere-middle atmosphere version of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM2). Several important features of the two constituent fields are well reproduced by the CCM2, despite the use of simplified methane photochemistry in the CCM2 and some notable differences between the model's zonal mean circulation and climatology. Observed features simulated by the model include the following: 1) subsidence over a deep layer in the Southern Hemisphere polar vortex; 2) widespread dehydration in the polar vortex; and 3) existence of a region of low water vapor mixing ratios extending from the Antarctic into the Northern Hemisphere tropics, which suggests that Antarctic dehydration contributes to midlatitude and tropical dryness in the stratosphere.

  2. Continuing Studies in Support of Ultraviolet Observations of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Clark, John

    1997-01-01

    This program was a one-year extension of an earlier Planetary Atmospheres program grant, covering the period 1 August 1996 through 30 September 1997. The grant was for supporting work to complement an active program observing planetary atmospheres with Earth-orbital telescopes, principally the Hubble Space Telescope (HST). The recent concentration of this work has been on HST observations of Jupiter's upper atmosphere and aurora, but it has also included observations of Io, serendipitous observations of asteroids, and observations of the velocity structure in the interplanetary medium. The observations of Jupiter have been at vacuum ultraviolet wavelengths, including imaging and spectroscopy of the auroral and airglow emissions. The most recent HST observations have been at the same time as in situ measurements made by the Galileo orbiter instruments, as reflected in the meeting presentations listed below. Concentrated efforts have been applied in this year to the following projects: The analysis of HST WFPC 2 images of Jupiter's aurora, including the Io footprint emissions. We have performed a comparative analysis of the lo footprint locations with two magnetic field models, studied the statistical properties of the apparent dawn auroral storms on Jupiter, and found various other repeated patterns in Jupiter's aurora. Analysis and modeling of airglow and auroral Ly alpha emission line profiles from Jupiter. This has included modeling the aurora] line profiles, including the energy degradation of precipitating charged particles and radiative transfer of the emerging emissions. Jupiter's auroral emission line profile is self-absorbed, since it is produced by an internal source, and the resulting emission with a deep central absorption from the overlying atmosphere permits modeling of the depth of the emissions, plus the motion of the emitting layer with respect to the overlying atmospheric column from the observed Doppler shift of the central absorption. By contrast the airglow emission line, which is dominated by resonant scattering of solar emission, has no central absorption, but displays rapid time variations and broad wings, indicative of a superthermal component (or corona) in Jupiter's upper atmosphere. Modeling of the observed motions of the plumes produced after the impacts of the fragments of Comet S/L-9 with Jupiter in July 1994, from the HST WFPC 2 imaging series.

  3. Remote tropical and sub-tropical responses to Amazon deforestation

    NASA Astrophysics Data System (ADS)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-05-01

    Replacing natural vegetation with realistic tropical crops over the Amazon region in a global Earth system model impacts vertical transport of heat and moisture, modifying the interaction between the atmospheric boundary layer and the free atmosphere. Vertical velocity is decreased over a majority of the Amazon region, shifting the ascending branch and modifying the seasonality of the Hadley circulation over the Atlantic and eastern Pacific oceans. Using a simple model that relates circulation changes to heating anomalies and generalizing the upper-atmosphere temperature response to deforestation, agreement is found between the response in the fully-coupled model and the simple solution. These changes to the large-scale dynamics significantly impact precipitation in several remote regions, namely sub-Saharan Africa, Mexico, the southwestern United States and extratropical South America, suggesting non-local climate repercussions for large-scale land use changes in the tropics are possible.

  4. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.

    2013-12-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  5. A dynamical perspective on the energetic particles precipitation-middle atmosphere interaction

    NASA Astrophysics Data System (ADS)

    Karami, Khalil; Sinnhuber, Miriam; Versick, Stefan; Braesicke, Peter

    2015-04-01

    Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over polar region of both hemispheres, where the geomagnetic lines are considered to be open and connected to the interplanetary medium. This condition allows direct access for energetic particles of solar or galactic origin to directly deposit their own energy into the middle and upper atmosphere. Such particle precipitations can greatly disturb the chemical composition of the upper and middle atmosphere. At polar latitudes, these particles have the potential to penetrate from thermosphere deep into the mesosphere and in rare occasions into the stratosphere. The most important are changes to the budget of atmospheric nitric oxides, NOy, and to atmospheric reactive hydrogen oxides, HOx, which both contribute to ozone loss in the stratosphere and mesosphere. The chemistry-climate general circulation model ECHAM5/MESSy is used to investigate the impact of changed ozone concentration due to energetic particles precipitation on temperatures and wind fields. The simulated anomalies of both zonal mean temperature and zonal wind suggest that these changes are very unlikely to be caused in situ by ozone depletion and indirect dynamical condition is important. The results of our simulations suggests that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes in many areas of the atmosphere. Different dynamical analysis (e.g., frequency of sudden stratospheric warming, dates of stratospheric final warming, divergence of Eliassen-Palm flux and refractive index of planetary waves) are performed to investigate the impact of ozone anomaly originated from high energetic particle precipitation on middle atmospheric temperature and circulation.

  6. Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations

    NASA Astrophysics Data System (ADS)

    Domingues, Ricardo; Goni, Gustavo; Bringas, Francis; Lee, Sang-Ki; Kim, Hyun-Sook; Halliwell, George; Dong, Jili; Morell, Julio; Pomales, Luis

    2015-09-01

    During October 2014, Hurricane Gonzalo traveled within 85 km from the location of an underwater glider situated north of Puerto Rico. Observations collected before, during, and after the passage of this hurricane were analyzed to improve our understanding of the upper ocean response to hurricane winds. The main finding in this study is that salinity potentially played an important role on changes observed in the upper ocean; a near-surface barrier layer likely suppressed the hurricane-induced upper ocean cooling, leading to smaller than expected temperature changes. Poststorm observations also revealed a partial recovery of the ocean to prestorm conditions 11 days after the hurricane. Comparison with a coupled ocean-atmosphere hurricane model indicates that model-observations discrepancies are largely linked to salinity effects described. Results presented in this study emphasize the value of underwater glider observations for improving our knowledge of how the ocean responds to tropical cyclone winds and for tropical cyclone intensification studies and forecasts.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1992-09-12

    This STS-48 onboard photo is of the Upper Atmosphere Research Satellite (UARS) in the grasp of the RMS (Remote Manipulator System) during deployment, September 1991. UARS gathers data related to the chemistry, dynamics, and energy of the ozone layer. UARS data is used to study energy input, stratospheric photo chemistry, and upper atmospheric circulation. UARS helps us understand and predict how the nitrogen and chlorine cycles, and the nitrous oxides and halo carbons which maintain them, relate to the ozone balance. It also observes diurnal variations in short-lived stratospheric chemical species important to ozone destruction. Data from UARS enables scientists to study ozone depletion in the upper atmosphere.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1991-09-12

    This STS-48 onboard photo is of the Upper Atmosphere Research Satellite (UARS) in the grasp of the RMS (Remote Manipulator System) during deployment, September 1991. UARS gathers data related to the chemistry, dynamics, and energy of the ozone layer. UARS data is used to study energy input, stratospheric photo chemistry, and upper atmospheric circulation. UARS helps us understand and predict how the nitrogen and chlorine cycles, and the nitrous oxides and halo carbons which maintain them, relate to the ozone balance. It also observes diurnal variations in short-lived stratospheric chemical species important to ozone destruction. Data from UARS enables scientists to study ozone depletion in the upper atmosphere.

  9. A climate model with cryodynamics and geodynamics

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Le Treut, H.

    1981-01-01

    A simplified, zero-dimensional model of the climatic system is presented which attempts to incorporate mechanisms important on the time scale of glaciation cycles: 10,000 to 100,000 years. The ocean-atmosphere radiation balance, continental ice sheet plastic flow, and upper mantle viscous flow are taken into account, with stress on the interaction between the ice sheets and the upper mantle. The model exhibits free, self-sustained oscillations of an amplitude and period comparable to those found in the paleoclimatic record of glaciations, offering mild support for the idea that unforced oscillations can actually exist in the real climatic system itself. The careful study of the interplay between internal mechanisms and external forcing is held to represent an interesting challenge to the theory of ice ages.

  10. Hydrogen Cyanide in the Upper Troposphere: GEM-AQ Simulation and Comparison with ACE-FTS Observations

    NASA Technical Reports Server (NTRS)

    Lupu, A.; Kaminski, J. W.; Neary, L.; McConnell, J. C.; Toyota, K.; Rinsland, C. P.; Bernath, P. F.; Walker, K. A.; Boone, C. D.; Nagahama, Y.; hide

    2009-01-01

    We investigate the spatial and temporal distribution of hydrogen cyanide (HCN) in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), which is based on the threedimensional Gobal multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004-2006 on a 1.5deg x 1.5deg global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED) version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May-July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. The comparison with the satellite data shows that in the upper troposphere GEM-AQ perform7s well globally for all seasons, except at northern hi gh and middle latitudes in surnmer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to explain most of the observed variability in the upper troposphere HCN field, includin g the interannual variations in the observed mixing ratio. A complementary comparison with daily total columns of HCN from two middle latitude ground-based stations in Northern Japan for the same simulation period shows that the model captures the observed seasonal variation and also points to an underestimation of model emissions in the Northern Hemisphere in the summer. The estimated average global emission equals 1.3 Tg N/yr. The average atmospheric burden is 0.53 Tg N, and the corresponding lifetime is 4.9 months.

  11. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as compared to models that do not include electron-impact ionisation. We estimate infrared emissions from H3+, and while, in an H/H2/He atmosphere, these are larger from planets orbiting close to more active stars, they still appear too low to be detected with current observatories.

  12. The role of meteoric smoke in the Earth s environment

    NASA Astrophysics Data System (ADS)

    Plane, J.

    An average of about 120 tonnes of interplanetary dust is believed to enter the earth's atmosphere each day. At least 55% of this ablates completely into atoms and ions, mostly between 70 and 110 km. Meteoric ablation is the source of the layers of metal atoms (Na, Fe etc.) that occur globally in the upper mesosphere; these layers are observed routinely by ground-based resonance lidars. This paper is concerned with the subsequent fate of the meteoric metals, and other constituents such as sulfur. The laboratory programme at the University of East Anglia studies the reactions that metallic species are likely to undergo in this region of the atmosphere. The resulting rate coefficients and photolysis cross sections are then used in atmospheric models. Once these models can satisfactorily reproduce the characteristic features of the mesospheric metal layers (as is the case for Na and Fe), they can then be used to predict the condensation of metal-containing species (oxides, hydroxides, carbonates) into nanometer-sized dust particles, known as "meteoric smoke". This paper will discuss the role of this smoke in providing condensation nuclei for noctilucent clouds in the upper mesosphere, forming sulphuric acid particles in the stratospheric Junge layer, and fertilizing the Fe-deficient Southern Ocean.

  13. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Myhre, Cathrine Lund; Platt, Stephen Matthew; Eckhardt, Sabine; Hermansen, Ove; Schmidbauer, Norbert; Mienert, Jurgen; Vadakkepuliyambatta, Sunil; Bauguitte, Stephane; Pitt, Joseph; Allen, Grant; Bower, Keith; O'Shea, Sebastian; Gallagher, Martin; Percival, Carl; Pyle, John; Cain, Michelle; Stohl, Andreas

    2017-04-01

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (FAAM) and a ship (Helmer Hansen) during the Summer 2014, and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol / m s in the stability model scenario. The Zeppelin Observatory data for 2014 suggests CH4 fluxes from the Svalbard continental platform below 0.2 Tg/yr . All estimates are in the lower range of values previously reported.

  14. A Web Application For Visualizing Empirical Models of the Space-Atmosphere Interface Region: AtModWeb

    NASA Astrophysics Data System (ADS)

    Knipp, D.; Kilcommons, L. M.; Damas, M. C.

    2015-12-01

    We have created a simple and user-friendly web application to visualize output from empirical atmospheric models that describe the lower atmosphere and the Space-Atmosphere Interface Region (SAIR). The Atmospheric Model Web Explorer (AtModWeb) is a lightweight, multi-user, Python-driven application which uses standard web technology (jQuery, HTML5, CSS3) to give an in-browser interface that can produce plots of modeled quantities such as temperature and individual species and total densities of neutral and ionized upper-atmosphere. Output may be displayed as: 1) a contour plot over a map projection, 2) a pseudo-color plot (heatmap) which allows visualization of a variable as a function of two spatial coordinates, or 3) a simple line plot of one spatial coordinate versus any number of desired model output variables. The application is designed around an abstraction of an empirical atmospheric model, essentially treating the model code as a black box, which makes it simple to add additional models without modifying the main body of the application. Currently implemented are the Naval Research Laboratory NRLMSISE00 model for neutral atmosphere and the International Reference Ionosphere (IRI). These models are relevant to the Low Earth Orbit environment and the SAIR. The interface is simple and usable, allowing users (students and experts) to specify time and location, and choose between historical (i.e. the values for the given date) or manual specification of whichever solar or geomagnetic activity drivers are required by the model. We present a number of use-case examples from research and education: 1) How does atmospheric density between the surface and 1000 km vary with time of day, season and solar cycle?; 2) How do ionospheric layers change with the solar cycle?; 3 How does the composition of the SAIR vary between day and night at a fixed altitude?

  15. Application of a numerical model for the planetary boundary layer to the vertical distribution of radon and its daughter products

    NASA Astrophysics Data System (ADS)

    Vinod Kumar, A.; Sitaraman, V.; Oza, R. B.; Krishnamoorthy, T. M.

    A one-dimensional numerical planetary boundary layer (PBL) model is developed and applied to study the vertical distribution of radon and its daughter products in the atmosphere. The meteorological model contains parameterization for the vertical diffusion coefficient based on turbulent kinetic energy and energy dissipation ( E- ɛ model). The increased vertical resolution and the realistic concentration of radon and its daughter products based on the time-dependent PBL model is compared with the steady-state model results and field observations. The ratio of radon concentration at higher levels to that at the surface has been studied to see the effects of atmospheric stability. The significant change in the vertical profile of concentration due to decoupling of the upper portion of the boundary layer from the shallow lower stable layer is explained by the PBL model. The disequilibrium ratio of 214Bi/ 214Pb broadly agrees with the observed field values. The sharp decrease in the ratio during transition from unstable to stable atmospheric condition is also reproduced by the model.

  16. Photochemistry of Pluto's Atmosphere

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, Vladimir A.

    1999-01-01

    This work include studies of two problems: (1) Modeling thermal balance, structure. and escape processes in Pluto's upper atmosphere. This study has been completed in full. A new method, of analytic solution for the equation of hydrodynamic flow from in atmosphere been developed. It was found that the ultraviolet absorption by methane which was previously ignored is even more important in Pluto's thermal balance than the extreme ultraviolet absorption by nitrogen. Two basic models of the lower atmosphere have been suggested, with a tropopause and a planetary surface at the bottom of the stellar occultation lightcurve, respectively, Vertical profiles, of temperature, density, gas velocity, and the CH4 mixing ratio have been calculated for these two models at low, mean, and high solar activity (six models). We prove that Pluto' " s atmosphere is restricted to 3060-4500 km, which makes possible a close flyby of future spacecraft. Implication for Pluto's evolution have also been discussed. and (2) Modeling of Pluto's photochemistry. Based on the results of (1), we have made some changes in the basic continuity equation and in the boundary conditions which reflect a unique can of hydrodynamic escape and therefore have not been used in modeling of other planetary atmospheres. We model photochemistry of 44 neutral and 23 ion species. This work required solution of a set of 67 second-order nonlinear ordinary differential equations. Two models have been developed. Each model consists of the vertical profiles for 67 species, their escape and precipitation rates. These models predict the chemical structure and basic chemical processes in the current atmosphere and possible implication of these processes for evolution. This study has also been completed in full.

  17. Photochemical Modeling of CH3 Abundances in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Lee, Anthony Y. T.; Yung, Yuk L.; Moses, Julianne

    2000-01-01

    Recent measurements of methyl radicals (CH3) in the upper atmospheres of Saturn and Neptune by the Infrared Space Observatory (ISO) provide new constraints to photochemical models of hydrocarbon chemistry in the outer solar system. The derived column abundances of CH3 on Saturn above 10 mbar and Neptune above the 0.2 mbar pressure level are (2.5 - 6.0) x 10(exp 13) / sq cm and (0.7 - 2.8) x 10(exp 13) / sq cm, respectively. We use the updated Caltech/Jet Propulsion Laboratory photochemical model, which incorporates hydrocarbon photochemistry, vertical molecular and bulk atmospheric eddy diffusion, and realistic radiative transfer modeling, to study the CH3 abundances in the upper atmosphere of the giant planets and Titan. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M yields C2H6 + M. We evaluate and extrapolate the three-body rate constant of this reaction to the low-temperature limit (1.8 x 10(exp -16) T(sup -3.75) e(sup -300/T), T < 300 K) and compare methyl radical abundances in five atmospheres: Jupiter, Saturn, Uranus, Neptune, and Titan. The sensitivity of our models to the rate coefficients for the reactions H + CH3 + M yields CH4 + M, H + C2H3 yields C2H2 + H2, (sup 1)CH2 + H2 yields CH3 + H, and H + C2H5 yields 2CH3, the branching ratios of CH4 photolysis, vertical mixing in the five atmospheres, and Lyman alpha photon enhancement at the orbit of Neptune have all been tested. The results of our model CH3 abundances for both Saturn (5.1 x 10(exp 13) / sq cm) and Neptune (2.2 x 10(exp 13) / sq cm) show good agreement with ISO Short Wavelength Spectrometer measurements. Using the same chemical reaction set, our calculations also successfully generate vertical profiles of stable hydrocarbons consistent with Voyager and ground-based measurements in these outer solar system atmospheres. Predictions of CH3 column concentrations (for p <= 0.2 mbar) in the atmospheres of Jupiter (3.3 x 10(exp 13) /sq cm), Uranus (2.5 x 10(exp 12) / sq cm), and Titan (1.9 x 10(exp 15) / sq cm) may be checked by future observations.

  18. A study of the middle atmospheric thermal structure over western India: Satellite data and comparisons with models

    NASA Astrophysics Data System (ADS)

    Sharma, Som; Kumar, Prashant; Vaishnav, Rajesh; Jethva, Chintan; Beig, G.

    2017-12-01

    Long term variations of the middle atmospheric thermal structure in the upper stratosphere and lower mesosphere (20-90 km) have been studied over Ahmedabad (23.1°N, 72.3°E, 55 m amsl), India using SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) onboard TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics) observations during year 2002 to year 2014. For the same period, three different atmospheric models show over-estimation of temperature (∼10 K) near the stratopause and in the upper mesosphere, and a signature of under-estimation is seen above mesopause when compared against SABER measured temperature profiles. Estimation of monthly temperature anomalies reveals a semiannual and ter-annual oscillation moving downward from the mesosphere to the stratosphere during January to December. Moreover, Lomb Scargle periodogram (LSP) and Wavelet transform techniques are employed to characterize the semi-annual, annual and quasi-biennial oscillations to diagnose the wave dynamics in the stratosphere-mesosphere system. Results suggested that semi-annual, annual and quasi-biennial oscillations are exist in stratosphere, whereas, semi-annual and annual oscillations are observed in mesosphere. In lower mesosphere, LSP analyses revealed conspicuous absence of annual oscillations in altitude range of ∼55-65 km, and semi-annual oscillations are not existing in 35-45 km. Four monthly oscillations are also reported in the altitude range of about 45-65 km. The temporal localization of oscillations using wavelet analysis shows strong annual oscillation during year 2004-2006 and 2009-2011.

  19. A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Chen, C.; Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.

  20. Utilization of UARS Data in Validation of Photochemical and Dynamical Mechanisms in Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Rodriquez, J. M.; Hu, W.; Danilin, M. Y.; Shia, R.-L.

    1998-01-01

    The proposed work utilized Upper Atmosphere Research Satellite (UARS) measurements of short-lived and long-lived species, in conjunction with existing photochemical "box" models, trajectory models, and two-dimensional global models, to elucidate outstanding questions in our understanding of photochemical and dynamical mechanisms in the stratosphere. Particular emphasis was given to arriving at the best possible understanding of the chemical and dynamical contributions to the stratospheric ozone budget. Such understanding will increase confidence in the simulations carried out by assessment models.

  1. Utilization of UARS Data in Validation of Photochemical and Dynamical Mechanisms in Stratospheric Models

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Rodriquez, Jose M.; Hu, Wenjie; Danilin, Michael Y.; Shia, Run-Li

    1998-01-01

    The proposed work utilized Upper Atmosphere Research Satellite (UARS) measurements of short-lived and long-lived species, in conjunction with existing photochemical "box" models, trajectory models, and two-dimensional global models, to elucidate outstanding questions in our understanding of photochemical and dynamical mechanisms in the stratosphere. Particular emphasis was given to arriving at the best possible understanding of the chemical and dynamical contribution to the stratospheric ozone budget. Such understanding will increase confidence in the simulations carried out by assessment models.

  2. Internal gravity waves in the upper atmosphere, generated by tropospheric jet streams

    NASA Technical Reports Server (NTRS)

    Chunchuzov, Y. P.; Torgashin, Y. M.

    1979-01-01

    A mechanism of internal gravity wave generation by jet streams in the troposphere is considered. Evaluations of the energy and pulse of internal gravity waves emitted into the upper atmosphere are given. The obtained values of flows can influence the thermal and dynamic regime of these layers.

  3. BOREAS AFM-5 Level-1 Upper Air Network Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).

  4. Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star

    NASA Astrophysics Data System (ADS)

    Peter, Hardi; Abbo, L.; Andretta, V.; Auchère, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Braukhane, A.; Casini, R.; Curdt, W.; Davila, J.; Dittus, H.; Fineschi, S.; Fludra, A.; Gandorfer, A.; Griffin, D.; Inhester, B.; Lagg, A.; Landi Degl'Innocenti, E.; Maiwald, V.; Sainz, R. Manso; Martínez Pillet, V; Matthews, S.; Moses, D.; Parenti, S.; Pietarila, A.; Quantius, D.; Raouafi, N.-E.; Raymond, J.; Rochus, P.; Romberg, O.; Schlotterer, M.; Schühle, U.; Solanki, S.; Spadaro, D.; Teriaca, L.; Tomczyk, S.; Trujillo Bueno, J.; Vial, J.-C.

    2012-04-01

    The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.

  5. Rotating-fluid experiments with an atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Geisler, J. E.; Pitcher, E. J.; Malone, R. C.

    1983-01-01

    In order to determine features of rotating fluid flow that are dependent on the geometry, rotating annulus-type experiments are carried out with a numerical model in spherical coordinates. Rather than constructing and testing a model expressly for this purpose, it is found expedient to modify an existing general circulation model of the atmosphere by removing the model physics and replacing the lower boundary with a uniform surface. A regime diagram derived from these model experiments is presented; its major features are interpreted and contrasted with the major features of rotating annulus regime diagrams. Within the wave regime, a narrow region is found where one or two zonal wave numbers are dominant. The results reveal no upper symmetric regime; wave activity at low rotation rates is thought to be maintained by barotropic rather than baroclinic processes.

  6. Solar F10.7 radiation - A short term model for Space Station applications

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1991-01-01

    A new method is described for statistically modeling the F10.7 component of solar radiation for 91-day intervals. The resulting model represents this component of the solar flux as a quasi-exponentially correlated, Weibull distributed random variable, and thereby demonstrates excellent agreement with observed F10.7 data. Values of the F10.7 flux are widely used in models of the earth's upper atmosphere because of its high correlation with density fluctuations due to solar heating effects. Because of the direct relation between atmospheric density and drag, a realistic model of the short term fluctuation of the F10.7 flux is important for the design and operation of Space Station Freedom. The method of modeling this flux described in this report should therefore be useful for a variety of Space Station applications.

  7. First Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations

    NASA Astrophysics Data System (ADS)

    Evans, J. Scott; Stevens, Michael H.; Jain, Sonal; Deighan, Justin; Lumpe, Jerry; Schneider, Nicholas M.; Stewart, A. Ian; Crismani, Matteo; Stiepen, Arnaud; Chaffin, Michael S.; Mayyasi-Matta, Majd A.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Lo, Daniel; Clarke, John T.; Montmessin, Franck; Bougher, Stephen W.; Bell, Jared M.; Eparvier, Frank; Thiemann, Ed; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Jakosky, Bruce

    2017-10-01

    As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences.

  8. The role of nutricline depth in regulating the ocean carbon cycle

    PubMed Central

    Cermeño, Pedro; Dutkiewicz, Stephanie; Harris, Roger P.; Follows, Mick; Schofield, Oscar; Falkowski, Paul G.

    2008-01-01

    Carbon uptake by marine phytoplankton, and its export as organic matter to the ocean interior (i.e., the “biological pump”), lowers the partial pressure of carbon dioxide (pCO2) in the upper ocean and facilitates the diffusive drawdown of atmospheric CO2. Conversely, precipitation of calcium carbonate by marine planktonic calcifiers such as coccolithophorids increases pCO2 and promotes its outgassing (i.e., the “alkalinity pump”). Over the past ≈100 million years, these two carbon fluxes have been modulated by the relative abundance of diatoms and coccolithophores, resulting in biological feedback on atmospheric CO2 and Earth's climate; yet, the processes determining the relative distribution of these two phytoplankton taxa remain poorly understood. We analyzed phytoplankton community composition in the Atlantic Ocean and show that the distribution of diatoms and coccolithophorids is correlated with the nutricline depth, a proxy of nutrient supply to the upper mixed layer of the ocean. Using this analysis in conjunction with a coupled atmosphere–ocean intermediate complexity model, we predict a dramatic reduction in the nutrient supply to the euphotic layer in the coming century as a result of increased thermal stratification. Our findings indicate that, by altering phytoplankton community composition, this causal relationship may lead to a decreased efficiency of the biological pump in sequestering atmospheric CO2, implying a positive feedback in the climate system. These results provide a mechanistic basis for understanding the connection between upper ocean dynamics, the calcium carbonate-to-organic C production ratio and atmospheric pCO2 variations on time scales ranging from seasonal cycles to geological transitions. PMID:19075222

  9. Science of Opportunity: Heliophysics on the FASTSAT Mission and STP-S26

    NASA Technical Reports Server (NTRS)

    Rowland, Douglas E.; Collier, Michael R.; Sigwarth, John B.; Jones, Sarah L.; Hill, Joanne K.; Benson, Robert; Choi, Michael; Chornay, Dennis; Cooper, John; Feng, Steven; hide

    2011-01-01

    The FASTSAT spacecraft, which was launched on November 19, 2010 on the DoD STP-S26 mission, carries three instruments developed in joint collaboration by NASA GSFC and the US Naval Academy: PISA, TTl, and MINI_ME.I,1 As part of a rapid-development, low-cost instrument design and fabrication program, these instruments were a perfect match for FASTSAT, which was designed and built in less than one year. These instruments, while independently developed, provide a collaborative view of important processes in the upper atmosphere relating to solar and energetic particle input, atmospheric response, and ion outflow. PISA measures in-situ irregularities in electron number density, TIl provides limb measurements of the atomic oxygen temperature profile with altitude, and MINI-ME provides a unique look at ion populations by a remote sen sing technique involving neutral atom imaging. Together with other instruments and payloads on STP-S26 such as the NSF RAX mission, FalconSat-5, and NanoSail-D (launched as a tertiary payload from FASTSAT), these instruments provide a valuable "constellation of opportunity" for following the now of energy and charged and neutral particles through the upper atmosphere. Together, and for a small fraction of the price of a major mission, these spacecraft will measure the energetic electrons impacting the upper atmosphere, the ions leaving it, and the large-scale plasma and neutral response to these energy inputs. The result will be a new model for maximizing scientific return from multiple small, distributed payloads as secondary payloads on a larger launch vehicle.

  10. Investigations of the middle atmospheric thermal structure and oscillations over sub-tropical regions in the Northern and Southern Hemispheres

    NASA Astrophysics Data System (ADS)

    Sharma, Som; Kumar, Prashant; Jethva, Chintan; Vaishnav, Rajesh; Bencherif, Hassan

    2017-06-01

    The temperature retrieved from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite during January 2002 to September 2015 are used in this study to delineate the differences of middle atmospheric thermal structure in the Northern Hemisphere (NH) and Southern Hemisphere (SH). Two stations namely Mt. Abu (24.59°N, 72.70°E) in NH and Reunion Island (21.11°S, 55.53°E) in SH are chosen over sub-tropical regions. Temperature climatology from SABER observations suggests that stratopause is warmer, and upper mesosphere is cooler in NH as compared to SH. Three atmospheric models are used to understand the monthly thermal structure differences for different altitudes. Moreover, semi-annual, annual and quasi-biennial oscillations are studied using Lomb Scargle Periodogram and Wavelet transform techniques. Over NH, summer and winter season are warmer ( 4 K) and cooler ( 3 K) respectively in stratosphere as compared to SH. It is important to note here that Mt. Abu temperature is warmer ( 9 K) than Reunion Island in winter but in summer season Mt. Abu temperature is cooler in upper mesosphere and above mesosphere NH shows warming. Results show that annual oscillations are dominated in both hemisphere as compared to semi-annual and quasi-biennial oscillations. In upper mesosphere, strength of annual oscillations is substantial in NH, while semi-annual oscillations are stronger in SH. Wavelet analyses found that annual oscillations are significant in NH near mesopause, while semi-annual oscillations are strengthening in SH.

  11. Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Minobe, S.; Ida, T.; Takatama, K.

    2016-12-01

    Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.

  12. On the Roles of Upper- versus Lower-level Thermal Forcing in Shifting the Eddy-Driven Jet

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Nie, Y.; Chen, G.; Yang, X. Q.

    2017-12-01

    One most drastic atmospheric change in the global warming scenario is the increase in temperature over tropical upper-troposphere and polar surface. The strong warming over those two area alters the spacial distributions of the baroclinicity in the upper-troposphere of subtropics and in the lower-level of subpolar region, with competing effects on the mid-latitude atmospheric circulation. The final destination of the eddy-driven jet in future climate could be "a tug of war" between the impacts of such upper- versus lower-level thermal forcing. In this study, the roles of upper- versus lower-level thermal forcing in shifting the eddy-driven jet are investigated using a nonlinear multi-level quasi-geostrophic channel model. All of our sensitivity experiments show that the latitudinal position of the eddy-driven jet is more sensitive to the upper-level thermal forcing. Such upper-level dominance over the lower-level forcing can be attributed to the different mechanisms through which eddy-driven jet responses to them. The upper-level thermal forcing induces a jet shift mainly by affecting the baroclinic generation of eddies, which supports the latitudinal shift of the eddy momentum flux convergence. The jet response to the lower-level thermal forcing, however, is strongly "eddy dissipation control". The lower-level forcing, by changing the baroclinicity in the lower troposphere, induces a direct thermal zonal wind response in the upper level thus modifies the nonlinear wave breaking and the resultant irreversible eddy mixing, which amplifies the latitudinal shift of the eddy-driven jet. Whether the eddy response is "generation control" or "dissipation control" may strongly depend on the eddy behavior in its baroclinic processes. Only the anomalous eddy generation that penetrates into the upper troposphere can have a striking impact on the eddy momentum flux, which pushes the jet shift more efficiently and dominates the eddy response.

  13. How Extreme is TRAPPIST-1? A look into the planetary system’s extreme-UV radiation environment

    NASA Astrophysics Data System (ADS)

    Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya L.

    2018-01-01

    The ultracool dwarf star TRAPPIST-1 hosts three earth-sized planets at orbital distances where water has the potential to exist in liquid form on the planets’ surface. Close-in exoplanets, such as these, become vulnerable to water loss as stellar XUV radiation heats and expands their upper atmospheres. Currently, little is known about the high-energy radiation environment around TRAPPIST-1. Recent efforts to quantify the XUV radiation rely on empirical relationships based on X-ray or Lyman alpha line observations and yield very different results. The scaling relations used between the X-ray and EUV emission result in high-energy irradiation of the planets 10-1000x greater than present day Earth, stripping atmospheres and oceans in 1 Gyr, while EUV estimated from Lyman alpha flux is much lower. Here we present upper-atmosphere PHOENIX models representing the minimum and maximum potential EUV stellar flux from TRAPPIST-1. We use GALEX FUV and NUV photometry for similar aged M stars to determine the UV flux extrema in an effort to better constrain the high-energy radiation environment around TRAPPIST-1.

  14. Effects of UGTs on the ionosphere

    NASA Astrophysics Data System (ADS)

    Argo, P. E.; Fitzgerald, T. J.

    The processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere are described. Initially, the blast wave from a underground test (UGT) radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. Tne reflected wave combines with the incident wave to form an 'Airy surface,' at which very strong ripping forces tear the earth apart. This broken region is called the 'spat zone,' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.

  15. Upper Ocean Response to the Atmospheric Cold Pools Associated With the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Pei, Suyang; Shinoda, Toshiaki; Soloviev, Alexander; Lien, Ren-Chieh

    2018-05-01

    Atmospheric cold pools are frequently observed during the Madden-Julian Oscillation events and play an important role in the development and organization of large-scale convection. They are generally associated with heavy precipitation and strong winds, inducing large air-sea fluxes and significant sea surface temperature (SST) fluctuations. This study provides a first detailed investigation of the upper ocean response to the strong cold pools associated with the Madden-Julian Oscillation, based on the analysis of in situ data collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign and one-dimensional ocean model simulations validated by the data. During strong cold pools, SST drops rapidly due to the atmospheric cooling in a shoaled mixed layer caused by the enhanced near-surface salinity stratification generated by heavy precipitation. Significant contribution also comes from the component of surface heat flux produced by the cold rain temperature. After the period of heavy rain, while net surface cooling remains, SST gradually recovers due to the enhanced entrainment of warmer waters below the mixed layer.

  16. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    NASA Astrophysics Data System (ADS)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.

  17. Cupid's Arrow: An Innovative Nanosat to Sample Venus' Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Bienstock, Bernie; Darrach, Murray; Madzunkov, Stojan; Sotin, Christophe

    2016-01-01

    In NASA's Discovery 2014 AO, the opportunity to propose a Technology Demonstration Opportunity (TDO) to enhance the primary mission was specified. For the Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy (VERITAS) mission, we elected to include the Cupid's Arrow nanosat TDO to sample and measure the abundances of noble gases and their isotopic ratios in Venus's upper atmosphere below the homopause. This paper will provide a basic overview of the VERITAS mission, with a focus on the Cupid's Arrow concept including a description of the mission, spacecraft design, and JPL's quadrupole ion trap mass spectrometer (QITMS) instrument specifications and design. In previous planetary entry probe mission designs, particularly at Venus, engineers w ere focused on entry and descent. A landed probe was also proposed for the New Frontiers SAGE mission. For Cupid's Arrow, the nanosat is designed to skim through the upper atmosphere, just below the homopause, in order to sample the atmosphere, perform the analysis, and then exit the atmosphere to transmit its data to the orbiting VERITAS spacecraft. Cupid's Arrow is a compelling addition to the VERITAS geology mission. A key missing link in our understanding of Venus' evolution is the noble gas abundances and their isotopic ratios. Not since Pioneer Venus have these measurements been made in the Venus atmosphere and never in the upper atmosphere, just below the homopause, to the degree of accuracy that will be accomplished by VERITAS' Cupid's Arrow nanosat.Such measurements were ranked as the number 1 investigation of the number 1 objective of the goal "Atmospheric Formation, Evolution, and Climate History ".

  18. Solar and terrestrial physics. [effects of solar activities on earth environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  19. Major Pathways to Electron Distribution Function Formation in Regions of Diffuse Aurora

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Sibeck, David G.; Zesta, Eftyhia

    2017-01-01

    This paper discusses the major pathways of electron distribution function formation in the region of diffuse aurora. The diffuse aurora accounts for about of 75% of the auroral energy precipitating into the upper atmosphere, and its origin has been the subject of much discussion. We show that an earthward stream of precipitating electrons initially injected from the Earth's plasma sheet via wave-particle interactions degrades in the atmosphere toward lower energies and produces secondary electrons via impact ionization of the neutral atmosphere. These electrons of magnetospheric origin are then reflected back into the magnetosphere along closed dipolar magnetic field lines, leading to a series of reflections and consequent magnetospheric interactions that greatly augment the initially precipitating flux at the upper ionospheric boundary (700-800 km). To date this, systematic magnetosphere-ionosphere coupling element has not been included in auroral research models, and, as we demonstrate in this article, has a dramatic effect (200-300%) on the formation of the precipitating fluxes that result in the diffuse aurora. It is shown that wave-particle interaction processes that drive precipitating fluxes in the region of diffuse aurora from the magnetospheric altitudes are only the first step in the formation of electron precipitation at ionospheric altitudes, and they cannot be separated from the atmospheric collisional machine that redistributes and transfers their energy inside the magnetosphere-ionosphere-atmosphere coupling system.

  20. Major pathways to electron distribution function formation in regions of diffuse aurora

    NASA Astrophysics Data System (ADS)

    Khazanov, George V.; Sibeck, David G.; Zesta, Eftyhia

    2017-04-01

    This paper discusses the major pathways of electron distribution function formation in the region of diffuse aurora. The diffuse aurora accounts for about of 75% of the auroral energy precipitating into the upper atmosphere, and its origin has been the subject of much discussion. We show that an earthward stream of precipitating electrons initially injected from the Earth's plasma sheet via wave-particle interactions degrades in the atmosphere toward lower energies and produces secondary electrons via impact ionization of the neutral atmosphere. These electrons of magnetospheric origin are then reflected back into the magnetosphere along closed dipolar magnetic field lines, leading to a series of reflections and consequent magnetospheric interactions that greatly augment the initially precipitating flux at the upper ionospheric boundary (700-800 km). To date this, systematic magnetosphere-ionosphere coupling element has not been included in auroral research models, and, as we demonstrate in this article, has a dramatic effect (200-300%) on the formation of the precipitating fluxes that result in the diffuse aurora. It is shown that wave-particle interaction processes that drive precipitating fluxes in the region of diffuse aurora from the magnetospheric altitudes are only the first step in the formation of electron precipitation at ionospheric altitudes, and they cannot be separated from the atmospheric "collisional machine" that redistributes and transfers their energy inside the magnetosphere-ionosphere-atmosphere coupling system.

  1. Operational Data Reduction Procedure for Determining Density and Vertical Structure of the Martian Upper Atmosphere from Mars Global Surveyor Accelerometer Measurements

    NASA Technical Reports Server (NTRS)

    Cancro, George J.; Tolson, Robert H.; Keating, Gerald M.

    1998-01-01

    The success of aerobraking by the Mars Global Surveyor (MGS) spacecraft was partly due to the analysis of MGS accelerometer data. Accelerometer data was used to determine the effect of the atmosphere on each orbit, to characterize the nature of the atmosphere, and to predict the atmosphere for future orbits. To interpret the accelerometer data, a data reduction procedure was developed to produce density estimations utilizing inputs from the spacecraft, the Navigation Team, and pre-mission aerothermodynamic studies. This data reduction procedure was based on the calculation of aerodynamic forces from the accelerometer data by considering acceleration due to gravity gradient, solar pressure, angular motion of the MGS, instrument bias, thruster activity, and a vibration component due to the motion of the damaged solar array. Methods were developed to calculate all of the acceleration components including a 4 degree of freedom dynamics model used to gain a greater understanding of the damaged solar array. The total error inherent to the data reduction procedure was calculated as a function of altitude and density considering contributions from ephemeris errors, errors in force coefficient, and instrument errors due to bias and digitization. Comparing the results from this procedure to the data of other MGS Teams has demonstrated that this procedure can quickly and accurately describe the density and vertical structure of the Martian upper atmosphere.

  2. Tropical storm redistribution of Saharan dust to the upper troposphere and ocean surface

    NASA Astrophysics Data System (ADS)

    Herbener, Stephen R.; Saleeby, Stephen M.; Heever, Susan C.; Twohy, Cynthia H.

    2016-10-01

    As a tropical cyclone traverses the Saharan Air Layer (SAL), the storm will spatially redistribute the dust from the SAL. Dust deposited on the surface may affect ocean fertilization, and dust transported to the upper levels of the troposphere may impact radiative forcing. This study explores the relative amounts of dust that are vertically redistributed when a tropical cyclone crosses the SAL. The Regional Atmospheric Modeling System (RAMS) was configured to simulate the passage of Tropical Storm Debby (2006) through the SAL. A dust mass budget approach has been applied, enabled by a novel dust mass tracking capability of the model, to determine the amounts of dust deposited on the ocean surface and transferred aloft. The mass of dust removed to the ocean surface was predicted to be nearly 2 orders of magnitude greater than the amount of dust transported to the upper troposphere.

  3. Exploring the southern ocean response to climate change

    NASA Technical Reports Server (NTRS)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  4. Upper atmosphere and ionosphere of Mars.

    PubMed

    Donahue, T M

    1966-05-06

    It is argued that the single-layer ionosphere at 125 kilometers discovered in the Mariner IV occultation experiment is an Fl region coinciding with the ultraviolet photoionization peak. The CO(2) density there must be of the order of 10(11) molecules per cubic centimeter. Such a density is consistent with the properties of the lower atmosphere by Mariner IV anid the temperature model of Chamberlain and McElroy if the atmosphere is mainly CO(2) below 70 kilometers. The absence of an F2 region can be explained even if the density ratio of O to CO(2) is 100 at 230 kilometers on the basis of the rapid conversion of O(+) to O(2) by CO(2). Thus a model with an exospheric temperature of 400 degrees K, a modest degree of CO(2) dissociation, and diffusive separation above 70 kilometers is possible.

  5. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    NASA Technical Reports Server (NTRS)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  6. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  7. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  8. MAVEN - Mars Atmosphere and Volatile EvolutioN Mission

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Jakosky, Bruce M.

    2011-01-01

    NASA's MAVEN mission (to be launched in late 2013) is the first mission to Mars devoted to sampling all of the upper atmosphere neutral and plasma environments, including the well-mixed atmosphere, the exosphere, ionosphere, outer magnetosphere and near-Mars solar wind. It will fill in some measurement gaps remaining from the successful Mars Global Surveyor and the on-going Mars Express missions. The primary science objectives of MAVEN are: 1. Provide a comprehensive picture of the present state of the upper atmosphere and ionosphere of Mars; 2. Understand the processes controlling the present state; and 3. Determine how loss of volatiles to outer space in the present epoch varies with changing solar condition - EUY, solar wind and interplanetary magnetic field measurements will provide the varying solar energy inputs into the system. Knowing how these processes respond to the Sun's energy inputs in the current epoch will provide a framework for projecting atmospheric processes back in time to profile MARS' atmospheric evolution and to explore "where the water went", A description will be given of the science objectives, the instruments, and the current status of the project, emphasizing the value of having collaborations between the MAVEN project and the Mars upper atmosphere science community.

  9. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerst, S. M.; Brown, M. E., E-mail: sarah.horst@colorado.edu

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium,more » or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.« less

  10. Spectroscopic database

    NASA Technical Reports Server (NTRS)

    Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.

    1985-01-01

    Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.

  11. Space Experiments with Particle Accelerators: SEPAC

    NASA Technical Reports Server (NTRS)

    Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.

    1994-01-01

    The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.

  12. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  13. Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2011-01-01

    Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.

  14. Probing the possibility of hotspots on the central neutron star in HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Suleimanov, V. F.; Klochkov, D.; Poutanen, J.; Werner, K.

    2017-04-01

    The X-ray spectra of the neutron stars located in the centers of supernova remnants Cas A and HESS J1731-347 are well fit with carbon atmosphere models. These fits yield plausible neutron star sizes for the known or estimated distances to these supernova remnants. The evidence in favor of the presence of a pure carbon envelope at the neutron star surface is rather indirect and is based on the assumption that the emission is generated uniformly by the entire stellar surface. Although this assumption is supported by the absence of pulsations, the observational upper limit on the pulsed fraction is not very stringent. In an attempt to quantify this evidence, we investigate the possibility that the observed spectrum of the neutron star in HESS J1731-347 is a combination of the spectra produced in a hydrogen atmosphere of the hotspots and of the cooler remaining part of the neutron star surface. The lack of pulsations in this case has to be explained either by a sufficiently small angle between the neutron star spin axis and the line of sight, or by a sufficiently small angular distance between the hotspots and the neutron star rotation poles. As the observed flux from a non-uniformly emitting neutron star depends on the angular distribution of the radiation emerging from the atmosphere, we have computed two new grids of pure carbon and pure hydrogen atmosphere model spectra accounting for Compton scattering. Using new hydrogen models, we have evaluated the probability of a geometry that leads to a pulsed fraction below the observed upper limit to be about 8.2%. Such a geometry thus seems to be rather improbable but cannot be excluded at this stage.

  15. Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley.

    PubMed

    Rahul, P R C; Bhawar, R L; Ayantika, D C; Panicker, A S; Safai, P D; Tharaprabhakaran, V; Padmakumari, B; Raju, M P

    2014-01-14

    First ever 3-day aircraft observations of vertical profiles of Black Carbon (BC) were obtained during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted on 30(th) August, 4(th) and 6(th) September 2009 over Guwahati (26° 11'N, 91° 44'E), the largest metropolitan city in the Brahmaputra River Valley (BRV) region. The results revealed that apart from the surface/near surface loading of BC due to anthropogenic processes causing a heating of 2 K/day, the large-scale Walker and Hadley atmospheric circulations associated with the Indian summer monsoon help in the formation of a second layer of black carbon in the upper atmosphere, which generates an upper atmospheric heating of ~2 K/day. Lofting of BC aerosols by these large-scale circulating atmospheric cells to the upper atmosphere (4-6 Km) could also be the reason for extreme climate change scenarios that are being witnessed in the BRV region.

  16. The influence of the solar atmospheric stratification on the form of p-mode ridges

    NASA Astrophysics Data System (ADS)

    Steffens, S.; Schmitz, F.

    2000-02-01

    We investigate properties of non-radial solar p-modes of high angular degree. We consider linear adiabatic oscillations with the transition layer as an ideal reflector. Ionization of hydrogen and helium and dissociation of hydrogen are included in the equation of state and consequently in the adiabatic sound speed. Because of the restriction to high-degree modes we use the plane layer approximation with constant gravity. Our standard atmospheric model is the VAL-C atmosphere. This atmosphere is joined to the upper part of a convection zone. A model corona is matched to the transition region. Boundary conditions are applied at the temperature maximum of the corona and at a depth in the convection zone far below the lower turning point of the non-radial p-modes determined by the Lamb-frequency. We vary the temperature stratification of the atmosphere and shift the position of the transition region to obtain a family of eight different equilibrium models. By this strategy we can study the formation of structures in the diagnostic diagram and we can take into account uncertainties of the VAL-chromosphere. It is shown how the classical p-modes of a convection zone with zero pressure boundary condition are deformed when the thickness of the overlying atmosphere is enlarged. In no case, the atmosphere generates additional modes. By strong bending, horizontally passing parts of the ridges are formed. These parts produce more or less pronounced chromospheric ridges or features. These chromospheric ridges appear at frequencies where observations show enhanced power in the diagnostic diagram. Their locations sensitively depend on the atmospheric model. A simple two layer model shows that the occurence of bending of the ridges in the diagnostic diagram is quite natural and independent of atmospheric details.

  17. From Anti-greenhouse Effect of Solar Absorbers to Cooling Effect of Greenhouse Gases: A 1-D Radiative Convective Model Study

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2012-12-01

    The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al. 2009, http://vpl.astro.washington.edu/sci/AntiModels/models09.html McKay, C.P. et al. 1991, Titan: Greenhouse and Anti-greenhouse Effects on Titan. Science 253 (5024), 1118-21 Shia, R. 2011, Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient, American Geophysical Union, Fall Meeting 2012, abstract #A51A-0274 Shia, R. 2010, Mechanism of Radiative Forcing of Greenhouse Gas and its Implication to the Global Warming, American Geophysical Union, Fall Meeting 2010, abstract #A11J-02

  18. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  19. WRF Model Simulations of Terrain-Driven Atmospheric Eddies in Marine Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Muller, B. M.; Herbster, C. G.; Mosher, F. R.

    2014-12-01

    It is not unusual to observe atmospheric eddies in satellite imagery of the marine stratus and stratocumulus clouds that characterize the summertime weather of the California coastal region and near-shore oceanic environment. The winds of the marine atmospheric boundary layer (MABL) over the ocean interact with the high terrain of prominent headlands and islands to create order-10 km scale areas of swirling air that can contain a cloud-free eye, 180-degree wind reversals at the surface over a period of minutes, and may be associated with mixing and turbulence between the high-humidity air of the MABL and the much warmer and drier inversion layer air above. However, synoptic and even subsynoptic surface weather measurements, and the synoptic upper-air observing network are inadequate, or in some cases, completely unable, to detect and characterize the formation, movement, and even the existence of the eddies. They can literally slip between land-based surface observation locations, or stay over the near-shore ocean environment where there may be no surface meteorological measurements. This study presents Weather Research and Forecasting (WRF) Model simulations of these small-scale, terrain-driven, atmospheric features in the MABL from cases detected in GOES satellite imagery. The purpose is to use model output to diagnose the formation mechanisms, sources of vorticity, and the air flow in and around the eddies. Satellite imagery is compared to simulated atmospheric variables to validate features generated within the model atmosphere, and model output is employed as a surrogate atmosphere to better understand the atmospheric characteristics of the eddies. Model air parcel trajectories are estimated to trace the movement and sources of the air contained in and around these often-observed, but seldom-measured features.

  20. [Open-top Chamber for in situ Research on Response of Mercury Enrichment in Rice to the Rising Gaseous Elemental Mercury in the Atmosphere].

    PubMed

    Chen, Jian; Wang, Zhang-wei; Zhang, Xiao-shan; Qin, Pu-feng; Lu, Hai-jun

    2015-08-01

    In situ research was conducted on the response of mercury enrichment in rice organs to elevated gaseous elemental mercury (GEM) with open-top chambers (OTCs) fumigation experiment and soil Hg enriched experiment. The results showed that Hg concentrations in roots were generally correlated with soil Hg concentrations (R = 0.9988, P < 0.05) but insignificantly correlated with air Hg concentrations (P > 0.05), indicating that Hg in rice roots was mainly from soil. Hg concentrations in stems increased linearly (R(B) = 0.9646, R(U) = 0.9831, P < 0.05) with elevated GEM, and Hg concentrations in upper stems were usually higher than those in bottom stems in OTCs experiment. Hg concentrations in bottom stems were generally correlated with soil Hg concentrations (R = 0.9901, P < 0.05) and second-order polynomial (R = 0.9989, P < 0.05) was fitted for Hg concentrations in upper stems to soil Hg concentrations, and Hg concentrations in bottom stems were usually higher than those in upper stems in soil Hg enriched experiment, indicating the combining impact of Hg from air and soil on the accumulation of mercury in stems. Hg concentrations in foliage were significantly correlated (P < 0.05) with air Hg and linearly correlated with soil Hg (R = 0.9983, P = 0.0585), implying that mercury in foliage was mainly from air and some of Hg in root from soil was transferred to foliage through stem. Based on the function in these filed experiments, it was estimated that at least 60%-94% and 56%-77% of mercury in foliage and upper-stem of rice was from the atmosphere respectively, and yet only 8%-56% of mercury in bottom-stem was attributed to air. Therefore, mercury in rice aboveground biomass was mainly from the atmosphere, and these results will provide theoretical basis for the regional atmospheric mercury budgets and the model of mercury cycling.

  1. Neutron spectral measurements in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Zobel, W.; Love, T. A.; Delorenzo, J. T.; Mcnew, C. O.

    1972-01-01

    An experiment to measure neutrons in the upper atmosphere was performed on a balloon flight from Palestine, Texas, at an altitude of about 32 km. The experimental arrangement is discussed briefly, and results of a preliminary analysis of the data for neutrons in the energy range 3 to 30 MeV are given.

  2. SIMULATIONS OF ALFVÉN AND KINK WAVE DRIVING OF THE SOLAR CHROMOSPHERE: EFFICIENT HEATING AND SPICULE LAUNCHING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, C. S.; Arber, T. D., E-mail: c.s.brady@warwick.ac.uk

    2016-10-01

    Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ∼0.1 erg cm{sup −3} s{sup −1} in the lower chromosphere and drops to ∼10{sup −3} erg cm{sup −3} s{sup −1} in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ∼10–20 km s{sup −1}, for so-called Type I spicules, which reach heights of ∼3000–5000 km above the photosphere.more » A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.« less

  3. "Ring rain" on Saturn's ionosphere: densities and temperatures from 2011 observations and re-detection in 2013 observations

    NASA Astrophysics Data System (ADS)

    O'Donoghue, J.; Moore, L.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.

    2017-12-01

    In ground-based observations using the 10 meter W. M. Keck telescope in 2011, we discovered that the "ring rain" which falls on Saturn from the rings (along magnetic field lines) leaves an imprint on the upper-atmospheric H3+ ion. H3+ emissions were brightest where water products are expected to fall. Through subsequent modeling of the upper atmosphere, it became clear that an influx of water products (e.g. H2O+, O+, etc.) would act to soak up electrons - something that would otherwise destroy H3+ through recombination - and lead to a higher H3+ density and therefore emission. Here we present the first re-detections of the imprint of "ring rain" on Saturn's ionospheric H3+ from ground-based Keck telescope data from 2013. Observed intensities at low-latitudes decreased by an order of magnitude from 2011 to 2013, likely due to a decrease in upper atmospheric temperature by 100 K. A new analysis of 2011 observations revealed temperatures and densities as a function of latitude on Saturn for the first time. Where water influx is expected, H3+ column densities are high (as models predicted) and temperatures are low. While the latter was unexpected, the effect of ring rain on electron densities is stronger at lower altitudes. Therefore, as ring rain enhances density at lower altitudes where the temperature is lower, it should result in the emitting column of H3+ having a lower average temperature. These results come at a critical time as the Cassini spacecraft completes all orbits between planet and rings, with the opportunity to sample the forces and material fluxes related to ring rain.

  4. Turbulence Variability in the Upper Layers of the Southern Adriatic Sea Under a Variety of Atmospheric Forcing Conditions

    DTIC Science & Technology

    2012-01-01

    Commission. Joint Research Centre. Space Applications Institute. Ispra/ltaly. Signell. R.P., Carniel. S„ Cavaleri, L. Chiggiato , J.. Doyle. J.D... Chiggiato . J.. Carniel. S.. 2008. Variational analysis of drifter positions and model outputs for the reconstruc- tions of surface currents in the

  5. The impact rate on Earth.

    PubMed

    Bland, Philip A

    2005-12-15

    Recent data, and modelling of the interaction between asteroids and the atmosphere, has defined a complete size-frequency distribution for terrestrial impactors, from meteorite-sized objects up to kilometre-sized asteroids, for both the upper atmosphere and the Earth's surface. Although there remain significant uncertainties in the incidence of specific size-fractions of impactors, these estimates allow us to constrain the threat posed by impacts to human populations. It is clear that impacts remain a significant natural hazard, but uniquely, they are a threat that we can accurately predict, and take steps to avoid.

  6. An upper limit on Pluto's ionosphere from radio occultation measurements with New Horizons

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Linscott, I. R.; Strobel, D. F.; Tyler, G. L.; Bird, M. K.; Pätzold, M.; Summers, M. E.; Stern, S. A.; Ennico, K.; Gladstone, G. R.; Olkin, C. B.; Weaver, H. A.; Woods, W. W.; Young, L. A.; New Horizons Science Team

    2018-06-01

    On 14 July 2015 New Horizons performed a radio occultation (RO) that sounded Pluto's neutral atmosphere and ionosphere. The solar zenith angle was 90.2° (sunset) at entry and 89.8° (sunrise) at exit. We examined the data for evidence of an ionosphere, using the same method of analysis as in a previous investigation of the neutral atmosphere (Hinson et al., 2017). No ionosphere was detected. The measurements are more accurate at occultation exit, where the 1-sigma sensitivity in integrated electron content (IEC) is 2.3 × 1011 cm-2. The corresponding upper bound on the peak electron density at the terminator is about 1000 cm-3. We constructed a model for the ionosphere and used it to guide the analysis and interpretation of the RO data. Owing to the large abundance of CH4 at ionospheric heights, the dominant ions are molecular and the electron densities are relatively small. The model predicts a peak IEC of 1.8 × 1011 cm-2 for an occultation at the terminator, slightly smaller than the threshold of detection by New Horizons.

  7. A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves

    NASA Technical Reports Server (NTRS)

    Sassi, Fabrizio; Garcia, Rolando R.

    1994-01-01

    A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.

  8. Cassini versus Saturn Illustration

    NASA Image and Video Library

    2017-04-04

    As depicted in this illustration, Cassini will plunge into Saturn's atmosphere on Sept. 15, 2017. Using its attitude control thrusters, the spacecraft will work to keep its antenna pointed at Earth while it sends its final data, including the composition of Saturn's upper atmosphere. The atmospheric torque will quickly become stronger than what the thrusters can compensate for, and after that point, Cassini will begin to tumble. When this happens, its radio connection to Earth will be severed, ending the mission. Following loss of signal, the spacecraft will burn up like a meteor in Saturn's upper atmosphere. https://photojournal.jpl.nasa.gov/catalog/PIA21440

  9. 3D General Circulation Model of the Middle Atmosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Zube, Nicholas Gerard; Zhang, Xi; Li, Cheng; Le, Tianhao

    2017-10-01

    The characteristics of Jupiter’s large-scale stratospheric circulation remain largely unknown. Detailed distributions of temperature and photochemical species have been provided by recent observations [1], but have not yet been accurately reproduced by middle atmosphere general circulation models (GCM). Jupiter’s stratosphere and upper troposphere are influenced by radiative forcing from solar insolation and infrared cooling from hydrogen and hydrocarbons, as well as waves propagating from the underlying troposphere [2]. The relative significance of radiative and mechanical forcing on stratospheric circulation is still being debated [3]. Here we present a 3D GCM of Jupiter’s atmosphere with a correlated-k radiative transfer scheme. The simulation results are compared with observations. We analyze the impact of model parameters on the stratospheric temperature distribution and dynamical features. Finally, we discuss future tracer transport and gravity wave parameterization schemes that may be able to accurately simulate the middle atmosphere dynamics of Jupiter and other giant planets.[1] Kunde et al. 2004, Science 305, 1582.[2] Zhang et al. 2013a, EGU General Assembly, EGU2013-5797-2.[3] Conrath 1990, Icarus, 83, 255-281.

  10. EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0–L6 DWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F.

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markovmore » Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μ m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.« less

  11. Applications of acoustic-gravity waves numerical modeling to tsunami signals observed by gravimetry satellites in very low orbit

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.

    2016-12-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.

  12. Hazards posed by distal ash transport and sedimentation from extreme volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Sahagian, D. L.; Proussevitch, A. A.; White, C. M.; Klewicki, J.

    2016-12-01

    Volcanic ash injected into the upper troposphere and lower stratosphere poses a significant hazard to aviation and human security as a result of extreme, explosive eruptions. These have occurred in the recent geologic past, and are expected to occur again, now that modern society and its infrastructure is far more vulnerable than ever before. Atmospheric transport, dispersion, and sedimentation of Ash particles is controlled by fundamentally different processes than control other particles normally transported in the atmosphere due to their complex internal and external morphology. It is thus necessary to elucidate the fundamental processes of particle-fluid interactions in the upper troposphere and lower stratosphere, where most air traffic resides, and thereby enhance the capability of volcanic ash transport models to predict the ash concentration in distal regions that pose aviation and other hazards. Current Volcanic Ash Transport and Dispersion (VATD) models use simplistic stokes settling velocities for larger ash particles, and treat smaller ash particles (that are a large part of the hazard) merely as passive tracers. By incorporating the dynamics of fine ash particle-atmosphere interactions into existing VATD models provides the foundation for a much more accurate assessment framework applied to the hazard posed by specific future extreme eruptions, and thus dramatically reduce both the risk to air traffic and the cost of airport and flight closures, in addition to human health, water quality, agricultural, infrastructure hazards, as well as ice cap albedo and short term climate impacts.

  13. Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.

    2016-12-01

    The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.

  14. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint deficiencies in the representation of chemical/dynamical processes.

  15. Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment.

    NASA Astrophysics Data System (ADS)

    Lewis, John M.

    1998-01-01

    In the mid-1950s, amid heated debate over the physical mechanisms that controlled the known features of the atmosphere's general circulation, Norman Phillips simulated hemispheric motion on the high-speed computer at the Institute for Advanced Study. A simple energetically consistent model was integrated for a simulated time of approximately 1 month. Analysis of the model results clarified the respective roles of the synoptic-scale eddies (cyclones-anticyclones) and mean meridional circulation in the maintenance of the upper-level westerlies and the surface wind regimes. Furthermore, the modeled cyclones clearly linked surface frontogenesis with the upper-level Charney-Eady wave. In addition to discussing the model results in light of the controversy and ferment that surrounded general circulation theory in the 1940s-1950s, an effort is made to follow Phillips's scientific path to the experiment.

  16. Proceedings of the Workshop on High Altitude Data Assimilation and Modeling

    DTIC Science & Technology

    2015-06-24

    Masha  Kuznetsova,  NASA  GSFC)   1330-­‐1400    Upper  Atmospheric  Data...prediction.       The  Community  Coordinated  Modeling  Center:  Overview  of  Activities   Masha  Kuznetsova  (Space...Division,  Naval  Research  Laboratory,  Washington  DC     Masha  Kuznetsov      Community  Coordinated

  17. Analysis of Data for the Development of Density and Composition Models of the Upper Atmosphere.

    DTIC Science & Technology

    1981-07-01

    8217 //( Luigi G.acchia / F19628-78-C-0126 / Jack W./Slowey " _ S. PERFORIONG ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Smithsonian...Variation: Overviev . ......so.*. 6 rIII. Longitudinally Averaged Model ............0 9 IV. Local-time Dependent Model...............o 13 V.* Future Work...are no significant residuals between the observed and computed values at the equator for even the highest levels of geomagnetic activity. The equatorial

  18. Modeling of synchrotron-based laboratory simulations of Titan's ionospheric photochemistry

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Peng, Zhe; Pernot, Pascal

    2014-11-01

    The APSIS reactor has been designed to simulate in the laboratory with a VUV synchrotron irradiation the photochemistry occurring in planetary upper atmospheres. A N2-CH4 Titan-like gas mixture has been studied, whose photochemistry in Titan's ionospheric irradiation conditions leads to a coupled chemical network involving both radicals and ions. In the present work, an ion-neutral coupled model is developed to interpret the experimental data, taking into account the uncertainties on the kinetic parameters by Monte Carlo sampling. The model predicts species concentrations in agreement with mass spectrometry measurements of the methane consumption and product blocks intensities. Ion chemistry and in particular dissociative recombination are found to be very important through sensitivity analysis. The model is also applied to complementary environmental conditions, corresponding to Titan's ionospheric average conditions and to another existing synchrotron setup. An innovative study of the correlations between species concentrations identifies two main competitive families, leading respectively to saturated and unsaturated species. We find that the unsaturated growth family, driven by C2H2 , is dominant in Titan's upper atmosphere, as observed by the Cassini INMS. But the saturated species are substantially more intense in the measurements of the two synchrotron experimental setups, and likely originate from catalysis by metallic walls of the reactors.

  19. Doppler Data and Density Profile from Cassini Saturn Atmospheric Entry

    NASA Astrophysics Data System (ADS)

    Wong, M.; Boone, D.; Roth, D. C.

    2017-12-01

    After thirteen years of surveying the Saturnian system and providing a multitude of ground-breaking science data, the Cassini spacecraft will perform its final act on September 15, 2017 when it plunges into Saturn's upper atmosphere. This `close contact' with uncharted territory will deliver sets of data about Saturn that were not previously obtainable. In addition to new information obtained from various science instruments onboard, the doppler signal, primarily used for navigation purposes throughout the tour, will in this circumstance furnish a glimpse of the atmospheric density along Cassini's path through the upper atmosphere. In this talk we will discuss preliminary results from our analysis of the doppler data and its implication on the atmospheric density.

  20. A Massively Parallel Hybrid Dusty-Gasdynamics and Kinetic Direct Simulation Monte Carlo Model for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    2004-01-01

    In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic (MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important. At the University of Michigan we have an established base of experience and expertise in numerical simulations based on particle codes which address these physical regimes. The Principal Investigator, Dr. Michael Combi, has over 20 years of experience in the development of particle-kinetic and hybrid kinetichydrodynamics models and their direct use in data analysis. He has also worked in ground-based and space-based remote observational work and on spacecraft instrument teams. His research has involved studies of cometary atmospheres and ionospheres and their interaction with the solar wind, the neutral gas clouds escaping from Jupiter s moon Io, the interaction of the atmospheres/ionospheres of Io and Europa with Jupiter s corotating magnetosphere, as well as Earth s ionosphere. This report describes our progress during the year. The contained in section 2 of this report will serve as the basis of a paper describing the method and its application to the cometary coma that will be continued under a research and analysis grant that supports various applications of theoretical comet models to understanding the inner comae of comets (grant NAGS- 13239 from the Planetary Atmospheres program).

  1. Computing the proton aurora at early Mars

    NASA Astrophysics Data System (ADS)

    Lovato, K.; Gronoff, G.; Curry, S.; Simon Wedlund, C.; Moore, W. B.

    2017-12-01

    In the early Solar System, ( 4 Gyr ago) our Sun was 70% less luminous than what is seen today but much more active. Indeed, for young stars, solar flares occurs more frequently and therefore so do coronal mass ejections and solar energetic particle events. With an increase in solar events, the flux of protons becomes extremely high, and affects planetary atmosphere in a more extreme way as today. Proton precipitation on planets has an impact on the energy balance of their upper atmospheres, can affect the photochemistry and create auroral emissions. Understanding the protons precipitation at the early Mars can help in understanding occurring chemical process as well as atmospheric evolution and escape. We concentrated our effort on the proton up to a MeV since they have the most important influence on the upper atmosphere. Using scaling laws, we estimated the proton flux for the Early Mars up to a MeV. A kinetic 1D code, validated for the current Mars, was used to compute the effects of the low energy protons precipitation on the Early Mars. This model solves the coupled H+/H multi-stream dissipative transport equation as well as the transport of the secondary electron. For the Early Mars, it allowed to compute the magnitude of the proton Aurora, as well as the corresponding upwards H flux.

  2. Effects of plasma drag on low Earth orbiting satellites due to solar forcing induced perturbations and heating

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip K.; Weigel, Robert S.

    2015-07-01

    The upper atmosphere changes significantly in temperature, density and composition as a result of solar cycle variations, which causes severe storms and flares, and increases in the amount of absorbed solar radiation from solar energetic events. Satellite orbits are consequently affected by this process, especially those in low Earth orbit (LEO). In this paper, we present a model of atmospheric drag effects on the trajectory of two hypothetical LEO satellites of different ballistic coefficients, initially injected at h = 450 km. We investigate long-term trends of atmospheric drag on LEO satellites due to solar forcing induced atmospheric perturbations and heating at different phases of the solar cycle, and during short intervals of strong geomagnetic disturbances or magnetic storms. We show dependence of orbital decay on the severity of both solar cycle and phase and the extent of geomagnetic perturbations. The result of the model compares well with observed decay profile of some existing LEO satellites and provide a justification of the theoretical considerations used here.

  3. Ultraviolet stellar occultation measurement of the H2 and O2 densities near 100 km in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Atreya, S. K.; Wasser, B.; Donahue, T. M.; Sharp, W. E.; Drake, J. F.; Riegler, G. R.

    1976-01-01

    Results are presented for an experimental study designed to measure the density of H2 near 100 km in the earth's atmosphere from occultation of a star, Gamma Vel, by the earth's atmosphere at several wavelengths near the H2 absorption line at 1108.128 A by a spectrometer on an orbiting astronomical observatory. Measurement of the O2 density between 95 and 123 km is also reported. Attention is focused on testing the predictions of a model of the distribution of hydrogen constituents, H, H2, H2O, CH4, OH, and H2O in the upper atmosphere related to a theory of hydrogen escape developed by Hunten and Strobel (1974) and by Liu and Donahue (1974). The measured H2 densities are found to be in good agreement with recent theoretical predictions, whereas the measured O2 density profile generally agrees with the models except for a wavelike structure in the range 104-114 km.

  4. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, themore » comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.« less

  5. An investigation of solar wind effects on the evolution of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, Janet G.

    1994-01-01

    This investigation concentrated on the question of how atmosphere escape, related to both photochemistry and the Mars solar wind interaction, may have affected the evolution of Mars' atmosphere over time. The principal investigator and postdoctoral researcher adopted the premise that contemporary escape processes have dominated the losses to space over the past 3.5 billion years, but that the associated loss rates have been modified by solar evolution. A model was constructed for the contemporary escape scenario based on knowledge gained from both Venus in-situ measurements from Pioneer Venus Orbiter and Mars measurements from Phobos-2. Venus provided a valuable second example of a weakly magnetized planet having a similar solar wind interaction where we have more knowledge from observations. The model included photochemical losses from recombining ionospheric molecular ions, scavenging Martian upper atmosphere ('pickup') ions by the solar wind, and sputtering of the atmosphere by reentering pickup ions. The existence of the latter mechanism was realized during the course of the supported investigation, and is now thought by Jakosky and Pepin to explain some of the Martian noble gas isotope ratios.

  6. Variability of the Martian thermospheric temperatures during the last 7 Martian Years

    NASA Astrophysics Data System (ADS)

    Gonzalez-Galindo, Francisco; Lopez-Valverde, Miguel Angel; Millour, Ehouarn; Forget, François

    2014-05-01

    The temperatures and densities in the Martian upper atmosphere have a significant influence over the different processes producing atmospheric escape. A good knowledge of the thermosphere and its variability is thus necessary in order to better understand and quantify the atmospheric loss to space and the evolution of the planet. Different global models have been used to study the seasonal and interannual variability of the Martian thermosphere, usually considering three solar scenarios (solar minimum, solar medium and solar maximum conditions) to take into account the solar cycle variability. However, the variability of the solar activity within the simulated period of time is not usually considered in these models. We have improved the description of the UV solar flux included on the General Circulation Model for Mars developed at the Laboratoire de Météorologie Dynamique (LMD-MGCM) in order to include its observed day-to-day variability. We have used the model to simulate the thermospheric variability during Martian Years 24 to 30, using realistic UV solar fluxes and dust opacities. The model predicts and interannual variability of the temperatures in the upper thermosphere that ranges from about 50 K during the aphelion to up to 150 K during perihelion. The seasonal variability of temperatures due to the eccentricity of the Martian orbit is modified by the variability of the solar flux within a given Martian year. The solar rotation cycle produces temperature oscillations of up to 30 K. We have also studied the response of the modeled thermosphere to the global dust storms in Martian Year 25 and Martian Year 28. The atmospheric dynamics are significantly modified by the global dust storms, which induces significant changes in the thermospheric temperatures. The response of the model to the presence of both global dust storms is in good agreement with previous modeling results (Medvedev et al., Journal of Geophysical Research, 2013). As expected, the simulated ionosphere is also sensitive to the variability of the solar activity. Acknowledgemnt: Francisco González-Galindo is funded by a CSIC JAE-Doc contract financed by the European Social Fund

  7. Role of Earth's plasmasphere in coupling of upper atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Mishra, Sandhya; Dohare, S. K.

    2010-02-01

    The near-Earth space environment is a complex, ever changing system of magnetized plasmas whose behaviour has a profound impact upon our technology dependent society. The exploration of the cold, relatively dense, inner region of upper atmosphere (the plasmasphere) and its unexpectedly sharp outer boundary (the plasma pause) has proceeded through a combination of in-situ observations and ground based whistler observations. Studies have shown that plasmasphere is highly variable both spatially and temporally responding to changes in geomagnetic indices, ring current, penetration and shielding electric fields and subauroral electric fields. Consequently the plasmasphere exhibits erosion, emptying and refilling during active times. Infact, it is the electric field that plays one of the most important roles in coupling of upper atmosphere. The atmospheric dynamo is the main generator of the large-scale electric field in the upper atmosphere. It arises because of a special situation which electrons and ions move with different velocities across the magnetic field because of different collisions between electrons and neutral particles and ions with neutral particles. This process leads to charge separation and consequently to an electric field. In the present paper, storm/ quiet period VLF whistler data recorded at lower latitudes/mid latitudes are analyzed and attempt has been made to look at plasmasphere response on coupling of ionosphere and magnetosphere.

  8. The oceanic influence on the rainy season of Peninsular Florida

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Mishra, Akhilesh

    2016-07-01

    In this study we show that the robust surface ocean currents around Peninsular Florida, namely, the Loop and the Florida Currents, affect the terrestrial wet season of Peninsular Florida. We show this through two novel regional coupled ocean-atmosphere models with different bathymetries that dislocate and modulate the strength of these currents and thereby affect the overlying sea surface temperature (SST) and upper ocean heat content. This study show that a weaker current system produces colder coastal SSTs along the Atlantic coast of Florida that reduces the length of the wet season and the total seasonal accumulation of precipitation over Peninsular Florida relative to the regional climate model simulation, in which these currents are stronger. The moisture budget reveals that as a result of these forced changes to the temperature of the upper coastal Atlantic Ocean, overlying surface evaporation and atmospheric convection is modulated. This consequently changes the moisture flux convergence leading to the modulation of the terrestrial wet season rainfall over Peninsular Florida that manifests in changes in the length and distribution of daily rain rate of the wet season. The results of this study have implications on interpreting future changes to hydroclimate of Peninsular Florida owing to climate change and low-frequency changes to the Atlantic meridional overturning circulation that comprises the Loop and the Florida Currents as part of its upper branch.

  9. Measurement of middle and upper atmospheric horizontal winds with a submillimeter/THz limb sounder: results from JEM/SMILES and simulation study for SMILES-2

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Manago, Naohiro; Ozeki, Hiroyuki; Yoshihisa, Irimajiri; Donal, Murtagh; Yoshinori, Uzawa; Satoshi, Ochiai; Masato, Shiotani; Makoto, Suzuki

    2016-04-01

    In a near future, ESA will launch the Atmospheric Dynamics Mission (ADM) equipped with a lidar for measuring tropospheric and lower stratospheric winds. NASA will continue a long-term series of upper atmospheric wind measurements (altitudes >80 km) with the new Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) satellite. No mission is planned to observe winds in the middle atmosphere (30-80 km), though they are recognized as essential parameters for understanding atmospheric dynamics and the vertical coupling between atmospheric regions. They are also promising data for improving long-term weather forecast and climate modelling. It has been demonstrated with the Superconducting Submillimeter Wave Limb Emission Sounder (SMILES, Oct 2009 - Apr 2010) that a 4-K cooled microwave radiometer can provide data to fill the altitude gap in the wind measurements. Its possible successor named SMILES-2, is being designed in Japan for the study of the middle and upper atmospheric chemistry and dynamics (O3, H2O, T, atomic O, OH, HO2, ClO, BrO, ...). If realized, the instrument will measure sub-millimeter and THz molecular spectral lines (616-150 μm) with high sensitivity and frequency resolution. The SMILES-2 characteristics are very well suited for horizontal wind observations between 20 km to more than 160 km. The best performances are found between 35-90 km where the retrieval precision is better than 3 m/s for a vertical resolution of 2-3 km [1]. In this presentation, we summarize the results obtained from SMILES and assess the measurement performances of SMILES-2 to measure horizontal winds. [1] P. Baron, N. Manago, H. Ozeki, Y. Irimajiri, D. Murtagh, Y. Uzawa, S. Ochiai, M. Shiotani, M. Suzuki: "Measurement of stratospheric and mesospheric winds with a SubMillimeter wave limb sounder: Results from JEM/SMILES and simulation study for SMILES-2"; Proc. of SPIE Remote sensing, 96390N-96390N-20, 2015

  10. The non-storm time corrugated upper thermosphere: What is beyond MSIS?

    NASA Astrophysics Data System (ADS)

    Liu, Huixin; Thayer, Jeff; Zhang, Yongliang; Lee, Woo Kyoung

    2017-06-01

    Observations in the recent decade have revealed many thermospheric density corrugations/perturbations under nonstorm conditions (Kp < 2). They are generally not captured by empirical models like Mass Spectrometer Incoherent Scatter (MSIS) but are operationally important for long-term orbital evolution of Low Earth Orbiting satellites and theoretically for coupling processes in the atmosphere-ionosphere system. We review these density corrugations by classifying them into three types which are driven respectively by the lower atmosphere, ionosphere, and solar wind/magnetosphere. Model capabilities in capturing these features are discussed. A summary table of these corrugations is included to provide a quick guide on their magnitudes, occurring latitude, local time, and season.

  11. Evaluation of gravitational gradients generated by Earth's crustal structures

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Tenzer, Robert; Eshagh, Mehdi; Bagherbandi, Mohammad

    2013-02-01

    Spectral formulas for the evaluation of gravitational gradients generated by upper Earth's mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth's topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth's model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth's inner structure.

  12. State and Parameter Estimation for a Coupled Ocean--Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Ghil, M.; Kondrashov, D.; Sun, C.

    2006-12-01

    The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.

  13. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2015-01-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 billion years, the biggest of which were approximately 30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A thermal wave propagates into the land at a rate set by conduction. Impacts not greatly larger than Chicxulub can raise the surface temperature by tens, hundreds, or even thousands of degrees, and evaporate meters to hundreds of meters of water. The biggest should have vitrified exposed dry land. More results are for the talk, as here we have run out of space.

  14. Environmental Consequences of Big Nasty Impacts on the Early Earth

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2015-01-01

    The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 2.5 billion years, the biggest of which were approximately30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A thermal wave propagates into the land at a rate set by conduction. Impacts not greatly larger than Chicxulub can raise the surface temperature by tens, hundreds, or even thousands of degrees, and evaporate meters to hundreds of meters of water. The biggest should have vitrified exposed dry land. More results are for the talk, as here we have run out of space.

  15. Parameterizing century to model cultivated and noncultivated sites in the Loess region of western Iowa

    USGS Publications Warehouse

    Manies, Kristen L.; Harden, Jennifer W.; Kramer, Larry; Parton, William

    2000-01-01

    One of the main questions remaining for global science involves the cycle of carbon among the atmosphere, oceans, and land. Scientists are trying to better determine the amount of carbon stored in and transferred between these three locations. This task has become more complex because in recent decades the amount of carbon released into the atmosphere has increased due to the burning of fossil fuels and land-use changes. The amount of this increase is greater than the amount of carbon accumulating in the atmosphere and oceans. Many scientists are studying different terrestrial ecosystems to find this 'missing" carbon. One such project is the Mississippi Basin Carbon Project (MBCP) of the U.S. Geological Survey (USGS). MBCP is studying the soils and sediments of the Mississippi River Basin, with an emphasis on understanding human influences on erosion and thus the movement of carbon within a landscape. One goal of the MBCP is to understand, at the field scale, the key processes of erosion and sedimentation, and thus the movement of carbon, in upland areas. Both field measurements and modeling efforts are being used for this purpose. On the modeling front, the Century Model is being used to describe the historical carbon dynamics for two field sites, an agricultural field and uncultivated prairie, located in the loess region of western Iowa. The objective of these modeling efforts is to recreate the carbon dynamics of the upper slope in each of these watersheds. The upper slope represents the area of a hillslope with the greatest potential erosion. This report describes how Century was parameterized to represent these two sites.

  16. Ultraviolet emissions from the upper atmospheres of the planets

    NASA Technical Reports Server (NTRS)

    Moos, H. W.

    1981-01-01

    Some recent results on planetary upper atmospheres obtained by means of orbiting ultraviolet observatories are reviewed with emphasis on Jupiter and Io torus. Consideration is given to long-term variation in Jovian Ly alpha emission, UV polar auroras on Jupiter, and UV emission from the Io torus. Requirements for UV planetary astronomy are briefly discussed.

  17. The Mega Mesospheric Parachute

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Oberto, Robert; Kinsey, Robert

    2005-01-01

    The current understanding and modeling of the upper reaches of the atmosphere is incomplete. Upper atmospheric interactions with the lower atmosphere, effects of ionizing radiation, high altitude cloud phenomena, and the dynamical interaction with the magnetosphere require greater definition. The scientific objective of obtaining a greater understanding of the upper atmosphere can be achieved by designing, implementing, testing, and utilizing a facility that provides long period in-situ measurements of the mesosphere. Current direct sub-sonic measurements of the upper atmosphere are hampered by the approximately one minute sub-sonic observation window of a ballistic sounding rocket regardless of the launch angle. In-situ measurements at greater than transonic speeds impart energy into the molecular atmospheric system and distort the true atmospheric chemistry. A long duration, sub-sonic capability will significantly enhance our ability to observe and measure: (1) mesospheric lightning phenomena (sprites and blue jets) (2) composition, structure and stratification of noctilucent clouds (3) physics of seasonal radar echoes, gravity wave phenomena (4) chemistry of mesospheric gaseous ratio mixing (5) mesospheric interaction of ionizing radiation (6) dynamic electric and magnetic fields This new facility will also provide local field measurements which complement those that can be obtained through external measurements from satellite and ground-based platforms. The 400 foot (approximately 130 meter) diameter lightweight mega-mesospheric parachute system, deployed with a sounding rocket, is proposed herein as a method to increase sub-sonic mesospheric measurement time periods by more than an order of magnitude. The report outlines a multi-year evolving science instrumentation suite in parallel with the development of the mega meso-chute facility. The developmental issues surrounding the meso-chute are chiefly materials selection (thermal and structural) and deployment mechanism physics. Three mission cases were conceived and developed to include cost and schedules estimates. Each scenario has increasing scientific utility with paralleling launch weight, parachute hang-time, deployment altitude, and parachute size: (1) Case #1: $8.4M@24 months, 6kg payload, 20 min., 50km alt., 80 m. dia. (2) Case #2: $10.4M@24 months, 6kg payload, 20 min., 60km alt, 130m. dia. (3) Case #3: $13.6M@36 months, 30kg payload, 30 min., 90km alt., 200m. dia. The initial breakout cost for the parachute system is approximately $2M@24 months. This report identifies that although the challenges of the mega-meso-chute may be difficult, they can be surmounted and valuable results can be achieved.

  18. The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.

    PubMed

    Zhang, Chunmin; He, Jian

    2006-12-25

    The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines.

  19. Photochemical aerosol formation in planetary atmospheres: A comparison between Pluto and Titan

    NASA Astrophysics Data System (ADS)

    Lavvas, Panayotis; Strobel, Darrell F.; Lellouch, Emmanuel; Gurwell, Mark A.; Cheng, Andrew F.; Summers, Michael; Gladstone, Randy

    2016-10-01

    The New Horizons mission observations have revealed us that Pluto's atmosphere is rich in photochemical hazes that extend to high altitudes above its surface [1], apparently similar to those observed in Titan's atmosphere [2].We use detailed models combining photochemistry and microphysics in order to simulate the aerosol formation and growth in Pluto's atmosphere, as performed for Titan's atmosphere [3]. Here we discuss the possible mechanisms leading to the formation of haze particles in Pluto's atmosphere, and we evaluate the contribution of different growth processes (e.g. coagulation vs. condensation) to the resulting particle properties.Moreover we investigate the role of these particles in the radiative balance of Pluto's atmosphere and we compare the resulting particle properties, with those retrieved for Titan's upper atmosphere based on Cassini observations [4]. We discuss the similarities and difference between Pluto's and Titan's aerosols.[1] Gladstone et al., 2016, Science, 351, 6271[2] West et al., 2015, Titan's Haze, in Titan, Interior, Surface, Atmosphere and Space environment, Cambridge University Press[3] Lavvas et al., 2013, PNAS, pnas.1217059110[4] Lavvas et al., 2015, DPS47, id.205.08

  20. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  1. High-resolution optical measurements of atmospheric winds from space. I - Lower atmosphere molecular absorption

    NASA Technical Reports Server (NTRS)

    Hays, P. B.

    1982-01-01

    A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.

  2. Venus Atmospheric Maneuverable Platform (VAMP)

    NASA Astrophysics Data System (ADS)

    Shapiro Griffin, Kristen L.; Sokol, D.; Dailey, D.; Lee, G.; Polidan, R.

    2013-10-01

    We have explored a possible new approach to Venus upper atmosphere exploration by applying Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In this presentation we report results from our ongoing study and plans for future analyses and prototyping. We discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We discuss interdependencies of the above factors and the manner in which the VAMP strawman’s characteristics affect the CONOPs and the science objectives. We show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3.

  3. New Discoveries Resulted from Lidar Investigation of Middle and Upper Atmosphere Temperature, Composition, Chemistry and Dynamics at McMurdo, Antarctica

    NASA Astrophysics Data System (ADS)

    Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Huang, W.; Lu, X.; Gardner, C. S.; McDonald, A.; Fuller-Rowell, T. J.; Vadas, S.

    2013-12-01

    The scientific motivation to explore the neutral properties of the polar middle and upper atmosphere is compelling. Human-induced changes in the Earth's climate system are one of the most challenging social and scientific issues in this century. Besides monitoring climate change, to fully explore neutral-ion coupling in the critical region between 100 and 200 km is an objective of highest priority for the upper atmosphere science community. Meteorological sources of wave energy from the lower atmosphere are responsible for producing significant variability in the upper atmosphere. Energetic particles and fields originating from the magnetosphere regularly alter the state of the ionosphere. These influences converge through the tight coupling between the ionosphere plasma and neutral thermosphere gas in the space-atmosphere interaction region (SAIR). Unfortunately measurements of the neutral thermosphere are woefully incomplete and in critical need to advance our understanding of and ability to predict the SAIR. Lidar measurements of neutral thermospheric winds, temperatures and species can enable these explorations. To help address these issues, in December 2010 we deployed an Fe Boltzmann temperature lidar to McMurdo (77.8S, 166.7E), Antarctica via collaboration between the United States Antarctic Program and Antarctica New Zealand. Since then an extensive dataset (~3000 h) has been collected by this lidar during its first 32 months of operation, leading to several important new discoveries. The McMurdo lidar campaign will continue for another five years to acquiring long-term datasets for polar geospace research. In this paper we provide a comprehensive overview of the lidar campaign and scientific results, emphasizing several new discoveries in the polar middle and upper atmosphere research. In particular, the lidar has detected neutral Fe layers reaching 170 km in altitude, and derived neutral temperature from 30 to 170 km for the first time in the world. Such discoveries may have opened the new door to observing the neutral thermosphere with ground-based instruments. Extreme Fe events in summer were observed and understood as the interesting interactions among the meteoric metal atoms, sub-visible ice particles and energetic particles during aurora precipitation. Furthermore, the McMurdo middle and upper atmosphere is found to be very dynamical, especially in winter when inertia-gravity waves and eastward propagating planetary waves are predominant in the mesosphere and lower thermosphere and in the stratosphere, respectively. Despite small amplitudes below 100 km, the diurnal and semidiurnal tidal amplitudes exhibit fast growth from 100 to 110 km depending on the geomagnetic activities. These observations pose great challenges to our understanding of the Earth's upper atmosphere but also provide excellent opportunities to exploring how the electrodynamics and neutral dynamics work together at this high southern latitude to produce many intriguing geophysical phenomena.

  4. Assessment of Aerosol Optical Property and Radiative Effect for the Layer Decoupling Cases over the Northern South China Sea During the 7-SEAS Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-01-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  5. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  6. The affects on Titan atmospheric modeling by variable molecular reaction rates

    NASA Astrophysics Data System (ADS)

    Hamel, Mark D.

    The main effort of this thesis is to study the production and loss of molecular ions in the ionosphere of Saturn's largest moon Titan. Titan's atmosphere is subject to complex photochemical processes that can lead to the production of higher order hydrocarbons and nitriles. Ion-molecule chemistry plays an important role in this process but remains poorly understood. In particular, current models that simulate the photochemistry of Titan's atmosphere overpredict the abundance of the ionosphere's main ions suggesting a flaw in the modeling process. The objective of this thesis is to determine which reactions are most important for production and loss of the two primary ions, C2H5+ and HCNH+, and what is the impact of uncertainty in the reaction rates on the production and loss of these ions. In reviewing the literature, there is a contention about what reactions are really necessary to illuminate what is occurring in the atmosphere. Approximately seven hundred reactions are included in the model used in this discussion (INT16). This paper studies what reactions are fundamental to the atmospheric processes in Titan's upper atmosphere, and also to the reactions that occur in the lower bounds of the ionosphere which are used to set a baseline molecular density for all species, and reflects what is expected at those altitudes on Titan. This research was conducted through evaluating reaction rates and cross sections available in the scientific literature and through conducting model simulations of the photochemistry in Titan's atmosphere under a range of conditions constrained by the literature source. The objective of this study is to determine the dependence of ion densities of C2H5+ and HCNH+ on the uncertainty in the reaction rates that involve these two ions in Titan's atmosphere.

  7. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands (Prikryl et al., Ann. Geophys., 27, 31-57, 2009). It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  8. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  9. Chemical Composition and Dynamics of the Upper Troposphere and the Lower Stratosphere: Overview of the Project

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Liu, C.; Huang, F.; Kyrola, E.; Liu, Y.; Ialongo, I.; Hakkarainen, J.; Zhang, Y.

    2016-08-01

    The DRAGON-3 cooperation study on the upper troposphere and the lower stratosphere (UTLS) is based on new satellite data and modern atmospheric models. The objectives of the project are: (i) assessment of satellite data on chemical composition in UTLS, (ii) dynamical and chemical structures of the UTLS and its variability, (iii) multi-scale variability of stratospheric ozone, (iv) climatology of the stratospheric aerosol layer and its variability, and (v) updated ozone climatology and its relation to tropopause/multiple tropopauses.In this paper, we present the main results of the project.

  10. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

  11. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

  12. HALOE Algorithm Improvements for Upper Tropospheric Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Robert Earl; McHugh, Martin J.; Gordley, Larry L.; Hervig, Mark E.; Russell, James M., III; Douglass, Anne (Technical Monitor)

    2001-01-01

    This report details the ongoing efforts by GATS, Inc., in conjunction with Hampton University and University of Wyoming, in NASA's Mission to Planet Earth Upper Atmospheric Research Satellite (UARS) Science Investigator Program entitled 'HALOE Algorithm Improvements for Upper Tropospheric Sounding.' The goal of this effort is to develop and implement major inversion and processing improvements that will extend Halogen Occultation Experiment (HALOE) measurements further into the troposphere. In particular, O3, H2O, and CH4 retrievals may be extended into the middle troposphere, and NO, HCl and possibly HF into the upper troposphere. Key areas of research being carried out to accomplish this include: pointing/tracking analysis; cloud identification and modeling; simultaneous multichannel retrieval capability; forward model improvements; high vertical-resolution gas filter channel retrievals; a refined temperature retrieval; robust error analyses; long-term trend reliability studies; and data validation. The current (first year) effort concentrates on the pointer/tracker correction algorithms, cloud filtering and validation, and multichannel retrieval development. However, these areas are all highly coupled, so progress in one area benefits from and sometimes depends on work in others.

  13. High resolution modeling of the upper troposphere and lower stratosphere region over the Arctic - GEM-AC simulations for the future climate with and without aviation emissions.

    NASA Astrophysics Data System (ADS)

    Porebska, Magdalena; Struzewska, Joanna; Kaminski, Jacek W.

    2016-04-01

    Upper troposphere and lower stratosphere (UTLS) region is a layer around the tropopause. Perturbation of the chemical composition in the UTLS region can impact physical and dynamical processes that can lead to changes in cloudiness, precipitation, radiative forcing, stratosphere-troposphere exchange and zonal flow. The objective of this study is to investigate the potential impacts of aviation emissions on the upper troposphere and lower stratosphere. In order to assess the impact of the aviation emissions we will focus on changes in atmospheric dynamic due to changes in chemical composition in the UTLS over the Arctic. Specifically, we will assess perturbations in the distribution of the wind, temperature and pressure fields in the UTLS region. Our study will be based on simulations using a high resolution chemical weather model for four scenarios of current (2006) and future (2050) climate: with and without aircraft emissions. The tool that we use is the GEM-AC (Global Environmental Multiscale with Atmospheric Chemistry) chemical weather model where air quality, free tropospheric and stratospheric chemistry processes are on-line and interactive in an operational weather forecast model of Environment Canada. In vertical, the model domain is defined on 70 hybrid levels with model top at 0.1 mb. The gas-phase chemistry includes detailed reactions of Ox, NOx, HOx, CO, CH4, ClOx and BrO. Also, the model can address aerosol microphysics and gas-aerosol partitioning. Aircraft emissions are from the AEDT 2006 database developed by the Federal Aviation Administration (USA) and the future climate simulations are based on RCP8.5 projection presented by the IPCC in the fifth Assessment Report AR5. Results from model simulations on a global variable grid with 0.5o x 0.5o uniform resolution over the Arctic will be presented.

  14. Imaging, radio, and modeling results pertaining to the ionospheric signature of the 11 March 2011 tsunami over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Makela, J. J.; Lognonne, P.; Occhipinti, G.; Hebert, H.; Gehrels, T.; Coisson, P.; Rolland, L. M.; Allgeyer, S.; Kherani, A.

    2011-12-01

    The Mw=9.0 earthquake that occurred off the east coast of Honshu, Japan on 11 March 2011 launched a tsunami that traveled across the Pacific Ocean, in turn launching vertically propagating atmospheric gravity waves. Upon reaching 250-350 km in altitude, these waves impressed their signature on the thermosphere/ionosphere system. We present observations of this signature obtained using a variety of radio instruments and an imaging system located on the islands of Hawaii. These measurements represent the first optical images recorded of the airglow signature resulting from the passage of a tsunami. Results from these instruments clearly show wave structure propagating in the upper atmosphere with the same velocity as the ocean tsunami, emphasizing the coupled nature of the ocean, atmosphere, and ionosphere. Modeling results are also presented to highlight current understandings of this coupling process.

  15. Diode laser heterodyne observations of silicon monoxide in sunspots - A test of three sunspot models

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.; Deming, D.; Jennings, D. E.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Absorption features from the 8 micron SiO fundamental (upsilon = 1-0) and hot bands (upsilon = 2-1) have been observed in sunspots at sub-Doppler resolution using a ground-based tunable diode laser heterodyne spectrometer. The observed line widths suggest an upper limit of 0.5 km/s for the microturbulent velocity in sunspot umbrae. Since the silicon monoxide abundance is very sensitive to sunspot temperature, the measured equivalent widths permit an unambiguous determination of the temperature-pressure relation in the upper layers of the umbral atmosphere. In the region of SiO line formation (log P sub g = 3.0-4.5), the results support the sunspot model suggested by Stellmacher and Wiehr (1970).

  16. Mantle rare gas relative abundances in a steady-state mass transport model

    NASA Technical Reports Server (NTRS)

    Porcelli, D.; Wasserburg, G. J.

    1994-01-01

    A model for He and Xe was presented previously which incorporates mass transfer of rare gases from an undegassed lower mantle (P) and the atmosphere into a degassed upper mantle (D). We extend the model to include Ne and Ar. Model constraints on rare gas relative abundances within P are derived. Discussions of terrestrial volatile acquisition have focused on the rare gas abundance pattern of the atmosphere relative to meteoritic components, and the pattern of rare gases still trapped in the Ear,th is important in identifying volatile capture and loss processes operating during Earth formation. The assumptions and principles of the model are discussed in Wasserburg and Porcelli (this volume). For P, the concentrations in P of the decay/nuclear products 4 He, 21 Ne, 40 Ar, and 136 Xe can be calculated from the concentrations of the parent elements U, Th, K, and Pu. The total concentration of the daughter element in P is proportional to the isotopic shifts in P. For Ar, ((40)Ar/(36)Ar)p - ((40)Ar/(36)Ar)o =Delta (exp 40) p= 40 Cp/(exp 36)C where(i)C(sub j) the concentration of isotope i in j. In D, isotope compositions are the result of mixing rare gases from P, decay/nuclear products generated in the upper mantle, and subducted rare gases (for Ar and Xe).

  17. Classification and Feature Selection Algorithms for Modeling Ice Storm Climatology

    NASA Astrophysics Data System (ADS)

    Swaminathan, R.; Sridharan, M.; Hayhoe, K.; Dobbie, G.

    2015-12-01

    Ice storms account for billions of dollars of winter storm loss across the continental US and Canada. In the future, increasing concentration of human populations in areas vulnerable to ice storms such as the northeastern US will only exacerbate the impacts of these extreme events on infrastructure and society. Quantifying the potential impacts of global climate change on ice storm prevalence and frequency is challenging, as ice storm climatology is driven by complex and incompletely defined atmospheric processes, processes that are in turn influenced by a changing climate. This makes the underlying atmospheric and computational modeling of ice storm climatology a formidable task. We propose a novel computational framework that uses sophisticated stochastic classification and feature selection algorithms to model ice storm climatology and quantify storm occurrences from both reanalysis and global climate model outputs. The framework is based on an objective identification of ice storm events by key variables derived from vertical profiles of temperature, humidity and geopotential height. Historical ice storm records are used to identify days with synoptic-scale upper air and surface conditions associated with ice storms. Evaluation using NARR reanalysis and historical ice storm records corresponding to the northeastern US demonstrates that an objective computational model with standard performance measures, with a relatively high degree of accuracy, identify ice storm events based on upper-air circulation patterns and provide insights into the relationships between key climate variables associated with ice storms.

  18. Solar Effects on Global Climate Due to Cosmic Rays and Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Raeder, J.; DAuria, R.

    2005-01-01

    Although the work reported here does not directly connect solar variability with global climate change, this research establishes a plausible quantitative causative link between observed solar activity and apparently correlated variations in terrestrial climate parameters. Specifically, we have demonstrated that ion-mediated nucleation of atmospheric particles is a likely, and likely widespread, phenomenon that relates solar variability to changes in the microphysical properties of clouds. To investigate this relationship, we have constructed and applied a new model describing the formation and evolution of ionic clusters under a range of atmospheric conditions throughout the lower atmosphere. The activation of large ionic clusters into cloud nuclei is predicted to be favorable in the upper troposphere and mesosphere, and possibly in the lower stratosphere. The model developed under this grant needs to be extended to include additional cluster families, and should be incorporated into microphysical models to further test the cause-and-effect linkages that may ultimately explain key aspects of the connections between solar variability and climate.

  19. The microwave limb sounder for the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  20. Atmospheric Photochemistry

    NASA Technical Reports Server (NTRS)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  1. O-star parameters from line profiles of wind-blanketed model atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voels, S.A.

    1989-01-01

    The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less

  2. Atmospheric model development in support of SEASAT. Volume 2: Analysis models

    NASA Technical Reports Server (NTRS)

    Langland, R. A.

    1977-01-01

    As part of the SEASAT program of NASA, two sets of analysis programs were developed for the Jet Propulsion Laboratory. One set of programs produce 63 x 63 horizontal mesh analyses on a polar stereographic grid. The other set produces 187 x 187 third mesh analyses. The parameters analyzed include sea surface temperature, sea level pressure and twelve levels of upper air temperature, height and wind analyses. The analysis output is used to initialize the primitive equation forecast models.

  3. IUE observations of the Jovian dayglow emission

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Feldman, P. D.; Ballester, G. E.; Moos, H. W.

    1989-01-01

    IUE spectra of Jupiter are examined in light of recent models put forward to explain the anomalously bright ultraviolet emissions seen from the upper atmospheres of the outer planets. Chi-squared fits of the IUE spectra with model spectra produced by two proposed excitation mechanisms, electron impact and fluorescence of solar radiation, result in consistently higher chi-squared values for the solar fluorescence model. No conclusive evidence is found in the IUE data for the dominance of solar fluorescence over electron excitation in producing the Jovian dayglow emission.

  4. Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    NASA Technical Reports Server (NTRS)

    Vincent, R. A. (Editor)

    1984-01-01

    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.

  5. Global Environmental Multiscale model - a platform for integrated environmental predictions

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Neary, Lori; Dearden, Frank

    2017-04-01

    The Global Environmental Multiscale model was developed by the Government of Canada as an operational weather prediction model in the mid-1990s. Subsequently, it was used as the host meteorological model for an on-line implementation of air quality chemistry and aerosols from global to the meso-gamma scale. Further model developments led to the vertical extension of the modelling domain to include stratospheric chemistry, aerosols, and formation of polar stratospheric clouds. In parallel, the modelling platform was used for planetary applications where dynamical, radiative transfer and chemical processes in the atmosphere of Mars were successfully simulated. Undoubtedly, the developed modelling platform can be classified as an example capable of the seamless and coupled modelling of the dynamics and chemistry of planetary atmospheres. We will present modelling results for global, regional, and local air quality episodes and the long-term air quality trends. Upper troposphere and lower stratosphere modelling results will be presented in terms of climate change and subsonic aviation emissions modelling. Model results for the atmosphere of Mars will be presented in the context of the 2016 ExoMars mission and the anticipated observations from the NOMAD instrument. Also, we will present plans and the design to extend the GEM model to the F region with further coupling with a magnetospheric model that extends to 15 Re.

  6. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    DTIC Science & Technology

    2012-06-01

    atmosphere and ocean (Yu and Weller, 2007 ). Salinities in the upper ocean are set by the difference between evaporation and precipitation at the ocean...surface (Yu, 2007 ; Schmitt, 2008). Because the buoyancy (density) of seawater at the ocean surface is con- trolled by temperature and salinity, the...days, these currents mean- der and generate highly energetic meso- scale eddies (Schmitz, 1996a,b; Stammer , 1997), the spinning oceanic dynamical

  7. The Community-based Whole Magnetosphere Model

    DTIC Science & Technology

    2011-11-15

    magnetosphere to the IE module. These are used to specify the aurora. • Incorporated MSIS [Hedin, 1987] and IRI [Bil- itza, 2001] as empirical models...can actually be run utilizing MSIS and IRI at every time step, so they can be coupled like an upper atmosphere module. • Coupled the multifluid...J. L., and Gallagher, D. L.: Forma - tion of density troughs embedded in the outer plas- masphere by subauroral ion drift events, J. Geophys. Res., 102

  8. Interactions of carbon and water cycles in north temperate wetlands: Modeling and observing the impact of a declining water table trend on regional biogeochemistry

    Treesearch

    Benjamin N. Sulman; Ankur R. Desai; D.S. Mackay; S. Samanta; B.D. Cook; N. Saliendra

    2008-01-01

    Terrestrial carbon fluxes represent a major source of uncertainty in estimates of future atmospheric greenhouse gas accumulation and consequently models of climate change. In the Upper Great Lakes states (Minnesota, Wisconsin, and Michigan), wetlands cover 14% of the land area, and compose up to one third of the land cover in the forest-wetland landscapes that dominate...

  9. Reflectance spectroscopy can quantify cutaneous haemoglobin oxygenation by oxygen uptake from the atmosphere after epidermal barrier disruption.

    PubMed

    Heise, H M; Lampen, P; Stücker, M

    2003-11-01

    The supply of oxygen to the viable skin tissue within the upper layers is not only secured by the cutaneous blood vascular system, but to a significant part also by oxygen diffusion from the atmosphere through the horny layer. The aim of this study was to examine whether changes in haemoglobin oxygenation can be observed within the isolated perfused bovine udder skin used as a skin model by removing the upper horny layer by adhesive tape stripping. Diffuse reflectance spectroscopy in the visible spectral range was used for non-invasive characterisation of haemoglobin oxygenation in skin under in vitro conditions. Mid-infrared attenuated total reflectance spectroscopy was employed for analysing the surface layer of the stratum corneum with respect to keratin, water and lipid components. Skin barrier disruption was achieved by repeated stripping of superficial corneocyte layers by adhesive tape. Significant changes in skin haemoglobin oxygenation were observed for skin areas with reduced lipid concentration and a reduced stratum corneum layer, as determined from the quantitative evaluation of the diffuse reflectance skin spectra. The result can be interpreted as an increase of oxygen diffusion after the removal of the upper horny layer.

  10. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  11. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  12. Penetration of Nonstationary Ionospheric Electric Fields into Lower Atmospheric Layers in the Global Electric Circuit Model

    NASA Astrophysics Data System (ADS)

    Morozov, V. N.

    2018-01-01

    The problem of the penetration of nonstationary ionospheric electric fields into the lower atmospheric layers is considered based on the model of the global electric circuit in the Earth's atmosphere. For the equation of the electric field potential, a solution that takes into account exponential variation in the electrical conductivity with height has been obtained. Analysis of the solution made it possible to reveal three cases of the dependence of the solution on height. The first case (the case of high frequencies) corresponds to the Coulomb approximation, when the electrical conductivity of the atmosphere can be neglected. In the case of low frequencies (when the frequency of changes in the ionosphere potential is less than the quantity reciprocal to the time of electric relaxation of the atmosphere), a quasi-stationary regime, in which the variation in the electric potential of the atmosphere is determined by the electric conduction currents, occurs. In the third case, due to the increase in the electrical conductivity of the atmosphere, two spherical regions appear: with the Coulomb approximation in the lower region and conduction currents in the upper one. For these three cases, formulas for estimating the electric field strength near the Earth's surface have been obtained.

  13. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    NASA Astrophysics Data System (ADS)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  14. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  15. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-01-01

    Abstract The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s−1) particles. PMID:27478282

  16. Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.; Douglass, Anne (Technical Monitor)

    2002-01-01

    The third year and final report on the physical mechanisms controlling upper tropospheric water vapor revealed by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is presented.

  17. Winds and Waves (4 Min - 11 Yrs) in the Upper Middle Atmosphere (60-110 Km) at Saskatoon, Canada (52 Deg N, 107 Deg W): MF Radar (2.2 Mhz) Soundings 1973 - 1983

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.; Gregory, J. B.

    1984-01-01

    Examples of gravity waves (GW), tides, planetary waves (PW), and circulation effects in the upper middle atmosphere are presented. Energy densities of GW, tides, and PW are compared. Fourier and spectral analyses are applied to the data.

  18. Enhancements in lower stratospheric CH3CN observed by the upper atmosphere research Sattellite Microwave Limb Sounder following boreal forest fires

    NASA Technical Reports Server (NTRS)

    Livesey, N. J.; Fromm, M. D.; Waters, J. W.; Manney, G. L.; Santee, M. L.; Read, W. G.

    2004-01-01

    On 25 August 1992, the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite observed a significant enhancement in the abundance of lower stratospheric methyl cyanide (CH3CN) at 100??hPa (16??km altitude) in a small region off the east coast of Florida.

  19. Investigating the FUV Emission of Young M dwarfs with FUMES: the Far Ultraviolet M-dwarf Evolution Survey

    NASA Astrophysics Data System (ADS)

    Pineda, John

    2016-10-01

    M dwarf stars have become attractive candidates for exoplanet searches and will be a main focus of the upcoming TESS mission, with the continued search for nearby potentially habitable worlds. However, the atmospheric characterization of these exoplanetary systems depends critically on the high energy stellar radiation environment from X-ray to NUV. Strong radiation at these energies can lead to atmospheric mass loss and is a strong driver of photochemistry in planetary atmospheres. Recently, the MUSCLES Treasury Survey (Cycles 19, 22) provided the first comprehensive assessment of the high energy radiation field around old, planet hosting M dwarfs. However, the habitability and potential for such exoplanetary atmospheres to develop life also depends on the evolution of the atmosphere and hence the evolution of the incident radiation field. The strong high energy spectrum of young M dwarfs can have devastating consequences for the potential habitability of a given system. We, thus, propose the Far Ultraviolet M-dwarf Evolution Survey (FUMES) to measure the strong FUV coronal/chromospheric emission features of young M dwarfs (12 - 650 Myr), e.g. He II, C IV, and S IV. FUMES will observe objects with a wide range of rotation rates to directly connect the emission features to the evolution of coronal heating and upper atmospheric structure, and provide observational benchmarks at young ages for models of M dwarf upper atmospheres. Building on results from MUSCLES, we will be able to estimate the whole high energy radiation field and establish the evolutionary picture of the incident radiation throughout the lifetime of exoplanetary systems around early-mid M dwarf hosts.

  20. Arctic Ocean Model Intercomparison Using Sound Speed

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, D. S.; Johnson, M. A.

    2002-05-01

    The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.

  1. Diurnal observations of HCl altitude variation in the 70-100 km mesosphere of Venus

    NASA Astrophysics Data System (ADS)

    Sandor, Brad J.; Todd Clancy, R.

    2017-07-01

    First submm spectroscopic observations of the 625.9 GHz H35Cl absorption lines of the Venus dayside atmosphere were obtained with the James Clerk Maxwell Telescope (JCMT) on March 2, 2013. These data, which support retrieval of HCl altitude distributions in the Venus mesosphere (70-100 km), are presented here and compared with previously reported JCMT observations of Venus nightside HCl (Sandor et al., 2012). The measured dayside profile agrees with that of the nightside, indicating no diurnal variation is present. More specifically, the nightside spectra revealed a secular decrease of upper mesospheric HCl between observations one month apart, at fixed latitude and local time. The dayside profile reported here presents upper mesospheric abundances that are bracketed by the two previously measured nightside profiles, indicating that if diurnal variation is present, it must be weaker than the secular variations occurring at fixed local time. The previous study, which measured nightside HCl abundances above 85 km to be much smaller than predicted from photochemical modeling, suggested a dynamical explanation for the disagreement wherein nightside downwelling associated with the SubSolar to AntiSolar (SSAS) atmospheric circulation might suppress upper mesospheric abundances predicted purely from photochemistry. However a straightforward prediction from the proposed mechanism is that HCl abundance on the dayside, where the SSAS drives upward rather than downward transport should at least agree with, and perhaps exceed that of the photochemical model. The finding that dayside HCl abundance agrees with that of the nightside, hence also is much smaller than that of the model shows the SSAS hypothesis to be incorrect.

  2. Detection of CO and HCN in Pluto's atmosphere with ALMA

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Gurwell, M.; Butler, B.; Fouchet, T.; Lavvas, P.; Strobel, D. F.; Sicardy, B.; Moullet, A.; Moreno, R.; Bockelée-Morvan, D.; Biver, N.; Young, L.; Lis, D.; Stansberry, J.; Stern, A.; Weaver, H.; Young, E.; Zhu, X.; Boissier, J.

    2017-04-01

    Observations of the Pluto-Charon system, acquired with the ALMA interferometer on June 12-13, 2015, have led to the detection of the CO(3-2) and HCN(4-3) rotational transitions from Pluto (including the hyperfine structure of HCN), providing a strong confirmation of the presence of CO, and the first observation of HCN in Pluto's atmosphere. The CO and HCN lines probe Pluto's atmosphere up to ∼450 km and ∼900 km altitude, respectively, with a large contribution due to limb emission. The CO detection yields (i) a much improved determination of the CO mole fraction, as 515 ± 40 ppm for a 12 μbar surface pressure (ii) strong constraints on Pluto's mean atmospheric dayside temperature profile over ∼50-400 km, with clear evidence for a well-marked temperature decrease (i.e., mesosphere) above the 30-50 km stratopause and a best-determined temperature of 70 ± 2 K at 300 km, somewhat lower than previously estimated from stellar occultations (81 ± 6 K), and in agreement with recent inferences from New Horizons / Alice solar occultation data. The HCN line shape implies a high abundance of this species in the upper atmosphere, with a mole fraction >1.5 × 10-5 above 450 km and a value of 4 × 10-5 near 800 km. Assuming HCN at saturation, this would require a warm (>92 K) upper atmosphere layer; while this is not ruled out by the CO emission, it is inconsistent with the Alice-measured CH4 and N2 line-of-sight column densities. Taken together, the large HCN abundance and the cold upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of magnitude) hitherto unseen in planetary atmospheres, probably due to a lack of condensation nuclei above the haze region and the slow kinetics of condensation at the low pressure and temperature conditions of Pluto's upper atmosphere. HCN is also present in the bottom ∼100 km of the atmosphere, with a 10-8-10-7 mole fraction; this implies either HCN saturation or undersaturation there, depending on the precise stratopause temperature. The HCN column is (1.6 ± 0.4)× 1014 cm-2 , suggesting a surface-referred vertically-integrated net production rate of ∼2 × 107 cm-2 s-1. Although HCN rotational line cooling affects Pluto's atmosphere heat budget, the amounts determined in this study are insufficient to explain the well-marked mesosphere and upper atmosphere's ∼70 K temperature, which if controlled by HCN cooling would require HCN mole fractions of (3-7) ×10-4 over 400-800 km. We finally report an upper limit on the HC3N column density (<2 × 1013 cm-2) and on the HC15N / HC14N ratio (<1/125).

  3. Transport and Mixing in the Stratosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    2000-01-01

    Long-term changes in the composition of the atmosphere are known to have significant effects on atmospheric chemistry and stratospheric ozone. Increasing levels of greenhouse gases have the potential to change the global climate in the middle and upper atmospheres, as well as in the troposphere. Volcanic eruptions, El Nino events, and other natural variations can also cause changes in atmospheric composition and climate. Whether the causes are natural or manmade, changes in the global climate system can have impacts on human society. In order to understand and predict the consequences of these changes, and of control measures such as the Montreal Protocol, it is necessary to understand the complex interactions between radiation, chemistry, and dynamics in the atmosphere. Much of the uncertainty in our understanding of atmospheric processes comes from an incomplete understanding of atmospheric transport. A complete and self-consistent model of transport requires not only an understanding of trace-species transport, but also the transport of dynamically active quantities such as heat and potential vorticity. Therefore, the goal of the proposed research is to better understand large-scale transport and mixing processes in the middle atmosphere and troposphere.

  4. Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavvas, P.; Koskinen, T., E-mail: panayotis.lavvas@univ-reims.fr

    2017-09-20

    We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of amore » clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (∼nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b’s atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.« less

  5. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    NASA Astrophysics Data System (ADS)

    Bieser, Johannes; Slemr, Franz; Ambrose, Jesse; Brenninkmeijer, Carl; Brooks, Steve; Dastoor, Ashu; DeSimone, Francesco; Ebinghaus, Ralf; Gencarelli, Christian N.; Geyer, Beate; Gratz, Lynne E.; Hedgecock, Ian M.; Jaffe, Daniel; Kelley, Paul; Lin, Che-Jen; Jaegle, Lyatt; Matthias, Volker; Ryjkov, Andrei; Selin, Noelle E.; Song, Shaojie; Travnikov, Oleg; Weigelt, Andreas; Luke, Winston; Ren, Xinrong; Zahn, Andreas; Yang, Xin; Zhu, Yun; Pirrone, Nicola

    2017-06-01

    Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.

  6. Early Action on HFCs Mitigates Future Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2017-01-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90 of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  7. Early Action on HFCs Mitigates Future Atmospheric Change

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret; Fleming, Eric; Newman, Paul; Li, Feng; Liang, Qing

    2017-04-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  8. Oceanic sources of predictability for MJO propagation across the Maritime Continent in a subset of S2S forecast models

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.; Klingaman, N. P.

    2017-12-01

    Skillful prediction of the Madden-Julian oscillation (MJO) passage across the Maritime Continent (MC) has important implications for global forecasts of high-impact weather events, such as atmospheric rivers and heat waves. The North American teleconnection response to the MJO is strongest when MJO convection is located in the western Pacific Ocean, but many climate and forecast models are deficient in their simulation of MC-crossing MJO events. Compared to atmosphere-only general circulation models (AGCMs), MJO simulation skill generally improves with the addition of ocean feedbacks in coupled GCMs (CGCMs). Using observations, previous studies have noted that the degree of ocean coupling may vary considerably from one MJO event to the next. The coupling mechanisms may be linked to the presence of ocean Equatorial Rossby waves, the sign and amplitude of Equatorial surface currents, and the upper ocean temperature and salinity profiles. In this study, we assess the role of ocean feedbacks to MJO prediction skill using a subset of CGCMs participating in the Subseasonal-to-Seasonal (S2S) Project database. Oceanic observational and reanalysis datasets are used to characterize the upper ocean background state for observed MJO events that do and do not propagate beyond the MC. The ability of forecast models to capture the oceanic influence on the MJO is first assessed by quantifying SST forecast skill. Next, a set of previously developed air-sea interaction diagnostics is applied to model output to measure the role of SST perturbations on the forecast MJO. The "SST effect" in forecast MJO events is compared to that obtained from reanalysis data. Leveraging all ensemble members of a given forecast helps disentangle oceanic model biases from atmospheric model biases, both of which can influence the expression of ocean feedbacks in coupled forecast systems. Results of this study will help identify areas of needed model improvement for improved MJO forecasts.

  9. The upper atmosphere and ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1992-01-01

    The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.

  10. Empirical model of atomic nitrogen in the upper thermosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Mauersberger, K.; Kayser, D. C.; Potter, W. E.; Nier, A. O.

    1977-01-01

    Atomic nitrogen number densities in the upper thermosphere measured by the open source neutral mass spectrometer (OSS) on Atmosphere Explorer-C during 1974 and part of 1975 have been used to construct a global empirical model at an altitude of 375 km based on a spherical harmonic expansion. The most evident features of the model are large diurnal and seasonal variations of atomic nitrogen and only a moderate and latitude-dependent density increase during periods of geomagnetic activity. Maximum and minimum N number densities at 375 km for periods of low solar activity are 3.6 x 10 to the 6th/cu cm at 1500 LST (local solar time) and low latitude in the summer hemisphere and 1.5 x 10 to the 5th/cu cm at 0200 LST at mid-latitudes in the winter hemisphere.

  11. Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

    1974-01-01

    The charged particle observations proposed for the new low altitude weather satellites, TIROS-N, are described that will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance in distinguishing between solar and geomagnetic activity as possible causative sources.

  12. The high-resolution Doppler imager on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, Vincent J.; Dobbs, Michael E.; Gell, David A.; Grassl, Heinz J.; Skinner, Wilbert R.

    1993-01-01

    The high-resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite is a triple-etalon Fabry-Perot interferometer designed to measure winds in the stratosphere, mesosphere, and lower thermosphere. Winds are determined by measuring the Doppler shifts of rotational lines of the O2 atmospheric band, which are observed in emission in the mesosphere and lower thermosphere and in absorption in the stratosphere. The interferometer has high resolution (0.05/cm), good offhand rejection, aud excellent stability. This paper provides details of the design and capabilities of the HRDI instrument.

  13. Aircraft Configured for Flight in an Atmosphere Having Low Density

    NASA Technical Reports Server (NTRS)

    Teter, Jr., John E. (Inventor); Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Hunter, Craig A. (Inventor); Riddick, Steven E. (Inventor); Guynn, Mark D. (Inventor); Paddock, David A. (Inventor)

    2012-01-01

    An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.

  14. NO(x) Concentrations in the Upper Troposphere as a Result of Lightning

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.

    1998-01-01

    Upper tropospheric NO(x) controls, in part, the distribution of ozone in this greenhouse-sensitive region of the atmosphere. Many factors control NO(x) in this region. As a result it is difficult to assess uncertainties in anthropogenic perturbations to NO from aircraft, for example, without understanding the role of the other major NO(x) sources in the upper troposphere. These include in situ sources (lightning, aircraft), convection from the surface (biomass burning, fossil fuels, soils), stratospheric intrusions, and photochemical recycling from HNO3. This work examines the separate contribution to upper tropospheric "primary" NO(x) from each source category and uses two different chemical transport models (CTMS) to represent a range of possible atmospheric transport. Because aircraft emissions are tied to particular pressure altitudes, it is important to understand whether those emissions are placed in the model stratosphere or troposphere and to assess whether the models can adequately differentiate stratospheric air from tropospheric air. We examine these issues by defining a point-by-point "tracer tropopause" in order to differentiate stratosphere from troposphere in terms of NO(x) perturbations. Both models predict similar zonal average peak enhancements of primary NO(x) due to aircraft (approx. = 10-20 parts per trillion by volume (pptv) in both January and July); however, the placement of this peak is primarily in a region of large stratospheric influence in one model and centered near the level evaluated as the tracer tropopause in the second. Below the tracer tropopause, both models show negligible NO(x) derived directly from the stratospheric source. Also, they predict a typically low background of 1 - 20 pptv NO(x) when tropospheric HNO3 is constrained to be 100 pptv of HNO3. The two models calculate large differences in the total background NO(x) (defined as the source of NO(x) from lightning + stratosphere + surface + HNO3) when using identical loss frequencies for NO(x). This difference is primarily due to differing treatments of vertical transport. An improved diagnosis of this transport that is relevant to NO(x) requires either measurements of a surface-based tracer with a substantially shorter lifetime than Rn-222 or diagnosis and mapping of tracer correlations with different source signatures. Because of differences in transport by the two models we cannot constrain the source of NO(x) from lightning through comparison of average model concentrations with observations of NO(x).

  15. Analysis of gravity wave propagation and properties, comparison between WRF model simulations and LIDAR data in Southern France

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Heinrich, Philippe

    2014-05-01

    Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637

  16. Understanding Differences in Upper Stratospheric Ozone Response to Changes in Chlorine and Temperature as Computed Using CCMVal Models

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-01-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.

  17. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    NASA Astrophysics Data System (ADS)

    Abel, Bob; Thorne, Richard M.

    1994-10-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  18. Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt

    NASA Technical Reports Server (NTRS)

    Abel, Bob; Thorne, Richard M.

    1994-01-01

    Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.

  19. Vertical structure of the ionosphere and upper neutral atmosphere of saturn from the pioneer radio occultation.

    PubMed

    Kliore, A J; Lindal, G F; Patel, I R; Sweetnam, D N; Hotz, H B; McDonough, T R

    1980-01-25

    Radio occultation measurements at S band (2.293 gigahertz) of the ionosphere and upper neutral atmosphere of Saturn were obtained during the flyby of the Pioneer 11 Saturn spacecraft on 5 September 1979. Preliminary analysis of the occultation exit data taken at a latitude of 9.5 degrees S and a solar zenith angle of 90.6 degrees revealed the presence of a rather thin ionosphere, having a main peak electron density of about 9.4 x 10/(3) per cubic centimeter at an altitude of about 2800 above the level of a neutral number density of 10(19) per cubic centimeter and a lower peak of about 7 x 10(3) per cubic centimeter at 2200 kilometers. Data in the neutral atmosphere were obtained to a pressure level of about 120 millibars. The temperature structure derived from these data is consistent with the results of the Pioneer 11 Saturn infrared radiometer experiment (for a helium fraction of 15 percent) and with models derived from Earth-based observations for a helium fraction by number of about 4 to 10 percent. The helium fraction will be further defined by mutual iteration with the infrared radiometer team.

  20. Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian

    2016-11-01

    Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.

Top