The NASA program on upper atmospheric research
NASA Technical Reports Server (NTRS)
1976-01-01
The purpose of the NASA Upper Atmospheric Research Program is to develop a better understanding of the physical and chemical processes that occur in the earth's upper atmosphere with emphasis on the stratosphere.
An implementation plan for priorities in solar-system space physics
NASA Technical Reports Server (NTRS)
Krimigis, Stamatios M.; Athay, R. Grant; Baker, Daniel; Fisk, Lennard A.; Fredricks, Robert W.; Harvey, John W.; Jokipii, Jack R.; Kivelson, Margaret; Mendillo, Michael; Nagy, Andrew F.
1985-01-01
The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described.
NASA Astrophysics Data System (ADS)
Hargreaves, J. K.
This textbook is a successor to "The upper atmosphere and solar-terrestrial relations" first published in 1979. It describes physical conditions in the upper atmosphere and magnetosphere of the Earth. This geospace environment begins 70 kilometres above the surface of the Earth and extends in near space to many times the Earth's radius. It is the region of near-Earth environment where the Space Shuttle flies, the aurora is generated, and the outer atmosphere meets particles streaming out of the sun. The account is introductory. The intent is to present basic concepts, and for that reason the mathematical treatment is not complex. There are three introductory chapters that give basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magetosphere, and structures, dynamics, disturbances and irregularities. The concluding chapter deals with technological applications.
Present state of knowledge of the upper atmosphere: An assessment report
NASA Technical Reports Server (NTRS)
1984-01-01
A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.
Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS
NASA Technical Reports Server (NTRS)
Newell, Reginald E.; Douglass, Anne (Technical Monitor)
2002-01-01
The third year and final report on the physical mechanisms controlling upper tropospheric water vapor revealed by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is presented.
Effects of Lightning in the Upper Atmosphere
NASA Astrophysics Data System (ADS)
Sentman, Davis D.; Pasko, Victor P.; Morrill, Jeff S.
2010-02-01
AGU Chapman Conference on Effects of Thunderstorms and Lightning in the Upper Atmosphere; University Park, Pennsylvania, 10-14 May 2009; The serendipitous observation in 1989 of electrical discharge in the high atmosphere induced by thundercloud lightning launched a new field of geophysical investigation. From this single unexpected observation sprang a vigorous and fertile new research field that simultaneously encompasses geophysical disciplines that are normally pursued independently, such as meteorology and lightning, plasma and gas discharge physics, atmospheric chemistry, ionospheric physics, and energetic particle physics. Transient electrical discharge in the upper atmosphere spans the full range of altitudes between the tropopause and the ionosphere and takes a variety of forms that carry the whimsical names red sprites, blue jets, gigantic jets, elves (emissions of light and very low frequency perturbations from electromagnetic pulse sources), and sprite halos, collectively known as transient luminous events (TLEs). To date, TLEs have been observed from ground and airborne or spaceborne platforms above thunderstorm systems worldwide, and radio observations made concomitantly with optical observations have shown that they are produced by the transient far fields of thundercloud lightning. TLEs appear to be large-scale (tens of kilometers in dimension), upper atmospheric versions of conventional gas discharge akin to weakly ionized, collision-dominated systems found in laboratory discharge devices (millimeter-centimeter dimensions), with characteristic energies of a few electron volts. The dominant physical processes have been identified as described by the familiar kinetic theory of the photochemistry of the upper atmosphere, but with electric field-driven electron impact ionization playing the role of photolysis or energetic precipitating particle-induced ionization.
The Solar-Terrestrial Environment
NASA Astrophysics Data System (ADS)
Hargreaves, John Keith
1995-05-01
The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.
NASA Astrophysics Data System (ADS)
Drob, D. P.; Huba, J.; Kordella, L.; Earle, G. D.; Ridley, A. J.
2017-12-01
The great American solar eclipse of August 21, 2017 provides a unique opportunity to study the basic physics of the upper atmosphere and ionosphere. While the effects of solar eclipses on the upper atmosphere and ionosphere have been studied since the 1930s, and later matured in the last several decades, recent advances in first principles numerical models and multi-instrument observational capabilities continue to provide new insights. Upper atmospheric eclipse phenomena such as ionospheric conjugate effects and the generation of a thermospheric bow wave that propagates into the nightside are simulated with high-resolution first principles upper atmospheric models and compared with observations to validate this understanding.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.
2000-01-01
Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summaries 1997- 1999. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1999 An Assessment Report.
Space fireworks for upper atmospheric wind measurements by sounding rocket experiments
NASA Astrophysics Data System (ADS)
Yamamoto, M.
2016-01-01
Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.
NASA Technical Reports Server (NTRS)
Combi, Michael R.
2004-01-01
In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.
NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
NASA's upper atmosphere research satellite: A program to study global ozone change
NASA Technical Reports Server (NTRS)
Luther, Michael R.
1992-01-01
The Upper Atmosphere Research Satellite (UARS) is a major initiative in the NASA Office of Space Science and Applications, and is the prototype for NASA's Earth Observing System (EOS) planned for launch in the 1990s. The UARS combines a balanced program of experimental and theoretical investigations to perform diagnostic studies, qualitative model analysis, and quantitative measurements and comparative studies of the upper atmosphere. UARS provides theoretical and experimental investigations which pursue four specific research topics: atmospheric energy budget, chemistry, dynamics, and coupling processes. An international cadre of investigators was assembled by NASA to accomplish those scientific objectives. The observatory, its complement of ten state of the art instruments, and the ground system are nearing flight readiness. The timely UARS program will play a major role in providing data to understand the complex physical and chemical processes occurring in the upper atmosphere and answering many questions regarding the health of the ozone layer.
Investigation of Dynamic and Physical Processes in the Upper Troposphere and Lower Stratosphere
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.; Pfister, Leonhard (Technical Monitor)
2002-01-01
Research under this Cooperative Agreement has been funded by several NASA Earth Science programs: the Atmospheric Effects of Radiation Program (AEAP), the Upper Atmospheric Research Program (UARP), and most recently the Atmospheric Chemistry and Modeling Assessment Program (ACMAP). The purpose of the AEAP was to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The ACMAP is a more general program of modeling and data analysis in the general area of atmospheric chemistry and dynamics, and the Radiation Sciences program.
NASA Astrophysics Data System (ADS)
Peter, Hardi; Abbo, L.; Andretta, V.; Auchère, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Braukhane, A.; Casini, R.; Curdt, W.; Davila, J.; Dittus, H.; Fineschi, S.; Fludra, A.; Gandorfer, A.; Griffin, D.; Inhester, B.; Lagg, A.; Landi Degl'Innocenti, E.; Maiwald, V.; Sainz, R. Manso; Martínez Pillet, V; Matthews, S.; Moses, D.; Parenti, S.; Pietarila, A.; Quantius, D.; Raouafi, N.-E.; Raymond, J.; Rochus, P.; Romberg, O.; Schlotterer, M.; Schühle, U.; Solanki, S.; Spadaro, D.; Teriaca, L.; Tomczyk, S.; Trujillo Bueno, J.; Vial, J.-C.
2012-04-01
The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.
Solar and terrestrial physics. [effects of solar activities on earth environment
NASA Technical Reports Server (NTRS)
1975-01-01
The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.
A methodology for reduced order modeling and calibration of the upper atmosphere
NASA Astrophysics Data System (ADS)
Mehta, Piyush M.; Linares, Richard
2017-10-01
Atmospheric drag is the largest source of uncertainty in accurately predicting the orbit of satellites in low Earth orbit (LEO). Accurately predicting drag for objects that traverse LEO is critical to space situational awareness. Atmospheric models used for orbital drag calculations can be characterized either as empirical or physics-based (first principles based). Empirical models are fast to evaluate but offer limited real-time predictive/forecasting ability, while physics based models offer greater predictive/forecasting ability but require dedicated parallel computational resources. Also, calibration with accurate data is required for either type of models. This paper presents a new methodology based on proper orthogonal decomposition toward development of a quasi-physical, predictive, reduced order model that combines the speed of empirical and the predictive/forecasting capabilities of physics-based models. The methodology is developed to reduce the high dimensionality of physics-based models while maintaining its capabilities. We develop the methodology using the Naval Research Lab's Mass Spectrometer Incoherent Scatter model and show that the diurnal and seasonal variations can be captured using a small number of modes and parameters. We also present calibration of the reduced order model using the CHAMP and GRACE accelerometer-derived densities. Results show that the method performs well for modeling and calibration of the upper atmosphere.
Solar Magnetism eXplorer (Solme X)
NASA Technical Reports Server (NTRS)
Peter, Hardi; Abbo, L.; Andretta, V.; Auchere, F.; Bemporad, A.; Berrilli, F.; Bommier, V.; Cassini, R.; Curdt, W.; Davila, J.;
2011-01-01
The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona-that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations
Metals from deep atmosphere to exosphere in hot-Jupiters
NASA Astrophysics Data System (ADS)
Lecavelier des Etangs, Alain
2017-08-01
With STIS/UV observations we detected magnesium atoms at high altitude in the atmosphere of the hot-Jupiter HD209458b, probing lower regions in the atmosphere than previously done with Lyman-alpha observations (Vidal-Madjar et al. 2013). With the present program, we will search for magnesium and other heavy species in escaping atmospheres of 2 giant planets orbiting hot A and F-type stars: WASP-94Ab and WASP-33b.The observations will provide unprecedented information on the physical conditions (velocity, temperature, and density) in the upper atmosphere of these two hot-Jupiters. Targets have been selected for the expected high significance level of the atmospheric detections (>10 sigma). These exoplanets present favorable configuration for upper atmosphere observations because of the combination of high escape rates and large spatial extensions of the magnesium clouds surrounding them. The atmospheric signatures of the magnesium and other metals are therefore expected to be easily detectable. Moreover, the two selected exoplanets have highly different equilibrium temperatures, below and above the MgSiO3 condensation temperature. Consequently, because the metals observed in the escaping flow originate from deeper in the atmosphere where haze can condensate, the observations will constrain the physical processes taking place in the clouds that cannot be observed directly.
NASA Astrophysics Data System (ADS)
Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.
2018-04-01
We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.
Present state of knowledge of the upper atmosphere 1990: An assessment report
NASA Technical Reports Server (NTRS)
Watson, R. T.; Kurylo, M. J.; Prather, M. J.; Ormond, F. M.
1990-01-01
NASA is charged with the responsibility to report on the state of the knowledge of the Earth's upper atmosphere, particularly the stratosphere. Part 1 of this report, issued earlier this year, summarized the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program during the last two years. New findings since the last report to Congress was issued in 1988 are presented. Several scientific assessments of the current understanding of the chemical composition and physical structure of the stratosphere are included, in particular how the abundance and distribution of ozone is predicted to change in the future. These reviews include: a summary of the most recent international assessment of stratospheric ozone; a study of future chlorine and bromine loading of the atmosphere; a review of the photochemical and chemical kinetics data that are used as input parameters for the atmospheric models; a new assessment of the impact of Space Shuttle launches on the stratosphere; a summary of the environmental issues and needed research to evaluate the impact of the newly re-proposed fleet of stratospheric supersonic civil aircraft; and a list of the contributors to this report and the science assessments which have formed our present state of knowledge of the upper atmosphere and ozone depletion.
Gone with the Wind: Three Years of MAVEN Measurements of Atmospheric Loss at Mars
NASA Astrophysics Data System (ADS)
Brain, David; MAVEN Team
2017-10-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is making measurements of the Martian upper atmosphere and near space environment, and their interactions with energy inputs from the Sun. A major goal of the mission is to evaluate the loss of atmospheric gases to space in the present epoch, and over Martian history. MAVEN is equipped with instruments that measure both the neutral and charged upper atmospheric system (thermosphere, ionosphere, exosphere, and magnetosphere), inputs from the Sun (extreme ultraviolet flux, solar wind and solar energetic particles, and interplanetary magnetic field), and escaping atmospheric particles. The MAVEN instruments, coupled with models, allow us to more completely understand the physical processes that control atmospheric loss and the particle reservoirs for loss.Here, we provide an overview of the significant results from MAVEN over approximately 1.5 Mars years (nearly three Earth years) of observation, from November 2014 to present. We argue that the MAVEN measurements tell us that the loss of atmospheric gases to space was significant over Martian history, and present the seasonal behavior of the upper atmosphere and magnetosphere. We also discuss the influence of extreme events such as solar storms, and a variety of new discoveries and observations of the Martian system made by MAVEN.
The thermosphere and ionosphere of Venus
NASA Technical Reports Server (NTRS)
Cravens, T. E.
1992-01-01
Our knowledge of the upper atmosphere and ionosphere of Venus and its interaction with the solar wind has advanced dramatically over the last decade, largely due to the data obtained during the Pioneer Venus mission and to the theoretical work that was motivated by this data. Most of this information was obtained during the period 1978 through 1981, when the periapsis of the Pioneer Venus Orbiter (PVO) was still in the measurable atmosphere. However, solar gravitational perturbations will again lower the PVO periapsis into the upper atmosphere in September 1992, prior to the destruction of the spacecraft toward the end of this year. The physics and chemistry of the thermosphere and ionosphere of Venus are reviewed.
The realist interpretation of the atmosphere
NASA Astrophysics Data System (ADS)
Anduaga, Aitor
The discovery of a clearly stratified structure of layers in the upper atmosphere has been--and still is--invoked too often as the great paradigm of atmospheric sciences in the 20th century. Behind this vision, an emphasis--or better, an overstatement--on the reality of the concept of layer lies. One of the few historians of physics who have not ignored this phenomenon of reification, C. Stewart Gillmor, attributed it to--somewhat ambiguous-- cultural (or perhaps, more generally, contextual) factors, though he never specified their nature. In this essay, I aim to demonstrate that, in the interwar years, most radiophysicists and some atomic physicists, for reasons principally related to extrinsic influences and to a lesser extent to internal developments of their own science, fervidly embraced a realist interpretation of the ionosphere. We will focus on the historical circumstances in which a specific social and commercial environment came to exert a strong influence on upper atmospheric physicists, and in which realism as a product validating the "truth" of certain practices and beliefs arose. This realist commitment I attribute to the mutual reinforcement of atmospheric physics and commercial and imperial interests in long-distance communications.
NASA Technical Reports Server (NTRS)
Watson, R. T.; Geller, M. A.; Stolarski, R. S.; Hampson, R. F.
1986-01-01
The state of knowledge of the upper atmosphere was assessed as of January 1986. The physical, chemical, and radiative processes which control the spatial and temporal distribution of ozone in the atmosphere; the predicted magnitude of ozone perturbations and climate changes for a variety of trace gas scenarios; and the ozone and temperature data used to detect the presence or absence of a long term trend were discussed. This assessment report was written by a small group of NASA scientists, was peer reviewed, and is based primarily on the comprehensive international assessment document entitled Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, to be published as the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 16.
1963-03-28
Dr. von Braun, Director of the Marshall Space Flight Center (MSFC), and Dr. Debus, Director of the Launch Operations Center, at Complex 34 prior to the Launch of the SA-4 (the fourth flight of Saturn I), March 28, 1963. The mission conducted the second "Project Highwater" experiment, which the upper stage ejected 30,000 gallons of ballast water in the upper atmosphere for a physics experiment.
Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica
NASA Astrophysics Data System (ADS)
Jee, Geonhwa; Kim, Jeong-Han; Lee, Changsup; Kim, Yong Ha
2014-06-01
Since the operation of the King Sejong Station (KSS) started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI) and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI) was installed to observe the temperature in the mesosphere and lower thermosphere (MLT) region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere
11th International Conference on Atmospheric Electricity
NASA Technical Reports Server (NTRS)
Christian, H. J. (Compiler)
1999-01-01
This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.
The EISCAT_3D Project in Norway: E3DN
NASA Astrophysics Data System (ADS)
La Hoz, C.; Oksavik, K.
2013-12-01
EISCAT_3D (E3D) is a project to build the next generation of incoherent scatter radars endowed with 3-dimensional scalar and vector capabilities that will replace the current EISCAT radars in Northern Scandinavia. One active (transmitting) site in Norway and four passive (receiving) sites in the Nordic countries will provide 3-D vector imaging capabilities by rapid scanning and multi-beam forming. The unprecedented flexibility of the solid-state transmitter with high duty-cycle, arbitrary wave-forming and polarisation and its pulsed power of 10 MW will provide unrivalled experimental capabilities to investigate the highly non-stationary and non-homogeneous state of the polar upper atmosphere. Aperture Synthesis Imaging Radar (ASIR) will to endow E3D with imaging capabilities in 3-dimensions that includes sub-beam resolution. Complemented by pulse compression, it will provide 3-dimensional images of certain types of incoherent scatter radar targets resolved to about 100 metres at 100 km range, depending on the signal-to-noise ratio. The Norwegian scientific programme is inspired by the pioneer polar scientist Kristian Birkeland (picture) and includes pressing questions on polar upper atmospheric research, among others: (Q1) How to proceed beyond the present simplistic, static, stationary and homogeneous analysis of upper atmospheric and ionospheric processes? (Q2) How does space weather affect ionospheric processes and how to support modelling and space weather services? (Q3) How to advance fundamental plasma physics by employing the ionosphere as a natural plasma physics laboratory? (Q4) How does the influx of extraterrestrial material interact with the upper atmosphere and where does the material originate from? (Q5) How does solar activity couple from geospace into the lower atmosphere and climate system, and does this energy change the wave forcing of geospace from below? Kristian Birkeland, Norwegian scientist and pioneer in polar and auroral research.
Observations of Highly Variable Deuterium in the Martian Upper Atmosphere
NASA Astrophysics Data System (ADS)
Clarke, John T.; Mayyasi-Matta, Majd A.; Bhattacharyya, Dolon; Chaufray, Jean-Yves; Chaffin, Michael S.; Deighan, Justin; Schneider, Nicholas M.; Jain, Sonal; Jakosky, Bruce
2017-10-01
One of the key pieces of evidence for historic high levels of water on Mars is the present elevated ratio of deuterium/hydrogen (D/H) in near-surface water. This can be explained by the loss of large amounts of water into space, with the lighter H atoms escaping faster than D atoms. Understanding the specific physical processes and controlling factors behind the present escape of H and D is the key objective of the MAVEN IUVS echelle channel. This knowledge can then be applied to an accurate extrapolation back in time to understand the water history of Mars. Observations of D in the martian upper atmosphere over the first martian year of the MAVEN mission have shown highly variable amounts of D, with a short-lived maximum just after perihelion and during southern summer. The timing and nature of this increase provide constraints on its possible origin. These results will be presented and compared with other measurements of the upper atmosphere of Mars.
NASA Technical Reports Server (NTRS)
Malhotra, A.; Mathews, J. D.
2011-01-01
There has been much interest in the meteor physics community recently regarding the form that meteoroid mass flux arrives in the upper atmosphere. Of particular interest are the relative roles of simple ablation, differential ablation, and fragmentation in the meteoroid mass flux observed by the Incoherent Scatter Radars (ISR). We present here the first-ever statistical study showing the relative contribution of the above-mentioned three mechanisms. These are also one of the first meteor results from the newly-operational Resolute Bay ISR. These initial results emphasize that meteoroid disintegration into the upper atmosphere is a complex process in which all the three above-mentioned mechanisms play an important role though fragmentation seems to be the dominant mechanism. These results prove vital in studying how meteoroid mass is deposited in the upper atmosphere which has important implications to the aeronomy of the region and will also contribute in improving current meteoroid disintegration/ablation models.
Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD
NASA Astrophysics Data System (ADS)
Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.
2006-12-01
We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.
Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere
NASA Astrophysics Data System (ADS)
Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.
2013-12-01
Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable impact on the upper atmosphere and describe techniques for experimental verification of this finding.
Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.
2017-12-01
Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing. However, the VLF diagnostic is complicated by the geometry of the problem, in that the perturbation in the upper atmosphere is much smaller than the VLF wavelength, so wide-angle scattering needs to be taken into account.
NASA Astrophysics Data System (ADS)
Yatagai, A. I.; Iyemori, T.; Ritschel, B.; Koyama, Y.; Hori, T.; Abe, S.; Tanaka, Y.; Shinbori, A.; Umemura, N.; Sato, Y.; Yagi, M.; Ueno, S.; Hashiguchi, N. O.; Kaneda, N.; Belehaki, A.; Hapgood, M. A.
2013-12-01
The IUGONET is a Japanese program to build a metadata database for ground-based observations of the upper atmosphere [1]. The project began in 2009 with five Japanese institutions which archive data observed by radars, magnetometers, photometers, radio telescopes and helioscopes, and so on, at various altitudes from the Earth's surface to the Sun. Systems have been developed to allow searching of the above described metadata. We have been updating the system and adding new and updated metadata. The IUGONET development team adopted the SPASE metadata model [2] to describe the upper atmosphere data. This model is used as the common metadata format by the virtual observatories for solar-terrestrial physics. It includes metadata referring to each data file (called a 'Granule'), which enable a search for data files as well as data sets. Further details are described in [2] and [3]. Currently, three additional Japanese institutions are being incorporated in IUGONET. Furthermore, metadata of observations of the troposphere, taken at the observatories of the middle and upper atmosphere radar at Shigaraki and the Meteor radar in Indonesia, have been incorporated. These additions will contribute to efficient interdisciplinary scientific research. In the beginning of 2013, the registration of the 'Observatory' and 'Instrument' metadata was completed, which makes it easy to overview of the metadata database. The number of registered metadata as of the end of July, totalled 8.8 million, including 793 observatories and 878 instruments. It is important to promote interoperability and/or metadata exchange between the database development groups. A memorandum of agreement has been signed with the European Near-Earth Space Data Infrastructure for e-Science (ESPAS) project, which has similar objectives to IUGONET with regard to a framework for formal collaboration. Furthermore, observations by satellites and the International Space Station are being incorporated with a view for making/linking metadata databases. The development of effective data systems will contribute to the progress of scientific research on solar terrestrial physics, climate and the geophysical environment. Any kind of cooperation, metadata input and feedback, especially for linkage of the databases, is welcomed. References 1. Hayashi, H. et al., Inter-university Upper Atmosphere Global Observation Network (IUGONET), Data Sci. J., 12, WDS179-184, 2013. 2. King, T. et al., SPASE 2.0: A standard data model for space physics. Earth Sci. Inform. 3, 67-73, 2010, doi:10.1007/s12145-010-0053-4. 3. Hori, T., et al., Development of IUGONET metadata format and metadata management system. J. Space Sci. Info. Jpn., 105-111, 2012. (in Japanese)
Martian Surface and Atmosphere Workshop
NASA Astrophysics Data System (ADS)
Schuraytz, Benjamin C.
The NASA-sponsored Martian Surface and Atmosphere Through Time Study Project convened its first major meeting at the University of Colorado in Boulder, September 23-25, 1991. The workshop, co-sponsored by the Lunar and Planetary Institute (LPI) and the Laboratory for Atmospheric and Space Physics at the University of Colorado, brought together an international group of 125 scientists to discuss a variety of issues relevant to the goals of the MSATT Program. The workshop program committee included co-convenors Robert Haberle, MSATT Steering Committee Chairman NASA Ames Research Center) and Bruce Jakosky (University of Colorado), and committee members Amos Banin (NASA Ames Research Center and Hebrew University), Benjamin Schuraytz (LPI), and Kenneth Tanaka (U.S. Geological Survey, Flagstaff, Ariz.).The purpose of the workshop was to begin exploring and defining the relationships between different aspects of Mars science—the evolution of the surface, the atmosphere, upper atmosphere, volatiles, and climate. Specific topics addressed in the 88 contributed abstracts included the current nature of the surface with respect to physical properties and photometric observations and interpretations; the history of geological processes, comprising water and ice-related geomorphology, impact cratering, and volcanism; and the geochemistry and mineralogy of the surface with emphasis on compositional and spectroscopic studies and weathering processes. Also addressed were the present atmosphere, focusing on structure and dynamics, volatile and dust distribution, and the upper atmosphere; long-term volatile evolution based on volatiles in SNC meteorites (certain meteorites thought to have come from Mars) and atmospheric evolution processes; climate history and volatile cycles in relation to early climate and the polar caps, ground ice, and regolith; and future mission concepts.
1994-11-04
This is an STS-66 mission onboard photo of the Space Shuttle Orbiter Atlantis showing the payload of the third Atmospheric Laboratory for Applications and Science (ATLAS-3) mission. During the ATLAS missions, international teams of scientists representing many disciplines combined their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigated how Earth's middle and upper atmospheres and climate are affected by by the sun and by products of industrial and agricultural activities on Earth. Thirteen ATLAS instruments supported experiments in atmospheric sciences, solar physics, space plasma physics, and astronomy. The instruments were mounted on two Spacelab pallets in the Space Shuttle payload bay. The ATLAS-3 mission continued a variety of atmospheric and solar studies to improve understanding of the Earth's atmosphere and its energy input from the sun. A key scientific objective was to refine existing data on variations in the fragile ozone layer of the atmosphere. The Orbiter Atlantis was launched on November 3, 1994 for the ATLAS-3 mission (STS-66).
The Transition from Mathematician to Astrophysicist
NASA Astrophysics Data System (ADS)
Flannery, M. R.
Various landmarks in the evolution of Alexander Dalgarno from a gifted mathematician to becoming the acknowledged Father of Molecular Astrophysics are noted. His researches in basic atomic and molecular physics, aeronomy (the study of the upper atmosphere) and astrophysics are highlighted.
NASA Technical Reports Server (NTRS)
Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)
1997-01-01
Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1996.- An Assessment Report. It consists primarily of the Executive Summary and Chapter Summaries of the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 37, Scientific Assessment of Ozone Depletion: 1994, sponsored by NASA, the National Oceanic and Atmospheric Administration (NOAA), the UK Department of the Environment, the United Nations Environment Program, and the World Meteorological Organization. Other sections of Part 11 include summaries of the following: an Atmospheric Ozone Research Plan from NASA's Office of Mission to Planet Earth; summaries from a series of Space Shuttle-based missions and two recent airborne measurement campaigns; the Executive Summary of the 1995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, and the most recent evaluation of photochemical and chemical kinetics data (Evaluation No. 12 of the NASA Panel for Data Evaluation) used as input parameters for atmospheric models.
A prototype Upper Atmospheric Research Collaboratory (UARC)
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Atkins, D. E; Weymouth, T. E.; Olson, G. M.; Niciejewski, R.; Finholt, T. A.; Prakash, A.; Rasmussen, C. E.; Killeen, T.; Rosenberg, T. J.
1995-01-01
The National Collaboratory concept has great potential for enabling 'critical mass' working groups and highly interdisciplinary research projects. We report here on a new program to build a prototype collaboratory using the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland and a group of associated scientists. The Upper Atmospheric Research Collaboratory (UARC) is a joint venture of researchers in upper atmospheric and space science, computer science, and behavioral science to develop a testbed for collaborative remote research. We define the 'collaboratory' as an advanced information technology environment which enables teams to work together over distance and time on a wide variety of intellectual tasks. It provides: (1) human-to-human communications using shared computer tools and work spaces; (2) group access and use of a network of information, data, and knowledge sources; and (3) remote access and control of instruments for data acquisition. The UARC testbed is being implemented to support a distributed community of space scientists so that they have network access to the remote instrument facility in Kangerlussuaq and are able to interact among geographically distributed locations. The goal is to enable them to use the UARC rather than physical travel to Greenland to conduct team research campaigns. Even on short notice through the collaboratory from their home institutions, participants will be able to meet together to operate a battery of remote interactive observations and to acquire, process, and interpret the data.
ERIC Educational Resources Information Center
El Abed, Mohamed
2014-01-01
A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.
NASA Technical Reports Server (NTRS)
Hinson, D. P.
1983-01-01
The refractive index of planetary atmospheres at microwave frequencies is discussed. Physical models proposed for the refractive irregularities in the ionosphere and neutral atmosphere serve to characterize the atmospheric scattering structures, and are used subsequently to compute theoretical scintillation spectra for comparison with the Voyager occultation measurements. A technique for systematically analyzing and interpreting the signal fluctuations observed during planetary occultations is presented and applied to process the dual-wavelength data from the Voyager radio occultations by Jupiter, Saturn, and Titan. Results concerning the plasma irregularities in the upper ionospheres of Jupiter and Saturn are reported. The measured orientation of the irregularities is used to infer the magnetic field direction at several locations in the ionospheres of these two planets; the occultation measurements conflict with the predictions of Jovian magnetic field models, but generally confirm current models of Saturn's field. Wave parameters, including the vertical fluxes of energy and momentum, are estimated, and the source of the internal gravity waves discovered in Titan's upper atmosphere is considered.
Upper atmospheric gravity wave details revealed in nightglow satellite imagery
Miller, Steven D.; Straka, William C.; Yue, Jia; Smith, Steven M.; Alexander, M. Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T.
2015-01-01
Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation. PMID:26630004
Upper atmospheric gravity wave details revealed in nightglow satellite imagery.
Miller, Steven D; Straka, William C; Yue, Jia; Smith, Steven M; Alexander, M Joan; Hoffmann, Lars; Setvák, Martin; Partain, Philip T
2015-12-08
Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼ 90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation.
NASA Technical Reports Server (NTRS)
Combi, Michael R.
2004-01-01
In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic (MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important. At the University of Michigan we have an established base of experience and expertise in numerical simulations based on particle codes which address these physical regimes. The Principal Investigator, Dr. Michael Combi, has over 20 years of experience in the development of particle-kinetic and hybrid kinetichydrodynamics models and their direct use in data analysis. He has also worked in ground-based and space-based remote observational work and on spacecraft instrument teams. His research has involved studies of cometary atmospheres and ionospheres and their interaction with the solar wind, the neutral gas clouds escaping from Jupiter s moon Io, the interaction of the atmospheres/ionospheres of Io and Europa with Jupiter s corotating magnetosphere, as well as Earth s ionosphere. This report describes our progress during the year. The contained in section 2 of this report will serve as the basis of a paper describing the method and its application to the cometary coma that will be continued under a research and analysis grant that supports various applications of theoretical comet models to understanding the inner comae of comets (grant NAGS- 13239 from the Planetary Atmospheres program).
HYDRAULIC REDISTRIBUTION OF SOIL WATER: ECOSYSTEM IMPLICATIONS FOR PACIFIC NORTHWEST FORESTS
The physical process of hydraulic redistribution (HR) is driven by competing soil, tree and atmospheric water potential gradients, and may delay severe water stress for roots and other biota associated with the upper soil profile. We monitored soil moisture characteristics across...
The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry
NASA Astrophysics Data System (ADS)
Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio; Belluzzi, Luca
2017-09-01
The empirical investigation of the magnetic field in the outer solar atmosphere is a very important challenge in astrophysics. To this end, we need to identify, measure and interpret observable quantities sensitive to the magnetism of the upper chromosphere, transition region and corona. This paper provides an overview of the physics and diagnostic potential of spectropolarimetry in permitted spectral lines of the ultraviolet solar spectrum, such as the Mg ii h and k lines around 2800 Å, the hydrogen Lyman-α line at 1216 Å, and the Lyman-α line of He ii at 304 Å. The outer solar atmosphere is an optically pumped vapor and the linear polarization of such spectral lines is dominated by the atomic level polarization produced by the absorption and scattering of anisotropic radiation. Its modification by the action of the Hanle and Zeeman effects in the inhomogeneous and dynamic solar atmosphere needs to be carefully understood because it encodes the magnetic field information. The circular polarization induced by the Zeeman effect in some ultraviolet lines (e.g., Mg ii h & k) is also of diagnostic interest, especially for probing the outer solar atmosphere in plages and more active regions. The few (pioneering) observational attempts carried out so far to measure the ultraviolet spectral line polarization produced by optically pumped atoms in the upper chromosphere, transition region and corona are also discussed. We emphasize that ultraviolet spectropolarimetry is a key gateway to the outer atmosphere of the Sun and of other stars.
Influence of the North Atlantic dipole on climate changes over Eurasia
NASA Astrophysics Data System (ADS)
Serykh, I. V.
2016-11-01
In this paper, some hydrophysical and meteorological characteristics of negative (1948-1976 and 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics- Eurasia system of ocean-atmosphere interactions is discussed.
Upper Atmosphere Research Satellite (UARS): A program to study global ozone change
NASA Technical Reports Server (NTRS)
1991-01-01
A general overview of NASA's Upper Atmosphere Research Satellite (UARS) program is presented in a broad based informational publication. The UARS will be responsible for carrying out the first systematic, comprehensive study of the stratosphere and will furnish important new data on the mesosphere and thermosphere. The UARS mission objectives are to provide an increased understanding of energy input into the upper atmosphere; global photochemistry of the upper atmosphere; dynamics of the upper atmosphere; coupling among these processes; and coupling between the upper and lower atmosphere. These mission objectives are briefly described along with the UARS on-board instrumentation and related data management systems.
Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander
2014-01-01
Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.
NASA Technical Reports Server (NTRS)
1991-01-01
Space physics is defined as the study of the heliosphere as one system; that is, of the Sun and solar wind, and their interactions with the upper atmospheres, ionospheres, and magnetospheres of the planets and comets, with energetic particles, and with the interstellar medium. This report contains a number of reports by different panels on the major topics in the space physics program including: (1) the cosmic and heliospheric physics program for the years 1995 to 2010; (2) ionosphere, thermosphere, and mesosphere studies; (3) magnetospheric physics; (4) solar physics; and (5) space physics theory.
NASA Astrophysics Data System (ADS)
Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.
2017-12-01
In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.
The Mega Mesospheric Parachute
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.; Oberto, Robert; Kinsey, Robert
2005-01-01
The current understanding and modeling of the upper reaches of the atmosphere is incomplete. Upper atmospheric interactions with the lower atmosphere, effects of ionizing radiation, high altitude cloud phenomena, and the dynamical interaction with the magnetosphere require greater definition. The scientific objective of obtaining a greater understanding of the upper atmosphere can be achieved by designing, implementing, testing, and utilizing a facility that provides long period in-situ measurements of the mesosphere. Current direct sub-sonic measurements of the upper atmosphere are hampered by the approximately one minute sub-sonic observation window of a ballistic sounding rocket regardless of the launch angle. In-situ measurements at greater than transonic speeds impart energy into the molecular atmospheric system and distort the true atmospheric chemistry. A long duration, sub-sonic capability will significantly enhance our ability to observe and measure: (1) mesospheric lightning phenomena (sprites and blue jets) (2) composition, structure and stratification of noctilucent clouds (3) physics of seasonal radar echoes, gravity wave phenomena (4) chemistry of mesospheric gaseous ratio mixing (5) mesospheric interaction of ionizing radiation (6) dynamic electric and magnetic fields This new facility will also provide local field measurements which complement those that can be obtained through external measurements from satellite and ground-based platforms. The 400 foot (approximately 130 meter) diameter lightweight mega-mesospheric parachute system, deployed with a sounding rocket, is proposed herein as a method to increase sub-sonic mesospheric measurement time periods by more than an order of magnitude. The report outlines a multi-year evolving science instrumentation suite in parallel with the development of the mega meso-chute facility. The developmental issues surrounding the meso-chute are chiefly materials selection (thermal and structural) and deployment mechanism physics. Three mission cases were conceived and developed to include cost and schedules estimates. Each scenario has increasing scientific utility with paralleling launch weight, parachute hang-time, deployment altitude, and parachute size: (1) Case #1: $8.4M@24 months, 6kg payload, 20 min., 50km alt., 80 m. dia. (2) Case #2: $10.4M@24 months, 6kg payload, 20 min., 60km alt, 130m. dia. (3) Case #3: $13.6M@36 months, 30kg payload, 30 min., 90km alt., 200m. dia. The initial breakout cost for the parachute system is approximately $2M@24 months. This report identifies that although the challenges of the mega-meso-chute may be difficult, they can be surmounted and valuable results can be achieved.
1994-11-04
This is an STS-66 mission onboard photo showing the Remote Manipulator System (RMS) moving toward one of the solar science instruments for the third Atmospheric Laboratory for Applications and Science (ATLAS-3) mission in the cargo bay of the Orbiter Atlantis. During the ATLAS missions, international teams of scientists representing many disciplines combined their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigated how Earth's middle and upper atmospheres and climate are affected by by the sun and by products of industrial and agricultural activities on Earth. Thirteen ATLAS instruments supported experiments in atmospheric sciences, solar physics, space plasma physics, and astronomy. The instruments were mounted on two Spacelab pallets in the Space Shuttle payload bay. The ATLAS-3 mission continued a variety of atmospheric and solar studies, to improve understanding of the Earth's atmosphere and its energy input from the sun. A key scientific objective was to refine existing data on variations in the fragile ozone layer of the atmosphere. The Shuttle Orbiter Atlantis was launched on November 3, 1994 for the ATLAS-3 mission (STS-66). The ATLAS program was managed by the Marshall Space Flight Center.
Microbes in the upper atmosphere and unique opportunities for astrobiology research.
Smith, David J
2013-10-01
Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.
WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer
NASA Technical Reports Server (NTRS)
1992-01-01
As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.
NASA Astrophysics Data System (ADS)
Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa
2017-04-01
In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378
NASA Astrophysics Data System (ADS)
Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; Viggiano, Albert; Caton, Ronald G.; Pedersen, Todd R.; Holmes, Jeffrey M.; Ard, Shaun; Shuman, Nicholas; Groves, Keith M.
2017-05-01
Atomic samarium has been injected into the neutral atmosphere for production of electron clouds that modify the ionosphere. These electron clouds may be used as high-frequency radio wave reflectors or for control of the electrodynamics of the F region. A self-consistent model for the photochemical reactions of Samarium vapor cloud released into the upper atmosphere has been developed and compared with the Metal Oxide Space Cloud (MOSC) experimental observations. The release initially produces a dense plasma cloud that that is rapidly reduced by dissociative recombination and diffusive expansion. The spectral emissions from the release cover the ultraviolet to the near infrared band with contributions from solar fluorescence of the atomic, molecular, and ionized components of the artificial density cloud. Barium releases in sunlight are more efficient than Samarium releases in sunlight for production of dense ionization clouds. Samarium may be of interest for nighttime releases but the artificial electron cloud is limited by recombination with the samarium oxide ion.
The Upper Atmosphere; Threshold of Space.
ERIC Educational Resources Information Center
Bird, John
This booklet contains illustrations of the upper atmosphere, describes some recent discoveries, and suggests future research questions. It contains many color photographs. Sections include: (1) "Where Does Space Begin?"; (2) "Importance of the Upper Atmosphere" (including neutral atmosphere, ionized regions, and balloon and investigations); (3)…
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.
2001-01-01
This report summarizes work conducted from January 1996 through April 1999 on a program of research to investigate the physical mechanisms that underlie the transport of trace constituents in the stratosphere-troposphere system. The primary scientific goal of the research has been to identify the processes which transport air masses within the lower stratosphere, particularly between the tropics and middle latitudes. This research was conducted in collaboration with the Subsonic Assessment (SASS) of the NASA Atmospheric Effects of Radiation Program (AEAP) and the Upper Atmospheric Research Program (UARP). The SASS program sought to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The present investigation contributed to the goals of each of these by diagnosing the history of air parcels intercepted by NASA research aircraft in UARP and AEAP campaigns. This was done by means of a blend of trajectory analyses and tracer correlation techniques.
2013-10-28
L-R: Dwayne Brown, NASA Public Affairs Officer, Jim Green, director, Planetary Science Division, NASA Headquarters, Lisa May, MAVEN program executive, NASA Headquarters, Kelly Fast, MAVEN program scientist, NASA Headquarters, Bruce Jakosky, MAVEN principal investigator, University of Colorado Boulder Laboratory for Atmospheric and Space Physics, and David Mitchell, MAVEN project manager, NASA's Goddard Space Flight Center, Greenbelt, Md. discuss the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)
2013-10-28
L-R: Jim Green, director, Planetary Science Division, NASA Headquarters, Lisa May, MAVEN program executive, NASA Headquarters, Kelly Fast, MAVEN program scientist, NASA Headquarters, Bruce Jakosky, MAVEN principal investigator, University of Colorado Boulder Laboratory for Atmospheric and Space Physics, and David Mitchell, MAVEN project manager, NASA's Goddard Space Flight Center, Greenbelt, Md. are applauded at the end of a panel discussion on the upcoming launch of the Mars Atmosphere and Volatile Evolution (MAVEN) mission, at a press conference at NASA Headquarters in Washington on Monday, Oct. 28th, 2013. MAVEN is the agency's next mission to Mars and the first devoted to understanding the upper atmosphere of the Red Planet. (Photo credit: NASA/Jay Westcott)
MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions
NASA Astrophysics Data System (ADS)
Jakosky, Bruce M.
2017-09-01
The Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars has been operating in orbit for more than a full Martian year. Observations are dramatically changing our view of the Mars upper atmosphere system, which includes the upper atmosphere, ionosphere, coupling to the lower atmosphere, magnetosphere, and interactions with the Sun and the solar wind. The data are allowing us to understand the processes controlling the present-day structure of the upper atmosphere and the rates of escape of gas to space. These will tell us the role that escape to space has played in the evolution of the Mars atmosphere and climate.
Physics of the Space Environment
NASA Astrophysics Data System (ADS)
Vasyliünas, Vytenis M.
This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of magnetosphereionosphere coupling.
Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.
2009-05-01
The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentz invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.
Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
IceCube Collaboration; Klein, Spencer; Collaboration, IceCube
2009-06-02
The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLImore » and QD parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.« less
Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, R.; Andeen, K.; Baker, M.
2009-05-15
The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance or quantum decoherence. Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on violation of Lorentzmore » invariance and quantum decoherence parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.« less
IMPACT: Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking
NASA Astrophysics Data System (ADS)
Koller, J.; Brennan, S.; Godinez, H. C.; Higdon, D. M.; Klimenko, A.; Larsen, B.; Lawrence, E.; Linares, R.; McLaughlin, C. A.; Mehta, P. M.; Palmer, D.; Ridley, A. J.; Shoemaker, M.; Sutton, E.; Thompson, D.; Walker, A.; Wohlberg, B.
2013-12-01
Low-Earth orbiting satellites suffer from atmospheric drag due to thermospheric density which changes on the order of several magnitudes especially during space weather events. Solar flares, precipitating particles and ionospheric currents cause the upper atmosphere to heat up, redistribute, and cool again. These processes are intrinsically included in empirical models, e.g. MSIS and Jacchia-Bowman type models. However, sensitivity analysis has shown that atmospheric drag has the highest influence on satellite conjunction analysis and empirical model still do not adequately represent a desired accuracy. Space debris and collision avoidance have become an increasingly operational reality. It is paramount to accurately predict satellite orbits and include drag effect driven by space weather. The IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), funded with over $5 Million by the Los Alamos Laboratory Directed Research and Development office, has the goal to develop an integrated system of atmospheric drag modeling, orbit propagation, and conjunction analysis with detailed uncertainty quantification to address the space debris and collision avoidance problem. Now with over two years into the project, we have developed an integrated solution combining physics-based density modeling of the upper atmosphere between 120-700 km altitude, satellite drag forecasting for quiet and disturbed geomagnetic conditions, and conjunction analysis with non-Gaussian uncertainty quantification. We are employing several novel approaches including a unique observational sensor developed at Los Alamos; machine learning with a support-vector machine approach of the coupling between solar drivers of the upper atmosphere and satellite drag; rigorous data assimilative modeling using a physics-based approach instead of empirical modeling of the thermosphere; and a computed-tomography method for extracting temporal maps of thermospheric densities using ground based observations. The developed IMPACT framework is an open research framework enabling the exchange and testing of a variety of atmospheric density models, orbital propagators, drag coefficient models, ground based observations, etc. and study their effect on conjunctions and uncertainty predictions. The framework is based on a modern service-oriented architecture controlled by a web interface and providing 3D visualizations. The goal of this project is to revolutionize the ability to monitor and track space objects during highly disturbed space weather conditions, provide suitable forecasts for satellite drag conditions and conjunction analysis, and enable the exchange of models, codes, and data in an open research environment. We will present capabilities and results of the IMPACT framework including a demo of the control interface and visualizations.
Analysis and Programming for Research in the Physics of the Upper Atmosphere.
1981-10-09
magnetic north pole. Greenwich sidereal time is calculated using an algorithm for ephemeris sidereal time from Reference (3). The time is then...Procedures. .. ... ........ .... 47 1.4.3 Rapid Density Variations .. .. ...... ........ 49 1.5 References .. ... ......... ........ ...... 52 2.0...92 2.3 References .. ... ........ ........ ....... 94 4 Table of Contents (Continued) Page 3.0 Ionospheric Research Support
Present state of knowledge of the upper atmosphere1993: An assessment report, part 2
NASA Technical Reports Server (NTRS)
Kurylo, Michael J.; Kaye, Jack A.; Hampson, Robert F.; Schmoltner, Anne-Marie
1994-01-01
This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial reports to Congress and the Environmental Protection Agency. NASA is charged with the responsibility to report on the state of our knowledge of the earth's upper atmosphere, particularly the stratosphere. Part 2 (this document) presents summaries of several scientific assessments of our current understanding of the chemical composition and physical structure of the stratosphere, in particular how the abundance and distribution of ozone is predicted to change in the future. These reviews include: (Section B) 'Scientific Assessment of Ozone Depletion: 1991'; (Section C) 'Methyl bromide and the Ozone Layer: A Summary of Current Understanding', published in 1992; (Section D) 'Concentrations, Lifetimes, and Trends of Chlorofluorocarbons (CFC's), Halons, and Related Molecules in the Atmosphere'; (Section E) 'The Atmospheric Effects of Stratospheric Aircraft: Interim Assessment Report of the NASA High-Speed Research Program'; (Section F) 'Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling'; and (Section G) a list of the contributors to this report.
NASA Astrophysics Data System (ADS)
Karpov, I. V.; Kshevetskii, S. P.
2017-11-01
The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.
NASA Technical Reports Server (NTRS)
Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos
1995-01-01
This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.
A new physics-based modeling approach for tsunami-ionosphere coupling
NASA Astrophysics Data System (ADS)
Meng, X.; Komjathy, A.; Verkhoglyadova, O. P.; Yang, Y.-M.; Deng, Y.; Mannucci, A. J.
2015-06-01
Tsunamis can generate gravity waves propagating upward through the atmosphere, inducing total electron content (TEC) disturbances in the ionosphere. To capture this process, we have implemented tsunami-generated gravity waves into the Global Ionosphere-Thermosphere Model (GITM) to construct a three-dimensional physics-based model WP (Wave Perturbation)-GITM. WP-GITM takes tsunami wave properties, including the wave height, wave period, wavelength, and propagation direction, as inputs and time-dependently characterizes the responses of the upper atmosphere between 100 km and 600 km altitudes. We apply WP-GITM to simulate the ionosphere above the West Coast of the United States around the time when the tsunami associated with the March 2011 Tohuku-Oki earthquke arrived. The simulated TEC perturbations agree with Global Positioning System observations reasonably well. For the first time, a fully self-consistent and physics-based model has reproduced the GPS-observed traveling ionospheric signatures of an actual tsunami event.
NASA Technical Reports Server (NTRS)
Farmer, Crofton B.; Raper, Odell F.
1987-01-01
The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.
Semiempirical photospheric models of a solar flare on May 28, 2012
NASA Astrophysics Data System (ADS)
Andriets, E. S.; Kondrashova, N. N.
2015-02-01
The variation of the photosphere physical state during the decay phase of SF/B6.8-class solar flare on May 28, 2012 in active region NOAA 11490 is studied. We used the data of the spectropolarimetric observations with the French-Italian solar telescope THEMIS (Tenerife, Spain). Semi-empirical model atmospheres are derived from the inversion with SIR (Stokes Inversion based on Response functions) code. The inversion was based on Stokes profiles of six photospheric lines. Each model atmosphere has a two-component structure: a magnetic flux tube and non-magnetic surroundings. The Harvard Smithsonian Reference Atmosphere (HSRA) has been adopted for the surroundings. The macroturbulent velocity and the filling factor were assumed to be constant with the depth. The optical depth dependences of the temperature, magnetic field strength, and line-of-sight velocity are obtained from inversion. According to the received model atmospheres, the parameters of the magnetic field and the thermodynamical parameters changed during the decay phase of the flare. The model atmospheres showed that the photosphere remained in a disturbed state during observations after the maximum of the flare. There are temporal changes in the temperature and the magnetic field strength optical depth dependences. The temperature enhancement in the upper photospheric layers is found in the flaring atmospheres relative to the quiet-Sun model. The downflows are found in the low and upper photosphere at the decay phase of the flare.
NASA Astrophysics Data System (ADS)
Akmaev, R. A.; Fuller-Rowell, T. J.; Wu, F.; Wang, H.; Juang, H.; Moorthi, S.; Iredell, M.
2009-12-01
The upper atmosphere and ionosphere exhibit variability and phenomena that have been associated with planetary and tidal waves originating in the lower atmosphere. To study and be able to predict the effects of these global-scale dynamical perturbations on the coupled thermosphere-ionosphere-electrodynamics system a new coupled model is being developed under the IDEA project. To efficiently cross the infamous R2O “death valley”, from the outset the IDEA project leverages the natural synergy between NOAA’s National Weather Service’s (NWS) Space Weather Prediction and Environmental Modeling Centers and a NOAA-University of Colorado cooperative institute (CIRES). IDEA interactively couples a Whole Atmosphere Model (WAM) with ionosphere-plasmasphere and electrodynamics models. WAM is a 150-layer general circulation model (GCM) based on NWS’s operational weather prediction Global Forecast System (GFS) extended from its nominal top altitude of 62 km to over 600 km. It incorporates relevant physical processes including those responsible for the generation of tidal and planetary waves in the troposphere and stratosphere. Long-term simulations reveal realistic seasonal variability of tidal waves with a substantial contribution from non-migrating tidal modes, recently implicated in the observed morphology of the ionosphere. Such phenomena as the thermospheric Midnight Temperature Maximum (MTM), previously associated with the tides, are also realistically simulated for the first time.
The space shuttle payload planning working groups. Volume 5: Solar physics
NASA Technical Reports Server (NTRS)
1973-01-01
The findings of the Solar Physics working group of the space shuttle payload planning activity are presented. The areas to be investigated by the solar physics experiments are: (1) the production of mechanical energy in the subphotospheric layers and its transport and dissipation in the upper layers of the atmosphere, (2) the mass flux from the subphotospheric layers into the chromosphere and corona and beyond the solar wind, (3) solar activity and its relationship to magnetic fields, and (4) the production of solar flares. The approach to be followed in conducting the experiments and the equipment required are defined.
Laboratory for Extraterrestrial Physics
NASA Technical Reports Server (NTRS)
Vondrak, Richard R. (Technical Monitor)
2001-01-01
The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study the interplanetary medium, asteroids, comets, and planets. Suborbital sounding rockets and groundbased observing platforms form an integral part of these research activities. This report covers the period from approximately October 1999 through September 2000.
Candidates for office 2004-2006
NASA Astrophysics Data System (ADS)
Timothy L. Killeen. AGU member since 1981. Director of the National Center for Atmospheric Research (NCAR); Senior Scientist, High Altitude Observatory; Adjunct Professor, University of Michigan. Major areas of interest include space physics and aeronomy remote sensing, and interdisciplinary science education. B.S., Physics and Astronomy (first class honors), 1972, University College London; Ph.D., Atomic and Molecular Physics, 1975, University College London. University of Michigan: Researcher and Professor of Atmospheric, Oceanic, and Space Sciences, 1978-2000 Director of the Space Physics Research Laboratory 1993-1998 Associate Vice-President for Research, 1997-2000. Visiting senior scientist at NASA Goddard Space Flight Center, 1992. Program Committee, American Association for the Advancement of Science; Council Member, American Meteorological Society; Editor-in-Chief, Journal of Atmospheric and Solar-Terrestrial Physics; Chair, Jerome K.Weisner National Policy Symposium on the Integration of Research and Education, 1999. Authored over 140 publications, 57 in AGU journals. Significant publications include: Interaction of low energy positrons with gaseous atoms and molecules, Atomic Physics, 4, 1975; Energetics and dynamics of the thermosphere, Reviews of Geophysics, 1987; The upper mesosphere and lower thermosphere, AGU Geophysical Monograph, 1995, Excellence in Teaching and Research awards, College of Engineering, University of Michigan; recipient of two NASA Achievement Awards; former chair, NASA Space Physics Subcommittee; former chair, National Science Foundation (NSF) Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program; former member, NSF Advisory Committee for Geosciences, and chair of NSF's Atmospheric Sciences Subcommittee, 1999-2002 member, NASA Earth Science Enterprise Advisory Committee; member of various National Academy of Science/National Research Council Committees; cochair, American Association for the Advancement of Science National Meeting, 2003. AGU service includes: term as associate editor of Journal of Geophysical Research-Space Physics; chair, Panel on International Space Station; Global Climate Change Panel; Federal Budget Review Committee; member of AGU Program, Public Information, Awards, and Public Affairs committees; Chapman Conference Convener and Monograph editor; Section Secretary and Program Chair, Space and Planetary Relations Section; President of Space Physics and Aeronomy Section; AGU Council Member.
Determining the role of TiO/VO in hot exoplanet atmospheres
NASA Astrophysics Data System (ADS)
Evans, Thomas
2016-10-01
The role of TiO and VO in ultra hot (>2000K) gas giant atmospheres is a major unresolved issue in the exoplanet field. At these temperatures, TiO and VO are known to be important absorbers in the atmospheres of M/L dwarfs and have been theorized to play an important role in irradiated gas giants. To date, however, TiO/VO has not been securely detected in a planetary atmosphere, despite numerous searches. One possibility is that the upper atmospheres of highly irradiated planets are typically depleted of TiO/VO by cold-trapping at lower altitudes or rain-out on the relatively cool nightside. Using WFC3 G141 and ground-based photometry, we have recently published a transmission spectrum for WASP-121b (T~2400K) showing new evidence for absorption by TiO/VO. Our observations also yielded a high confidence (5.4 sigma) detection of the 1.4 micron H2O absorption band. The TiO/VO claim, however, remains tentative, as it currently hinges upon broadband photometry measurements obtained from the ground at relatively low signal-to-noise. If TiO/VO is present it will have significant implications for the overall physics and chemistry of the atmosphere, including the likely production of a strong thermal inversion in the upper atmosphere. I will describe the follow-up observations we are currently pursuing in order to confirm or rule out TiO/VO in the atmosphere of WASP-121b and in doing so address a long-standing mystery of exoplanet atmospheres.
Observational knowledge about the physical properties of O stars
NASA Technical Reports Server (NTRS)
Underhill, A. B.
1983-01-01
Information about the effective temperatures, radii, and masses of O-type stars is presented. It is argued that rapid variations in the amount of light from O stars and the spectral distribution are a result chiefly of changes which occur in the envelope of the star. The stability of the photospheric layers of O stars against convection is reviewed and it is noted that late O stars and early B stars have a convection zone in the deeper parts of the photosphere. This convection zone is due to the second ionization of helium. Evidence is reviewed that most of the line-profile changes seen for O stars are generated by changes in the physical state of the mantle of the star, that is of the outer atmosphere where the deposition of non-radiative energy and momentum controls the physical state of the atmosphere. The physical state of the mantle may change in response to changes in the upper envelope of a star with a different time constant than the photosphere does.
Composition and physical properties of Enceladus' surface
Brown, R.H.; Clark, R.N.; Buratti, B.J.; Cruikshank, D.P.; Barnes, J.W.; Mastrapa, R.M.E.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.H.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Drossart, P.; Formisano, V.; Jaumann, R.; Langavin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe
2006-01-01
Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH 3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.
NASA Astrophysics Data System (ADS)
Vasilyev, Roman; Artamonov, Maksim; Beletsky, Aleksandr; Zherebtsov, Geliy; Medvedeva, Irina; Mikhalev, Aleksandr; Syrenova, Tatyana
2017-09-01
We describe the Fabry–Perot interferometer designed to study Earth’s upper atmosphere. We propose a modification of the existing data processing method for determining the Doppler shift and Doppler widening and also for separating the observed line intensity and the background intensity. The temperature and wind velocity derived from these parameters are compared with physical characteristics obtained from modeling (NRLMSISE-00, HWM14). We demonstrate that the temperature is determined from the oxygen 630 nm line irrespective of the hydroxyl signal existing in interference patterns. We show that the interferometer can obtain temperature from the oxygen 557.7 nm line in case of additional calibration of the device. The observed wind velocity mainly agrees with model data. Night variations in the red and green oxygen lines quite well coincide with those in intensities obtained by devices installed nearby the interferometer.
The Upper Atmosphere Research Satellite (UARS) mission
NASA Technical Reports Server (NTRS)
Reber, Carl A.; Trevathan, Charles E.; Mcneal, Robert J.; Luther, Michael R.
1993-01-01
The Upper Atmosphere Research Satellite (UARS) is a NASA program aimed at improving our knowledge of the physical and chemical processes controlling the stratosphere, mesosphere, and lower thermosphere, emphasizing those levels that are known to be particularly susceptible to change by human activities. The spacecraft was launched by the Space Shuttle Discovery on September 12, 1991 into a near-circular orbit at 585 km altitude and 57 deg inclination. Measurements include vertical profiles of temperature, many trace gases, and horizontal wind velocities, as well as solar energy inputs. Many of the limb-scanning instruments can measure to as high as 80 deg latitude, providing near-global coverage. The mission is supported by a large international correlative measurement program, yielding data both for validation of the UARS measurements and for complementary scientific studies. A dedicated data system provides rapid processing to geophysical quantities and makes these data available to UARS scientists.
ERIC Educational Resources Information Center
Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong
2016-01-01
This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…
Trajectory Software With Upper Atmosphere Model
NASA Technical Reports Server (NTRS)
Barrett, Charles
2012-01-01
The Trajectory Software Applications 6.0 for the Dec Alpha platform has an implementation of the Jacchia-Lineberry Upper Atmosphere Density Model used in the Mission Control Center for International Space Station support. Previous trajectory software required an upper atmosphere to support atmosphere drag calculations in the Mission Control Center. The Functional operation will differ depending on the end-use of the module. In general, the calling routine will use function-calling arguments to specify input to the processor. The atmosphere model will then compute and return atmospheric density at the time of interest.
Cassini's Grand Finale Science Highlights
NASA Astrophysics Data System (ADS)
Spilker, Linda
2017-10-01
After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini returned its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere satisfying planetary protection requirements. Cassini's Grand Finale covered a period of roughly five months and ended with the first time exploration of the region between the rings and planet.The final close flyby of Titan in late April 2017 propelled Cassini across Saturn’s main rings and into its Grand Finale orbits; 22 orbits that repeatedly dove between Saturn’s innermost rings and upper atmosphere making Cassini the first spacecraft to explore this region. The last orbit turned the spacecraft into the first Saturn upper atmospheric probe.The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet.Science highlights and new mysteries gleaned to date from the Grand Finale orbits will be discussed.The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.
Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Yigit, Erdal
2018-01-01
The complexity of Venus’ upper atmospheric circulation is still being investigated. Simulations of Venus’ upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus’ upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model).
Solar and Space Physics: A Science for a Technological Society
NASA Technical Reports Server (NTRS)
2013-01-01
From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.
Upper atmosphere has cooled steadily for three decades
NASA Astrophysics Data System (ADS)
Wendel, JoAnna
2014-11-01
Increasing amounts of greenhouse gases released by human activities do not just affect only the lower atmosphere: Scientists project that anthropogenic carbon emissions have caused a cooling trend in the upper atmosphere, between 200 and 400 kilometers, over the past few decades. Cooling in this atmospheric region can affect the operations of satellites and the orbits of space junk. However, data about cooling trends in the upper atmosphere are still incomplete, and better data are needed to confirm this projection.
NASA Astrophysics Data System (ADS)
Tseng, W. L.; Johnson, R. E.; Tucker, O. J.; Perry, M. E.; Ip, W. H.
2017-12-01
During the Cassini Grand Finale mission, this spacecraft, for the first time, has done the in-situ measurements of Saturn's upper atmosphere and its rings and provides critical information for understanding the coupling dynamics between the main rings and the Saturnian system. The ring atmosphere is the source of neutrals (i.e., O2, H2, H; Tseng et al., 2010; 2013a), which is primarily generated by photolytic decomposition of water ice (Johnson et al., 2006), and plasma (i.e., O2+ and H2+; Tseng et al., 2011) in the Saturnian magnetosphere. In addition, the main rings have strong interaction with Saturn's atmosphere and ionosphere (i.e., a source of oxygen into Saturn's upper atmosphere and/or the "ring rain" in O'Donoghue et al., 2013). Furthermore, the near-ring plasma environment is complicated by the neutrals from both the seasonally dependent ring atmosphere and Enceladus torus (Tseng et al., 2013b), and, possibly, from small grains from the main and tenuous F and G rings (Johnson et al.2017). The data now coming from Cassini Grand Finale mission already shed light on the dominant physics and chemistry in this region of Saturn's magnetosphere, for example, the presence of carbonaceous material from meteorite impacts in the main rings and each gas species have similar distribution in the ring atmosphere. We will revisit the details in our ring atmosphere/ionosphere model to study, such as the source mechanism for the organic material and the neutral-grain-plasma interaction processes.
Simulation of the impact of thunderstorm activity on atmospheric gas composition
NASA Astrophysics Data System (ADS)
Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.
2010-08-01
A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.
NASA Astrophysics Data System (ADS)
Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír
2017-04-01
More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands (Prikryl et al., Ann. Geophys., 27, 31-57, 2009). It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.
A coupled ion-neutral photochemical model for the Titan atmosphere
NASA Astrophysics Data System (ADS)
Vuitton, V.; Yelle, R. V.; Klippenstein, S. J.; Horst, S. M.; Lavvas, P.
2013-12-01
Recent observations from the Cassini-Huygens spacecraft and the Herschel space observatory drastically increased our knowledge of Titan's chemical composition. The combination of data retrieved by Cassini INMS, UVIS, and CIRS allows deriving the vertical profiles of half a dozen species from 1000 to 100 km, while the HIFI instrument on Herschel reported on the first identification of HNC. Partial data or upper limits are available for almost 20 other CHON neutral species. The INMS and CAPS instruments onboard Cassini also revealed the existence of numerous positive and negative ions in Titan's upper atmosphere. We present the results of a 1D coupled ion-neutral photochemical model intended for the interpretation of the distribution of gaseous species in the Titan atmosphere. The model extends from the surface to the exobase. The atmospheric background, boundary conditions, vertical transport and aerosol opacity are all constrained by the Cassini-Huygens observations. The chemical network includes reactions between hydrocarbons, nitrogen and oxygen bearing species (including some species containing both nitrogen and oxygen, such as NO). It takes into account neutrals and both positive and negative ions with m/z extending up to about 100 u. Ab initio Transition State Theory calculations are performed in order to evaluate the rate coefficients and products for critical reactions. The production of minor nitrogen-bearing species and hydrocarbons is initiated by the dissociation and ionization of N2 and CH4 by solar VUV/EUV photons and associated photoelectrons in the upper atmosphere. We incorporate new high-resolution isotopic photoabsorption and photodissociation cross sections for N2 as well as new photodissociation branching ratios for CH4 and C2H2. The photodissociation of hydrocarbon radicals is taken into account and its impact on the chemistry is discussed for the first time. The presence of oxygen-bearing species is explained by an influx of oxygen originating from Enceladus in the upper atmosphere. The calculated vertical profiles of neutral and ion species generally agree with the existing observational data; some differences are highlighted. We discuss the chemical and physical processes responsible for the production and loss of some key species. We find that the production of neutral species in the upper atmosphere from electron-ion recombination reactions and neutral-neutral radiative association reactions is significant. In the stratosphere, the vertical profile of (cyano)polyynes is extremely sensitive to their heterogeneous loss on aerosols, a process that remains to be constrained experimentally and/or theoretically. This work was performed in the framework of the Marie Curie International Research Staff Exchange Scheme PIRSES-GA-2009-247509.
Atmospheric footprint of the recent warming slowdown
Liu, Bo; Zhou, Tianjun
2017-01-01
Growing body of literature has developed to detect the role of ocean heat uptake and transport in the recent warming slowdown between 1998–2013; however, the atmospheric footprint of the slowdown in dynamical and physical processes remains unclear. Here, we divided recent decades into the recent hiatus period and the preceding warming period (1983–1998) to investigate the atmospheric footprint. We use a process-resolving analysis method to quantify the contributions of different processes to the total temperature changes. We show that the increasing rate of global mean tropospheric temperature was also reduced during the hiatus period. The decomposed trends due to physical processes, including surface albedo, water vapour, cloud, surface turbulent fluxes and atmospheric dynamics, reversed the patterns between the two periods. The changes in atmospheric heat transport are coupled with changes in the surface latent heat flux across the lower troposphere (below approximately 800 hPa) and with cloud-related processes in the upper troposphere (above approximately 600 hPa) and were underpinned by strengthening/weakening Hadley Circulation and Walker Circulation during the warming/hiatus period. This dynamical coupling experienced a phase transition between the two periods, reminding us of the importance of understanding the atmospheric footprint, which constitutes an essential part of internal climate variability. PMID:28084457
The UARS (Upper Atmosphere Research Satellite): A program to study global ozone change
NASA Technical Reports Server (NTRS)
1989-01-01
NASA's Upper Atmosphere Research Satellite (UARS) program, its goals and objectives are described. Also included are its significance to upper atmosphere science, the experimental and theoretical investigations that comprise it, and the compelling issues of global change, driven by human activities, that led NASA to plan and implement it.
Solar-Terrestrial Physics in the 1990s: Key Science Objectives for the IACG Mission Set
NASA Technical Reports Server (NTRS)
1991-01-01
The International Solar-Terrestrial Physics (ISTP) program is an internationally coordinated multi-spacecraft mission that will study the production of the supersonic magnetized solar wind, its interaction with the Earth's magnetosphere, and the resulting transport of plasma, momentum and energy through the magnetosphere and into the ionosphere and upper atmosphere. The mission will involve l4spacecraft to be launched between 1992 and 1996, along with complementary ground-based observations and theoretical programs. A list of the spacecraft, their nominal orbits, and responsible agencies is shown.
1996-12-01
Physics and chemistry of the upper atmosphere. Great Britain: Cambridge University Press, 1989. Serway , Raymond A . Physics for Scientists and Engineers...Results ... ......... .69 4.2 Summary of the Spectral Data ..... ........... 70 4.3 Recommendations for Future Study ... ......... .71 Appendix A ...calibration curve to correlate the laser energy setting with the actual output pulse energy. A linear regression resulted in the relation "output" = 1.77 x
Impact of climate warming on upper layer of the Bering Sea
NASA Astrophysics Data System (ADS)
Lee, Hyun-Chul; Delworth, Thomas L.; Rosati, Anthony; Zhang, Rong; Anderson, Whit G.; Zeng, Fanrong; Stock, Charles A.; Gnanadesikan, Anand; Dixon, Keith W.; Griffies, Stephen M.
2013-01-01
The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO2 at a rate of 1% per year until CO2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf.
2013-11-17
CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, NASA officials and university investigators outlined science plans for the Mars Atmosphere and Volatile EvolutioN, or MAVEN, mission. Briefing participants included Bruce Jakosky, MAVEN principal investigator from the Laboratory for Atmospheric and Space Physics at the University of Colorado at Boulder. MAVEN is being prepared for its scheduled launch on Nov 18, 2013 from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For information on the MAVEN mission, visit: http://www.nasa.gov/mission_pages/maven/main/index.html. Photo credit: NASA/Kim Shiflett
2013-11-17
CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, NASA officials and university investigators outlined science plans for the Mars Atmosphere and Volatile EvolutioN, or MAVEN, mission. Briefing participants included Bruce Jakosky, MAVEN principal investigator from the Laboratory for Atmospheric and Space Physics at the University of Colorado at Boulder. MAVEN is being prepared for its scheduled launch on Nov 18, 2013 from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For information on the MAVEN mission, visit: http://www.nasa.gov/mission_pages/maven/main/index.html. Photo credit: NASA/Kim Shiflett
Use of an Existing Airborne Radon Data Base in the Verification of the NASA/AEAP Core Model
NASA Technical Reports Server (NTRS)
Kritz, Mark A.
1998-01-01
The primary objective of this project was to apply the tropospheric atmospheric radon (Rn222) measurements to the development and verification of the global 3-D atmospheric chemical transport model under development by NASA's Atmospheric Effects of Aviation Project (AEAP). The AEAP project had two principal components: (1) a modeling effort, whose goal was to create, test and apply an elaborate three-dimensional atmospheric chemical transport model (the NASA/AEAP Core model to an evaluation of the possible short and long-term effects of aircraft emissions on atmospheric chemistry and climate--and (2) a measurement effort, whose goal was to obtain a focused set of atmospheric measurements that would provide some of the observational data used in the modeling effort. My activity in this project was confined to the first of these components. Both atmospheric transport and atmospheric chemical reactions (as well the input and removal of chemical species) are accounted for in the NASA/AEAP Core model. Thus, for example, in assessing the effect of aircraft effluents on the chemistry of a given region of the upper troposphere, the model must keep track not only of the chemical reactions of the effluent species emitted by aircraft flying in this region, but also of the transport into the region of these (and other) species from other, remote sources--for example, via the vertical convection of boundary layer air to the upper troposphere. Radon, because of its known surface source and known radioactive half-life, and freedom from chemical production or loss, and from removal from the atmosphere by physical scavenging, is a recognized and valuable tool for testing the transport components of global transport and circulation models.
NASA Technical Reports Server (NTRS)
1990-01-01
The research conducted during the past year in the climate and atmospheric modeling programs concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols and the solar 'constant' on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree x 1 degree resolution has been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method was developed to simulate the hydraulic behavior of soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water (or colored water) throughout the planet. Each isotope or colored water source is a fraction of the climate model's water. It participates in condensation and surface evaporation at different fractionation rates and is transported by the dynamics. A major benefit of this project has been to improve the programming techniques and physical simulation of the water vapor budget of the climate model.
Optical Phenomena Observed upon Some Launches of Russian Rockets
NASA Astrophysics Data System (ADS)
Kozlov, S. I.; Nilolaishvili, S. Sh.; Platov, Yu. V.
2018-01-01
In this paper, unusual optical phenomena observed in our country and abroad upon launches of Russian rockets are discussed and interpreted: they are regarded as the aftereffects of sunlight scattering by gas-dust clouds created by rocket fuel combustion products in different modes of engine operation. The results of instrumental observations of the clouds can be used to study physical processes in the upper atmosphere.
Microbial Isolates from the Upper Atmosphere Support Panspermia Hypothesis
NASA Astrophysics Data System (ADS)
Yang, Yinjie; Yokobori, Shin-Ichi; Yamagishi, Akihiko
Terrestrial microbes may be transported into the upper atmosphere via various means. Due to the environmental similarity of the upper atmosphere to outer space, knowledge of microbes in the upper atmosphere would be valuable for assessing the chances and limits of microbial transfer from the earth to extraterrestrial bodies (i.e., Panspermia of terrestrial microbes). We collected air dust samples in the upper troposphere and the stratosphere over Japan by using aircrafts or balloons. Microbial isolates from the samples were endospore-forming species (Bacillus, Paenibacillus, Streptomyces) and non-spore-forming Deinococci. Besides the evidence of microbial presence in the upper atmosphere, we show the possible presence of terrestrial microbes in space by extrapolated height-dependent distribution of microbes. High resistance to radiation and desiccation was common for our upper-atmospheric isolates and likely the most important feature enabled their survival in the environment of elevated radiation and desiccation. In this regard, Panspermia of viable Deinococci and endospores would be more likely than other terrestrial microbes. Specifically, the Deinococcus isolates exhibited extreme resistance to radiation (several times higher than bacterial endospores), the principle threat for microbial survival during interplanetary transfer. Based on detailed characterization of the Deinococcus isolates, we proposed two new species Deinococcus aerius sp. nov. and Deinococcus aetherius sp. nov., which are now candidate microbes for exposure experiment in space.
Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere
2015-10-08
Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon
The thermal structure and energy balance of the Uranian upper atmosphere
NASA Technical Reports Server (NTRS)
French, R. G.; Dunham, E. W.; Allen, D. A.; Elias, J. H.; Frogel, J. A.; Elliot, J. L.; Liller, W.
1983-01-01
Uranus upper atmosphere occultation observations are reported for August 15-16, 1980, and April 26, 1981. Mean atmospheric light curves of 154 + or - 15 K and 132 + or - 15 K, respectively, are derived from the light curves. A comparison of all available Uranus occultation data since March 1977 suggests a significant mean atmospheric temperature change, with a typical 15 K/year variation. It is suggested that molecular and eddy diffusion, together with atmospheric dynamics, are potentially as important as radiation in the upper atmosphere heat balance of Uranus. The close agreement of occultation immersion and emersion temperatures further suggests that effective meridional transport occurs on Uranus.
NASA Astrophysics Data System (ADS)
Gorchakova, I. A.; Mokhov, I. I.; Anikin, P. P.; Emilenko, A. S.
2018-03-01
The aerosol longwave radiative forcing of the atmosphere and heating rate of the near-surface aerosol layer are estimated for the extreme smoke conditions in the Moscow region in summer 2010. Thermal radiation fluxes in the atmosphere are determined using the integral transmission function and semiempirical aerosol model developed on the basis of standard aerosol models and measurements at the Zvenigorod Scientific Station, Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. The aerosol radiative forcing reached 33 W/m2 at the lower atmospheric boundary and ranged between-1.0 and 1.0 W/m2 at the upper atmospheric boundary. The heating rate of the 10-m atmospheric layer near surface was up to 0.2 K/h during the maximum smoke conditions on August 7-9. The sensitivity of the aerosol longwave radiative forcing to the changes in the aerosol absorption coefficient and aerosol optical thickness are estimated.
Upper atmosphere pollution measurements (GASP)
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Holdeman, J. D.
1975-01-01
The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis
Studies in upper and lower atmosphere coupling
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Rice, C. J.; Sharp, L. R.
1979-01-01
The theoretical and data-analytic work on upper and lower atmosphere coupling performed under a NASA Headquarters contract during the period April 1978 to March 1979 are summarized. As such, this report is primarily devoted to an overview of various studies published and to be published under this contract. Individual study reports are collected as exhibits. Work performed under the subject contract are in the following four areas of upper-lower atmosphere coupling: (1) Magnetosphere-ionosphere electrodynamic coupling in the aurora; (2) Troposphere-thermosphere coupling; (3) Ionosphere-neutral-atmosphere coupling; and (4) Planetary wave dynamics in the middle atmosphere.
Ion neutral mass spectrometer results from the first flyby of Titan.
Waite, J Hunter; Niemann, Hasso; Yelle, Roger V; Kasprzak, Wayne T; Cravens, Thomas E; Luhmann, Janet G; McNutt, Ralph L; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken
2005-05-13
The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.
NASA Astrophysics Data System (ADS)
Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.
2016-12-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.
Sounding rockets in Antarctica
NASA Technical Reports Server (NTRS)
Alford, G. C.; Cooper, G. W.; Peterson, N. E.
1982-01-01
Sounding rockets are versatile tools for scientists studying the atmospheric region which is located above balloon altitudes but below orbital satellite altitudes. Three NASA Nike-Tomahawk sounding rockets were launched from Siple Station in Antarctica in an upper atmosphere physics experiment in the austral summer of 1980-81. The 110 kg payloads were carried to 200 km apogee altitudes in a coordinated project with Arcas rocket payloads and instrumented balloons. This Siple Station Expedition demonstrated the feasibility of launching large, near 1,000 kg, rocket systems from research stations in Antarctica. The remoteness of research stations in Antarctica and the severe environment are major considerations in planning rocket launching expeditions.
NASA Astrophysics Data System (ADS)
Devorkin, David H.
The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.
Climate Simulations with an Isentropic Finite Volume Dynamical Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chih-Chieh; Rasch, Philip J.
2012-04-15
This paper discusses the impact of changing the vertical coordinate from a hybrid pressure to a hybrid-isentropic coordinate within the finite volume dynamical core of the Community Atmosphere Model (CAM). Results from a 20-year climate simulation using the new model coordinate configuration are compared to control simulations produced by the Eulerian spectral and FV dynamical cores of CAM which both use a pressure-based ({sigma}-p) coordinate. The same physical parameterization package is employed in all three dynamical cores. The isentropic modeling framework significantly alters the simulated climatology and has several desirable features. The revised model produces a better representation of heatmore » transport processes in the atmosphere leading to much improved atmospheric temperatures. We show that the isentropic model is very effective in reducing the long standing cold temperature bias in the upper troposphere and lower stratosphere, a deficiency shared among most climate models. The warmer upper troposphere and stratosphere seen in the isentropic model reduces the global coverage of high clouds which is in better agreement with observations. The isentropic model also shows improvements in the simulated wintertime mean sea-level pressure field in the northern hemisphere.« less
DIAS Project: The establishment of a European digital upper atmosphere server
NASA Astrophysics Data System (ADS)
Belehaki, A.; Cander, Lj.; Zolesi, B.; Bremer, J.; Juren, C.; Stanislawska, I.; Dialetis, D.; Hatzopoulos, M.
2005-08-01
The main objective of DIAS (European Digital Upper Atmosphere Server) project is to develop a pan-European digital data collection on the state of the upper atmosphere, based on real-time information and historical data collections provided by most operating ionospheric stations in Europe. A DIAS system will distribute information required by various groups of users for the specification of upper atmospheric conditions over Europe suitable for nowcasting and forecasting purposes. The successful operation of the DIAS system will lead to the development of new European added-value products and services, to the effective use of observational data in operational applications and consequently to the expansion of the relevant European market.
Trends in aerosol abundances and distributions
NASA Technical Reports Server (NTRS)
Turco, R. P.; Mccormick, M. P.; Clancy, R. T.; Curran, R.; Deluisi, J.; Hamill, P.; Kent, G.; Rosen, J. M.; Toon, O. B.; Yue, G.
1989-01-01
The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's.
NASA Astrophysics Data System (ADS)
Capannolo, L.; Li, W.; Ma, Q.
2017-12-01
Electron precipitation into the upper atmosphere is one of the important loss mechanisms in the Earth's inner magnetosphere. Various magnetospheric plasma waves (i.e., chorus, plasmaspheric hiss, electromagnetic ion cyclotron waves, etc.) play an important role in scattering energetic electrons into the loss cone, thus enhance ionization in the upper atmosphere and affect ring current and radiation belt dynamics. The present study evaluates conjunction events where low-earth-orbiting satellites (twin AeroCube-6) and near-equatorial satellites (twin Van Allen Probes) are located roughly along the same magnetic field line. By analyzing electron flux variation at various energies (> 35 keV) measured by AeroCube-6 and wave and electron measurements by Van Allen Probes, together with quasilinear diffusion theory and modeling, we determine the physical process of driving the observed energetic electron precipitation for the identified electron precipitation events. Moreover, the twin AeroCube-6 also helps us understand the spatiotemporal effect and constrain the coherent size of each electron precipitation event.
NASA selects 40 investigations for Spacelab/shuttle flights
NASA Technical Reports Server (NTRS)
1979-01-01
Seven experiments proposed by scientists in Belgium, Canada, France, and Japan were chosen, along with 33 investigations from the United States, to be studied and developed for a series of shuttle flights planned for the period between 1983 and 1985. The cost of the U.S. effort is expected to total about $100 million over the next five-year period. The foreign countries will fund their own investigations. The disciplines involved are astronomy, upper atmospheric physics, solar physics, and high energy astrophysics. A list of the investigators, the organizations they represent, and the names of the experiments is included.
Numerical Investigations of Wave-Induced Mixing in Upper Ocean Layer
NASA Astrophysics Data System (ADS)
Guan, Changlong
2017-04-01
The upper ocean layer is playing an important role in ocean-atmosphere interaction. The typical characteristics depicting the upper ocean layer are the sea surface temperature (SST) and the mixed layer depth (MLD). So far, the existing ocean models tend to over-estimate SST and to under-estimate MLD, due to the inadequate mixing in the mixing layer, which is owing to that several processes related mixing in physics are ignored in these ocean models. The mixing induced by surface gravity wave is expected to be able to enhance the mixing in the upper ocean layer, and therefore the over-estimation of SST and the under-estimate of MLD could be improved by including wave-induced mixing. The wave-induced mixing could be accomplished by the physical mechanisms, such as wave breaking (WB), wave-induced Reynolds stress (WR), and wave-turbulence interaction (WT). The General Ocean Turbulence Model (GOTM) is employed to investigate the effects of the three mechanisms concerning wave-induced mixing. The numerical investigation is carried out for three turbulence closure schemes, say, k-epsilon, k-omega and Mellor-Yamada (1982), with the observational data from OSC Papa station and wave data from ECMWF. The mixing enhancement by various waved-induced mixing mechanisms is investigated and verified.
Solar variability, coupling between atmospheric layers and climate change.
Arnold, Neil
2002-12-15
One of the enduring puzzles of atmospheric physics is the extent to which changes in the Sun can influence the behaviour of the climate system. While solar-flux changes tend to be relatively modest, a number of observations of atmospheric parameters indicates a disproportionately large response. Global-scale models of the coupled middle and upper atmosphere have provided new insights into some of the mechanisms that may be responsible for the amplification of the solar signal. In particular, modification of the transport of heat and chemicals such as ozone by waves during periods of solar activity has been shown to make an important contribution to the climate of the stratosphere and mesosphere. In this paper, a review of some of the recent advances in understanding the coupling between atmospheric layers and how this work relates to Sun-weather relations and climate change in the troposphere will be presented, along with a discussion of some of the challenges that remain.
Modelling of plasma processes in cometary and planetary atmospheres
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2013-02-01
Electrons from the Sun, often accelerated by magnetospheric processes, produce low-density plasmas in the upper atmospheres of planets and their satellites. The secondary electrons can produce further ionization, dissociation and excitation, leading to enhancement of chemical reactions and light emission. Similar processes are driven by photoelectrons produced by sunlight in upper atmospheres during daytime. Sunlight and solar electrons drive the same processes in the atmospheres of comets. Thus for both understanding of planetary atmospheres and in predicting emissions for comparison with remote observations it is necessary to simulate the processes that produce upper atmosphere plasmas. In this review, we describe relevant models and their applications and address the importance of electron-impact excitation cross sections, towards gaining a quantitative understanding of the phenomena in question.
Impacts of space weather events on the structure of the upper atmosphere
NASA Astrophysics Data System (ADS)
Lee, Y.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.
2017-12-01
Due to the absence of the intrinsic magnetic field, Mars' upper atmosphere is vulnerable to the solar wind, which directly strips away the Martian upper atmosphere via various mechanisms, resulting in interesting global phenomena that are observable. The Mars Atmosphere and Volatile EvolutioN (MAVEN) has observed the responses of the upper atmosphere such as Interplanetary Coronal Mass Ejections (ICMEs) and Solar flare events spanning from November 2014 to the present. A comprehensive set of observations taken by the MAVEN instrument package enables the better characterization of the thermospheric and ionospheric behavior affected by various space weather events. The observed impacts include changes in the upper atmospheric and ionospheric density and temperature, enhancements of atmospheric loss rate of ions and neutrals, and changes in important boundary layers. The measurements by plasma and field instruments allows the upstream monitoring of the solar EUV, solar energetic particles, and Interplanetary Magnetic Field (IMF) simultaneously and provide additional information of the near-Mars space weather disturbances. In addition, at low altitudes near the periapsis of the spacecraft, the simultaneous measurements of the magnetic field and properties of the thermosphere and ionosphere allow the analysis of the effects of the local crustal magnetic fields. Here, adding to the reported MAVEN observations of the space weather impacts at Mars, we analyze the responses of the upper atmosphere to the mars-impacting space weather events observed by MAVEN. We focus mainly on the responses of the density and temperature structures, which in turn allow us to examine the effects on the important atmospheric layers such as the M2 layer and transition region from the thermosphere to exosphere.
Venus Atmospheric Maneuverable Platform Science Mission
NASA Astrophysics Data System (ADS)
Polidan, Ronald S.; Lee, Gregory; Ross, Floyd; Sokol, Daniel; Bolisay, Linden
2015-11-01
Over the past several years, we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop (non-NASA) development programs and have come up with a new class of exploration vehicle: an atmospheric rover. We will discuss a possible suite of instruments and measurements to study the current climate through detailed characterization of cloud level atmosphere and to understand the processes that control climate on Earth-like planets.Our Venus atmospheric rover concept, the Venus Atmospheric Maneuverable Platform (VAMP), is a hypersonic entry vehicle with an ultra-low ballistic coefficient that transitions to a semi-buoyant air vehicle (AV) after entering the Venus atmosphere. Prior to entry, the AV fully deploys to enable lifting entry and eliminates the need for an aeroshell. The mass savings realized by eliminating the aeroshell allows VAMP to accommodate significantly more instruments compared to previous Venus in situ exploration missions. VAMP targets the global Venus atmosphere between 50-65 km altitudes and would be an ideal, stable platform for atmospheric and surface interaction measurements. We will present a straw man concept of VAMP, including its science instrument accommodation capability and platform’s physical characteristics (mass, power, wingspan, etc). We will discuss the various instrument options.VAMP’s subsonic flight regime starts at ~94 km and after <1 hour, the AV will reach its cruise altitude of ~65 km. During this phase of flight, the VAMP sensor suite will acquire a pre-defined set of upper atmosphere measurements. The nominal VAMP lifetime at cruise altitude is several months to a year, providing numerous circumnavigation cycles of Venus at mid-latitude. The stability of the AV and its extended residence time provide the very long integration times required for isotopic mass analysis. VAMP communicates with the orbiter, which provides data relay and possibly additional science measurements complementing the in situ measurements from the AV. We will specifically focus upon key factors impacting the design and performance of VAMP science.
NASA Astrophysics Data System (ADS)
Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean
2014-05-01
We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.
NASA Astrophysics Data System (ADS)
Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.
2014-12-01
Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.
Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS
NASA Technical Reports Server (NTRS)
Newell, Reginald E.
1998-01-01
The seasonal changes of the upper tropospheric humidity are studied with the water vapor data from the Microwave Limb Sounder on the NASA Upper Atmosphere Research Satellite, and the winds and vertical velocity data obtained from the European Centre for Medium-Range Weather Forecasts. Using the same algorithm for vertical transport as that used for horizontal transport (Zhu and Newell, 1998), we find that the moisture in the tropical upper troposphere may be increased mainly by intensified local convection in a small portion, less than 10%, of the whole area between 40 deg S to 40 deg N. The contribution of large scale background circulations and divergence of horizontal transport is relatively small in these regions. These dynamic processes cannot be revealed by the traditional analyses of moisture fluxes. The negative feedback suggested by Lindzen (1990) also exists, if enhanced convection is concentrated in the tropics, but is apparently not the dominant process in the moisture budget.
Maui Analysis of Upper Atmospheric Injections
NASA Technical Reports Server (NTRS)
Dressler, Rainer A.
2008-01-01
Maui Analysis of Upper Atmospheric Injections (MAUI) will observe the Space Shuttle engine exhaust plumes from the Maui Space Surveillance Site in Hawaii. The observations will occur when the Space Shuttle fires its engines at night or twilight. A telescope and all-sky imagers will take images and data while the Space Shuttle flies over the Maui site. The images will be analyzed to better understand the interaction between the spacecraft plume and the upper atmosphere of Earth.
NASA Technical Reports Server (NTRS)
Hinson, E. W.
1981-01-01
The preliminary analysis and data analysis system development for the shuttle upper atmosphere mass spectrometer (SUMS) experiment are discussed. The SUMS experiment is designed to provide free stream atmospheric density, pressure, temperature, and mean molecular weight for the high altitude, high Mach number region.
A comparative study of Venus and Mars - Upper atmospheres, ionospheres and solar wind interactions
NASA Technical Reports Server (NTRS)
Mahajan, K. K.; Kar, J.
1990-01-01
The neutral atmospheres of Mars and Venus are discussed. A comparative study is presented of the upper atmospheres, ionospheres, and solar wind interactions of these two planets. The review is mainly concerned with the region about 100 km above the surface of the planets.
The upper atmospheres of extrasolar planets
NASA Astrophysics Data System (ADS)
Lellouch, E.
2003-04-01
Over 100 extrasolar planets have been already detected, the vast majority of which by radial velocity measurements. While numerous models have been developed to describe their thermal structure, composition, spectrum, dynamics and evolution, the physical characterization of these objects remains remarkably poor, since in most cases only an estimate of the object's mass is available. Most observational efforts have so far been focused on close, short-period exoplanets ("hot Jupiters"), in particular on HD 209458B which appears to transit across its parent star and was confirmed to be as a genuine hydrogen-rich exoplanet . A highlight of these observations was the detection of sodium in its atmosphere (Charbonneau et al. 2002). Observational results and prospects will be briefly reviewed.
Exploring the southern ocean response to climate change
NASA Technical Reports Server (NTRS)
Martinson, Douglas G.; Rind, David; Parkinson, Claire
1993-01-01
The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.
Variability of Martian Turbopause Altitudes
NASA Astrophysics Data System (ADS)
Slipski, Marek; Jakosky, Bruce; Benna, Mehdi; Mahaffy, Paul R.; Elrod, Meredith K.; Kass, David M.; Gonzalez-Galindo, Francisco
2017-10-01
The transition region between the well-mixed, turbulent lower atmosphere and the diffusive upper atmosphere - the turbopause - is an area of coupled physical processes that can have significant impacts on the structure and dynamics of the mesosphere and thermosphere. Above the turbopause, molecular diffusion dominates and species fractionate according to their masses. Below, turbulence is strong and waves dissipate and break. We have used density measurements from MAVEN's NGIMS instrument and temperatures from MRO's MCS to calculate turbopause altitudes over the course of a Martian year.The homopause, or "mixing-turbopause,” is defined with respect to the mixing ratio of a given atmospheric species. The mean molecular mass of the atmosphere remains essentially constant below, but each species has its own scale height above. We determined this altitude for each MAVEN orbit between Feb 2015 - Dec 2016 by extrapolating the ratio of N2 and 40Ar densities downward to where their ratio equals that measured by Curiosity. To determine the "wave-turbopause" (Offermann et al., 2007) we used variations in monthly-averaged temperature profiles of the upper and lower atmosphere. Because the dissipation of waves produces turbulence the turbopause altitude is set by the transition from strong to weak dissipation. If no energy were lost, the amplitude of a vertically propagating gravity wave would increase exponentially with altitude. Using the monthly standard deviation in temperatures as a proxy for wave amplitude, we show that waves are strongly dissipated at low altitudes but freely propagating in the lower thermosphere. The altitude at which the standard deviation begins to increase substantially from low values at mid-altitudes determines the altitude of the "wave-turbopause."The observed range of turbopause altitudes is 80-140 km. The turbopause is highest during the day and for Ls values near 270°. Homopause altitudes correlate well with changes in CO2 densities. The variation in turbopause altitudes means that energy, mass, and momentum transported vertically are deposited at different altitudes across the planet, which can have a substantial effect on the thermal and dynamical state of the middle-upper atmosphere.
Present State of Knowledge of the Upper Atmosphere 1999: An Assessment Report. Part 2
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.
2000-01-01
This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial reports to the Congress and the Environmental Protection Agency. NASA specifically is charged with the responsibility of reporting on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere. Part l of this report summarizes the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program and Atmospheric Chemistry Modeling and Analysis Program for the period of 1997-1999. Part 2 (this document) is a compilation of several scientific assessments, reviews, and summaries. Section B (Scientific Assessment of Ozone Depletion: 1998), Section C (a summary of the 1998 Stratospheric Processes and their Role in Climate, SPARC, ozone trends report), Section D (the policymakers summary of the Intergovernmental Panel on Climate Change, IPCC, report on Aviation and the Global Atmosphere), and Section E (the executive summary of the NASA Assessment of the Effects of High-Speed Aircraft in the Stratosphere: 1998) are summaries of the most recent assessments of our current understanding of the chemical composition and the physical structure of the stratosphere, with particular emphasis on how the abundance and distribution of ozone is predicted to change in the future. Section F (the executive summary of NASA's Second Workshop on Stratospheric Models and Measurements, M&M 11) and Section G (the end-of-mission statement for the Photochemistry of ozone Loss in the Arctic Region in Summer, POLARIS, campaign) describe the scientific results for a comprehensive modeling intercomparison exercise and an aircraft and balloon measurement campaign, respectively. Section H (Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling: Update to Evaluation Number 12 of the NASA Panel for Data Evaluation) highlights the latest of NASA's reviews of this important aspect of the atmospheric sciences. A list of contributors to each of the included documents appears in Section I of this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patnaik, P. C.
The SIGMET mesoscale meteorology simulation code represents an extension, in terms of physical modelling detail and numerical approach, of the work of Anthes (1972) and Anthes and Warner (1974). The code utilizes a finite difference technique to solve the so-called primitive equations which describe transient flow in the atmosphere. The SIGMET modelling contains all of the physics required to simulate the time dependent meteorology of a region with description of both the planetary boundary layer and upper level flow as they are affected by synoptic forcing and complex terrain. The mathematical formulation of the SIGMET model and the various physicalmore » effects incorporated into it are summarized.« less
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.
Science with a vengeance: How the Military created the US Space Sciences after World War II
NASA Astrophysics Data System (ADS)
Devorkin, David H.
The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.
Tsunami process: From upper mantle to atmosphere
NASA Astrophysics Data System (ADS)
Ershov, S.; Mikhaylovskaya, I.; Novik, O.
Earthquakes in near sea regions and/or tsunamis are manifestations of powerful geodynamic processes beneath the Ocean floor (75 % of the Earth' surface). An effective monitoring of these large-scale processes is not possible without satellites as well as without understanding of physical nature of signals accompanying these processes, e.g. connection between parameters of a seismic excitation in ocean lithosphere and electromagnetic (EM) signals in atmosphere. Basing on the theory of elasticity, electrodynamics, fluid dynamics and geophysical data we formulate a nonlinear mathematical model of generation and propagation of seismo-EM signals in the basin of a marginal sea including transfer of seismic and EM energy from upper mantle to hydrosphere and EM emission into atmosphere up to ionosphere domain D. For a model basin approximately similar to the central part of the Sea of Japan, we calculate signals caused by moderate elastic displacements (EDs): the ampl of a few cm, the main freq. 0.01-10 Hz and duration up to 10 sec (by runs with different acceptable data) which are supposed to be arising at the moment t=0 at the bottom of the upper mantle layer M. The EM signal appears near the bottom of the conductive (0.02 S/m) layer M and reaches for the sea bottom by t=3.5 sec with the ampl. Of 50 pT. This signal propagate in sea water (4 S/m) rather slowly and seems to be "frozen": its front is located near the sea bottom and is replicating the bottom's configuration up to the moment (t=5.2 sec) of the seismic P wave (from M) arrival at the sea bottom. The EM field is generated in seismically disturbed sea water in presence of the geomagnetic field" a specific structure of a seismo-hydrodynamic flow, a spatial break of the diffusive magnetic field, joining of its contours, and other details of the seismo-hydro-EM tsunami process are shown to clear out the out the physical nature of its signals. By the moderate EDs (above), the magnetic signal (freq. 0.01-10 Hz, i.e. the same as the EDs' freq.) is of order of a few hundreds of pT at the ocean-atmosphere interface and of order of a few tens of hydrodynamic wave's amplitude far from the shore is too small (20 cm) and EM observations are needed to discover this threatening wave. The computed signals' characteristics are of orders observed. The recommendations for the EM monitoring (at a sea bottom, surface, and atmosphere) of seismic excitations in ocean lithosphere and tsunamis are given.
Studies of planetary upper atmospheres through occultations
NASA Technical Reports Server (NTRS)
Elliot, J. L.
1982-01-01
The structure, composition, dynamics and energy balance of planetary upper atmospheres through interpretation of steller occultation data from Uranus is discussed. The wave-optical problem of modelling strong scintillation for arbitrary turbulent atmospheres is studied, as well as influence of turbulence. It was concluded that quasi-global features of atmospheric structure are accurately determined by numerical inversion. Horizontally inhomogeneous structures are filtered out and have little effect on temperature profiles.
Seasonal and spatial variations in surface pCO2 and air-sea CO2 flux in the Chesapeake Bay
NASA Astrophysics Data System (ADS)
Cai, W. J.; Chen, B.
2017-12-01
Bay-wide observations of surface water partial pressure of carbon dioxide (pCO2) were conducted in May, June, August, and October 2016 to study the spatial and seasonal variations in surface pCO2 and to estimate air-sea CO2 flux in the Chesapeake Bay. Overall, high surface pCO2 in the upper-bay decreased downstream rapidly below the atmospheric value near the bay bridge in the mid-bay and then increased slightly to the lower-bay where pCO2 approached the atmospheric level. Over the course of a year, pCO2 was higher than 1000 µatm in the upper bay and the highest pCO2 (2500 µatm) was observed in August. Significant biologically-induced pCO2 undersaturation was observed at the upper part of the mid-bay in August with pCO2 as low as 50 µatm and oversaturated DO% of 200%. In addition to biological control, vertical mixing and upwelling controlled by wind direction and tidal stage played an important role in controlling surface pCO2 in the mid-bay as is evidenced by co-occurrence of high pCO2 with low temperature and low oxygen or high salinity from the subsurface. These physical processes occurred regularly and in short time scale of hours, suggesting they must be considered in the assessment of annual air-sea CO2 flux. Seasonally, the upper-bay acted as a source for atmospheric CO2 over the course of a year. The boundary of upper and mid bay transited from a CO2 source to a sink from May to August and was a source again in October due to strong biological production in summer. In contrast, the mid-bay represented as a CO2 source with large temporal variation due to dynamic hydrographic settings. The lower-bay transited from a weak sink in May to equilibrated with the atmosphere from June to August, while became a source again in October. Moreover, the CO2 flux could be reversed very quickly under episodic severe weather events. Thus further research, including the influence of severe weather and subsequent bloom, is needed to get better understanding of the carbon cycling in the Chesapeake Bay.
Climate-driven basin-scale decadal oscillations of oceanic phytoplankton.
Martinez, Elodie; Antoine, David; D'Ortenzio, Fabrizio; Gentili, Bernard
2009-11-27
Phytoplankton--the microalgae that populate the upper lit layers of the ocean--fuel the oceanic food web and affect oceanic and atmospheric carbon dioxide levels through photosynthetic carbon fixation. Here, we show that multidecadal changes in global phytoplankton abundances are related to basin-scale oscillations of the physical ocean, specifically the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. This relationship is revealed in approximately 20 years of satellite observations of chlorophyll and sea surface temperature. Interaction between the main pycnocline and the upper ocean seasonal mixed layer is one mechanism behind this correlation. Our findings provide a context for the interpretation of contemporary changes in global phytoplankton and should improve predictions of their future evolution with climate change.
Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism
NASA Astrophysics Data System (ADS)
Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef
2017-06-01
Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long durations of intrusions (greater than 105 to 106 yr), extensive lower crustal mush zones develop, which modify the thermal budget of the upper crust and reduce the flux of magma required to sustain upper crustal magma reservoirs. Our results reconcile physical models of magma reservoir construction and field-based estimates of intrusion rates in numerous volcanic and plutonic localities. Young igneous provinces (less than a few hundred thousand years old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (active for longer than 1 million years) can accumulate magma and build reservoirs capable of producing super-eruptions, even with intrusion rates smaller than 10-3 to 10-2 km3 yr-1. Hence, total duration of magmatism should be combined with the magma intrusion rates to assess the capability of volcanic systems to form the largest explosive eruptions on Earth.
Impact of large-scale dynamics on the microphysical properties of midlatitude cirrus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlbauer, Andreas; Ackerman, Thomas P.; Comstock, Jennifer M.
2014-04-16
In situ microphysical observations 3 of mid-latitude cirrus collected during the Department of Energy Small Particles in Cirrus (SPAR-TICUS) field campaign are combined with an atmospheric state classification for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site to understand statistical relationships between cirrus microphysics and the large-scale meteorology. The atmospheric state classification is informed about the large-scale meteorology and state of cloudiness at the ARM SGP site by combining ECMWF ERA-Interim reanalysis data with 14 years of continuous observations from the millimeter-wavelength cloud radar. Almost half of the cirrus cloud occurrences in the vicinity of the ARM SGPmore » site during SPARTICUS can be explained by three distinct synoptic condi- tions, namely upper-level ridges, mid-latitude cyclones with frontal systems and subtropical flows. Probability density functions (PDFs) of cirrus micro- physical properties such as particle size distributions (PSDs), ice number con- centrations and ice water content (IWC) are examined and exhibit striking differences among the different synoptic regimes. Generally, narrower PSDs with lower IWC but higher ice number concentrations are found in cirrus sam- pled in upper-level ridges whereas cirrus sampled in subtropical flows, fronts and aged anvils show broader PSDs with considerably lower ice number con- centrations but higher IWC. Despite striking contrasts in the cirrus micro- physics for different large-scale environments, the PDFs of vertical velocity are not different, suggesting that vertical velocity PDFs are a poor predic-tor for explaining the microphysical variability in cirrus. Instead, cirrus mi- crophysical contrasts may be driven by differences in ice supersaturations or aerosols.« less
Future Operations of HAARP with the UAF's Geophysical Institute
NASA Astrophysics Data System (ADS)
McCoy, R. P.
2015-12-01
The High frequency Active Aurora Research Program (HAARP) in Gakona Alaska is the world's premier facility for active experimentation in the ionosphere and upper atmosphere. The ionosphere affects communication, navigation, radar and a variety of other systems depending on, or affected by, radio propagation through this region. The primary component of HAARP, the Ionospheric Research Instrument (IRI), is a phased array of 180 HF antennas spread across 33 acres and capable of radiating 3.6 MW into the upper atmosphere and ionosphere. The array is fed by five 2500 kW generators, each driven by a 3600 hp diesel engine (4 + 1 spare). Transmit frequencies are selectable in the range 2.8 to 10 MHz and complex configurations of rapidly slewed single or multiple beams are possible. HAARP was owned by the Air Force Research Laboratory (AFRL/RV) in Albuquerque, NM but recently was transferred to the Geophysical Institute of the University of Alaska Fairbanks (UAF/GI). The transfer of ownership of the facility is being implemented in stages involving a Cooperative Research and Development Agreement (CRADA) and an Educational Partnership Agreement (EPA) which are complete, and future agreements to transfer ownership of the facility land. The UAF/GI plans to operate the facility for continued ionospheric and upper atmospheric experimentation in a pay-per-use model. In their 2013 "Decadal Survey in Solar and Space Physics" the National Research Council (NRC) made the recommendation to "Fully realize the potential of ionospheric modification…" and in their 2013 Workshop Report: "Opportunities for High-Power, High-Frequency Transmitters to Advance Ionospheric/Thermospheric Research" the NRC outlined the broad range of future ionospheric, thermospheric and magnetospheric experiments that could be performed with HAARP. HAARP is contains a variety of RF and optical ionospheric diagnostic instruments to measure the effects of the heater in real time. The UAF/GI encourages the scientific community to plan experiments at HAARP and bring their remote sensing instruments to HAARP for extended or permanent operation. The power and flexibility of HAARP and its unique location in the subarctic will help secure the future of this facility as the foremost laboratory for active experimentation in the ionosphere and upper atmosphere.
Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b
NASA Astrophysics Data System (ADS)
Bourrier, V.; Lecavelier des Etangs, A.; Wheatley, P. J.; Dupuy, H.; Ehrenreich, D.; Vidal-Madjar, A.; Hébrard, G.; Ballester, G. E.; Désert, J.-M.; Ferlet, R.; Sing, D. K.
2012-12-01
Transit observations of the hydrogen Lyman-α line allowed the detection of atmospheric escape from the exoplanet HD209458b (Vidal-Madjar et al. 2003). Using spectrally resolved Lyman-α transit observations of the exoplanet HD 189733b at two different epochs, Lecavelier des Etangs et al. (2012) detected for the first time temporal variations in the physical conditions of an evaporating planetary atmosphere. Here we summarized the results obtained with the HST/STIS observations as presented in June 2012 at the SF2A 2012 meeting. While atmospheric hydrogen cannot be detected in the STIS observations of April 2010, it is clearly detected in the September 2011 observations. The atomic hydrogen cloud surrounding the transiting planet produces a transit absorption depth of 14.4±3.6% between velocities of -230 to -140 km s^{-1}. These high velocities cannot arise from radiation pressure alone and, contrary to HD 209458b, this requires an additional acceleration mechanism, such as interactions with stellar wind protons. The spectral and temporal signature of the absorption is fitted by an atmospheric escape rate of neutral hydrogen atoms of about 10^9 g s^{-1}, a stellar wind with a velocity of 190 km s^{-1} and a temperature of ˜10^5 K. We also illustrate the power of multi-wavelengths approach with simultaneous observations in the X-rays obtained with Swift/XRT. We detected an X-ray flare about 8 hours before the transit of September 2011. This suggests that the observed changes within the upper part of the escaping atmosphere can be caused by variations in the stellar wind properties, or/and by variations in the stellar energy input to the planet's escaping gas. This multi-wavelengths approach allowed the simultaneous detection of temporal variations both in the stellar X-ray and in the planetary upper atmosphere, providing first observational constraints on the interaction between the exoplanet's atmosphere and the star.
Vertical Propagation and Temporal Growth of Perturbations in the Winter Atmosphere
NASA Astrophysics Data System (ADS)
Christiansen, B.
2001-12-01
We present a general circulation model study of the temporal growth and vertically propagation of perturbations following vertical confined forcings. Both transient and sustained forcings are considered. The motivation for the study is the recent recognition of downward propagation of anomalies from the stratosphere to the troposphere and its implications both for medium range forecasts and for a possible physical mechanism for stratospheric impacts on weather and climate. The dynamical link might also offer a mechanism for changes in the upper atmosphere to affect the tropospheric climate. Here we are thinking of changes in trace gases such as ozone, but also of modulations of the upper atmospheric structure related to the 11-year solar cycle. The model atmosphere is chaotic and shows growth of perturbations no matter which level is forced. The perturbations grow to a size comparable to the variability of the unperturbed atmosphere on a time-scale of 20 - 25 days in the troposphere and 30 - 40 days in the stratosphere. After the initial period of growth the perturbations have the same structure as the unperturbed atmosphere. Although the forcing is restricted to the northern hemisphere the perturbations encompass the whole atmosphere and develop on the same time scale on both hemispheres. Perturbations grow with time squared both when zonal mean and single cell values are considered. Such a power law growth suggest the existence of a finite predictability time which is independent of the initial perturbation as long as it is small. In the unperturbed atmosphere the stratospheric variability has the form of downward propagating stratospheric vacillations. However, in the initial period of growth the perturbations do not propagate downward and seem in general uncoupled to the background vacillations. This suggests that the downward propagation is a robust feature determined more by the processes in the troposphere than the state of the stratosphere. We note that downward propagation may still be a source for enhanced predictability of near-surface weather.
Investigating Alfvénic wave propagation in coronal open-field regions
Morton, R. J.; Tomczyk, S.; Pinto, R.
2015-01-01
The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234
Climate and atmospheric modeling studies
NASA Technical Reports Server (NTRS)
1992-01-01
The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.
MAVEN observations of the response of Mars to an interplanetary coronal mass ejection.
Jakosky, B M; Grebowsky, J M; Luhmann, J G; Connerney, J; Eparvier, F; Ergun, R; Halekas, J; Larson, D; Mahaffy, P; McFadden, J; Mitchell, D F; Schneider, N; Zurek, R; Bougher, S; Brain, D; Ma, Y J; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D; Bell, J M; Benna, M; Chaffin, M; Chamberlin, P; Chaufray, Y-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R
2015-11-06
Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere. Copyright © 2015, American Association for the Advancement of Science.
Composition and structure of the martian upper atmosphere: analysis of results from viking.
McElroy, M B; Kong, T Y; Yung, Y L; Nier, A O
1976-12-11
Densities for carbon dioxide measured by the upper atmospheric mass spectrometers on Viking 1 and Viking 2 are analyzed to yield height profiles for the temperature of the martian atmosphere between 120 and 200 kilometers. Densities for nitrogen and argon are used to derive vertical profiles for the eddy diffusion coefficient over the same height range. The upper atmosphere of Mars is surprisingly cold with average temperatures for both Viking 1 and Viking 2 of less than 200 degrees K, and there is significant vertical structure. Model calculations are presented and shown to be in good agreement with measured concentrations of carbon monoxide, oxygen, and nitric oxide.
Artist Concept of MAVEN Imaging Ultraviolet Spectrograph at Work
2014-11-07
This artist concept depicts the Imaging Ultraviolet Spectrograph IUVS on NASA MAVEN spacecraft scanning the upper atmosphere of Mars. IUVS uses limb scans to map the chemical makeup and vertical structure across Mars upper atmosphere.
A simple biosphere model (SiB) for use within general circulation models
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A.
1986-01-01
A simple realistic biosphere model for calculating the transfer of energy, mass and momentum between the atmosphere and the vegetated surface of the earth has been developed for use in atmospheric general circulation models. The vegetation in each terrestrial model grid is represented by an upper level, representing the perennial canopy of trees and shrubs, and a lower level, representing the annual cover of grasses and other heraceous species. The vegetation morphology and the physical and physiological properties of the vegetation layers determine such properties as: the reflection, transmission, absorption and emission of direct and diffuse radiation; the infiltration, drainage, and storage of the residual rainfall in the soil; and the control over the stomatal functioning. The model, with prescribed vegetation parameters and soil interactive soil moisture, can be used for prediction of the atmospheric circulation and precipitaion fields for short periods of up to a few weeks.
NASA Astrophysics Data System (ADS)
Brace, Larry; Carignan, George; Donahue, Tom; Nagy, Andrew; Hunten, Donald
Nelson Spencer, former chief of the Laboratory for Atmospheres at NASA/Goddard Space Flight Center, died on 31 August 2002 in Bethesda, Maryland, at the age of 84 due to complications from Parkinson's disease. He had been an AGU member (SPA) since 1950.He was born in Buffalo, New York, and graduated from the University of Michigan in 1941 with a degree in electrical engineering. Spencer served as a naval officer during World War II and attended Harvard and the Massachusetts Institute of Technology while in the service. After the war, he returned to the University of Michigan for graduate studies, earning his master's degree in electrical engineering in 1953. He soon became director of that department's Space Physics Research Laboratory (SPRL), and later, a full professor. In 1960, Spencer moved to Washington D.C. to lead Goddard's upper atmosphere research effort, serving for many years as chief of the Laboratory for Atmospheres. He retired in 1986.
NASA Technical Reports Server (NTRS)
Roche, A. E.; Forney, P. B.; Kumer, J. B.; Naes, L. G.; Nast, T. C.
1983-01-01
The Upper Atmospheric Research Satellite (UARS) program has the objective of providing an 18-month to 2-year platform for observations of the upper atmosphere, giving particular attention to the stratosphere, mesosphere, and lower thermosphere. The primary aims of the mission are related to the measurement of the solar energy input between 120 and 500 km, the acquisition of global maps of the vertical and horizontal distribution of a series of critical trace and minor species, and the investigation of the dynamics of the upper atmosphere. One of several instruments designed to perform neutral species measurements on board the satellite is the Cryogenic Limb Array Etalon Spectrometer (CLAES). The CLAES experiment is concerned with measurements of concentrations of species of interest to the ozone layer balance. Attention is given to the performance requirements of the instrument and the effects of these requirements on the cryogenic design.
Superthermal electron processes in the upper atmosphere of Uranus: Aurora and electroglow
NASA Technical Reports Server (NTRS)
Waite, J. H., Jr.; Chandler, M. O.; Yelle, R. V.; Sandel, B. R.
1987-01-01
Strong ultraviolet emissions from the upper atmosphere of Uranus suggest that both auroral and electroglow phenomena are of significant aeronomical consequences in the structure of the upper atmosphere. Combined modeling and data analysis were performed to determine the effect of electroglow and auroral phenomena on the global heat and atomic hydrogen budgets in the Uranus upper atmosphere. The results indicate that the auroral and electroglow heat sources are not adequate to explain the high exospheric temperature observed at Uranus, but that the atomic hydrogen supplied by these processes is more than sufficient to explain the observations. The various superthermal electron distributions modeled have significantly different efficiencies for the various processes such as UV emission, heating, ionization, and atomic hydrogen production, and produce quite different H2 band spectra. However, additional information on the UV spectra and global parameters is needed before modeling can be used to distinguish between the possible mechanisms for electroglow.
The Earth's Middle Atmosphere: COSPAR Plenary Meeting, 29th, Washington, DC, 28 Aug.-5 Sep., 1992
NASA Technical Reports Server (NTRS)
Grosse, W. L. (Editor); Ghazi, A. (Editor); Geller, M. A. (Editor); Shepherd, G. G. (Editor)
1994-01-01
The conference presented the results from the Upper Atmosphere Research Satellite (UARS) in the areas of wind, temperature, composition, and energy input into the upper atmosphere. Also presented is the current status of validation of the UARS temperature and wind instruments measuring at and above the menopause. The two UARS instruments involved were the High Resolution Doppler Imager (HRDI) and the WIND Imaging Interferometer (WINDII). Papers are presented covering almost all aspects of middle atmospheric science, including dynamics, layering in the middle atmosphere, atmospheric composition, solar and geomagnetic effects, electrodynamics, and the ionosphere.
SPARTAN high resolution solar studies
NASA Technical Reports Server (NTRS)
Bruner, Marilyn E.
1993-01-01
This report summarizes the work performed on Contract NAS5-29739, a sub-orbital research program directed toward the study of the geometry of and physical conditions in matter found in the upper layers of the solar atmosphere. The report describes a new sounding rocket payload developed under the contract, presents a guide to the contents of semiannual reports submitted during the contract, discusses the results of the first flight of the payload and the progress on scientific analysis. A bibliography of papers and publications is included.
The Physical Basis of the Ionosphere in the Solar-Terrestrial System.
1981-02-01
future. Another problem is related to the energy budget of the upper atmosphere. If the energy loss by airglow is neglected and if all heat sources...a result of detailed computations, i.e., not via an irretrievable loss of detailed known aspects within the computations. J.Forbes, US Wouldn’t the...assumptions about the loss rate, and then, so to say, expand the production rate Into a series of functions of the kind shown in Fig. I. The coefficients of
A Science Strategy for Space Physics
NASA Technical Reports Server (NTRS)
1995-01-01
This report by the Committee on Solar and Space Physics and the Committee on Solar-Terrestrial Research recommends the major directions for scientific research in space physics for the coming decade. As a field of science, space physics has passed through the stage of simply looking to see what is out beyond Earth's atmosphere. It has become a 'hard' science, focusing on understanding the fundamental interactions between charged particles, electromagnetic fields, and gases in the natural laboratory consisting of the galaxy, the Sun, the heliosphere, and planetary magnetospheres, ionospheres, and upper atmospheres. The motivation for space physics research goes far beyond basic physics and intellectual curiosity, however, because long-term variations in the brightness of the Sun virtually affect the habitability of the Earth, while sudden rearrangements of magnetic fields above the solar surface can have profound effects on the delicate balance of the forces that shape our environment in space and on the human technology that is sensitive to that balance. The several subfields of space physics share the following objectives: to understand the fundamental laws or processes of nature as they apply to space plasmas and rarefied gases both on the microscale and in the larger complex systems that constitute the domain of space physics; to understand the links between changes in the Sun and the resulting effects at the Earth, with the eventual goal of predicting the significant effects on the terrestrial environment; and to continue the exploration and description of the plasmas and rarefied gases in the solar system.
Wave-mean flow interactions in the upper atmosphere
NASA Technical Reports Server (NTRS)
Lindzen, R. S.
1973-01-01
The nature of internal gravity waves is described with special emphasis on their ability to transport energy and momentum. The conditions under which these fluxes interact with the mean state of the atmosphere are described and the results are applied to various problems of the upper atmosphere, including the quasi-biennial oscillation, the heat budget of the thermosphere, the general circulation of the mesosphere, turbulence in the mesosphere, and the 4-day circulation of the Venusian atmosphere.
Microwave Limb Sounder/El Niño Watch - Water Vapor Measurement, October, 1997
1997-10-30
This image shows atmospheric water vapor in Earth upper troposphere, about 10 kilometers 6 miles above the surface, as measured by NASA Microwave Limb Sounder MLS instrument flying aboard the Upper Atmosphere Research Satellite.
Review of spectroscopic parameters for upper atmospheric measurements
NASA Technical Reports Server (NTRS)
Smith, M. A. H. (Editor)
1985-01-01
The workshop included communication of spectroscopic data requirements for the planned upper atmosphere research satellite (UARS) mission, review of the status of currently available spectroscopic parameters, and recommendation of additional studies. The objectives were accomplished and resulted in a series of general and specific recommendations for laboratory spectroscopy research to meet the needs of UARS and other atmospheric remote sensing programs.
NASA Astrophysics Data System (ADS)
Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.
1982-08-01
Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average ice nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle ice nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the extent of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/ice supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.
Large Abundances of Polycyclic Aromatic Hydrocarbons in Titan's Upper Atmosphere
NASA Technical Reports Server (NTRS)
Lopez-Puertas, M.; Dinelli, B. M.; Adriani, A.; Funke, B.; Garcia-Comas, M.; Moriconi, M. L.; D'Aversa, E.; Boersma, C.; Allamandola, L. J.
2013-01-01
In this paper, we analyze the strong unidentified emission near 3.28 micron in Titan's upper daytime atmosphere recently discovered by Dinelli et al.We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 micron. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) × 10(exp 4) particles / cubic cm. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is approx 430 u; the mean area is about 0.53 sq. nm; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.
Hauck, J; Völker, C; Wang, T; Hoppema, M; Losch, M; Wolf-Gladrow, D A
2013-12-01
Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO 2 . In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO 2 . In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO 2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.
The precipitation of energetic heavy ions into the upper atmosphere of Jupiter
NASA Technical Reports Server (NTRS)
Horanyi, M.; Cravens, T. E.; Waite, J. H., Jr.
1987-01-01
Evidence for auroral particle precipitation at Jupiter was provided by the ultraviolet spectrometers onboard the Voyagers 1 and 2 spacecraft and by the International Ultraviolet Explorer (IUE). Magnetospheric measurements made by instruments onboard the Voyager spacecraft show that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of Jupiter. A theoretical model has been constructed describing the interaction of precipitating oxygen with the Jovian atmosphere. The auroral energy is deposited in the atmosphere by means of ionization, excitation, and dissociation and heating of the atmospheric gas. Energetic ion and electron precipitation are shown to have similar effects on the atmosphere and ionosphere of Jupiter.
The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)
NASA Astrophysics Data System (ADS)
Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.
2013-12-01
With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed needed to determine where and how fast the life-capable atmosphere disappeared. Or was it thought that other orbiting missions like MEx or MGS that sampled the ionosphere were inadequate to the task? In a way the delay in executing a Mars aeronomy mission has a positive side; i.e. instruments are better developed than in earlier proposals and we have the benefit of MEx and MGS better defining the science objectives for an aeronomy mission. The bumps and potholes that planners of missions to Mars encountered makes an interesting story
Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System (Vps)
NASA Technical Reports Server (NTRS)
Marz, Bryan E.; Ash, Robert L.
1996-01-01
This document provides a summary of the launch and post-launch activities of Virginia Space Grant Consortium Upper Atmospheric Payload Balloon System, V(ps). It is a comprehensive overview covering launch activities, post-launch activities, experimental results, and future flight recommendations.
Surface Ocean-Lower Atmosphere Studies: SOLAS
NASA Astrophysics Data System (ADS)
Wanninkhof, R.; Dickerson, R.; Barber, R.; Capone, D. G.; Duce, R.; Erickson, D.; Keene, W. C.; Lenschow, D.; Matrai, P. A.; McGillis, W.; McGillicuddy, D.; Penner, J.; Pszenny, A.
2002-05-01
The US Surface Ocean - Lower Atmosphere Study (US SOLAS) is a component of an international program (SOLAS) with an overall goal: to achieve a quantitative understanding of the key biogeochemical-physical interactions between the ocean and atmosphere, and of how this coupled system affects and is affected by climateand environmental change. There is increasing evidence that the biogeochemical cycles containing the building blocks of life such as carbon, nitrogen, and sulfur have been perturbed. These changes result in appreciable impacts and feedbacks in the SOLA region. The exact nature of the impacts and feedbacks are poorly constrained because of sparse observations, in particular relating to the connectivity and interrelationships between the major biogeochemical cycles and their interaction with physical forcing. It is in these areas that the research and the interdisciplinary research approaches advocated in US SOLAS will provide high returns. The research in US SOLAS will be heavily focused on process studies of the natural variability of key processes, anthropogenic perturbation of the processes, and the positive and negative feedbacks the processes will have on the biogeochemical cycles in the SOLA region. A major objective is to integrate the process study findings with the results from large-scale observations and with small and large- scale modeling and remote sensing efforts to improve our mechanistic understanding of large scale biogeochemical and physical phenomena and feedbacks. US SOLAS held an open workshop in May 2001 to lay the groundwork for the SOLAS program in the United States. Resulting highlights and issues will be summarized around 4 major themes: (1) Boundary-layer Physics, (2) Dynamics of long-lived climate relevant compounds, (3) Dynamics of short-lived climate relevant compounds, and (4) Atmospheric effects on marine biogeochemical processes. Comprehensive reports from the working groups of U.S. SOLAS, and the international science plan which served as overall guidance, can be found at We will explore possible dedicated, interdisciplinary ocean-atmosphere projects as examples of the critical interconnectivity of atmospheric, interfacial, and upper ocean processes to study phenomena of critical importance in understanding the earth's system.
Study of internal gravity waves in the meteor zone
NASA Technical Reports Server (NTRS)
Gavrilov, N. M.
1987-01-01
An important component of the dynamical regime of the atmosphere at heights near 100 km are internal gravity waves (IGW) with periods from about 5 min to about 17.5 hrs which propagate from the lower atmospheric layers and are generated in the uppermost region of the atmosphere. As IGW propagate upwards, their amplitudes increase and they have a considerable effect on upper atmospheric processes: (1) they provide heat flux divergences comparable with solar heating; (2) they influence the gaseous composition and produce wave variations of the concentrations of gaseous components and emissions of the upper atmosphere; and (3) they cause considerable acceleration of the mean stream. It was concluded that the periods, wavelengths, amplitudes and velocities of IGW propagation in the meteor zone are now measured quite reliably. However, for estimating the influence of IGW on the thermal regime and the circulation of the upper atmosphere these parameters are not as important as the values of wave fluxes of energy, heat, moment and mass.
The Geospace Dynamics Observatory; a Mission of Discovery for Geospace
NASA Technical Reports Server (NTRS)
Spann, James; Paxton, Larry; Burch, James; Reardon, Patrick; Krause, Linda; Gallagher, Dennis; Hopkins, Randall
2013-01-01
A few examples of potential advances include: 1. Unparalleled advances in the connection of the upper atmosphere to the Sun. In the aurora and lower latitudes, extending the duration of uninterrupted images would advance understanding of the transfer of energy from the Sun to the upper atmosphere and the response of the space environment. 2. Advances in the influence of waves and tides on the upper atmosphere. Increasing both the signal to noise and the duration ofthe observations would reveal contributions that are not identifiable using other approaches. 3. The ability to probe the mechanisms that control the evolution of planetary atmospheres. The vantage point provided by this mission allows the flux of hydrogen (which is tied to the escape of water from a planet) to be mapped globally. It also allows unique observations of changes in the atmospheric structure and their causes.
Locations Where Space Weather Energy Impacts the Atmosphere
NASA Astrophysics Data System (ADS)
Sojka, Jan J.
2017-11-01
In this review we consider aspects of space weather that can have a severe impact on the terrestrial atmosphere. We begin by identifying the pre-conditioning role of the Sun on the temperature and density of the upper atmosphere. This effect we define as "space climatology". Space weather effects are then defined as severe departures from this state of the atmospheric energy and density. Three specific forms of space weather are reviewed and we show that each generates severe space weather impacts. The three forms of space weather being considered are the solar photon flux (flares), particle precipitation (aurora), and electromagnetic Joule heating (magnetosphere-ionospheric (M-I) coupling). We provide an overview of the physical processes associated with each of these space weather forms. In each case a very specific altitude range exists over which the processes can most effectively impact the atmosphere. Our argument is that a severe change in the local atmosphere's state leads to atmospheric heating and other dynamic changes at locations beyond the input heat source region. All three space weather forms have their greatest atmospheric impact between 100 and 130 km. This altitude region comprises the transition between the atmosphere's mesosphere and thermosphere and is the ionosphere's E-region. This region is commonly referred to as the Space Atmosphere Interaction Region (SAIR). The SAIR also acts to insulate the lower atmosphere from the space weather impact of energy deposition. A similar space weather zone would be present in atmospheres of other planets and exoplanets.
Pluto and Charon's Visible Spectrum (3500-9000 Å)
NASA Astrophysics Data System (ADS)
Cook, J. C.; Wyckoff, S.
2003-05-01
Uncertainty in the chemical composition of Pluto's atmosphere severely limits our understanding of its physical properties. The only atmospheric gas identified spectroscopically to date has been CH4 (Young et al., 1997), while an upper limit has been set for CO gas (Young et al., 2001). Infrared detection of surface N2 ice (Owen et al., 1993) together with models based on occultation data (Elliot and Young, 1992) indicate that Pluto's atmosphere is probably dominated by CO and/or N2 (Yelle and Lunine, 1989; Hubbard et al., 1990; Stansberry et al., 1994). If the atmosphere is in vapor pressure equilibrium with the surface ice, then N2 gas would dominate the atmosphere with abundances ≳ 90% (Owen et al., 1993). Here we report on a search to identify atmospheric spectral features using data collected with the Steward Observatory 90'' Bok Telescope and the B & C Spectrograph. Pluto-Charon spectra were obtained on five nights in May and June 2003 using 300 l/mm grating blazed in the blue and red spectral regions. We present spectra covering the visible range from 3500 to 9000 Å : (λ /Δ λ ˜ 750 at 6000 Å), and discuss limits set on gases in the atmosphere and extended exosphere of the Pluto-Charon system. J. C. Cook would like to acknowledge support from NASA Space Grant Fellowship.
The upper atmosphere of Uranus
NASA Technical Reports Server (NTRS)
Strobel, Darrell F.; Yelle, Roger V.; Shemansky, Donald E.; Atreya, Sushil K.
1991-01-01
Voyager measurements of the upper atmosphere of Uranus are analyzed and developed. The upper atmosphere of Uranus is predominantly H2, with at most 10 percent He by volume, and the dominant constituent of the exosphere is H. The thermosphere is warm, with an asymptotic isothermal temperature of about 800 K. Atomic hydrogen at this temperature forms an extensive thermal corona and creates gas drag that severely limits the lifetime of small ring particles. The upper atmosphere emits copious amounts of UV radiation from pressures greater than 0.01 microbar. The depth of this emission level imposes a powerful constraint on permissible emission mechanisms. Electron excitation from a thin layer near the exobase appears to violate this constraint. Solar fluorescence is consistent with the observed trend in solar zenith-angle variation of the emissions and is absent from the night side of the planet. On Uranus, it accounts for the observed Lyman beta to H2 bands intensity ratio and an important fraction of the observed intensity (about 55 percent).
Venus Atmospheric Maneuverable Platform (VAMP)
NASA Astrophysics Data System (ADS)
Griffin, K.; Sokol, D.; Lee, G.; Dailey, D.; Polidan, R.
2013-12-01
We have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In 2012 we initiated a feasibility study for a semi-buoyant maneuverable vehicle that could operate in the upper atmosphere of Venus. In this presentation we report results from the ongoing study and plans for future analyses and prototyping to advance and refine the concept. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.
1992-09-12
This STS-48 onboard photo is of the Upper Atmosphere Research Satellite (UARS) in the grasp of the RMS (Remote Manipulator System) during deployment, September 1991. UARS gathers data related to the chemistry, dynamics, and energy of the ozone layer. UARS data is used to study energy input, stratospheric photo chemistry, and upper atmospheric circulation. UARS helps us understand and predict how the nitrogen and chlorine cycles, and the nitrous oxides and halo carbons which maintain them, relate to the ozone balance. It also observes diurnal variations in short-lived stratospheric chemical species important to ozone destruction. Data from UARS enables scientists to study ozone depletion in the upper atmosphere.
1991-09-12
This STS-48 onboard photo is of the Upper Atmosphere Research Satellite (UARS) in the grasp of the RMS (Remote Manipulator System) during deployment, September 1991. UARS gathers data related to the chemistry, dynamics, and energy of the ozone layer. UARS data is used to study energy input, stratospheric photo chemistry, and upper atmospheric circulation. UARS helps us understand and predict how the nitrogen and chlorine cycles, and the nitrous oxides and halo carbons which maintain them, relate to the ozone balance. It also observes diurnal variations in short-lived stratospheric chemical species important to ozone destruction. Data from UARS enables scientists to study ozone depletion in the upper atmosphere.
NASA Astrophysics Data System (ADS)
Djamaluddin, T.
2006-11-01
t_djamal@hotmail.com Since 1980, the National Institute of Aeronautics and Space (LAPAN) has been carrying out integrated observations of solar activities, geomagnetic disturbance, and ionospheric parameters, as well as other solar-terrestrial relationship research. International collaboration, especially with Japan in the field of solar physics, geomagnetism and equatorial atmosphere and with Australia in the field of ionosphere and upper atmosphere, help us in increasing national capacity building. The international data available on the Internet also helps us in comparing our local data with the global one or in fulfilling our needs of data due to lack of facilities, ground based or space based data. Some results will be reviewed. Preparation for IHY-2007 will also be discussed.
Theoretical and experimental investigations of upper atmosphere dynamics
NASA Technical Reports Server (NTRS)
Roper, R. G.; Edwards, H. D.
1980-01-01
A brief overview of the significant contributions made to the understanding of the dynamics of the Earth's upper atmosphere is presented, including the addition of winds and diffusion to the semi-empirical Global Reference Atmospheric Model developed for the design phase of the Space Shuttle, reviews of turbulence in the lower thermosphere, the dynamics of the equatorial mesopause, stratospheric warming effects on mesopause level dynamics, and the relevance of these studies to the proposed Middle Atmosphere Program (1982-85). A chronological bibliography, with abstracts of all papers published, is also included.
NASA Astrophysics Data System (ADS)
Bougher, S. W.; Rafkin, S.; Drossart, P.
2006-11-01
A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).
NASA Astrophysics Data System (ADS)
Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.
2016-12-01
From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.
NASA Astrophysics Data System (ADS)
Skamarock, W. C.
2017-12-01
We have performed week-long full-physics simulations with the MPAS global model at 15 km cell spacing using vertical mesh spacings of 800, 400, 200 and 100 meters in the mid-troposphere through the mid-stratosphere. We find that the horizontal kinetic energy spectra in the upper troposphere and stratosphere does not converge with increasing vertical resolution until we reach 200 meter level spacing. Examination of the solutions indicates that significant inertia-gravity waves are not vertically resolved at the lower vertical resolutions. Diagnostics from the simulations indicate that the primary kinetic energy dissipation results from the vertical mixing within the PBL parameterization and from the gravity-wave drag parameterization, with smaller but significant contributions from damping in the vertical transport scheme and from the horizontal filters in the dynamical core. Most of the kinetic energy dissipation in the free atmosphere occurs within breaking mid-latitude baroclinic waves. We will briefly review these results and their implications for atmospheric model configuration and for atmospheric dynamics, specifically that related to the dynamics associated with the mesoscale kinetic energy spectrum.
Internal gravity waves in the upper atmosphere, generated by tropospheric jet streams
NASA Technical Reports Server (NTRS)
Chunchuzov, Y. P.; Torgashin, Y. M.
1979-01-01
A mechanism of internal gravity wave generation by jet streams in the troposphere is considered. Evaluations of the energy and pulse of internal gravity waves emitted into the upper atmosphere are given. The obtained values of flows can influence the thermal and dynamic regime of these layers.
BOREAS AFM-5 Level-1 Upper Air Network Data
NASA Technical Reports Server (NTRS)
Barr, Alan; Hrynkiw, Charmaine; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing Atmospheric Environment Service (AES) aerological network, both temporally and spatially. This data set includes basic upper-air parameters collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The level-1 upper-air network data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files also are available on a CD-ROM (see document number 20010000884).
Physics of the infrared spectrum
NASA Technical Reports Server (NTRS)
Deming, Drake; Jennings, Donald E.; Jefferies, John; Lindsey, Charles
1991-01-01
The IR bandpass is attractive for solar magnetic field studies in virtue of the proportionality to wavelength of the ratio of Zeeman splitting to line width. The large Zeeman splitting and optical thinness of the 12-micron observations render them especially useful for vector magnetic field derivations. The IR continuum, and many IR spectral lines, are formed in LTE and are useful in studies of the temperature structure of the solar atmosphere from the deepest observable photospheric layers to chromospheric altitudes. The far-IR continuum is an excellent thermometer for the upper photosphere and chromosphere.
NASA/ESA CV-990 spacelab simulation
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.
1976-01-01
Simplified techniques were applied to conduct an extensive spacelab simulation using the airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy. The mission was successful and provided extensive data relevant to spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for spacelab experiment operators; and schedule requirements to prepare for such a spacelab mission.
Space Studies Board Annual Report 1994
NASA Technical Reports Server (NTRS)
1995-01-01
The following summaries of major reports are presented: (1) 'Scientific Opportunities in the Human Exploration of Space;' (2) 'A Space Physics Paradox;' (3) 'An Integrated Strategy for the Planetary Sciences;' and (4) 'ONR (Office of Naval Research) Research Opportunities in Upper Atmospheric Sciences.' Short reports on the following topics are also presented: life and microgravity sciences and the Space Station Program, the Space Infrared Telescope Facility and the Stratospheric Observatory for infrared astronomy, the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe, and the utilization of the Space Station.
Atmosphere-Ionosphere Electrodynamic Coupling
NASA Astrophysics Data System (ADS)
Sorokin, V. M.; Chmyrev, V. M.
Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally observed effects as excitation of plasma density inhomogeneities, field-aligned currents, and ULF/ELF emissions and the modification of electron and ion altitude profiles in the upper ionosphere. The electrodynamic model of the ionosphere modification under the influence of some natural and man-made processes in the atmosphere is also discussed. The model is based on the satellite and ground measurements of electromagnetic field and plasma perturbations and on the data on atmospheric radioactivity and soil gas injection into the atmosphere.
Comparison of Global Martian Plasma Models in the Context of MAVEN Observations
NASA Astrophysics Data System (ADS)
Egan, Hilary; Ma, Yingjuan; Dong, Chuanfei; Modolo, Ronan; Jarvinen, Riku; Bougher, Stephen; Halekas, Jasper; Brain, David; Mcfadden, James; Connerney, John; Mitchell, David; Jakosky, Bruce
2018-05-01
Global models of the interaction of the solar wind with the Martian upper atmosphere have proved to be valuable tools for investigating both the escape to space of the Martian atmosphere and the physical processes controlling this complex interaction. The many models currently in use employ different physical assumptions, but it can be difficult to directly compare the effectiveness of the models since they are rarely run for the same input conditions. Here we present the results of a model comparison activity, where five global models (single-fluid MHD, multifluid MHD, multifluid electron pressure MHD, and two hybrid models) were run for identical conditions corresponding to a single orbit of observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We find that low-altitude ion densities are very similar across all models and are comparable to MAVEN ion density measurements from periapsis. Plasma boundaries appear generally symmetric in all models and vary only slightly in extent. Despite these similarities there are clear morphological differences in ion behavior in other regions such as the tail and southern hemisphere. These differences are observable in ion escape loss maps and are necessary to understand in order to accurately use models in aiding our understanding of the Martian plasma environment.
Climate and smoke: an appraisal of nuclear winter.
Turco, R P; Toon, O B; Ackerman, T P; Pollack, J B; Sagan, C
1990-01-12
The latest understanding of nuclear winter is reviewed. Considerable progress has been made in quantifying the production and injection of soot by large-scale fires, the regional and global atmospheric dispersion of the soot, and the resulting physical, environmental, and climatic perturbations. New information has been obtained from laboratory studies, field experiments, and numerical modeling on a variety of scales (plume, mesoscale, and global). For the most likely soot injections from a full-scale nuclear exchange, three-dimensional climate simulations yield midsummer land temperature decreases that average 10 degrees to 20 degrees C in northern mid-latitudes, with local cooling as large as 35 degrees C, and subfreezing summer temperatures in some regions. Anomalous atmospheric circulations caused by solar heating of soot is found to stabilize the upper atmosphere against overturning, thus increasing the soot lifetime, and to accelerate interhemispheric transport, leading to persistent effects in the Southern Hemisphere. Serious new environmental problems associated with soot injection have been identified, including disruption of monsoon precipitation and severe depletion of the stratospheric ozone layer in the Northern Hemisphere. The basic physics of nuclear winter has been reaffirmed through several authoritative international technical assessments and numerous individual scientific investigations. Remaining areas of uncertainty and research priorities are discussed in view of the latest findings.
NASA Astrophysics Data System (ADS)
Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.
2015-05-01
The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.
Cupid's Arrow: An Innovative Nanosat to Sample Venus' Upper Atmosphere
NASA Technical Reports Server (NTRS)
Bienstock, Bernie; Darrach, Murray; Madzunkov, Stojan; Sotin, Christophe
2016-01-01
In NASA's Discovery 2014 AO, the opportunity to propose a Technology Demonstration Opportunity (TDO) to enhance the primary mission was specified. For the Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy (VERITAS) mission, we elected to include the Cupid's Arrow nanosat TDO to sample and measure the abundances of noble gases and their isotopic ratios in Venus's upper atmosphere below the homopause. This paper will provide a basic overview of the VERITAS mission, with a focus on the Cupid's Arrow concept including a description of the mission, spacecraft design, and JPL's quadrupole ion trap mass spectrometer (QITMS) instrument specifications and design. In previous planetary entry probe mission designs, particularly at Venus, engineers w ere focused on entry and descent. A landed probe was also proposed for the New Frontiers SAGE mission. For Cupid's Arrow, the nanosat is designed to skim through the upper atmosphere, just below the homopause, in order to sample the atmosphere, perform the analysis, and then exit the atmosphere to transmit its data to the orbiting VERITAS spacecraft. Cupid's Arrow is a compelling addition to the VERITAS geology mission. A key missing link in our understanding of Venus' evolution is the noble gas abundances and their isotopic ratios. Not since Pioneer Venus have these measurements been made in the Venus atmosphere and never in the upper atmosphere, just below the homopause, to the degree of accuracy that will be accomplished by VERITAS' Cupid's Arrow nanosat.Such measurements were ranked as the number 1 investigation of the number 1 objective of the goal "Atmospheric Formation, Evolution, and Climate History ".
Predictors of Upper-Extremity Physical Function in Older Adults.
Hermanussen, Hugo H; Menendez, Mariano E; Chen, Neal C; Ring, David; Vranceanu, Ana-Maria
2016-10-01
Little is known about the influence of habitual participation in physical exercise and diet on upper-extremity physical function in older adults. To assess the relationship of general physical exercise and diet to upper-extremity physical function and pain intensity in older adults. A cohort of 111 patients 50 or older completed a sociodemographic survey, the Rapid Assessment of Physical Activity (RAPA), an 11-point ordinal pain intensity scale, a Mediterranean diet questionnaire, and three Patient- Reported Outcomes Measurement Information System (PROMIS) based questionnaires: Pain Interference to measure inability to engage in activities due to pain, Upper-Extremity Physical Function, and Depression. Multivariable linear regression modeling was used to characterize the association of physical activity, diet, depression, and pain interference to pain intensity and upper-extremity function. Higher general physical activity was associated with higher PROMIS Upper-Extremity Physical Function and lower pain intensity in bivariate analyses. Adherence to the Mediterranean diet did not correlate with PROMIS Upper-Extremity Physical Function or pain intensity in bivariate analysis. In multivariable analyses factors associated with higher PROMIS Upper-Extremity Physical Function were male sex, non-traumatic diagnosis and PROMIS Pain Interference, with the latter accounting for most of the observed variability (37%). Factors associated with greater pain intensity in multivariable analyses included fewer years of education and higher PROMIS Pain Interference. General physical activity and diet do not seem to be as strongly or directly associated with upper-extremity physical function as pain interference.
The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission
NASA Technical Reports Server (NTRS)
Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent;
2014-01-01
The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.
Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment.
NASA Astrophysics Data System (ADS)
Lewis, John M.
1998-01-01
In the mid-1950s, amid heated debate over the physical mechanisms that controlled the known features of the atmosphere's general circulation, Norman Phillips simulated hemispheric motion on the high-speed computer at the Institute for Advanced Study. A simple energetically consistent model was integrated for a simulated time of approximately 1 month. Analysis of the model results clarified the respective roles of the synoptic-scale eddies (cyclones-anticyclones) and mean meridional circulation in the maintenance of the upper-level westerlies and the surface wind regimes. Furthermore, the modeled cyclones clearly linked surface frontogenesis with the upper-level Charney-Eady wave. In addition to discussing the model results in light of the controversy and ferment that surrounded general circulation theory in the 1940s-1950s, an effort is made to follow Phillips's scientific path to the experiment.
MAVEN - Mars Atmosphere and Volatile EvolutioN Mission
NASA Technical Reports Server (NTRS)
Grebowsky, Joseph M.; Jakosky, Bruce M.
2011-01-01
NASA's MAVEN mission (to be launched in late 2013) is the first mission to Mars devoted to sampling all of the upper atmosphere neutral and plasma environments, including the well-mixed atmosphere, the exosphere, ionosphere, outer magnetosphere and near-Mars solar wind. It will fill in some measurement gaps remaining from the successful Mars Global Surveyor and the on-going Mars Express missions. The primary science objectives of MAVEN are: 1. Provide a comprehensive picture of the present state of the upper atmosphere and ionosphere of Mars; 2. Understand the processes controlling the present state; and 3. Determine how loss of volatiles to outer space in the present epoch varies with changing solar condition - EUY, solar wind and interplanetary magnetic field measurements will provide the varying solar energy inputs into the system. Knowing how these processes respond to the Sun's energy inputs in the current epoch will provide a framework for projecting atmospheric processes back in time to profile MARS' atmospheric evolution and to explore "where the water went", A description will be given of the science objectives, the instruments, and the current status of the project, emphasizing the value of having collaborations between the MAVEN project and the Mars upper atmosphere science community.
A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoerst, S. M.; Brown, M. E., E-mail: sarah.horst@colorado.edu
Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium,more » or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.« less
NASA Technical Reports Server (NTRS)
Husson, N.; Barbe, A.; Brown, L. R.; Carli, B.; Goldman, A.; Pickett, H. M.; Roche, A. E.; Rothman, L. S.; Smith, M. A. H.
1985-01-01
Several aspects of quantitative atmospheric spectroscopy are considered, using a classification of the molecules according to the gas amounts in the stratosphere and upper troposphere, and reviews of quantitative atmospheric high-resolution spectroscopic measurements and field measurements systems are given. Laboratory spectroscopy and spectral analysis and prediction are presented with a summary of current laboratory spectroscopy capabilities. Spectroscopic data requirements for accurate derivation of atmospheric composition are discussed, where examples are given for space-based remote sensing experiments of the atmosphere: the ATMOS (Atmospheric Trace Molecule) and UARS (Upper Atmosphere Research Satellite) experiment. A review of the basic parameters involved in the data compilations; a summary of information on line parameter compilations already in existence; and a summary of current laboratory spectroscopy studies are used to assess the data base.
Space Experiments with Particle Accelerators: SEPAC
NASA Technical Reports Server (NTRS)
Burch, J. L.; Roberts, W. T.; Taylor, W. W. L.; Kawashima, N.; Marshall, J. A.; Moses, S. L.; Neubert, T.; Mende, S. B.; Choueiri, E. Y.
1994-01-01
The Space Experiments with Particle Accelerators (SEPAC), which flew on the Atmospheric Laboratory for Applications and Science (ATLAS) 1 mission, used new techniques to study natural phenomena in the Earth's upper atmosphere, ionosphere and magnetosphere by introducing energetic perturbations into the system from a high power electron beam with known characteristics. Properties of auroras were studied by directing the electron beam into the upper atmosphere while making measurements of optical emissions. Studies were also performed of the critical ionization velocity phenomenon.
Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.
1975-01-01
Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.
Rahul, P R C; Bhawar, R L; Ayantika, D C; Panicker, A S; Safai, P D; Tharaprabhakaran, V; Padmakumari, B; Raju, M P
2014-01-14
First ever 3-day aircraft observations of vertical profiles of Black Carbon (BC) were obtained during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted on 30(th) August, 4(th) and 6(th) September 2009 over Guwahati (26° 11'N, 91° 44'E), the largest metropolitan city in the Brahmaputra River Valley (BRV) region. The results revealed that apart from the surface/near surface loading of BC due to anthropogenic processes causing a heating of 2 K/day, the large-scale Walker and Hadley atmospheric circulations associated with the Indian summer monsoon help in the formation of a second layer of black carbon in the upper atmosphere, which generates an upper atmospheric heating of ~2 K/day. Lofting of BC aerosols by these large-scale circulating atmospheric cells to the upper atmosphere (4-6 Km) could also be the reason for extreme climate change scenarios that are being witnessed in the BRV region.
Neutron spectral measurements in the upper atmosphere
NASA Technical Reports Server (NTRS)
Zobel, W.; Love, T. A.; Delorenzo, J. T.; Mcnew, C. O.
1972-01-01
An experiment to measure neutrons in the upper atmosphere was performed on a balloon flight from Palestine, Texas, at an altitude of about 32 km. The experimental arrangement is discussed briefly, and results of a preliminary analysis of the data for neutrons in the energy range 3 to 30 MeV are given.
Aeronomy of the Venus Upper Atmosphere
NASA Astrophysics Data System (ADS)
Gérard, J.-C.; Bougher, S. W.; López-Valverde, M. A.; Pätzold, M.; Drossart, P.; Piccioni, G.
2017-11-01
We present aeronomical observations collected using remote sensing instruments on board Venus Express, complemented with ground-based observations and numerical modeling. They are mostly based on VIRTIS and SPICAV measurements of airglow obtained in the nadir mode and at the limb above 90 km. They complement our understanding of the behavior of Venus' upper atmosphere that was largely based on Pioneer Venus observations mostly performed over thirty years earlier. Following a summary of recent spectral data from the EUV to the infrared, we examine how these observations have improved our knowledge of the composition, thermal structure, dynamics and transport of the Venus upper atmosphere. We then synthesize progress in three-dimensional modeling of the upper atmosphere which is largely based on global mapping and observations of time variations of the nitric oxide and O2 nightglow emissions. Processes controlling the escape flux of atoms to space are described. Results based on the VeRA radio propagation experiment are summarized and compared to ionospheric measurements collected during earlier space missions. Finally, we point out some unsolved and open questions generated by these recent datasets and model comparisons.
Initial tsunami signals in the lithosphere-ocean-atmosphere medium
NASA Astrophysics Data System (ADS)
Novik, O.; Ershov, S.; Mikhaylovskaya, I.
Satellite and ground based instrumentations for monitoring of dynamical processes under the Ocean floor 3 4 of the Earth surface and resulting catastrophic events should be adapted to unknown physical nature of transformation of the oceanic lithosphere s energy of seismogenic deformations into measurable acoustic electromagnetic EM temperature and hydrodynamic tsunami waves To describe the initial up to a tsunami wave far from a shore stage of this transformation and to understand mechanism of EM signals arising above the Ocean during seismic activation we formulate a nonlinear mathematical model of seismo-hydro-EM geophysical field interaction in the lithosphere-Ocean-atmosphere medium from the upper mantle under the Ocean up to the ionosphere domain D The model is based on the theory of elasticity electrodynamics fluid dynamics thermodynamics and geophysical data On the basis of this model and its mathematical investigation we calculate generation and propagation of different see above waves in the basin of a model marginal sea the data on the central part of the Sea of Japan were used At the moment t 0 the dynamic interaction process is supposed to be caused by weak may be precursory sub-vertical elastic displacements with the amplitude duration and main frequency of the order of a few cm sec and tenth of Hz respectively at the depth of 37 km under the sea level i e in the upper mantle Other seismic excitations may be considered as well The lithosphere EM signal is generated in the upper mantle conductive
Ultraviolet emissions from the magnetic footprints of Io, Ganymede and Europa on Jupiter.
Clarke, J T; Ajello, J; Ballester, G; Ben Jaffel, L; Connerney, J; Gérard, J-C; Gladstone, G R; Grodent, D; Pryor, W; Trauger, J; Waite, J H
2002-02-28
Io leaves a magnetic footprint on Jupiter's upper atmosphere that appears as a spot of ultraviolet emission that remains fixed underneath Io as Jupiter rotates. The specific physical mechanisms responsible for generating those emissions are not well understood, but in general the spot seems to arise because of an electromagnetic interaction between Jupiter's magnetic field and the plasma surrounding Io, driving currents of around 1 million amperes down through Jupiter's ionosphere. The other galilean satellites may also leave footprints, and the presence or absence of such footprints should illuminate the underlying physical mechanism by revealing the strengths of the currents linking the satellites to Jupiter. Here we report persistent, faint, far-ultraviolet emission from the jovian footprints of Ganymede and Europa. We also show that Io's magnetic footprint extends well beyond the immediate vicinity of Io's flux-tube interaction with Jupiter, and much farther than predicted theoretically; the emission persists for several hours downstream. We infer from these data that Ganymede and Europa have persistent interactions with Jupiter's magnetic field despite their thin atmospheres.
Cassini versus Saturn Illustration
2017-04-04
As depicted in this illustration, Cassini will plunge into Saturn's atmosphere on Sept. 15, 2017. Using its attitude control thrusters, the spacecraft will work to keep its antenna pointed at Earth while it sends its final data, including the composition of Saturn's upper atmosphere. The atmospheric torque will quickly become stronger than what the thrusters can compensate for, and after that point, Cassini will begin to tumble. When this happens, its radio connection to Earth will be severed, ending the mission. Following loss of signal, the spacecraft will burn up like a meteor in Saturn's upper atmosphere. https://photojournal.jpl.nasa.gov/catalog/PIA21440
NASA Technical Reports Server (NTRS)
Rinsland, C. P.; Russell, J. M., III; Zander, R.; Farmer, C. B.; Norton, R. H.
1987-01-01
This paper reports the results of the spectroscopic analysis of C2H6 and C2H2 absorption spectra obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument flown on the Shuttle as part of the Spacelab 3 mission. The spectra were recorded during sunset occultations occurring between 25 deg N and 31 deg N latitudes, yielding volume-mixing ratio profiles of C2H6 in the lower stratosphere and the upper troposphere, and an upper tropospheric profile of C2H2. These results compare well with previous in situ and remote sounding data obtained at similar latitudes and with model calculations. The results demonstrate the feasibility of the ATMOS instrument to sound the lower atmosphere from space.
The Reanalysis for Stratospheric Trace-gas Studies
NASA Technical Reports Server (NTRS)
Pawson, Steven; Li, Shuhua
2002-01-01
In order to re-examine trace gas transport in the middle atmosphere for the period May 1991 until April 1995, a "reanalysis" is being performed using an up-to-date version of the DAO's "GEOS" assimilation system. The Reanalysis for Stratospheric Trace-gas Studies (ReSTS) is intended to provide state-of-the-art estimates of the atmosphere during a period when the Upper Atmospheric Research Satellite provided a high density of trace-gas observations, and when the aerosol loading from the eruption of Mount Pinatubo contaminated the lower stratosphere, at the same time performing a natural tracer transport experiment. This study will present the first results from ReSTS, focussing on the improvements over the meteorological analyses produced by the then-operational GEOS-1 data assimilation system; emphasis will be placed on the improved representations of physical processes between GEOS-1 and the current GEOS-4 systems, highlighting the transport properties of the datasets. Alongside the production of a comprehensive atmospheric dataset, important components of ReSTS include performing sensitivity studies to the formulation of the assimilation system (including the representation of physical processes in the GCM, such as feedbacks between ozone/aerosols and meteorology) and to the inclusion of additional data types (including limb-sounding temperature data alongside the TOVS observations). Impacts of some of these factors on the analyzed meteorology and transport will be discussed. Of particular interest are attempts to determine the relative importance of various steps in the assimilation process to the quality of the final analyses.
Doppler Data and Density Profile from Cassini Saturn Atmospheric Entry
NASA Astrophysics Data System (ADS)
Wong, M.; Boone, D.; Roth, D. C.
2017-12-01
After thirteen years of surveying the Saturnian system and providing a multitude of ground-breaking science data, the Cassini spacecraft will perform its final act on September 15, 2017 when it plunges into Saturn's upper atmosphere. This `close contact' with uncharted territory will deliver sets of data about Saturn that were not previously obtainable. In addition to new information obtained from various science instruments onboard, the doppler signal, primarily used for navigation purposes throughout the tour, will in this circumstance furnish a glimpse of the atmospheric density along Cassini's path through the upper atmosphere. In this talk we will discuss preliminary results from our analysis of the doppler data and its implication on the atmospheric density.
The SUVIT Instrument on the Solar-C Mission
NASA Astrophysics Data System (ADS)
Tarbell, Theodore D.; Ichimoto, Kiyoshi
2014-06-01
Solar-C is a new space mission being proposed to JAXA, with significant contributions anticipated from NASA, ESA, and EU countries. The main scientific objectives are to: reveal the mechanisms for heating and dynamics of the chromosphere and corona and acceleration of the solar wind; determine the physical origin of the large-scale explosions and eruptions that drive short-term solar, heliospheric, and geospace variability; use the solar atmosphere as a laboratory for understanding fundamental physical processes; make unprecedented observations of the polar magnetic fields. The unique approaches of Solar-C to achieve these goals are to: determine the properties and evolution of the 3-dimensional magnetic field, especially on small spatial scales, and for the first time observed in the crucial low beta plasma region; observe all the temperature regimes of the atmosphere seamlessly at the highest spatial resolution ever achieved; observe at high cadence the prevailing dynamics in all regions of the atmosphere; determine physical properties from high resolution spectroscopic measurements throughout the atmosphere and into the solar wind. The powerful suite of instruments onboard Solar-C will be sensitive to temperatures from the photosphere 5500 K) to solar flares 20 MK) with no temperature gap, with spatial resolution at all temperatures of 0.3″ or less (0.1″ in the lower atmosphere) and at high cadence. The purpose of the Solar UV-Visible-IR Telescope (SUVIT) is to obtain chromospheric velocity, temperature, density and magnetic field diagnostics over as wide arange of heights as possible, through high cadence spectral line profiles and vector spectro-polarimetry. SUVIT is a meter-class telescope currently under study at 1.4m in order to obtain sufficientresolution and S/N. SUVIT has two complementary focal plane packages, the Filtergraph that makes high cadence imaging observations with the highest spatial resolution and the Spectro-polarimeter that makes precise spectro-polarimetric observations. With their powerful sets of spectral lines, FG and SP collect physical measurements from the lower photosphere to upper chromosphere with much better spatial and temporal resolution than Hinode SOT.
Role of Earth's plasmasphere in coupling of upper atmosphere
NASA Astrophysics Data System (ADS)
Singh, A. K.; Mishra, Sandhya; Dohare, S. K.
2010-02-01
The near-Earth space environment is a complex, ever changing system of magnetized plasmas whose behaviour has a profound impact upon our technology dependent society. The exploration of the cold, relatively dense, inner region of upper atmosphere (the plasmasphere) and its unexpectedly sharp outer boundary (the plasma pause) has proceeded through a combination of in-situ observations and ground based whistler observations. Studies have shown that plasmasphere is highly variable both spatially and temporally responding to changes in geomagnetic indices, ring current, penetration and shielding electric fields and subauroral electric fields. Consequently the plasmasphere exhibits erosion, emptying and refilling during active times. Infact, it is the electric field that plays one of the most important roles in coupling of upper atmosphere. The atmospheric dynamo is the main generator of the large-scale electric field in the upper atmosphere. It arises because of a special situation which electrons and ions move with different velocities across the magnetic field because of different collisions between electrons and neutral particles and ions with neutral particles. This process leads to charge separation and consequently to an electric field. In the present paper, storm/ quiet period VLF whistler data recorded at lower latitudes/mid latitudes are analyzed and attempt has been made to look at plasmasphere response on coupling of ionosphere and magnetosphere.
Extending the NASA Ames Mars General Circulation Model to Explore Mars’ Middle Atmosphere
NASA Astrophysics Data System (ADS)
Brecht, Amanda; Hollingsworth, J.; Kahre, M.; Schaeffer, J.
2013-10-01
The NASA Ames Mars General Circulation Model (MGCM) upper boundary has been extended to ~120 km altitude (p ~10-5 mbar). The extension of the MGCM upper boundary initiates the ability to understand the connection between the lower and upper atmosphere of Mars through the middle atmosphere 70 - 120 km). Moreover, it provides the opportunity to support future missions (i.e. the 2013 MAVEN mission). A major factor in this extension is the incorporation of the Non-Local Thermodynamic Equilibrium (NLTE) heating (visible) and cooling (infrared). This modification to the radiative transfer forcing (i.e., RT code) has been significantly tested in a 1D vertical column and now has been ported to the full 3D Mars GCM. Initial results clearly show the effects of NLTE in the upper middle atmosphere. Diagnostic of seasonal mean fields and large-scale wave activity will be shown with insight into circulation patterns in the middle atmosphere. Furthermore, sensitivity tests with the resolution of the pressure and temperature grids, in which the k-coefficients are calculated upon, have been performed in the 1D RT code. Our progress on this research will be presented. Brecht is supported by NASA’s Postdoctoral Program at the Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA.
The atmosphere of Pluto as observed by New Horizons
NASA Astrophysics Data System (ADS)
Gladstone, G. Randall; Stern, S. Alan; Ennico, Kimberly; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie A.; Summers, Michael E.; Strobel, Darrell F.; Hinson, David P.; Kammer, Joshua A.; Parker, Alex H.; Steffl, Andrew J.; Linscott, Ivan R.; Parker, Joel Wm.; Cheng, Andrew F.; Slater, David C.; Versteeg, Maarten H.; Greathouse, Thomas K.; Retherford, Kurt D.; Throop, Henry; Cunningham, Nathaniel J.; Woods, William W.; Singer, Kelsi N.; Tsang, Constantine C. C.; Schindhelm, Eric; Lisse, Carey M.; Wong, Michael L.; Yung, Yuk L.; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F.; Tyler, G. Leonard; Bagenal, F.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Ore, C. M. Dalle; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Holdridge, M. E.; Horanyi, M.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Ryschkewitsch, M. G.; Schenk, P.; Sepan, B.; Showalter, M. R.; Soluri, M.; Stanbridge, D.; Stryk, T.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Zangari, A. M.; Zirnstein, E.
2016-03-01
Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state - over seasonal or geologic time scales.
The atmosphere of Pluto as observed by New Horizons.
Gladstone, G Randall; Stern, S Alan; Ennico, Kimberly; Olkin, Catherine B; Weaver, Harold A; Young, Leslie A; Summers, Michael E; Strobel, Darrell F; Hinson, David P; Kammer, Joshua A; Parker, Alex H; Steffl, Andrew J; Linscott, Ivan R; Parker, Joel Wm; Cheng, Andrew F; Slater, David C; Versteeg, Maarten H; Greathouse, Thomas K; Retherford, Kurt D; Throop, Henry; Cunningham, Nathaniel J; Woods, William W; Singer, Kelsi N; Tsang, Constantine C C; Schindhelm, Eric; Lisse, Carey M; Wong, Michael L; Yung, Yuk L; Zhu, Xun; Curdt, Werner; Lavvas, Panayotis; Young, Eliot F; Tyler, G Leonard
2016-03-18
Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto. The cold upper atmosphere shuts off the anticipated enhanced-Jeans, hydrodynamic-like escape of Pluto's atmosphere to space. It is unclear whether the current state of Pluto's atmosphere is representative of its average state--over seasonal or geologic time scales. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Le Mer-Dachard, Fanny; Cansot, Elodie; Hébert, Philippe; Farges, Thomas; Ravel, Karen; Gaillac, Stéphanie
2015-10-01
The TARANIS mission aims at studying upper atmosphere coupling with a scientific nadir-pointing microsatellite - CNES Myriade family - at a low-altitude orbit (700 km). The main objectives are to measure the occurrence of Transient Luminous Event (TLE), impulsive energetic optical phenomena generated by storms according to recently discovered process, and Terrestrial Gamma-ray Flash (TGF), their emissions and trigger factors. TARANIS instruments are currently in manufacturing, assembly, integration and testing phase. The MicroCameras and Photometers instruments (MCP) are in charge of the remote sensing of the sprites and the lightning in optical wavelengths. MicroCameras instrument [MCP-MC] is an imager in the visible and Photometers instrument [MCP-PH] is a radiometer with four bands from UV to NIR, able to detect TLEs on-board and to trigger the whole payload. The satellite will provide a complete survey of the atmosphere in low resolution together with a high resolution data of sites of interest automatically detected on board. For MC and PH instruments, CEA defined scientific needs and is in charge of processing data and providing scientific results. CNES described the technical requirements of these two instruments and will run in-flight commissioning. Design, manufacturing and testing is under responsibility of Sodern for MicroCameras and Bertin Technologies for Photometers. This article shortly describes physical characteristics of TLEs and presents the final design of these instruments and first measured performances.
Rotating-fluid experiments with an atmospheric general circulation model
NASA Technical Reports Server (NTRS)
Geisler, J. E.; Pitcher, E. J.; Malone, R. C.
1983-01-01
In order to determine features of rotating fluid flow that are dependent on the geometry, rotating annulus-type experiments are carried out with a numerical model in spherical coordinates. Rather than constructing and testing a model expressly for this purpose, it is found expedient to modify an existing general circulation model of the atmosphere by removing the model physics and replacing the lower boundary with a uniform surface. A regime diagram derived from these model experiments is presented; its major features are interpreted and contrasted with the major features of rotating annulus regime diagrams. Within the wave regime, a narrow region is found where one or two zonal wave numbers are dominant. The results reveal no upper symmetric regime; wave activity at low rotation rates is thought to be maintained by barotropic rather than baroclinic processes.
NASA Technical Reports Server (NTRS)
Attmannspacher, W.; Hartmannsgrubber, R.; Lang, P.
1984-01-01
Balloon sounding of the ozone in the Earth atmosphere was performed in order to determine the natural behavior of ozone and its recognizable deviations. The importance of ozone in the Earth atmosphere and the orographic situation of observatories and ozone sounding statistics since 1966 are explained. The physical processes governing the total amount of ozone, and the behavior of stratospheric ozone are described. Measurements in the upper stratosphere show a decrease of the ozone partial pressure above 26 km altitude since 1977. The behavior of tropospheric ozone is discussed. Data since 1977 show increasing ozone values in the troposphere, up to 50% to 70%. This increase is independent of the solar radiation intensity and the reinforced transport of stratospheric ozone into the troposphere. The increase in the troposphere cannot compensate the stratospheric decrease.
Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment
NASA Astrophysics Data System (ADS)
Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.
2009-11-01
The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.
NASA Astrophysics Data System (ADS)
Koval, Andrey V.; Gavrilov, Nikolai M.; Pogoreltsev, Alexander I.; Savenkova, Elena N.
2018-06-01
The dynamical coupling of the lower and upper atmosphere by planetary waves (PWs) is studied. Numerical simulations of planetary wave (PW) amplitudes during composite sudden stratospheric warming (SSW) events in January-February are made using a model of general circulation of the middle and upper atmosphere with initial and boundary conditions typical for the westerly and easterly phases of quasi-biennial oscillation (QBO). The changes in PW amplitudes in the middle atmosphere before, during and after SSW event for the different QBO phases are considered. Near the North Pole, the increase in the mean temperature during SSW reaches 10-30 K at altitudes 30-50 km for four pairs of the model runs with the eQBO and wQBO, which is characteristic for the sudden stratospheric warming event. Amplitudes of stationary PWs in the middle atmosphere of the Northern hemisphere may differ up to 30% during wQBO and eQBO before and during the SSW. After the SSW event SPW amplitudes are substantially larger during wQBO phase. PW refractivity indices and Eliassen-Palm flux vectors are calculated. The largest EP-fluxes in the middle atmosphere correspond to PWs with zonal wavenumber m=1. Simulated changes in PW amplitudes correspond to inhomogeneities of the global circulation, refractivity index and EP-flux produced by the changes in QBO phases. Comparisons of differences in PW characteristics and circulation between the wQBO and eQBO show that PWs could provide effective coupling mechanism and transport dynamical changes from local regions of the lower atmosphere to distant regions of the upper atmosphere of both hemispheres.
Three-dimensional dynamical and chemical modelling of the upper atmosphere
NASA Technical Reports Server (NTRS)
Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.
1976-01-01
Progress in coding a 3-D upper atmospheric model and in modeling the ozone perturbation resulting from the shuttle booster exhaust is reported. A time-dependent version of a 2-D model was studied and the sulfur cycle in the stratosphere was investigated. The role of meteorology in influencing stratospheric composition measurements was also studied.
Ultraviolet emissions from the upper atmospheres of the planets
NASA Technical Reports Server (NTRS)
Moos, H. W.
1981-01-01
Some recent results on planetary upper atmospheres obtained by means of orbiting ultraviolet observatories are reviewed with emphasis on Jupiter and Io torus. Consideration is given to long-term variation in Jovian Ly alpha emission, UV polar auroras on Jupiter, and UV emission from the Io torus. Requirements for UV planetary astronomy are briefly discussed.
CIV VUV FPI Interferometer for Transition Region Magnetography
NASA Technical Reports Server (NTRS)
Gary, G. A.
2005-01-01
Much in the same way photonics harnesses light for engineering and technology applications, solar physics harnesses light for the remote sensing of the sun. In photonics the vacuum ultraviolet region offers shorter wavelength and higher energies per photon, while in solar physics the VUV allows the remote sensing of the upper levels of the solar atmosphere where magnetic fields dominate the physics. Understanding solar magnetism is a major aim for astrophysics and for understanding solar-terrestrial interaction. The poster is on our instrument development program for a high-spectral-resolution, high-finesse, Vacuum Ultraviolet Fabry-Perot Interferometer (VUV FPI) for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155nm). The poster will cover how the V W interferometer will allow us to understand solar magnetism, what is special about the MSFC VUV FPI, and why the University of Toronto F2 eximer has been of particular value to this program.
The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.
Zhang, Chunmin; He, Jian
2006-12-25
The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines.
NASA Astrophysics Data System (ADS)
Chen, X.; Millet, D. B.; Singh, H. B.; Wisthaler, A.
2017-12-01
We present an integrated analysis of the atmospheric VOC budget over North America using a high-resolution GEOS-Chem simulation and observations from a large suite of recent aircraft campaigns. Here, the standard model simulation is expanded to include a more comprehensive VOC treatment encompassing the best current understanding of emissions and chemistry. Based on this updated framework, we find in the model that biogenic emission dominate VOC carbon sources over North America (accounting for 71% of total primary emissions), and this is especially the case from a reactivity perspective (with biogenic VOCs accounting for 90% of reactivity-weighted emissions). Physical processes and chemical degradation make comparable contributions to the removal of VOC carbon over North America. We further apply this simulation to explore the impacts of different primary VOC sources on atmospheric chemistry in terms of OH reactivity and key atmospheric chemicals including NOx, HCHO, glyoxal, and ozone. The airborne observations show that the majority of detected VOC carbon is carried by oxygenated VOC throughout the North American troposphere, and this tendency is well captured by the model. Model-measurement comparisons along the campaign flight tracks show that the total observed VOC abundance is generally well-predicted by the model within the boundary layer (with some regionally-specific biases) but severely underestimated in the upper troposphere. The observations imply significant missing sources in the model for upper tropospheric methanol, acetone, peroxyacetic acid, and glyoxal, and for organic acids in the lower troposphere. Elemental ratios derived from airborne high-resolution mass spectrometry show only modest change in the ensemble VOC carbon oxidation state with aging (in NOx:NOy space), and the model successfully captures this behavior.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Xu, Xiangde; Ruan, Zheng; Chen, Bin; Wang, Fang
2018-03-01
The integrated analysis of the data from a C-band frequency-modulated continuous-wave (C-FMCW) radar site in Naqu obtained during a rainstorm over the middle and lower reaches of the Yangtze River and the data concerning the three-dimensional structure of the circulation of the precipitation system that occurred over the lower reaches of the Yangtze River Basin during the Third Tibetan Plateau (TP) Atmospheric Experiment from August 15th to 19th, 2014, was carried out. The changes in the echo intensity at the C-FMCW radar site in Naqu were of regional indicative significance for the characteristics of the whole-layer apparent heat source Q1 in local areas and the region of the adjacent river source area, including the Yangtze River, Yellow River, and Lancang River (hereinafter referred to as the "source area of three rivers"), as well as to the vertical speeds due to the development of convection. This study indicates that the C-FMCW radar echo intensity of the plateau convection zone and the related power structures of the coupled dipole circulations in the middle layer of the atmosphere, as well as in the upper atmospheric level divergence and lower atmospheric level convergence, are important stimuli for convective clouds in this region. Furthermore, these radar data provided a physical image of the development and maintenance mechanisms of an eastward-moving heavy rainstorm belt. This study also shows that changes in the echo intensities at the C-FMCW radar site of Naqu can provide strong signals related to heavy rainstorm processes in the upper reaches of the Yangtze River.
Nitrogen Chemistry in Titan's Upper Atmosphere
NASA Technical Reports Server (NTRS)
McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)
1996-01-01
In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.
NASA Technical Reports Server (NTRS)
Hays, P. B.
1982-01-01
A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.
Venus Atmospheric Maneuverable Platform (VAMP)
NASA Astrophysics Data System (ADS)
Shapiro Griffin, Kristen L.; Sokol, D.; Dailey, D.; Lee, G.; Polidan, R.
2013-10-01
We have explored a possible new approach to Venus upper atmosphere exploration by applying Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters the atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. In this presentation we report results from our ongoing study and plans for future analyses and prototyping. We discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we specifically focus upon four key factors impacting the design and performance of VAMP: 1. Feasibility of and options for the deployment of the vehicle in space 2. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight 3. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance (aerodynamics, power required vs. power available, propulsion, speed, percent buoyancy), performance sensitivity to payload weight 4. Science payload accommodation, constraints, and opportunities We discuss interdependencies of the above factors and the manner in which the VAMP strawman’s characteristics affect the CONOPs and the science objectives. We show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals 2 and 3.
NASA Astrophysics Data System (ADS)
Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Huang, W.; Lu, X.; Gardner, C. S.; McDonald, A.; Fuller-Rowell, T. J.; Vadas, S.
2013-12-01
The scientific motivation to explore the neutral properties of the polar middle and upper atmosphere is compelling. Human-induced changes in the Earth's climate system are one of the most challenging social and scientific issues in this century. Besides monitoring climate change, to fully explore neutral-ion coupling in the critical region between 100 and 200 km is an objective of highest priority for the upper atmosphere science community. Meteorological sources of wave energy from the lower atmosphere are responsible for producing significant variability in the upper atmosphere. Energetic particles and fields originating from the magnetosphere regularly alter the state of the ionosphere. These influences converge through the tight coupling between the ionosphere plasma and neutral thermosphere gas in the space-atmosphere interaction region (SAIR). Unfortunately measurements of the neutral thermosphere are woefully incomplete and in critical need to advance our understanding of and ability to predict the SAIR. Lidar measurements of neutral thermospheric winds, temperatures and species can enable these explorations. To help address these issues, in December 2010 we deployed an Fe Boltzmann temperature lidar to McMurdo (77.8S, 166.7E), Antarctica via collaboration between the United States Antarctic Program and Antarctica New Zealand. Since then an extensive dataset (~3000 h) has been collected by this lidar during its first 32 months of operation, leading to several important new discoveries. The McMurdo lidar campaign will continue for another five years to acquiring long-term datasets for polar geospace research. In this paper we provide a comprehensive overview of the lidar campaign and scientific results, emphasizing several new discoveries in the polar middle and upper atmosphere research. In particular, the lidar has detected neutral Fe layers reaching 170 km in altitude, and derived neutral temperature from 30 to 170 km for the first time in the world. Such discoveries may have opened the new door to observing the neutral thermosphere with ground-based instruments. Extreme Fe events in summer were observed and understood as the interesting interactions among the meteoric metal atoms, sub-visible ice particles and energetic particles during aurora precipitation. Furthermore, the McMurdo middle and upper atmosphere is found to be very dynamical, especially in winter when inertia-gravity waves and eastward propagating planetary waves are predominant in the mesosphere and lower thermosphere and in the stratosphere, respectively. Despite small amplitudes below 100 km, the diurnal and semidiurnal tidal amplitudes exhibit fast growth from 100 to 110 km depending on the geomagnetic activities. These observations pose great challenges to our understanding of the Earth's upper atmosphere but also provide excellent opportunities to exploring how the electrodynamics and neutral dynamics work together at this high southern latitude to produce many intriguing geophysical phenomena.
Cassini's Grand Finale Overview
NASA Astrophysics Data System (ADS)
Spilker, L. J.
2017-12-01
After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini sent back its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Cassini's final phase covered roughly ten months and ended with the first time exploration of the region between the rings and planet. In late 2016 Cassini transitioned to a series of 20 Ring Grazing orbits with peripases just outside Saturn's F ring, providing close flybys of tiny ring moons, including Pan, Daphnis and Atlas, and high-resolution views of Saturn's A and F rings. A final Titan flyby in late April 2017 propelled Cassini across Saturn's main rings and into its Grand Finale orbits. Comprised of 22 orbits, Cassini repeatedly dove between Saturn's innermost rings and upper atmosphere to answer fundamental questions unattainable earlier in the mission. The last orbit turned the spacecraft into the first Saturn atmosphere probe. The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet. Science highlights and new mysteries collected in the Grand Finale orbits will be discussed. The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.
NASA Astrophysics Data System (ADS)
Dee, S. G.; Russell, J. M.; Nusbaumer, J. M.; Konecky, B. L.; Buenning, N. H.; Lee, J. E.; Noone, D.
2016-12-01
General circulation models (GCMs) suggest that much of the global hydrological cycle's response to anthropogenic warming will be caused by increased lower-tropospheric water vapor concentrations and associated feedbacks. However, fingerprinting changes in the global hydrological cycle due to anthropogenic warming remains challenging. Held and Soden (2006) predicted that as lower-tropospheric water vapor increases, atmospheric circulation will weaken as climate warms to maintain the surface energy budget. Unfortunately, the strength of this feedback and the fallout for other branches of the hydrological cycle is difficult to constrain in situ or with GCMs alone. We demonstrate the utility of stable hydrogen isotope ratios in atmospheric water vapor to quantitatively trace changes in atmospheric circulation and convective mass flux in a warming world. We compare water isotope-enabled GCM experiments for control (present-day) CO2 vs. high CO2(2x, 4x) atmospheres in two GCMs, IsoGSM and iCAM5. We evaluate changes in the distribution of water vapor, vertical velocity (omega), and the stream function between these experiments in order to identify spatial patterns of circulation change over the tropical Pacific (where vertical motion is strong) and map the δD of water vapor associated with atmospheric warming. We also probe the simulations to isolate isotopic signatures associated with water vapor residence time, precipitation efficiency, divergence, and cloud physics. We show that there are robust mechanisms that moisten the troposphere and weaken convective mass flux, and that these mechanisms can be tracked using the δD of water vapor. Further, we find that these responses are most pronounced in the upper troposphere. These findings provide a framework to develop new metrics for the detection of global warming impacts to the hydrological cycle. Further, currently available satellite missions measure δD in the atmospheric boundary layer, the free atmosphere, or the total column; our study suggests that more accurate upper troposphere measurements (above 500hPa) may be needed to detect changes in convective mass flux using water vapor isotope ratios.
The microwave limb sounder for the Upper Atmosphere Research Satellite
NASA Technical Reports Server (NTRS)
Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.
1988-01-01
The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.
NASA Technical Reports Server (NTRS)
Massey, Harrie; Potter, A. E.
1961-01-01
The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.
Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques
NASA Technical Reports Server (NTRS)
Vincent, R. A. (Editor)
1984-01-01
Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.
The role of partial ionization effects in the chromosphere
Martínez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo; Carlsson, Mats
2015-01-01
The energy for the coronal heating must be provided from the convection zone. However, the amount and the method by which this energy is transferred into the corona depend on the properties of the lower atmosphere and the corona itself. We review: (i) how the energy could be built in the lower solar atmosphere, (ii) how this energy is transferred through the solar atmosphere, and (iii) how the energy is finally dissipated in the chromosphere and/or corona. Any mechanism of energy transport has to deal with the various physical processes in the lower atmosphere. We will focus on a physical process that seems to be highly important in the chromosphere and not deeply studied until recently: the ion–neutral interaction effects in the chromosphere. We review the relevance and the role of the partial ionization in the chromosphere and show that this process actually impacts considerably the outer solar atmosphere. We include analysis of our 2.5D radiative magnetohydrodynamic simulations with the Bifrost code (Gudiksen et al. 2011 Astron. Astrophys. 531, A154 (doi:10.1051/0004-6361/201116520)) including the partial ionization effects on the chromosphere and corona and thermal conduction along magnetic field lines. The photosphere, chromosphere and transition region are partially ionized and the interaction between ionized particles and neutral particles has important consequences on the magneto-thermodynamics of these layers. The partial ionization effects are treated using generalized Ohm's law, i.e. we consider the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. The interaction between the different species affects the modelled atmosphere as follows: (i) the ambipolar diffusion dissipates magnetic energy and increases the minimum temperature in the chromosphere and (ii) the upper chromosphere may get heated and expanded over a greater range of heights. These processes reveal appreciable differences between the modelled atmospheres of simulations with and without ion–neutral interaction effects. PMID:25897096
Tsuda, Toshitaka
2014-01-01
The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.
TSUDA, Toshitaka
2014-01-01
The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645
Magnetic field orientations in Saturn's upper ionosphere inferred from Voyager radio occultations
NASA Technical Reports Server (NTRS)
Hinson, D. P.
1984-01-01
The radio scintillations observed during occultations of Voyagers 1 and 2 by Saturn are analyzed to determine the morphology of plasma irregularities and hence the magnetic field orientation in Saturn's upper atmosphere. The measurement techniques, the weak scattering theory, and the method used to relate the observed radio scintillations to physical properties of the ionospheric irregularities are briefly described. Results on the spatial characteristics of the irregularities are presented, and the magnetic field orientation in Saturn's ionosphere is inferred. Although the occultation measurements generally confirm the accuracy of the Saturnian magnetic field model of Connerney et al. (1982), it is found that a small adjustment of the coefficients in that model's zonal harmonic expansion would remove the discrepancy between the model predictions and the measurements. A strategy for obtaining improved measurements of Saturn's magnetic field from radio occultation observations of scintillations and Faraday rotation using an orbiting spacecraft is briefly discussed.
Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet
NASA Technical Reports Server (NTRS)
Cole, Keith D.
1993-01-01
The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.
Whole Atmosphere Simulation of Anthropogenic Climate Change
NASA Astrophysics Data System (ADS)
Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.
2018-02-01
We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.
NASA Technical Reports Server (NTRS)
Pulinets, S.; Ouzounov, D.
2010-01-01
The paper presents a conception of complex multidisciplinary approach to the problem of clarification the nature of short-term earthquake precursors observed in atmosphere, atmospheric electricity and in ionosphere and magnetosphere. Our approach is based on the most fundamental principles of tectonics giving understanding that earthquake is an ultimate result of relative movement of tectonic plates and blocks of different sizes. Different kind of gases: methane, helium, hydrogen, and carbon dioxide leaking from the crust can serve as carrier gases for radon including underwater seismically active faults. Radon action on atmospheric gases is similar to the cosmic rays effects in upper layers of atmosphere: it is the air ionization and formation by ions the nucleus of water condensation. Condensation of water vapor is accompanied by the latent heat exhalation is the main cause for observing atmospheric thermal anomalies. Formation of large ion clusters changes the conductivity of boundary layer of atmosphere and parameters of the global electric circuit over the active tectonic faults. Variations of atmospheric electricity are the main source of ionospheric anomalies over seismically active areas. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model can explain most of these events as a synergy between different ground surface, atmosphere and ionosphere processes and anomalous variations which are usually named as short-term earthquake precursors. A newly developed approach of Interdisciplinary Space-Terrestrial Framework (ISTF) can provide also a verification of these precursory processes in seismically active regions. The main outcome of this paper is the unified concept for systematic validation of different types of earthquake precursors united by physical basis in one common theory.
H20 and CH4 abundances under non-LTE conditions from MIPAS upper atmosphere measurements.
NASA Astrophysics Data System (ADS)
Koukouli, M. E.; Imk-Iaa Mipas/Envisat Team
Vertical profiles of water vapour and methane have been retrieved from measurements of the Earth's Upper Atmosphere made by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the polar orbiting ENVISAT satellite. The spectral range targeted is 685-2410 cm-1 (4.1-14.6 μm) and the retrieval altitude range is ˜25-80 km. The Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA), jointly developed by IAA and IMK, has been used to analyse two days' worth of upper atmosphere orbits, from July 2002 and June 2003. The vertical profiles retrieved are compared and calibrated against other known water vapour experiments (e.g. HALOE) in the corresponding vertical and spacial co-locations. Global three-dimensional maps are also presented and validated against modelling results (e.g. Garcia and Solomon). The total hydrogen content of the Earth's middle atmosphere will also be investigated as means of identifying possible sinks or sources in the water vapour and methane day-night variability. A comprehensive systematic error analysis will complement the presentation of the results.
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.
2017-01-01
Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.
NASA Technical Reports Server (NTRS)
Manson, A. H.; Meek, C. E.; Gregory, J. B.
1984-01-01
Examples of gravity waves (GW), tides, planetary waves (PW), and circulation effects in the upper middle atmosphere are presented. Energy densities of GW, tides, and PW are compared. Fourier and spectral analyses are applied to the data.
NASA Technical Reports Server (NTRS)
Livesey, N. J.; Fromm, M. D.; Waters, J. W.; Manney, G. L.; Santee, M. L.; Read, W. G.
2004-01-01
On 25 August 1992, the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite observed a significant enhancement in the abundance of lower stratospheric methyl cyanide (CH3CN) at 100??hPa (16??km altitude) in a small region off the east coast of Florida.
Detection of CO and HCN in Pluto's atmosphere with ALMA
NASA Astrophysics Data System (ADS)
Lellouch, E.; Gurwell, M.; Butler, B.; Fouchet, T.; Lavvas, P.; Strobel, D. F.; Sicardy, B.; Moullet, A.; Moreno, R.; Bockelée-Morvan, D.; Biver, N.; Young, L.; Lis, D.; Stansberry, J.; Stern, A.; Weaver, H.; Young, E.; Zhu, X.; Boissier, J.
2017-04-01
Observations of the Pluto-Charon system, acquired with the ALMA interferometer on June 12-13, 2015, have led to the detection of the CO(3-2) and HCN(4-3) rotational transitions from Pluto (including the hyperfine structure of HCN), providing a strong confirmation of the presence of CO, and the first observation of HCN in Pluto's atmosphere. The CO and HCN lines probe Pluto's atmosphere up to ∼450 km and ∼900 km altitude, respectively, with a large contribution due to limb emission. The CO detection yields (i) a much improved determination of the CO mole fraction, as 515 ± 40 ppm for a 12 μbar surface pressure (ii) strong constraints on Pluto's mean atmospheric dayside temperature profile over ∼50-400 km, with clear evidence for a well-marked temperature decrease (i.e., mesosphere) above the 30-50 km stratopause and a best-determined temperature of 70 ± 2 K at 300 km, somewhat lower than previously estimated from stellar occultations (81 ± 6 K), and in agreement with recent inferences from New Horizons / Alice solar occultation data. The HCN line shape implies a high abundance of this species in the upper atmosphere, with a mole fraction >1.5 × 10-5 above 450 km and a value of 4 × 10-5 near 800 km. Assuming HCN at saturation, this would require a warm (>92 K) upper atmosphere layer; while this is not ruled out by the CO emission, it is inconsistent with the Alice-measured CH4 and N2 line-of-sight column densities. Taken together, the large HCN abundance and the cold upper atmosphere imply supersaturation of HCN to a degree (7-8 orders of magnitude) hitherto unseen in planetary atmospheres, probably due to a lack of condensation nuclei above the haze region and the slow kinetics of condensation at the low pressure and temperature conditions of Pluto's upper atmosphere. HCN is also present in the bottom ∼100 km of the atmosphere, with a 10-8-10-7 mole fraction; this implies either HCN saturation or undersaturation there, depending on the precise stratopause temperature. The HCN column is (1.6 ± 0.4)× 1014 cm-2 , suggesting a surface-referred vertically-integrated net production rate of ∼2 × 107 cm-2 s-1. Although HCN rotational line cooling affects Pluto's atmosphere heat budget, the amounts determined in this study are insufficient to explain the well-marked mesosphere and upper atmosphere's ∼70 K temperature, which if controlled by HCN cooling would require HCN mole fractions of (3-7) ×10-4 over 400-800 km. We finally report an upper limit on the HC3N column density (<2 × 1013 cm-2) and on the HC15N / HC14N ratio (<1/125).
Breathing of the Biosphere: How Physics sets the Limits, and Biology Does the Work (Invited)
NASA Astrophysics Data System (ADS)
Baldocchi, D. D.
2009-12-01
Trace gas concentrations in the atmosphere are a consequence of fluxes between vegetation and the atmosphere. Predicting the rates of these fluxes is extremely complicated because the biosphere is a complex adaptive system that consists of a multitude of physical and biological processes that vary across 14 orders of magnitude in time and space. One challenge in predicting trace gas fluxes is to know when to lump and when to split this information into coarser or finer levels of detail. Plants, for example, abhor a vacuum and tend to fill niches if there is ample water, sunlight and soil. So ultimately, the upper limit of water, carbon and energy fluxes is set by amount of energy intercepted at the Earth’s surface, which scales with the solar constant. In addition, physics limits the supply and demand of resources that sustain plants, so many ecological scaling rules emerge; this reduces the need to consider every species, plant and leaf individually when assessing net and gross exchanges of trace gases between vegetation and the atmosphere. This trend towards the role of simplicity begins to fail when one starts to evaluate fluxes associated with microbes, like methane and nitrous oxide; microbes live in heterogeneous environments and exploit numerous routes to extract energy from their environment. Case studies, pertaining to the title, will be discussed using eddy covariance flux measurements from our field sites (peatland pasture, savanna woodland, grassland, deciduous and boreal forests), the FLUXNET network and leaf, canopy and planetary boundary-layer scale biophysical models.
The upper atmosphere and ionosphere of Mars
NASA Technical Reports Server (NTRS)
Brace, Larry H.
1992-01-01
The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1974-01-01
The charged particle observations proposed for the new low altitude weather satellites, TIROS-N, are described that will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance in distinguishing between solar and geomagnetic activity as possible causative sources.
The high-resolution Doppler imager on the Upper Atmosphere Research Satellite
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Abreu, Vincent J.; Dobbs, Michael E.; Gell, David A.; Grassl, Heinz J.; Skinner, Wilbert R.
1993-01-01
The high-resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite is a triple-etalon Fabry-Perot interferometer designed to measure winds in the stratosphere, mesosphere, and lower thermosphere. Winds are determined by measuring the Doppler shifts of rotational lines of the O2 atmospheric band, which are observed in emission in the mesosphere and lower thermosphere and in absorption in the stratosphere. The interferometer has high resolution (0.05/cm), good offhand rejection, aud excellent stability. This paper provides details of the design and capabilities of the HRDI instrument.
Aircraft Configured for Flight in an Atmosphere Having Low Density
NASA Technical Reports Server (NTRS)
Teter, Jr., John E. (Inventor); Croom, Mark A. (Inventor); Smith, Stephen C. (Inventor); Gelhausen, Paul A. (Inventor); Hunter, Craig A. (Inventor); Riddick, Steven E. (Inventor); Guynn, Mark D. (Inventor); Paddock, David A. (Inventor)
2012-01-01
An aircraft is configured for flight in an atmosphere having a low density. The aircraft includes a fuselage, a pair of wings, and a rear stabilizer. The pair of wings extends from the fuselage in opposition to one another. The rear stabilizer extends from the fuselage in spaced relationship to the pair of wings. The fuselage, the wings, and the rear stabilizer each present an upper surface opposing a lower surface. The upper and lower surfaces have X, Y, and Z coordinates that are configured for flight in an atmosphere having low density.
Measurements of the Magnetic Field of the Upper Chromosphere with Polarimetry
NASA Technical Reports Server (NTRS)
Rachmeler, Laurel; Mckenzie, David; Winebarger, Amy; Kobayashi, Ken; Ishikawa, Ryohko; Kubo, Masahito; Narukage, Noriyuki; Bueno, Trujillo, Javier; Auchere, Frederic
2017-01-01
A major remaining challenge for heliophysics is to decipher the magnetic structure of the chromosphere. The chromosphere is the critical interface between the Sun's photosphere and corona: it contains more mass than the entire interplanetary heliosphere, requires a heating rate that is larger than that of the corona, and mediates all the energy driving the solar wind, solar atmospheric heating and solar eruptions. While measurements of the magnetic field in the photosphere are routine, the chromosphere poses several extra challenges. The magnetically sensitive lines formed in the upper chromosphere are in the ultraviolet, so space-based observations are required. The lines are often formed over a range of heights, sampling different plasma which complicates the inversion process. These lines are sensitive to the magnetic field via polarized light that is created or modified through the Hanle and Zeeman effects. There are a few observations of these lines, and a significant challenge remains in extracting the magnetic field from the polarization measurements, as detailed model atmospheres with advanced radiative transfer physics are needed. Real progress is obtained by a simultaneous improvement in both the observational side and the modeling side. We present information on the CLASP (Chromospheric LAyer Spectro-Polarimeter) sounding rocket program, and future prospects for these types of measurements.
NASA Astrophysics Data System (ADS)
McGouldrick, Kevin; Molaverdikhani, K.; Esposito, L. W.; Pankratz, C. K.
2010-10-01
The Laboratory for Atmospheric and Space Physics is carrying on a project to restore and preserve data products from several past missions for archival and use by the scientific community. This project includes the restoration of data from Mariner 6/7, Pioneer Venus, Voyager 1/2, and Galileo. Here, we present initial results of this project that involve Pioneer Venus Orbiter Ultraviolet Spectrometer (PVO UVS) data. Using the Discrete Ordinate Method for Radiative Transfer (DISORT), we generate a suite of models for the three free parameters in the upper atmosphere of Venus in which we are interested: sulfur dioxide abundance at 40mb, scale height of sulfur dioxide, and the typical radius of the upper haze particles (assumed to be composed of 84.5% sulfuric acid). We calculate best fits to our radiative transfer model results for multi-spectral images taken with PVO UVS, as well as the 'visible' channel (includes wavelengths from 290nm to about 1000nm) of the mapping mode of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M-Vis) on the Venus Express spacecraft, currently orbiting Venus. This work is funded though the NASA Planetary Mission Data Analysis Program, NNH08ZDA001N.
Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar
NASA Astrophysics Data System (ADS)
Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.
2017-12-01
Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.
NASA Astrophysics Data System (ADS)
Suematsu, Y.
2015-12-01
The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.
NASA’s MAVEN Mission Observes Ups and Downs of Water Escape from Mars
2017-12-08
After investigating the upper atmosphere of the Red Planet for a full Martian year, NASA’s MAVEN mission has determined that the escaping water does not always go gently into space. Sophisticated measurements made by a suite of instruments on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft revealed the ups and downs of hydrogen escape – and therefore water loss. The escape rate peaked when Mars was at its closest point to the sun and dropped off when the planet was farthest from the sun. The rate of loss varied dramatically overall, with 10 times more hydrogen escaping at the maximum. “MAVEN is giving us unprecedented detail about hydrogen escape from the upper atmosphere of Mars, and this is crucial for helping us figure out the total amount of water lost over billions of years,” said Ali Rahmati, a MAVEN team member at the University of California at Berkeley who analyzed data from two of the spacecraft’s instruments. Hydrogen in Mars’ upper atmosphere comes from water vapor in the lower atmosphere. An atmospheric water molecule can be broken apart by sunlight, releasing the two hydrogen atoms from the oxygen atom that they had been bound to. Several processes at work in Mars’ upper atmosphere may then act on the hydrogen, leading to its escape. Read more: go.nasa.gov/2dAgAV4 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Venus Atmospheric Maneuverable Platform (VAMP)
NASA Astrophysics Data System (ADS)
Polidan, R.; Lee, G.; Sokol, D.; Griffin, K.; Bolisay, L.; Barnes, N.
2014-04-01
Over the past years we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop Grumman (non-NASA) development programs to the challenges associated with Venus upper atmosphere science missions. Our concept is a low ballistic coefficient (<50 Pa), semibuoyant aircraft that deploys prior to entering the Venus atmosphere, enters the Venus atmosphere without an aeroshell, and provides a long-lived (months to years), maneuverable vehicle capable of carrying science payloads to explore the Venus upper atmosphere. VAMP targets the global Venus atmosphere between 55 and 70 km altitude and would be a platform to address VEXAG goals I.A, I.B, and I.C. We will discuss the overall mission architecture and concept of operations from launch through Venus arrival, orbit, entry, and atmospheric science operations. We will present a strawman concept of VAMP, including ballistic coefficient, planform area, percent buoyancy, inflation gas, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, subsystems, and packaging. The interaction between the VAMP vehicle and the supporting orbiter will also be discussed. In this context, we will specifically focus upon four key factors impacting the design and performance of VAMP: 1. Science payload accommodation, constraints, and opportunities 2. Characteristics of flight operations and performance in the Venus atmosphere: altitude range, latitude and longitude access, day/night performance, aircraft performance, performance sensitivity to payload weight 3. Feasibility of and options for the deployment of the vehicle in space 4. Entry into the Venus atmosphere, including descent profile, heat rate, total heat load, stagnation temperature, control, and entry into level flight We will discuss interdependencies of the above factors and the manner in which the VAMP strawman's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support VEXAG goals I.A, I.B, and I.C.. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.
MAVEN Contamination Venting and Outgassing Analysis
NASA Technical Reports Server (NTRS)
Petro, Elaine M.; Hughes, David W.; Secunda, Mark S.; Chen, Philip T.; Morrissey, James R.; Riegle, Catherine A.
2014-01-01
Mars Atmosphere and Volatile EvolutioN (MAVEN) is the first mission to focus its study on the Mars upper atmosphere. MAVEN will study the evolution of the Mars atmosphere and climate, by examining the conduit through which the atmosphere has to pass as it is lost to the upper atmosphere. An analysis was performed for the MAVEN mission to address two distinct concerns. The first goal of the analysis was to perform an outgassing study to determine where species outgassed from spacecraft materials would redistribute to and how much of the released material might accumulate on sensitive surfaces. The second portion of the analysis serves to predict what effect, if any, Mars atmospheric gases trapped within the spacecraft could have on instrument measurements when re-released through vents. The re-release of atmospheric gases is of interest to this mission because vented gases from a higher pressure spacecraft interior could bias instrument measurements of the Mars atmosphere depending on the flow rates and directions.
The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations
NASA Technical Reports Server (NTRS)
Brecht, A. S.; Bougher, S. W.; Parkinson, C. D.
2017-01-01
Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions.
Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability.
Bougher, S; Jakosky, B; Halekas, J; Grebowsky, J; Luhmann, J; Mahaffy, P; Connerney, J; Eparvier, F; Ergun, R; Larson, D; McFadden, J; Mitchell, D; Schneider, N; Zurek, R; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D N; Bell, J M; Benna, M; Brain, D; Chaffin, M; Chamberlin, P; Chaufray, J-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Ma, Y; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R
2015-11-06
The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability. Copyright © 2015, American Association for the Advancement of Science.
Overview of the Upper Atmosphere Research Satellite: Observations from 1991 to 2002
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Douglass, Anne R.
2003-01-01
The Upper Atmosphere Research Satellite (UARS) was launched in September 1991 by the Space Shuttle Discovery and continues to make relevant atmospheric measurements (as of October 2002). This successful satellite has fostered a better understanding of the middle atmospheric processes, especially those important in the control of ozone. Seven of the original ten instruments aboard the UARS are still functional and six instruments regularly make measurements. The UARS is in a stable observing configuration, in spite of experiencing several anomalies over its lifetime. It is expected that the UARS will overlap the Earth Observing System (EOS) Aura satellite (scheduled launch in January 2004) for several months before the end of the UARS mission.
Model of the vertical structure of the optical parameters of the Neptune atmosphere.
NASA Astrophysics Data System (ADS)
Morozhenko, A. V.
Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.
NASA Astrophysics Data System (ADS)
What do anchovy and coffee prices have in common? They both are influenced by weather patterns. And so are a lot of other industries in the world of commodities. A new report from the National Research Council says it's time to protect these economic interests. The report outlines a new 15-year global research program that would help scientists make better seasonal and interannual climate predictions. Called the Global Ocean-Atmosphere-Land System or GOALS, the new program would be an extension of the decade-long international Tropical Ocean and Global Atmosphere (TOGA) program, which comes to an end this year. Besides studying the climatic effects of tropical phenomena such as the El Niño/Southern Oscillation, the program would expand these types of studies to Earth's higher latitudes and to additional physical processes, such as the effects of changes in upper ocean currents, soil moisture, vegetation, and land, snow, and sea-ice cover, among others.
Spectra of Full 3-D PIC Simulations of Finite Meteor Trails
NASA Astrophysics Data System (ADS)
Tarnecki, L. K.; Oppenheim, M. M.
2016-12-01
Radars detect plasma trails created by the billions of small meteors that impact the Earth's atmosphere daily, returning data used to infer characteristics of the meteoroid population and upper atmosphere. Researchers use models to investigate the dynamic evolution of the trails. Previously, all models assumed a trail of infinite length, due to the constraints of simulation techniques. We present the first simulations of 3D meteor trails of finite length. This change more accurately captures the physics of the trails. We characterize the turbulence that develops as the trail evolves and study the effects of varying the external electric field, altitude, and initial density. The simulations show that turbulence develops in all cases, and that trails travel with the neutral wind rather than electric field. Our results will allow us to draw more detailed and accurate information from non-specular radar observations of meteors.
NASA Technical Reports Server (NTRS)
Curtis, Steve
1999-01-01
Building upon the numerous successes of the pre-solar maximum International Solar Terrestrial Physics (ISTP) mission, the ISTP Solar Maximum Mission is expected to produce new insights into global flow of energy, momentum, and mass, from the Sun, through the heliosphere, into the magnetosphere and to their final deposition in the terrestrial upper atmosphere/ionosphere system. Of particular interest is the determination of the geo-effectiveness of solar events, principally Coronal Mass Ejections (CMEs). Given the expected increased frequency and strength of CMEs during the Solar Maximum period, a major advance in our understanding of nature of the coupling of CMEs to the magnetosphere-ionosphere-atmosphere system is expected. The roles during this time of the various ISTP assets will be discussed. These assets will include the SOHO, Wind, Polar, and Geotail spacecraft, the ground-based observing networks and the theory tools.
Improved Mars Upper Atmosphere Climatology
NASA Technical Reports Server (NTRS)
Bougher, S. W.
2004-01-01
The detailed characterization of the Mars upper atmosphere is important for future Mars aerobraking activities. Solar cycle, seasonal, and dust trends (climate) as well as planetary wave activity (weather) are crucial to quantify in order to improve our ability to reasonably depict the state of the Mars upper atmosphere over time. To date, our best information is found in the Mars Global Surveyor (MGS) Accelerometer (ACC) database collected during Phase 1 (Ls = 184 - 300; F10.7 = 70 - 90) and Phase 2 (Ls = 30 - 90; F10.7 = 90 - 150) of aerobraking. This database (100 - 170 km) consists of thermospheric densities, temperatures, and scale heights, providing our best constraints for exercising the coupled Mars General Circulation Model (MGCM) and the Mars Thermospheric General Circulation Model (MTGCM). The Planetary Data System (PDS) contains level 0 and 2 MGS Accelerometer data, corresponding to atmospheric densities along the orbit track. Level 3 products (densities, temperatures, and scale heights at constant altitudes) are also available in the PDS. These datasets provide the primary model constraints for the new MGCM-MTGCM simulations summarized in this report. Our strategy for improving the characterization of the Mars upper atmospheres using these models has been three-fold : (a) to conduct data-model comparisons using the latest MGS data covering limited climatic and weather conditions at Mars, (b) to upgrade the 15-micron cooling and near-IR heating rates in the MGCM and MTGCM codes for ad- dressing climatic variations (solar cycle and seasonal) important in linking the lower and upper atmospheres (including migrating tides), and (c) to exercise the detailed coupled MGCM and MTGCM codes to capture and diagnose the planetary wave (migrating plus non-migrating tidal) features throughout the Mars year. Products from this new suite of MGCM-MTGCM coupled simulations are being used to improve our predictions of the structure of the Mars upper atmosphere for the upcoming MRO aerobraking exercises in 2006. A Michigan website, containing MTGCM output fields from previous climate simulations, is being expanded to include new MGCM-MTGCM simulations addressing planetary wave influences upon thermospheric aerobraking fields (densities and temperatures). In addition, similar MTGCM output fields have been supplied to the MSFC MARSGRAM - 200X empirical model, which will be used in mission operations for conducting aerobraking maneuvers.
NIR-Driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets
NASA Technical Reports Server (NTRS)
Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.
2017-01-01
H2O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H2O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H2O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapor mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H2O signatures may be strengthened by a factor of a few, loosening the observational demands for a H2O detection.
Satellite Observations and Chemistry Climate Models - A Meandering Path Towards Better Predictions
NASA Technical Reports Server (NTRS)
Douglass, Anne R.
2011-01-01
Knowledge of the chemical and dynamical processes that control the stratospheric ozone layer has grown rapidly since the 1970s, when ideas that depletion of the ozone layer due to human activity were put forth. The concept of ozone depletion due to anthropogenic chlorine increase is simple; quantification of the effect is much more difficult. The future of stratospheric ozone is complicated because ozone is expected to increase for two reasons: the slow decrease in anthropogenic chlorine due to the Montreal Protocol and its amendments and stratospheric cooling caused by increases in carbon dioxide and other greenhouse gases. Prediction of future ozone levels requires three-dimensional models that represent physical, photochemical and radiative processes, i.e., chemistry climate models (CCMs). While laboratory kinetic and photochemical data are necessary inputs for a CCM, atmospheric measurements are needed both to reveal physical and chemical processes and for comparison with simulations to test the conceptual model that CCMs represent. Global measurements are available from various satellites including but not limited to the LIMS and TOMS instruments on Nimbus 7 (1979 - 1993), and various instruments on the Upper Atmosphere Research Satellite (1991 - 2005), Envisat (2002 - ongoing), Sci-Sat (2003 - ongoing) and Aura (2004 - ongoing). Every successful satellite instrument requires a physical concept for the measurement, knowledge of physical chemical properties of the molecules to be measured, and stellar engineering to design an instrument that will survive launch and operate for years with no opportunity for repair but providing enough information that trend information can be separated from any instrument change. The on-going challenge is to use observations to decrease uncertainty in prediction. This talk will focus on two applications. The first considers transport diagnostics and implications for prediction of the eventual demise of the Antarctic ozone hole. The second focuses on the upper stratosphere, where ozone is predicted to increase both due to chlorine decrease and due to temperature decrease expected as a result of increased concentrations Of CO2 and other greenhouse gases. Both applications show how diagnostics developed from global observations are being used to explain why the ozone response varies among CCM predictions for stratospheric ozone in the 21st century.
Tracking LNOx Downwind to Investigate Driving Production Physics
NASA Astrophysics Data System (ADS)
Lapierre, J. L.; Pusede, S.
2016-12-01
Emissions of nitrogen oxides (NOx) influence atmospheric oxidation chemistry and drive ozone production. In the upper troposphere, lightning production (LNOx) is believed to contribute as much as 70% of the total NOx. Therefore, accurate, process-driven constraints on LNOx are required to understand the global NOx and ozone burden. However, estimates of the amount of NOx produced per lightning flash remain highly uncertain, ranging across multiple orders of magnitude ( 10-1000 moles NOx/flash). Satellite measurements provide unique advantages to study LNOx due to their extensive spatial coverage of the Earth, but despite the mechanism by which lightning produces NOx being generally known, correlations between satellite NO2 and measured flash counts are often observed to be poor. Here, we combine NO2 measurements from the Ozone Monitoring Instrument (OMI), lightning data from the National Lightning Detection Network (NLDN), and wind data from the NCEP North American Regional Reanalysis (NARR) over a 4 year period (2012-2015) to study observed relationships between the occurrence and physical characteristics of lightning (e.g., intracloud/cloud-to-ground ratio, polarity, peak current, and multiplicity) with elevated NO2 columns. We investigate the observed spatial mismatch between high flash rates and elevated upper tropospheric NO2, highlight a number of individual storms as case studies, and describe the winds and chemistry that dislocate LNOx from storms. We then use these new constraints on LNOx to investigate the physical drivers of LNOx production rates.
NASA Astrophysics Data System (ADS)
Rantanen, Mika; Räisänen, Jouni; Sinclair, Victoria A.; Järvinen, Heikki
2018-06-01
The sensitivity of idealised baroclinic waves to different atmospheric temperature changes is studied. The temperature changes are based on those which are expected to occur in the Northern Hemisphere with climate change: (1) uniform temperature increase, (2) decrease of the lower level meridional temperature gradient, and (3) increase of the upper level temperature gradient. Three sets of experiments are performed, first without atmospheric moisture, thus seeking to identify the underlying adiabatic mechanisms which drive the response of extra-tropical storms to changes in the environmental temperature. Then, similar experiments are performed in a more realistic, moist environment, using fixed initial relative humidity distribution. Warming the atmosphere uniformly tends to decrease the kinetic energy of the cyclone, which is linked both to a weaker capability of the storm to exploit the available potential energy of the zonal mean flow, and less efficient production of eddy kinetic energy in the wave. Unsurprisingly, the decrease of the lower level temperature gradient weakens the resulting cyclone regardless of the presence of moisture. The increase of the temperature gradient in the upper troposphere has a more complicated influence on the storm dynamics: in the dry atmosphere the maximum eddy kinetic energy decreases, whereas in the moist case it increases. Our analysis suggests that the slightly unexpected decrease of eddy kinetic energy in the dry case with an increased upper tropospheric temperature gradient originates from the weakening of the meridional heat flux by the eddy. However, in the more realistic moist case, the diabatic heating enhances the interaction between upper- and low-level potential vorticity anomalies and hence helps the surface cyclone to exploit the increased upper level baroclinicity.
The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence
NASA Astrophysics Data System (ADS)
Mayyasi, Majd; Clarke, John; Bhattacharyya, Dolon; Deighan, Justin; Jain, Sonal; Chaffin, Michael; Thiemann, Edward; Schneider, Nick; Jakosky, Bruce
2017-10-01
The enhanced ratio of deuterium to hydrogen on Mars has been widely interpreted as indicating the loss of a large column of water into space, and the hydrogen content of the upper atmosphere is now known to be highly variable. The variation in the properties of both deuterium and hydrogen in the upper atmosphere of Mars is indicative of the dynamical processes that produce these species and propagate them to altitudes where they can escape the planet. Understanding the seasonal variability of D is key to understanding the variability of the escape rate of water from Mars. Data from a 15 month observing campaign, made by the Mars Atmosphere and Volatile Evolution Imaging Ultraviolet Spectrograph high-resolution echelle channel, are used to determine the brightness of deuterium as observed at the limb of Mars. The D emission is highly variable, with a peak in brightness just after southern summer solstice. The trends of D brightness are examined against extrinsic as well as intrinsic sources. It is found that the fluctuations in deuterium brightness in the upper atmosphere of Mars (up to 400 km), corrected for periodic solar variations, vary on timescales that are similar to those of water vapor fluctuations lower in the atmosphere (20-80 km). The observed variability in deuterium may be attributed to seasonal factors such as regional dust storm activity and subsequent circulation lower in the atmosphere.
NASA Technical Reports Server (NTRS)
Hallberg, Robert; Inamdar, Anand K.
1993-01-01
Greenhouse trapping is examined theoretically using a version of the radiative transfer equations that demonstrates how atmospheric greenhouse trapping can vary. Satellite observations of atmospheric greenhouse trapping are examined for four months representing the various seasons. The cause of the super greenhouse effect at the highest SSTs is examined, and four processes are found to contribute. The middle and upper troposphere must be particularly moist and the temperature lapse rate must be increasingly unstable over the warmest regions to explain the observed distribution of atmospheric greenhouse trapping. Since the highest SSTs are generally associated with deep convection, this suggests that deep convection acts to moisten the middle and upper troposphere in regions of the highest SSTs relative to other regions. The tropical atmospheric circulation acts to both increase the temperature lapse rate and greatly increase the atmospheric water vapor concentration with spatially increasing SST.
[The response of the upper respiratory tract to the impact of atmospheric pollution].
Mukhamadiev, R A; Ismagilov, Sh M
2015-01-01
The present literature review characterizes the environmental conditions in the Russian Federation in general and the Republic of Tatarstan in particular with special reference to the influence of atmospheric pollution on the development and the clinical picture of the diseases of the respiratory organs including pathology of the upper respiratory tract in the populations of the industrial centres and other environmentally unfriendly areas. The views of the domestic and foreign authors concerning the role of the environmental factors in the clinical picture of the upper respiratory tract disorders are described in detail. The authors emphasize the necessity of the further investigationsinto this problem and the development of the methods for the prevention of diseases of the upper respiratory react.
Planet-B: A Japanese Mars aeronomy observer
NASA Technical Reports Server (NTRS)
Tsuruda, K.
1992-01-01
An introduction is given to a Japanese Mars mission (Planet-B) which is being planned at the Institute of Space and Aeronautical Science (ISAS), Japan. Planet-B aims to study the upper atmosphere of Mars and its interaction with the solar wind. The launch of Planet-B is planned for 1996 on a new launcher, M-L, which is being developed at ISAS. In addition to the interaction with the solar wind, the structure of the Martian upper atmosphere is thought to be controlled by the meteorological condition in the lower atmosphere. The orbit of Planet-B was chosen so that it will pass two important regions, the region where the solar wind interacts with the Martian upper atmosphere and the tail region where ion acceleration is taking place. Considering the drag due to the Martian atmosphere, the periapsis altitude of 150 km and apoapsis of 10 Martian radii are planned. The orbit plane will be nearly parallel to the ecliptic plane. The altitude of the spacecraft will be spin stabilized and its spin axis will be controlled to the point of the earth. The dry weight of the spacecraft will be about 250 kg, including the scientific payload which consists of a magnetometer, plasma instruments, HF sounder, UV imaging spectrometer, and lower atmosphere monitor.
Physical examination of upper extremity compressive neuropathies.
Popinchalk, Samuel P; Schaffer, Alyssa A
2012-10-01
A thorough history and physical examination are vital to the assessment of upper extremity compressive neuropathies. This article summarizes relevant anatomy and physical examination findings associated with upper extremity compressive neuropathies. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Detwiler, Andrew G.
1997-01-01
This work was accomplished primarily by Allison G. Wozniak, a graduate research assistant who has completed the Master of Science in Meteorology program at the South Dakota School of Mines and Technology. Ms. Wozniak was guided and assisted in her work by L. R. Johnson and the principal investigator. Invaluable guidance was supplied by Dr. James Holdeman, NASA Lewis, the manager of the Global Atmospheric Sampling Program (GASP). Dr. Gregory Nastrom, St. Cloud (Minnesota) State University, who has used the GASP data set to provide unique views of the distribution of ozone, clouds, and atmospheric waves and turbulence, in the upper troposphere/lower stratosphere region, was also extremely helpful. Finally, Dr. Terry Deshler, University of Wyoming, supplied observations from the university's upper atmospheric monitoring program for comparison to GASP data.
The upper atmosphere of Venus: A tentative explanation of its rotation
NASA Technical Reports Server (NTRS)
Boyer, C.
1986-01-01
The upper atmosphere of Venus seems to revolve every 4 days, while the planet rotates in 243 days. Mariner 10 UV data on the changing positions of dark spots in the upper Venusian clouds have supported estimations of speeds ranging from 120-240 m/s. High rates of acceleration and deceleration occur on the night side, the former between -110 to -90 deg and the latter continuing to -50 deg. Arch and Y formations have been seen repeatedly between -110 to -70 deg. The highest are seen at about -90 deg and the lowest at about -30 deg. The temperature of the cloud layer at 60 km altitude is about 20 C, the pressure is nearly one earth atmosphere, and complex molecules, including O, C, H, N and S and combinations of these are present in abundance.
An Introduction to Atmospheric Physics
NASA Astrophysics Data System (ADS)
Andrews, David G.
2000-09-01
This advanced undergraduate textbook clearly details how physics can be used to understand many important aspects of atmospheric behavior. Coverage presents a broad overview of atmospheric physics, including atmospheric thermodynamics, radiative transfer, atmospheric fluid dynamics and elementary atmospheric chemistry. Armed with an understanding of these topics, the interested student will be able to grasp the essential physics behind issues of current concern, such as the enhanced greenhouse effect and associated questions of climate change, the Antarctic ozone hole and global ozone depletion, as well as more familiar processes such as the formation of raindrops and the development of weather systems. This introductory textbook is ideal for advanced undergraduates studying atmospheric physics as part of physics, meteorology or environmental science courses. It will also be useful for graduate students studying atmospheric physics for the first time and for students of applied mathematics, physical chemistry and engineering who have an interest in the atmosphere.
Multi-spectra Cosmic Ray Flux Measurement
NASA Astrophysics Data System (ADS)
He, Xiaochun; Dayananda, Mathes
2010-02-01
The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )
The 2010 Pakistan Flood and Russian Heat Wave: Teleconnection of Hydrometeorological Extremes
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, Kyu-Myong
2012-01-01
In this paper, preliminary results are presented showing that the two record-setting extreme events during 2010 summer (i.e., the Russian heat wave-wildfires and Pakistan flood) were physically connected. It is found that the Russian heat wave was associated with the development of an extraordinarily strong and prolonged extratropical atmospheric blocking event in association with the excitation of a large-scale atmospheric Rossby wave train spanning western Russia, Kazakhstan, and the northwestern China-Tibetan Plateau region. The southward penetration of upper-level vorticity perturbations in the leading trough of the Rossby wave was instrumental in triggering anomalously heavy rain events over northern Pakistan and vicinity in mid- to late July. Also shown are evidences that the Russian heat wave was amplified by a positive feedback through changes in surface energy fluxes between the atmospheric blocking pattern and an underlying extensive land region with below-normal soil moisture. The Pakistan heavy rain events were amplified and sustained by strong anomalous southeasterly flow along the Himalayan foothills and abundant moisture transport from the Bay of Bengal in connection with the northward propagation of the monsoonal intraseasonal oscillation.
Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere
NASA Astrophysics Data System (ADS)
Boyd, Philip W.
The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1
NASA Astrophysics Data System (ADS)
De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio
2016-06-01
In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gascoyne, A.; Jain, R.; Hindman, B. W., E-mail: a.d.gascoyne@sheffield.ac.uk, E-mail: r.jain@sheffield.ac.uk
2014-07-10
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation ofmore » Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = –z{sub 0}).« less
NASA Astrophysics Data System (ADS)
Gascoyne, A.; Jain, R.; Hindman, B. W.
2014-07-01
We consider damping and absorption of solar p modes due to their energy loss to magnetic tube waves that can freely carry energy out of the acoustic cavity. The coupling of p modes and sausage tube waves is studied in a model atmosphere composed of a polytropic interior above which lies an isothermal upper atmosphere. The sausage tube waves, excited by p modes, propagate along a magnetic fibril which is assumed to be a vertically aligned, stratified, thin magnetic flux tube. The deficit of p-mode energy is quantified through the damping rate, Γ, and absorption coefficient, α. The variation of Γ and α as a function of frequency and the tube's plasma properties is studied in detail. Previous similar studies have considered only a subphotospheric layer, modeled as a polytrope that has been truncated at the photosphere. Such studies have found that the resulting energy loss by the p modes is very sensitive to the upper boundary condition, which, due to the lack of an upper atmosphere, have been imposed in a somewhat ad hoc manner. The model presented here avoids such problems by using an isothermal layer to model the overlying atmosphere (chromosphere, and, consequently, allows us to analyze the propagation of p-mode-driven sausage waves above the photosphere. In this paper, we restrict our attention to frequencies below the acoustic cut off frequency. We demonstrate the importance of coupling all waves (acoustic, magnetic) in the subsurface solar atmosphere with the overlying atmosphere in order to accurately model the interaction of solar f and p modes with sausage tube waves. In calculating the absorption and damping of p modes, we find that for low frequencies, below ≈3.5 mHz, the isothermal atmosphere, for the two-region model, behaves like a stress-free boundary condition applied at the interface (z = -z 0).
The Martian airglow: observations by Mars Express and kinetic modelling
NASA Astrophysics Data System (ADS)
Simon, Cyril; Leblanc, François; Gronoff, Guillaume; Witasse, Olivier; Lilensten, Jean; Barthelemy, Mathieu; Bertaux, Jean-Loup
The photoemissions on Mars are the result of physical chemistry reactions in the upper atmo-sphere that depend on the planet's plasma environment. They arise on the dayside from UV photo-excitation (Barth et al., 1971) and on the nightside from chemical reactions and electron precipitation above regions of strong crustal magnetism (Bertaux et al., 2005). The physics of airglow generation at Mars is discussed both in terms of observations (satellites) and models (especially transport codes). A review of observations made by SPICAM, the UV spectrometer onboard Mars Express, is first presented. The Cameron bands of CO(a - X), the CO+ (A - X) 2 doublet at 289.0 nm and the trans-auroral line of OI (297.2 nm) are mainly seen on the dayside. On the nightside both Cameron emissions and NO(C - X and A - X) emissions are present. In a second step, an updated airglow model has been developed and compared to the latest SPICAM data. Several interesting implications are highlighted regarding neutral atmosphere variations for the dayglow (Simon et al., 2009) and electron precipitation mechanisms at the origin of the auroral intensities measured by SPICAM in conjunction with the particle detector ASPERA and the radar MARSIS.
Preliminary survey of propulsion using chemical energy stored in the upper atmosphere
NASA Technical Reports Server (NTRS)
Baldwin, Lionel V; Blackshear, Perry L
1958-01-01
Ram-jet cycles that use the chemical energy of dissociated oxygen for propulsion in the ionosphere are presented. After a review of the properties and compositions of the upper atmosphere, the external drag, recombination kinetics, and aerodynamic-heating problems of an orbiting ram jet are analyzed. The study indicates that the recombination ram jet might be useful for sustaining a satellite at an altitude of about 60 miles. Atmospheric composition and recombination-rate coefficients were too uncertain for more definite conclusions. The ram jet is a marginal device even in the optimistic view.
Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean
2010-06-01
meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by
Vertically Propagating Waves in the Upper Atmosphere of Saturn From Cassini Radio Occultations
NASA Astrophysics Data System (ADS)
Schinder, P. J.; Flasar, F. M.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.
2005-12-01
We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. We determine the properties and spectra of these waves, and speculate on their origins and their dynamical effects on the upper atmosphere.
Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets
NASA Astrophysics Data System (ADS)
Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.
2018-03-01
We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.
Ionization Efficiency in the Dayside Martian Upper Atmosphere
NASA Astrophysics Data System (ADS)
Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.
2018-04-01
Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.
Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian
2007-11-01
Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.
Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming
NASA Technical Reports Server (NTRS)
Hu, H.; Liu, W.
1998-01-01
The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.
A Model of Titan-like Chemistry to Connect Experiments and Cassini Observations
NASA Astrophysics Data System (ADS)
Raymond, Alexander W.; Sciamma-O’Brien, Ella; Salama, Farid; Mazur, Eric
2018-02-01
A numerical model is presented for interpreting the chemical pathways that lead to the experimental mass spectra acquired in the Titan Haze Simulation (THS) laboratory experiments and for comparing the electron density and temperature of the THS plasma to observations made at Titan by the Cassini spacecraft. The THS plasma is a pulsed glow-discharge experiment designed to simulate the reaction of N2/CH4-dominated gas in Titan's upper atmosphere. The transient, one-dimensional model of THS chemistry tracks the evolution of more than 120 species in the direction of the plasma flow. As the minor species C2H2 and C2H4 are added to the N2/CH4-based mixture, the model correctly predicts the emergence of reaction products with up to five carbon atoms in relative abundances that agree well with measured mass spectra. Chemical growth in Titan's upper atmosphere transpires through ion–neutral and neutral–neutral chemistry, and the main reactions involving a series of known atmospheric species are retrieved from the calculation. The model indicates that the electron density and chemistry are steady during more than 99% of the 300 μs long discharge pulse. The model also suggests that the THS ionization fraction and electron temperature are comparable to those measured in Titan's upper atmosphere. These findings reaffirm that the THS plasma is a controlled analog environment for studying the first and intermediate steps of chemistry in Titan's upper atmosphere.
A Future Mars Environment for Science and Exploration
NASA Technical Reports Server (NTRS)
Green, J. L.; Hollingsworth, J. L.; Kahre, M. A.; Brain, D.; Airapetian, V.; Glocer, A.; Pulkkinen, A.; Dong, C.; Bamford, R.
2017-01-01
Today, Mars is arid and cold with a very thin atmosphere that has significant frozen and underground water resources. The thin atmosphere prevents liquid water from residing permanently on its surface and makes it difficult to land missions since it is not thick enough to completely facilitate a soft landing. In its past, under the influence of a significant greenhouse effect, Mars must have had a significant water ocean covering perhaps 30% of the northern hemisphere. Mars lost its protective magnetosphere and therefore much of its atmosphere around 3 Ga ago, due to the solar wind. The atmospheric loss into the solar wind is somewhat balanced by the outgassing of the Mars interior and crust that contributes to the existing atmosphere leading to a global-mean surface atmosphere of 6 mbar pressure currently. By using our extensive simulation tools and physics capabilities in Space Weather and Mars global climate modeling, we have started to explore the effects on Mars of placing an artificial magnetic dipole field at the Mars L1 Lagrange point putting Mars in a magnetotail. This situation then eliminates many of the solar-wind erosion processes that occur with the planet's ionosphere and upper atmosphere allowing the Martian atmosphere to grow in pressure and bulk temperature over time. Under thicker atmospheres, the global circulation patterns and seasonal changes are much different than at present. An enhanced atmosphere would: allow larger landed mass of equipment to the surface, shield against some cosmic and solar particle radiation, extend the ability for extraction, and provide "open air" greenhouses to exist for plant production, just to name a few. These new conditions on Mars would allow human explorers and researchers to study the planet in much greater detail and enable a truly profound new understanding of the habitability of this planet.
Observations and modelling of thoron and its progeny in the soil-atmosphere-plant system.
Baldacci, A E; Gattavecchia, E; Kirchner, G
2010-11-01
Samples of pasture vegetation, mainly Trifolium pratensis, were collected at the Botanic Garden of the University of Bologna during the period 1998-2000 and measured by gamma-spectrometry for determining thoron progeny. Concentrations of (212)Pb were between 1.5 and 20 Bq m(-2), with individual peaks up to 70 Bq m(-2). Soil samples were collected at the same location and physically characterised. Their chemical composition (particularly Th and U) was determined by X-ray fluorescence spectroscopy. Lead-212 on plants mainly originates from dry and wet deposition of this isotope generated in the lower atmosphere by the decay of its short-lived precursor (220)Rn, which is produced in the upper soil layers as a member of the natural thorium decay chain and exhales into the atmosphere. Concentrations of (220)Rn in the atmosphere depend on (1) the amount of Th present in soil, (2) the radon fraction which escapes from the soil minerals into the soil pore space, (3) its transport into the atmosphere, and (4) its redistribution within the atmosphere. The mobility of radon in soil pore space can vary by orders of magnitude depending on the soil water content, thus being the main factor for varying concentrations of (220)Rn and (212)Pb in the atmosphere. We present a simple model to predict concentrations of thoron in air and its progeny deposited from the atmosphere, which takes into account varying soil moisture contents calculated by the OPUS code. Results of this model show close agreement with our observations.
NASA Astrophysics Data System (ADS)
Kreidberg, Laura; Line, Michael; Thorngren, Daniel; Morley, Caroline; Stevenson, Kevin
2018-01-01
The super-Neptune exoplanet WASP-107b is an exciting target for atmosphere characterization. It has an unusually large atmospheric scale height and a small, bright host star, raising the possibility of precise constraints on its current nature and formation history. In this talk, I will present the first atmospheric study of WASP-107b, a Hubble Space Telescope measurement of its near-infrared transmission spectrum. We determined the planet's composition with two techniques: atmospheric retrieval based on the transmission spectrum and interior structure modeling based on the observed mass and radius. The interior structure models set a 3σ upper limit on the atmospheric metallicity of 30x solar. The transmission spectrum shows strong evidence for water absorption (6.5σ confidence), and we infer a water abundance consistent with expectations for a solar abundance pattern. On the other hand, methane is depleted relative to expectations (at 3σ confidence), suggesting a low carbon-to-oxygen ratio or high internal heat flux. The water features are smaller than predicted for a cloudless atmosphere, crossing less than one scale height. A thick condensate layer at high altitudes (0.1 - 3 mbar) is needed to match the observations; however, we find that it is challenging for physically motivated cloud and haze models to produce opaque condensates at these pressures. Taken together, these findings serve as an illustration of the diversity and complexity of exoplanet atmospheres. The community can look forward to more such results with the high precision and wide spectral coverage afforded by future observing facilities.
On the chemistry of Jupiter's upper atmosphere
Saslaw, W.C.; Wildey, R.L.
1967-01-01
We conduct a first investigation into the ion-molecule chemistry of the upper Jovian atmosphere. Experimental results show that intense ultraviolet radiation reacts with the constituents of the Jovian atmosphere to produce C2H4, C2H6, C3H8, and higher polymers. The general procedure for calculating both equilibrium and nonequilibrium abundances of these products is formulated and applied to the case of the surface passage of a satellite shadow. A specific example is made of ethylene, for which an analytical approximation gives 1010 molecules in an atmospheric column of 1 cm2 cross section after a very rapid rise to equilibrium. Such a concentration of ethylene does not substantially affect the infrared radiation in the shadow. ?? 1967.
A Shuttle Upper Atmosphere Mass Spectrometer /SUMS/ experiment
NASA Technical Reports Server (NTRS)
Blanchard, R. C.; Duckett, R. J.; Hinson, E. W.
1982-01-01
A magnetic mass spectrometer is currently being adapted to the Space Shuttle Orbiter to provide repeated high altitude atmosphere data to support in situ rarefied flow aerodynamics research, i.e., in the high velocity, low density flight regime. The experiment, called Shuttle Upper Atmosphere Mass Spectrometer (SUMS), is the first attempt to design mass spectrometer equipment for flight vehicle aerodynamic data extraction. The SUMS experiment will provide total freestream atmospheric quantitites, principally total mass density, above altitudes at which conventional pressure measurements are valid. Experiment concepts, the expected flight profile, tradeoffs in the design of the total system and flight data reduction plans are discussed. Development plans are based upon a SUMS first flight after the Orbiter initial development flights.
How Many Convective Zones Are There in the Atmosphere of Venus?
NASA Astrophysics Data System (ADS)
Moroz, V. I.; Rodin, A. V.
2002-11-01
The qualitative characteristics of the vertical structure of the atmospheres of Venus and the Earth essentially differ. For instance, there are at least two, instead of one, zones with normal (thermal) convection on Venus. The first one is near the surface (a boundary layer); the second is at the altitudes of the lower part of the main cloud layer between 49 and 55 km. Contrary to the hypotheses proposed by Izakov (2001, 2002), the upper convective zone prevents energy transfer from the upper clouds to the subcloud atmosphere by ``anomalous turbulent heat conductivity.'' It is possible, however, that the anomalous turbulent heat conductivity takes part in the redistribution of the heat fluxes within the lower (subcloud) atmosphere.
The robustness of using near-UV observations to detect and study exoplanet magnetic fields
NASA Astrophysics Data System (ADS)
Turner, J.; Christie, D.; Arras, P.; Johnson, R.
2015-10-01
Studying the magnetic fields of exoplanets will allow for the investigation of their formation history, evolution, interior structure, rotation period, atmospheric dynamics, moons, and potential habitability. We previously observed the transits of 16 exoplanets as they crossed the face of their host-star in the near-UV in an attempt to detect their magnetic fields (Turner et al. 2013; Pearson et al. 2014; Turner et al. in press). It was postulated that the magnetic fields of all our targets could be constrained if their near-UV light curves start earlier than in their optical light curves (Vidotto et al. 2011). This effect can be explained by the presence of a bow shock in front of the planet formed by interactions between the stellar coronal material and the planet's magnetosphere. Furthermore, if the shocked material in the magnetosheath is optically thick, it will absorb starlight and cause an early ingress in the near- UV light curve. We do not observe an early ingress in any of our targets (See Figure 1 for an example light curve in our study), but determine upper limits on their magnetic field strengths. All our magnetic field upper limits are well below the predicted magnetic field strengths for hot Jupiters (Reiners & Christensen 2010; Sanchez-Lavega 2004). The upper limits we derived assume that there is an absorbing species in the near-UV. Therefore, our upper limits cannot be trusted if there is no species to cause the absorption. In this study we simulate the atomic physics, chemistry, radiation transport, and dynamics of the plasma characteristics in the vicinity of a hot Jupiter using the widely used radiative transfer code CLOUDY (Ferland et al. 2013). Using CLOUDY we have investigated whether there is an absorption species in the near-UV that can exist to cause an observable early ingress. The number density of hydrogen in the bow shock was varied from 104 - -108 cm-3 and the output spectrum was calculated (Figure 2) and compared to the input spectrum to mimic a transit like event (Figure 3). We find that there isn't a species in the near-UV that can cause an absorption under the conditions (T = 1×106 K, semi-major axis of 0.02 AU, solar input spectrum, solar metallicity) of a transiting hot Jupiter (Figure 3). Therefore, our upper limits can not be trusted. We can eventually use CLOUDY to explore the escaping atmospheres from hot Jupiters. We can still use our data to constrain the atmospheric proprieties of the exoplanets.
NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, Yuka; Del Genio, Anthony D.; Amundsen, David S.
H{sub 2}O is a key molecule in characterizing atmospheres of temperate terrestrial planets, and observations of transmission spectra are expected to play a primary role in detecting its signatures in the near future. The detectability of H{sub 2}O absorption features in transmission spectra depends on the abundance of water vapor in the upper part of the atmosphere. We study the three-dimensional distribution of atmospheric H{sub 2}O for synchronously rotating Earth-sized aquaplanets using the general circulation model (GCM) ROCKE-3D, and examine the effects of total incident flux and stellar spectral type. We observe a more gentle increase of the water vapormore » mixing ratio in response to increased incident flux than one-dimensional models suggest, in qualitative agreement with the climate-stabilizing effect of clouds around the substellar point previously observed in GCMs applied to synchronously rotating planets. However, the water vapor mixing ratio in the upper atmosphere starts to increase while the surface temperature is still moderate. This is explained by the circulation in the upper atmosphere being driven by the radiative heating due to absorption by water vapor and cloud particles, causing efficient vertical transport of water vapor. Consistently, the water vapor mixing ratio is found to be well-correlated with the near-infrared portion of the incident flux. We also simulate transmission spectra based on the GCM outputs, and show that for the more highly irradiated planets, the H{sub 2}O signatures may be strengthened by a factor of a few, loosening the observational demands for a H{sub 2}O detection.« less
The Sondrestrom Research Facility All-sky Imagers
NASA Astrophysics Data System (ADS)
Kendall, E. A.; Grill, M.; Gudmundsson, E.; Stromme, A.
2010-12-01
The Sondrestrom Upper Atmospheric Research Facility is located near Kangerlussuaq, Greenland, just north of the Arctic Circle and 100 km inland from the west coast of Greenland. The facility is operated by SRI International in Menlo Park, California, under the auspices of the U.S. National Science Foundation. Operating in Greenland since 1983, the Sondrestrom facility is host to more than 20 instruments, the majority of which provide unique and complementary information about the arctic upper atmosphere. Together these instruments advance our knowledge of upper atmospheric physics and determine how the tenuous neutral gas interacts with the charged space plasma environment. The suite of instrumentation supports many disciplines of research - from plate tectonics to auroral physics and space weather. The Sondrestrom facility has recently acquired two new all-sky imagers. In this paper, we present images from both new imagers, placing them in context with other instruments at the site and detailing to the community how to gain access to this new data set. The first new camera replaces the intensified auroral system which has been on site for nearly three decades. This new all-sky imager (ASI), designed and assembled by Keo Scientific Ltd., employs a medium format 180° fisheye lens coupled to a set of five 3-inch narrowband interference filters. The current filter suite allows operation at the following wavelengths: 750 nm, 557.7 nm, 777.4 nm, 630.0 nm, and 732/3 nm. Monochromatic images from the ASI are acquired at a specific filter and integration time as determined by a unique configuration file. Integrations as short as 0.5 sec can be commanded for exceptionally bright features. Preview images are posted to the internet in near real-time, with final images posted weeks later. While images are continuously collected in a "patrol mode," users can request special collection sequences for targeted experiments. The second new imager installed at the Sondrestrom facility is a color all-sky imager (CASI). The CASI instrument is a low-cost Keo Scientific Ltd. system similar to cameras designed for the THEMIS satellite ground-based imaging network. This camera captures all visible wavelengths simultaneously at a higher data rate than the ASI. While it is not possible to resolve fine spectral features as with narrowband filters on the ASI, this camera provides context on wavelengths not covered by other imagers, and makes it much simpler to distinguish clouds from airglow and aurora. As with the ASI, this imager collects data during periods of dark skies and the images are posted to the web for community viewing.
46 CFR 154.1345 - Gas detection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... detector; (iii) If the vessel carries cargo that is heavier than the atmosphere of the space, each tube's... atmosphere of the space, each tube's open end in the upper part of the space; (v) If the vessel carries cargo that is heavier than the atmosphere of the space and another cargo that is lighter than the atmosphere...
46 CFR 154.1345 - Gas detection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... detector; (iii) If the vessel carries cargo that is heavier than the atmosphere of the space, each tube's... atmosphere of the space, each tube's open end in the upper part of the space; (v) If the vessel carries cargo that is heavier than the atmosphere of the space and another cargo that is lighter than the atmosphere...
46 CFR 154.1345 - Gas detection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... detector; (iii) If the vessel carries cargo that is heavier than the atmosphere of the space, each tube's... atmosphere of the space, each tube's open end in the upper part of the space; (v) If the vessel carries cargo that is heavier than the atmosphere of the space and another cargo that is lighter than the atmosphere...
NASA Technical Reports Server (NTRS)
Frederick, J. E.; Abrams, R. B.; Dasgupta, R.; Guenther, B.
1981-01-01
Analysis of backscattered ultraviolet radiances observed at tropical latitudes by the Atmosphere Explorer-E satellite reveals both annual and semiannual cycles in upper stratospheric ozone. The annual variation dominates the signal at wavelengths which sense ozone primarily above 45 km while below this, to the lowest altitude sensed, 35 km, the semiannual component has comparable amplitude. Comparison of radiance measurements taken with the same instrument at solar minimum during 1976 and solar maximum in 1979 show no significant differences. This suggests that variations in upper stratospheric ozone over the solar cycle are small, although the data presently available do not allow a definite conclusion.
Overview on recent upper atmosphere atomic oxygen measurements
NASA Astrophysics Data System (ADS)
Zhu, Yajun; Kaufmann, Martin; Chen, Qiuyu; Martin, Riese
2017-04-01
In recent years, new global datasets of atomic oxygen in the upper mesosphere and lower thermosphere have been presented. They are based on airglow measurements from low earth satellites. Surprisingly, the atomic oxygen abundance differs by 30-50% for similar atmospheric conditions. This paper gives an overview on the various atomic oxygen datasets available so far and presents most recent results obtained from measurements on Envisat. Differences between the datasets are discussed.
Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy
Bowman, D. C.; Lees, J. M.
2018-04-27
We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, J.; Cao, Y.-T.; Lavvas, P. P.
2016-07-20
HCN is an important constituent in Titan’s upper atmosphere, serving as the main coolant in the local energy budget. In this study, we derive the HCN abundance at the altitude range of 960–1400 km, combining the Ion-Neutral Mass Spectrometer data acquired during a large number of Cassini flybys with Titan. Typically, the HCN abundance declines modestly with increasing altitude and flattens to a near constant level above 1200 km. The data reveal a tendency for dayside depletion of HCN, which is clearly visible below 1000 km but weakens with increasing altitude. Despite the absence of convincing anti-correlation between HCN volumemore » mixing ratio and neutral temperature, we argue that the variability in HCN abundance makes an important contribution to the large temperature variability observed in Titan’s upper atmosphere.« less
Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, D. C.; Lees, J. M.
We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less
Monitoring Saturn's Upper Atmosphere Density Variations Using Helium 584 Airglow
NASA Astrophysics Data System (ADS)
Parkinson, Chris
2017-10-01
The study of He 584 Å brightnesses is interesting as the EUV (Extreme UltraViolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Resonance scattering of sunlight by He atoms is the principal source of the planetary emission of He 585 Å. The principal parameter involved in determining the He 584 Å albedo are the He volume mixing ratio, f_He, well below the homopause. Our main science objective is to estimate the helium mixing ratio in the lower atmosphere. Specifically, He emissions come from above the homopause where optical depth trau=1 in H2 and therefore the interpretation depends mainly on two parameters: He mixing ratio of the lower atmosphere and K_z. The occultations of Koskinen et al (2015) give K_z with an accuracy that has never been possible before and the combination of occultations and airglow therefore provide estimates of the mixing ratio in the lower atmosphere. We make these estimates at several locations that can be reasonably studied with both occultations and airglow and then average the results. Our results lead to a greatly improved estimate of the mixing ratio of He in the upper atmosphere and below. The second objective is to constrain the dynamics in the atmosphere by using the estimate of the He mixing ratio from the main objective. Once we have an estimate of the He mixing ratio in the lower atmosphere that agrees with both occultations and airglow, helium becomes an effective tracer species as any variations in the Cassini UVIS helium data are direct indicator of changes in K_z i.e., dynamics. Our third objective is to connect this work to our Cassini UVIS data He 584 Å airglow analyses as they both cover the time span of the observations and allow us to monitor changes in the airglow observations that may correlate with changes in the state of the atmosphere as revealed by the occultations Saturn's upper thermosphere. This work helps to determine the mixing ratio of He and constrain dynamics in the upper atmosphere, both of which are high level science objectives of the Cassini mission.
Theory, Image Simulation, and Data Analysis of Chemical Release Experiments
NASA Technical Reports Server (NTRS)
Wescott, Eugene M.
1994-01-01
The final phase of Grant NAG6-1 involved analysis of physics of chemical releases in the upper atmosphere and analysis of data obtained on previous NASA sponsored chemical release rocket experiments. Several lines of investigation of past chemical release experiments and computer simulations have been proceeding in parallel. This report summarizes the work performed and the resulting publications. The following topics are addressed: analysis of the 1987 Greenland rocket experiments; calculation of emission rates for barium, strontium, and calcium; the CRIT 1 and 2 experiments (Collisional Ionization Cross Section experiments); image calibration using background stars; rapid ray motions in ionospheric plasma clouds; and the NOONCUSP rocket experiments.
1987-02-27
35 AVERAGE OF WORDS 31 - 34 ’KPAVG’ 36 37 J77 MODEL DENSITY 38 MEASURED/J77 RATIO 39 EMPIRICAL MODEL RATIO 40...CONTINUE STOP PARITY ERROR. 9999 STOP ’PARITY’ END *" 35 I! , " €’ V4 ’... wV...%._ * [’’’ J 4* **" * .’ ’ ’".. ...... . "" *T* Figure 1.16 PACKLIB...to sun to ecliptic (Keplerian orbit) Solar Magnetospheric x5 M: towards sun, Z,,: North in plane (SM) of xS, Zd Note: zSm rocks Ii1.20 daily about
NASA Astrophysics Data System (ADS)
Zaba, Katherine D.; Rudnick, Daniel L.
2016-02-01
Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.
A Study on Planetary Atmospheric Circulations using THOR
NASA Astrophysics Data System (ADS)
Mendonça, João; Grosheintz, Luc; Lukas Grimm, Simon; Heng, Kevin
2015-12-01
The large variety of planetary parameters observed leads us to think that exoplanets may show a large range of possible climates. It is therefore of the uttermost importance to investigate the influence of astronomical and planetary bulk parameters in driving the atmospheric circulations. In the solar system the results from planetary spacecraft missions have demonstrated how different the planetary climate and atmospheric circulations can be. The study of exoplanets will require probing a far wider range of physical and orbital parameters than the ones of our neighbor planets. For this reason, such a study will involve exploring an even larger diversity of circulation and climate regimes. Our new atmospheric model, THOR, is intended to be extremely flexible and to explore the large diversity of planetary atmospheres.THOR is part of the Exoclimes Simulation Platform, and is a project of the Exoplanet and Exoclimes Group (see www.exoclime.org). THOR solves the complex atmospheric fluid equations in a rotating sphere (fully compressible - nonhydrostatic system) using an icosahedral grid. The main advantages of using our new platform against other recent exoplanet models is that 1) The atmospheric fluid equations are completely represented and no approximations are used that could compromise the physics of the problem; 2) The model uses for the first time in exoplanet studies, a specific icosahedral grid that solves the pole problem; 3) The interface is user friendly and can be easily adapted to a multitude of atmospheric conditions; 4) By using GPU computation, our code greatly improves the typical code running time.We will present and discuss the first detailed results of our simulations, more specifically of two benchmark tests that are a representative sample of the large range of exoplanetary parameters: Earth-like conditions (the Held-Suarez test) and a tidally locked hot-Jupiter. THOR has successfully passed these tests and is able to determine the main mechanisms driving the circulation in the simulated planets. From the 3D numerical simulations we found that some hot-Jupiters atmospheres can sustain multiple dynamical steady states. The results also suggest the presence of a new mechanism that transports heat from the upper to the lower atmosphere. The presence and impact of this mechanism in the global temperature will be discussed in this presentation.
Preliminary Results on Mars and the Siding Spring Meteor Shower from MAVEN’s Imaging UV Spectrograph
NASA Astrophysics Data System (ADS)
Deighan, Justin; Schneider, Nicholas
2015-04-01
The MAVEN mission to Mars is designed to study the upper atmosphere and its response to external drivers, searching for clues to the cause of long-term atmospheric loss. MAVEN carries the Imaging UV Spectrograph (IUVS) for remote sensing studies of the atmosphere through vertical scans from the limb through the corona, UV imaging of the planet and stellar occultations. Each observational mode has successfully observed the spectral features and spatial distributions as intended, confirming and expanding our understanding of the Mars upper atmosphere as observed by the Mariner spacecraft and Mars Express. Furthermore, IUVS witnessed the aftermath of an intense meteor shower on Mars caused by Comet Siding Spring. For a period of many hours, the planet’s UV spectrum was dominated by emission from ionized magnesium deposited by meteor ablation in the upper atmosphere. Initial results from the originally-planned Mars observations include:• Significant persistent structures in the thermospheric day glow emissions, dependent primarily on solar zenith angle, along with significant variability on daily timescales• Nitric oxide nightglow and low-level auroral emissions of substantially greater nightside extent than previously seen• The first vertical profiles of the D/H ratio in the atmosphere and their evolution with Mars season• The most complete maps and vertical profiles of H, C and O in the Mars corona• The first global snapshot of the middle atmosphere obtained by a day-long stellar occultation campaignOther results from the missions’s preliminary phases will be included.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; Kaye, J. A.; Decola, P. L.; Friedl, R. R.; Peterson, D. B.
1997-01-01
This document is issued in response to the Clean Air Act Amendment of 1990, Public Law 101-549, which mandates that the National Aeronautics and Space Administration (NASA) and other key agencies submit triennial report to congress and the Environmental Protection Agency. NASA is charged with the responsibility to report on the state of our knowledge of the Earth's upper atmosphere, particularly the Stratosphere. Part 1 of this report summarizes the objectives, status, and accomplishments of the research tasks supported under NASA's Upper Atmosphere Research Program and Atmospheric Chemistry Modeling and Analysis Program for the period of 1994-1996. Part 2 (this document) presents summaries of several scientific assessments, reviews, and summaries. These include the executive summaries of two scientific assessments: (Section B) 'Scientific Assessment of Ozone Depletion: 1994'; (Section C) 'l995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft); end of mission/series statements for three stratospherically-focused measurement campaigns: (Section D) 'ATLAS End-of-Series Statement'; (Section E) 'ASHOE/MAESA End-of-Mission Statement'; (Section F) 'TOTE/VOTE End-of-Mission Statement'; a summary of NASA's latest biennial review of fundamental photochemical processes important to atmospheric chemistry 'Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling'; and (Section H) the section 'Atmospheric Ozone Research" from the Mission to Planet Earth Science Research Plan, which describes NASA's current and future research activities related to both tropospheric and stratospheric chemistry.
Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan
NASA Technical Reports Server (NTRS)
Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.
2012-01-01
Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.
Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control
NASA Astrophysics Data System (ADS)
Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel
2018-06-01
Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.
Optical Instability of the Earth's Atmosphere
NASA Technical Reports Server (NTRS)
Kucherov, N. I. (Editor)
1966-01-01
The atmosphere is not stationary: it changes continuously and its optical properties are inherently unstable. This optical instability of the air medium is of considerable significance in various fields of research and observation where light transmission through the atmosphere plays a basic role. Under the category of optical instabilities we mainly have the different atmospheric perturbations whose integrated effect constitutes the astroclimate: these are image pulsation, scintillation, and the blurring of the diffraction disk. The artificial satellites and space probes collected a great amount of new data on the upper atmosphere and on the outer space environment. New interesting and important problems arose, which attracted the attention of many geophysicists and astronomers. This shift in the center of gravity of scientific interests and efforts is observed mainly among scientists specializing in atmospheric physics. Recently, scientific organizations engaged on optical instability research switched to astroclimatic topics. Twelve scientific organizations were represented at the Soviet astronomers have recently been charged with a very difficult and responsible task: to select suitable sites for the erection of new observatories, including an astrophysical observatory with the largest telescope in the USSR. A considerable number of research groups were dispatched into various areas of the Soviet Union, and many astronomical observatories took part in the astroclimatic survey. The work of these expeditions remains un-paralleled by any other country in the world. On the other hand, these researches aroused a definite interest in astroclimate in Soviet astronomical observatories. International astronomical circles pay an ever growing attention to the problems of astroclimate.
NASA Technical Reports Server (NTRS)
Whitten, R. C.; Borucki, W. J.; Park, C.; Pfister, L.; Woodward, H. T.; Turco, R. P.; Capone, L. A.; Riegel, C. A.; Kropp, T.
1982-01-01
Numerical models were developed to calculate the total deposition of watervapor, hydrogen, CO2, CO, SO2, and NO in the middle atmosphere from operation of heavy lift launch vehicles (HLLV) used to build a satellite solar power system (SPS). The effects of the contaminants were examined for their effects on the upper atmosphere. One- and two-dimensional models were formulated for the photochemistry of the upper atmosphere and for rocket plumes and reentry. An SPS scenario of 400 launches per year for 10 yr was considered. The build-up of the contaminants in the atmosphere was projected to have no significant effects, even at the launch latitude. Neither would there by any dangerous ozone depletion. It was found that H, OH, and HO2 species would double in the thermosphere. No measurable changes in climate were foreseen.
NASA Astrophysics Data System (ADS)
Yatagai, Akiyo; Ritschel, Bernd; Iyemori, Tomohiko; Koyama, Yukinobu; Hori, Tomoaki; Abe, Shuji; Tanaka, Yoshimasa; Shinbori, Atsuki; UeNo, Satoru; Sato, Yuka; Yagi, Manabu
2013-04-01
The upper atmospheric observational study is the area which an international collaboration is crucially important. The Japanese Inter-university Upper atmosphere Global Observation NETwork project (2009-2014), IUGONET, is an inter-university program by the National Institute of Polar Research (NIPR), Tohoku University, Nagoya University, Kyoto University, and Kyushu University to build a database of metadata for ground-based observations of the upper atmosphere. In order to investigate the mechanism of long-term variations in the upper atmosphere, we need to combine various types of in-situ observations and to accelerate data exchange. The IUGONET institutions have been archiving observed data by radars, magnetometers, photometers, radio telescopes, helioscopes, etc. in various altitude layers from the Earth's surface to the Sun. The IUGONET has been developing systems for searching metadata of these observational data, and the metadata database (MDB) has already been operating since 2011. It adopts DSPACE system for registering metadata, and it uses an extension of the SPASE data model of describing metadata, which is widely used format in the upper atmospheric society including that in USA. The European Union project ESPAS (2011-2015) has the same scientific objects with IUGONET, namely it aims to provide an e-science infrastructure for the retrieval and access to space weather relevant data, information and value added services. It integrates 22 partners in European countries. The ESPAS also plans to adopt SPASE model for defining their metadata, but search system is different. Namely, in spite of the similarity of the data model, basic system ideas and techniques of the system and web portal are different between IUGONET and ESPAS. In order to connect the two systems/databases, we are planning to take an ontological method. The SPASE keyword vocabulary, derived from the SPASE data model shall be used as standard for the description of near-earth and space data content and context. The SPASE keyword vocabulary is modeled as Simple Knowledge Organizing System (SKOS) ontology. The SPASE keyword vocabulary also can be reused in domain-related but also cross-domain projects. The implementation of the vocabulary as ontology enables the direct integration into semantic web based structures and applications, such as linked data and the new Information System and Data Center (ISDC) data management system.
Follow-Up Care for Older Women With Breast Cancer
1999-08-01
range of patient outcomes, including primary tumor therapy and mortality, self -reported upper body function, and overall physical function. Methods...mor therapy, all cause mortality, self -reported function and overall physical function than upper body function, and overall physical was the interview...Major Analytic Variables mor therapy and all cause mortality, as well as self -reported upper body and overall physical Dependent Variables. Our first
Overview of our current understanding of the Titan ionosphere
NASA Astrophysics Data System (ADS)
Cravens, Thomas
An ionosphere was first detected on Titan in 1980 by the Voyager 1 radio occultation experi-ment and the first in situ measurements were made in 2004 by the Cassini spacecraft, although many theoretical studies were carried out prior to the Cassini mission. Earth and Titan are similar in that molecular nitrogen is the major neutral atmospheric species but these bodies differ in that the next most abundant species at Earth is molecular oxygen and at Titan is methane. As a consequence, the chemistry in the upper atmosphere and ionosphere is quite different for the two bodies. Titan's upper atmosphere and ionosphere strongly interact with Saturn's magnetospheric plasma. Magnetic fields were observed in Titan's ionosphere by the Cassini magnetometer and are induced as a consequence of this interaction, which affects the flow and distribution of plasma. Energetic electrons and ions from Saturn's magnetosphere precipitate into the upper atmosphere, acting as both heat and ionization sources. However, on the dayside, absorption of solar extreme ultraviolet radiation is thought to be the dominant source of ionization and energy. The electron temperatures measured in the ionosphere by the Cassini Langmuir probe (RPWS/LP) are about 1000 K, greatly exceeding the neutral temper-ature (about 150 K). The ion and neutral mass spectrometer (INMS) onboard Cassini detected a large number of ion species with mass numbers up to 100 Daltons and the energetic plasma spectrometer (CAPS) detected both negative and positive ion species at even higher mass num-bers. Primary ionization processes create N2+, N+, CH4+, CH3+, and other ion species, but a complex ion-neutral chemistry, involving methane and other hydrocarbon and nitriles species (acetylene, ethylene, ethane, hydrogen cyanide, benzene,. . . .), convert these initial species into numerous other species including CH5+, C2H5+, HCNH+, C3H5+, CH2NH2+, C6H7+. As in most ionospheres, chemistry dominates the ionospheric structure at lower altitudes but trans-port is more important at higher altitudes. Just at at Venus during higher dynamics pressure solar wind conditions, the magnetic field plays a key role in the ionospheric dynamics at Titan but neutral winds also contribute to the flow of plasma. This talk will provide an overview of observations of Titan's ionosphere and will also review the physical and chemical processes operating in this ionosphere.
Impact of the North Atlantic dipole on climate changes over Eurasia
NASA Astrophysics Data System (ADS)
Serykh, Ilya
2017-04-01
Hydrophysical and meteorological characteristics of negative (1948-1976, 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) / Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained from different sources (20thC_ReanV2c, ERA-20C, JRA-55, NCEP/NCAR, HadCRUT4, HadSLP2, NODC, Ishii, SODA, OAFlux, HadSST3, COBE2, ERSSTv4) are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics-Eurasia system of ocean-atmosphere interactions is discussed. Dipole spatial structure from observations datasets and re-analyses were compared with the results of the Historical Experiment from the climate models of the CMIP5 project. It is found that several climate models reproduce dipole spatial structure of the near-surface temperature and sea level pressure anomalies similarly to these fields in the re-analyses considered. However, the phase diagrams of the gradient of near-surface temperature and sea level pressure between the Azores High and Island Low from climate models do not separate on subsets as the observation diagrams. Keeping in mind the prognostic goals we supposed that this result could be essential for revealing the relationships between the climatic parameters of the Eurasian continent and the thermodynamic processes in the specific areas of the North Atlantic Ocean.
Obituary: Lloyd V. Wallace (1927 - 2015)
NASA Astrophysics Data System (ADS)
Born in 1927 in Detroit, Michigan, in humble circumstances, Lloyd developed an early interest in solar and planetary astronomy and was a protégé of Ralph Nichols, a physics professor at the University of Western Ontario. Later he moved back to the United States and obtained his Ph.D in Astronomy at the University of Michigan in 1957 under Leo Goldberg. It was while he was at the University of Michigan that he met and married his wife, Ruth. At various times in his early career, and as the result of a complex series of events, he held Canadian, British, and United States citizenships and even found time to become an expert professional electrician. On acquiring his degree he obtained a position with Joe Chamberlain at the Yerkes Observatory and began a lifetime association with Chamberlain and Don Hunten (then a visitor to Yerkes) in atmospheric and spectroscopic research. In 1962 they moved to Tucson where Chamberlain became the head of the Space Division at the Kitt Peak National Observatory, a unit set up by the first director, Aden Meinel, to apply advances in technology to astronomical research. Lloyd was hired as the principal experimenter in the observatory's sounding rocket program, which was set up by the National Science Foundation to provide staff and visitor access to the upper atmosphere for research purposes. With this program he supervised a series of 39 Aerobee rocket flights from the White Sands Missile range to investigate upper atmosphere emissions, aeronomic processes, and make astronomical observations over a period of about 10 years. He was also involved in the first attempts to establish a remotely controlled 50&rdquo telescope on Kitt Peak and efforts within the Division to create an Earth orbiting astronomical telescope. In parallel with these activities Lloyd conducted research which was largely focused on spectroscopic investigations. In the early days these included measurement of upper atmospheric emissions, particularly visual dayglow, the discovery of Raman lines in Uranus, Lightning spectrum, and auroral emissions. During this time he also pursued theoretical studies of resonant line transfer and some of the first modelling of the thermal structure of outer planet atmospheres. With the conclusion of the rocket program he turned his attention to high-resolution studies of the sun and cool stars and to long-term study of the variability of atmospheric pollutants (HCl, HF. CO2) over Kitt Peak. His solar and cool star studies led to the production of several high-resolution digital atlases extending from the UV to the thermal IR, and in addition, studies of line variability and the molecular content of sunspots. Lloyd was a very private and genuine person, but with a very sharp wit. He was highly productive with 135 published papers bearing his name.
Evidence for disequilibrium of ortho and para hydrogen on Jupiter from Voyager IRIS measurements
NASA Technical Reports Server (NTRS)
Conrath, B. J.; Gierasch, P. J.
1983-01-01
Preliminary results of an analysis of the ortho state/para state ratio (parallel/antiparallel) for molecular H2 in the Jovian atmosphere using Voyager IR spectrometer (IRIS) data are reported. The study was undertaken to expand the understanding of the thermodynamics of a predominantly H2 atmosphere, which takes about 100 million sec to reach equilibrium. IRIS data provided 4.3/cm resolution in the 300-700/cm spectral range dominated by H2 lines. Approximately 600 spectra were examined to detect any disequilibrium between the hydrogen species. The results indicate that the ortho-para ratio is not in an equilibrium state in the upper Jovian troposphere. A thorough mapping of the para-state molecules in the upper atmosphere could therefore aid in mapping the atmospheric flowfield.
ISAMS and MLS for NASA's Upper Atmosphere Research Satellite
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D.; Dickinson, P. H. G.
1990-04-01
The primary goal of NASA's Upper Atmosphere Research Satellite (UARS), planned to be launched in 1991, is to compile data about the structure and behavior of the stratospheric ozone layer, and especially about the threat of the chlorine-based pollutants to its stablility. Two of the payload instruments, manufactured in the UK, are described: the Improved Stratospheric and Mesospheric Sounder (ISAMS), a radiometer designed to measure thermal emission from selected atmospheric constituents at the earth's limb, then making it possible to obtain nearly global coverage of the vertical distribution of temperature and composition from 80 deg S to 80 deg N latitude; and the Microwave Limb Sounder (MLS), a limb sounding radiometer, measuring atmospheric thermal emission from selected molecular spectral lines at mm wavelength, in the frequency regions of 63, 183, and 205 GHz.
Preface to Long-term trends in the upper atmosphere and ionosphere
NASA Astrophysics Data System (ADS)
Laštovička, J.; Lübken, F.-J.
2017-10-01
The anthropogenic emissions of greenhouse gases influence the atmosphere at nearly all altitudes between the ground and the topside ionosphere and upper thermosphere, thus affecting not only life on the surface, but also the space-based technological systems on which we increasingly rely. This special issue deals with long-term trends in the mesosphere, thermosphere, ionosphere, and partly also in the stratosphere, which are predominantly (but not only) caused by anthropogenic factors, particularly by the increasing concentration of carbon dioxide in the atmosphere. The special issue is based on selected papers from the 9th IAGA/ICMA/SCOSTEP workshop ;Long-Term Changes and Trends in the Atmosphere; held in September 2016 in Kühlungsborn, Germany. The 10th workshop will be held in June 2018 in Hefei, China.
NASA Astrophysics Data System (ADS)
Reuveni, Y.; Leontiev, A.
2016-12-01
Using GPS satellites signals, we can study atmospheric processes and coupling mechanisms, which can help us understand the physical conditions in the upper atmosphere that might lead or act as proxies for severe weather events such as extreme storms and flooding. GPS signals received by geodetic stations on the ground are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy Precipitable Water Vapor (PWV) using collocated pressure and temperature measurements on the ground. Here, we present the use of Israel's geodetic GPS receivers network for extracting tropospheric zenith path delays combined with near Real Time (RT) METEOSAT-10 Water Vapor (WV) and surface temperature pixel intensity values (7.3 and 12.1 channels, respectively) in order to obtain absolute IWV (kg/m2) or PWV (mm) map distribution. The results show good agreement between the absolute values obtained from our triangulation strategy based solely on GPS Zenith Total Delays (ZTD) and METEOSAT-10 surface temperature data compared with available radiosonde Precipitable IWV/PWV absolute values. The presented strategy can provide unprecedented temporal and special IWV/PWV distribution, which is needed as part of the accurate and comprehensive initial conditions provided by upper-air observation systems at temporal and spatial resolutions consistent with the models assimilating them.
Aerosol Constraints on the Atmosphere of the Hot Saturn-mass Planet WASP-49b
NASA Astrophysics Data System (ADS)
Cubillos, Patricio E.; Fossati, Luca; Erkaev, Nikolai V.; Malik, Matej; Tokano, Tetsuya; Lendl, Monika; Johnstone, Colin P.; Lammer, Helmut; Wyttenbach, Aurélien
2017-11-01
The strong, nearly wavelength-independent absorption cross section of aerosols produces featureless exoplanet transmission spectra, limiting our ability to characterize their atmospheres. Here, we show that even in the presence of featureless spectra, we can still characterize certain atmospheric properties. Specifically, we constrain the upper and lower pressure boundaries of aerosol layers, and present plausible composition candidates. We study the case of the bloated Saturn-mass planet WASP-49 b, where near-infrared observations reveal a flat transmission spectrum between 0.7 and 1.0 μm. First, we use a hydrodynamic upper-atmosphere code to estimate the pressure reached by the ionizing stellar high-energy photons at {10}-8 bar, setting the upper pressure boundary where aerosols could exist. Then, we combine HELIOS and Pyrat Bay radiative-transfer models to constrain the temperature and photospheric pressure of atmospheric aerosols, in a Bayesian framework. For WASP-49 b, we constrain the transmission photosphere (hence, the aerosol deck boundaries) to pressures above {10}-5 bar (100× solar metallicity), {10}-4 bar (solar), and {10}-3 bar (0.1× solar) as the lower boundary, and below {10}-7 bar as the upper boundary. Lastly, we compare condensation curves of aerosol compounds with the planet’s pressure-temperature profile to identify plausible condensates responsible for the absorption. Under these circumstances, we find these candidates: {{Na}}2{{S}} (at 100× solar metallicity); Cr and MnS (at solar and 0.1× solar) and forsterite, enstatite, and alabandite (at 0.1× solar).
A Physical Model to Determine Snowfall over Land by Microwave Radiometry
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.
2003-01-01
Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.
NASA Technical Reports Server (NTRS)
1992-01-01
The objectives, status, and accomplishments of the research tasks supported under the NASA Upper Atmosphere Research Program (UARP) are presented. The topics covered include the following: balloon-borne in situ measurements; balloon-borne remote measurements; ground-based measurements; aircraft-borne measurements; rocket-borne measurements; instrument development; reaction kinetics and photochemistry; spectroscopy; stratospheric dynamics and related analysis; stratospheric chemistry, analysis, and related modeling; and global chemical modeling.
NASA Astrophysics Data System (ADS)
Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.; Zheleznov, Yu. A.
2017-09-01
The results of rocket and satellite measurements of carbon dioxide emissions at a wavelength of 15 μm in the upper atmosphere have been systematized and analyzed. Analytical expressions describing the dependence of the altitude distribution of 15-μm CO2 emission intensity and its variation in the altitude range from 100 to 130 km on the season, latitude, and solar activity have been obtained.
Whole Atmosphere Modeling and Data Analysis: Success Stories, Challenges and Perspectives
NASA Astrophysics Data System (ADS)
Yudin, V. A.; Akmaev, R. A.; Goncharenko, L. P.; Fuller-Rowell, T. J.; Matsuo, T.; Ortland, D. A.; Maute, A. I.; Solomon, S. C.; Smith, A. K.; Liu, H.; Wu, Q.
2015-12-01
At the end of the 20-th century Raymond Roble suggested an ambitious target of developing an atmospheric general circulation model (GCM) that spans from the surface to the thermosphere for modeling the coupled atmosphere-ionosphere with drivers from terrestrial meteorology and solar-geomagnetic inputs. He pointed out several areas of research and applications that would benefit highly from the development and improvement of whole atmosphere modeling. At present several research groups using middle and whole atmosphere models have attempted to perform coupled ionosphere-thermosphere predictions to interpret the "unexpected" anomalies in the electron content, ions and plasma drifts observed during recent stratospheric warming events. The recent whole atmosphere inter-comparison case studies also displayed striking differences in simulations of prevailing flows, planetary waves and dominant tidal modes even when the lower atmosphere domain of those models were constrained by similar meteorological analyses. We will present the possible reasons of such differences between data-constrained whole atmosphere simulations when analyses with 6-hour time resolution are used and discuss the potential model-data and model-model differences above the stratopause. The possible shortcomings of the whole atmosphere simulations associated with model physics, dynamical cores and resolutions will be discussed. With the increased confidence in the space-borne temperature, winds and ozone observations and extensive collections of ground-based upper atmosphere observational facilities, the whole atmosphere modelers will be able to quantify annual and year-to-variability of the zonal mean flows, planetary wave and tides. We will demonstrate the value of tidal and planetary wave variability deduced from the space-borne data and ground-based systems for evaluation and tune-up of whole atmosphere simulations including corrections of systematic model errors. Several success stories on the middle and whole atmosphere simulations coupled with the ionosphere models will be highlighted, and future perspectives for links of the space and terrestrial weather predictions constrained by current and scheduled ionosphere-thermosphere-mesosphere satellite missions will be presented
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.
2011-01-01
Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.
NASA Astrophysics Data System (ADS)
Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.
2011-11-01
Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.
Titan's Upper Atmosphere from Cassini/UVIS Solar Occultations
NASA Astrophysics Data System (ADS)
Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.
2015-12-01
Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N2 in the range 1100-1600 km and vertical profiles of CH4 in the range 850-1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH4 mole fractions, and average temperatures for the upper atmosphere obtained from the N2 profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.
Atmospheric structure and helium abundance on Saturn from Cassini/UVIS and CIRS observations
NASA Astrophysics Data System (ADS)
Koskinen, T. T.; Guerlet, S.
2018-06-01
We combine measurements from stellar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and limb scans observed by the Composite Infrared Spectrometer (CIRS) to create empirical atmospheric structure models for Saturn corresponding to the locations probed by the occultations. The results cover multiple locations at low to mid-latitudes between the spring of 2005 and the fall of 2015. We connect the temperature-pressure (T-P) profiles retrieved from the CIRS limb scans in the stratosphere to the T-P profiles in the thermosphere retrieved from the UVIS occultations. We calculate the altitudes corresponding to the pressure levels in each case based on our best fit composition model that includes H2, He, CH4 and upper limits on H. We match the altitude structure to the density profile in the thermosphere that is retrieved from the occultations. Our models depend on the abundance of helium and we derive a volume mixing ratio of 11 ± 2% for helium in the lower atmosphere based on a statistical analysis of the values derived for 32 different occultation locations. We also derive the mean temperature and methane profiles in the upper atmosphere and constrain their variability. Our results are consistent with enhanced heating at the polar auroral region and a dynamically active upper atmosphere.
Noble gas systematics of the Skaergaard intrusion
NASA Astrophysics Data System (ADS)
Horton, F.; Farley, K. A.; Taylor, H. P.
2017-12-01
The noble gas isotopic compositions of olivines from the Skaergaard layered mafic intrusion in Greenland reveal that magmas readily exchange noble gases with their environment after emplacement. Although Skaergaard magmas are thought to have derived from the upper mantle, all of the olivine separates we analyzed have 3He/4He ratios less than that of the upper mantle ( 8 Ra, where Ra = 3He/4He of the atmosphere, 1.39 x 10-6). This suggests that crustal and/or atmospheric noble gases have contaminated all Skaergaard magmas to some extent. We obtained the highest 3He/4He ratios ( 2 Ra) from olivines found in the lowermost exposed layers of the intrusion away from the margins. Excess radiogenic 4He (indicated by Ra<1) along the margin of the intrusion indicates that noble gases from the Archean host-rock were incorporated into the cooling magma chamber, probably via magmatic assimilation. Noble gases in olivines from the upper portions of the intrusion have atmospheric isotopic compositions, but higher relative helium abundances than the atmosphere. We suggest that post-crystallization hydrothermal circulation introduced atmosphere-derived noble gases into uppermost layers of the intrusion. Such high temperature exchanges of volatiles between plutons and their immediate surroundings may help explain why so few mantle-derived rocks retain mantle-like noble gas signatures.
Fate of Ice Grains in Saturn's Ionosphere
NASA Astrophysics Data System (ADS)
Hamil, O.; Cravens, T. E.; Reedy, N. L.; Sakai, S.
2018-02-01
It has been proposed that the rings of Saturn can contribute both material (i.e., water) and energy to its upper atmosphere and ionosphere. Ionospheric models require the presence of molecular species such as water that can chemically remove ionospheric protons, which otherwise are associated with electron densities that greatly exceed those from observation. These models adopt topside fluxes of water molecules. Other models have shown that ice grains from Saturn's rings can impact the atmosphere, but the effects of these grains have not been previously studied. In the current paper, we model how ice grains deposit both material and energy in Saturn's upper atmosphere as a function of grain size, initial velocity (at the "top" of the atmosphere, defined at an altitude above the cloud tops of 3,000 km), and incident angle. Typical grain speeds are expected to be roughly 15-25 km/s. Grains with radii on the order of 1-10 nm deposit most of their energy in the altitude range of 1,700-1,900 km, and can vaporize, depending on initial velocity and impact angle, contributing water mass to the upper atmosphere. We show that grains in this radius range do not significantly vaporize in our model at initial velocities lower than about 20 km/s.
Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR
NASA Astrophysics Data System (ADS)
Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.
2009-05-01
We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed quantities do not have a strong dependence on entry angle.
The 2011 June 23 Stellar Occultation by Pluto: Airborne and Ground Observations
NASA Astrophysics Data System (ADS)
Person, M. J.; Dunham, E. W.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Bright, L.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedemann, M.; Roeser, H.-P.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. J.; Micheli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J. P.; Tilleman, T.; Harris, H.; Sheppard, S.; Rapoport, S.; Ritchie, I.; Pearson, M.; Mattingly, A.; Brimacombe, J.; Gault, D.; Jones, R.; Nolthenius, R.; Broughton, J.; Barry, T.
2013-10-01
On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 ± 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizon's flyby in 2015.
THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Person, M. J.; Bosh, A. S.; Levine, S. E.
On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event withmore » a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it should persist at this full level through New Horizon's flyby in 2015.« less
Why Occam's razor doesn't work for atmospheric methane
NASA Astrophysics Data System (ADS)
Manning, Martin; Brailsford, Gordon; Dlugokencky, Ed; Moss, Rowena; Nisbet, Euan; Schaefer, Hinrich; White, James
2017-04-01
With the CH4 mole fraction in clean air increasing since 2007, after being relatively stable for seven years, there are a growing number of papers with different explanations. Examples include: a continuing debate about the fraction of CH4 coming from fossil fuels[1] and whether this source is increasing[2]. Then, more generally, whether increasing sources are predominantly anthropogenic[3,4] or from tropical wetlands[5-7]; and that increasing sources may also be competing with increasing removal rates[8,9]. The increasing amount of δ13CCH4 data and the recent reversal of its long-term trend should help to clarify changes in the CH4 budget, but δ13C has both nonlinear and longer term responses to changes in sources or removal than the mole fraction[10]. Furthermore, the seasonal cycle in δ13CCH4 means that it is never in equilibrium and that its short-term response to a budget change depends on the time of year when that occurs. Then to complicate matters further, while it has been shown that changes in the total removal rate cannot explain the recent δ13CCH4 observations[7], changes in the more highly fractionating removal by Cl can produce very similar responses to changes in the sources. So far changes in the CH4 budget are only in the order of 3%, but its mole fraction is diverging from scenarios that achieve the 2°C climate change target, and at the upper end of the range considered in climate models. To understand the reasons for this requires a multidisciplinary approach with clearer links to atmospheric chemistry, more analyses of potential changes in methanogenic and methanotrophic processes, and resolving the major discrepancies between current bottom-up and top-down CH4 budget analyses. One contribution to this comes from the last 26 years of Southern Hemisphere 14CO data that are now showing OH has been quite stable, despite a large perturbation caused by the Mount Pinatubo eruption. This is also suggesting that trends seen in atmospheric transport[11,12] may now be altering the balance between sources and removal. 1. Schwietzke, S. et al. Nature 538, 88-91 (2016). 2. Hausmann, P., et al. Atmospheric Chemistry and Physics 16, 3227-3244 (2016). 3. Bergamaschi, P. et al. Journal of Geophysical Research 118, 7350-7369 (2013). 4. Schaefer, H. et al. Science 352, 80-84 (2016). 5. Bousquet, P. et al. Atmospheric Chemistry and Physics 11, 3689-3700 (2011). 6. Houweling, S. et al. Atmospheric Chemistry and Physics 14, 3991-4012 (2014). 7. Nisbet, E. G. et al. Global Biogeochemical Cycles 13, 1356-1370 (2016). 8. Dalsøren, S. B. et al. Atmospheric Chemistry and Physics 16, 3099-3126 (2016). 9. Ghosh, A. et al. Atmospheric Chemistry and Physics 15, 2595-2612 (2015). 10. Tans, P. P. Global Biogeochemical Cycles 11, 77-81 (1997). 11. Min, S.-K. & Son, S.-W. Journal of Geophysical Research 118, 3007-3015 (2013). 12. Eyring, V. et al. Journal of Geophysical Research 118, 5029-5060 (2013).
A High Speed, Radiation Hard X-Ray Imaging Spectroscometer for Planetary Investigations
NASA Technical Reports Server (NTRS)
Kraft, R. P.; Kenter, A. T.; Murray, S. S.; Martindale, A.; Pearson, J.; Gladstone, R.; Branduardi-Raymont, G.; Elsner, R.; Kimura, T.; Ezoe, Y.;
2014-01-01
X-ray observations provide a unique window into fundamental processes in planetary physics, and one that is complementary to observations obtained at other wavelengths. We propose to develop an X-ray imaging spectrometer (0.1-10 keV band) that, on orbital planetary missions, would measure the elemental composition, density, and temperature of the hot plasma in gas giant magnetospheres, the interaction of the Solar wind with the upper atmospheres of terrestrial planets, and map the elemental composition of the surfaces of the Galilean moons and rocky or icy airless systems on spatial scales as small as a few meters. The X-ray emission from gas giants, terrestrial planets and moons with atmospheres, displays diverse characteristics that depend on the Solar wind's interaction with their upper atmospheres and/or magnetospheres. Our imaging spectrometer, as part of a dedicated mission to a gas giant, will be a paradigm changing technology. On a mission to the Jovian system, our baseline instrument would map the elemental composition of the rocky and icy surfaces of the Galilean moons via particle-induced X-ray fluorescence. This instrument would also measure the temperature, density and elemental abundance of the thermal plasma in the magnetosphere and in the Io plasma torus (IPT), explore the interaction of the Solar wind with the magnetosphere, and characterize the spectrum, flux, and temporal variability of X-ray emission from the polar auroras. We will constrain both the mode of energy transport and the effective transport coefficients in the IPT and throughout the Jovian magnetosphere by comparing temporal and spatial variations of the X-ray emitting plasma with those seen from the cooler but energetically dominant 5 eV plasma.
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin; Hueso, R.; Perez-Hoyos, S.
2012-10-01
The Master in Space Science and Technology is a postgraduate course at the Universidad del País Vasco in Spain (http://www.ehu.es/aula-espazio/master.html). It has two elective itineraries on space studies: scientific and technological. The scientific branch is intended for students aiming to access the PhD doctorate program in different areas of space science, among them the research of the solar system bodies. The theoretical foundations for the solar system studies are basically treated in four related matters: Astronomy and Astrophysics, Physics of the Solar System, Planetary Atmospheres, and Image Processing and Data Analysis. The practical part is developed on the one hand by analyzing planetary images obtained by different spacecrafts from public archives (e. g. PDS), and on the other hand from observations obtained by the students employing the 50 cm aperture telescope and other smaller telescopes from the Aula EspaZio Gela Observatory at the Engineering Faculty. We present the scheme of the practice works realized at the telescope to get images of the planets in different wavelengths pursuing to study the following aspects of Planetary Atmospheres: (1) Data acquisition; (2) Measurements of cloud motions to derive winds; (3) Measurement of the upper cloud reflectivity at the different wavelengths and position in the disk to retrieve the upper cloud properties and vertical structure. The theoretical foundations accompanying these practices are then introduced: atmospheric dynamics and thermodynamics, and the radiative transfer problem. Acknowledgments: This work was supported by Departamento de Promoción Económica of Diputación Foral Bizkaia through a grant to Aula EspaZio Gela at E.T.S. Ingeniería (Bilbao, Spain).
Global Change: A Biogeochemical Perspective
NASA Technical Reports Server (NTRS)
Mcelroy, M.
1983-01-01
A research program that is designed to enhance our understanding of the Earth as the support system for life is described. The program change, both natural and anthropogenic, that might affect the habitability of the planet on a time scale roughly equal to that of a human life is studied. On this time scale the atmosphere, biosphere, and upper ocean are treated as a single coupled system. The need for understanding the processes affecting the distribution of essential nutrients--carbon, nitrogen, phosphorous, sulfur, and water--within this coupled system is examined. The importance of subtle interactions among chemical, biological, and physical effects is emphasized. The specific objectives are to define the present state of the planetary life-support system; to ellucidate the underlying physical, chemical, and biological controls; and to provide the body of knowledge required to assess changes that might impact the future habitability of the Earth.
NASA Technical Reports Server (NTRS)
Treffers, R. R.; Larson, H. P.; Fink, U.; Gautier, T. N.
1978-01-01
A high-resolution spectrum of Jupiter at 5 micrometers recorded at the Kuiper Airborne Observatory is used to determine upper limits to the column density of 19 molecules. The upper limits to the mixing ratios of SiH4, H2S, HCN, and simple hydrocarbons are discussed with respect to current models of Jupiter's atmosphere. These upper limits are compared to expectations based upon the solar abundance of the elements. This analysis permits upper limit measurements (SiH4), or actual detections (GeH4) of molecules with mixing ratios with hydrogen as low as 10 to the minus 9th power. In future observations at 5 micrometers the sensitivity of remote spectroscopic analyses should permit the study of constituents with mixing ratios as low as 10 to the minus 10th power, which would include the hydrides of such elements as Sn and As as well as numerous organic molecules.
Physical Processes Involved in the 1988 Drought and 1993 Floods in North America.
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.; Guillemot, Christian J.
1996-06-01
An analysis of the spring-summer 1988 drought and 1993 floods over North America reveals a reversal in the sign of anomalies in several fields. Large sea surface temperature anomalies of opposite signs existed in the tropical Pacific with strong La Niña conditions in 1988 and a mature El Niño in 1993. The distribution of tropical convection in the convergence zones and associated latent heating of the atmosphere were correspondingly altered, implying a large-scale switch in the anomalous tropical heating and forcing of extratropical quasi-stationary waves in the atmosphere, influencing the subtropical jet stream over the North Pacific and across North America. In 1988 the jet stream and the closely related storm track of high-frequency disturbances in the upper troposphere were displaced into Canada well north of the normal location-the farthest north of any year from 1979 to 1993. In 1993 a broader jet stream and the storm track were displaced well south of normal to a more springlike location across the United States-the farthest south by over 200 km of any year from 1979 to 1993. High-frequency eddy activity in the Pacific-North American storm track is shown to reinforce the anomalous jet streams in both years.An analysis of the moisture budgets reveals a stronger river of atmospheric moisture flowing across the Gulf of Mexico into the central and eastern United States in 1993. Also, in the lower atmosphere, the storm track in 1993 was more active, and its lower latitude allowed the cyclonic disturbances to tap into the moisture source, transport moisture into the upper Mississippi River basin, and precipitate it out. It is deduced that local evaporation may have enhanced the precipitation and helped perpetuate and prolong the conditions. In contrast, in 1988 disturbances were weaker and displaced far enough north to avoid most of the moisture source, and the drought was perpetuated by the dry conditions. Consequently, these effects should be viewed as feedbacks that amplify and prolong the response, while from the standpoint of the atmosphere, the anomalous tropical Pacific sea surface temperatures are a notable (but not the sole) external forcing of the patterns.
Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere
NASA Astrophysics Data System (ADS)
Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.
2016-02-01
During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.
ERIC Educational Resources Information Center
Irving, Paul W.; Sayre, Eleanor C.
2013-01-01
As part of a longitudinal study into identity development in upper-level physics students a phenomenographic research method is employed to assess the stages of identity development of a group of upper-level students. Three categories of description were discovered which indicate the three different stages of identity development for this group…
NASA Astrophysics Data System (ADS)
Kreidberg, Laura; Line, Michael R.; Thorngren, Daniel; Morley, Caroline V.; Stevenson, Kevin B.
2018-05-01
The super-Neptune exoplanet WASP-107b is an exciting target for atmosphere characterization. It has an unusually large atmospheric scale height and a small, bright host star, raising the possibility of precise constraints on its current nature and formation history. We report the first atmospheric study of WASP-107b, a Hubble Space Telescope (HST) measurement of its near-infrared transmission spectrum. We determined the planet’s composition with two techniques: atmospheric retrieval based on the transmission spectrum and interior structure modeling based on the observed mass and radius. The interior structure models set a 3σ upper limit on the atmospheric metallicity of 30× solar. The transmission spectrum shows strong evidence for water absorption (6.5σ confidence), and the retrieved water abundance is consistent with expectations for a solar abundance pattern. The inferred carbon-to-oxygen ratio is subsolar at 2.7σ confidence, which we attribute to possible methane depletion in the atmosphere. The spectral features are smaller than predicted for a cloud-free composition, crossing less than one scale height. A thick condensate layer at high altitudes (0.1–3 mbar) is needed to match the observations. We find that physically motivated cloud models with moderate sedimentation efficiency (f sed = 0.3) or hazes with a particle size of 0.3 μm reproduce the observed spectral feature amplitude. Taken together, these findings serve as an illustration of the diversity and complexity of exoplanet atmospheres. The community can look forward to more such results with the high precision and wide spectral coverage afforded by future observing facilities.
Ozone in the Atmosphere: I. The Upper Atmosphere.
ERIC Educational Resources Information Center
Phillips, Paul S.
1990-01-01
Research concerning the role of stratospheric ozone and the effect of chlorofluorocarbons on stratospheric ozone are discussed. The consequences of global ozone depletion are projected. The Montreal Protocol is reviewed. (CW)
Adaptive amplifier for probe diagnostics of charged-particle temperature in the upper atmosphere
NASA Astrophysics Data System (ADS)
Chkalov, V. G.
An amplifier for probe experiments in the upper atmosphere is described which is based on a linear current-voltage converter design. Specifically, the amplifier is used as the input unit in a rocket-borne ionospheric probe for the measurement of electron temperature. The range of measured currents is from 10 to the -10th to 10 to the -6th A; the amplifier current range can be shifted up or down depending on the requirements of the experiment.
Upper Atmosphere Research Report Number 21. Summary of Upper Atmosphere Rocket Research Firings
1954-02-01
computer . The sky screens are essentially theodolites which view the rocket through a pair of - crossed rods which are driven closed by an electric motor...positions are electrically measured and fed into a computer . The computer continously predicts the point of impact of the rocket 411 were its thrust...Without such equipment it is neces- sary to rely on optical ’fixes’, sound ranging, or the Impact Point Computer to provide such information. In the early
Upper atmosphere research: Reaction rate and optical measurements
NASA Technical Reports Server (NTRS)
Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.
1990-01-01
The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.
NASA Astrophysics Data System (ADS)
Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.
2018-03-01
The results of rocket and satellite measurements available in the literature of 5.3-μm nitric oxide emission in the upper atmosphere have been systematized and analyzed. Analytical dependences describing the height distribution of volumetric intensity of 5.3-μm emission of the NO molecule and its variations in a range of heights from 100 to 130 km as a function of the time of year, day, latitude, and solar activity have been obtained.
Hydrodynamical Modeling of Hydrogen Escape from Rocky Planets
NASA Astrophysics Data System (ADS)
Barringer, Daniel; Zugger, M.; Kasting, J.
2013-01-01
Hydrogen escape affects both the composition of primitive atmospheres of terrestrial planets and the planet’s state of oxidation. On Mars, hydrogen escape played a critical role in how long the planet remained in a warm wet state amenable to life. For both solar and extrasolar planets, hydrogen-rich atmospheres are better candidates for originating life by way of Miller-Urey-type prebiotic synthesis. However, calculating the rate of atmospheric hydrogen escape is difficult, for a number of reasons. First, the escape can be controlled either by diffusion through the homopause or by conditions in the upper atmosphere, whichever is slower. Second, both thermal and non-thermal escape mechanisms are typically important. Third, thermal escape itself can be subdivided into Jeans escape (thin upper atmosphere), and hydrodynamic escape, and hydrodynamic escape can be further subdivided into transonic escape and slower subsonic escape, depending on whether the exobase occurs above or below the sonic point. Additionally, the rate of escape for real terrestrial planet atmospheres, which are not 100% hydrogen, depends upon the concentration of infrared coolants, and upon heating and photochemistry driven largely by extreme ultraviolet (EUV) radiation. We have modified an existing 1-D model of hydrodynamic escape (F. Tian et al., JGR, 2008) to work in the high- hydrogen regime. Calculations are underway to determine hydrogen escape rates as a function of atmospheric H2 mixing ratio and the solar EUV flux. We will compare these rates with the estimated upper limit on the escape rate based on diffusion. Initial results for early Earth and Mars will later be extended to rocky exoplanets.
Pluto's Extended Atmosphere: New Horizons Alice Lyman-α Imaging
NASA Astrophysics Data System (ADS)
Retherford, Kurt D.; Gladstone, G. Randall; Stern, S. Alan; Weaver, Harold A.; Young, Leslie A.; Ennico, Kimberly A.; Olkin, Cathy B.; Cheng, Andy F.; Greathouse, Thomas K.; Hinson, David P.; Kammer, Joshua A.; Linscott, Ivan R.; Parker, Alex H.; Parker, Joel Wm.; Pryor, Wayne R.; Schindhelm, Eric; Singer, Kelsi N.; Steffl, Andrew J.; Strobel, Darrell F.; Summers, Michael E.; Tsang, Constantine C. C.; Tyler, G. Len; Versteeg, Maarten H.; Woods, William W.; Cunningham, Nathaniel J.; Curdt, Werner
2015-11-01
Pluto's upper atmosphere is expected to extend several planetary radii, proportionally more so than for any planet in our solar system. Atomic hydrogen is readily produced at lower altitudes due to photolysis of methane and transported upward to become an important constituent. The Interplanetary Medium (IPM) provides a natural light source with which to study Pluto's atomic hydrogen atmosphere. While direct solar Lyman-α emissions dominate the signal at 121.6 nm at classical solar system distances, the contribution of diffuse illumination by IPM Lyman-α sky-glow is roughly on par at Pluto (Gladstone et al., Icarus, 2015). Hydrogen atoms in Pluto's upper atmosphere scatter these bright Lyα emission lines, and detailed simulations of the radiative transfer for these photons indicate that Pluto would appear dark against the IPM Lyα background. The Pluto-Alice UV imaging spectrograph on New Horizons conducted several observations of Pluto during the encounter to search for airglow emissions, characterize its UV reflectance spectra, and to measure the radial distribution of IPM Lyα near the disk. Our early results suggest that these model predictions for the darkening of IPM Lyα with decreasing altitude being measureable by Pluto-Alice were correct. We'll report our progress toward extracting H and CH4 density profiles in Pluto's upper atmosphere through comparisons of these data with detailed radiative transfer modeling. These New Horizons findings will have important implications for determining the extent of Pluto's atmosphere and related constraints to high-altitude vertical temperature structure and atmospheric escape.This work was supported by NASA's New Horizons project.
NASA Astrophysics Data System (ADS)
Judt, Falko; Chen, Shuyi S.; Curcic, Milan
2016-06-01
The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.
Titan tholins formed from simuolated upper and lower atmosphere
NASA Astrophysics Data System (ADS)
Taniuchi, Toshinori; Hosogai, Tomohiro; Takano, Yoshinori; Kaneko, Takeo; Kobayashi, Kensei; Khare, Bishun; McKay, Chris
Titan, the biggest satellite of Saturn, has dense atmosphere that mainly consists of nitrogen and methane. In this study, we irradiated proton beams to the mixture of nitrogen and methane, and analyzed the structure, the chemical composition, and molecular weight of the resulting aerosols (named PI-tholins), in order to simulate possible reactions in the lower Titan atmosphere. On the other hand, magnetosphere electrons could be effective for the formation of organic molecules in the upper atmosphere of Titan. Thus we compared PI-tholin with the tholin formed by plasma discharge (named PD-tholins). A mixture of methane and nitrogen was irradiated with 3 MeV protons from a van de Graaff accelerator (Tokyo Institute of Technology). Many nitriles and nitrogen-containing heterocyclic compounds were detected by Py-GC/MS, showing that quite complex organics were formed from the simulated Titan atmosphere by proton irradiation. Microscopic observation showed that the complex organic aerosols had the structure bigger than 0.01 mm. G-value of Gly was 0.03. PD-tholins were produced by plasma discharge in 1 Torr of a mixture of methane and nitrogen by using plasma discharge facility RFX-600 (NASA Ames Research Center). Discharges were continued at 100 W for 72 hours. PD-tholins had similar chemical structures to PI-tholins. But the G-value of Gly in PD-tholins was 0.000091, which was much less thatn that in PI-tholins. It was implied that cosmic rays in the lower Titan atmosphere was much more effective to form complex organics yielding amino acids than other energies in the upper Titan atmosphere.
Testing a Conceptual Model of Soil Emissions of Nitrous and Nitric Oxides
Eric A. Davidson; Michael Keller; Heather E. Erickson; Verchot NO-VALUE; Edzo Veldkamp
2000-01-01
Nitrous and nitric oxides are often studied separately by atmospheric chemists because they play such different roles in the atmosphere. N2O is a stable greenhouse gas in the lower atmosphere (the troposphere; Ramanathan et al. 1985), but it participates in photochemical reactions in the upper atmosphere (the stratosphere) that destroy ozone (Crutzen 1970). In contrast...
Singh, D K A; Rahman, N N A; Seffiyah, R; Chang, S Y; Zainura, A K; Aida, S R; Rajwinder, K H S
2017-04-01
There is limited information regarding the effects of interactive virtual reality (VR) games on psychological and physical well-being among adults with physical disabilities. We aimed to examine the impact of VR games on psychological well-being, upper limb motor function and reaction time in adults with physical disabilities. Fifteen participants completed the intervention using Wii VR games in this pilot study. Depressive, Anxiety and Stress Scales (DASS) and Capabilities of Upper Extremity (CUE) questionnaires were used to measure psychological well-being and upper limb motor function respectively. Upper limb reaction time was measured using reaction time test. Results showed that there was a significant difference (p<0.05) in DASS questionnaire and average reaction time score after intervention. There is a potential for using interactive VR games as an exercise tool to improve psychological wellbeing and upper limb reaction time among adults with disabilities.
The Upper Atmosphere Research Satellite (UARS)
NASA Technical Reports Server (NTRS)
Reber, Carl A.
1993-01-01
The Upper Atmosphere Research Satellite (UARS) was launched by the Space Shuttle on September 12, 1991 into a near circular orbit at 585 km altitude inclined 57 degrees to the Equator. Measurements were initiated a few days later, including solar energy inputs to the atmosphere and vertical profiles of temperature, important minor gas species, and wind fields. The orbital parameters, combined with the sensor measurements characteristics, yield a measurement pattern that produces near global coverage with a duty cycle that periodically favors the Northern or the Southern Hemispheres. A few spacecraft and instrument anomalies have impacted the total amount of data obtained to date, but the overall performance of the mission has been very good.
2017-10-31
This sequence of images shows the sun from its surface to its upper atmosphere all taken at about the same time (Oct. 27, 2017). The first shows the surface of the sun in filtered white light; the other seven images were taken in different wavelengths of extreme ultraviolet light. Note that each wavelength reveals somewhat different features. They are shown in order of temperature from the first one at 6,000 degree C. surface out to about 10 million degrees C. in the upper atmosphere. Yes, the sun's outer atmosphere is much, much hotter than the surface. Scientists are getting closer to solving the processes that generate this phenomenon. https://photojournal.jpl.nasa.gov/catalog/PIA22055
Ionization of the Earth's Upper Atmosphere in Large Energetic Particle Events
NASA Astrophysics Data System (ADS)
Wolff, E.; Burrows, J.; Kallenrode, M.; von Koenig, M.; Kuenzi, K. F.; Quack, M.
2001-12-01
Energetic charged particles ionize the upper terrestrial atmosphere. Sofar, chemical consequences of precipitating particles have been discussed for solar protons with energies up to a few hundred MeV. We present a refined model for the interaction of energetic particles with the atmosphere based on a Monte-Carlo simulation. The model includes higher energies and other particle species, such as energetic solar electrons. Results are presented for well-known solar events, such as July 14, 2000, and are extrapolated to extremely large events, such as Carrington's white light flare in 1859, which from ice cores has been identified ass the largest impulsive NO3 event in the interval 1561 -- 1994 (McCracken et al., 2001).
NASA Astrophysics Data System (ADS)
Jarvinen, R.
2011-04-01
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
NASA Astrophysics Data System (ADS)
Jarvinen, Riku
2011-04-01
This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.
Hays, Ron D; Spritzer, Karen L; Amtmann, Dagmar; Lai, Jin-Shei; Dewitt, Esi Morgan; Rothrock, Nan; Dewalt, Darren A; Riley, William T; Fries, James F; Krishnan, Eswar
2013-11-01
To create upper-extremity and mobility subdomain scores from the Patient-Reported Outcomes Measurement Information System (PROMIS) physical functioning adult item bank. Expert reviews were used to identify upper-extremity and mobility items from the PROMIS item bank. Psychometric analyses were conducted to assess empirical support for scoring upper-extremity and mobility subdomains. Data were collected from the U.S. general population and multiple disease groups via self-administered surveys. The sample (N=21,773) included 21,133 English-speaking adults who participated in the PROMIS wave 1 data collection and 640 Spanish-speaking Latino adults recruited separately. Not applicable. We used English- and Spanish-language data and existing PROMIS item parameters for the physical functioning item bank to estimate upper-extremity and mobility scores. In addition, we fit graded response models to calibrate the upper-extremity items and mobility items separately, compare separate to combined calibrations, and produce subdomain scores. After eliminating items because of local dependency, 16 items remained to assess upper extremity and 17 items to assess mobility. The estimated correlation between upper extremity and mobility was .59 using existing PROMIS physical functioning item parameters (r=.60 using parameters calibrated separately for upper-extremity and mobility items). Upper-extremity and mobility subdomains shared about 35% of the variance in common, and produced comparable scores whether calibrated separately or together. The identification of the subset of items tapping these 2 aspects of physical functioning and scored using the existing PROMIS parameters provides the option of scoring these subdomains in addition to the overall physical functioning score. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wong, E.; Minnett, P. J.
2016-12-01
There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.
The Source of Planetary Period Oscillations in Saturn's Magnetosphere
NASA Astrophysics Data System (ADS)
Khurana, Krishan K.; Mitchell, Jonathan L.; Mueller, Ingo C. F.
2017-04-01
In this presentation, we resolve a three-decades old mystery of how Saturn is able to modulate its kilometric wave radiation and many field and plasma parameters at the planetary rotation period even though its magnetic field is extremely axisymmetric. Such waves emanating from the auroral regions of planets lacking solid surfaces have been used as clocks to measure the lengths of their days, because asymmetric internal magnetic fields spin-modulate wave amplitudes. A review by Carbary and Mitchell (2013, Periodicities in Saturn's magnetosphere, Reviews of Geophysics, 51, 1-30) on the topic summarized findings from over 200 research articles, on what the phenomena is, how it is manifested in a host of magnetospheric and auroral parameters; examined several proposed models and pointed out their shortcomings. The topic has now been explored in several topical international workshops, but the problem has remained unsolved so far. By quantitatively modeling the amplitudes and phases of these oscillations in the magnetic field observed by the Cassini spacecraft, we have now uncovered the generation mechanism responsible for these oscillations. We show that the observed oscillations are the manifestations of two global convectional conveyor belts excited in Saturn's upper atmosphere by auroral heating below its northern and southern auroral belts. We demonstrate that a feedback process develops in Saturn system such that the magnetosphere expends energy to drive convection in Saturn's upper stratosphere but gains back an amplified share in the form of angular momentum that it uses to enforce corotation in the magnetosphere and power its aurorae and radio waves. In essence, we have uncovered a new mechanism (convection assisted loss of angular momentum in an atmosphere) by which gaseous planets lose their angular momentum to their magnetospheres and outflowing plasma at rates far above previous predictions. We next show how the m = 1 convection system in the upper atmosphere generates the observed plasma and magnetic field periodicities. This breakthrough in our understanding of an important planetary physics problem has immediate and extensive applications in fields as diverse as theoretical fluid dynamics, planetary angular momentum loss, maintenance of corotation in planetary magnetospheres, astrophysical magneto-braking and future telescopic observations of planets and exoplanets.
2011-11-18
This artist concept depicts NASA Mars Atmosphere and Volatile EvolutioN MAVEN spacecraft near Mars. MAVEN is in development for launch in 2013 and will be the first mission devoted to understanding the Martian upper atmosphere.
Martian Meteorology: Determination of Large Scale Weather Patterns from Surface Measurements
NASA Technical Reports Server (NTRS)
Murphy, James R.; Haberle, Robert M.; Bridger, Alison F. C.
1998-01-01
We employed numerical modelling of the martian atmosphere, and our expertise in understanding martian atmospheric processes, to better understand the coupling between lower and upper atmosphere processes. One practical application of this work has been our involvement with the ongoing atmospheric aerobraking which the Mars Global Surveyor (MGS) spacecraft is currently undergoing at Mars. Dr. Murphy is currently a member of the Mars Global Surveyor (MGS) Aerobraking Atmospheric Advisory Group (AAG). He was asked to participate in this activity based upon his knowledge of martian atmospheric dynamical processes. Aerobraking is a process whereby a spacecraft, in an elliptical orbit, passes through the upper layers of the atmosphere (in this instance Mars). This passage through the atmosphere 'drags'upon the spacecraft, gradually reducing its orbital velocity. This has the effect, over time, of converting the elliptical orbit to a circular orbit, which is the desired mapping orbit for MGS. Carrying out aerobraking eliminates the need for carrying large amounts of fuel on the spacecraft to execute an engine burn to achieve the desired orbit. Eliminating the mass of the fuel reduces the cost of launch. Damage to one of MGS's solar panels shortly after launch has resulted in a less aggressive extended in time aerobraking phase which will not end until March, 1999. Phase I extended from Sept. 1997 through March 1998. During this time period, Dr. Murphy participated almost daily in the AAG meetings, and beginning in December 1997 lead the meeting several times per week. The leader of each of the daily AAG meetings took the results of that meeting (current state of the atmosphere, identification of any time trends or spatial patterns in upper atmosphere densities, etc.) forward to the Aerobraking Planning Group (APG) meeting, at which time the decision was made to not change MGS orbit, to lower the orbit to reach higher densities (greater 'drag'), or raise the orbit to avoid experiencing excessive, possibly damaging densities.
An Aerobraking Strategy for Determining Mars Upper Atmospheric Structure
NASA Astrophysics Data System (ADS)
Bougher, S. W.; Murphy, J. R.; Haberle, R. M.
1997-07-01
The Mars Global Surveyor (MGS) spacecraft will enter Mars orbit on Sept. 12, 1997, and thereafter undergo aerobraking for roughly 4-months. The final data-taking orbit to be achieved is sun-synchronous (2PM/2AM). An aerobraking strategy has been developed that not only will provide the walk-in capability needed to safely achieve the required Mars orbit, but also will provide a careful monitoring of the atmospheric structure. In particular, the linkage between the lower (0-100 km) and upper (100- 150 km) Mars atmospheres will be investigated. A suite of complementary measurements is planned that will probe the atmosphere over 0-150 km, including : (1) MGS Accelerometer density and inferred temperatures (100-150 km), (2) MGS Thermal Emission Spectrometer (TES) nadir (25-30 km) and limb (up to about 55 km) temperatures, (3) MGS Electron Reflectometer (ER) F1-peak heights (near 130 km), (4) ground-based microwave disk-averaged temperatures (0-70 km), and (5) Mars Pathfinder (MPF) surface meteorological data at 20 N latitude. These datasets acquired during the aerobraking phase will enable the current state of the atmosphere to be examined. Potential dust storm activity and its manifestations throughout the atmosphere can be monitored over Ls = 184 to 250. A corresponding library of coupled 3-D model simulations, based upon the NASA Ames Mars GCM and the NCAR Mars Thermospheric GCM (MTGCM), will be used to : (1) validate the current state of the Mars atmosphere, (2) investigate the various orbital, seasonal, LAT-LT-LON, and potential dust storm trends, and (3) predict the structure of the Mars atmosphere in the aerobraking corridor that is approaching in future MGS orbits. The in-situ accelerometer and ER data will eventually be used to construct a Mars empirical model covering 100-150 km. We will present a few selected GCM simulations to illustrate the expected atmospheric response to a dust storm event. In addition, we will discuss why these upper atmosphere datasets are important to future Mars missions.
Remote sensing of mesospheric winds with the High-Resolution Doppler Imager
NASA Technical Reports Server (NTRS)
Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.
1992-01-01
Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.
The structure of Venus' middle atmosphere and ionosphere.
Pätzold, M; Häusler, B; Bird, M K; Tellmann, S; Mattei, R; Asmar, S W; Dehant, V; Eidel, W; Imamura, T; Simpson, R A; Tyler, G L
2007-11-29
The atmosphere and ionosphere of Venus have been studied in the past by spacecraft with remote sensing or in situ techniques. These early missions, however, have left us with questions about, for example, the atmospheric structure in the transition region from the upper troposphere to the lower mesosphere (50-90 km) and the remarkably variable structure of the ionosphere. Observations become increasingly difficult within and below the global cloud deck (<50 km altitude), where strong absorption greatly limits the available investigative spectrum to a few infrared windows and the radio range. Here we report radio-sounding results from the first Venus Express Radio Science (VeRa) occultation season. We determine the fine structure in temperatures at upper cloud-deck altitudes, detect a distinct day-night temperature difference in the southern middle atmosphere, and track day-to-day changes in Venus' ionosphere.
Analysis and Hindcast Experiments of the 2009 Sudden Stratospheric Warming in WACCMX+DART
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Liu, H.-L.; Marsh, D. R.; Raeder, K.; Anderson, J. L.; Chau, J. L.; Goncharenko, L. P.; Siddiqui, T. A.
2018-04-01
The ability to perform data assimilation in the Whole Atmosphere Community Climate Model eXtended version (WACCMX) is implemented using the Data Assimilation Research Testbed (DART) ensemble adjustment Kalman filter. Results are presented demonstrating that WACCMX+DART analysis fields reproduce the middle and upper atmosphere variability during the 2009 major sudden stratospheric warming (SSW) event. Compared to specified dynamics WACCMX, which constrains the meteorology by nudging toward an external reanalysis, the large-scale dynamical variability of the stratosphere, mesosphere, and lower thermosphere is improved in WACCMX+DART. This leads to WACCMX+DART better representing the downward transport of chemical species from the mesosphere into the stratosphere following the SSW. WACCMX+DART also reproduces most aspects of the observed variability in ionosphere total electron content and equatorial vertical plasma drift during the SSW. Hindcast experiments initialized on 5, 10, 15, 20, and 25 January are used to assess the middle and upper atmosphere predictability in WACCMX+DART. A SSW, along with the associated middle and upper atmosphere variability, is initially predicted in the hindcast initialized on 15 January, which is ˜10 days prior to the warming. However, it is not until the hindcast initialized on 20 January that a major SSW is forecast to occur. The hindcast experiments reveal that dominant features of the total electron content can be forecasted ˜10-20 days in advance. This demonstrates that whole atmosphere models that properly account for variability in lower atmosphere forcing can potentially extend the ionosphere-thermosphere forecast range.
Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity
NASA Astrophysics Data System (ADS)
Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.
2018-03-01
Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.
NASA Technical Reports Server (NTRS)
Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.
2004-01-01
We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.
Radiative-hydrodynamic Modeling of the SL-9 Plume Infall
NASA Astrophysics Data System (ADS)
Deming, D.; Harrington, J.
1998-09-01
We are developing a model for the plume-infall phase of the SL-9/Jupiter collision. The modeling takes place in two steps. The first step is a ballistic Monte-Carlo simulation of the ejecta from the collision, based on a power-law distribution of ejecta velocities. Parameters from this simulation are adjusted to best reproduce the appearance of the ejecta plume above the jovian limb, and the debris patterns on the disk, as seen by HST. Results of those calculations are reported in a paper by Harrington and Deming (this meeting). In this paper we report results from the second step, wherein the ballistic Monte-Carlo plume simulations are coupled to the Zeus-3D hydrodynamic code. Zeus is used in a 2-D mode to follow both the radial and z-component motions of the infalling plume material, and model the resultant shock-heating of the ambient atmosphere. Zeus was modified to include radiative transport in the gray approximation. We discuss the results as concerns: 1) the temperatures and other physical conditions in the radiating upper atmospheric shocks, 2) the morphology of the light curve, including the nature of secondary maxima, and 3) the structure of the post-collision jovian atmosphere.
High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations
NASA Astrophysics Data System (ADS)
Linford, Joel
2010-10-01
Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.
Palmer, Paul I
2008-12-28
We have been observing the Earth's upper atmosphere from space for several decades, but only over the past decade has the necessary technology begun to match our desire to observe surface air pollutants and climate-relevant trace gases in the lower troposphere, where we live and breathe. A new generation of Earth-observing satellites, capable of probing the lower troposphere, are already orbiting hundreds of kilometres above the Earth's surface with several more ready for launch or in the planning stages. Consequently, this is one of the most exciting times for the Earth system scientists who study the countless current-day physical, chemical and biological interactions between the Earth's land, ocean and atmosphere. First, I briefly review the theory behind measuring the atmosphere from space, and how these data can be used to infer surface sources and sinks of trace gases. I then present some of the science highlights associated with these data and how they can be used to improve fundamental understanding of the Earth's climate system. I conclude the paper by discussing the future role of satellite measurements of tropospheric trace gases in mitigating surface air pollution and carbon trading.
Estimation of the global climate effect of brown carbon
NASA Astrophysics Data System (ADS)
Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.
2017-12-01
Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.
Poleward upgliding Siberian atmospheric rivers over sea ice heat up Arctic upper air.
Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro
2018-02-13
We carried out upper air measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold air domes overlying sea ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and sea ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.
Arctic Strato-Mesospheric Temperature and Wind Variations
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Goldberg, R. A.
2004-01-01
Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.
A brief description of the simple biosphere model (SiB)
NASA Technical Reports Server (NTRS)
Sellers, P. J.; Mintz, Y.; Sud, Y. C.
1986-01-01
A biosphere model for calculating the transfer of energy, mass, and momentum between the atmosphere and the vegetated surface of the Earth was designed for atmospheric general circulation models. An upper vegetation layer represents the perennial canopy of trees or shrubs, a lower layer represents the annual ground cover of grasses and other herbacious species. The local coverage of each vegetation layer may be fractional or complete but as the individual vegetation elements are considered to be evenly spaced, their root systems are assumed to extend uniformly throughout the entire grid-area. The biosphere has seven prognostic physical-state variables: two temperatures (one for the canopy and one for the ground cover and soil surface); two interception water stores (one for the canopy and one for the ground cover); and three soil moisture stores (two of which can be reached by the vegetation root systems and one underlying recharge layer into and out of which moisture is transferred only by hydraulic diffusion).
Coherent late-Holocene climate-driven shifts in the structure of three Rocky Mountain lakes
Stone, Jeffery R.; Saros, Jasmine E.; Pederson, Gregory T.
2016-01-01
Large-scale atmospheric pressure centers, such as the Aleutian and Icelandic Low, have a demonstrated relationship with physical lake characteristics in contemporary monitoring studies, but the responses to these phenomena are rarely observed in lake records. We observe coherent changes in the stratification patterns of three deep (>30 m) lakes inferred from fossil diatom assemblages as a response to shifts in the location and intensity of the Aleutian Low and compare these changes with similar long-term changes observed in the δ18O record from the Yukon. Specifically, these records indicate that between 3.2 and 1.4 ka, the Aleutian Low shifted westward, resulting in an increased frequency of storm tracks across the Pacific Northwest during winter and spring. This change in atmospheric circulation ultimately produced deeper mixing in the upper waters of these three lake systems. Enhanced stratification between 4.5 and 3.3 ka and from 1.3 ka to present suggests a strengthened Aleutian Low and more meridional circulation.
The Space Weather Modeling Framework (SWMF): Models and Validation
NASA Astrophysics Data System (ADS)
Gombosi, Tamas; Toth, Gabor; Sokolov, Igor; de Zeeuw, Darren; van der Holst, Bart; Ridley, Aaron; Manchester, Ward, IV
In the last decade our group at the Center for Space Environment Modeling (CSEM) has developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magneto-sphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. SWMF is a powerful tool for coupling regional models describing the space environment from the solar photosphere to the bottom of the ionosphere. Presently, SWMF contains over a dozen components: the solar corona (SC), eruptive event generator (EE), inner heliosphere (IE), outer heliosphere (OH), solar energetic particles (SE), global magnetosphere (GM), inner magnetosphere (IM), radiation belts (RB), plasmasphere (PS), ionospheric electrodynamics (IE), polar wind (PW), upper atmosphere (UA) and lower atmosphere (LA). This talk will present an overview of SWMF, new results obtained with improved physics as well as some validation studies.
Search for Primordial Black Holes with the Whipple Atmospheric Cerenkov Telescope
NASA Astrophysics Data System (ADS)
Linton, Eric
2005-04-01
Stephen Hawking's prediction that black holes should radiate like black bodies has several important consequences, including the possibility for the detection of small (˜10^15 g) black holes created in the very early universe. The detection of such primordial black holes (PBHs) would not only validate Hawking's theory, but would provide useful insights into the history of the early universe. A search through 5.5 years of archival data from the Whipple Atmospheric Cerenkov Telescope was made for TeV gamma-ray bursts on 1 s, 3 s, and 5 s timescales. Based on a null result, an upper-limit on the evaporation rate of PBHs of 2.69 x10^6 pc-3 yr^- 1 (99% CL) was made, assuming the Standard Model of particle physics. When combined with the results of an earlier search through Whipple data, this limit was lowered to 1.33 x10^6 pc-3 yr-1, which is nearly a factor of 2 better than the previous limit at this energy range.
Towards a complete caracterisation of Ganymede's environnement
NASA Astrophysics Data System (ADS)
Cessateur, Gaël; Barthélémy, Mathieu; Lilensten, Jean; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Mbemba Kabuiku, Lydie
2013-04-01
In the framework to the JUICE mission to the Jovian system, a complete picture of the interaction between Ganymede's atmosphere and external forcing is needed. This will definitely allow us to constrain instrument performances according to the mission objectives. The main source of information regarding the upper atmosphere is the non LTE UV-Visible-near IR emissions. Those emissions are both induce by the incident solar UV flux and particle precipitations. This work aims at characterizing the impact from those external forcing, and then at deriving some key physical parameters that are measurable by an orbiter, namely the oxygen red line at 630 nm or the resonant oxygen line at 130 nm for example. We will also present the 4S4J instrument, a proposed EUV radiometer, which will provides the solar local EUV flux, an invaluable parameter for the JUICE mission. Based on new technologies and a new design, only two passbands are considered for reconstructing the whole EUV spectrum.
Chromospheric Heating Driven by Cancellations of Internetwork Magnetic Flux
NASA Astrophysics Data System (ADS)
Gosic, M.; de la Cruz Rodriguez, J.; De Pontieu, B.; Bellot Rubio, L.; Esteban Pozuelo, S.; Ortiz-Carbonell, A. N.
2017-12-01
The heating of the solar chromosphere remains to be one of the most important questions in solar physics. It is believed that this phenomenon may significantly be supported by small-scale internetwork (IN) magnetic fields. Indeed, cancellations of IN magnetic flux can generate transient brightenings in the chromosphere and transition region. These bright structures might be the signature of energy release and plasma heating, probably driven by magnetic reconnection of IN field lines. Using high resolution, multiwavelength, coordinated observations recorded with the Interface Region Imaging Spectrograph (IRIS) and the Swedish 1-m Solar Telescope (SST), we analyzed cancellations of IN flux and their impact on the energetics and dynamics of the quiet Sun atmosphere. From their temporal and spatial evolution, we determine that these events can heat locally the upper atmospheric layers. However, employing multi-line inversions of the Mg II h & k lines, we show that cancellations, although occurring ubiquitously over IN regions, are not capable of sustaining the total radiative losses of the quiet Sun chromosphere.
Coulson, K L
1981-05-01
This is the second of two papers based on an extensive series of measurements of the intensity and polarization of light from the zenith sky during periods of twilight made at an altitude of 3400 m on the island of Hawaii. Part 1 dealt with the skylight polarization; part 2 is on the measured intensity and quantities derived from the intensity. The principal results are that (1) the polarization and intensity of light from the zenith during twilight are sensitive indicators of the existence of turbid layers in the stratosphere and upper troposphere, and (2) at least at Mauna Loa primary scattering of the sunlight incident on the upper atmosphere during twilight is strongly dominant over secondary or multiple scattering at wavelengths beyond ~0.60microm, whereas this is much less true at shorter wavelengths. It is suggested that the development and general use of a simple twilight polarimeter would greatly facilitate determinations of turbidity in the upper layers of the atmosphere.
Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics
NASA Technical Reports Server (NTRS)
Huntress, W. T., Jr.
1978-01-01
A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.
NASA Technical Reports Server (NTRS)
Ioup, George E.; Ioup, Juliette W.
1991-01-01
The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.
An analysis of Solar Mesospheric Explorer temperatures for the upper stratosphere and mesosphere
NASA Technical Reports Server (NTRS)
Clancy, R. Todd; Rusch, David W.
1993-01-01
We proposed to analyze Solar Mesosphere Explorer (SME) limb profiles of Rayleigh scattered solar flux at wavelengths of 304, 313, and 443 nm to retrieve atmospheric temperature profiles over the 40-65 km altitude region. These temperatures can be combined with the previous analysis of SME 296 nm limb radiances to construct a monthly average climatology of atmospheric temperatures over the 40-90 km, upper stratosphere-mesosphere region, with approximately 4 km vertical resolution. We proposed to investigate the detailed nature of the global temperature structure of this poorly measured region, based on these 1982-1986 SME temperatures. The average vertical structure of temperatures between the stratopause and mesopause has never been determined globally with vertical resolution sufficient to retrieve even scale-height structures. Hence, the SME temperatures provided a unique opportunity to study the detailed thermal structure of the mesosphere, in advance of Upper Atmosphere Research Satellite (UARS) measurements and the Thermosphere Ionosphere Mesosphere Energy and Dynamics (TIMED) mission.
Non-thermal hydrogen atoms in the terrestrial upper thermosphere.
Qin, Jianqi; Waldrop, Lara
2016-12-06
Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.
Non-thermal hydrogen atoms in the terrestrial upper thermosphere
Qin, Jianqi; Waldrop, Lara
2016-01-01
Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere. PMID:27922018
Dynamics of Venus Upper Atmosphere from Infrared Heterodyne Spectroscopy of CO2
NASA Astrophysics Data System (ADS)
Sornig, Manuela; Sonnabend, G.; Kroetz, P. J.; Stupar, D.; Schieder, R. T.; Sandor, B.; Clancy, T.
2009-09-01
Wind velocities in the upper atmosphere of Venus can be determined from Doppler-shifts of narrow non-LTE emission lines of CO2 at 10 µm with an precision of up to 10 m/s using infrared heterodyne spectroscopy. Such observations address a narrow altitude region in the upper atmosphere of Venus around 110 km. At the University of Cologne we developed a Tunable Infrared Heterodyne Spectrometer (THIS) capable of accomplishing such ground-based measurements of planetary atmospheres. Beside high spectral resolution (R>107) this method also guarantees high spatial resolution on the planet (FOV of 1.7 arcsec on an apparent diameter of Venus of 20 arcsec using the McMath-Pierce-Solar Telescope on Kitt Peak). Over the last two years we observed wind velocities with THIS at several characteristic orbital positions of Venus. In May and November 2007 Venus was at its maximum eastern and western elongation, respectively. This specific observing geometry with an illumination of about 50% of the apparent planetary disk allows us to detect dominantly the superrotation component in Venus upper atmosphere. So far results indicate surprisingly low wind velocities of a few tens of m/s with almost no wind at the equator and highest values at mid latitudes. Observations close to inferior conjunction have been accomplished in March and April 2009. This observing geometry gives wind velocities consisting of a combination of the superrotation and the SS-AS flow close to the terminator. Data analysis is still ongoing but first analysis indicate a higher wind velocity than found in the results from maximum elongation. We are going to present data and results from these runs as well as results from a first coordinated observation between our infrared group and JCMT sub-mm observations in March 2009.
Rarefied gas dynamic simulation of transfer and escape in the Pluto-Charon system
NASA Astrophysics Data System (ADS)
Hoey, William A.; Yeoh, Seng Keat; Trafton, Laurence M.; Goldstein, David B.; Varghese, Philip L.
2017-05-01
We apply the direct simulation Monte Carlo rarefied gas dynamic technique to simulations of Pluto's rarefied upper atmosphere motivated by the need to better understand New Horizons (NH) data. We present a novel three-dimensional DSMC model of the atmosphere that spans from several hundred km below the exobase - where continuum flow transitions to the rarefied regime - to fully free-molecular flow hundreds of thousands of km from Pluto's center. We find molecular collisions in Pluto's upper atmosphere to be significant in shaping the flowfield, both by promoting flux from the plutonian exobase to Charon and by increasing the proportion of that flux generated on the exobase's anti-Charon hemisphere. Our model accounts for the gravitational fields of both Pluto and Charon, the centripetal and Coriolis forces due to the rotation of Pluto in our reference frame, and the presence of Charon as a temporary sink for impacting particles. Using this model, we analyze the escape processes of N2 and CH4 from Pluto across different solar heating conditions, and evaluate the three-dimensional structure of the upper plutonian atmosphere, including gas transfer to and deposition on Charon. We find results consistent with the NH-determined escape rate, upper atmospheric temperature, and lack of a detectable Charon atmosphere. Gas-transfer structures are noted in a binary atmospheric configuration, including preferential deposition of material from Pluto's escaping atmosphere onto Charon's leading hemisphere that peaks at 315° E on the equator. As the moon gravitationally focuses incident flow, a high density structure forms in its wake. If molecules are permitted to escape from Charon in diffuse reflections from its surface, a returning flux forms to Pluto's exobase, preferentially directed toward its trailing hemisphere. Charon is capable of supporting a thin atmosphere at column densities as high as 1.5 × 1017 m-2 in simulations with a plutonian exobase condition similar to the NH encounter. Results computed from a fit to the NH encounter exobase (Gladstone et al., 2016) predict a system escape rate of 7 × 1025 CH4 s-1 in close agreement with those reported by NH (Bagenal et al., 2016; Gladstone et al., 2016), and a net depositional flux to Charon of 2 × 1024 s-1, of which ∼98% is methane.
Characterizing the UV environment of GJ1214b
NASA Astrophysics Data System (ADS)
Desert, Jean-Michel
2010-09-01
The recent detection of a super-Earth transiting a nearby low-mass star GJ1214 {Charbonneau et al., 2009} has opened the door to testing the predictions of low mass planet atmosphere theories. Theoretical models predict that low mass planets are likely to exist with atmospheres that can vary widely in their composition and structure. Some super-Earths may be able to retain massive hydrogen-rich atmospheres. Others might never accumulate hydrogen or experience significant escape of lightweight elements, resulting in atmospheres more like those of the terrestrial planets in our Solar System. Planets which orbit close to their parent stars, such as close-in hot-Jupiters and super-Earths, are exposed to strong XEUV flux that influence their atmospheres and may trigger atmospheric escape processes. This phenomenon, which shapes planetary atmospheres, determines the evolution of the planet. This can also dramatically enhance the detectability of a heavily irradiated hydrogen atmosphere when the planet transits in front of its parent star. We propose to use HST/STIS/G140M to determine the intensity and variability of the Lyman-alpha chromospheric emission line and provide observational constraints to super-Earth atmospheric models. We propose to coordinate this measurement with a planetary transit in order to detect large upper atmospheric signatures if present. This short measurement also enables us to determine whether a larger program dedicated to upper atmospheric study is feasible for a following cycle.
NASA Technical Reports Server (NTRS)
Deepak, A.; Becher, J.
1979-01-01
Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.
Charged dust phenomena in the near-Earth space environment.
Scales, W A; Mahmoudian, A
2016-10-01
Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.
Peculiarities of Ionospheric Response to Solar Eruptive Events
NASA Astrophysics Data System (ADS)
Cadez, V. M.; Nina, A.
2013-05-01
Solar eruptive events such as flares and coronal mass ejections (CMEs) affect the terrestrial upper atmosphere, the magnetosphere and ionosphere in particular, through sudden impacts of additional X-ray radiation and by increased intensity of the solar wind. As a consequence, a variety perturbation features occur locally as well as globally in the plasma medium in space around the Earth. We study some of such transient phenomena taking place at low altitudes of the ionosphere (below 90 km) by monitoring and analyzing registered amplitude and phase time variations of VLF radio waves with given frequencies. The main object of this research is gaining an additional insight into the structure and physical properties of the lower ionosphere.
NASA/MSFC FY-80 Atmospheric Processes Research Review
NASA Technical Reports Server (NTRS)
Turner, R. E. (Compiler)
1980-01-01
Three general areas of research were discussed: Global Weather, Upper Atmosphere, and Severe Storms and Local Weather. Research project summaries, in narrative outline form, stating objectives, significant accomplishments, and recommendations for future research are presented.
NASA/MSFC FY-81 Atmospheric Processes Research Review
NASA Technical Reports Server (NTRS)
Turner, R. E. (Compiler)
1981-01-01
Progress in ongoing research programs and future plans for satellite investigations into global weather, upper atmospheric phenomena, and severe storms and local weather are summarized. Principle investigators and publications since June 1980 are listed.
Deceleration of Mars Science Laboratory in Martian Atmosphere, Artist Concept
2011-10-03
This artist concept depicts the interaction of NASA Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing of the Curiosity rover onto the Martian surface.
Modeling of Jovian Auroral Polar Ion and Proton Precipitation
NASA Astrophysics Data System (ADS)
Houston, S. J.; Ozak, N. O.; Cravens, T.; Schultz, D. R.; Mauk, B.; Haggerty, D. K.; Young, J. T.
2017-12-01
Auroral particle precipitation dominates the chemical and physical environment of the upper atmospheres and ionospheres of the outer planets. Precipitation of energetic electrons from the middle magnetosphere is responsible for the main auroral oval at Jupiter, but energetic electron, proton, and ion precipitation take place in the polar caps. At least some of the ion precipitation is associated with soft X-ray emission with about 1 GW of power. Theoretical modeling has demonstrated that the incident sulfur and oxygen ion energies must exceed about 0.5 MeV/nucleon (u) in order to produce the measured X-ray emission. In this work we present a model of the transport of magnetospheric oxygen ions as they precipitate into Jupiter's polar atmosphere. We have revised and updated the hybrid Monte Carlo model originally developed by Ozak et al., 2010 to model the Jovian X-ray aurora. We now simulate a wider range of incident oxygen ion energies (10 keV/u - 5 MeV/u) and update the collision cross-sections to model the ionization of the atmospheric neutrals. The polar cap location of the emission and magnetosphere-ionosphere coupling both indicate the associated field-aligned currents must originate near the magnetopause or perhaps the distant tail. Secondary electrons produced in the upper atmosphere by ion precipitation could be accelerated upward to relativistic energies due to the same field-aligned potentials responsible for the downward ion acceleration. To further explore this, we simulate the effect of the secondary electrons generated from the heavy ion precipitation. We use a two-stream transport model that computes the secondary electron fluxes, their escape from the atmosphere, and characterization of the H2 Lyman-Werner band emission, including a predicted observable spectrum with the associated color ratio. Our model predicts that escaping electrons have an energy range from 1 eV to 6 keV, H2 band emission rates produced are on the order of 75 kR for an input of 10 mW/m2 of 2 MeV/u oxygen ions, and a color ratio of 10 is expected for this case. Moreover, recent Juno data indicates the presence of both upward and downward relativistic energy beams over the polar cap, hence we perform some preliminary calculations of the effect of proton precipitation into the polar atmosphere and its contributions to the aurora dynamics.
The statistical properties of vortex flows in the solar atmosphere
NASA Astrophysics Data System (ADS)
Wedemeyer, Sven; Kato, Yoshiaki; Steiner, Oskar
2015-08-01
Rotating magnetic field structures associated with vortex flows on the Sun, also known as “magnetic tornadoes”, may serve as waveguides for MHD waves and transport mass and energy upwards through the atmosphere. Magnetic tornadoes may therefore potentially contribute to the heating of the upper atmospheric layers in quiet Sun regions.Magnetic tornadoes are observed over a large range of spatial and temporal scales in different layers in quiet Sun regions. However, their statistical properties such as size, lifetime, and rotation speed are not well understood yet because observations of these small-scale events are technically challenging and limited by the spatial and temporal resolution of current instruments. Better statistics based on a combination of high-resolution observations and state-of-the-art numerical simulations is the key to a reliable estimate of the energy input in the lower layers and of the energy deposition in the upper layers. For this purpose, we have developed a fast and reliable tool for the determination and visualization of the flow field in (observed) image sequences. This technique, which combines local correlation tracking (LCT) and line integral convolution (LIC), facilitates the detection and study of dynamic events on small scales, such as propagating waves. Here, we present statistical properties of vortex flows in different layers of the solar atmosphere and try to give realistic estimates of the energy flux which is potentially available for heating of the upper solar atmosphere
TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.
2015-12-01
Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations,more » and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.« less
BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data
NASA Technical Reports Server (NTRS)
Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Long-period humidity variability in the Arctic atmosphere from upper-air observations
NASA Astrophysics Data System (ADS)
Agurenko, A.; Khokhlova, A.
2014-12-01
Under climate change, atmospheric water content also tends to change. This gives rise to changes in the amount of moisture transferred, clouds and precipitation, as well as in hydrological regime. This work analyzes seasonal climatic characteristics of precipitated water in the Arctic atmosphere, by using 1972-2011 data from 55 upper-air stations located north of 60°N. Regions of maximum and minimum mean values and variability trends are determined. In the summer, water amount is shown to increase in nearly the whole of the latitudinal zone. The comparison with the similar characteristics of reanalysis obtained by the other authors shows a good agreement. Time variation in the atmosphere moisture transport crossing 70°N, which is calculated from observation data, is presented and compared with model results. The work is supported by the joint EC ERA.Net RUS and Russian Fundamental Research Fund Project "Arctic Climate Processes Linked Through the Circulation of the Atmosphere" (ACPCA) (project 12-05-91656-ЭРА_а).
Data Needs and Modeling of the Upper Atmosphere
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.
2007-04-01
We present results from our enhanced statistical equilibrium and time-step codes for atmospheric modeling. In particular we use these results to illustrate the role of electron-driven processes in atmospheric phenomena and the sensitivity of the model results to data inputs such as integral cross sections, dissociative recombination rates and chemical reaction rates.
NASA/MSFC FY-83 Atmospheric Processes Research Review
NASA Technical Reports Server (NTRS)
Turner, R. E. (Compiler)
1983-01-01
The atmospheric processes research program was reviewed. Research tasks sponsored by the NASA Office of Space Science and Applications, Earth Sciences and Applications Division in the areas of upper atmosphere, global weather, and mesoscale processes are discussed. The are: the research project summaries, together with the agenda and other information about the meeting.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1975-01-01
Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.
STOCHASTIC TRANSIENTS AS A SOURCE OF QUASI-PERIODIC PROCESSES IN THE SOLAR ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ding; Walsh, Robert W.; Su, Jiangtao
2016-06-01
Solar dynamics and turbulence occur at all heights of the solar atmosphere and could be described as stochastic processes. We propose that finite-lifetime transients recurring at a certain place could trigger quasi-periodic processes in the associated structures. In this study, we developed a mathematical model for finite-lifetime and randomly occurring transients, and found that quasi-periodic processes with periods longer than the timescale of the transients, are detectable intrinsically in the form of trains. We simulate their propagation in an empirical solar atmospheric model with chromosphere, transition region, and corona. We found that, due to the filtering effect of the chromosphericmore » cavity, only the resonance period of the acoustic resonator is able to propagate to the upper atmosphere; such a scenario is applicable to slow magnetoacoustic waves in sunspots and active regions. If the thermal structure of the atmosphere is less wild and acoustic resonance does not take place, the long-period oscillations could propagate to the upper atmosphere. Such a case would be more likely to occur in polar plumes.« less
Carlsen, Hanne Krage; Gislason, Thorarinn; Benediktsdottir, Bryndis; Kolbeinsson, Thorir Bjorn; Hauksdottir, Arna; Thorsteinsson, Throstur
2012-01-01
Objective To estimate physical and mental health effects of the Eyjafjallajökull volcanic eruption on nearby residents. Design Cross-sectional study. Setting The Icelandic volcano Eyjafjallajökull erupted on 14 April 2010. The eruption lasted for about 6 weeks and was explosive, ejecting some 8 million tons of fine particles into the atmosphere. Due to prevailing winds, the ash spread mostly to the south and south-east, first over the rural region to the south, later over the Atlantic Ocean and Europe, closing European air space for several days. Participants Residents (n=207) of the most ash-exposed rural area south and east of the volcano. Methods The study period was from 31 May to 11 June 2010. Participants were examined by a physician. To ascertain respiratory health, standardised spirometry was performed before and after the use of a bronchodilator. All adult participants answered questionnaires about mental and physical health, their children's health and the use of protective equipment. Results Every other adult participant reported irritation in eyes and upper airway when exposed to volcanic ash. Adults (n=26) and children (n=5) with pre-existing asthma frequently reported worsening of their symptoms. No serious health problems requiring hospitalisation could be attributed to the eruption. The majority of the participants reported no abnormal physical or mental symptoms to the examining physician. Compared to an age- and gender-matched reference group, the ash-exposed participants reported lower smoking rates and were less likely to have ventilation impairment. Less than 10% of the participants reported symptoms of stress, anxiety or depression. Conclusions Short-term ash exposure was associated with upper airway irritation symptoms and exacerbation of pre-existing asthma but did not contribute to serious health problems. The exposure did not impair respiratory function compared to controls. Outdoor use of protective glasses and face masks was considered protective against irritation in eyes and upper airway. PMID:22403340
O-star parameters from line profiles of wind-blanketed model atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voels, S.A.
1989-01-01
The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less
Emirates eXploration Imager (EXI) Overview from the Emirates Mars Mission
NASA Astrophysics Data System (ADS)
AlShamsi, Maryam; Wolff, Michael; Khoory, Mohammad; AlMheiri, Suhail; Jones, Andrew; Drake, Ginger; Osterloo, Mikki; Reed, Heather
2017-04-01
The Emirates eXploration Imager (EXI) instrument is one of three scientific instruments abroad the Emirate Mars Mission (EMM) spacecraft, "Hope". The planned launch window opens in the summer of 2020, with the goal of this United Arab Emirates (UAE) mission to explore the dynamics of the Martian atmosphere through global spatial sampling which includes both diurnal and seasonal timescales. A particular focus of the mission is the improvement of our understanding of the global circulation in the lower atmosphere and the connections to the upward transport of energy of the escaping atmospheric particles from the upper atmosphere. This will be accomplished using three unique and complementary scientific instruments. The subject of this presentation, EXI, is a multi-band camera capable of taking 12 megapixel images, which translates to a spatial resolution of better than 8 km with a well calibrated radiometric performance. EXI uses a selector wheel mechanism consisting of 6 discrete bandpass filters to sample the optical spectral region: 3 UV bands and 3 visible (RGB) bands. Atmospheric characterization will involve the retrieval of the ice optical depth using the 300-340 nm band, the dust optical depth in the 205-235nm range, and the column abundance of ozone with a band covering 245-275 nm. Radiometric fidelity is optimized while simplifying the optical design by separating the UV and VIS optical paths. The instrument is being developed jointly by the Laboratory for Atmospheric and Space Physics (LASP), University of California, Boulder, USA, and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE.
Why CO2 cools the middle atmosphere - a consolidating model perspective
NASA Astrophysics Data System (ADS)
Goessling, Helge F.; Bathiany, Sebastian
2016-08-01
Complex models of the atmosphere show that increased carbon dioxide (CO2) concentrations, while warming the surface and troposphere, lead to lower temperatures in the stratosphere and mesosphere. This cooling, which is often referred to as "stratospheric cooling", is evident also in observations and considered to be one of the fingerprints of anthropogenic global warming. Although the responsible mechanisms have been identified, they have mostly been discussed heuristically, incompletely, or in combination with other effects such as ozone depletion, leaving the subject prone to misconceptions. Here we use a one-dimensional window-grey radiation model of the atmosphere to illustrate the physical essence of the mechanisms by which CO2 cools the stratosphere and mesosphere: (i) the blocking effect, associated with a cooling due to the fact that CO2 absorbs radiation at wavelengths where the atmosphere is already relatively opaque, and (ii) the indirect solar effect, associated with a cooling in places where an additional (solar) heating term is present (which on Earth is particularly the case in the upper parts of the ozone layer). By contrast, in the grey model without solar heating within the atmosphere, the cooling aloft is only a transient blocking phenomenon that is completely compensated as the surface attains its warmer equilibrium. Moreover, we quantify the relative contribution of these effects by simulating the response to an abrupt increase in CO2 (and chlorofluorocarbon) concentrations with an atmospheric general circulation model. We find that the two permanent effects contribute roughly equally to the CO2-induced cooling, with the indirect solar effect dominating around the stratopause and the blocking effect dominating otherwise.
NASA Astrophysics Data System (ADS)
Bieser, Johannes; Slemr, Franz; Ambrose, Jesse; Brenninkmeijer, Carl; Brooks, Steve; Dastoor, Ashu; DeSimone, Francesco; Ebinghaus, Ralf; Gencarelli, Christian N.; Geyer, Beate; Gratz, Lynne E.; Hedgecock, Ian M.; Jaffe, Daniel; Kelley, Paul; Lin, Che-Jen; Jaegle, Lyatt; Matthias, Volker; Ryjkov, Andrei; Selin, Noelle E.; Song, Shaojie; Travnikov, Oleg; Weigelt, Andreas; Luke, Winston; Ren, Xinrong; Zahn, Andreas; Yang, Xin; Zhu, Yun; Pirrone, Nicola
2017-06-01
Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.
NASA Astrophysics Data System (ADS)
Wieters, Nadine; Sinnhuber, Miriam; Winkler, Holger; Berger, Uwe; Maik Wissing, Jan; Stiller, Gabriele; Funke, Bernd; Notholt, Justus
Solar eruptions and geomagnetic storms can produce fluxes of high-energy protons and elec-trons, so-called Solar Energetic Particle Events, which can enter the Earth's atmosphere espe-cially in polar regions. These particle fluxes primarily cause ionisation and excitation in the upper atmosphere, and thereby the production of HOx and NOx species, which are catalysts for the reduction of ozone. To simulate such particle events, ionisation rates, calculated by the Atmospheric Ionization Module Osnabrück AIMOS (University of Osnabrück), have been implemented into the Bremen 3D Chemistry and Transport Model. To cover altitudes up to the mesopause, the model is driven by meteorological data, provided by the Leibniz-Institute Middle Atmosphere Model LIMA (IAP Kühlungsborn). For several electron and proton events during the highly solar-active period 2003/2004, model calculations have been carried out. To investigate the accordance of modeled to observed changes for atmospheric constituents like NO, NO2 , HNO3 , N2 O5 , ClO, and O3 , results of these calculations will be compared to measurements by the Michelson Interferometer for Passive Atmospheric Sounding MIPAS (ENVISAT) instrument. Computed model results and comparisons with measurements will be presented.
Pluto’s Atmosphere from the 23 June 2011 Stellar Occultation: Airborne and Ground Observations
NASA Astrophysics Data System (ADS)
Person, Michael J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Dunham, E. W.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Armhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedermann, M.; Roesser, H.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. L.; Miceli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J.; Rapoport, S.; Ritchie, I.
2012-10-01
The double stellar occultation by Pluto and Charon of 2011 June 23 was observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 resulted in the best occultation chords recorded for the event, in three optical wavelength bands. The data obtained from SOFIA were combined with chords obtained from the ground at the IRTF (including a full spectral light curve), the USNO--Flagstaff Station, and Leeward Community College to give a detailed profile of Pluto’s atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee, or kink in the light curves separating them as was observed in 1988 (Millis et al. 1993), rather than the smoothly transitioning bowl-shaped light curves of recent years (Elliot et al. 2007). We analyze the upper atmosphere by fitting a model to all of the light curves obtained, resulting in a half-light radius of 1288 ± 1 km. We analyze the lower atmosphere with two different methods to provide results under the separate assumptions of particulate haze and a strong thermal gradient. Results indicate that the lower atmosphere evolves on short seasonal timescales, changing between 1988 and 2006, and then returning to approximately the 1988 state in 2011, though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again excepting the overall pressure changes. No evidence of the onset of atmospheric collapse predicted by frost migration models is yet seen, and the atmosphere appears to be remaining at a stable pressure level. This work was supported in part by NASA Planetary Astronomy grants to MIT (NNX10AB27G) and Williams College (NNX08AO50G, NNH11ZDA001N), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory.
Electrodynamics on extrasolar giant planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koskinen, T. T.; Yelle, R. V.; Lavvas, P.
2014-11-20
Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of Hmore » and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be used to constrain electrodynamics in the future.« less
Oxidation and evaporation of sulfur species at atmospheric entry of iron sulfide fine particles
NASA Astrophysics Data System (ADS)
Isobe, H.; Murozono, K.
2017-12-01
Micrometeorites have the most abundant flux in current accumulation of planetary materials to the Earth. Micrometeorites are heated and reacted with upper atmosphere at atmospheric entry. Evaporation of meteoritic materials, especially sulfur species, may have environmental effect at upper atmosphere (e.g. Court and Sephton, 2011; Tomkins et al., 2016). Troilite is typical FeS phase in chondritic meteorites. In this study, quick heating and cooling experiments of FeS reagent particles were carried out with a fine particles free falling apparatus with controlled gas flow (Isobe and Gondo, 2013). Starting material reagent is inhomogeneous mixture of troilite, iron oxide and iron metal. Oxygen fugacity was controlled to FMQ +1.5 log unit. Maximum temperature of the particles was higher than 1400°C for approximately 0.5 seconds. Run products with rounded shape and smooth surface show the particles were completely melted. Chemical compositions of particles analyzed on cross sections are generally well homogenized from inhomogeneous starting materials by complete melting. Molar ratios of Fe in melted regions are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Distribution of compositions of melted regions in Fe-S-O system is plotted in liquidus compositions of FeO and FeS saturated melt. Troilite in micrometeorite is melted and oxidized by atmospheric entry. Compositions of FeS melt in fine spherules are following Fe-S-O phase relations even in a few seconds. Molar ratios of Fe in melt are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Evaporation of sulfur from meteoritic materials in atmospheric entry heating may depend on oxygen fugacity of the upper atmosphere. Sulfur supply from meteoritic materials to atmosphere may be limited on planets with oxygen-free atmosphere.
Venus Atmospheric Maneuverable Platform (VAMP) - A Low Cost Venus Exploration Concept
NASA Astrophysics Data System (ADS)
Lee, G.; Polidan, R. S.; Ross, F.
2015-12-01
The Northrop Grumman Aerospace Systems and L-Garde team has been developing an innovative mission concept: a long-lived, maneuverable platform to explore the Venus upper atmosphere. This capability is an implementation of our Lifting Entry Atmospheric Flight (LEAF) system concept, and the Venus implementation is called the Venus Atmospheric Maneuverable Platform (VAMP). The VAMP concept utilizes an ultra-low ballistic coefficient (< 50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters without an aeroshell, and provides a long-lived (months to a year) maneuverable vehicle capable of carrying science instruments to explore the Venus upper atmosphere. In this presentation we provide an update on the air vehicle design and a low cost pathfinder mission concept that can be implemented in the near-term. The presentation also provides an overview of our plans for future trade studies, analyses, and prototyping to advance and refine the concept. We will discuss the air vehicle's entry concepts of operations (CONOPs) and atmospheric science operations. We will present a strawman concept of a VAMP pathfinder, including ballistic coefficient, planform area, percent buoyancy, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, and instruments accommodation. In this context, we will discuss the following key factors impacting the design and performance of VAMP: Entry into the Venus atmosphere, including descent profile, heating rate, total heat load, stagnation, and acreage temperatures Impact of maximum altitude on air vehicle design and entry heating Candidate thermal protection system (TPS) requirements We will discuss the interdependencies of the above factors and the manner in which the VAMP pathfinder concept's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support Venus science goals. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.
Modeling Planetary Atmospheric Energy Deposition By Energetic Ions
NASA Astrophysics Data System (ADS)
Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu
2016-07-01
The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which will be discussed in this presentation.
Preliminary Results on Mars and the Siding Spring Meteor Shower from MAVEN's Imaging UV Spectrograph
NASA Astrophysics Data System (ADS)
Schneider, Nicholas
2015-04-01
The MAVEN mission to Mars is designed to study the upper atmosphere and its response to external drivers, searching for clues to the cause of long-term atmospheric loss. MAVEN carries the Imaging UV Spectrograph (IUVS) for remote sensing studies of the atmosphere through vertical scans from the limb through the corona, UV imaging of the planet and stellar occultations. Each observational mode has successfully observed the spectral features and spatial distributions as intended, confirming and expanding our understanding of the Mars upper atmosphere as observed by the Mariner spacecraft and Mars Express. Furthermore, IUVS witnessed the aftermath of an intense meteor shower on Mars caused by Comet Siding Spring. For a period of many hours, the planet's UV spectrum was dominated by emission from ionized magnesium deposited by meteor ablation in the upper atmosphere. Initial results from the originally-planned Mars observations include: • Significant persistent structures in the thermospheric day glow emissions, dependent primarily on solar zenith angle, along with significant variability on daily timescales; • Nitric oxide nightglow and low-level auroral emissions of substantially greater nightside extent than previously seen; • Confirmation of N2 emission in the VK band, as first reported by MEX/SPICAM; • The first vertical profiles of the D/H ratio in the atmosphere and their evolution with Mars season; • The most complete maps and vertical profiles of H, C and O in the Mars corona; • The first global snapshot of the middle atmosphere obtained by a day-long stellar occultation campaign; • Global ozone maps spanning several months of seasonal evolution. Other results from the missions's preliminary phases will be included.
NASA Astrophysics Data System (ADS)
Snow, B.; Fedun, V.; Gent, F. A.; Verth, G.; Erdélyi, R.
2018-04-01
Vortex motions are frequently observed on the solar photosphere. These motions may play a key role in the transport of energy and momentum from the lower atmosphere into the upper solar atmosphere, contributing to coronal heating. The lower solar atmosphere also consists of complex networks of flux tubes that expand and merge throughout the chromosphere and upper atmosphere. We perform numerical simulations to investigate the behavior of vortex-driven waves propagating in a pair of such flux tubes in a non-force-free equilibrium with a realistically modeled solar atmosphere. The two flux tubes are independently perturbed at their footpoints by counter-rotating vortex motions. When the flux tubes merge, the vortex motions interact both linearly and nonlinearly. The linear interactions generate many small-scale transient magnetic substructures due to the magnetic stress imposed by the vortex motions. Thus, an initially monolithic tube is separated into a complex multithreaded tube due to the photospheric vortex motions. The wave interactions also drive a superposition that increases in amplitude until it exceeds the local Mach number and produces shocks that propagate upward with speeds of approximately 50 km s‑1. The shocks act as conduits transporting momentum and energy upward, and heating the local plasma by more than an order of magnitude, with a peak temperature of approximately 60,000 K. Therefore, we present a new mechanism for the generation of magnetic waveguides from the lower solar atmosphere to the solar corona. This wave guide appears as the result of interacting perturbations in neighboring flux tubes. Thus, the interactions of photospheric vortex motions is a potentially significant mechanism for energy transfer from the lower to upper solar atmosphere.
Structure of the middle atmosphere of Venus
NASA Astrophysics Data System (ADS)
Zasova, Ludmila
Middle atmosphere of Venus (55-100 km), its mesosphere, is the important layer of atmosphere, where 70 % of the solar energy is absorbed. Most of this absorption takes place in the upper clouds in the altitude range 58-68 km in the spectral range 0.32-0.5 µm. It leads to generation of the thermal tides, playing important role in support of the superrotation. In the frame of COSPAR model VIRA (ASR, 11,1985) the model of the thermal structure of the middle atmosphere was constructed for 5 latitude ranges, based mainly on the Pioneer Venus ORO and OIR data. Using Venera-15 Fourier Spectrometry data, which allow to retrieve the temperature and aerosol profiles in a self consistent way from each spectrum, we enable to update the model of the middle atmosphere, including the local time variation of the temperature for VIRA latitude ranges (Cosmic Research, 44, 4, 2006). From Venera-15 data it was shown that variation of temperature in the middle atmosphere is well described by thermal tides with harmonics 1, 1/2, 1/3, 1/4 Venusian day, the amplitudes and phases of which depend on latitude and altitude. The model of the upper clouds (VIRA) may also be updated using Venera-15 data. It was shown that the main latitude trend is the decreasing of the upper cloud boundary from 68 km at low latitudes to 60-62 km at high latitudes. Local time variation has a solar related dependence: 1 and 1/2 day components were revealed. Venus Express continues to obtain a lot of data, which may be used for the improvement of the model of the middle atmosphere and the clouds.
STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasting, James F.; Kopparapu, Ravi K.; Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu
A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheresmore » are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.« less
The Escaping Upper Atmospheres of Hot Jupiters
NASA Astrophysics Data System (ADS)
Davidson, Eric; Jones, Gabrielle; Uribe, Ana; Carson, Joseph
2017-01-01
Hot Jupiters are massive gaseous planets which orbit closely to their parent star. The strong stellar irradiation at these small orbital separations causes the temperature of the upper atmosphere of the planet to rise. This can cause the planet's atmosphere to escape into space, creating an exoplanet outflow. We ascertained which factors determine the presence and structure of these outflows by creating one dimensional simulations of the density, pressure, velocity, optical depth, and neutral fraction of hot Jupiter atmospheres. This was done for planets of masses and radii ranging from 0.5-1.5 Mj and 0.5-1.5 Rj. We found the outflow rate to be highest for a planet of 0.5 Mj and 1.5 Rj at 5.3×10-14 Mj/Yr. We also found that the higher the escape velocity, the lower the chance of the planet having an outflow.
Atmospheric products from the Upper Atmosphere Research Satellite (UARS)
NASA Technical Reports Server (NTRS)
Ahmad, Suraiya P.; Johnson, James E.; Jackman, Charles H.
2003-01-01
This paper provides information on the products available at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) from the Upper Atmosphere Research Satellite (UARS) mission. The GES DAAC provides measurements from the primary UARS mission, which extended from launch in September 1991 through September 2001. The ten instruments aboard UARS provide measurements of atmospheric trace gas species, dynamical variables, solar irradiance input, and particle energy flux. All standard Level 3 UARS products from all ten instruments are offered free to the public and science user community. The Level 3 data are geophysical parameters, which have been transformed into a common format and equally spaced along the measurement trajectory. The UARS data have been reprocessed several times over the years following improvements to the processing algorithms. The UARS data offered from the GES DAAC are the latest versions of each instrument. The UARS data may be accessed through the GES DAAC website at
Variation in the terrestrial isotopic composition and atomic weight of argon
Böhlke, John Karl
2014-01-01
The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.
Physical properties of meteoroids based on middle and upper atmosphere radar measurements
NASA Astrophysics Data System (ADS)
Gritsevich, M.; Kero, J.; Virtanen, J.; Szasz, C.; Nakamura, T.; Peltoniemi, J.; Koschny, D.
2014-07-01
We present a novel approach to reliably interpret the meteor head-echo scattering measurements detected by the 46.5 MHz MU radar system near Shigaraki, Japan. A meteor head echo is caused by radio waves scattered from the dense region of plasma surrounding and co-moving with a meteoroid during atmospheric flight. The signal Doppler shift and/or range rate of the target can therefore be used to determine meteoroid velocity. The data reduction steps include determining the exact trajectory of the meteoroids entering the observation volume of the antenna beam and calculating meteoroid mass and velocity as a function of time. The model is built using physically-based parametrization. The considered observation volume is narrow, elongated in the vertical direction, and its area of greatest sensitivity covers a circular area of about 10 km diameter at an altitude of 100 km above the radar. Over 100,000 meteor head echoes have been detected over past years of observations. Most of the events are faint with no alternative to be detected visually or with intensified video (ICCD) cameras. In this study we are focusing on objects which have entered the atmosphere with almost vertical trajectories, to ensure the observed segment of the trajectory to be as complete as possible, without loss of its beginning or end part due to beam-pattern-related loss of signal power. The analysis output parameters are range, altitude, radial velocity, meteoroid velocity, instantaneous target position, Radar Cross Section (RCS), meteor radiant, meteoroid ballistic and ablation coefficients, mass loss parameter and meteoroid mass, with possibility to derive other parameters.
Physical Properties of Meteoroids based on Middle and Upper Atmosphere Radar Measurements
NASA Astrophysics Data System (ADS)
Gritsevich, Maria; Nakamura, Takuji; Kero, Johan; Szasz, Csilla; Virtanen, Jenni; Peltoniemi, Jouni; Koschny, Detlef
We present a novel approach to reliably interpret the meteor head echo scattering measurements detected by the 46.5 MHz MU radar system near Shigaraki, Japan. A meteor head echo is caused by radio waves scattered from the dense region of plasma surrounding and co-moving with a meteoroid during atmospheric flight. The signal Doppler shift and/or range rate of the target can therefore be used to determine meteoroid velocity. The data reduction steps include determining the exact trajectory of the meteoroids entering the observation volume of the antenna beam and calculating meteoroid mass and velocity as a function of time. The model is built using physically based parameterization. The considered observation volume is narrow, elongated in the vertical direction, and its area of greatest sensitivity covers a circular area of about 10 km diameter at an altitude of 100 km above the radar. Over 100000 meteor head echoes have been detected over past years of observations. Most of the events are faint with no alternative to be detected visually or with intensified video (ICCD) cameras. In this study we are focusing on objects which have entered the atmosphere with almost vertical trajectories, to ensure the observed segment of the trajectory to be as complete as possible, without loss of its beginning or end part due to beam-pattern related loss of signal power. The analysis output parameters are range, altitude, radial velocity, meteoroid velocity, instantaneous target position, Radar Cross Section (RCS), meteor radiant, meteoroid ballistic and ablation coefficients, mass loss parameter and meteoroid mass, with possibility to derive other parameters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... interchangeably in fire science literature. Section 1915.11(b)Definition of “Upper explosive limit.” The terms upper flammable limit (UFL) and upper explosive limit (UEL) are used interchangeably in fire science... life and is adequate for entry. However, any oxygen level greater than 20.8 percent by volume should...
Code of Federal Regulations, 2011 CFR
2011-07-01
... interchangeably in fire science literature. Section 1915.11(b)Definition of “Upper explosive limit.” The terms upper flammable limit (UFL) and upper explosive limit (UEL) are used interchangeably in fire science... life and is adequate for entry. However, any oxygen level greater than 20.8 percent by volume should...
New project to support scientific collaboration electronically
NASA Astrophysics Data System (ADS)
Clauer, C. R.; Rasmussen, C. E.; Niciejewski, R. J.; Killeen, T. L.; Kelly, J. D.; Zambre, Y.; Rosenberg, T. J.; Stauning, P.; Friis-Christensen, E.; Mende, S. B.; Weymouth, T. E.; Prakash, A.; McDaniel, S. E.; Olson, G. M.; Finholt, T. A.; Atkins, D. E.
A new multidisciplinary effort is linking research in the upper atmospheric and space, computer, and behavioral sciences to develop a prototype electronic environment for conducting team science worldwide. A real-world electronic collaboration testbed has been established to support scientific work centered around the experimental operations being conducted with instruments from the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland. Such group computing environments will become an important component of the National Information Infrastructure initiative, which is envisioned as the high-performance communications infrastructure to support national scientific research.
NASA Astrophysics Data System (ADS)
Semenov, A. I.; Medvedeva, I. V.; Perminov, V. I.; Khomich, V. Yu.
2016-09-01
Rocket and balloon measurement data on atomic-oxygen (λ 63 µm) emission in the upper atmosphere are presented. The data from the longest (1989-2003) period of measurements of the atomic-oxygen (λ 63 µm) emission intensity obtained by spectral instruments on sounding balloons at an altitude of 38 km at midlatitudes have been systematized and analyzed. Regularities in diurnal and seasonal variations in the intensity of this emission, as well as in its relation with solar activity, have been revealed.
Accumulation of electric currents driving jetting events in the solar atmosphere
NASA Astrophysics Data System (ADS)
Vargas Domínguez, S.; Guo, Y.; Demoulin, P.; Schmieder, B.; Ding, M.; Liu, Y.
2013-12-01
The solar atmosphere is populated with a wide variety of structures and phenomena at different spatial and temporal scales. Explosive phenomena are of particular interest due to their contribution to the atmosphere's energy budget and their implications, e.g. coronal heating. Recent instrumental developments have provided important observations and therefore new insights for tracking the dynamic evolution of the solar atmosphere. Jets of plasma are frequently observed in the solar corona and are thought to be a consequence of magnetic reconnection, however, the physics involved is not fully understood. Unprecedented observations (EUV and vector magnetic fields) are used to study solar jetting events, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The evolution of magnetic parasitic polarities displaying diverging flows are detected to trigger recurrent jets in a solar regionon 17 September 2010. The interaction drive the build up of electric currents. Observed diverging flows are proposed to build continuously such currents. Magnetic reconnection is proposed to occur periodically, in the current layer created between the emerging bipole and the large scale active region field. SDO/AIA EUV composite images. Upper: SDO/AIA 171 Å image overlaid by the line-of-sight magnetic field observed at the same time as that of the 171 Å image. Lower: Map of photospheric transverse velocities derived from LCT analysis with the HMI magnetograms.
Radiative flux opens new window on climate research
NASA Technical Reports Server (NTRS)
Pinker, R. T.; Laszlo, I.; Whitlock, C. H.; Charlock, T. P.
1995-01-01
For several decades, global satellite observations have been made of the rate at which electromagnetic energy (radiative flux) is emerging from the top of the atmosphere of our planet in the spectral range of about 0.2-50.0 microns. At the same time, models have been developed to infer the radiative flux at the surface from the values observed by the satellites at the upper boundary. The balance of incoming and outgoing radiative flux (radiation budget) at both boundaries, determines the net gain or loss of the radiative energy within an atmospheric column. Climate researchers can use the radiative flux as a tool to validate climate models, separate the radiative impact of clouds from surface and atmosphere contributions, and to understand the global hydrological cycle. When applied to physical processes occurring at the surface, information on the radiative flux has the potential to substantially advance our understanding of the transport of heat, moisture, and momentum across the surface/atmosphere interface. Geophysicists of many disciplines stand to benefit from efforts to improve the use of this latter untapped resource. Oceanographers can improve the representation of the selective absorption of radiation in the oceans; biologists and ecologists can improve their models for carbon dioxide exchange and biological heating in oceans; agronomists can model more realistically biomass and crop yields; and environmentalists can obtain better assessment of natural resources of radiation.
Pluto's Ultraviolet Airglow and Detection of Ions in the Upper Atmosphere
NASA Astrophysics Data System (ADS)
Steffl, A.; Young, L. A.; Kammer, J.; Gladstone, R.; Hinson, D. P.; Summers, M. E.; Strobel, D. F.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.
2017-12-01
In July 2015, the Alice ultraviolet spectrograph aboard the New Horizons spacecraft made numerous observations of Pluto and its atmosphere. We present here the far ultraviolet reflectance spectrum of Pluto and airglow emissions from its atmosphere. At wavelengths greater than 1400Å, Pluto's spectrum is dominated by sunlight reflected from the surface of the planet. Various hydrocarbon species such as C2H4 are detected in absorption of the solar continuum. Below 1400Å, Pluto's atmosphere is opaque and the surface cannot be detected. However, after carefully removing various sources of background light, we see extremely faint airglow emissions (<0.05 Rayleighs/Ångstrom) from Pluto's atmosphere. All of the emissions are produced by nitrogen in various forms: molecular, atomic, and singly ionized. The detection of N+ at 1086Å is the first, and thus far only, direct detection of ions in Pluto's atmosphere. This N+ emission line is produced primarily by dissociative photoionization of molecular N2 by solar EUV photons (energy > 34.7 eV; wavelength < 360Å). Notably absent from Pluto's spectrum are emission lines from argon at 1048 and 1067Å. We place upper limits on the amount of argon in Pluto's atmosphere above the tau=1 level (observed to be at 750km tangent altitude) that are significantly lower than pre-encounter atmospheric models.
Erkaev, Nikolai V; Lammer, Helmut; Odert, Petra; Kulikov, Yuri N; Kislyakova, Kristina G; Khodachenko, Maxim L; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried
2013-11-01
The recently discovered low-density "super-Earths" Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H₂O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 R(Earth) and a mass of 10 M(Earth). We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general.
Microwave boundary conditions on the atmosphere and clouds of Venus
NASA Technical Reports Server (NTRS)
Rossow, W. B.; Sagan, C.
1975-01-01
The dielectric properties of H2O/H2SO4 mixtures are deduced from the Debye equations and, for a well-mixed atmosphere, the structure of H2O and H2O/H2SO4 clouds is calculated. Various data on the planet together set an upper limit on the mixing ratio by number for H2O of about 0.001 in the lower Venus atmosphere, and for H2SO4 of about 0.00001. The polarization value of the real part of the refractive index of the clouds, the spectroscopic limits on the abundance of water vapor above the clouds, and the microwave data together set corresponding upper limits on H2O of approximately 0.0002 and on H2SO4 of approximately 0.000009. Upper limits on the surface density of total cloud constituents and of cloud liquid water are, respectively, about 0.1 g/sq cm and about 0.01 g/sq cm. The infrared opacities of 90 bars of CO2, together with the derived upper limits to the amounts of water vapor and liquid H2O/H2SO4, may be sufficient to explain the high surface temperatures through the greenhouse effect.
Mass motion in upper solar chromosphere detected from solar eclipse observation
NASA Astrophysics Data System (ADS)
Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang
2016-05-01
The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Ridley, E. C.
1994-01-01
A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere- electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu (1993) allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km.
Selected results from the ISUAL/FORMOSAT2 mission in a 12-year journey
NASA Astrophysics Data System (ADS)
Chen, A. B. C.; Hsu, R. R.; Su, H. T.; Huang, S. M.; Lee, L. J.; Chou, J. K.; Chang, S. C.; Wu, Y. J.; Peng, K. M.; Liu, T. Y.; Mende, S. B.; Frey, H. U.; Takahashi, Y.; Lee, L. C.
2016-12-01
The ISUAL (Imager of Sprites and Upper Atmospheric Lightning) is a scientific payload onboard the FORMOSAT2 satellite (FS2). It is also the first satellite project with the global survey of transient luminous events (TLEs) as one of the mission objectives. Since the launch of ISUAL/FS2 in 2004, ISUAL has continuously monitored the occurrence of TLEs over the pre-midnight tropical and subtropical regions in the past 12 years until 20 June 2016, due to the failure of two of the four reaction wheels. In her 12-year journey, more than forty-two thousand of TLEs, including the sub-species like elves, sprites, sprite-halos, blue jets and gigantic jets, have been recorded from this space platform. In the meantime, as the supporting facilities to the space-borne ISUAL experiment, ground optical imagery systems have been deployed to observe TLEs occurring near Taiwan and several radio waves detecting ground stations have also been installed to register the lightning- or the TLE-related sferics. From analyzing the observed events and the associated sferics, some important insights on these intriguing thundercloud-top phenomena have been revealed. In this talk, the occurrence, the global distributions, the occurrence rates, and the physical characteristics of TLEs as well as some salient properties of the TLE-producing lightning and the impacts of TLEs on the upper atmosphere revealed by the ISUAL mission will be concisely discussed and summarized.
NASA Technical Reports Server (NTRS)
Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.;
2012-01-01
The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper tropospheric water vapor profiles to be consistently measured by Raman lidar within NDACC (Network for the Detection of Atmospheric Composition Change) and elsewhere, despite the prevalence of instrumental and atmospheric effects that can contaminate the very low signal to noise measurements in the UT.
NASA Technical Reports Server (NTRS)
Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.
2009-01-01
Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's "warm ponds" on Titan.
Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.
2015-12-01
Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign measurements and satellite retrievals to evaluate the simulated micro- and macro- physical properties of ice clouds in the four GCMs.
Atmosphere, ocean, and land: Critical gaps in Earth system models
NASA Technical Reports Server (NTRS)
Prinn, Ronald G.; Hartley, Dana
1992-01-01
We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.
NASA Astrophysics Data System (ADS)
Caballero, Rodrigo
2014-11-01
With the increasing attention paid to climate change, there is ever-growing interest in atmospheric physics and the processes by which the atmosphere affects Earth's energy balance. This self-contained text, written for advanced undergraduate and graduate students in physics or meteorology, assumes no prior knowledge apart from basic mechanics and calculus and contains material for a complete course. Augmented with worked examples, the text considers all aspects of atmospheric physics except dynamics, including moist thermodynamics, cloud microphysics, atmospheric radiation and remote sensing, and will be an invaluable resource for students and researchers.
NASA Astrophysics Data System (ADS)
Feltz, W. F.; Smith, W. L.; Howell, H. B.; Knuteson, R. O.; Woolf, H.; Revercomb, H. E.
2003-05-01
The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The purpose of this paper is to provide an overview of the AERI instrument, improvement of the AERI temperature and moisture retrieval technique, new profiling utility, and validation of high-temporal-resolution AERI-derived stability indices important for convective nowcasting. AERI systems have been built at the University of Wisconsin-Madison, Madison, Wisconsin, and deployed in the Oklahoma-Kansas area collocated with National Oceanic and Atmospheric Administration 404-MHz wind profilers at Lamont, Vici, Purcell, and Morris, Oklahoma, and Hillsboro, Kansas. The AERI systems produce absolutely calibrated atmospheric infrared emitted radiances at one-wavenumber resolution from 3 to 20 m at less than 10-min temporal resolution. The instruments are robust, are automated in the field, and are monitored via the Internet in near-real time. The infrared radiances measured by the AERI systems contain meteorological information about the vertical structure of temperature and water vapor in the planetary boundary layer (PBL; 0-3 km). A mature temperature and water vapor retrieval algorithm has been developed over a 10-yr period that provides vertical profiles at less than 10-min temporal resolution to 3 km in the PBL. A statistical retrieval is combined with the hourly Geostationary Operational Environmental Satellite (GOES) sounder water vapor or Rapid Update Cycle, version 2, numerical weather prediction (NWP) model profiles to provide a nominal hybrid first guess of temperature and moisture to the AERI physical retrieval algorithm. The hourly satellite or NWP data provide a best estimate of the atmospheric state in the upper PBL; the AERI radiances provide the mesoscale temperature and moisture profile correction in the PBL to the large-scale GOES and NWP model profiles at high temporal resolution. The retrieval product has been named AERIplus because the first guess used for the mathematical physical inversion uses an optimal combination of statistical climatological, satellite, and numerical model data to provide a best estimate of the atmospheric state. The AERI physical retrieval algorithm adjusts the boundary layer temperature and moisture structure provided by the hybrid first guess to fit the observed AERI downwelling radiance measurement. This provides a calculated AERI temperature and moisture profile using AERI-observed radiances `plus' the best-known atmospheric state above the boundary layer using NWP or satellite data. AERIplus retrieval accuracy for temperature has been determined to be better than 1 K, and water vapor retrieval accuracy is approximately 5% in absolute water vapor when compared with well-calibrated radiosondes from the surface to an altitude of 3 km. Because AERI can monitor the thermodynamics where the atmosphere usually changes most rapidly, atmospheric stability tendency information is readily available from the system. High-temporal-resolution retrieval of convective available potential energy, convective inhibition, and PBL equivalent potential temperature e are provided in near-real time from all five AERI systems at the ARM SGP site, offering a unique look at the atmospheric state. This new source of meteorological data has shown excellent skill in detecting rapid synoptic and mesoscale meteorological changes within clear atmospheric conditions. This method has utility in nowcasting temperature inversion strength and destabilization caused by e advection. This high-temporal-resolution monitoring of rapid atmospheric destabilization is especially important for nowcasting severe convection.
NASA Technical Reports Server (NTRS)
Megie, G.; Menzies, R. T.
1980-01-01
An analysis of the potential capabilities of a spectrally diversified DIAL technique for monitoring atmospheric species is presented assuming operation from an earth-orbiting platform. Emphasis is given to the measurement accuracies and spatial and temporal resolutions required to meet present atmospheric science objectives. The discussion points out advantages of spectral diversity to perform comprehensive studies of the atmosphere; in general it is shown that IR systems have an advantage in lower atmospheric measurements, while UV systems are superior for middle and upper atmospheric measurements.
Chemical Composition of the Atmosphere
NASA Astrophysics Data System (ADS)
Schlager, Hans; Grewe, Volker; Roiger, Anke
Atmospheric trace gases have an important impact on Earth's radiative budget, the oxidative or cleansing ability of the atmosphere, the formation, growth and properties of aerosols, air quality, and human health. During recent years, the coupling between atmospheric chemistry and climate has received particular attention. Therefore, research is now focused on the composition and processes in the upper troposphere and lower stratosphere, a key region in this respect. In this chapter the chemical composition of the atmosphere is addressed and selected examples of significant advances in this field are presented.
Cosmic Rays over the Upper Mid-West. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Rygg, T. A.
1972-01-01
Differential energy spectra of cosmic ray protons and helium nuclei in the 100 to 260 MeV/nucleon were measured on balloon flights in the upper midwestern (U.S.) area. Solar cycle variations of atmospheric secondary protons were also investigated.
On testing of the photometer-polarimeter UVP layout using a telescope on Earth's surface
NASA Astrophysics Data System (ADS)
Nevodovskyi, P. V.; Vidmachenko, A. P.; Morozhenko, O. V.; Zbrutskyi, O.; Ivakhiv, O. V.
2016-08-01
One of the causes of climate change (changing of concentration of stratospheric ozone) - is variations due to aerosol optical thickness in the upper layers of Earth's atmosphere. To solve the problem is necessary to make a space experiment to receive polarization observational data. Their analysis will: determine the value of the real part of the refractive index, the size of the stratospheric aerosol, optical thickness of the stratospheric aerosol layer, investigate aerosol's layer horizontal structure and its changes over time. Main Astronomical Observatory of NAS of Ukraine jointly with the National Technical University of Ukraine "KPI" and National University "Lviv Polytechnic" for a long time working on the design of polarimeter to study the stratospheric layer of the Earth from board of artificial satellites. During this time accumulated a great experience in such work, and created a layout of compact board ultraviolet polarimeter UFP [1-4]. For testing of ground variant of layout of UFP, it is installed on the telescope AZT-2 of the Main Astronomical Observatory NAS of Ukraine (Kyiv). Using it we plan to investigate the possibility of determining the degree of polarization of the twilight glow of Earth's atmosphere, and implementation of this technique in the development of space experiment on investigation of the stratospheric aerosol from space. For this purpose we develop a special set of equipment that will adapt the layout for working of UFP with telescope AZT-2, and carry out the above mentioned work (see. in [5-7]). References. 1. P. Nevodovskyi, O. Morozhenko, A. Vidmachenko, O. Ivakhiv, M. Geraimchuk, O. Zbrutskyi. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation // Proceedings of 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS'2015). 24-26 September 2015, Proceedings. Warsaw, Poland. Vol.81, p. 28-32. 2. Nevodovsksiy P. V., Morozhenko A. V. Studies of stratospheric ozone layer from near-earth orbit utilizing ultraviolet polarimeter // Acta Astronautica. 2009, vol. 64, no 1, p. 54-58. 3. Nevodovskij P. V. Kvantakons and optimization of their parameters for astronomical observations Kinematika i Fizika Nebesnykh Tel. 2001, vol. 17, no. 3, p. 279-288. 4. A. P. Vid'machenko, P. V. Nevodovsky. A cooled photomultiplier with an InGaAs photocathode developed for the spectropolarimetry observations // Kinematika i Fizika Nebesnykh Tel. 2000. Suppl. 3, p. 283-285. 5. Morozhenko A. V., Vidmachenko A. P., Nevodovskiy P. V., Kostogryz N. M. On the efficiency of polarization measurements while studying aerosols in the terrestrial atmosphere // Kinematics and Physics of Celestial Bodies. 2014, vol. 30, no. 1, p. 11-21. 6. A.V. Morozhenko, A.P. Vidmachenko, P.V. Nevodovskyi. Aerosol in the upper layer of earth's atmosphere // Kinematics and Physics of Celestial Bodies. 2013, vol. 29, no. 5, p. 243-246. 7. Morozhenko A.V. Polarimetry of twilight sky and stratospheric aerosol // Kinematics and Physics of Celestial Bodies. 2010, vol. 26, no. 1, p. 36-38.
NASA Astrophysics Data System (ADS)
Igel, Matthew R.
2017-06-01
This paper complements Part 1 in which cloud processes of aggregated convection are examined in a large-domain radiative convective equilibrium simulation in order to uncover those responsible for a consistently observed, abrupt increase in mean precipitation at a column relative humidity value of approximately 77%. In Part 2, the focus is on how the transition is affected independently by total moisture above and below the base of the melting layer. When mean precipitation rates are examined as simultaneous functions of these two moisture layers, four distinct behaviors are observed. These four behaviors suggest unique, yet familiar, physical regimes in which (i) little rain is produced by infrequent clouds, (ii) shallow convection produces increasing warm rain with increasing low-level moisture, (iii) deep convection produces progressively heavier rain above the transition point with increasing total moisture, and (iv) deep stratiform cloud produces increasingly intense precipitation from melting for increasing upper level moisture. The independent thresholds separating regimes in upper and lower layer humidity are shown to result in the value of total column humidity at which a transition between clear air and deep convection, and therefore a pickup in precipitation, is possible. All four regimes force atmospheric columns toward the pickup value at 77% column humidity, but each does so through a unique set of physical processes. Layer moisture and microphysical budgets are analyzed and contrasted with column budgets.
Blooms and subsurface phytoplankton layers on the Scotian Shelf: Insights from profiling gliders
NASA Astrophysics Data System (ADS)
Ross, Tetjana; Craig, Susanne E.; Comeau, Adam; Davis, Richard; Dever, Mathieu; Beck, Matthew
2017-08-01
Understanding how phytoplankton respond to their physical environment is key to predicting how bloom dynamics might change under future climate change scenarios. Phytoplankton are at the base of most marine food webs and play an important role in drawing CO2 out of the atmosphere. Using nearly 5 years of simultaneous CTD, irradiance, chlorophyll a fluorescence and optical backscattering observations obtained from Slocum glider missions, we observed the subsurface phytoplankton populations across the Scotian Shelf, near Halifax (Nova Scotia, Canada) along with their physical environment. Bloom conditions were observed in each of the 5 springs, with the average chlorophyll in the upper 60 m of water generally exceeding 3 mg m- 3. These blooms occurred when the upper water column stratification was at its lowest, in apparent contradiction of the critical depth hypothesis. A subsurface chlorophyll layer was observed each summer at about 30 m depth, which was below the base of the mixed layer. This subsurface layer lasted 3-4 months and contained, on average, 1/4 of the integrated water column chlorophyll found during the spring bloom. This suggests that a significant portion of the primary productivity over the Scotian Shelf occurs at depths that cannot be observed by satellites-highlighting the importance of including subsurface observations in the monitoring of future changes to primary productivity in the ocean.
Observations Of General Learning Patterns In An Upper-Level Thermal Physics Course
NASA Astrophysics Data System (ADS)
Meltzer, David E.
2009-11-01
I discuss some observations from using interactive-engagement instructional methods in an upper-level thermal physics course over a two-year period. From the standpoint of the subject matter knowledge of the upper-level students, there was a striking persistence of common learning difficulties previously observed in students enrolled in the introductory course, accompanied, however, by some notable contrasts between the groups. More broadly, I comment on comparisons and contrasts regarding general pedagogical issues among different student sub-populations, for example: differences in the receptivity of lower- and upper-level students to diagrammatic representations; varying receptivity to tutorial-style instructional approach within the upper-level population; and contrasting approaches to learning among physics and engineering sub-populations in the upper-level course with regard to use of symbolic notation, mathematical equations, and readiness to employ verbal explanations.
Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water
NASA Astrophysics Data System (ADS)
Chaffin, M. S.; Deighan, J.; Schneider, N. M.; Stewart, A. I. F.
2017-01-01
Atmospheric loss has controlled the history of Martian habitability, removing most of the planet’s initial water through atomic hydrogen and oxygen escape from the upper atmosphere to space. In standard models, H and O escape in a stoichiometric 2:1 ratio because H reaches the upper atmosphere via long-lived molecular hydrogen, whose abundance is regulated by a photochemical feedback sensitive to atmospheric oxygen content. The relatively constant escape rates these models predict are inconsistent with known H escape variations of more than an order of magnitude on seasonal timescales, variation that requires escaping H to have a source other than H2. The best candidate source is high-altitude water, detected by the Mars Express spacecraft in seasonally variable concentrations. Here we use a one-dimensional time-dependent photochemical model to show that the introduction of high-altitude water can produce a large increase in the H escape rate on a timescale of weeks, quantitatively linking these observations. This H escape pathway produces prompt H loss that is not immediately balanced by O escape, influencing the oxidation state of the atmosphere for millions of years. Martian atmospheric water loss may be dominated by escape via this pathway, which may therefore potentially control the planet’s atmospheric chemistry. Our findings highlight the influence that seasonal atmospheric variability can have on planetary evolution.
Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data
NASA Astrophysics Data System (ADS)
Fricke, Katharina; Baschek, Björn
2013-10-01
Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by the atmosphere. Without atmospheric correction, the absolute mean difference between RST and in situ measurements was 1.1°C with a standard devi- ation of 1.3°C. Thus, a correction of atmospheric influences on radiances measured at the top of the atmosphere was necessary and two different methods for atmospheric correction (ATCOR2 and the Atmospheric Correction Parameter Calculator) were applied. The correction results showed that for both methods, the correct choice of atmospheric profiles is very important. With the calculator, an absolute mean difference of 0.8 +/- 1.0°C and with the selected overall best scenes, an absolute mean difference of 0.5 ± 0.7°C was achieved. The selected corrected RST can be used to interpolate between in situ measurements available only for a limited number of points along the river course and longitudinal example profiles of the surface water temperature in the Upper and Middle Rhine could be calculated for different seasons. On the basis of these profiles, the increasing temperature gradient along the Upper Rhine could be identified and the possibility to detect heat or cooling discharge from tributaries and other sources is evaluated.
Atmospheric science on the Galileo mission
NASA Technical Reports Server (NTRS)
Hunten, D. M.; Colin, L.; Hansen, J. E.
1986-01-01
The atmospheric science goals of the Galileo mission, and instruments of the probe and orbiter are described. The current data available, and the goals of the Galileo mission concerning the chemical composition of the Jovian atmosphere; the thermal structure of the atmosphere; the nature of cloud particles and cloud layering; the radiative energy balance; atmospheric dynamics; and the upper atmosphere are discussed. The objectives and operations of the atmospheric structure instrument, neutral mass spectrometer, helium abundance interferometer, nephelometer, net flux radiometer, lightning and radio emission detector, solid state imaging system, NIR mapping spectrometer, photopolarimeter radiometer, and UV spectrometer are examined.
K. L. Frank; L. S. Kalkstein; B. W. Geils; H. W. Thistle
2008-01-01
This study developed a methodology to temporally classify large scale, upper level atmospheric conditions over North America, utilizing a newly-developed upper level synoptic classification (ULSC). Four meteorological variables: geopotential height, specific humidity, and u- and v-wind components, at the 500 hPa level over North America were obtained from the NCEP/NCAR...
Follow-Up Care for Older Women With Breast Cancer
2000-05-01
better predictor of upper body mor therapy, all cause mortality, self -reported function and overall physical function than upper body function, and...outcomes, including primary tu- Major Analytic Variables mor therapy and all cause mortality, as well as self -reported upper body and overall physical ...comorbidity and their relation to a range of patient outcomes, including primary tumor therapy and mortality, self -reported upper body function, and overall
A Comparison of Upper Elementary School Children's Attitudes toward Physical Activity.
ERIC Educational Resources Information Center
Folsom-Meek, Sherry L.
This study was conducted to compare upper elementary school children's attitudes toward physical activity, by grade level and gender across six attitude scale subdomains in order to assist physical education teachers in planning programs designed to foster positive attitudes toward physical activity. Subjects (N=429) were 243 girls and 186 boys in…
Mesoscale Waves in Jupiter Atmosphere
1997-09-07
These two images of Jupiter atmosphere were taken with the violet filter of the Solid State Imaging CCD system aboard NASA Galileo spacecraft. Mesoscale waves can be seen in the center of the upper image. The images were obtained on June 26, 1996.
Optical Properties of atmospheric dust from twilight observations
NASA Technical Reports Server (NTRS)
Divari, N. B.; Zaginayilo, Y. I.; Kovalchuk, L. V.
1973-01-01
Three methods of approximation are described and used to separate the primary twilight brightness from the observed brightness. Photoelectric observations obtained are combined with observations from a balloon and from the observatory to derive the atmospheric scattering phase functions of 0.37 micron and 0.58 micron as a function of height. Comparison of these data with data for a Rayleigh atmosphere provide information on the optical properties of dust in the upper atmosphere.
3rd IAGA/ICMA Workshop on Vertical Coupling in the Atmosphere/Ionosphere System/ Abstract
2007-01-10
energy and momentum from the lower atmosphere to the upper atmosphere and ionosphere and vice versa. The programme focussed on various aspects and...ICMA Workshop Vertical Coupling in the Atmosphere/Ionosphere System - 6 - The influence of global dependence of gravity wave energy in the troposphere...transport during the polar night of thermospheric odd nitrogen produced by lower- energy electron precipitation and solar extreme UV fluxes. However, at low
Science Enhancements by the MAVEN Participating Scientists
NASA Technical Reports Server (NTRS)
Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.
2014-01-01
NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.
Science Enhancements by the MAVEN Participating Scientists
NASA Astrophysics Data System (ADS)
Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.; Stevens, M.; Withers, P.
2015-12-01
NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.
NASA Astrophysics Data System (ADS)
Liu, Yi; Sheng, Zhuping
2011-11-01
SummaryAtmospheric water, surface water, and groundwater interact very actively through hydrologic processes such as precipitation, infiltration, seepage, irrigation, drainage, evaporation, and evapotranspiration in the Upper Rio Grande Basin. A trend-outflow method has been developed in this paper to gain a better understanding of the interactions based on cumulated inflow and outflow data for any river reaches of interest. A general trend-outflow equation was derived by associating the net interaction of surface water with atmospheric water as a polynomial of inflow and the net interaction of surface water with groundwater as a constant based on surface water budget. Linear and quadratic relations are probably two common trend-outflow types in the real world. It was found that trend-outflows of the Upper Rio Grande reaches, Española, Albuquerque, Socorro-Engle, Palomas, and Rincon are linear with inflow, while those of reaches, Belen, Mesilla and Hueco are quadratic. Reaches Belen, Mesilla and Hueco are found as water deficit reaches mainly for irrigated agriculture in extreme drought years.
NASA Astrophysics Data System (ADS)
Benna, M.; Grebowsky, J. M.; Mahaffy, P. R.; Plane, J. M. C.; Yelle, R. V.; Jakosky, B. M.
2017-09-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission made the first in situ detection of metal ions in the upper atmosphere of Mars. These ions result from the ablation of dust particles from comet Siding Spring. This detection was carried out by the Neutral Gas and Ion Mass Spectrometer (NGIMS) on board the MAVEN spacecraft. Metal ions of Na, Mg, Al, K, Ti, Cr, Mn, Fe, Co, Ni, Cu, and Zn, and possibly of Si, and Ca, were identified in the ion spectra collected at altitudes of 185 km. The measurements revealed that Na ion was the most abundant species, and that the remaining metals were depleted with respect to the CI (type 1 carbonaceous Chondrites) abundance of Na ion.
Correlation of Upper-Atmospheric 7-Be with Solar Energetic Particle Events
NASA Technical Reports Server (NTRS)
Phillips, G. W.; Share, G. H.; King, S. E.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskij, B. M.; Kulikauskas, V. S.;
2001-01-01
A surprisingly large concentration of radioactive 7-Be was observed in the upper atmosphere at altitudes above 320 km on the LDEF satellite that was recovered in January 1990. We report on follow-up experiments on Russian spacecraft at altitudes of 167 to 370 km during the period of 1996 to 1999, specifically designed to measure 7-Be concentrations in low earth orbit. Our data show a significant correlation between the 7-Be concentration and the solar energetic proton fluence at Earth, but not with the overall solar activity. During periods of low solar proton fluence, the concentration is correlated with the galactic cosmic ray fluence. This indicates that spallation of atmospheric N by both solar energetic particles and cosmic rays is the primary source of 7-Be in the ionosphere.
NASA Astrophysics Data System (ADS)
Liu, Congliang; Kirchengast, Gottfried; Sun, Yueqiang; Zhang, Kefei; Norman, Robert; Schwaerz, Marc; Bai, Weihua; Du, Qifei; Li, Ying
2018-04-01
The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes, and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the higher-order residual ionospheric error (RIE) can still be significant, so it needs to be further mitigated for high-accuracy applications, especially from 35 km altitude upward, where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 µrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 µrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects - where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity - and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are possible due to ionospheric asymmetries and, depending on prevailing horizontal refractivity gradients, are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper-stratospheric ones, likely due to being closer in tangent point heights to the ionospheric E layer peaking near 105 km, which increases RIE vulnerability. In the future we will further improve the along-ray modeling system to fully isolate technical from physics-based effects and to use it beyond this work for additional GNSS RO signal propagation studies.
Enclosed ground-flare incinerator
Wiseman, Thomas R.
2000-01-01
An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.
Semiannual progress report, April - September 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Research conducted during the past year in the climate and modeling programs has concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three dimensional global climate model, and an upper ocean model. Principal applications have been the study of the impact of CO2, aerosols, and the solar constant on climate. Progress was made in the 3-D model development towards physically realistic treatment of these processes. In particular, a map of soil classifications on 1 degree by 1 degree resolution has now been digitized, and soil properties have been assigned to each soil type. Using this information about soil properties, a method has been developed to simulate the hydraulic behavior of the soils of the world. This improved treatment of soil hydrology, together with the seasonally varying vegetation cover, will provide a more realistic study of the role of the terrestrial biota in climate change. A new version of the climate model was created which follows the isotopes of water and sources of water throughout the planet.
NASA Technical Reports Server (NTRS)
Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.
1982-01-01
The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.
Paulson, Anthony J.; Konrad, Christopher P.; Frans, Lonna M.; Noble, Marlene; Kendall, Carol; Josberger, Edward G.; Huffman, Raegan L.; Olsen, Theresa D.
2006-01-01
Hood Canal is a long (110 kilometers), deep (175 meters) and narrow (2 to 4 kilometers wide) fjord of Puget Sound in western Washington. The stratification of a less dense, fresh upper layer of the water column causes the cold, saltier lower layer of the water column to be isolated from the atmosphere in the late summer and autumn, which limits reaeration of the lower layer. In the upper layer of Hood Canal, the production of organic matter that settles and consumes dissolved oxygen in the lower layer appears to be limited by the load of dissolved inorganic nitrogen (DIN): nitrate, nitrite, and ammonia. Freshwater and saline loads of DIN to Hood Canal were estimated from available historical data. The freshwater load of DIN to the upper layer of Hood Canal, which could be taken up by phytoplankton, came mostly from surface and ground water from subbasins, which accounts for 92 percent of total load of DIN to the upper layer of Hood Canal. Although DIN in rain falling on land surfaces amounts to about one-half of the DIN entering Hood Canal from subbasins, rain falling directly on the surface of marine waters contributed only 4 percent of the load to the upper layer. Point-source discharges and subsurface flow from shallow shoreline septic systems contributed less than 4 percent of the DIN load to the upper layer. DIN in saline water flowing over the sill into Hood Canal from Admiralty Inlet was at least 17 times the total load to the upper layer of Hood Canal. In September and October 2004, field data were collected to estimate DIN loads to Lynch Cove - the most inland marine waters of Hood Canal that routinely contain low dissolved-oxygen waters. Based on measured streamflow and DIN concentrations, surface discharge was estimated to have contributed about one-fourth of DIN loads to the upper layer of Lynch Cove. Ground-water flow from subbasins was estimated to have contributed about one-half of total DIN loads to the upper layer. In autumn 2004, the relative contribution of DIN from shallow shoreline septic systems to the upper layer was higher in Lynch Cove (23 percent) than in the entire Hood Canal. Net transport of DIN into Lynch Cove by marine currents was measured during August and October 2004-a time of high biological productivity. The net transport of lower-layer water into Lynch Cove was significantly diminished relative to the flow entering Hood Canal at its entrance. Even though the net transport of saline water into the lower layer of Lynch Cove was only 119 cubic meters per second, estuarine currents between 33 and 47 m were estimated to have carried more than 35 times the total freshwater load of DIN to the upper layer from surface and ground water, shallow shoreline septic systems, and direct atmospheric rainfall. The subsurface maximums in measured turbidity, chlorophyll a, particulate organic carbon, and particulate organic nitrogen strongly suggest that the upward mixing of nitrate-rich deeper water is a limiting factor in supplying DIN to the upper layer that enhances marine productivity in Lynch Cove. The presence of phosphate in the upper layer in the absence of dissolved inorganic nitrogen also suggests that the biological productivity that leads to low dissolved-oxygen concentrations in the lower layer of Lynch Cove is limited by the supply of nitrogen rather than by phosphate loads. Although the near-shore zones of the shallow parts of Lynch Cove were sampled, a biogeochemical signal from terrestrial nitrogen was not found. Reversals in the normal estuarine circulation suggest that if the relative importance of the DIN load of freshwater terrestrial and atmospheric sources and the DIN load from transport of saline water by the estuarine circulation in controlling dissolved-oxygen concentrations in Lynch Cove is to be better understood, then the physical forces driving Hood Canal circulation must be better defined.
Defining the Space Atmosphere Interaction Region (SAIR)
NASA Astrophysics Data System (ADS)
Sojka, J. J.; David, M.; Schunk, R. W.
2016-12-01
Is there a unique region between space and a planet's atmosphere in which the majority of the interactions exist? Does the location of this region depend on the intensity of space weather events, i.e., solar flares or geomagnetic storms? Present day research has developed the term "Space Atmosphere Interactions Region" (SAIR) to express the idea that our understanding is least developed in regions of the upper atmosphere where incoming energy is transformed into some form of thermal energy of the local particle populations. During such processes, both the atmosphere and ionosphere are locally modified resulting in dynamics and modified chemistry that impacts a large part of the upper atmosphere and ionosphere. We consider energy sources from the lower atmosphere (waves), the Sun (flares), and magnetosphere (magnetic storms) and the locations of their energy transformation processes. From below, the atmospheric waves of different scales from gravity waves to planetary waves, while from above solar irradiance, auroral precipitation, and Joule heating are discussed as they determine the SAIR location. Of specific emphasis will be the dependence, or not, of the SAIR on the solar flare or geomagnetic storm intensity. This region will be identified as the location where local energy deposition equals or exceeds local thermal energy of the atmospheric constituents. This energy deposition impacts the atmosphere, ionosphere, and magnetosphere. Its impacts extend well beyond the SAIR. The relevance of the SAIR concept to other planets, and hence, exoplanet will be point out.
1999-08-27
STS048-S-001 (July 1991) --- Designed by the astronaut crew members, the patch represents the space shuttle orbiter Discovery in orbit about Earth after deploying the Upper Atmospheric Research Satellite (UARS) depicted in block letter style. The stars are those in the northern hemisphere as seen in the fall and winter when UARS will begin its study of Earth's atmosphere. The color bands on Earth's horizon, extending up to the UARS spacecraft, depict the study of Earth's atmosphere. The triangular shape represents the relationship among the three atmospheric processes that determine upper atmospheric structure and behavior: chemistry, dynamics and energy. In the words of the crew members, "This continuous process brings life to our planet and makes our planet unique in the solar system." The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, it will be publicly announced. Photo credit: NASA
Magnetic tornadoes as energy channels into the solar corona.
Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert
2012-06-27
Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.
NASA/ESA CV-990 airborne simulation of Spacelab
NASA Technical Reports Server (NTRS)
Mulholland, D.; Neel, C.; De Waard, J.; Lovelett, R.; Weaver, L.; Parker, R.
1975-01-01
The paper describes the joint NASA/ESA extensive Spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to conduct studies in upper atmospheric physics and infrared astronomy. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. The mission was successful and provided extensive data relevant to Spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); and schedule requirements to prepare for such a Spacelab mission.
Integrating Research of the Sun-Earth System
Jordanova, Vania K.; Borovsky, Joseph E.; Jordanov, Valentin T.
2017-05-02
Understanding the complex interactions between the magnetic fields of the Sun and Earth remains an important challenge to space physics research. Processes that occur near the Sun at tens of thousands of kilometers from the Earth can generate geomagnetic storms that affect the entire magnetosphere, down to the upper atmosphere. These storms also threaten the ever more sophisticated technologies that we place into the space environment to sustain us, for example, GPS, the satellites we rely on to monitor our weather, and relays that guide our radio transmissions. Increasingly, we need to develop space weather models that can provide timelymore » and accurate predictions so that we can safeguard our society and the infrastructure we depend on.« less
Thermodynamic constraint on the depth of the global tropospheric circulation.
Thompson, David W J; Bony, Sandrine; Li, Ying
2017-08-01
The troposphere is the region of the atmosphere characterized by low static stability, vigorous diabatic mixing, and widespread condensational heating in clouds. Previous research has argued that in the tropics, the upper bound on tropospheric mixing and clouds is constrained by the rapid decrease with height of the saturation water vapor pressure and hence radiative cooling by water vapor in clear-sky regions. Here the authors contend that the same basic physics play a key role in constraining the vertical structure of tropospheric mixing, tropopause temperature, and cloud-top temperature throughout the globe. It is argued that radiative cooling by water vapor plays an important role in governing the depth and amplitude of large-scale dynamics at extratropical latitudes.
Integrating Research of the Sun-Earth System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania K.; Borovsky, Joseph E.; Jordanov, Valentin T.
Understanding the complex interactions between the magnetic fields of the Sun and Earth remains an important challenge to space physics research. Processes that occur near the Sun at tens of thousands of kilometers from the Earth can generate geomagnetic storms that affect the entire magnetosphere, down to the upper atmosphere. These storms also threaten the ever more sophisticated technologies that we place into the space environment to sustain us, for example, GPS, the satellites we rely on to monitor our weather, and relays that guide our radio transmissions. Increasingly, we need to develop space weather models that can provide timelymore » and accurate predictions so that we can safeguard our society and the infrastructure we depend on.« less
Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Lezberg, E. A.
1976-01-01
Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.
Upper Atmosphere Research Satellite (UARS) science data processing center implementation history
NASA Technical Reports Server (NTRS)
Herring, Ellen L.; Taylor, K. David
1990-01-01
NASA-Goddard is responsible for the development of a ground system for the Upper Atmosphere Research Satellite (UARS) observatory, whose launch is scheduled for 1991. This ground system encompasses a dedicated Central Data Handling Facility (CDHF); attention is presently given to the management of software systems design and implementation phases for CDHF by the UARS organization. Also noted are integration and testing activities performed following software deliveries to the CDHF. The UARS project has an obvious requirement for a powerful and flexible data base management system; an off-the-shelf commercial system has been incorporated.
Hinkle, Stephen R.; Ely, D. Matthew
2013-01-01
As part of a multidisciplinary U.S. Geological Survey study of water resources in Upper Kittitas County, Washington, chemical and isotopic data were collected from groundwater, surface-water, and atmospheric precipitation sites from 2010 to 2012. These data are documented here so that interested parties can quickly and easily find those chemical and isotopic data related to this study. The locations of the samples are shown on an interactive map of the study area. This report is dynamic; additional data will be added to it as they become available.
On remote sounding of the upper atmosphere of Venus
NASA Technical Reports Server (NTRS)
Houghton, J. T.; Taylor, F. W.
1975-01-01
Some of the possibilities for remote sensing of the upper atmosphere of Venus from an orbiting spacecraft are studied quantitatively. Temperature sounding over a wide vertical range, from the main cloud top near 60 km altitude to the nanobar level near 160 km, is shown to be feasible. Techniques which deconvolve the cloud structure from the temperature profile measurements are examined. Humidity measurements by simple radiometry are feasible for column abundances greater than or equal to 10 precipitable micrometers. The information content of limb radiance measurements, in different wavelengths and for various viewing geometries, is also analyzed.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Mark Christopher; Holmes, Mark; Sailor, William C
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
ERIC Educational Resources Information Center
Hansson, Lena; Hansson, Örjan; Juter, Kristina; Redfors, Andreas
2015-01-01
This article discusses the role of mathematics during physics lessons in upper-secondary school. Mathematics is an inherent part of theoretical models in physics and makes powerful predictions of natural phenomena possible. Ability to use both theoretical models and mathematics is central in physics. This paper takes as a starting point that the…
Observations of Co-variation in Cloud Properties and their Relationships with Atmospheric State
NASA Astrophysics Data System (ADS)
Sinclair, K.; van Diedenhoven, B.; Fridlind, A. M.; Arnold, T. G.; Yorks, J. E.; Heymsfield, G. M.; McFarquhar, G. M.; Um, J.
2017-12-01
Radiative properties of upper tropospheric ice clouds are generally not well represented in global and cloud models. Cloud top height, cloud thermodynamic phase, cloud optical thickness, cloud water path, particle size and ice crystal shape all serve as observational targets for models to constrain cloud properties. Trends or biases in these cloud properties could have profound effects on the climate since they affect cloud radiative properties. Better understanding of co-variation between these cloud properties and linkages with atmospheric state variables can lead to better representation of clouds in models by reducing biases in their micro- and macro-physical properties as well as their radiative properties. This will also enhance our general understanding of cloud processes. In this analysis we look at remote sensing, in situ and reanalysis data from the MODIS Airborne Simulator (MAS), Cloud Physics Lidar (CPL), Cloud Radar System (CRS), GEOS-5 reanalysis data and GOES imagery obtained during the Tropical Composition, Cloud and Climate Coupling (TC4) airborne campaign. The MAS, CPL and CRS were mounted on the ER-2 high-altitude aircraft during this campaign. In situ observations of ice size and shape were made aboard the DC8 and WB57 aircrafts. We explore how thermodynamic phase, ice effective radius, particle shape and radar reflectivity vary with altitude and also investigate how these observed cloud properties vary with cloud type, cloud top temperature, relative humidity and wind profiles. Observed systematic relationships are supported by physical interpretations of cloud processes and any unexpected differences are examined.
State and Parameter Estimation for a Coupled Ocean--Atmosphere Model
NASA Astrophysics Data System (ADS)
Ghil, M.; Kondrashov, D.; Sun, C.
2006-12-01
The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, J. H.; Ben-Jaffel, Lotfi, E-mail: guojh@ynao.ac.cn, E-mail: bjaffel@iap.fr
2016-02-20
By varying the profiles of stellar extreme ultraviolet (EUV) spectral energy distributions (SEDs), we tested the influences of stellar EUV SEDs on the physical and chemical properties of an escaping atmosphere. We apply our model to study four exoplanets: HD 189733b, HD 209458b, GJ 436b, and Kepler-11b. We find that the total mass loss rates of an exoplanet, which are determined mainly by the integrated fluxes, are moderately affected by the profiles of the EUV SED, but the composition and species distributions in the atmosphere can be dramatically modified by the different profiles of the EUV SED. For exoplanets withmore » a high hydrodynamic escape parameter (λ), the amount of atomic hydrogen produced by photoionization at different altitudes can vary by one to two orders of magnitude with the variation of stellar EUV SEDs. The effect of photoionization of H is prominent when the EUV SED is dominated by the low-energy spectral region (400–900 Å), which pushes the transition of H/H{sup +} to low altitudes. In contrast, the transition of H/H{sup +} moves to higher altitudes when most photons are concentrated in the high-energy spectral region (50–400 Å). For exoplanets with a low λ, the lower temperatures of the atmosphere make many chemical reactions so important that photoionization alone can no longer determine the composition of the escaping atmosphere. For HD 189733b, it is possible to explain the time variability of Lyα between 2010 and 2011 by a change in the EUV SED of the host K-type star, yet invoking only thermal H i in the atmosphere.« less
The UARS and EOS Microwave Limb Sounder (MLS) Experiments.
NASA Astrophysics Data System (ADS)
Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.; Perun, V. S.; Ridenoure, B. P.; Shippony, Z.; Siegel, P. H.; Thurstans, R. P.; Harwood, R. S.; Pumphrey, H. C.; Filipiak, M. J.
1999-01-01
The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.
New Horizons Upper Limits on O{sub 2} in Pluto’s Present Day Atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kammer, J. A.; Gladstone, G. R.; Stern, S. A.
The surprising discovery by the Rosetta spacecraft of molecular oxygen (O{sub 2}) in the coma of comet 67P/Churyumov–Gerasimenko challenged our understanding of the inventory of this volatile species on and inside bodies from the Kuiper Belt. That discovery motivated our search for oxygen in the atmosphere of Kuiper Belt planet Pluto, because O{sub 2} is volatile even at Pluto’s surface temperatures. During the New Horizons flyby of Pluto in 2015 July, the spacecraft probed the composition of Pluto’s atmosphere using a variety of observations, including an ultraviolet solar occultation observed by the Alice UV spectrograph. As described in these reports, absorptionmore » by molecular species in Pluto’s atmosphere yielded detections of N{sub 2}, as well as hydrocarbon species such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. Our work here further examines this data to search for UV absorption from molecular oxygen (O{sub 2}), which has a significant cross-section in the Alice spectrograph bandpass. We find no evidence for O{sub 2} absorption and place an upper limit on the total amount of O{sub 2} in Pluto’s atmosphere as a function of tangent height up to 700 km. In most of the atmosphere, this upper limit in line-of-sight abundance units is ∼3 × 10{sup 15} cm{sup −2}, which, depending on tangent height, corresponds to a mixing ratio of 10{sup −6} to 10{sup −4}, far lower than in comet 67P/CG.« less
Wide-Field Ultraviolet Spectrometer for Planetary Exospheres and Thermospheres
NASA Astrophysics Data System (ADS)
Fillingim, M. O.; Wishnow, E. H.; Miller, T.; Edelstein, J.; Lillis, R. J.; Korpela, E.; England, S.; Shourt, W. V.; Siegmund, O.; McPhate, J.; Courtade, S.; Curtis, D. W.; Deighan, J.; Chaffin, M.; Harmoul, A.; Almatroushi, H. R.
2016-12-01
Understanding the composition, structure, and variability of a planet's upper atmosphere - the exosphere and thermosphere - is essential for understanding how the upper atmosphere is coupled to the lower atmosphere, magnetosphere and near-space environment, and the Sun. Ultraviolet spectroscopy can directly observe emissions from constituents in the exosphere and thermosphere. From such observations, the structure, composition, and variability can be determined.We will present the preliminary design for a wide field ultraviolet imaging spectrometer for remote sensing of planetary atmospheres. The imaging spectrometer achieves an extremely large instantaneous 110 degree field of view with no moving scanning mirror. The imaging resolution is very appropriate for extended atmospheric emission studies, with a resolution of better than 0.3 degrees at the center to 0.4 degrees at the edges of the field. The spectral range covers 120 - 170 nm, encompassing emissions from H, O, C, N, CO, and N2, with an average spectral resolution of 1.5 nm. The instrument is composed of a 2-element wide-field telescope, a 3-element Offner spectrometer, and a sealed MCP detector system contained within a compact volume of about 40 x 25 x 20 cm. We will present the optical and mechanical design as well as the predicted optical performance.The wide instantaneous FOV simplifies instrument and spacecraft operations by removing the need for multiple scans (either from a scan mirror or spacecraft slews) to cover the regions of interest. This instrumentation can allow for two-dimensional spectral information to be built up with simple spacecraft operation or just using spacecraft motion. Applications to the terrestrial geocorona and thermosphere will be addressed as well as applications to the upper atmospheres of other planetary objects.
Lammer, Helmut; Odert, Petra; Kulikov, Yuri N.; Kislyakova, Kristina G.; Khodachenko, Maxim L.; Güdel, Manuel; Hanslmeier, Arnold; Biernat, Helfried
2013-01-01
Abstract The recently discovered low-density “super-Earths” Kepler-11b, Kepler-11f, Kepler-11d, Kepler-11e, and planets such as GJ 1214b represent the most likely known planets that are surrounded by dense H/He envelopes or contain deep H2O oceans also surrounded by dense hydrogen envelopes. Although these super-Earths are orbiting relatively close to their host stars, they have not lost their captured nebula-based hydrogen-rich or degassed volatile-rich steam protoatmospheres. Thus, it is interesting to estimate the maximum possible amount of atmospheric hydrogen loss from a terrestrial planet orbiting within the habitable zone of late main sequence host stars. For studying the thermosphere structure and escape, we apply a 1-D hydrodynamic upper atmosphere model that solves the equations of mass, momentum, and energy conservation for a planet with the mass and size of Earth and for a super-Earth with a size of 2 REarth and a mass of 10 MEarth. We calculate volume heating rates by the stellar soft X-ray and extreme ultraviolet radiation (XUV) and expansion of the upper atmosphere, its temperature, density, and velocity structure and related thermal escape rates during the planet's lifetime. Moreover, we investigate under which conditions both planets enter the blow-off escape regime and may therefore experience loss rates that are close to the energy-limited escape. Finally, we discuss the results in the context of atmospheric evolution and implications for habitability of terrestrial planets in general. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1011–1029. PMID:24251443