Sample records for upper atmospheric wind

  1. WAMDII: The Wide Angle Michelson Doppler Imaging Interferometer

    NASA Technical Reports Server (NTRS)

    1992-01-01

    As part of an effort to learn more about the upper atmosphere and how it is linked to the weather experienced each day, NASA and NRCC are jointly sponsoring the Wide Angle Michelson Doppler Imaging Interferometer (WAMDII) Mission. WAMDII will measure atmospheric temperature and wind speed in the upper atmosphere. In addition to providing data on the upper atmosphere, the wind speed and temperature readings WAMDII takes will also be highly useful in developing and updating computer simulated models of the upper atmosphere. These models are used in the design and testing of equipment and software for Shuttles, satellites, and reentry vehicles. In making its wind speed and temperature measurements, WAMDII examines the Earth's airglow, a faint photochemical luminescence caused by the influx of solar ultraviolet energy into the upper atmosphere. During periods of high solar flare activity, the amount of this UV energy entering the upper atmosphere increases, and this increase may effect airglow emissions.

  2. MAVEN observations of the Mars upper atmosphere, ionosphere, and solar wind interactions

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.

    2017-09-01

    The Mars Atmosphere and Volatile Evolution (MAVEN) mission to Mars has been operating in orbit for more than a full Martian year. Observations are dramatically changing our view of the Mars upper atmosphere system, which includes the upper atmosphere, ionosphere, coupling to the lower atmosphere, magnetosphere, and interactions with the Sun and the solar wind. The data are allowing us to understand the processes controlling the present-day structure of the upper atmosphere and the rates of escape of gas to space. These will tell us the role that escape to space has played in the evolution of the Mars atmosphere and climate.

  3. A comparative study of Venus and Mars - Upper atmospheres, ionospheres and solar wind interactions

    NASA Technical Reports Server (NTRS)

    Mahajan, K. K.; Kar, J.

    1990-01-01

    The neutral atmospheres of Mars and Venus are discussed. A comparative study is presented of the upper atmospheres, ionospheres, and solar wind interactions of these two planets. The review is mainly concerned with the region about 100 km above the surface of the planets.

  4. High-resolution optical measurements of atmospheric winds from space. I - Lower atmosphere molecular absorption

    NASA Technical Reports Server (NTRS)

    Hays, P. B.

    1982-01-01

    A high-resolution spectroscopic technique, analogous to that used in the thermosphere to measure the vector wind fields in the upper troposphere and stratosphere, is described which uses narrow features in the spectrum of light scattered from the earth's lower atmosphere to provide Doppler information on atmospheric scattering and absorption. It is demonstrated that vector winds can be measured from a satellite throughout the lower atmosphere, using a multiple-etalon Fabry-Perot interferometer of modest aperture. It is found that molecular oxygen and water vapor absorption lines in the spectrum of sunlight scattered by the atmosphere are Doppler-shifted by the line of sight wind, so that they may be used to monitor the global wind systems in the upper troposphere and stratosphere.

  5. The Earth's Middle Atmosphere: COSPAR Plenary Meeting, 29th, Washington, DC, 28 Aug.-5 Sep., 1992

    NASA Technical Reports Server (NTRS)

    Grosse, W. L. (Editor); Ghazi, A. (Editor); Geller, M. A. (Editor); Shepherd, G. G. (Editor)

    1994-01-01

    The conference presented the results from the Upper Atmosphere Research Satellite (UARS) in the areas of wind, temperature, composition, and energy input into the upper atmosphere. Also presented is the current status of validation of the UARS temperature and wind instruments measuring at and above the menopause. The two UARS instruments involved were the High Resolution Doppler Imager (HRDI) and the WIND Imaging Interferometer (WINDII). Papers are presented covering almost all aspects of middle atmospheric science, including dynamics, layering in the middle atmosphere, atmospheric composition, solar and geomagnetic effects, electrodynamics, and the ionosphere.

  6. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  7. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2016-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  8. Quality Control of Wind Data from 50-MHz Doppler Radar Wind Profiler

    NASA Technical Reports Server (NTRS)

    Vacek, Austin

    2015-01-01

    Upper-level wind profiles obtained from a 50-MHz Doppler Radar Wind Profiler (DRWP) instrument at Kennedy Space Center are incorporated in space launch vehicle design and day-of-launch operations to assess wind effects on the vehicle during ascent. Automated and manual quality control (QC) techniques are implemented to remove spurious data in the upper-level wind profiles caused from atmospheric and non-atmospheric artifacts over the 2010-2012 period of record (POR). By adding the new quality controlled profiles with older profiles from 1997-2009, a robust database will be constructed of upper-level wind characteristics. Statistical analysis will determine the maximum, minimum, and 95th percentile of the wind components from the DRWP profiles over recent POR and compare against the older database. Additionally, this study identifies specific QC flags triggered during the QC process to understand how much data is retained and removed from the profiles.

  9. Remote sensing of mesospheric winds with the High-Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, V. J.; Burrage, M. D.; Gell, D. A.; Grassi, H. J.; Marshall, A. R.; Morton, Y. T.; Ortland, D. A.; Skinner, W. R.; Wu, D. L.

    1992-01-01

    Observations of the winds in the upper atmosphere obtained with the High-Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) are discussed. This instrument is a very stable high-resolution triple-etalon Fabry-Perot interferometer, which is used to observe the slight Doppler shifts of absorption and emission lines in the O2 Atmospheric bands induced by atmospheric motions. Preliminary observations indicate that the winds in the mesosphere and lower thermosphere are a mixture of migrating and non-migrating tides, and planetary-scale waves. The mean meridional winds are dominated by the 1,1 diurnal tide which is easily extracted from the daily zonal means of the satellite observations. The daily mean zonal winds are a mixture of the diurnal tide and a zonal flow which is consistent with theoretical expectations.

  10. Space fireworks for upper atmospheric wind measurements by sounding rocket experiments

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2016-01-01

    Artificial meteor trains generated by chemical releases by using sounding rockets flown in upper atmosphere were successfully observed by multiple sites on ground and from an aircraft. We have started the rocket experiment campaign since 2007 and call it "Space fireworks" as it illuminates resonance scattering light from the released gas under sunlit/moonlit condition. By using this method, we have acquired a new technique to derive upper atmospheric wind profiles in twilight condition as well as in moonlit night and even in daytime. Magnificent artificial meteor train images with the surrounding physics and dynamics in the upper atmosphere where the meteors usually appear will be introduced by using fruitful results by the "Space firework" sounding rocket experiments in this decade.

  11. The generalization of upper atmospheric wind and temperature based on the Voigt line shape profile.

    PubMed

    Zhang, Chunmin; He, Jian

    2006-12-25

    The principle of probing the upper atmospheric wind field, which is the Voigt profile spectral line shape, is presented for the first time. By the Fourier Transform of Voigt profile, with the Imaging Spectroscope and the Doppler effect of electromagnetic wave, the distribution and calculation formulae of the velocity field, temperature field, and pressure field of the upper atmosphere wind field are given. The probed source is the two major aurora emission lines originated from the metastable O(1S) and O(1D) at 557.7nm and 630.0nm. From computer simulation and error analysis, the Voigt profile, which is the correlation of the Gaussian profile and Lorentzian profile, is closest to the actual airglow emission lines.

  12. Energy Dissipation in the Upper Atmospheres of TRAPPIST-1 Planets

    NASA Astrophysics Data System (ADS)

    Cohen, Ofer; Glocer, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Bell, Jared M.

    2018-03-01

    We present a method to quantify the upper limit of the energy transmitted from the intense stellar wind to the upper atmospheres of three of the TRAPPIST-1 planets (e, f, and g). We use a formalism that treats the system as two electromagnetic regions, where the efficiency of the energy transmission between one region (the stellar wind at the planetary orbits) to the other (the planetary ionospheres) depends on the relation between the conductances and impedances of the two regions. Since the energy flux of the stellar wind is very high at these planetary orbits, we find that for the case of high transmission efficiency (when the conductances and impedances are close in magnitude), the energy dissipation in the upper planetary atmospheres is also very large. On average, the Ohmic energy can reach 0.5–1 W m‑2, about 1% of the stellar irradiance and 5–15 times the EUV irradiance. Here, using constant values for the ionospheric conductance, we demonstrate that the stellar wind energy could potentially drive large atmospheric heating in terrestrial planets, as well as in hot Jupiters. More detailed calculations are needed to assess the ionospheric conductance and to determine more accurately the amount of heating the stellar wind can drive in close-orbit planets.

  13. Dynamics of Venus Upper Atmosphere from Infrared Heterodyne Spectroscopy of CO2

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Sonnabend, G.; Kroetz, P. J.; Stupar, D.; Schieder, R. T.; Sandor, B.; Clancy, T.

    2009-09-01

    Wind velocities in the upper atmosphere of Venus can be determined from Doppler-shifts of narrow non-LTE emission lines of CO2 at 10 µm with an precision of up to 10 m/s using infrared heterodyne spectroscopy. Such observations address a narrow altitude region in the upper atmosphere of Venus around 110 km. At the University of Cologne we developed a Tunable Infrared Heterodyne Spectrometer (THIS) capable of accomplishing such ground-based measurements of planetary atmospheres. Beside high spectral resolution (R>107) this method also guarantees high spatial resolution on the planet (FOV of 1.7 arcsec on an apparent diameter of Venus of 20 arcsec using the McMath-Pierce-Solar Telescope on Kitt Peak). Over the last two years we observed wind velocities with THIS at several characteristic orbital positions of Venus. In May and November 2007 Venus was at its maximum eastern and western elongation, respectively. This specific observing geometry with an illumination of about 50% of the apparent planetary disk allows us to detect dominantly the superrotation component in Venus upper atmosphere. So far results indicate surprisingly low wind velocities of a few tens of m/s with almost no wind at the equator and highest values at mid latitudes. Observations close to inferior conjunction have been accomplished in March and April 2009. This observing geometry gives wind velocities consisting of a combination of the superrotation and the SS-AS flow close to the terminator. Data analysis is still ongoing but first analysis indicate a higher wind velocity than found in the results from maximum elongation. We are going to present data and results from these runs as well as results from a first coordinated observation between our infrared group and JCMT sub-mm observations in March 2009.

  14. The high-resolution Doppler imager on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Abreu, Vincent J.; Dobbs, Michael E.; Gell, David A.; Grassl, Heinz J.; Skinner, Wilbert R.

    1993-01-01

    The high-resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite is a triple-etalon Fabry-Perot interferometer designed to measure winds in the stratosphere, mesosphere, and lower thermosphere. Winds are determined by measuring the Doppler shifts of rotational lines of the O2 atmospheric band, which are observed in emission in the mesosphere and lower thermosphere and in absorption in the stratosphere. The interferometer has high resolution (0.05/cm), good offhand rejection, aud excellent stability. This paper provides details of the design and capabilities of the HRDI instrument.

  15. Monthly mean large-scale analyses of upper-tropospheric humidity and wind field divergence derived from three geostationary satellites

    NASA Technical Reports Server (NTRS)

    Schmetz, Johannes; Menzel, W. Paul; Velden, Christopher; Wu, Xiangqian; Vandeberg, Leo; Nieman, Steve; Hayden, Christopher; Holmlund, Kenneth; Geijo, Carlos

    1995-01-01

    This paper describes the results from a collaborative study between the European Space Operations Center, the European Organization for the Exploitation of Meteorological Satellites, the National Oceanic and Atmospheric Administration, and the Cooperative Institute for Meteorological Satellite Studies investigating the relationship between satellite-derived monthly mean fields of wind and humidity in the upper troposphere for March 1994. Three geostationary meteorological satellites GOES-7, Meteosat-3, and Meteosat-5 are used to cover an area from roughly 160 deg W to 50 deg E. The wind fields are derived from tracking features in successive images of upper-tropospheric water vapor (WV) as depicted in the 6.5-micron absorption band. The upper-tropospheric relative humidity (UTH) is inferred from measured water vapor radiances with a physical retrieval scheme based on radiative forward calculations. Quantitative information on large-scale circulation patterns in the upper-troposphere is possible with the dense spatial coverage of the WV wind vectors. The monthly mean wind field is used to estimate the large-scale divergence; values range between about-5 x 10(exp -6) and 5 x 10(exp 6)/s when averaged over a scale length of about 1000-2000 km. The spatial patterns of the UTH field and the divergence of the wind field closely resemble one another, suggesting that UTH patterns are principally determined by the large-scale circulation. Since the upper-tropospheric humidity absorbs upwelling radiation from lower-tropospheric levels and therefore contributes significantly to the atmospheric greenhouse effect, this work implies that studies on the climate relevance of water vapor should include three-dimensional modeling of the atmospheric dynamics. The fields of UTH and WV winds are useful parameters for a climate-monitoring system based on satellite data. The results from this 1-month analysis suggest the desirability of further GOES and Meteosat studies to characterize the changes in the upper-tropospheric moisture sources and sinks over the past decade.

  16. Jovian Temperatures--Highest Resolution

    NASA Image and Video Library

    1997-09-24

    This image, bottom panel, from NASA Galileo orbiter indicates the forces powering Jovian winds, and differentiates between areas of strongest upwelling and downwelling winds in the upper part of the atmosphere where winds are strong.

  17. Measurement of middle and upper atmospheric horizontal winds with a submillimeter/THz limb sounder: results from JEM/SMILES and simulation study for SMILES-2

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Manago, Naohiro; Ozeki, Hiroyuki; Yoshihisa, Irimajiri; Donal, Murtagh; Yoshinori, Uzawa; Satoshi, Ochiai; Masato, Shiotani; Makoto, Suzuki

    2016-04-01

    In a near future, ESA will launch the Atmospheric Dynamics Mission (ADM) equipped with a lidar for measuring tropospheric and lower stratospheric winds. NASA will continue a long-term series of upper atmospheric wind measurements (altitudes >80 km) with the new Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) satellite. No mission is planned to observe winds in the middle atmosphere (30-80 km), though they are recognized as essential parameters for understanding atmospheric dynamics and the vertical coupling between atmospheric regions. They are also promising data for improving long-term weather forecast and climate modelling. It has been demonstrated with the Superconducting Submillimeter Wave Limb Emission Sounder (SMILES, Oct 2009 - Apr 2010) that a 4-K cooled microwave radiometer can provide data to fill the altitude gap in the wind measurements. Its possible successor named SMILES-2, is being designed in Japan for the study of the middle and upper atmospheric chemistry and dynamics (O3, H2O, T, atomic O, OH, HO2, ClO, BrO, ...). If realized, the instrument will measure sub-millimeter and THz molecular spectral lines (616-150 μm) with high sensitivity and frequency resolution. The SMILES-2 characteristics are very well suited for horizontal wind observations between 20 km to more than 160 km. The best performances are found between 35-90 km where the retrieval precision is better than 3 m/s for a vertical resolution of 2-3 km [1]. In this presentation, we summarize the results obtained from SMILES and assess the measurement performances of SMILES-2 to measure horizontal winds. [1] P. Baron, N. Manago, H. Ozeki, Y. Irimajiri, D. Murtagh, Y. Uzawa, S. Ochiai, M. Shiotani, M. Suzuki: "Measurement of stratospheric and mesospheric winds with a SubMillimeter wave limb sounder: Results from JEM/SMILES and simulation study for SMILES-2"; Proc. of SPIE Remote sensing, 96390N-96390N-20, 2015

  18. Planet-B: A Japanese Mars aeronomy observer

    NASA Technical Reports Server (NTRS)

    Tsuruda, K.

    1992-01-01

    An introduction is given to a Japanese Mars mission (Planet-B) which is being planned at the Institute of Space and Aeronautical Science (ISAS), Japan. Planet-B aims to study the upper atmosphere of Mars and its interaction with the solar wind. The launch of Planet-B is planned for 1996 on a new launcher, M-L, which is being developed at ISAS. In addition to the interaction with the solar wind, the structure of the Martian upper atmosphere is thought to be controlled by the meteorological condition in the lower atmosphere. The orbit of Planet-B was chosen so that it will pass two important regions, the region where the solar wind interacts with the Martian upper atmosphere and the tail region where ion acceleration is taking place. Considering the drag due to the Martian atmosphere, the periapsis altitude of 150 km and apoapsis of 10 Martian radii are planned. The orbit plane will be nearly parallel to the ecliptic plane. The altitude of the spacecraft will be spin stabilized and its spin axis will be controlled to the point of the earth. The dry weight of the spacecraft will be about 250 kg, including the scientific payload which consists of a magnetometer, plasma instruments, HF sounder, UV imaging spectrometer, and lower atmosphere monitor.

  19. WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Thuillier, G.; Gault, W. A.; Solheim, B. H.; Hersom, C.; Alunni, J. M.; Brun, J.-F.; Brune, S.; Charlot, P.; Cogger, L. L.

    1993-01-01

    The WIND imaging interferometer (WINDII) was launched on the Upper Atmosphere Research Satellite (UARS) on September 12, 1991. This joint project, sponsored by the Canadian Space Agency and the French Centre National d'Etudes Spatiales, in collaboration with NASA, has the responsibility of measuring the global wind pattern at the top of the altitude range covered by UARS. WINDII measures wind, temperature, and emission rate over the altitude range 80 to 300 km by using the visible region airglow emission from these altitudes as a target and employing optical Doppler interferometry to measure the small wavelength shifts of the narrow atomic and molecular airglow emission lines induced by the bulk velocity of the atmosphere carrying the emitting species. The instrument used is an all-glass field-widened achromatically and thermally compensated phase-stepping Michelson interferometer, along with a bare CCD detector that images the airglow limb through the interferometer. A sequence of phase-stepped images is processed to derive the wind velocity for two orthogonal view directions, yielding the vector horizontal wind. The process of data analysis, including the inversion of apparent quantities to vertical profiles, is described.

  20. Jupiter's outer atmosphere.

    NASA Technical Reports Server (NTRS)

    Brice, N. M.

    1973-01-01

    The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Allen belt is attributed to solar wind particles diffused in toward the planet by dynamo electric fields from ionospheric neutral winds, and the consequences of this theory are indicated.

  1. The upper atmosphere and ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1992-01-01

    The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.

  2. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    NASA Astrophysics Data System (ADS)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  3. Atmospheric helium and geomagnetic field reversals.

    NASA Technical Reports Server (NTRS)

    Sheldon, W. R.; Kern, J. W.

    1972-01-01

    The problem of the earth's helium budget is examined in the light of recent work on the interaction of the solar wind with nonmagnetic planets. It is proposed that the dominant mode of helium (He4) loss is ion pumping by the solar wind during geomagnetic field reversals, when the earth's magnetic field is very small. The interaction of the solar wind with the earth's upper atmosphere during such a period is found to involve the formation of a bow shock. The penetration altitude of the shock-heated solar plasma is calculated to be about 700 km, and ionization rates above this level are estimated for a cascade ionization (electron avalanche) process to average 10 to the 9th power ions/sq cm/sec. The calculated ionization rates and the capacity of the solar wind to remove ionized helium (He4) from the upper atmosphere during geomagnetic dipole reversals are sufficient to yield a secular equilibrium over geologic time scales. The upward transport of helium from the lower atmosphere under these conditions is found to be adequate to sustain the proposed loss rate.

  4. Variation of Equatorial F-region Vertical Neutral Wind and Neutral Temperature during Geomagnetic Storms: Brazil FPI Observations

    NASA Astrophysics Data System (ADS)

    Sheng, C.; De La Garza, J. L.; Deng, Y.; Makela, J. J.; Fisher, D. J.; Meriwether, J. W.; Mesquita, R.

    2015-12-01

    An accurate description of vertical neutral winds in the thermosphere is essential to understand how the upper atmosphere responds to the geomagnetic storms. However, vertical wind measurements are difficult to obtain and there are still limited data. Recent observation deployments now permit substantial progress on this issue. In this paper, neutral vertical wind data from Brazil FPI observations at around 240 km altitude during 2009 to 2015 are used for the study of the equatorial vertical wind and neutral temperature variation during geomagnetic activity times. First, the observations during several particular storm periods will be analyzed. Secondly, Epoch analysis will be used to bin all the observed events together to investigate the climatological features of vertical wind and temperature during storms. The results will give us an unprecedented view of the nighttime vertical wind and neutral temperature variations at low latitudes, which is critical to specify the dynamics of the upper atmosphere.

  5. Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Rafkin, S.; Drossart, P.

    2006-11-01

    A consistent picture of the dynamics of the Venus upper atmosphere from ˜90 to 200 km has begun to emerge [e.g., Bougher, S.W., Alexander, M.J., Mayr, H.G., 1997. Upper Atmosphere Dynamics: Global Circulation and Gravity Waves. Venus II, CH. 2.4. University of Arizona Press, Tucson, pp. 259-292; Lellouch, E., Clancy, T., Crisp, D., Kliore, A., Titov, D., Bougher, S.W., 1997. Monitoring of Mesospheric Structure and Dynamics. Venus II, CH. 3.1. University of Arizona Press, Tucson, pp. 295-324]. The large-scale circulation of the Venus upper atmosphere (upper mesosphere and thermosphere) can be decomposed into two distinct flow patterns: (1) a relatively stable subsolar-to-antisolar (SS-AS) circulation cell driven by solar heating, and (2) a highly variable retrograde superrotating zonal (RSZ) flow. Wave-like perturbations have also been observed. However, the processes responsible for maintaining (and driving variations in) these SS-AS and RSZ winds are not well understood. Variations in winds are thought to result from gravity wave breaking and subsequent momentum and energy deposition in the upper atmosphere [Alexander, M.J., 1992. A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207-2210; Zhang, S., Bougher, S.W., Alexander, M.J., 1996. The impact of gravity waves on the Venus thermosphere and O2 IR nightglow. J. Geophys. Res. 101, 23195-23205]. However, existing data sets are limited in their spatial and temporal coverage, thereby restricting our understanding of these changing circulation patterns. One of the major goals of the Venus Express (VEX) mission is focused upon increasing our understanding of the circulation and dynamical processes of the Venus atmosphere up to the exobase [Titov, D.V., Lellouch, E., Taylor, F.W., 2001. Venus Express: Response to ESA's call for ideas for the re-use of the Mars Express platform. Proposal to European Space Agency, 1-74]. Several VEX instruments are slated to obtain remote measurements (2006-2008) that will complement those obtained earlier by the Pioneer Venus Orbiter (PVO) between 1978 and 1992. These VEX measurements will provide a more comprehensive investigation of the Venus upper atmosphere (90-200 km) structure and dynamics over another period in the solar cycle and for variable lower atmosphere conditions. An expanded climatology of Venus upper atmosphere structure and wind components will be developed. In addition, gravity wave parameters above the cloud tops will be measured (or inferred), and used to constrain gravity wave breaking models. In this manner, the gravity wave breaking mechanism (thought to regulate highly variable RSZ winds) can be tested using Venus general circulation models (GCMs).

  6. Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    NASA Technical Reports Server (NTRS)

    Vincent, R. A. (Editor)

    1984-01-01

    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.

  7. Arctic Strato-Mesospheric Temperature and Wind Variations

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2004-01-01

    Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.

  8. Oscillation of Surface PM2.5 Concentration Resulting from an Alternation of Easterly and Southerly Winds in Beijing: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Sun, Zhaobin; Zhang, Xiaoling; Zhao, Xiujuan; Xia, Xiangao; Miao, Shiguang; Li, Ziming; Cheng, Zhigang; Wen, Wei; Tang, Yixi

    2018-04-01

    We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern-central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.

  9. Toward a New Capability for Upper Atmospheric Research using Atomic Oxygen Lidar

    NASA Astrophysics Data System (ADS)

    Clemmons, J. H.; Steinvurzel, P.; Mu, X.; Beck, S. M.; Lotshaw, W. T.; Rose, T. S.; Hecht, J. H.; Westberg, K. R.; Larsen, M. F.; Chu, X.; Fritts, D. C.

    2017-12-01

    Progress on development of a lidar system for probing the upper atmosphere based on atomic oxygen resonance is presented and discussed. The promise of a fully-developed atomic oxygen lidar system, which must be based in space to measure the upper atmosphere, for yielding comprehensive new insights is discussed in terms of its potential to deliver global, height-resolved measurements of winds, temperature, and density at a high cadence. An overview of the system is given, and its measurement principles are described, including its use of 1) a two-photon transition to keep the optical depth low; 2) laser tuning to provide the Doppler information needed to measure winds; and 3) laser tuning to provide a Boltzmann temperature measurement. The current development status is presented with a focus on what has been done to demonstrate capability in the laboratory and its evolution to a funded sounding rocket investigation designed to make measurements of three-dimensional turbulence in the upper mesosphere and lower thermosphere.

  10. MAVEN - Mars Atmosphere and Volatile EvolutioN Mission

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Jakosky, Bruce M.

    2011-01-01

    NASA's MAVEN mission (to be launched in late 2013) is the first mission to Mars devoted to sampling all of the upper atmosphere neutral and plasma environments, including the well-mixed atmosphere, the exosphere, ionosphere, outer magnetosphere and near-Mars solar wind. It will fill in some measurement gaps remaining from the successful Mars Global Surveyor and the on-going Mars Express missions. The primary science objectives of MAVEN are: 1. Provide a comprehensive picture of the present state of the upper atmosphere and ionosphere of Mars; 2. Understand the processes controlling the present state; and 3. Determine how loss of volatiles to outer space in the present epoch varies with changing solar condition - EUY, solar wind and interplanetary magnetic field measurements will provide the varying solar energy inputs into the system. Knowing how these processes respond to the Sun's energy inputs in the current epoch will provide a framework for projecting atmospheric processes back in time to profile MARS' atmospheric evolution and to explore "where the water went", A description will be given of the science objectives, the instruments, and the current status of the project, emphasizing the value of having collaborations between the MAVEN project and the Mars upper atmosphere science community.

  11. Gone with the Wind: Three Years of MAVEN Measurements of Atmospheric Loss at Mars

    NASA Astrophysics Data System (ADS)

    Brain, David; MAVEN Team

    2017-10-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is making measurements of the Martian upper atmosphere and near space environment, and their interactions with energy inputs from the Sun. A major goal of the mission is to evaluate the loss of atmospheric gases to space in the present epoch, and over Martian history. MAVEN is equipped with instruments that measure both the neutral and charged upper atmospheric system (thermosphere, ionosphere, exosphere, and magnetosphere), inputs from the Sun (extreme ultraviolet flux, solar wind and solar energetic particles, and interplanetary magnetic field), and escaping atmospheric particles. The MAVEN instruments, coupled with models, allow us to more completely understand the physical processes that control atmospheric loss and the particle reservoirs for loss.Here, we provide an overview of the significant results from MAVEN over approximately 1.5 Mars years (nearly three Earth years) of observation, from November 2014 to present. We argue that the MAVEN measurements tell us that the loss of atmospheric gases to space was significant over Martian history, and present the seasonal behavior of the upper atmosphere and magnetosphere. We also discuss the influence of extreme events such as solar storms, and a variety of new discoveries and observations of the Martian system made by MAVEN.

  12. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which will be discussed in this presentation.

  13. Atmospheric structure prior to tornadoes as derived from proximity and precedent upper-air soundings, covering the period April 1977-June 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, G.E.; Darkow, G.L.

    1982-05-01

    The uniqueness of the thermodynamic and dynamic structure of the atmosphere in the area of imminent tornado bearing storm development is analyzed by comparing 115 tornado proximity soundings with upper air soundings made at the same location 6 and 12 hours earlier (precedent soundings) and with soundings made simultaneously at neighboring upper air stations. The comparisons suggest that both the proximity station and the neighboring station upstream with respect to the mean flow in the low level moist air display very similar degrees of hydrostatic and potential-convective instability by late afternoon. The principal difference is in the wind profiles atmore » the two locations. The tornado proximity station displays significantly stronger wind speeds above 1 km with the most striking difference being in the vertical shear of the wind in the layer from 1 to 3 km above ground level. In this layer the winds at the proximity station show an average increase of about 3 m sec/sup -1/ while the upstream, non-tornadic, station shows a slight decrease of wind speed with height.« less

  14. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the total ion loss to space over Mars history, and thus enhance the science returned from the MAVEN mission.

  15. Winds and Waves (4 Min - 11 Yrs) in the Upper Middle Atmosphere (60-110 Km) at Saskatoon, Canada (52 Deg N, 107 Deg W): MF Radar (2.2 Mhz) Soundings 1973 - 1983

    NASA Technical Reports Server (NTRS)

    Manson, A. H.; Meek, C. E.; Gregory, J. B.

    1984-01-01

    Examples of gravity waves (GW), tides, planetary waves (PW), and circulation effects in the upper middle atmosphere are presented. Energy densities of GW, tides, and PW are compared. Fourier and spectral analyses are applied to the data.

  16. Surface Wind and Upper-Ocean Variability Associated with the Madden-Julian Oscillation Simulated by the Coupled Ocean-Atmosphere Mesoscale Prediction System

    DTIC Science & Technology

    2013-07-01

    observed data at one location include variability caused by small -scale atmospheric convec- tion and wind variations that cannot be resolved by the... data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this...high-resolution nested grid (9 km) for the atmospheric component is used for the central Indian Ocean. While observational data are assimilated into the

  17. MAVEN Observations of Atmospheric Loss at Mars

    NASA Astrophysics Data System (ADS)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other stellar systems.

  18. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  19. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  20. Theoretical and experimental investigations of upper atmosphere dynamics

    NASA Technical Reports Server (NTRS)

    Roper, R. G.; Edwards, H. D.

    1980-01-01

    A brief overview of the significant contributions made to the understanding of the dynamics of the Earth's upper atmosphere is presented, including the addition of winds and diffusion to the semi-empirical Global Reference Atmospheric Model developed for the design phase of the Space Shuttle, reviews of turbulence in the lower thermosphere, the dynamics of the equatorial mesopause, stratospheric warming effects on mesopause level dynamics, and the relevance of these studies to the proposed Middle Atmosphere Program (1982-85). A chronological bibliography, with abstracts of all papers published, is also included.

  1. Intraseasonal variability of upper-ocean currents and photosynthetic primary production along the U.S. west coast associated with the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Barrett, B.; Davies, A. R.; Steppe, C. N.; Hackbarth, C.

    2017-12-01

    In the first part of this study, time-lagged composites of upper-ocean currents from February to May of 1993-2016 were binned by active phase of the leading atmospheric mode of intraseasonal variability, the Madden-Julian Oscillation (MJO). Seven days after the convectively active phase of the MJO enters the tropical Indian Ocean, anomalously strong south-southeastward upper-ocean currents are observed along the majority of U.S. west coast. Seven days after the convectively active phase enters the tropical western Pacific Ocean, upper-ocean current anomalies reverse along the U.S. west coast, with weaker southward flow. A physical pathway to the ocean was found for both of these: (a) tropical MJO convection modulates upper-tropospheric heights and circulation over the Pacific Ocean; (b) those anomalous atmospheric heights adjust the strength and position of the Aleutian Low and Hawaiian High; (c) surface winds change in response to the adjusted atmospheric pressure patterns; and (d) those surface winds project onto upper-ocean currents. In the second part of this study, we investigated if the MJO modulated intraseasonal variability of surface wind forcing and upper-ocean currents projected onto phytoplankton abundance along the U.S. west coast. Following a similar methodology, time-lagged, level 3 chlorophyll-a satellite products (a proxy for photosynthetic primary production) were binned by active MJO phase and analyzed for statistical significance using the Student's t test. Results suggest that intraseasonal variability of biological production along the U.S. west coast may be linked to the MJO, particularly since the time scale of the life cycle of phytoplankton is similar to the time scale of the MJO.

  2. A Study of the Effects of Large Scale Gust Generation in a Small Scale Atmospheric Wind Tunnel: Application to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason; Mohseni, Kamran

    2009-11-01

    Modern technology operating in the atmospheric boundary layer could benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the turbulence of the atmospheric boundary layer at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an ``atmospheric wind tunnel'' is sought. Many programs could utilize such a tool including that of Micro Aerial Vehicles (MAVs) and other unmanned aircraft, the wind energy industry, fuel efficient vehicles, and the study of bird and insect fight. The construction of an active ``gust generator'' for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to days ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using oil flow visualization.

  3. Measurement of the horizontal velocity of wind perturbations in the middle atmosphere by spaced MF radar systems

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Manson, A. H.; Smith, M. J.

    1983-01-01

    Two remote receiving sites have been set up at a distance of approx 40 km from the main MF radar system. This allows measurement of upper atmosphere winds from 60-120 km (3 km resolution) at the corners of an approximately equilateral triangle of side approx 20 km. Some preliminary data are compared through cross correlation and cross spectral analysis in an attempt to determine the horizontal velocity of wind perturbations and/or the horizontal wavelength and phase velocity of gravity waves.

  4. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands (Prikryl et al., Ann. Geophys., 27, 31-57, 2009). It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  5. Upper Atmospheric Monitoring for Ares I-X Ascent Loads and Trajectory Evaluation on the Day-of-Launch

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.; McGrath, Kevin; Starr, Brett; Brandon, Jay

    2009-01-01

    During the launch countdown of the Ares I-X test vehicle, engineers from Langley Research Center will use profiles of atmospheric density and winds in evaluating vehicle ascent loads and controllability. A schedule for the release of balloons to measure atmospheric density and winds has been developed by the Natural Environments Branch at Marshall Space Flight Center to help ensure timely evaluation of the vehicle ascent loads and controllability parameters and support a successful launch of the Ares I-X vehicle.

  6. Upper atmospheric planetary-wave and gravity-wave observations

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1973-01-01

    Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.

  7. The clouds and winds of Neptune

    NASA Astrophysics Data System (ADS)

    Beebe, R.

    1992-04-01

    The atmospheric features of Neptune are described based on the images from Voyager 2 with comparisons made to the atmosphere of Uranus. Specific attention is given to the clear atmosphere's methane content and lack of the smog associated with Uranus. Neptune absorbs only a small amount of energy from sunlight and radiates about 2.7 times as much as it absorbs. The mechanisms that keep Neptune's atmosphere free of smog are thought to be upwelling enhanced by an outward heat flow and melting ice. The Voyager photographs show streaks of white clouds indicating strong winds and probably white ice in the upper atmosphere. The Great Dark Spot and a small triangular cloud are described in terms of their periods of rotation, and the wind speed is discussed in terms of cloud variations. The Great Dark Spot drifted equatorward during the observational period, and the drift yields some important clues regarding the nature of the Neptunian atmosphere and climate.

  8. Time evolution of atmospheric parameters and their influence on sea level pressure over the head Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix

    2018-06-01

    A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.

  9. Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.

    2017-01-01

    Space launch vehicles develop day-of-launch steering commands based upon the upper-level atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, upper-level wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA's) Kennedy Space Center co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution rawinsondes. One inherent limitation with rawinsondes consists of taking approximately one hour to generate a vertically complete wind profile. Additionally, rawinsonde drift during ascent by the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during rawinsonde ascent as a function of season and discuss an alternative method to measure upper level wind environments in closer proximity to the vehicle trajectory launching from the ER.

  10. MAVEN observations of the response of Mars to an interplanetary coronal mass ejection.

    PubMed

    Jakosky, B M; Grebowsky, J M; Luhmann, J G; Connerney, J; Eparvier, F; Ergun, R; Halekas, J; Larson, D; Mahaffy, P; McFadden, J; Mitchell, D F; Schneider, N; Zurek, R; Bougher, S; Brain, D; Ma, Y J; Mazelle, C; Andersson, L; Andrews, D; Baird, D; Baker, D; Bell, J M; Benna, M; Chaffin, M; Chamberlin, P; Chaufray, Y-Y; Clarke, J; Collinson, G; Combi, M; Crary, F; Cravens, T; Crismani, M; Curry, S; Curtis, D; Deighan, J; Delory, G; Dewey, R; DiBraccio, G; Dong, C; Dong, Y; Dunn, P; Elrod, M; England, S; Eriksson, A; Espley, J; Evans, S; Fang, X; Fillingim, M; Fortier, K; Fowler, C M; Fox, J; Gröller, H; Guzewich, S; Hara, T; Harada, Y; Holsclaw, G; Jain, S K; Jolitz, R; Leblanc, F; Lee, C O; Lee, Y; Lefevre, F; Lillis, R; Livi, R; Lo, D; Mayyasi, M; McClintock, W; McEnulty, T; Modolo, R; Montmessin, F; Morooka, M; Nagy, A; Olsen, K; Peterson, W; Rahmati, A; Ruhunusiri, S; Russell, C T; Sakai, S; Sauvaud, J-A; Seki, K; Steckiewicz, M; Stevens, M; Stewart, A I F; Stiepen, A; Stone, S; Tenishev, V; Thiemann, E; Tolson, R; Toublanc, D; Vogt, M; Weber, T; Withers, P; Woods, T; Yelle, R

    2015-11-06

    Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere. Copyright © 2015, American Association for the Advancement of Science.

  11. Solar and terrestrial physics. [effects of solar activities on earth environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The effects of solar radiation on the near space and biomental earth, the upper atmosphere, and the magnetosphere are discussed. Data obtained from the OSO satellites pertaining to the solar cycle variation of extreme ultraviolet (EUV) radiation are analyzed. The effects of solar cycle variation of the characteristics of the solar wind are examined. The fluid mechanics of shock waves and the specific relationship to the characteristics of solar shock waves are investigated. The solar and corpuscular heating of the upper atmosphere is reported based on the findings of the AEROS and NATE experiments. Seasonal variations of the upper atmosphere composition are plotted based on OGO-6 mass spectrometer data.

  12. Meteorological interpretation of transient LOD changes

    NASA Astrophysics Data System (ADS)

    Masaki, Y.

    2008-04-01

    The Earth’s spin rate is mainly changed by zonal winds. For example, seasonal changes in global atmospheric circulation and episodic changes accompanied with El Nĩ os are clearly detected n in the Length-of-day (LOD). Sub-global to regional meteorological phenomena can also change the wind field, however, their effects on the LOD are uncertain because such LOD signals are expected to be subtle and transient. In our previous study (Masaki, 2006), we introduced atmospheric pressure gradients in the upper atmosphere in order to obtain a rough picture of the meteorological features that can change the LOD. In this presentation, we compare one-year LOD data with meteorological elements (winds, temperature, pressure, etc.) and make an attempt to link transient LOD changes with sub-global meteorological phenomena.

  13. The 4-5 day mode oscillation in zonal winds of Indian middle atmosphere during MONEX-79

    NASA Astrophysics Data System (ADS)

    Reddy, R. S.; Mukherjee, B. K.; Indira, K.; Murty, B. V. R.

    1985-12-01

    In the early studies based on time series of balloon observations, the existence of 4 to 5 day period waves and 10 to 20 day wind fluctuations were found in the tropical lower stratosphere, and they are identified theoretically as the mixed Rossby-gravity wave and the Kelvin wave, respectively. On the basis of these studies, it was established that the vertically propagating equatorial waves play an important role in producing the QBO (quasi-biennial oscillation) in the mean zonal wind through the mechanism of wave-zonal interaction. These studies are mainly concentrated over the equatorial Pacific and Atlantic Oceans. Similar prominent wave disturbances have been observed over the region east of the Indian Ocean during a quasi-biennial oscillation. Zonal winds in upper troposphere and lower stratosphere (10 to 20) km of the middle atmosphere over the Indian subcontinent may bear association with the activity of summer monsoon (June-September). Monsoon Experiment (MONEX-79) has provided upper air observations at Balasore (21 deg. 30 min.N; 85 deg. 56 min.E), during the peak of monsoon months July and August. A unique opportunity has, therefore, been provided to study the normal oscillations present in the zonal winds of lower middle atmosphere over India, which may have implication on large scale wave dynamics. This aspect is examined in the present study.

  14. Vertical Helicity Flux as an Index of General Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.; Maksimenkov, L. O.; Khapaev, A. A.; Chkhetiani, O. G.

    2018-04-01

    As an index of the general atmospheric circulation over the hemisphere, it is proposed to calculate the hemisphere-area-averaged (poleward of the latitude 20°) product of the Coriolis parameter by the wind velocity squared at the upper boundary of the planetary boundary layer. In practical calculations, data on the wind velocity at an isobaric level of 850 hPa were used. Control calculations for the 900 hPa level gave similar results. It is shown that the index introduced adequately characterizes the seasonal and interannual variability of the general atmospheric circulation over both hemispheres.

  15. Measurement of winds in Venus' upper mesosphere based on Doppler shifts of the 2.6-mm (C-12)O line

    NASA Technical Reports Server (NTRS)

    Shah, Kathryn P.; Muhleman, Duane O.; Berge, Glenn L.

    1991-01-01

    Venus observations conducted in 1988 at the first rotational transition of (C-12)O finely sampled this absorption line by means of a 32-channel filter bank; with this spatial and spectral resolution, it proved possible to measure Doppler shifts of the absorption line across the planet due to strong winds in Venus' upper mesosphere. The Doppler shifts change in a way that is indicative of westward horizontal winds. The radial wind speeds from the Doppler shifts were smoothed to reduce noise and then fitted in least-squares fashion to canonical forms of the lower atmosphere's westward zonal flow. The two flows exhibit a high correlation in orientation.

  16. Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction

    NASA Astrophysics Data System (ADS)

    Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.

    2016-04-01

    The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.

  17. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  18. Venus winds from ultraviolet, visible and near infrared images from the VIRTIS instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Garate-Lopez, I.; Peralta, J.; Bandos, T.; Sánchez-Lavega, A.

    2013-10-01

    After more than 6 years orbiting Venus the Venus Express mission has provided the largest database of observations of Venus atmosphere at different cloud layers with the combination of VMC and VIRTIS instruments. We present measurements of cloud motions in the South hemisphere of Venus analyzing images from the VIRTIS-M visible channel at different wavelengths sensitive to the upper cloud haze at 65-70 km height (dayside ultraviolet images) and the middle cloud deck (dayside visible and near infrared images around 1 μm) about 5-8 km deeper in the atmosphere. We combine VIRTIS images in nearby wavelengths to increase the contrast of atmospheric details and measurements were obtained with a semi-automatic cloud correlation algorithm. Both cloud layers are studied simultaneously to infer similarities and differences in these vertical levels in terms of cloud morphologies and winds. For both levels we present global mean zonal and meridional winds, latitudinal distribution of winds with local time and the wind shear between both altitudes. The upper branch of the Hadley cell circulation is well resolved in UV images with an acceleration of the meridional circulation at mid-latitudes with increasing local time peaking at 14-16h. This organized meridional circulation is almost absent in NIR images. Long-term variability of zonal winds is also found in UV images with increasing winds over time during the VEX mission. This is in agreement with current analysis of VMC images (Kathuntsev et al. 2013). The possible long-term acceleration of zonal winds is also examined for NIR images. References Khatuntsev et al. Icarus 226, 140-158 (2013)

  19. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; hide

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  20. Neutral escape at Mars induced by the precipitation of high-energy protons and hydrogen atoms of the solar wind origin

    NASA Astrophysics Data System (ADS)

    Shematovich, Valery I.

    2017-04-01

    One of the first surprises of the NASA MAVEN mission was the observation by the SWIA instrument of a tenuous population of protons with solar wind energies travelling anti-sunward near periapsis, at altitudes of 150-250 km (Halekas et al., 2015). While the penetration of solar wind protons to low altitude is not completely unexpected given previous Mars Express results, this population maintains exactly the same velocity as the solar wind observed. From previous studies it was known that some fraction of the solar wind can interact with the extended corona of Mars. By charge exchange with the neutral particles in this corona, some fraction of the incoming solar wind protons can gain an electron and become an energetic neutral hydrogen atom. Once neutral, these particles penetrate through the Martian induced magnetosphere with ease, with free access to the collisional atmosphere/ionosphere. The origin, kinetics and transport of the suprathermal O atoms in the transition region (from thermosphere to exosphere) of the Martian upper atmosphere due to the precipitation of the high-energy protons and hydrogen atoms are discussed. Kinetic energy distribution functions of suprathermal and superthermal (ENA) oxygen atoms formed in the Martian upper atmosphere were calculated using the kinetic Monte Carlo model (Shematovich et al., 2011, Shematovich, 2013) of the high-energy proton and hydrogen atom precipitation into the atmosphere. These functions allowed us: (a) to estimate the non-thermal escape rates of neutral oxygen from the Martian upper atmosphere, and (b) to compare with available MAVEN measurements of oxygen corona. Induced by precipitation the escape of hot oxygen atoms may become dominant under conditions of extreme solar events - solar flares and coronal mass ejections, - as it was shown by recent observations of the NASA MAVEN spacecraft (Jakosky et al., 2015). This work is supported by the RFBR project and by the Basic Research Program of the Praesidium of the Russian Academy of Sciences (Program 1.7). References Shematovich, Solar System Res., 2013, v.47, 437. Shematovich et al., J. Geophys. Res., 2011, v.116, A11320. Halekas et al., Geophys. Res. Lett., 2015, v. 42. doi:10.1002/2015GL064781. Jakosky et al., Science, 2015, v. 350, Issue 6261, aad0210:1-7.

  1. Solar wind and high energy particle effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, Jan

    1989-01-01

    The solar wind variability and high energy particle effects in the neutral middle atmosphere are not much known. These factors are important in the high latitude upper mesosphere, lower thermosphere energy budget. They influence temperature, composition (minor constituents of nitric oxide, ozone), circulation (wind system) and airflow. The vertical and latitudinal structures of such effects, mechanisms of downward penetration of energy and questions of energy abundance are largely to be solved. The most important recent finding seems to be the discovery of the role of highly relativistic electrons in the middle atmosphere at L = 3 - 8 (Baker et al., 1987). The solar wind and high energy particle flux variability appear to form a part of the chain of possible Sun-weather (climate) relationships. The importance of such studies in the nineties is emphasized by their role in big international programs STEP and IGBP - Global Change.

  2. An investigation of solar wind effects on the evolution of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, Janet G.

    1994-01-01

    This investigation concentrated on the question of how atmosphere escape, related to both photochemistry and the Mars solar wind interaction, may have affected the evolution of Mars' atmosphere over time. The principal investigator and postdoctoral researcher adopted the premise that contemporary escape processes have dominated the losses to space over the past 3.5 billion years, but that the associated loss rates have been modified by solar evolution. A model was constructed for the contemporary escape scenario based on knowledge gained from both Venus in-situ measurements from Pioneer Venus Orbiter and Mars measurements from Phobos-2. Venus provided a valuable second example of a weakly magnetized planet having a similar solar wind interaction where we have more knowledge from observations. The model included photochemical losses from recombining ionospheric molecular ions, scavenging Martian upper atmosphere ('pickup') ions by the solar wind, and sputtering of the atmosphere by reentering pickup ions. The existence of the latter mechanism was realized during the course of the supported investigation, and is now thought by Jakosky and Pepin to explain some of the Martian noble gas isotope ratios.

  3. Synoptic climatology of the long-distance dispersal of white pine blister rust I. Development of an upper level synoptic classification

    Treesearch

    K. L. Frank; L. S. Kalkstein; B. W. Geils; H. W. Thistle

    2008-01-01

    This study developed a methodology to temporally classify large scale, upper level atmospheric conditions over North America, utilizing a newly-developed upper level synoptic classification (ULSC). Four meteorological variables: geopotential height, specific humidity, and u- and v-wind components, at the 500 hPa level over North America were obtained from the NCEP/NCAR...

  4. Venus winds at cloud level from VIRTIS during the Venus Express mission

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  5. The correction of infrasound signals for upper atmospheric winds

    NASA Technical Reports Server (NTRS)

    Mutschlecner, J. Paul; Whitaker, Rodney W.

    1990-01-01

    Infrasound waves propagate in the atmosphere by a well known mechanism produced by refraction of the waves, return to earth, and reflection at the surface into the atmosphere for subsequent bounces. A figure illustrates this phenomenon with results from a ray trace model. In this instance three rays are returned to earth from a region centered at about 50 kilometers in altitude and two from a region near 110 kilometers in altitude. The control of the wave refraction is largely dominated by the temperature-height profile and inversions; however, a major influence is also produced by the atmospheric wind profile. Another figure illustrates the considerable ray differences for rays moving in the wind direction (to the right) and in the counter direction (to the left). It obviously can be expected that infrasonic signal amplitudes will be greatly influenced by the winds in the atmosphere. The seasonal variation of the high altitude atmospheric winds is well documented. A third figure illustrates this with average statistics on the observed zonal wind in the region of 50 plus or minus 5 kilometers in altitude. The results are based upon a survey by Webb; Webb terms this parameterization the Stratospheric Circulation Index (SCI). The very strong seasonal variation has the ability to exert a major seasonal influence on infrasonic signals. The purpose here is to obtain a method for the correction of this effect.

  6. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  7. Pioneer Venus 1978

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An orbiter and a multiprobe spacecraft will be sent to Venus in 1978 to conduct a detailed examination of the planet's atmosphere and weather. The spin-stabilized multiprobe spacecraft consists of a bus, a large probe and three identical small probes, each carrying a complement of scientific instruments. The large probe will conduct a detailed sounding of the lower atmosphere, obtaining measurements of the clouds, atmospheric structure, wind speed, and atmospheric composition. Primary emphasis will be placed on the planet's energy balance and clouds. The three small probes will provide information on the circulation pattern of the lower atmosphere. The probe bus will provide data on the upper atmosphere and ionosphere down to an altitude of about 120 km. The orbiter is designed to globally map the atmosphere, ionosphere, and the solar wind/ionosphere interaction. In addition, it will utilize radar mapping techniques to study the surface.

  8. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment.

    PubMed

    Schofield, J T; Barnes, J R; Crisp, D; Haberle, R M; Larsen, S; Magalhães, J A; Murphy, J R; Seiff, A; Wilson, G

    1997-12-05

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24.7 hours). The atmospheric structure and the weather record are similar to those observed by the Viking 1 lander (VL-1) at the same latitude, altitude, and season 21 years ago, but there are differences related to diurnal effects and the surface properties of the landing site. These include a cold nighttime upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer near the surface; light slope-controlled winds; and dust devils, identified by their pressure, wind, and temperature signatures. The results are consistent with the warm, moderately dusty atmosphere seen by VL-1.

  9. The problem of the second wind turbine - a note on a common but flawed wind power estimation method

    NASA Astrophysics Data System (ADS)

    Gans, F.; Miller, L. M.; Kleidon, A.

    2012-06-01

    Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than detailed engineering specifications of wind turbine design and placement.

  10. Understanding of Jupiter's Atmosphere after the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Fonda, Mark (Technical Monitor); Young, Richard E.

    2003-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure, winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. Discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be super-solar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammomium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to at least as deep as the probe made measurements, 22 bars. Models of hot spot dynamics raise the possibility that the variation with depth of the probe measured zonal winds between 0.4 and 4 bars reflect the dynamics of the hot spot rather than the global wind pattern. Galileo upper atmosphere measurements established that there is a sharp temperature rise with altitude between about 350 and 800 km above the 1 bar pressure level, with the upper atmosphere reaching temperatures near 900 K. The energy sources for this upper atmosphere heating are not clearly established, but various mechanisms have been proposed. These and other aspects of the Galileo probe data will be discussed.

  11. Understanding of Jupiter's Atmosphere After the Galileo Probe Entry

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Instruments on the Galileo probe measured composition, cloud properties, thermal structure. winds, radiative energy balance, and electrical properties of the Jovian atmosphere. As expected the probe results confirm some expectations about Jupiter's atmosphere, refute others, and raise new questions which still remain unanswered. This talk will concentrate on those aspects of the probe observations which either raised new questions or remain unresolved. The Galileo probe observations of composition and clouds provided some of the biggest surprises of the mission. Helium abundance measured by the probe differed significantly from the remote sensing derivations from Voyager. discrepancy between the Voyager helium abundance determinations for Jupiter and the Galileo probe value have now led to a considerably increased helium determination for Saturn. Global abundance of N in the form of ammonia was observed to be supersolar by approximately the same factor as carbon, in contrast to expectations that C/N would be significantly larger than solar. This has implications for the formation and evolution of Jupiter. The cloud structure was not what was generally anticipated, even though most previous remote sensing results below the uppermost cloud referred to 5 micron hot spots, local regions with reduced cloud opacity. The Galileo probe descended in one of these hot spots. Only a tenuous, presumed ammonium hydrosulfide, cloud was detected, and no significant water cloud or super-solar water abundance was measured. The mixing ratios as a function of depth for the condensibles ammonia, hydrogen sulfide, and water, exhibited no apparent correlation with either condensation levels or with each other, an observation that is still a puzzle, although there are now dynamical models of hot spots which show promise in being able to explain such behavior. Probe tracked zonal winds show that wind magnitude increases with depth to pressures of about 4 bars, with the winds extending to at least as deep as the probe made measurements, 22 bars. Models of hot spot dynamics raise the possibility that the variation with depth of the probe measured zonal winds between 0.4 and 4 bars reflect the dynamics of the hot spot rather than the global wind pattern. Galileo upper atmosphere measurements established that there is a sharp temperature rise with altitude between about 350 and 800 km above the 1 bar pressure level, with the upper atmosphere reaching, temperatures near 900 K. The energy sources for this upper atmosphere heating are not clearly established, but various mechanisms have been proposed. These and other aspects of the Galileo probe data will be discussed.

  12. Energy Deposition Processes in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This energy input evidently drives the large positive and negative ions observed below approximately 1100 km altitude with ion masses exceeding 10,000 daltons. We refer to these ions as seed particles for the aerosols observed below 300 km altitude. These seed particles can be formed, for example, from the polymerization of acetylene (C2H2) and benzene (C6H6) molecules in Titan's upper atmosphere to form polycyclic aromatic hydrocarbons (PAH) and/or fullerenes (C60). In the case of fullerenes, which are hollow spherical carbon shells, magnetospheric keV [O(+)] ions can become trapped inside the fullerenes and eventually find themselves inside the aerosols as free oxygen. The aerosols are then expected to fall to Titan's surface as polymerized hydrocarbons with trapped free oxygen where unknown surface chemistry can take place.

  13. Comparison of NOAA/NMC stratospheric wind analyses with UARS high resolution Doppler Imager wind measurements

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Hays, P. B.; Abreu, V.; Long, C.; Kann, D.

    1994-01-01

    The NOAA National Weather Service currently derives global stratospheric wind analyses via several procedures. The first is the operational data assimilation system that extends from the surface up to about 50 mb and is in process of being tested to about 10 mb. In addition, a balanced wind is determined from the available Climate Analysis Center stratospheric height analyses that encompass the 70-0.4 mb region. The High Resolution Doppler Imager (HRDI) recently launched as a member of the Upper Atmosphere Research Satellite (UARS) is the first satellite instrument designed to measure winds in this stratospheric region and, thus, provide a basic evaluation of the NMC derived products. The HRDI accomplishes this by utilizing a triple-etalon Fabry-Perot interferometer that allows one to measure the Doppler shift of O2 absorption and emission features of the atmosphere, from which the wind field can be determined.

  14. Tropospheric Waves, Jet Streams, and United States Weather Patterns. Resource Paper No. 11.

    ERIC Educational Resources Information Center

    Harman, Jay R.

    Intended as a supplement to undergraduate college geography courses, this resource paper reviews the mechanism by which surface weather features are linked with the mid-atmospheric circulation within the westerly wind belt. Specifically, vertical atmospheric motions associated with certain aspects of the upper tropospheric flow, including jet…

  15. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicle commit-to-launch decisions include an assessment of the upper-level (UL) atmospheric wind environment to assess the vehicle's controllability and structural integrity during ascent. These assessments occur at predetermined times during the launch countdown based on measured wind data obtained prior to the assessment. However, the pre-launch measured winds may not represent the wind environment during the vehicle ascent. Uncertainty in the UL winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Without historical data, theoretical wind models must be used, which can result in inaccurate wind placards that misrepresent launch availability. Using an overconservative model could result in overly restrictive vehicle wind placards, thus potentially reducing launch availability. Conversely, using an under-conservative model could result in launching into winds that might damage or destroy the vehicle. A large sample of measured wind profiles best characterizes the wind change environment. These historical databases consist of a certain number of wind pairs, where two wind profile measurements spaced by the time period of interest define a pair.

  16. Preliminary biplane tests in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Shoemaker, James M

    1928-01-01

    Biplane cellules using the N.A.C.A.-M6 airfoil section have been tested in the variable density wind tunnel of the National Advisory Committee for Aeronautics. Three cellules, differing only in the amount of stagger, were tested at two air densities, corresponding to pressures of one atmosphere and of twenty atmospheres. The range of angle of attack was from -2 degrees to +48 degrees. The effect of stagger on the lift and drag, and on the shielding effect of the upper wing by the lower at high angles of attack was determined.

  17. Atmospheric forcing of the upper ocean transport in the Gulf of Mexico: From seasonal to diurnal scales

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.; Curcic, Milan

    2016-06-01

    The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.

  18. A study of large scale gust generation in a small scale atmospheric wind tunnel with applications to Micro Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Roadman, Jason Markos

    Modern technology operating in the atmospheric boundary layer can always benefit from more accurate wind tunnel testing. While scaled atmospheric boundary layer tunnels have been well developed, tunnels replicating portions of the atmospheric boundary layer turbulence at full scale are a comparatively new concept. Testing at full-scale Reynolds numbers with full-scale turbulence in an "atmospheric wind tunnel" is sought. Many programs could utilize such a tool including Micro Aerial Vehicle(MAV) development, the wind energy industry, fuel efficient vehicle design, and the study of bird and insect flight, to name just a few. The small scale of MAVs provide the somewhat unique capability of full scale Reynolds number testing in a wind tunnel. However, that same small scale creates interactions under real world flight conditions, atmospheric gusts for example, that lead to a need for testing under more complex flows than the standard uniform flow found in most wind tunnels. It is for these reasons that MAVs are used as the initial testing application for the atmospheric gust tunnel. An analytical model for both discrete gusts and a continuous spectrum of gusts is examined. Then, methods for generating gusts in agreement with that model are investigated. Previously used methods are reviewed and a gust generation apparatus is designed. Expected turbulence and gust characteristics of this apparatus are compared with atmospheric data. The construction of an active "gust generator" for a new atmospheric tunnel is reviewed and the turbulence it generates is measured utilizing single and cross hot wires. Results from this grid are compared to atmospheric turbulence and it is shown that various gust strengths can be produced corresponding to weather ranging from calm to quite gusty. An initial test is performed in the atmospheric wind tunnel whereby the effects of various turbulence conditions on transition and separation on the upper surface of a MAV wing is investigated using the surface oil flow visualization technique.

  19. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, R.

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics.Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects?One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere.Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

  20. On ion escape from Venus

    NASA Astrophysics Data System (ADS)

    Jarvinen, Riku

    2011-04-01

    This doctoral thesis is about the solar wind influence on the atmosphere of the planet Venus. A numerical plasma simulation model was developed for the interaction between Venus and the solar wind to study the erosion of charged particles from the Venus upper atmosphere. The developed model is a hybrid simulation where ions are treated as particles and electrons are modelled as a fluid. The simulation was used to study the solar wind induced ion escape from Venus as observed by the European Space Agency's Venus Express and NASA's Pioneer Venus Orbiter spacecraft. Especially, observations made by the ASPERA-4 particle instrument onboard Venus Express were studied. The thesis consists of an introductory part and four peer-reviewed articles published in scientific journals. In the introduction Venus is presented as one of the terrestrial planets in the Solar System and the main findings of the work are discussed within the wider context of planetary physics. Venus is the closest neighbouring planet to the Earth and the most earthlike planet in its size and mass orbiting the Sun. Whereas the atmosphere of the Earth consists mainly of nitrogen and oxygen, Venus has a hot carbon dioxide atmosphere, which is dominated by the greenhouse effect. Venus has all of its water in the atmosphere, which is only a fraction of the Earth's total water supply. Since planets developed presumably in similar conditions in the young Solar System, why Venus and Earth became so different in many respects? One important feature of Venus is that the planet does not have an intrinsic magnetic field. This makes it possible for the solar wind, a continuous stream of charged particles from the Sun, to flow close to Venus and to pick up ions from the planet's upper atmosphere. The strong intrinsic magnetic field of the Earth dominates the terrestrial magnetosphere and deflects the solar wind flow far away from the atmosphere. The region around Venus where the planet's atmosphere interacts with the solar wind is called the plasma environment or the induced magnetosphere. Main findings of the work include new knowledge about the movement of escaping planetary ions in the Venusian induced magnetosphere. Further, the developed simulation model was used to study how the solar wind conditions affect the ion escape from Venus. Especially, the global three-dimensional structure of the Venusian particle and magnetic environment was studied. The results help to interpret spacecraft observations around the planet. Finally, several remaining questions were identified, which could potentially improve our knowledge of the Venus ion escape and guide the future development of planetary plasma simulations.

  1. An analysis of the upper atmospheric wind observed by LOGACS. [satellite Low-G Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Matsushita, S.; Devries, L. L.

    1974-01-01

    Wind velocities at 140 to 200 km altitude were observed by a low-g accelerometer calibration system (LOGACS) flown on an Agena satellite during a geomagnetic storm. An interesting wind reversal observed by the satellite at auroral latitudes is satisfactorily explained by the neutral air motion caused by the E x B drift deduced from the ground-based geomagnetic data recorded at stations near the meridian of the satellite orbit.

  2. Contamination and Micropropulsion Technology

    DTIC Science & Technology

    2012-07-01

    23, 027101 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Effect...field lines at high latitudes where solar wind electrons can readily access the upper atmosphere. The electron energy distribution in the auroral... slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation J. Chem. Phys. 136, 104904

  3. Ionizing Electrons on the Martian Nightside: Structure and Variability

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Mitchell, David L.; Steckiewicz, Morgane; Brain, David; Xu, Shaosui; Weber, Tristan; Halekas, Jasper; Connerney, Jack; Espley, Jared; Benna, Mehdi; Elrod, Meredith; Thiemann, Edward; Eparvier, Frank

    2018-05-01

    The precipitation of suprathermal electrons is the dominant external source of energy deposition and ionization in the Martian nightside upper atmosphere and ionosphere. We investigate the spatial patterns and variability of ionizing electrons from 115 to 600 km altitude on the Martian nightside, using CO2 electron impact ionization frequency (EIIF) as our metric, examining more than 3 years of data collected in situ by the Mars Atmosphere and Volatile EvolutioN spacecraft. We characterize the behavior of EIIF with respect to altitude, solar zenith angle, solar wind pressure, and the geometry and strength of crustal magnetic fields. EIIF has a complex and correlated dependence on these factors, but we find that it generally increases with altitude and solar wind pressure, decreases with crustal magnetic field strength and does not depend detectably on solar zenith angle past 115°. The dependence is governed by (a) energy degradation and backscatter by collisions with atmospheric neutrals below 220 km and (b) magnetic field topology that permits or retards electron access to certain regions. This field topology is dynamic and varies with solar wind conditions, allowing greater electron access at higher altitudes where crustal fields are weaker and also for higher solar wind pressures, which result in stronger draped magnetic fields that push closed crustal magnetic field loops to lower altitudes. This multidimensional electron flux behavior can in the future be parameterized in an empirical model for use as input to global simulations of the nightside upper atmosphere, which currently do not account for this important source of energy.

  4. Lessons from our Own Solar System: Generation Mechanisms of Radio Emissions from Earth, Saturn and Jupiter and Atmospheric Loss from Magnetized versus non-magnetized planets

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus

    2017-05-01

    The understanding of the engines and mechanisms behind kilometric and decametric radio emissions from the planets in our own solar system have taken great leaps with missions such as the NASA/Cassini, IMAGE and Galileo missions. The periodic Saturn Kilometric Radiation (SKR), the Auroral Kilometric Radiation (AKR) at Earth and the periodic decametric radio emissions from Jupiter all point to the same generation mechanisms: very large-scale explosive plasma heating events in the magnetotail of each of the planets. The character and periodicity of the associated radio emissions not only tells us about the presence of a magnetic field but also about the plasma content and size of the planetary magnetosphere, and the nature of the interaction with the solar wind.The presence of a planetary magnetic field, as could be established for exoplanets by the positive detection of low-frequency exoplanetary radio emissions, has been thought to shield a planet from atmospheric loss to space. However, recent data from Mars Express, MAVEN, and Venus Express, together with the wealth of terrestrial measurements of atmospheric escape to space has brought a surprising question in to light: Does a planetary magnetic field suppress or enhance atmospheric loss? While at the non-magnetized planets such as Mars and Venus, the solar wind has a more direct access to the ionized upper atmosphere, these planets do set up self shielding currents that do limit escape. Furthermore, it is not clear if Mars have lost the majority of its atmosphere by condensation in to surface and sub-surface frost, or through atmospheric escape. At Earth, the geomagnetic field sets up a relatively large cross section to the solar wind, that allows the induced solar-wind electric field to transfer substantial energy to the upper ionosphere and atmosphere resulting in substantial loss. It is therefore not clear how a planetary magnetic field correlates to the atmospheric loss, or if it does at all.In this presentation we will summarize the recent findings in these two areas and what that implies for our understanding of stellar-wind interactions with exoplanetary magnetized and non-magnetized systems, and its possible constraints on habitability.

  5. The GalileoJupiter Probe Doppler Wind Experiment

    NASA Astrophysics Data System (ADS)

    Atkinson, D. H.

    2001-09-01

    The GalileoJupiter atmospheric entry probe was launched along with the Galileoorbiter spacecraft from Cape Canaveral in Florida, USA, on October 18, 1989. Following a cruise of greater than six years, the probe arrived at Jupiter on December 7, 1995. During its 57-minute descent, instruments on the probe studied the atmospheric composition and structure, the clouds, lightning, and energy structure of the upper Jovian atmosphere. One of the two radio channels over which the experiment data was transmitted to the orbiter was driven by an ultrastable oscillator. All motions of the probe and orbiter, including the speed of probe descent, Jupiter's rotation, and the atmospheric winds, contributed to a Doppler shift of the probe radio frequency. By accurately measuring the frequency of the probe radio signal, an accurate time history of the probe-orbiter relative motions could be reconstructed. Knowledge of the nominal probe and orbiter trajectories allowed the nominal Doppler shift to be removed from the probe radio frequency leaving a measurable frequency residual arising primarily from the zonal winds in Jupiter's atmosphere, and micromotions of the probe arising from probe spin, swing under the parachute, atmospheric turbulence, and aerodynamic effects. Assuming that the zonal horizontal winds dominate the residual probe motion, a profile of frequency residuals was generated. Inversion of the frequency residuals resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. It is found that beneath 700 mb, the winds are strong and prograde, rising rapidly to 170 m/s between 1 and 4 bars. Beneath 4 bars to 21 bars, the depth at which the link with the probe was lost, the winds remain constant and strong. When corrections for the high temperatures encountered by the probe are considered, there is no evidence of diminishing or strengthening of the zonal winds in the deepest regions explored by the Galileoprobe. Following the wind recovery, the frequency residuals offer tantalizing clues to microstructure in the atmospheric dynamics, including turbulence and wave motion.

  6. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  7. Winds and Temperatures in Venus Upper Atmosphere from High-Resolution Infrared Heterodyne Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Sonnabend, Guido; Krötz, Peter; Stupar, Dusan

    2010-05-01

    Narrow non-LTE emission lines of CO2 at 10μm are induced by solar radiation in Venus upper atmosphere. Measurements of fully resolved emission lines can be used to probe the emitting regions of the atmosphere for winds and tempertaures. Using infrared heterodyne spectroscopy kinetic temperatures with a precision of 5 K can be calculated from the width of emission lines and wind velocities can be determined from Doppler-shifts of emission lines with a precision up to 10 m/s. The non-LTE emission can only occur within a narrow pressure/altitude region around 110 km. At the I.Physikalisches Instiut of the University of Cologne we developed a Tunable Infrared Heterodyne Spectrometer (THIS) capable of accomplishing such ground-based measurements of planetary atmospheres. Beside high spectral resolution (R>107) infrared observations also provide high spatial resolution on the planet. Over the last two years we observed wind velocities and temperatures at several characteristic orbital positions of Venus using the McMath-Pierce-Solar Telescope on Kitt Peak, Arizona, USA. This telescope provides a field-of-view of 1.7 arcsec on an apparent diameter of Venus of approximately 20-60 arcsec. New observations close to inferior conjunction have been accomplished in March and in April 2009 An additional observing run took place in June 2009 at maximum western elongation. These observing geometries allow investigations of wind velocities of different combinations of the superrotational component and the subsolar-antisolar (SS-AS) flow component. Due to the observing geometry during the March and April runs we focused on SS-AS flow. Wind velocities around 140 m/s were found decreasing significantly at high latitudes. No significant superrotational component could be observed and the variability between these two runs was moderate. Data analysis for the run in June 2009 addressing mainly the superrotational component is still in progress. Retrieved temperatures from all three observing runs show significantly higher values than predicted by the VIRA reference atmosphere. At the conference we are going to present analyzed data from these runs including a brief comparison to our previous results and other ground-based observations.

  8. Structure of the middle atmosphere of Venus and future observation with PFS on Venus Express.

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Ignatiev, N. I.; Khatountsev, I. A.

    Investigation of the middle atmosphere of Venus (55 -- 100 km) will allow to advance our knowledge about the most puzzling phenomena of the Venus dynamics -- its superrotation. More than 70% of all absorbed by Venus Solar energy is deposited there, results in the thermal tides generation and giving energy to support the superrotation. The importance of the tides in the middle atmosphere is manifested by the tidal character of the local time variation of the structure of the thermal field, zonal wind field (especially, behavior of the wind speed in the mid latitude jet), upper clouds, with amplitudes depending on the altitude and latitude. Investigation of the middle atmosphere is a scientific goal of the long wavelength channel of PFS on Venus Express, as well as of its short wavelength channel (the latter on the day side). The 3D temperature, aerosol, thermal wind and SO2 abundance fields, spatial distribution of abundance of H2O (possibly vertical profile), CO, HCl, HF will be obtained.

  9. Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Minobe, S.; Ida, T.; Takatama, K.

    2016-12-01

    Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.

  10. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, R.; Kämpfer, N.; Murk, A.

    2012-12-01

    Today, the wind data for the upper stratosphere and lower mesosphere are commonly extrapolated using models or calculated from measurements of the temperature field, but are not measured directly. Still, such measurements would allow direct observations of dynamic processes and thus provide a better understanding of the circulation in this altitude region where the zonal wind speed reaches a maximum. Observations of middle-atmospheric winds are also expected to provide deeper insight in the coupling between the upper and the lower atmosphere, especially in the case of sudden stratospheric warming events. Furthermore, as the local chemical composition of the middle atmosphere can be measured with high accuracy, wind data could be beneficial for the interpretation of the associated transport processes. In future, middle-atmospheric wind measurements could help to improve atmospheric circulation models. Aiming to contribute to the closing of this data gap the Institute of Applied Physics of the University of Bern built a new ground-based 142 GHz Doppler-spectro-radiometer with the acronym WIRA (WInd RAdiometer) specifically designed for the measurement of middle-atmospheric wind. Currently wind speeds in five levels between 30 and 79 km can be retrieved what makes WIRA the first instrument continuously measuring profiles of horizontal wind in this altitude range. On the altitude levels where our measurement can be compared to ECMWF very good agreement has been found in the long-term statistics, with WIRA = (0.98±0.02) × ECMWF + (0.44±0.91) m/s on average, as well as in short time structures with a duration of a few days. WIRA uses a passive double sideband heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. A first time series of 11 months of zonal wind data was obtained for Bern (46°57' N, 7°26' E) before the instrument was moved to Sodankylä (67°22' N, 26°38' E) in September 2011 to measure at polar latitudes during a period of 10 months. After a technical upgrade (integration of a pre-amplifier and a sideband filter) aiming to increase the instruments sensitivity a new measurement campaign at the site of the Observatoire de Haute-Provence for data intercomparison with the NDACC Rayleigh-Mie Doppler wind lidar is planned during the winter 2011/2012. At the conference, the main results from these campaigns will be presented along with the measurement technique and the instrument properties.

  11. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer

    NASA Astrophysics Data System (ADS)

    Rüfenacht, Rolf; Kämpfer, Niklaus; Murk, Axel

    2013-04-01

    Today, the wind data for the upper stratosphere and lower mesosphere are commonly extrapolated using models or calculated from measurements of the temperature field, but are not measured directly. Still, such measurements would allow direct observations of dynamic processes and thus provide a better understanding of the circulation in this altitude region where the zonal wind speed reaches a maximum. Observations of middle-atmospheric winds are also expected to provide deeper insight in the coupling between the upper and the lower atmosphere, especially in the case of sudden stratospheric warming events. Furthermore, as the local chemical composition of the middle atmosphere can be measured with high accuracy, wind data could be beneficial for the interpretation of the associated transport processes. In future, middle-atmospheric wind measurements could help to improve atmospheric circulation models. Aiming to contribute to the closing of this data gap the Institute of Applied Physics of the University of Bern built a new ground-based 142 GHz Doppler-spectro-radiometer with the acronym WIRA (WInd RAdiometer) specifically designed for the measurement of middle-atmospheric wind. Until now wind speeds in five levels between 30 and 79 km can be retrieved what made WIRA the first instrument continuously measuring profiles of horizontal wind in this altitude range. On the altitude levels where our measurement can be compared to ECMWF very good agreement has been found in the long-term statistics, with WIRA = (0.98±0.02) × ECMWF + (0.44±0.91) m/s on average, as well as in short time structures with a duration of a few days. WIRA uses a passive heterodyne receiver together with a digital Fourier transform spectrometer for the data acquisition. A big advantage of the radiometric approach is that such instruments can also operate under adverse weather conditions and thus provide a continuous time series for the given location. The optics enables the instrument to scan a wide range of azimuth angles including the directions east, west, north, and south for zonal and meridional wind measurements. The design of the radiometer is fairly compact and its calibration does not rely on liquid nitrogen what makes it transportable and suitable for campaign use. WIRA is conceived in a way that it can be operated remotely and does hardly require any maintenance. A first time series of 11 months of zonal wind data was obtained for Bern (46° 57' N, 7° 26' E) before the instrument was moved to Sodankylä (67° 22' N, 26° 38' E) in September 2011 to measure at polar latitudes during a period of 10 months. After a substantial technical upgrade (integration of a pre-amplifier and sideband filter) increasing the instruments signal to noise ratio by a factor of 2.4 the measurement campaign of the ARISE project at the site of the Observatoire de Haute-Provence was joined where among others data intercomparison with a newly operational Rayleigh-Mie Doppler wind lidar is planned. At the conference, the main results from these campaigns will be presented along with the measurement technique and the instrument properties.

  12. Near-Mars space

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Brace, L. H.

    1991-05-01

    The prevalent attributes of near-Mars space are described: the ambient interplanetary environment, the ionosphere, the upper atmosphere, and more remote regions that are affected by the presence of Mars. The descriptions are based on existing Martian data and/or models constructed from measurements made near Venus. Specific attention is given to the features of solar wind interaction with magnetospheric and ionospheric obstacles. The high-altitude plasma and field environment, the energetic particle environment, the ionosphere environment, and the neutral upper atmosphere environment are described with extensive graphic information, based on existing measurements collected from nine Martian missions. The ionospheric obstacle is assumed to prevail as a mechanism for describing the scenario. Martian perturbation of solar wind is theorized to be of a relatively small order. A distinctive local energetic particle population of planetary origin is shown to result from the direct interaction of solar wind plasma. This phenomenon is considered evidence of the important scavenging of planetary elements from Mars. The absence of a planetary dipole field around Mars, like its low gravity and distance from the sun, is considered important in determining the environment of this earthlike laboratory.

  13. The Upper Atmosphere Research Satellite (UARS)

    NASA Technical Reports Server (NTRS)

    Reber, Carl A.

    1993-01-01

    The Upper Atmosphere Research Satellite (UARS) was launched by the Space Shuttle on September 12, 1991 into a near circular orbit at 585 km altitude inclined 57 degrees to the Equator. Measurements were initiated a few days later, including solar energy inputs to the atmosphere and vertical profiles of temperature, important minor gas species, and wind fields. The orbital parameters, combined with the sensor measurements characteristics, yield a measurement pattern that produces near global coverage with a duty cycle that periodically favors the Northern or the Southern Hemispheres. A few spacecraft and instrument anomalies have impacted the total amount of data obtained to date, but the overall performance of the mission has been very good.

  14. The thermosphere and ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.

    1992-01-01

    Our knowledge of the upper atmosphere and ionosphere of Venus and its interaction with the solar wind has advanced dramatically over the last decade, largely due to the data obtained during the Pioneer Venus mission and to the theoretical work that was motivated by this data. Most of this information was obtained during the period 1978 through 1981, when the periapsis of the Pioneer Venus Orbiter (PVO) was still in the measurable atmosphere. However, solar gravitational perturbations will again lower the PVO periapsis into the upper atmosphere in September 1992, prior to the destruction of the spacecraft toward the end of this year. The physics and chemistry of the thermosphere and ionosphere of Venus are reviewed.

  15. Stability characteristics of the mesopause region above the Andes

    NASA Astrophysics Data System (ADS)

    Yang, F.; Liu, A. Z.

    2017-12-01

    The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.

  16. Modeling the effects of UV variability and the QBO on the troposphere-stratosphere system. Part I: The middle atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, N.K.; Rind, D.

    1995-08-01

    Results of experiments with a GCM involving changes in UV input ({plus_minus}25%, {plus_minus}10%, {plus_minus}5% at wavelengths below 0.3 {mu}m) and simulated equatorial QBO are presented, with emphasis on the middle atmosphere response. The UV forcing employed is larger than observed during the last solar cycle and does not vary with wavelength, hence the relationship of these results to those from actual solar UV forcing should be treated with caution. The QBO alters the location of the zero wind line and the horizontal shear of the zonal wind in the low to middle stratosphere, while the UV change alters the magnitudemore » of the polar jet and the vertical shear of the zonal wind. Both mechanisms thus affect planetary wave propagation. The east phase of the QBO leads to tropical cooling and high-latitude warming in the lower stratosphere, with opposite effects in the upper stratosphere. This quadrupole pattern is also seen in the observations. The high-latitude responses are due to altered planetary wave effects, while the model`s tropical response in the upper stratosphere is due to gravity wave drag. Increased UV forcing warms tropical latitudes in the middle atmosphere, resulting in stronger extratropical west winds, an effect which peaks in the upper stratosphere/lower mesosphere with the more extreme UV forcing but at lower altitudes and smaller wind variations with the more realistic forcing. The increased vertical gradient of the zonal wind leads to increased vertical propagation of planetary waves, altering energy convergences and temperatures. The exact altitudes affected depend upon the UV forcing applied. Results with combined QBO and UV forcing show that in the Northern Hemisphere, polar warming for the east QBO is stronger when the UV input is reduced by 25% and 5% as increased wave propagation to high latitudes (east QBO effect) is prevented from then propagating vertically (reduced UV effect). 30 refs., 14 figs., 6 tabs.« less

  17. Registering upper atmosphere parameters in East Siberia with Fabry—Perot Interferometer KEO Scientific "Arinae"

    NASA Astrophysics Data System (ADS)

    Vasilyev, Roman; Artamonov, Maksim; Beletsky, Aleksandr; Zherebtsov, Geliy; Medvedeva, Irina; Mikhalev, Aleksandr; Syrenova, Tatyana

    2017-09-01

    We describe the Fabry–Perot interferometer designed to study Earth’s upper atmosphere. We propose a modification of the existing data processing method for determining the Doppler shift and Doppler widening and also for separating the observed line intensity and the background intensity. The temperature and wind velocity derived from these parameters are compared with physical characteristics obtained from modeling (NRLMSISE-00, HWM14). We demonstrate that the temperature is determined from the oxygen 630 nm line irrespective of the hydroxyl signal existing in interference patterns. We show that the interferometer can obtain temperature from the oxygen 557.7 nm line in case of additional calibration of the device. The observed wind velocity mainly agrees with model data. Night variations in the red and green oxygen lines quite well coincide with those in intensities obtained by devices installed nearby the interferometer.

  18. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  19. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    PubMed

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  20. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation

    PubMed Central

    TSUDA, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645

  1. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  2. Impacts of space weather events on the structure of the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.

    2017-12-01

    Due to the absence of the intrinsic magnetic field, Mars' upper atmosphere is vulnerable to the solar wind, which directly strips away the Martian upper atmosphere via various mechanisms, resulting in interesting global phenomena that are observable. The Mars Atmosphere and Volatile EvolutioN (MAVEN) has observed the responses of the upper atmosphere such as Interplanetary Coronal Mass Ejections (ICMEs) and Solar flare events spanning from November 2014 to the present. A comprehensive set of observations taken by the MAVEN instrument package enables the better characterization of the thermospheric and ionospheric behavior affected by various space weather events. The observed impacts include changes in the upper atmospheric and ionospheric density and temperature, enhancements of atmospheric loss rate of ions and neutrals, and changes in important boundary layers. The measurements by plasma and field instruments allows the upstream monitoring of the solar EUV, solar energetic particles, and Interplanetary Magnetic Field (IMF) simultaneously and provide additional information of the near-Mars space weather disturbances. In addition, at low altitudes near the periapsis of the spacecraft, the simultaneous measurements of the magnetic field and properties of the thermosphere and ionosphere allow the analysis of the effects of the local crustal magnetic fields. Here, adding to the reported MAVEN observations of the space weather impacts at Mars, we analyze the responses of the upper atmosphere to the mars-impacting space weather events observed by MAVEN. We focus mainly on the responses of the density and temperature structures, which in turn allow us to examine the effects on the important atmospheric layers such as the M2 layer and transition region from the thermosphere to exosphere.

  3. Thermospheric observations combining chemical seeding and ground-based techniques. I - Winds, turbulence and the parameters of the neutral atmosphere.

    NASA Technical Reports Server (NTRS)

    Lloyd, K. H.; Low, C. H.; Mcavaney, B. J.; Rees, D.; Roper, R. G.

    1972-01-01

    Two Skylark sounding rockets carrying chemical seeding payloads were launched from Woomera, South Australia (31 S, 137 E) in October 1969. In conjunction with these firings, the University of Adelaide conducted ground-based experiments on the upper atmosphere using the radio meteor and spaced receiver drift methods. This paper presents the measurements of properties of the neutral atmosphere above 90 km which were obtained from these experiments.

  4. Theoretical and experimental studies of atmospheric structure and dynamics, using high altitude chemical release, Radio meteor, and meteorological rocket network and other data

    NASA Technical Reports Server (NTRS)

    Edwards, H. D.

    1976-01-01

    Data collected by the Georgia Tech Radio Meteor Wind Facility during the fall and winter of 1975 are analyzed indicating a relationship between lower thermospheric circulation at mid latitudes and polar stratospheric dynamics. Techniques of measurement of mixing processes in the upper atmosphere and the interpretation of those measurements are described along with a diffusion simulation program based on the Global Reference Atmosphere program.

  5. Scaling Characteristics of Mesoscale Wind Fields in the Lower Atmospheric Boundary Layer: Implications for Wind Energy

    NASA Astrophysics Data System (ADS)

    Kiliyanpilakkil, Velayudhan Praju

    Atmospheric motions take place in spatial scales of sub-millimeters to few thousands of kilometers with temporal changes in the atmospheric variables occur in fractions of seconds to several years. Consequently, the variations in atmospheric kinetic energy associated with these atmospheric motions span over a broad spectrum of space and time. The mesoscale region acts as an energy transferring regime between the energy generating synoptic scale and the energy dissipating microscale. Therefore, the scaling characterizations of mesoscale wind fields are significant in the accurate estimation of the atmospheric energy budget. Moreover, the precise knowledge of the scaling characteristics of atmospheric mesoscale wind fields is important for the validation of the numerical models those focus on wind forecasting, dispersion, diffusion, horizontal transport, and optical turbulence. For these reasons, extensive studies have been conducted in the past to characterize the mesoscale wind fields. Nevertheless, the majority of these studies focused on near-surface and upper atmosphere mesoscale regimes. The present study attempt to identify the existence and to quantify the scaling of mesoscale wind fields in the lower atmospheric boundary layer (ABL; in the wind turbine layer) using wind observations from various research-grade instruments (e.g., sodars, anemometers). The scaling characteristics of the mesoscale wind speeds over diverse homogeneous flat terrains, conducted using structure function based analysis, revealed an altitudinal dependence of the scaling exponents. This altitudinal dependence of the wind speed scaling may be attributed to the buoyancy forcing. Subsequently, we use the framework of extended self-similarity (ESS) to characterize the observed scaling behavior. In the ESS framework, the relative scaling exponents of the mesoscale atmospheric boundary layer wind speed exhibit quasi-universal behavior; even far beyond the inertial range of turbulence (Delta t within 10 minutes to 6 hours range). The ESS framework based study is extended further to enquire its validity over complex terrain. This study, based on multiyear wind observations, demonstrate that the ESS holds for the lower ABL wind speed over the complex terrain as well. Another important inference from this study is that the ESS relative scaling exponents corresponding to the mesoscale wind speed closely matches the scaling characteristics of the inertial range turbulence, albeit not exactly identical. The current study proposes benchmark using ESS-based quasi-universal wind speed scaling characteristics in the ABL for the mesoscale modeling community. Using a state-of-the-art atmospheric mesoscale model in conjunction with different planetary boundary layer (PBL) parameterization schemes, multiple wind speed simulations have been conducted. This study reveals that the ESS scaling characteristics of the model simulated wind speed time series in the lower ABL vary significantly from their observational counterparts. The study demonstrate that the model simulated wind speed time series for the time intervals Delta t < 2 hours do not capture the ESS-based scaling characteristics. The detailed analysis of model simulations using different PBL schemes lead to the conclusion that there is a need for significant improvements in the turbulent closure parameterizations adapted in the new-generation atmospheric models. This study is unique as the ESS framework has never been reported or examined for the validation of PBL parameterizations.

  6. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity < 10 m s-1). The distribution of spectral slopes is roughly symmetric with a maximum at -5/3 during active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  7. Global modeling of storm-time thermospheric dynamics and electrodynamics

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.; Richmond, A. D.; Maruyama, N.

    Understanding the neutral dynamic and electrodynamic response of the upper atmosphere to geomagnetic storms, and quantifying the balance between prompt penetration and disturbance dynamo effects, are two of the significant challenges facing us today. This paper reviews our understanding of the dynamical and electrodynamic response of the upper atmosphere to storms from a modeling perspective. After injection of momentum and energy at high latitude during a geomagnetic storm, the neutral winds begin to respond almost immediately. The high-latitude wind system evolves quickly by the action of ion drag and the injection of kinetic energy; however, Joule dissipation provides the bulk of the energy source to change the dynamics and electrodynamics globally. Impulsive energy injection at high latitudes drives large-scale gravity waves that propagate globally. The waves transmit pressure gradients initiating a change in the global circulation. Numerical simulations of the coupled thermosphere, ionosphere, plasmasphere, and electrodynamic response to storms indicate that although the wind and waves are dynamic, with significant apparent "sloshing" between the hemispheres, the net effect is for an increased equatorward wind. The dynamic changes during a storm provide the conduit for many of the physical processes that ensue in the upper atmosphere. For instance, the increased meridional winds at mid latitudes push plasma parallel to the magnetic field to regions of different composition. The global circulation carries molecular rich air from the lower thermosphere upward and equatorward, changing the ratio of atomic and molecular neutral species, and changing loss rates for the ionosphere. The storm wind system also drives the disturbance dynamo, which through plasma transport modifies the strength and location of the equatorial ionization anomaly peaks. On a global scale, the increased equatorward meridional winds, and the generation of zonal winds at mid latitudes via the Coriolis effects, produce a current system opposing the normal quiet-time Sq current system. At the equator, the storm-time zonal electric fields reduce or reverse the normal upward and downward plasma drift on the dayside and nightside, respectively. In the numerical simulations, on the dayside, the disturbance dynamo appears fairly uniform, whereas at night a stronger local time dependence is apparent with increased upward drift between midnight and dawn. The simulations also indicate the possibility for a rapid dynamo response at the equator, within 2 h of storm onset, before the arrival of the large-scale gravity waves. All these wind-driven processes can result in dramatic ionospheric changes during storms. The disturbance dynamo can combine and interact with the prompt penetration of magnetospheric electric fields to the equator.

  8. Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Limaye, Sanjay; Emmitt, George D.; Refaat, Tamer F.; Kavaya, Michael J.; Yu, Jirong; Petros, Mulugeta

    2015-01-01

    Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus.

  9. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE PAGES

    Bowman, D. C.; Lees, J. M.

    2018-04-27

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  10. Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D. C.; Lees, J. M.

    We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less

  11. Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS. [Wind Imaging Interferometer

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Thuillier, G.; Solheim, B. H.; Chandra, S.; Cogger, L. L.; Duboin, M. L.; Evans, W. F. J.; Gattinger, R. L.; Gault, W. A.; Herse, M.

    1993-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meine1 hydroxyl band emission.

  12. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b

    NASA Astrophysics Data System (ADS)

    Bourrier, V.; Lecavelier des Etangs, A.; Wheatley, P. J.; Dupuy, H.; Ehrenreich, D.; Vidal-Madjar, A.; Hébrard, G.; Ballester, G. E.; Désert, J.-M.; Ferlet, R.; Sing, D. K.

    2012-12-01

    Transit observations of the hydrogen Lyman-α line allowed the detection of atmospheric escape from the exoplanet HD209458b (Vidal-Madjar et al. 2003). Using spectrally resolved Lyman-α transit observations of the exoplanet HD 189733b at two different epochs, Lecavelier des Etangs et al. (2012) detected for the first time temporal variations in the physical conditions of an evaporating planetary atmosphere. Here we summarized the results obtained with the HST/STIS observations as presented in June 2012 at the SF2A 2012 meeting. While atmospheric hydrogen cannot be detected in the STIS observations of April 2010, it is clearly detected in the September 2011 observations. The atomic hydrogen cloud surrounding the transiting planet produces a transit absorption depth of 14.4±3.6% between velocities of -230 to -140 km s^{-1}. These high velocities cannot arise from radiation pressure alone and, contrary to HD 209458b, this requires an additional acceleration mechanism, such as interactions with stellar wind protons. The spectral and temporal signature of the absorption is fitted by an atmospheric escape rate of neutral hydrogen atoms of about 10^9 g s^{-1}, a stellar wind with a velocity of 190 km s^{-1} and a temperature of ˜10^5 K. We also illustrate the power of multi-wavelengths approach with simultaneous observations in the X-rays obtained with Swift/XRT. We detected an X-ray flare about 8 hours before the transit of September 2011. This suggests that the observed changes within the upper part of the escaping atmosphere can be caused by variations in the stellar wind properties, or/and by variations in the stellar energy input to the planet's escaping gas. This multi-wavelengths approach allowed the simultaneous detection of temporal variations both in the stellar X-ray and in the planetary upper atmosphere, providing first observational constraints on the interaction between the exoplanet's atmosphere and the star.

  13. Incorporating Planetary-Scale Waves Into the VTGCM: Understanding the Waves Impact on the Upper Atmosphere of Venus.

    NASA Technical Reports Server (NTRS)

    Brecht, A. S.; Bougher, S. W.; Shields, D.; Liu, H.

    2017-01-01

    Venus has proven to have a very dynamic upper atmosphere. The upper atmosphere of Venus has been observed for many decades by multiple means of observation (e.g. ground-based, orbiters, probes, fly-by missions going to other planets). As of late, the European Space Agency Venus Express (VEX) orbiter has been a main observer of the Venusian atmosphere. Specifically, observations of Venus' O2 IR nightglow emission have been presented to show its variability. Nightglow emission is directly connected to Venus' circulation and is utilized as a tracer for the atmospheric global wind system. More recent observations are adding and augmenting temperature and density (e.g. CO, CO2, SO2) datasets. These additional datasets provide a means to begin analyzing the variability and study the potential drivers of the variability. A commonly discussed driver of variability is wave deposition. Evidence of waves has been observed, but these waves have not been completely analyzed to understand how and where they are important. A way to interpret the observations and test potential drivers is by utilizing numerical models.

  14. KSC-2013-3597

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  15. KSC-2013-3598

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  16. KSC-2013-3596

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  17. KSC-2013-3600

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  18. KSC-2013-3601

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  19. KSC-2013-3599

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  20. KSC-2013-3595

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  1. Roles of divergent and rotational winds in the kinetic energy balance during intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Browning, P. A.

    1983-01-01

    Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.

  2. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    PubMed

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  3. Atlantic Induced Pan-tropical Climate Variability in the Upper-ocean and Atmosphere

    NASA Astrophysics Data System (ADS)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2016-02-01

    During the last three decades, tropical sea surface temperature (SST) exhibited dipole-like trends, with warming over the tropical Atlantic and Indo-Western Pacific but cooling over the Eastern Pacific. The Eastern Pacific cooling has recently been identified as a driver of the global warming hiatus. Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean, which could potentially contribute to this zonally asymmetric SST pattern. However, the mechanisms and the interactions between these teleconnections remain unclear. To investigate these questions, we performed a `pacemaker' simulation by restoring the tropical Atlantic SST changes in a state-of-the-art climate model - the CESM1. Results show that the Atlantic plays a key role in initiating the tropical-wide teleconnections, and the Atlantic-induced anomalies contribute 55%-75% of the total tropical SST and circulation changes during the satellite era. A hierarchy of oceanic and atmospheric models are then used to investigate the physical mechanisms of these teleconnections: the Atlantic warming enhances atmospheric deep convection, drives easterly wind anomalies over the Indo-Western Pacific through the Kelvin wave, and westerly anomalies over the eastern Pacific as Rossby waves, in line with Gill's solution (Fig1a). These wind changes induce an Indo-Western Pacific warming via the wind-evaporation-SST effect, and this warming intensifies the La Niña-type response in the upper Pacific Ocean by enhancing the easterly trade winds and through the Bjerknes ocean-dynamical processes (Fig1b). The teleconnection finally develops into a tropical-wide SST dipole pattern with an enhanced trade wind and Walker circulation, similar as the observed changes during the satellite era. This mechanism reveals that the tropical ocean basins are more tightly connected than previously thought, and the Atlantic plays a key role in the tropical climate pattern formation and further the global warming hiatus. The tropical Atlantic warming is likely due to radiative forcing and Atlantic meridional overturning circulation (AMOC). Our study suggests that the AMOC may force the decadal variability of the tropical ocean and atmosphere, and thus contributes to the decadal predictability of the global climate.

  4. Mesospheric Dynamical Changes Induced by the Solar Proton Events in October-November 2003

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Roble, Raymond G.; Fleming, Eric L.

    2007-01-01

    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth that impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization, as well as dissociation processes, and ultimately produced odd hydrogen (HOx) and odd nitrogen (NOy). Significant short-lived ozone decreases (10-70%) followed these enhancements of HOx and NOy and led to a cooling of most of the lower mesosphere. This cooling caused an atmospheric circulation change that led to adiabatic heating of the upper mesosphere. Temperature changes up to plus or minus 2.6 K were computed as well as wind (zonal, meridional, vertical) perturbations up to 20-25% of the background winds as a result of 22 the solar protons. The solar proton-induced mesospheric temperature and wind perturbations diminished over a period of 4-6 weeks after the SPEs. The Joule heating in the mesosphere, induced by the solar protons, was computed to be relatively insignificant for these solar storms with most of the temperature and circulation perturbations caused by ozone depletion in the sunlit hemisphere.

  5. Observation of Shear-Induced Turbulence Using HARLIE

    NASA Technical Reports Server (NTRS)

    Miller, David O.; Schwemmer, Geary K.; Wilkerson, Thomas D.; Sanders, Jason; Guerra, David; Moody, Steven

    2000-01-01

    Ground-based measurements of atmospheric aerosol structure were made using the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) during the HOLO-1 field campaign. The scanning ability of HARLIE affords a unique opportunity to view various atmospheric phenomena. Shear-induced turbulence plays an important role in the transport of kinetic energy in the atmosphere and on March 10, 1999, several instances of shear-induced turbulence were observed via HARLIE. Using the data collected and upper-air wind profiles the nature of the instabilities is discussed.

  6. Space astronomy and upper atmospheric sounding

    NASA Technical Reports Server (NTRS)

    Friedman, H.

    1971-01-01

    The discoveries and activities of the Space Science Program are reported. Results of studies are presented for the following areas: gamma and x-ray astronomy, optical geophysics and solar wind, infrared astronomy, radio astronomy, and rocket spectroscopy. Lists of publications, talks, and conferences are included.

  7. An Empirical Study of Atmospheric Correction Procedures for Regional Infrasound Amplitudes with Ground Truth.

    NASA Astrophysics Data System (ADS)

    Howard, J. E.

    2014-12-01

    This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.

  8. Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0 - 120 km

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Chandra, Sushil; Schoeberl, Mark R.; Barnett, John J.

    1988-01-01

    A monthly mean climatology is presented of temperature, wind, and geopotential height with nearly pole-to-pole coverage (80 S to 80 N) for 0 to 210 km, which can be used as a function of altitude and pressure. The purpose is to provide a reference for various atmospheric research and analysis activities. Data sources and methods of computation are described; in general, hydrostatic and thermal wind balance are maintained at all levels and latitudes. As observed in a series of cross-sectional plots, this climatology accurately reproduces most of the characteristic features of the atmosphere such as equatorial wind and the general structure of the tropopause, stratopause, and mesopause. A series of zonal wind profiles is also represented comparing this climatological wind with monthly mean climatological direct wind measurements in the upper mesosphere and lower thermosphere. The temperature and zonal wind climatology at stratospheric levels is compared with corresponding data from the National Meteorological Center, and general agreement is observed between the two data sets. Tables of the climatological values as a function of latitude and height for each month are contained in Appendix B, and are also available in floppy disk.

  9. Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment

    NASA Technical Reports Server (NTRS)

    Browning, P. A.; Fuelberg, H. E.

    1983-01-01

    Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters.

  10. Statistical Similarities Between WSA-ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016

    NASA Astrophysics Data System (ADS)

    Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.

    2018-02-01

    Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.

  11. The nature of large-scale turbulence in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Mitchell, J. L.

    1982-01-01

    The energetics and spectral characteristis of quasi-geostrophic turbulence in Jupiter's atmosphere are examined using sequences of Voyager images and infrared temperature soundings. Using global wind measurements momentum transports associated with zonally symmetric stresses and turbulent stresses are quantified. Though a strong up-gradient flux of momentum by eddies was observed, measurements do not preclude the possibility that symmetric stresses play a critical role in maintaining the mean zonal circulation. Strong correlation between the observed meridional distribution of eddy-scale kinetic energy and available potential energy suggests coupling between the observed cloudtop turbulent motions and the upper tropospheric thermodynamics. An Oort energy budget for Jupiter's upper troposphere is formulated.

  12. Influence of the Tibetan Plateau snow cover on East Asian winter upper-level jet streams at daily time scale

    NASA Astrophysics Data System (ADS)

    Guo, W.; Li, W.; Qiu, B.; Xue, Y.

    2017-12-01

    The Tibetan Plateau (TP) acts as an elevated cooling source in the middle troposphere at wintertime. We here present evidence that the intraseasonal variability of the TP snow cover (TPSC) controls part of the East Asian upper-level jet stream. This study found that there is significant positive lag correlation between the East Asian (EA) upper-level westerly jet and the TPSC in winter. When the TPSC increases/decreases, the EA upper-level westerly jet enhances/weakens in the following 8 days. We performed numerical experiments to prove that the lag correlation is causal relationship by using a regional climate model. Due to the high albedo of the snow cover, the increased/decreased snow cover increases/decreases the albedo and affects the surface energy balance over the TP. The energy absorbed by the surface is reduced/increased due to increased/decreased shortwave reflects to the atmosphere. There is anomalous cooling/heating effect over the TP. Such effect leads to anomalous geopotential height (GHT) field that propagates eastward with the zonal wind to the east. The anomalous GHT reaches key region of EA upper-level westerly jet at about 6 days. The adaptive modulation of GHT gradients affects wind fields (through geostrophic balance). As a result, the EA upper-level westerly jet is enhanced (weakened). Through the above process, the TPSC eventually influences the EA upper-level westerly jet. This report reveals that the intraseasonal variability of TPSC can server as an indicator of East Asia Atmospheric circulation on short-to-medium range.

  13. A ground-base Radar network to access the 3D structure of MLT winds

    NASA Astrophysics Data System (ADS)

    Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.

    2016-12-01

    The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.

  14. Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Nagy, A. F.; Kim, J.; Cravens, T. E.

    1990-04-01

    Optical observations of hot atoms in the atmospheres of Venus and Mars are briefly reviewed. A summary of hot hydrogen and oxygen production and loss processes is given. Results of some recent model calculations as well as a number of new results of the hot hydrogen and oxygen populations are presented and their implication in terms of solar wind interaction processes is discussed.

  15. Wide-Band Heterodyne Submillimetre Wave Spectrometer for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich

    2010-01-01

    We present calculations and measurements on a passive submillimetre wave spectroscopic sounder to gather data on the thermal structure, dynamics and composition of the upper atmosphere of a planet, e.g. the stratosphere of Jupiter, or the entire thickness of the atmosphere of Mars. The instrument will be capable of measuring wind speeds, temperature, pressure, and key constituent concentrations in the stratosphere of the target planet. This instrument consists of a Schottky diode based front end and a digital back-end spectrometer. It differs from previous space-based spectrometers in its combination of wide tunability (520-590 GHz), and rapid frequency switching between widely spaced lines within that range. This will enable near simultaneous observation of multiple lines, which is critical to the reconstruction of atmospheric pressure and density versus altitude profiles. At the same time frequency accuracy must be high to enable wind speeds to be determined directly by measurement of the line's Doppler shift.

  16. A dynamical perspective on the energetic particles precipitation-middle atmosphere interaction

    NASA Astrophysics Data System (ADS)

    Karami, Khalil; Sinnhuber, Miriam; Versick, Stefan; Braesicke, Peter

    2015-04-01

    Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over polar region of both hemispheres, where the geomagnetic lines are considered to be open and connected to the interplanetary medium. This condition allows direct access for energetic particles of solar or galactic origin to directly deposit their own energy into the middle and upper atmosphere. Such particle precipitations can greatly disturb the chemical composition of the upper and middle atmosphere. At polar latitudes, these particles have the potential to penetrate from thermosphere deep into the mesosphere and in rare occasions into the stratosphere. The most important are changes to the budget of atmospheric nitric oxides, NOy, and to atmospheric reactive hydrogen oxides, HOx, which both contribute to ozone loss in the stratosphere and mesosphere. The chemistry-climate general circulation model ECHAM5/MESSy is used to investigate the impact of changed ozone concentration due to energetic particles precipitation on temperatures and wind fields. The simulated anomalies of both zonal mean temperature and zonal wind suggest that these changes are very unlikely to be caused in situ by ozone depletion and indirect dynamical condition is important. The results of our simulations suggests that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes in many areas of the atmosphere. Different dynamical analysis (e.g., frequency of sudden stratospheric warming, dates of stratospheric final warming, divergence of Eliassen-Palm flux and refractive index of planetary waves) are performed to investigate the impact of ozone anomaly originated from high energetic particle precipitation on middle atmospheric temperature and circulation.

  17. Mars environment and magnetic orbiter scientific and measurement objectives.

    PubMed

    Leblanc, F; Langlais, B; Fouchet, T; Barabash, S; Breuer, D; Chassefière, E; Coates, A; Dehant, V; Forget, F; Lammer, H; Lewis, S; Lopez-Valverde, M; Mandea, M; Menvielle, M; Pais, A; Paetzold, M; Read, P; Sotin, C; Tarits, P; Vennerstrom, S

    2009-01-01

    In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.

  18. Long-term Behaviour Of Venus Winds At Cloud Level From Virtis/vex Observations

    NASA Astrophysics Data System (ADS)

    Hueso, Ricardo; Peralta, J.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Piccioni, G.; Drossart, P.

    2009-09-01

    The Venus Express (VEX) mission has been in orbit to Venus for more than three years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present an analysis of the overall dynamics of Venus’ atmosphere at both levels using observations that cover a large fraction of the VIRTIS dataset. We will present our latest results concerning the zonal winds, the overall stability in the lower cloud deck motions and the variability in the upper cloud. Meridional winds are also observed in the upper and lower cloud in the UV and IR images obtained with VIRTIS. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present more irregular, variable and less intense motions in the meridional direction. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  19. Southern Hemisphere Upper Thermospheric Wind Climatology

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Emmert, J. T.; Drob, D. P.

    2017-12-01

    This study is focused on the poorly understood large-scale upper thermospheric wind dynamics in the southern polar cap, auroral, and mid latitudes. The gaps in our understanding of the dynamic high-latitude thermosphere are largely due to the sparseness of thermospheric wind measurements. Using data from current observational facilities, it is unfeasible to construct a synoptic picture of the Southern Hemisphere upper thermospheric winds. However, enough data with wide spatial and temporal coverage have accumulated to construct a meaningful statistical analysis of winds as function of season, magnetic latitude, and magnetic local time. We use long-term data from nine ground-based stations located at different southern high latitudes and three space-based instruments. These diverse data sets possess different geometries and different spatial and solar coverage. The major challenge of the effort is to combine these disparate sources of data into a coherent picture while overcoming the sampling limitations and biases among the datasets. Our preliminary analyses show mutual biases present among some of them. We first address the biases among various data sets and then combine them in a coherent way to construct maps of neutral winds for various seasons. We then validate the fitted climatology against the observational data and compare with corresponding fits of 25 years of simulated winds from the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. This study provides critical insight into magnetosphere-ionosphere-thermosphere coupling and sets a necessary benchmark for validating new observations and tuning first-principles models.

  20. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  1. Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian

    2016-11-01

    Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.

  2. KSC-2013-3594

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians prepare to deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  3. KSC-2013-3592

    NASA Image and Video Library

    2013-09-16

    CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians prepare to deploy the Solar Wind Electron Analyzer boom on the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. The analyzer will measure the solar wind and electrons in the ionosphere of the Red Planet. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Kim Shiflett

  4. Modulation of Cosmic Ray Precipitation Related to Climate

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  5. Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman III Ballistic Missiles at Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Brock, Tyler M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The AMU determined the theoretical distributions that best fit the maximum wind speed and maximum wind shear datasets and applied this information when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition, the AMU included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on the day of launch. The AMU developed an interactive graphical user interface (GUI) in Microsoft Excel using Visual Basic for Applications. The GUI displays the critical sounding data easily and quickly for LWOs on day of launch. This tool will replace the existing one used by the 30 OSSWF, assist the LWOs in determining the probability of exceeding specific wind threshold values, and help to improve the overall upper winds forecast for the launch customer. This presentation will describe how the AMU calculated the historical and real-time PoV values for the specific upper-level wind launch constraints and outline the development of the interactive GUI display.

  6. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  7. Energy analysis of convectively induced wind perturbations

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Buechler, Dennis E.

    1989-01-01

    Budgets of divergent and rotational components of kinetic energy (KD and KR) are examined for four upper level wind speed maxima that develop during the fourth Atmospheric Variability Experiment (AVE IV) and the first AVE-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME I). A similar budget analysis is performed for a low-level jet stream during AVE-SESAME I. The energetics of the four upper level speed maxima is found to have several similarities. The dominant source of KD is cross-contour flow by the divergent wind, and KD provides a major source of KR via a conversion process. Conversion from available potential energy provides an additional source of KR in three of the cases. Horizontal maps reveal that the conversions involving KD are maximized in regions poleward of the convection. Low-level jet development during AVE-SESAME I appears to be assisted by convective activity to the west.

  8. Upper ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations

    NASA Astrophysics Data System (ADS)

    Domingues, Ricardo; Goni, Gustavo; Bringas, Francis; Lee, Sang-Ki; Kim, Hyun-Sook; Halliwell, George; Dong, Jili; Morell, Julio; Pomales, Luis

    2015-09-01

    During October 2014, Hurricane Gonzalo traveled within 85 km from the location of an underwater glider situated north of Puerto Rico. Observations collected before, during, and after the passage of this hurricane were analyzed to improve our understanding of the upper ocean response to hurricane winds. The main finding in this study is that salinity potentially played an important role on changes observed in the upper ocean; a near-surface barrier layer likely suppressed the hurricane-induced upper ocean cooling, leading to smaller than expected temperature changes. Poststorm observations also revealed a partial recovery of the ocean to prestorm conditions 11 days after the hurricane. Comparison with a coupled ocean-atmosphere hurricane model indicates that model-observations discrepancies are largely linked to salinity effects described. Results presented in this study emphasize the value of underwater glider observations for improving our knowledge of how the ocean responds to tropical cyclone winds and for tropical cyclone intensification studies and forecasts.

  9. The Solar Wind Ion Analyzer for MAVEN

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Taylor, E. R.; Dalton, G.; Johnson, G.; Curtis, D. W.; McFadden, J. P.; Mitchell, D. L.; Lin, R. P.; Jakosky, B. M.

    2015-12-01

    The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the structure of the magnetosphere through which non-thermal ion escape must take place. SWIA measurements contribute to the top level MAVEN goals of characterizing the upper atmosphere and the processes that operate there, and parameterizing the escape of atmospheric gases to extrapolate the total loss to space throughout Mars' history. To accomplish these goals, SWIA utilizes a toroidal energy analyzer with electrostatic deflectors to provide a broad 360∘×90∘ field of view on a 3-axis spacecraft, with a mechanical attenuator to enable a very high dynamic range. SWIA provides high cadence measurements of ion velocity distributions with high energy resolution (14.5 %) and angular resolution (3.75∘×4.5∘ in the sunward direction, 22.5∘×22.5∘ elsewhere), and a broad energy range of 5 eV to 25 keV. Onboard computation of bulk moments and energy spectra enable measurements of the basic properties of the solar wind at 0.25 Hz.

  10. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  11. Preliminary design study of a high resolution meteor radar

    NASA Technical Reports Server (NTRS)

    Lee, W.; Geller, M. A.

    1973-01-01

    A design study for a high resolution meteor radar system is carried out with the objective of measuring upper atmospheric winds and particularly studying short period atmospheric waves in the 80 to 120 km altitude region. The transmitter that is to be used emits a peak power of 4 Mw. The system is designed to measure the wind velocity and height of a meteor trail very accurately. This is achieved using a specially developed digital reduction procedure to determine wind velocity and range together with an interferometer for measuring both the azimuth and elevation angles of the region with a long baseline vernier measurement being used to refine the elevation angle measurement. The resultant accuracies are calculated to be + or - 0.9 m/s for the wind, + or - 230 m for the range and + or - 0.12 deg for the elevation angle, giving a height accuracy of + or - 375 m. The prospects for further development of this system are also discussed.

  12. Venus atmosphere from Venus Express

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Taylor, Fredric W.; Svedhem, Håkan; Titov, D.; Svedhem, H.; Taylor, F. W.; Bertaux, J.-L.; Drossart, P.; Haeusler, B.; Korablev, O. I.; Markiewicz, W. J.; Paetzold, M.; Piccioni, G.; Vandaele, A.-C.

    Since April 2006 Venus Express has been performing a global survey of the remarkably dense, cloudy, and dynamic atmosphere of our near neighbour. A consistent picture of the climate on Venus is emerging on the basis of the new data on the global temperature structure, the com-position and its variations, the cloud morphology at various levels, the atmospheric dynamics and general circulation, and near-infrared emissions from trace species such as oxygen in the mesosphere. Vertical profiles of atmospheric temperature in the mesosphere and upper tropo-sphere show strong variability correlated with changes in the cloud top structure and many fine details indicating dynamical processes. Temperature sounding also shows that the main cloud deck at 50-60 km is convectively unstable over large portion of the planet, in agreement with the analysis of UV images. Imaging also reveals strong latitudinal variations and significant temporal changes in the global cloud top morphology, which will inevitably modulate the solar energy deposited in the atmosphere. The cloud top altitude varies from 72 km in the low and middle latitudes to 64 km in the polar region, marking vast polar depressions that form as a re-sult of the Hadley-type meridional circulation. Stellar and solar occultation measurements have revealed an extended upper haze of submicron particles and provided information on its optical properties. Solar occultation observations and deep atmosphere spectroscopy have quantified the distribution of the major trace gases H2O, SO2, CO, COS above and below the clouds, and so provided important input and validation for models of chemical cycles and dynamical trans-port. Cloud motion monitoring has characterised the mean state of the atmospheric circulation as well as its variability. Low and middle latitudes show an almost constant zonal wind speed of 100+/-20 m/s at the cloud tops and vertical wind shear of 2-3 m/s/km. Towards the pole, the wind speed drops quickly and the vertical shear vanishes. The meridional poleward wind ranges from 0 to about 15 m/s and there is some indication that it may change its direction at high latitudes. Comparison of the thermal wind field derived from temperature sounding to the cloud tracked winds confirms the approximate validity of cyclostrophic balance, at least in the latitude range from 30 S to 70 S. Maps of the non-LTE infrared emissions in the lines of O2, NO, CO2, OH originating near the mesopause at 95-105 km altitude show that the airglow peak intensity occurs close to the anti-solar point and its location depends on species. These observations promise significant improvement of thermospheric circulation models.

  13. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data.

    PubMed

    Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J

    2014-02-01

    The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.

  14. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 1: January

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of January. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Mean density standard deviation (all for 13 levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  15. The impact of nudging coefficient for the initialization on the atmospheric flow field and the photochemical ozone concentration of Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Jung; Lee, Hwa Woon; Sung, Kyoung-Hee; Kim, Min-Jung; Kim, Yoo-Keun; Jung, Woo-Sik

    In order to incorporate correctly the large or local scale circulation in the model, a nudging term is introduced into the equation of motion. Nudging effects should be included properly in the model to reduce the uncertainties and improve the air flow field. To improve the meteorological components, the nudging coefficient should perform the adequate influence on complex area for the model initialization technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to evaluate the effects on air quality modeling by comparing the performance of the meteorological result with variable nudging coefficient experiment. All experiments are calculated by the upper wind conditions (synoptic or asynoptic condition), respectively. Consequently, it is important to examine the model response to nudging effect of wind and mass information. The MM5-CMAQ model was used to assess the ozone differences in each case, during the episode day in Seoul, Korea and we revealed that there were large differences in the ozone concentration for each run. These results suggest that for the appropriate simulation of large or small-scale circulations, nudging considering the synoptic and asynoptic nudging coefficient does have a clear advantage over dynamic initialization, so appropriate limitation of these nudging coefficient values on its upper wind conditions is necessary before making an assessment. The statistical verifications showed that adequate nudging coefficient for both wind and temperature data throughout the model had a consistently positive impact on the atmospheric and air quality field. On the case dominated by large-scale circulation, a large nudging coefficient shows a minor improvement in the atmospheric and air quality field. However, when small-scale convection is present, the large nudging coefficient produces consistent improvement in the atmospheric and air quality field.

  16. Field-wind Distribution and Eruption Columns: Colima Volcano, México.

    NASA Astrophysics Data System (ADS)

    Fonseca, R.; Martin, A. L.; Perez, I.

    2006-12-01

    Colima Volcano (19º51'N 103º62'W) is characterized by explosive behaviour. Recently this volcano has shown an increase in explosive activity suggesting the possibility of a subplinian event in the next future like the ones occurred in 1818 and 1913. They were characterized by eruptive columns higher than 20 Km. Considering the possibility of a new explosive event we carried out a wind study based on the radiosonde balloon data set (1980-1995) with 15 atmospheric levels. This data set was collected by Global Gridded Upper Air Statistics (GGUAS) of the European Centre for Médium Range Weather Forecast (ECMRWF). The data was processed with a cinematic model for the study of global atmospheric wind circulation. In this model the current function (vorticity) and a potential function (convergency and/or divergency) was calculated with the Poison equation, utilizing a spectral numeric model. Dominant wind direction in January-May and October-December is toward the East with variations to the East/South East. On the contrary during July-September the dominant wind direction is toward the West, South-West, North-East; East and North-East. The fluctuations related to anticyclonic circulation occur in May, July, September and November at the altitude between 5 and 18 Km. The wind model allows identification of the wind horizontal circulation during the whole year at different atmospheric levels. Moreover, the perturbations of the normal circulation have also been identified. These results are applied to an a ash fall map for ash-fall hazard zonification.

  17. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds

    NASA Astrophysics Data System (ADS)

    Rodgers, K. B.; Fletcher, S. E. M.; Bianchi, D.; Beaulieu, C.; Galbraith, E. D.; Gnanadesikan, A.; Hogg, A. G.; Iudicone, D.; Lintner, B.; Naegler, T.; Reimer, P. J.; Sarmiento, J. L.; Slater, R. D.

    2011-01-01

    Tree ring Δ14C data (Reimer et al., 2004; McCormac et al., 2004) indicate that atmospheric Δ14C varied on multi-decadal to centennial timescales, in both hemispheres, over the pre-industrial period AD 950-1830. Although the Northern and Southern Hemispheric Δ14C records display similar variability, it is difficult from these data alone to distinguish between variations driven by 14CO2 production in the upper atmosphere (Stuiver, 1980) and exchanges between carbon reservoirs (Siegenthaler, 1980). Here we consider rather the Interhemispheric Gradient in atmospheric Δ14C as revealing of the background pre-bomb air-sea Disequilbrium Flux between 14CO2 and CO2. As the global maximum of the Disequilibrium Flux is squarely centered in the open ocean regions of the Southern Ocean, relatively modest perturbations to the winds over this region drive significant perturbations to the Interhemispheric Gradient. The analysis presented here implies that changes to Southern Ocean windspeeds are likely a main driver of the observed variability in the Interhemispheric Gradient over 950-1830, and further, that this variability may be larger than the Southern Ocean wind trends that have been reported for recent decades (notably 1980-2004). This interpretation also implies a significant weakening of the winds over the Southern Ocean within a few decades of AD 1375, associated with the transition between the Medieval Climate Anomaly and the Little Ice Age. The driving forces that could have produced such a shift in the winds remain unkown.

  18. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    NASA Technical Reports Server (NTRS)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  19. Characterization of Atmospheric Waves at the upper clouds in the Polar Region of Venus

    NASA Astrophysics Data System (ADS)

    Peralta, J.; Luz, D.; Berry, D. L.; Tsang, C. C. C.; Migliorini, A.; Piccioni, G.; Drossart, P.

    2012-09-01

    Non solar-fixed waves at the cloud tops of the southern polar region of Venus are studied in the winds measured with 3.9 and 5.0 μm images taken by the instrument VIRTIS-M onboard Venus Express. Wavenumbers 1, 2 and 3 are detected, with wave amplitudes ranging from 3.6 to 8.0 m/s. The evolution of the phase has been studied in 16 orbits, finding in a subset of orbits wavenumbers 1 and 2 propagating in different directions (zonal wind), and a westward progression with a phase velocity of approximately 5.7 m/s for the wavenumber 1 in the meridional wind. Finally, a new set of analytical solutions to the atmospheric waves is obtained for the planet Venus, and these are used to characterize the found waves in terms of the horizontal wavelength and phase velocity.

  20. Bias Correction and Random Error Characterization for the Assimilation of HRDI Line-of-Sight Wind Measurements

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We findmore » that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical properties further explain the reduction of surface rain by strong wind shear especially at the lower- and middle-levels. The insights obtained from this study help us better understand the cloud system organization and provide foundation for better parameterizing organized MCS.« less

  2. The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bloom, Stephen; Otterman, Joseph

    2000-01-01

    Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.

  3. Ground-based Observations for the Upper Atmosphere at King Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Jee, Geonhwa; Kim, Jeong-Han; Lee, Changsup; Kim, Yong Ha

    2014-06-01

    Since the operation of the King Sejong Station (KSS) started in Antarctic Peninsula in 1989, there have been continuous efforts to perform the observation for the upper atmosphere. The observations during the initial period of the station include Fabry-Perot Interferometer (FPI) and Michelson Interferometer for the mesosphere and thermosphere, which are no longer in operation. In 2002, in collaboration with York University, Canada, the Spectral Airglow Temperature Imager (SATI) was installed to observe the temperature in the mesosphere and lower thermosphere (MLT) region and it has still been producing the mesopause temperature data until present. The observation was extended by installing the meteor radar in 2007 to observe the neutral winds and temperature in the MLT region during the day and night in collaboration with Chungnam National University. We also installed the all sky camera in 2008 to observe the wave structures in the MLT region. All these observations are utilized to study on the physical characteristics of the MLT region and also on the wave phenomena such as the tide and gravity wave in the upper atmosphere over KSS that is well known for the strong gravity wave activity. In this article, brief introductions for the currently operating instruments at KSS will be presented with their applications for the study of the upper atmosphere

  4. Infrasound data inversion for atmospheric sounding

    NASA Astrophysics Data System (ADS)

    Lalande, J.-M.; Sèbe, O.; Landès, M.; Blanc-Benon, Ph.; Matoza, R. S.; Le Pichon, A.; Blanc, E.

    2012-07-01

    The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) continuously records acoustic waves in the 0.01-10 Hz frequency band, known as infrasound. These waves propagate through the layered structure of the atmosphere. Coherent infrasonic waves are produced by a variety of anthropogenic and natural sources and their propagation is controlled by spatiotemporal variations of temperature and wind velocity. Natural stratification of atmospheric properties (e.g. temperature, density and winds) forms waveguides, allowing long-range propagation of infrasound waves. However, atmospheric specifications used in infrasound propagation modelling suffer from lack and sparsity of available data above an altitude of 50 km. As infrasound can propagate in the upper atmosphere up to 120 km, we assume that infrasonic data could be used for sounding the atmosphere, analogous to the use of seismic data to infer solid Earth structure and the use of hydroacoustic data to infer oceanic structure. We therefore develop an inversion scheme for vertical atmospheric wind profiles in the framework of an iterative linear inversion. The forward problem is treated in the high-frequency approximation using a Hamiltonian formulation and complete first-order ray perturbation theory is developed to construct the Fréchet derivatives matrix. We introduce a specific parametrization for the unknown model parameters based on Principal Component Analysis. Finally, our algorithm is tested on synthetic data cases spanning different seasonal periods and network configurations. The results show that our approach is suitable for infrasound atmospheric sounding on a regional scale.

  5. Winds over Japan.

    NASA Astrophysics Data System (ADS)

    Plumley, William J.

    1994-01-01

    Before World War II, weather forecasters had little knowledge of upper-air wind patterns above 20000 feet. Data were seldom avai able at these heights, and the need was not great because commercial aircraft seldom flew at these altitudes. The war in the Pacific changed all that. Wind forecasts for 30000 feet plus became urgent to support the XXI Bomber Command in its bombing mission over Japan.The U.S. Army Air Force Pacific Ocean Area (AAFPOA) placed a Weather Central in the Marianas Islands in 1944 (Saipan in 1944 and Guam in 1945) to provide forecasting support for this mission. A forecasting procedure was put into operation that combined the elements known as "single-station forecasting" and an advanced procedure that used "altirmeter corrections" to analyze upper-airdata and make prognoses. Upper-air charts were drawn for constant pressure surfaces rather than constant height surfaces. The constant pressure surfaces were tied together by means of the atmospheric temperature field represented by specific temperature anomalies between pressure surfaces. Wind forecasts over the Marianas-Japan route made use of space cross sections that provided the data to forecast winds at each 5000-ft level to 35000 ft along the mission flight path. The new procedures allowed the forecaster to construct internally consistent meteorological charts in three dimensions in regions of sparse data.Army air force pilots and their crews from the Marianas were among the first to experience the extreme wind conditions now known as the "jet stream". Air force forecasters demonstrated that, with experience, such winds could reasonably be forecast under difficult operational conditions.

  6. Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam P.

    2017-02-01

    Super Earths and mini Neptunes likely have a wide range of atmospheric compositions, ranging from low molecular mass atmospheres of H2 to higher molecular atmospheres of water, CO2, N2, or other species. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets, using an idealized 3D general circulation model (GCM). The bulk composition effects are characterized in the framework of two independent variables: molecular weight and molar heat capacity. The effect of molecular weight dominates. As the molecular weight increases, the atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal phase curve, and a smaller zonal wind speed. The width of the equatorial super-rotating jet also becomes narrower, and the “jet core” region, where the zonal-mean jet speed maximizes, moves to a greater pressure level. The zonal-mean zonal wind is more prone to exhibit a latitudinally alternating pattern in a higher molecular weight atmosphere. We also present analytical theories that quantitatively explain the above trends and shed light on the underlying dynamical mechanisms. Those trends might be used to indirectly determine the atmospheric compositions on tidally locked sub-Jupiter-sized planets. The effects of the molar heat capacity are generally small. But if the vertical temperature profile is close to adiabatic, molar heat capacity will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.

  7. Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa; Rhines, Peter B.; Worthlen, Denise L.

    2011-01-01

    Based on the 20th century atmospheric reanalysis, winters with more frequent blocking, in a band of blocked latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability. Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by impacting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially, 1996-2010). It also describes much longer-timescale Atlantic multidecadal ocean variability (AMV), including the extreme, pre-greenhouse-gas, northern warming of the 1930s-1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat-exchange, both of which contribute to the warm phase of AMV.

  8. Investigating Alfvénic wave propagation in coronal open-field regions

    PubMed Central

    Morton, R. J.; Tomczyk, S.; Pinto, R.

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  9. An assessment of thermal, wind, and planetary wave changes in the middle and lower atmosphere due to 11-year UV flux variations

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Alpert, J. C.; Geller, M. A.

    1985-01-01

    Hines (1974) speculated that solar-induced modifications of the middle and upper atmosphere may alter the transmissivity of the stratosphere to upwardly propagating atmospheric waves. It was suggested that subsequent constructive or destructive interference may result in a change of phase or amplitude of these waves in the troposphere leading to weather or climate changes. The present investigation has the objective to bring together both radiative transfer and planetary wave studies in an effort to assess specifically whether Hines mechanism can be initiated by the solar ultraviolet flux variability assumed to be associated with the 11-year solar cycle. The obtained results suggest that the presently studied mechanism, which links solar-induced zonal wind changes in the stratosphere and mesosphere to planetary wave changes in the troposphere, is not strong enough to cause substantive changes in the troposphere.

  10. Intercomparison of middle-atmospheric wind in observations and models

    NASA Astrophysics Data System (ADS)

    Rüfenacht, Rolf; Baumgarten, Gerd; Hildebrand, Jens; Schranz, Franziska; Matthias, Vivien; Stober, Gunter; Lübken, Franz-Josef; Kämpfer, Niklaus

    2018-04-01

    Wind profile information throughout the entire upper stratosphere and lower mesosphere (USLM) is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other) observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3° N, 16.0° E). Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5-10 m s-1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s-1) exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.

  11. A one-dimensional model of the semiannual oscillation driven by convectively forced gravity waves

    NASA Technical Reports Server (NTRS)

    Sassi, Fabrizio; Garcia, Rolando R.

    1994-01-01

    A one-dimensional model that solves the time-dependent equations for the zonal mean wind and a wave of specified zonal wavenumber has been used to illustrate the ability of gravity waves forced by time-dependent tropospheric heating to produce a semiannual oscillation (SAO) in the middle atmosphere. When the heating has a strong diurnal cycle, as observed over tropical landmasses, gravity waves with zonal wavelengths of a few thousand kilometers and phase velocities in the range +/- 40-50 m/sec are excited efficiently by the maximum vertical projection criterion (vertical wavelength approximately equals 2 x forcing depth). Calculations show that these waves can account for large zonal mean wind accelerations in the middle atmosphere, resulting in realistic stratopause and mesopause oscillations. Calculations of the temporal evolution of a quasi-conserved tracer indicate strong down-welling in the upper stratosphere near the equinoxes, which is associated with the descent of the SAO westerlies. In the upper mesosphere, there is a semiannual oscillation in tracer mixing ratio driven by seasonal variability in eddy mixing, which increases at the solstices and decreases at the equinoxes.

  12. Intercontinental dispersal of bacteria and archaea by transpacific winds

    USGS Publications Warehouse

    D. Smith,; H. Timonen,; D. Jaffe,; Griffin, Dale W.; M. Birmele,; Perry, K.D.; Ward, P.D.; M. Roberts,

    2013-01-01

    Microorganisms are abundant in the upper atmosphere, particularly downwind of arid regions, where winds can mobilize large amounts of topsoil and dust. However, the challenge of collecting samples from the upper atmosphere and reliance upon culture-based characterization methods have prevented a comprehensive understanding of globally dispersed airborne microbes. In spring 2011 at the Mt. Bachelor Observatory in North America (2.8 km above sea level), we captured enough microbial biomass in two transpacific air plumes to permit a microarray analysis using 16S rRNA genes. Thousands of distinct bacterial taxa spanning a wide range of phyla and surface environments were detected before, during, and after each Asian long-range transport event. Interestingly, the transpacific plumes delivered higher concentrations of taxa already in the background air (particularly Proteobacteria, Actinobacteria, and Firmicutes). While some bacterial families and a few marine archaea appeared for the first and only time during the plumes, the microbial community compositions were similar, despite the unique transport histories of the air masses. It seems plausible, when coupled with atmospheric modeling and chemical analysis, that microbial biogeography can be used to pinpoint the source of intercontinental dust plumes. Given the degree of richness measured in our study, the overall contribution of Asian aerosols to microbial species in North American air warrants additional investigation.

  13. Intercontinental Dispersal of Bacteria and Archaea by Transpacific Winds

    PubMed Central

    Timonen, Hilkka J.; Jaffe, Daniel A.; Griffin, Dale W.; Birmele, Michele N.; Perry, Kevin D.; Ward, Peter D.; Roberts, Michael S.

    2013-01-01

    Microorganisms are abundant in the upper atmosphere, particularly downwind of arid regions, where winds can mobilize large amounts of topsoil and dust. However, the challenge of collecting samples from the upper atmosphere and reliance upon culture-based characterization methods have prevented a comprehensive understanding of globally dispersed airborne microbes. In spring 2011 at the Mt. Bachelor Observatory in North America (2.8 km above sea level), we captured enough microbial biomass in two transpacific air plumes to permit a microarray analysis using 16S rRNA genes. Thousands of distinct bacterial taxa spanning a wide range of phyla and surface environments were detected before, during, and after each Asian long-range transport event. Interestingly, the transpacific plumes delivered higher concentrations of taxa already in the background air (particularly Proteobacteria, Actinobacteria, and Firmicutes). While some bacterial families and a few marine archaea appeared for the first and only time during the plumes, the microbial community compositions were similar, despite the unique transport histories of the air masses. It seems plausible, when coupled with atmospheric modeling and chemical analysis, that microbial biogeography can be used to pinpoint the source of intercontinental dust plumes. Given the degree of richness measured in our study, the overall contribution of Asian aerosols to microbial species in North American air warrants additional investigation. PMID:23220959

  14. SPICAM: studying the global structure and composition of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2004-08-01

    The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.

  15. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 7: July

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of July. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  16. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 10: October

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of October. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point/standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  17. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 3: March

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-11-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of March. Included are global analyses of: (1) Mean Temperature Standard Deviation; (2) Mean Geopotential Height Standard Deviation; (3) Mean Density Standard Deviation; (4) Height and Vector Standard Deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean Dew Point Standard Deviation for levels 1000 through 30 mb; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  18. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 2: February

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-09-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of February. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  19. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 4: April

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of April. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  20. Spatial and Temporal Variability of Surface Energy Fluxes During Autumn Ice Advance: Observations and Model Validation

    NASA Astrophysics Data System (ADS)

    Persson, O. P. G.; Blomquist, B.; Grachev, A. A.; Guest, P. S.; Stammerjohn, S. E.; Solomon, A.; Cox, C. J.; Capotondi, A.; Fairall, C. W.; Intrieri, J. M.

    2016-12-01

    From Oct 4 to Nov 5, 2015, the Office of Naval Research - sponsored Sea State cruise in the Beaufort Sea with the new National Science Foundation R/V Sikuliaq obtained extensive in-situ and remote sensing observations of the lower troposphere, the advancing sea ice, wave state, and upper ocean conditions. In addition, a coupled atmosphere, sea ice, upper-ocean model, based on the RASM model, was run at NOAA/PSD in a hindcast mode for this same time period, providing a 10-day simulation of the atmosphere/ice/ocean evolution. Surface energy fluxes quantitatively represent the air-ice, air-ocean, and ice-ocean interaction processes, determining the cooling (warming) rate of the upper ocean and the growth (melting) rate of sea ice. These fluxes also impact the stratification of the lower troposphere and the upper ocean. In this presentation, both direct and indirect measurements of the energy fluxes during Sea State will be used to explore the spatial and temporal variability of these fluxes and the impacts of this variability on the upper ocean, ice, and lower atmosphere during the autumn ice advance. Analyses have suggested that these fluxes are impacted by atmospheric synoptic evolution, proximity to existing ice, ice-relative wind direction, ice thickness and snow depth. In turn, these fluxes impact upper-ocean heat loss and timing of ice formation, as well as stability in the lower troposphere and upper ocean, and hence heat transport to the free troposphere and ocean mixed-layer. Therefore, the atmospheric structure over the advancing first-year ice differs from that over the nearby open water. Finally, these observational analyses will be used to provide a preliminary validation of the spatial and temporal variability of the surface energy fluxes and the associated lower-tropospheric and upper-ocean structures in the simulations.

  1. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day-of-launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program and NASA's Ground Systems Development and Operations Program. They currently do not have the capability to display and overlay profiles of upper-level observations and numerical weather prediction model forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a tool in the form of a graphical user interface (GUI) that will allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center (KSC) 50 MHz tropospheric wind profiling radar, KSC Shuttle Landing Facility 915 MHz boundary layer wind profiling radar and Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Processing System (AMPS) radiosondes, and then overlay forecast wind profiles from the model point data including the North American Mesoscale (NAM) model, Rapid Refresh (RAP) model and Global Forecast System (GFS) model to assess the performance of these models. The AMU developed an Excel-based tool that provides an objective method for the LWOs to compare the model-forecast upper-level winds to the KSC wind profiling radars and CCAFS AMPS observations to assess the model potential to accurately forecast changes in the upperlevel profile through the launch count. The AMU wrote Excel Visual Basic for Applications (VBA) scripts to automatically retrieve model point data for CCAFS (XMR) from the Iowa State University Archive Data Server (http://mtarchive.qeol.iastate.edu) and the 50 MHz, 915 MHz and AMPS observations from the NASA/KSC Spaceport Weather Data Archive web site (http://trmm.ksc.nasa.gov). The AMU then developed code in Excel VBA to automatically ingest and format the observations and model point data in Excel to ready the data for generating Excel charts for the LWO's. The resulting charts allow the LWOs to independently initialize the three models 0-hour forecasts against the observations to determine which is the best performing model and then overlay the model forecasts on time-matched observations during the launch countdown to further assess the model performance and forecasts. This paper will demonstrate integration of observed and predicted atmospheric conditions into a decision support tool and demonstrate how the GUI is implemented in operations.

  2. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-07-04

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  3. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  4. Chandra Image Gives First Look at Mars Emitted X-Rays

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  5. Ultrastrong Carbon Thin Films from Diamond to Graphene under Extreme Conditions: Probing Atomic Scale Interfacial Mechanisms to Achieve Ultralow Friction and Wear

    DTIC Science & Technology

    2016-12-08

    of Current Advances and Challenges for the Future. Trib. Int. 37, 517-536 (2004). 6. Doll, G.L. and Evans, R.D. Solving Wind Turbine Tribological...and Doll, G.L. Tribological Advancements for Reliable Wind Turbine Performance. Phil. Trans. A 368, 4829-50 (2010). 8. Grillo, S.E. and Field, J.E...environments (as found in the upper atmosphere and in outer space), and protective coatings for bearings, bushings, and gears in engines, turbines and

  6. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    NASA Technical Reports Server (NTRS)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  7. Wind and Temperature Spectrometry of the Upper Atmosphere in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Herrero, Federico

    2011-01-01

    Wind and Temperature Spectrometry (WATS) is a new approach to measure the full wind vector, temperature, and relative densities of major neutral species in the Earth's thermosphere. The method uses an energy-angle spectrometer moving through the tenuous upper atmosphere to measure directly the angular and energy distributions of the air stream that enters the spectrometer. The angular distribution gives the direction of the total velocity of the air entering the spectrometer, and the energy distribution gives the magnitude of the total velocity. The wind velocity vector is uniquely determined since the measured total velocity depends on the wind vector and the orbiting velocity vector. The orbiting spectrometer moves supersonically, Mach 8 or greater, through the air and must point within a few degrees of its orbital velocity vector (the ram direction). Pointing knowledge is critical; for example, pointing errors 0.1 lead to errors of about 10 m/s in the wind. The WATS method may also be applied without modification to measure the ion-drift vector, ion temperature, and relative ion densities of major ionic species in the ionosphere. In such an application it may be called IDTS: Ion-Drift Temperature Spectrometry. A spectrometer-based coordinate system with one axis instantaneously pointing along the ram direction makes it possible to transform the Maxwellian velocity distribution of the air molecules to a Maxwellian energy-angle distribution for the molecular flux entering the spectrometer. This implementation of WATS is called the gas kinetic method (GKM) because it is applied to the case of the Maxwellian distribution. The WATS method follows from the recognition that in a supersonic platform moving at 8,000 m/s, the measurement of small wind velocities in the air on the order of a few 100 m/s and less requires precise knowledge of the angle of incidence of the neutral atoms and molecules. The same is true for the case of ion-drift measurements. WATS also provides a general approach that can obtain non-equilibrium distributions as may exist in the upper regions of the thermosphere, above 500 km and into the exosphere. Finally, WATS serves as a mass spectrometer, with very low mass resolution of roughly 1 part in 3, but easily separating atomic oxygen from molecular nitrogen.

  8. Spume Drops: Their Potential Role in Air-Sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny

    2017-12-01

    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in air sea exchange models. Based on these the contribution of spume drops to overall air sea gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.2605H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.2605H"><span>Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: climatology and interannual variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harlaß, Jan; Latif, Mojib; Park, Wonsun</p> <p>2018-04-01</p> <p>We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011516','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011516"><span>A Future Mars Environment for Science and Exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Green, J. L.; Hollingsworth, J. L.; Kahre, M. A.; Brain, D.; Airapetian, V.; Glocer, A.; Pulkkinen, A.; Dong, C.; Bamford, R.</p> <p>2017-01-01</p> <p>Today, Mars is arid and cold with a very thin atmosphere that has significant frozen and underground water resources. The thin atmosphere prevents liquid water from residing permanently on its surface and makes it difficult to land missions since it is not thick enough to completely facilitate a soft landing. In its past, under the influence of a significant greenhouse effect, Mars must have had a significant water ocean covering perhaps 30% of the northern hemisphere. Mars lost its protective magnetosphere and therefore much of its atmosphere around 3 Ga ago, due to the solar wind. The atmospheric loss into the solar wind is somewhat balanced by the outgassing of the Mars interior and crust that contributes to the existing atmosphere leading to a global-mean surface atmosphere of 6 mbar pressure currently. By using our extensive simulation tools and physics capabilities in Space Weather and Mars global climate modeling, we have started to explore the effects on Mars of placing an artificial magnetic dipole field at the Mars L1 Lagrange point putting Mars in a magnetotail. This situation then eliminates many of the solar-wind erosion processes that occur with the planet's ionosphere and upper atmosphere allowing the Martian atmosphere to grow in pressure and bulk temperature over time. Under thicker atmospheres, the global circulation patterns and seasonal changes are much different than at present. An enhanced atmosphere would: allow larger landed mass of equipment to the surface, shield against some cosmic and solar particle radiation, extend the ability for extraction, and provide "open air" greenhouses to exist for plant production, just to name a few. These new conditions on Mars would allow human explorers and researchers to study the planet in much greater detail and enable a truly profound new understanding of the habitability of this planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22739314','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22739314"><span>Magnetic tornadoes as energy channels into the solar corona.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wedemeyer-Böhm, Sven; Scullion, Eamon; Steiner, Oskar; van der Voort, Luc Rouppe; de la Cruz Rodriguez, Jaime; Fedun, Viktor; Erdélyi, Robert</p> <p>2012-06-27</p> <p>Heating the outer layers of the magnetically quiet solar atmosphere to more than one million kelvin and accelerating the solar wind requires an energy flux of approximately 100 to 300 watts per square metre, but how this energy is transferred and dissipated there is a puzzle and several alternative solutions have been proposed. Braiding and twisting of magnetic field structures, which is caused by the convective flows at the solar surface, was suggested as an efficient mechanism for atmospheric heating. Convectively driven vortex flows that harbour magnetic fields are observed to be abundant in the photosphere (the visible surface of the Sun). Recently, corresponding swirling motions have been discovered in the chromosphere, the atmospheric layer sandwiched between the photosphere and the corona. Here we report the imprints of these chromospheric swirls in the transition region and low corona, and identify them as observational signatures of rapidly rotating magnetic structures. These ubiquitous structures, which resemble super-tornadoes under solar conditions, reach from the convection zone into the upper solar atmosphere and provide an alternative mechanism for channelling energy from the lower into the upper solar atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA53A..04Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA53A..04Z"><span>Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.</p> <p>2013-12-01</p> <p>Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable impact on the upper atmosphere and describe techniques for experimental verification of this finding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800019423&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbalance%2Bgeneral','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800019423&hterms=balance+general&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbalance%2Bgeneral"><span>Comparisons of observed seasonal climate features with a winter and summer numerical simulation produced with the GLAS general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halem, M.; Shukla, J.; Mintz, Y.; Wu, M. L.; Godbole, R.; Herman, G.; Sud, Y.</p> <p>1979-01-01</p> <p>Results are presented from numerical simulations performed with the general circulation model (GCM) for winter and summer. The monthly mean simulated fields for each integration are compared with observed geographical distributions and zonal averages. In general, the simulated sea level pressure and upper level geopotential height field agree well with the observations. Well simulated features are the winter Aleutian and Icelandic lows, the summer southwestern U.S. low, the summer and winter oceanic subtropical highs in both hemispheres, and the summer upper level Tibetan high and Atlantic ridge. The surface and upper air wind fields in the low latitudes are in good agreement with the observations. The geographical distirbutions of the Earth-atmosphere radiation balance and of the precipitation rates over the oceans are well simulated, but not all of the intensities of these features are correct. Other comparisons are shown for precipitation along the ITCZ, rediation balance, zonally averaged temperatures and zonal winds, and poleward transports of momentum and sensible heat.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920019251&hterms=grams&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgrams','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920019251&hterms=grams&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgrams"><span>Mars global reference atmosphere model (Mars-GRAM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; James, Bonnie F.</p> <p>1992-01-01</p> <p>Mars-GRAM is an empirical model that parameterizes the temperature, pressure, density, and wind structure of the Martian atmosphere from the surface through thermospheric altitudes. In the lower atmosphere of Mars, the model is built around parameterizations of height, latitudinal, longitudinal, and seasonal variations of temperature determined from a survey of published measurements from the Mariner and Viking programs. Pressure and density are inferred from the temperature by making use of the hydrostatic and perfect gas laws relationships. For the upper atmosphere, the thermospheric model of Stewart is used. A hydrostatic interpolation routine is used to insure a smooth transition from the lower portion of the model to the Stewart thermospheric model. Other aspects of the model are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11.1689L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11.1689L"><span>Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.</p> <p>2018-03-01</p> <p>Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P12A..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P12A..07C"><span>Dependence of Photochemical Escape of Oxygen at Mars on Solar Radiation and Solar Wind Interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cravens, T.; Rahmati, A.; Lillis, R. J.; Fox, J. L.; Bougher, S. W.; Jakosky, B. M.</p> <p>2016-12-01</p> <p>The evolution of the atmosphere of Mars and the loss of volatiles over the life of the solar system is a key topic in planetary science. An important loss process in the ionosphere is photochemical escape. In particular, dissociative recombination of O2+ ions (the major ion species) produces fast oxygen atoms, some of which can escape from the planet. Several theoretical models have been constructed over the years to study hot oxygen and its escape from Mars. These model have a number of uncertainties, particularly for the elastic cross sections of O collisions with target neutral species. Recently, the Mars Atmosphere and Volatile Evolution Mission (MAVEN) mission has been rapidly improving our understanding of the upper atmosphere and ionosphere of Mars and its interaction with the external environment (e.g., the solar wind). The purpose of the current paper is to take a simple analytical approach to the oxygen escape problem in order to: (1) study the role that solar flux and solar wind variations have on escape and (2) isolate the effects of uncertainties in oxygen cross sections on the derived oxygen escape rates. Not surprisingly, we find, in agreement with more elaborate numerical models, that the escape flux is directly proportional to the incident solar extreme ultraviolet irradiance and is inversely proportional to the backscatter elastic cross section. The role for atmospheric loss that ion transport plays in the topside ionosphere and how the solar wind interaction drives this will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070020528&hterms=trend+reports&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtrend%2Breports','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070020528&hterms=trend+reports&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtrend%2Breports"><span>Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Norris, Joel R.</p> <p>2005-01-01</p> <p>This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950037243&hterms=impact+art&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dimpact%2Bart','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950037243&hterms=impact+art&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dimpact%2Bart"><span>The impact of land-surface wetness heterogeneity on mesoscale heat fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Fei; Avissar, Roni</p> <p>1994-01-01</p> <p>Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982PhDT........64T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982PhDT........64T"><span>a Climatology of Synoptic Scale Atmospheric Structure Prior to Severe Convective Storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, Gregory Eugene</p> <p>1982-03-01</p> <p>This investigation determines those unique properties of the thermodynamic and kinematic structure of the atmosphere in the region where tornado bearing thunderstorms develop as compared to surrounding locations. One hundred five upper air soundings from the operational rawinsonde network, hereafter called tornado proximity soundings, comprise the core of the data base. In each instance, a confirmed tornado occurred within 50 statute miles of and within 105 minutes after the release of the radiosonde. In earlier research of this nature, the thermodynamic and kinematic properties of the atmosphere in the region of tornado bearing thunderstorm development were interpolated or inferred from upper air soundings made at locations surrounding the severe storm location. These surrounding locations, however, were characterized by at most non-tornado bearing thunderstorm development. In this investigation, however, measurements of the atmospheric structure near in space and time to the subsequent tornado bearing thunderstorm development have been utilized. This fact should enhance the probability of detecting the presumably unique properties of the atmospheric structure prior to severe storm development as compared to previous investigations. Height, temperature, mixing ratio, and U and V wind component data from the tornado proximity sounding station and surrounding upper air stations were objectively analyzed to a regularly spaced three dimensional grid network centered on the tornado proximity sounding station. From the basic data, a large number of derived variables which had been previously linked to severe storms were computed. Each case was categorized into one of six different classifications based on the geographical location and date of the tornado proximity sounding. The results from the six categories indicate that the most pronounced unique properties of the pre-severe storm environment are within the lower levels of the atmosphere. In particular, the low level moisture content and the low level V-component tended to maximize near the region of subsequent severe storm development in most of the six categories. Also, a number of variables which are highly dependent upon low level moisture content and/or low level wind data such as horizontal moisture flux and stability indices delineated well the region of subsequent severe storm development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980038128','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980038128"><span>Maynooth Optical Aeronomical Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mulligan, Francis J.; Niciejewski, Rick J.</p> <p>1994-01-01</p> <p>Ground-based measurements of upper atmospheric parameters, such as temperature and wind velocity, can be made by observing airglow emissions that have a well-defined altitude profile and that are known to be representative of the emitting region. We describe the optical observatory at Maynooth (53.23 deg N, 6.4 deg W) at which two instruments, a Fabry-Perot interferometer and a Fourier transform spectrometer, are used to record atmospheric airglow emissions in Ireland at visible and near-infrared wavelengths, respectively. Descriptions of the instruments, data acquisition, and analysis procedures are provided, together with some sample results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016437','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016437"><span>Galileo infrared imaging spectroscopy measurements at venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carlson, R.W.; Baines, K.H.; Encrenaz, Th.; Taylor, F.W.; Drossart, P.; Kamp, L.W.; Pollack, James B.; Lellouch, E.; Collard, A.D.; Calcutt, S.B.; Grinspoon, D.; Weissman, P.R.; Smythe, W.D.; Ocampo, A.C.; Danielson, G.E.; Fanale, F.P.; Johnson, T.V.; Kieffer, H.H.; Matson, D.L.; McCord, T.B.; Soderblom, L.A.</p> <p>1991-01-01</p> <p>During the 1990 Galileo Venus flyby, the Near Infrared Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substantial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRA..118.5951F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRA..118.5951F"><span>Upper atmosphere differences between northern and southern high latitudes: The role of magnetic field asymmetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Förster, Matthias; Cnossen, Ingrid</p> <p>2013-09-01</p> <p>The nondipolar portions of the Earth's main magnetic field constitute substantial differences between the two hemispheres. Beside the magnetic flux densities and patterns being different in the Northern Hemisphere (NH) and Southern Hemisphere (SH), also the offset between the invariant magnetic and the geographic poles is larger in the SH than in the NH. We investigated the effects of this magnetic field asymmetry on the high-latitude thermosphere and ionosphere using global numerical simulations and compared our results with recent observations. While the effects on the high-latitude plasma convection are small, the consequences for the neutral wind circulation are substantial. The cross-polar neutral wind and ion drift velocities are generally larger in the NH than the SH, and the hemispheric difference shows a semidiurnal variation. The neutral wind vorticity is likewise larger in the NH than in the SH, with the difference probably becoming larger for higher solar activity. In contrast, the spatial variance of the neutral wind is considerably larger in the SH polar region, with the hemispheric difference showing a strong semidiurnal variation. Its phase is similar to the phase of the semidiurnal variation of the hemispheric magnitude differences. Hemispheric differences in ion drift and neutral wind magnitude are most likely caused partly by the larger magnetic flux densities in the near-polar regions of the SH and partly by the larger offset between the invariant and geographic pole in the SH, while differences in spatial variance are probably just caused by the latter. We conclude that the asymmetry of the magnetic field, both in strength and in orientation, establishes substantial hemispheric differences in the neutral wind and plasma drift in the high-latitude upper atmosphere, which can help to explain observed hemispheric differences found with the Cluster/Electron Drift Instrument (EDI) and the Challenging Minisatellite Payload (CHAMP).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A34B..06V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A34B..06V"><span>The Sinuosity of Atmospheric Circulation over North America and its Relationship to Arctic Climate Change and Extreme Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vavrus, S. J.; Wang, F.; Martin, J. E.; Francis, J. A.</p> <p>2015-12-01</p> <p>Recent research has suggested a relationship between mid-latitude weather and Arctic amplification (AA) of global climate change via a slower and wavier extratropical circulation inducing more extreme events. To test this hypothesis and to quantify the waviness of the extratropical flow, we apply a novel application of the geomorphological concept of sinuosity (SIN) over greater North America. SIN is defined as the ratio of the curvilinear length of a geopotential height contour to the perimeter of its equivalent latitude, where the contour and the equivalent latitude enclose the same area. We use 500 hPa daily heights from reanalysis and model simulations to calculate past and future SIN. The circulation exhibits a distinct annual cycle of maximum SIN (waviness) in summer and a minimum in winter, inversely related to the annual cycle of zonal wind speed. Positive trends in SIN have emerged in recent decades during winter and summer at several latitude bands, generally collocated with negative trends in zonal wind speeds. High values of SIN coincide with many prominent extreme-weather events, including Superstorm Sandy. RCP8.5 simulations (2006-2100) project a dipole pattern of zonal wind changes that varies seasonally. In winter, AA causes inflated heights over the Arctic relative to mid-latitudes and an associated weakening (strengthening) of the westerlies north (south) of 40N. The AA signal in summer is strongest over upper-latitude land, promoting localized atmospheric ridging aloft with lighter westerlies to the south and stronger zonal winds to the north. The changes in wind speeds in both seasons are inversely correlated with SIN, indicating a wavier circulation where the flow weakens. In summer the lighter winds over much of the U. S. resemble circulation anomalies observed during extreme summer heat and drought. Such changes may be linked to enhanced heating of upper-latitude land surfaces caused by earlier snow melt during spring-summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002563','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002563"><span>A High Speed, Radiation Hard X-Ray Imaging Spectroscometer for Planetary Investigations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kraft, R. P.; Kenter, A. T.; Murray, S. S.; Martindale, A.; Pearson, J.; Gladstone, R.; Branduardi-Raymont, G.; Elsner, R.; Kimura, T.; Ezoe, Y.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150002563'); toggleEditAbsImage('author_20150002563_show'); toggleEditAbsImage('author_20150002563_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150002563_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150002563_hide"></p> <p>2014-01-01</p> <p>X-ray observations provide a unique window into fundamental processes in planetary physics, and one that is complementary to observations obtained at other wavelengths. We propose to develop an X-ray imaging spectrometer (0.1-10 keV band) that, on orbital planetary missions, would measure the elemental composition, density, and temperature of the hot plasma in gas giant magnetospheres, the interaction of the Solar wind with the upper atmospheres of terrestrial planets, and map the elemental composition of the surfaces of the Galilean moons and rocky or icy airless systems on spatial scales as small as a few meters. The X-ray emission from gas giants, terrestrial planets and moons with atmospheres, displays diverse characteristics that depend on the Solar wind's interaction with their upper atmospheres and/or magnetospheres. Our imaging spectrometer, as part of a dedicated mission to a gas giant, will be a paradigm changing technology. On a mission to the Jovian system, our baseline instrument would map the elemental composition of the rocky and icy surfaces of the Galilean moons via particle-induced X-ray fluorescence. This instrument would also measure the temperature, density and elemental abundance of the thermal plasma in the magnetosphere and in the Io plasma torus (IPT), explore the interaction of the Solar wind with the magnetosphere, and characterize the spectrum, flux, and temporal variability of X-ray emission from the polar auroras. We will constrain both the mode of energy transport and the effective transport coefficients in the IPT and throughout the Jovian magnetosphere by comparing temporal and spatial variations of the X-ray emitting plasma with those seen from the cooler but energetically dominant 5 eV plasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...48a2004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...48a2004S"><span>Influence of the North Atlantic dipole on climate changes over Eurasia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serykh, I. V.</p> <p>2016-11-01</p> <p>In this paper, some hydrophysical and meteorological characteristics of negative (1948-1976 and 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics- Eurasia system of ocean-atmosphere interactions is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ems..confE.794V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ems..confE.794V"><span>Widespread land surface wind decline in the Northern Hemisphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.-N.; Ciais, P.</p> <p>2010-09-01</p> <p>The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 30% of the Eurasian wind stilling. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis is supported by theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JGR...10322911A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JGR...10322911A"><span>The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, David H.; Pollack, James B.; Seiff, Alvin</p> <p>1998-09-01</p> <p>During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiter's zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiter's deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20528.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20528.html"><span>Watercolor World</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-04-17</p> <p>When imaged by NASA Cassini spacecraft at infrared wavelengths that pierce the planet upper haze layer, the high-speed winds of Saturn atmosphere produce watercolor-like patterns. With no solid surface creating atmospheric drag, winds on Saturn can reach speeds of more than 1,100 miles per hour (1,800 kilometers per hour) -- some of the fastest in the solar system. This view was taken from a vantage point about 28 degrees above Saturn's equator. The image was taken with the Cassini spacecraft wide-angle camera on Dec. 2, 2016, with a combination of spectral filters which preferentially admits wavelengths of near-infrared light centered at 728 nanometers. The view was acquired at a distance of approximately 592,000 miles (953,000 kilometers) from Saturn. Image scale is 35 miles (57 kilometers) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA20528</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110520L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110520L"><span>Assessing the effect of the relative atmospheric angular momentum (AAM) on length-of-day (LOD) variations under climate warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehmann, E.; Hansen, F.; Ulbrich, U.; Nevir, P.; Leckebusch, G. C.</p> <p>2009-04-01</p> <p>While most studies on model-projected future climate warming discuss climatological quantities, this study investigates the response of the relative atmospheric angular momentum (AAM) to climate warming for the 21th century and discusses its possible effects on future length-of-day variations. Following the derivation of the dynamic relation between atmosphere and solid earth by Barnes et al. (Proc. Roy. Soc., 1985) this study relates the axial atmospheric excitation function X3 to changes in length-of-day that are proportional to variations in zonal winds. On interannual time scales changes in the relative AAM (ERA40 reanalyses) are well correlated with observed length-of-day (LOD, IERS EOP CO4) variability (r=0.75). The El Niño-Southern Oscillation (ENSO) is a prominent coupled ocean-atmosphere phenomenon to cause global climate variability on interannual time scales. Correspondingly, changes in observed LOD relate to ENSO due to observed strong wind anomalies. This study investigates the varying effect of AAM anomalies on observed LOD by relating AAM to variations to ENSO teleconnections (sea surface temperatures, SSTs) and the Pacific North America (PNA) oscillation for the 20th and 21st century. The differently strong effect of strong El Niño events (explained variance 71%-98%) on present time (1962-2000) observed LOD-AAM relation can be associated to variations in location and strength of jet streams in the upper troposphere. Correspondingly, the relation between AAM and SSTs in the NIÑO 3.4 region also varies between explained variances of 15% to 73%. Recent coupled ocean-atmosphere projections on future climate warming suggest changes in frequency and amplitude of ENSO events. Since changes in the relative AAM indicate shifts in large-scale atmospheric circulation patterns due to climate change, AAM - ENSO relations are assessed in coupled atmosphere-ocean (ECHAM5-OM1) climate warming projections (A1B) for the 21st century. A strong rise (+31%) in relative AAM is observed with major contributions in the upper troposphere where increased jet streams cause large AAM anomalies. Due to increasing westerly winds, an eastward shift can be observed during strong El Niño events for the Pacific and North America centers of the PNA while its southeast center is less pronounced and shifts to the West. As a result, the PNA region during strong 21th century El Niño events is closely located to the PNA region of mean atmospheric conditions of present time. Further analyses on the climate warming scenario (A1B) determined a total of 28 strong El Niño events suggesting a steady increase in ENSO events, magnitude and duration during the last decades of the 21st century. Rising Niño 3.4 SSTs exceed global increases by 15%. Correspondingly to present times, the AAM-SST relation also indicates a range of explained variances from 8% to 82%. Ongoing analyses on 21st century climate warming relate zonal wind anomalies in the upper troposphere to SST patterns of individual strong El Niños to estimate a possible effect of the relative AAM on length-of-day variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1018H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1018H"><span>Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.</p> <p>2018-01-01</p> <p>The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..281K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ge%26Ae..58..281K"><span>Propagation of Stationary Planetary Waves in the Upper Atmosphere under Different Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koval, A. V.; Gavrilov, N. M.; Pogoreltsev, A. I.; Shevchuk, N. O.</p> <p>2018-03-01</p> <p>Numerical modeling of changes in the zonal circulation and amplitudes of stationary planetary waves are performed with an accounting for the impact of solar activity variations on the thermosphere. A thermospheric version of the Middle/Upper Atmosphere Model (MUAM) is used to calculate the circulation in the middle and upper atmosphere at altitudes up to 300 km from the Earth's surface. Different values of the solar radio emission flux in the thermosphere are specified at a wavelength of 10.7 cm to take into account the solar activity variations. The ionospheric conductivities and their variations in latitude, longitude, and time are taken into account. The calculations are done for the January-February period and the conditions of low, medium, and high solar activity. It was shown that, during high-activity periods, the zonal wind velocities increases at altitudes exceeding 150 km and decreases in the lower layers. The amplitudes of planetary waves at high solar activity with respect to the altitude above 120 km or below 100 km, respectively, are smaller or larger than those at low activity. These differences correspond to the calculated changes in the refractive index of the atmosphere for stationary planetary waves and the Eliassen-Palm flux. Changes in the conditions for the propagation and reflection of stationary planetary waves in the thermosphere may influence the variations in their amplitudes and the atmospheric circulation, including the lower altitudes of the middle atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPSC...11..754L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPSC...11..754L"><span>Influence of Suprathermal Atoms on the Escape and Evolution of Mars' CO2 Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lichtenegger, H.; Amerstorfer, U. V.; Gröller, H.; Tian, F.; Lammer, H.; Noack, L.; Johnstone, C.; Tu, L.</p> <p>2017-09-01</p> <p>Suprathermal oxygen and carbon atoms are produced by photochemical processes in the upper atmosphere of Mars. Due to their relatively high energies, these particle form an extended corona around Mars and can be picked up by the solar wind and emoved from the planet. The influence of an increased EUV flux, as it prevailed in the past, on the formation of the corona is studied and the corresponding loss rates are estimated. It is shown that the atmospheric loss due to the various processes varies with time and that most of the initial CO2 atmosphere is removed within the first few hundred million years after the formation of the planet. These results are important in order to better understand the atmosphere evolution of terrestrial planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080036093&hterms=marine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarine','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080036093&hterms=marine&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmarine"><span>Spacebased Estimation of Moisture Transport in Marine Atmosphere Using Support Vector Regression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xie, Xiaosu; Liu, W. Timothy; Tang, Benyang</p> <p>2007-01-01</p> <p>An improved algorithm is developed based on support vector regression (SVR) to estimate horizonal water vapor transport integrated through the depth of the atmosphere ((Theta)) over the global ocean from observations of surface wind-stress vector by QuikSCAT, cloud drift wind vector derived from the Multi-angle Imaging SpectroRadiometer (MISR) and geostationary satellites, and precipitable water from the Special Sensor Microwave/Imager (SSM/I). The statistical relation is established between the input parameters (the surface wind stress, the 850 mb wind, the precipitable water, time and location) and the target data ((Theta) calculated from rawinsondes and reanalysis of numerical weather prediction model). The results are validated with independent daily rawinsonde observations, monthly mean reanalysis data, and through regional water balance. This study clearly demonstrates the improvement of (Theta) derived from satellite data using SVR over previous data sets based on linear regression and neural network. The SVR methodology reduces both mean bias and standard deviation comparedwith rawinsonde observations. It agrees better with observations from synoptic to seasonal time scales, and compare more favorably with the reanalysis data on seasonal variations. Only the SVR result can achieve the water balance over South America. The rationale of the advantage by SVR method and the impact of adding the upper level wind will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41A2617T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41A2617T"><span>Effect of intrinsic magnetic field decrease on the low- to middle-latitude upper atmosphere dynamics simulated by GAIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, C.; Jin, H.; Shinagawa, H.; Fujiwara, H.; Miyoshi, Y.</p> <p>2017-12-01</p> <p>The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.9751T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.9751T"><span>Effect of intrinsic magnetic field decrease on the low- to middle-latitude upper atmosphere dynamics simulated by GAIA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, Chihiro; Jin, Hidekatsu; Shinagawa, Hiroyuki; Fujiwara, Hitoshi; Miyoshi, Yasunobu</p> <p>2017-09-01</p> <p>The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21263622','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21263622"><span>Improved upper winds models for several astronomical observatories.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roberts, Lewis C; Bradford, L William</p> <p>2011-01-17</p> <p>An understanding of wind speed and direction as a function of height are critical to the proper modeling of atmospheric turbulence. We have used radiosonde data from launch sites near significant astronomical observatories and created averaged profiles of wind speed and direction and have also computed Richardson number profiles. Using data from the last 30 years, we confirm a 1977 Greenwood wind profile, and extend it to include parameters that show seasonal variations and differences in location. The added information from our models is useful for the design of adaptive optics systems and other imaging systems. Our analysis of the Richardson number suggests that persistent turbulent layers may be inferred when low values are present in our long term averaged data. Knowledge of the presence of these layers may help with planning for adaptive optics and laser communications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSH52A..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSH52A..04L"><span>MAVEN Upstream Observations of the Cycle 24 Space Weather Conditions at Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C. O.; Hara, T.; Halekas, J. S.; Thiemann, E.; Curry, S.; Lillis, R. J.; Larson, D. E.; Espley, J. R.; Gruesbeck, J.; Eparvier, F. G.; Li, Y.; Jian, L.; Luhmann, J. G.; Jakosky, B. M.</p> <p>2016-12-01</p> <p>The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft went into orbit around Mars during the height of the activity phase of Solar Cycle 24. The mission was designed in part to study the response of the upper atmosphere, ionosphere, and magnetosphere of Mars to solar and solar wind inputs. When MAVEN is on the Martian dayside and orbiting around its apoapsis altitude of 6200 km, the suite of instruments onboard can measure the solar wind plasma (density, velocity), interplanetary magnetic field (magnitude and direction), and particle counts of solar energetic particles (SEPs), as well as the EUV solar irradiance. We will present an overview of the upstream conditions observed to date and highlight a number of Mars-impacting space weather events due to ICMEs and SEPs. We will also present events that are triggered by corotating interaction regions (CIRs), which become more prominent beyond 1 AU and are the dominant heliospheric structures during the declining phase of the solar cycle. As part of the discussion, we will compare and contrast observations from MAVEN and ACE/WIND or STEREO-A during periods when Mars and the 1-AU observer were in solar opposition or nearly aligned along the solar wind Parker spiral.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA23A2327E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA23A2327E"><span>Interactive Ion-Neutral Dynamics in the Low Latitude Evening Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evonosky, W. R.; Richmond, A. D.; Fang, T. W.; Maute, A. I.</p> <p>2015-12-01</p> <p>Neutral winds in the ionosphere drive global electrodynamic phenomena which alter theupper-atmosphere so significantly that they can affect the orbit of satellites andground-to-spacecraft communications. Understanding these winds and what drives them is centralto prediction and risk management associated with such a dynamic upper atmosphere. This studyexamined the relationship between accelerations acting on neutral winds in the ionosphere and theformation of a vertical shear of those winds in low latitudes (between ±30 magnetic) and earlyevening local times (16-22 LT). Accelerations were calculated using variables output by thethermosphere ionosphere electrodynamics general circulation model (TIEGCM) under differentsolar activity and night-time ionization conditions and visualized both spatially and temporally. Ingeneral, with acceleration values averaged along magnetic latitudes between ±30 degrees(inclusive) and only considering medium solar activity conditions, we found that the ionosphereexhibits distinct layering defined by the dominant accelerations in each layer. We also found hintsthat during different night-time ionization levels, ion drag acceleration tends to remain constantwhile ion and neutral velocities change to conserve the difference between them. When consideringspecific latitudes and solar conditions, previously unreported structures appear which involveinteractions between the ion drag and viscous forces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6486630-star-parameters-from-line-profiles-wind-blanketed-model-atmospheres','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6486630-star-parameters-from-line-profiles-wind-blanketed-model-atmospheres"><span>O-star parameters from line profiles of wind-blanketed model atmospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Voels, S.A.</p> <p>1989-01-01</p> <p>The basic stellar parameters (i.e. effective temperature, gravity, helium content, bolometric correction, etc...) of several O-stars are determined by matching high signal-to-noise observed line profiles of optical hydrogen and helium line transitions with theoretical line profiles from a core-halo model of the stellar atmosphere. The core-halo atmosphere includes the effect of radiation backscattered from a stellar wind by incorporating the stellar wind model of Abbott and Lucy as a reflective upper boundary condition in the Mihalas atmosphere model. Three of the four supergiants analyzed showed an enhanced surface abundance of helium. Using a large sample of equivalent width data frommore » Conti a simple argument is made that surface enhancement of helium may be a common property of the most luminous supergiants. The stellar atmosphere theory is sufficient to determine the stellar parameters only if careful attention is paid to the detection and exclusion of lines which are not accurately modeled by the physical processes included. It was found that some strong lines which form entirely below the sonic point are not well modeled due to effects of atmospheric extension. For spectral class 09.5, one of these lines is the classification line He I {lambda}4471{angstrom}. For supergiant, the gravity determined could be systematically low by up to 0.05 dex as the radiation pressure due to lines is neglected. Within the error ranges, the stellar parameters determined, including helium abundance, agree with those from the stellar evolution calculations of Maeder and Maynet.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4951006E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4951006E"><span>First Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, J. Scott; Stevens, Michael H.; Jain, Sonal; Deighan, Justin; Lumpe, Jerry; Schneider, Nicholas M.; Stewart, A. Ian; Crismani, Matteo; Stiepen, Arnaud; Chaffin, Michael S.; Mayyasi-Matta, Majd A.; McClintock, William E.; Holsclaw, Greg; Lefevre, Franck; Lo, Daniel; Clarke, John T.; Montmessin, Franck; Bougher, Stephen W.; Bell, Jared M.; Eparvier, Frank; Thiemann, Ed; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Jakosky, Bruce</p> <p>2017-10-01</p> <p>As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.3791S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.3791S"><span>Simulations of the Boreal Winter Upper Mesosphere and Lower Thermosphere With Meteorological Specifications in SD-WACCM-X</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.</p> <p>2018-04-01</p> <p>We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015454','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015454"><span>Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shafer, Jaclyn A.; Wheeler, Mark M.</p> <p>2012-01-01</p> <p>The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in Microsoft Excel using Visual Basic for Applications. The GUI displays the critical sounding data easily and quickly for the LWOs on day of launch. This tool will replace the existing one used by the 30 OSSWF, assist the LWOs in determining the probability of exceeding specific wind threshold values, and help to improve the overall upper winds forecast for the launch customer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcAau.121..172W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcAau.121..172W"><span>Development of artificial meteor for observation of upper atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, Masaki; Sahara, Hironori; Abe, Shinsuke; Watanabe, Takeo; Nojiri, Yuta; Okajima, Lena</p> <p>2016-04-01</p> <p>This study proposes a method for the observation of the upper atmosphere using an artificial meteor injected by a mass driver installed on a microsatellite. The mass driver injects a pill at a velocity of 200 m/s and deorbits it into the atmosphere. The emission of the pill can then be observed from the ground at the necessary time and location. This approach could contribute to a better understanding of the global environment as well as different aspects of astronomy and planetary science. To realize the proposed method, the required size and emission of the pill have to be determined. Therefore, we conducted flow-field simulations, spectroscopic estimations, and an experiment on an artificial meteor in the arc heater wind tunnel at the Institute of Space and Astronautical Science in the Japan Aerospace Exploration Agency (ISAS/JAXA). From the results, we confirmed that the light emission could be observed as a shooting star by the naked eye and thus verified the feasibility of the method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS055-151-120&hterms=popcorn&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpopcorn','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS055-151-120&hterms=popcorn&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpopcorn"><span>STS-55 Earth observation of the Timor Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1993-01-01</p> <p>STS-55 Earth observation taken from Columbia, Orbiter Vehicle (OV) 102, shows the Timor Sea along the south coast of Timor. The sunglint pattern shows a sharp boundary in sea surface temperature, with cooler water along the coast and warmer water offshore. The sunglint brightness reveals water surface roughness with bright indicating smooth water and dark representing rough water. Cooler water is smoother because it acts to stabilize the atmospheric boundary layer, while the warm water acts to destabilize the atmosphere. Another indication of water temperature is the cloud pattern. Advection within the atmosphere as a result of warming at the sea surface forms low-level clouds with the small, popcorn-like appearance seen in upper right corner of the photograph. The cool water, on the other hand, is relatively free of the popcorn-like clouds. The distribution of the clouds indicates that the wind is blowing toward the upper right corner of the photograph. Also note the line of low-level</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080008579&hterms=micro+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmicro%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080008579&hterms=micro+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmicro%2Bwind"><span>Mars Aeronomy Explorer (MAX): Study Employing Distributed Micro-Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shotwell, Robert F.; Gray, Andrew A.; Illsley, Peter M.; Johnson, M.; Sherwood, Robert L.; Vozoff, M.; Ziemer, John K.</p> <p>2005-01-01</p> <p>An overview of a Mars Aeronomy Explorer (MAX) mission design study performed at NASA's Jet Propulsion Laboratory is presented herein. The mission design consists of ten micro-spacecraft orbiters launched on a Delta IV to Mars polar orbit to determine the spatial, diurnal and seasonal variation of the constituents of the Martian upper atmosphere and ionosphere over the course of one Martian year. The spacecraft are designed to allow penetration of the upper atmosphere to at least 90 km. This property coupled with orbit precession will yield knowledge of the nature of the solar wind interaction with Mars, the influence of the Mars crustal magnetic field on ionospheric processes, and the measurement of present thermal and nonthermal escape rates of atmospheric constituents. The mission design incorporates alternative design paradigms that are more appropriate for-and in some cases motivate-distributed micro-spacecraft. These design paradigms are not defined by a simple set of rules, but rather a way of thinking about the function of instruments, mission reliability/risk, and cost in a systemic framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA13C..07F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA13C..07F"><span>Hemispheric asymmetries in high-latitude ionospheric convection and upper atmosphere neutral wind circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foerster, M.; Cnossen, I.; Haaland, S.</p> <p>2015-12-01</p> <p>Recent observations have shown that the ionospheric/thermospheric response to solar wind and IMF dependent processes in the magnetosphere can be very dissimilar in the Northern and Southern polar regions. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns obtained over almost a full solar cycle during the first decade of this century by measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP spacecraft, respectively. The asymmetries are attributed to the non-dipolar portions of the Earth's magnetic field that constitute hemispheric differences in magnetic flux densities, different offsets of the invariant geomagnetic poles, and generally in different field configurations of both hemispheres. Seasonal and solar cycle effects of the asymmetries are considered and first trials to explain the effects by numerical modeling are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930046803&hterms=LAYER+LIMIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DLAYER%2BLIMIT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930046803&hterms=LAYER+LIMIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DLAYER%2BLIMIT"><span>Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cole, Keith D.</p> <p>1993-01-01</p> <p>The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JASTP..67.1533S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JASTP..67.1533S"><span>A space-based climatology of diurnal MLT tidal winds, temperatures and densities from UARS wind measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Svoboda, Aaron A.; Forbes, Jeffrey M.; Miyahara, Saburo</p> <p>2005-11-01</p> <p>A self-consistent global tidal climatology, useful for comparing and interpreting radar observations from different locations around the globe, is created from space-based Upper Atmosphere Research Satellite (UARS) horizontal wind measurements. The climatology created includes tidal structures for horizontal winds, temperature and relative density, and is constructed by fitting local (in latitude and height) UARS wind data at 95 km to a set of basis functions called Hough mode extensions (HMEs). These basis functions are numerically computed modifications to Hough modes and are globally self-consistent in wind, temperature, and density. We first demonstrate this self-consistency with a proxy data set from the Kyushu University General Circulation Model, and then use a linear weighted superposition of the HMEs obtained from monthly fits to the UARS data to extrapolate the global, multi-variable tidal structure. A brief explanation of the HMEs’ origin is provided as well as information about a public website that has been set up to make the full extrapolated data sets available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.4586S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.4586S"><span>High-Latitude Observations of a Localized Wind Wall and Its Coupling to the Lower Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shepherd, Gordon G.; Shepherd, Marianna G.</p> <p>2018-05-01</p> <p>Reversals in the thermospheric zonal winds at altitudes of 140 to 250 km from eastward to westward have been found at southern geographic latitudes between 60° and 70°. These are confined to a narrow region between 100° and 200° in longitude with zonal velocities regularly of -400 m/s, sometimes reaching -600 m/s, so sharply defined that the authors describe it as a "wind wall." The observations were made by the Wind Imaging Interferometer on National Aeronautics and Space Administration's Upper Atmosphere Research Satellite, and they occur as the field of view crosses the high polar cap wind field. The wind reversals at the wall boundaries create a convergence on the west side of the wall and a divergence on the east side that potentially generate vertical flows, consistent with observed perturbations in the O(1S) emission rate. They are present about one half of the time in local summer and autumn.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18345815','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18345815"><span>Low frequency wind noise contributions in measurement microphones.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raspet, Richard; Yu, Jiao; Webster, Jeremy</p> <p>2008-03-01</p> <p>In a previous paper [R. Raspet, et al., J. Acoust. Soc. Am. 119, 834-843 (2006)], a method was introduced to predict upper and lower bounds for wind noise measured in spherical wind-screens from the measured incident velocity spectra. That paper was restricted in that the predictions were only valid within the inertial range of the incident turbulence, and the data were from a measurement not specifically designed to test the predictions. This paper extends the previous predictions into the source region of the atmospheric wind turbulence, and compares the predictions to measurements made with a large range of wind-screen sizes. Predictions for the turbulence-turbulence interaction pressure spectrum as well as the stagnation pressure fluctuation spectrum are calculated from a form fit to the velocity fluctuation spectrum. While the predictions for turbulence-turbulence interaction agree well with measurements made within large (1.0 m) wind-screens, and the stagnation pressure predictions agree well with unscreened gridded microphone measurements, the mean shear-turbulence interaction spectra do not consistently appear in measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GSL.....4...24R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GSL.....4...24R"><span>Surface wind mixing in the Regional Ocean Modeling System (ROMS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robertson, Robin; Hartlipp, Paul</p> <p>2017-12-01</p> <p>Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MNRAS.470.4608A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MNRAS.470.4608A"><span>Observation of the black widow B1957+20 millisecond pulsar binary system with the MAGIC telescopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; De Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Gozzini, S. R.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; MAGIC Collaboration; Cognard, I.; Guillemot, L.</p> <p>2017-10-01</p> <p>B1957+20 is a millisecond pulsar located in a black-widow-type compact binary system with a low-mass stellar companion. The interaction of the pulsar wind with the companion star wind and/or the interstellar plasma is expected to create plausible conditions for acceleration of electrons to TeV energies and subsequent production of very high-energy γ-rays in the inverse Compton process. We performed extensive observations with the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) telescopes of B1957+20. We interpret results in the framework of a few different models, namely emission from the vicinity of the millisecond pulsar, the interaction of the pulsar and stellar companion wind region or bow shock nebula. No significant steady very high-energy γ-ray emission was found. We derived a 95 per cent confidence level upper limit of 3.0 × 10-12 cm-2 s-1 on the average γ-ray emission from the binary system above 200 GeV. The upper limits obtained with the MAGIC constrain, for the first time, different models of the high-energy emission in B1957+20. In particular, in the inner mixed wind nebula model with mono-energetic injection of electrons, the acceleration efficiency of electrons is constrained to be below ˜2-10 per cent of the pulsar spin-down power. For the pulsar emission, the obtained upper limits for each emission peak are well above the exponential cut-off fits to the Fermi-LAT data, extrapolated to energies above 50 GeV. The MAGIC upper limits can rule out a simple power-law tail extension through the sub-TeV energy range for the main peak seen at radio frequencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P21A2083D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P21A2083D"><span>Multi-fluid MHD Study of the Solar Wind Interaction with Mars' Upper Atmosphere during the 2015 March 8th ICME Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, C.; Ma, Y.; Bougher, S. W.; Toth, G.; Nagy, A. F.; Halekas, J. S.; Dong, Y.; Curry, S.; Luhmann, J. G.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; McFadden, J. P.; Mitchell, D. L.; DiBraccio, G. A.; Lillis, R. J.; Jakosky, B. M.; Grebowsky, J. M.</p> <p>2015-12-01</p> <p>The 3-D Mars multi-fluid BATS-R-US MHD code is used to study the solar wind interaction with the Martian upper atmosphere during the 2015 March 8th interplanetary coronal mass ejection (ICME). We studied four steady-state cases, corresponding to three major ICME phases: pre-ICME phase (Case 1), sheath phase (Cases 2--3), and ejecta phase (Case 4). Detailed data-model comparisons demonstrate that the simulation results are in good agreement with Mars Atmosphere and Volatile EvolutioN (MAVEN) measurements, indicating that the multi-fluid MHD model can reproduce most of the features observed by MAVEN, thus providing confidence in the estimate of ion escape rates from its calculation. The total ion escape rate is increased by an order of magnitude, from 2.05×1024 s-1 (pre-ICME phase) to 2.25×1025 s-1 (ICME sheath phase), during this time period. The calculated ion escape rates were used to examine the relative importance of the two major ion loss channels from the planet: energetic pickup ion loss through the dayside plume and cold ionospheric ion loss through the nightside plasma wake region. We found that the energetic pickup ions escaping from the dayside plume could be as much as ~23% of the total ion loss prior to the ICME arrival. Interestingly, the tailward ion escape rate is significantly increased at the ejecta phase, leading to a reduction of the dayside ion escape to ~5% of the total ion loss. Under such circumstance, the cold ionospheric ions escaping from the plasma wake comprise the majority of the ion loss from the planet. Furthermore, by comparing four simulation results along the same MAVEN orbit, we note that there is no significant variation in the Martian lower ionosphere. Finally, both bow shock and magnetic pileup boundary (BS, MPB) locations are decreased from (1.2 RMars, 1.57 RMars) at the pre-ICME phase to (1.16 RMars, 1.47 RMars) respectively during the sheath phase along the dayside Sun-Mars line. MAVEN has provided a great opportunity to study the evolution of the Martian atmosphere and climate over its history. A large quantity of useful data has been returned for future studies. These kinds of data-model comparisons can help the community to better understand the Martian upper atmosphere response to the (extreme) variation in the solar wind and its interplanetary environment from a global perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA42A..08F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA42A..08F"><span>The Role of the Upper Atmosphere for Dawn-Dusk and Interhemispheric Differences in the Coupled Magnetosphere-Ionosphere-Thermosphere System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foerster, M.; Doornbos, E.; Haaland, S.</p> <p>2016-12-01</p> <p>Solar wind and IMF interaction with the geomagnetic field sets up a large-scale plasma circulation in the Earth's magnetosphere and the magnetically tightly connected ionosphere. The ionospheric ExB ion drift at polar latitudes accelerates the neutral gas as a nondivergent momentum source primarily in force balance with pressure gradients, while the neutral upper thermosphere circulation is essentially modified by apparent forces due to Earth's rotation (Coriolis and centrifugal forces) as well as advection and viscous forces. The apparent forces affect the dawn and dusk side asymmetrically, favouring a large dusk-side neutral wind vortex, while the non-dipolar portions of the Earth's magnetic field constitute significant hemispheric differences in magnetic flux and field configurations that lead to essential interhemispheric differences of the ion-neutral interaction. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns based on measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP, GOCE, and Swarm spacecraft, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1357P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1357P"><span>Thermal zonal winds in the Venus mesosphere from the Venus Express temperature soundings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piccialli, Arianna; Titov, Dmitri; Tellmann, Silvia; Migliorini, Alessandra; Read, Peter; Grassi, Davide; Paetzold, Martin; Haeusler, Bernd; Piccioni, Giuseppe; Drossart, Pierre</p> <p></p> <p>The Venus mesosphere (60-100 km altitude) is a transition region characterized by extremely complex dynamics: strong retrograde zonal winds dominate in the troposphere and lower meso-sphere while a solar-antisolar circulation can be observed in the upper mesosphere. The super-rotation extends from the surface up to the cloud top (˜65 km altitude) with wind speeds of only a few meters per second near the surface and reaching a maximum value of ˜100 m s-1 at cloud top, corresponding to a rotation period of ˜4 Earth days (˜60 times faster than Venus itself). The solar-antisolar circulation is driven by the day-night contrast in solar heating, and occurs above 110 km altitude with speeds of 120 m s-1 . The processes responsible for maintain-ing the zonal super-rotation in the lower atmosphere and its transition to the solar-antisolar circulation in the upper atmosphere are still poorly understood (Schubert et al.,2007). Different techniques have been used to obtain direct observations of wind at various altitudes: tracking of clouds in ultraviolet (UV) and near infrared (NIR) images give information on wind speeds at the cloud top (Moissl et al., 2009; Sanchez-Lavega et al., 2008) and within the clouds (˜47 km, ˜61 km) (Sanchez-Lavega et al., 2008) while ground-based measurements of Doppler shifts in the CO2 band at 10 µm (Sornig et al., 2008) and in several CO millimiter lines (Rengel et al., 2008) provide wind speeds above the clouds up to ˜110 km altitude. The deep atmosphere from the surface up to the cloud top has been investigated through the Doppler tracking of descent probes and balloons (Counselman et al., 1980; Kerzhanovich and Limaye, 1985). In the mesosphere, between 45-85 km of altitude, where direct observations of wind are not possible, the zonal wind field can be derived from the vertical temperature structure using a special approximation of the thermal wind equation: based on cyclostrophic balance. Previous studies (Leovy, 1973; Newman et al., 1984) showed that on a slowly rotating planet, like Venus, strong zonal winds at the cloud top can be described by a cyclostrophic balance in which the equatorward component of centrifugal force is balanced by the meridional pressure gradient. This equation gives a possibility to reconstruct the zonal wind if the temperature field is known, together with a suitable boundary condition on u. Two experiments onboard Venus Express are sounding the temperature structure of the Venus mesosphere: VIRTIS sounds the Venus Southern hemisphere in the altitude range 65-90 km with a very good spatial and temporal coverage (Grassi et al., 2008) and the Northern hemi-sphere but with more limited coverage; VeRa observes both northern and southern hemispheres between 40-90 km altitude with a vertical resolution of ˜500 m (Tellmann et al., 2008). Here we present zonal thermal winds derived applying cyclostrophic balance from VIRTIS and VeRa temperature retrievals. The main features of the retrieved winds are: (1) a midlatitude jet with a maximum speed up to 140 ± 15 m s-1 which occurs around 50° S latitude at 70 km altitude; (2) the fast decrease of the wind speed from 60° S toward the pole; (3) the decrease of the wind speed with increasing height above the jet (Piccialli et al., 2008). Cyclostrophic winds show satisfactory agreement with the cloud-tracked winds derived from the Venus Monitoring Camera (VMC/VEx) UV images, although a disagreement is observed at the equator and near the pole due to the breakdown of the cyclostrophic approximation. From zonal thermal winds the Richardson number has been evaluated. In good agreement with previous studies (Allison et al., 1994), we have found that the atmosphere is dominated by convection from ˜45 km altitude up to the cloud top. A high value of Richardson number has been determined, cor-responding to the midlatitude jet and indicating a highly stable atmosphere. Verification of the necessary condition for barotropic instability implies that barotropic instability may occur on the poleward side of the midlatitude jet where planetary waves are expected to play an important role in the maintenance of the circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750036279&hterms=mathematical+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmathematical%2Bmethods','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750036279&hterms=mathematical+methods&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmathematical%2Bmethods"><span>Full non-linear treatment of the global thermospheric wind system. I - Mathematical method and analysis of forces. II - Results and comparison with observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blum, P. W.; Harris, I.</p> <p>1975-01-01</p> <p>The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In Part I the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analyzed. Results of the method given in Part I are presented with comparison with previous calculations and observations of upper atmospheric winds. Conclusions are that nonlinear effects are only significant in the equatorial region, especially at solstice conditions and that nonlinear effects do not produce any superrotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040140836&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dworlds%2Boceans','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040140836&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dworlds%2Boceans"><span>Tropical Ocean Global Atmosphere (TOGA) Meteorological and Oceanographic Data Sets for 1985 and 1986</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Halpern, D.; Ashby, H.; Finch, C.; Smith, E.; Robles, J.</p> <p>1990-01-01</p> <p>The Tropical Ocean Global Atmosphere (TOGA) Program is a component of the World Meteorological Organization (WMO)/International Council of Scientific Unions (ICSU) World Climate Research Program (WCRP). One of the objectives of TOGA, which began in 1985, is to determine the limits of predictability of monthly mean sea surface temperature variations in tropical regions. The TOGA program created a raison d'etre for an explosive growth of the tropical ocean observing system and a substantial improvement in numerical simulations from atmospheric and oceanic general circulation models. Institutions located throughout the world are involved in the TOGA-distributed active data archive system. The diverse TOGA data sets for 1985 and 1986, including results from general circulation models, are included on a CD-ROM. Variables on the CD-ROM are barometric pressure, surface air temperature, dewpoint temperature Cartesian components of surface wind, surface sensible and latent heat fluxes,Cartesian components of surface wind stress and of an index of surface wind stress, sea level, sea surface temperature, and depth profiles of temperature and current in the upper ocean. Some data sets are global in extent, some are regional and cover portions of an ocean basin. Data on the CD-ROM can be extracted with an Apple Macintosh or an IBM PC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.168...29H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.168...29H"><span>Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hancock, Philip E.; Hayden, Paul</p> <p>2018-07-01</p> <p>The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.tmp...11H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.tmp...11H"><span>Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hancock, Philip E.; Hayden, Paul</p> <p>2018-02-01</p> <p>The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100032924&hterms=missing+middle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmissing%2Bmiddle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100032924&hterms=missing+middle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmissing%2Bmiddle"><span>Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.</p> <p>2004-01-01</p> <p>We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160005736&hterms=pick+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpick%2Brate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160005736&hterms=pick+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpick%2Brate"><span>Science Enhancements by the MAVEN Participating Scientists</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.</p> <p>2014-01-01</p> <p>NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SSRv..195..319G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SSRv..195..319G"><span>Science Enhancements by the MAVEN Participating Scientists</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.; Stevens, M.; Withers, P.</p> <p>2015-12-01</p> <p>NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985JAtS...42.1873D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985JAtS...42.1873D"><span>Rocket Observations of Kelvin Waves in the Upper Stratosphere over India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devarajan, M.; Reddy, C. A.; Ragrava Reddi, C.</p> <p>1985-09-01</p> <p>The upper atmospheric winds (20-40 km) at two Indian stations, Sriharikota Range (SHAR 13.7°N, 80.2°E) and Balasore (2 1.5°N, 86.93°E) during the years 1979-80 were analyzed for short scale vertical variations (6-16 km) of the zonal wind. The analysis involves high-pass filtering of the wind profiles to extract the short-scale wavelike perturbations and Fourier analysis of the wave disturbances.The results of the analysis are presented. The dominant vertical wavelengths are in the 6-12 km range in 67% of the observed cases, and the amplitudes are significantly larger during the easterly background wind. The amplitudes are systematically larger by about a factor of 2 at Sriharikota (13.7°N) than at 1Wasore (21.5°N). Corresponding wave perturbations are absent in the meridional wind in as much as 70% of the observations. These characteristics lead to the conclusion that the observed wavelike disturbances are the manifestation of Kelvin waves in the upper stratosphere. In some cases, the periods of the waves are inferred to be in the range of 4-8 days. The short vertical wavelengths, together with the shorter periods, indicate the possible dominance of zonal wavenumber 2 during many disturbance events.The observations of the wave activity in relation to the semiannual oscillation (SAO) and the annual oscillation (AO) show that 1) the more active periods correspond to the easterly phase of the SAO in the middle stratosphere and that 2) the wave activity persists for a longer duration when both the AO and SAO are in easterly phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AAS...19915705O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AAS...19915705O"><span>The Solar Connections Observatory for Planetary Environments (SCOPE):</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliversen, R.; Harris, W.; Ballester, G.; Bougher, S.; Broadfoot, L.; Combi, M.; Cravens, T.; Gombosi, T.; Herbert, F.; Joseph, C.; Kozyra, J.; Limaye, S.; Morgenthaler, J.; Paxton, L.; Roesler, F.; Sandel, W.; Ben Jaffel, L.</p> <p>2001-12-01</p> <p>The NASA Sun-Earth Connection theme roadmap calls for comparative study of how the planets and local interstellar medium (LISM) interact with and respond to changes in the solar wind and UV radiation field. Each planet interaction is unique and defined by solar input and local conditions of magnetic field strength and orientation, rotation rate, heliocentric distance, internal plasma, and ionospheric conductivity and circulation. Because the different elements of the environment respond to external and internal influences that are variable on many temporal and spatial scales, the study of a planetary system requires simultaneous understanding of the solar wind and diagnostics of the sun-planet interaction including auroral intensity and variation, upper atmospheric circulation and composition, and the distribution of neutrals and plasmas near the planet. The Solar Connections Observatory for Planetary Environments (SCOPE) is a mission to study Solar interactions from the level of planetary upper atmospheres to the heliopause. SCOPE consists of a binocular EUV/FUV telescope that provides high spatial resolution imaging, broadband spectro-imaging, and high-resolution H Ly-alpha line spectroscopy between 55-290 nm. SCOPE will study planetary environments as examples of the solar connection and map the distribution of interplanetary H and the interaction of LISM plasma with the solar wind at the heliopause. A key to the SCOPE approach is to include Earth in its research objectives. SCOPE will monitor terrestrial auroral energy deposition and leverage local measurements of the solar wind and propagation models to derive the expected conditions at Superior planets that will be observed in annual opposition campaigns. This will permit direct comparison of planetary and terrestrial responses to the same solar wind stream. Using a combination of observations and MHD models, SCOPE will isolate the different controlling parameters in each planet system and gain insight into the underlying physical processes that define the solar connection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004CSR....24.2343A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004CSR....24.2343A"><span>Geochemistry of coral from Papua New Guinea as a proxy for ENSO ocean-atmosphere interactions in the Pacific Warm Pool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ayliffe, Linda K.; Bird, Michael I.; Gagan, Michael K.; Isdale, Peter J.; Scott-Gagan, Heather; Parker, Bruce; Griffin, David; Nongkas, Michael; McCulloch, Malcolm T.</p> <p>2004-12-01</p> <p>A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977-1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5-1.0 °C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño - Southern Oscillation (ENSO) events of 1982-1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific Warm Pool ocean-atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian-Australian monsoon cycle. Sudden cooling of SSTs by ˜1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P11E..07Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P11E..07Z"><span>Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, X.; Showman, A. P.</p> <p>2015-12-01</p> <p>Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, evaporated atmospheres dominated by helium, or of course carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables. We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere. We are also working on analytical theories to explain aspects of the simulations relevant for possible observables on tidally locked exoplanets, such as the day-night temperature difference, thermal phase shift and root-mean-square of the wind speed. Our analytical predictions are quantitatively compared with our numerical simulations and may provide potential indicators for determining the atmospheric compositions in future observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850012155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850012155"><span>Midwinter Disturbances in the Middle Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Labitzke, K.</p> <p>1984-01-01</p> <p>The Middle Atmosphere is coupled to the troposphere during winter because planetary scale waves can propagate upwards if the prevailing winds are from the west. It is during this time of the year that the well-known midwinter disturbances are observed which ultimately affect the whole of the Middle Atmosphere. The mechanism of these disturbances is not completely understood. The large-scale circulation features up to the upper mesosphere are investigated to demonstrate the synoptic-scale behavior of the midwinter disturbances. Ground-based and satellite observations are combined. The interannual variability of the disturbances is discussed briefly. It is shown that the QBO (Quasi Biennial Oscillation) of the equatorial stratosphere appears to modulate the planetary waves during the northern winters, in the troposphere as well as in the Middle Atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10466E..51G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10466E..51G"><span>The influence of orographic waves and quasi-biennial oscillations on vertical ozone flux in the model of general atmospheric circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.</p> <p>2017-11-01</p> <p>A parameterization of the dynamical and thermal effects of orographic gravity waves (OGWs) and assimilation quasibiennial oscillations (QBOs) of the zonal wind in the equatorial lower atmosphere are implemented into the numerical model of the general circulation of the middle and upper atmosphere MUAM. The sensitivity of vertical ozone fluxes to the effects of stationary OGWs at different QBO phases at altitudes up to 100 km for January is investigated. The simulated changes in vertical velocities produce respective changes in vertical ozone fluxes caused by the effects of the OGW parameterization and the transition from the easterly to the westerly QBO phase. These changes can reach 40 - 60% in the Northern Hemisphere at altitudes of the middle atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780006044','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780006044"><span>Mercury's helium exosphere after Mariner 10's third encounter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Curtis, S. A.; Hartle, R. E.</p> <p>1977-01-01</p> <p>From Mariner 10 third encounter UV data, a value of .00045 was calculated as the fraction of the solar wind He++ flux intercepted and captured by Mercury's magnetosphere if the observed He atmosphere is maintained by the solar wind. If an internal source for He prevails, the corresponding upper bound for the global outgassing rate is estimated to be 4.5 x 10 to the 22nd power per sec. A surface temperature distribution was used which satisfies the heat equation over Mercury's entire surface using Mariner 10 determined mean surface thermal characteristics. The means stand off distance of Mercury's magnetopause averaged over Mercury's orbit was also used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A41F0173T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A41F0173T"><span>Widespread land surface wind decline in the Northern Hemisphere partly attributed to land surface changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thepaut, J.; Vautard, R.; Cattiaux, J.; Yiou, P.; Ciais, P.</p> <p>2010-12-01</p> <p>The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 10-50% of the wind stilling, depending on the region. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis, which could explain up to 60% of the decline, is supported by remote sensing observations and theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26489300','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26489300"><span>[Direct Observation on the Temporal and Spatial Patterns of the CO2 Concentration in the Atmospheric of Nanjing Urban Canyon in Summer].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui</p> <p>2015-07-01</p> <p>Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ThApC.101..121L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ThApC.101..121L"><span>Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lima, Kellen Carla; Satyamurty, Prakki; Fernández, Júlio Pablo Reyes</p> <p>2010-07-01</p> <p>Heavy rainfall events in austral summer are responsible for almost all the natural disasters in Southeast Brazil. They are mostly associated with two types of atmospheric perturbations: Cold Front (53%) and the South Atlantic Convergence Zone (47%). The important question of what synoptic characteristics distinguish a heavy rainfall event (HRE) from a normal rainfall event (NRE) is addressed in this study. Here, the evolutions of such characteristics are identified through the anomalies with respect to climatology of the composite fields of atmospheric variables. The anomalies associated with HRE are significantly more intense than those associated with NRE in all fundamental atmospheric variables such as outgoing long-wave radiation, sea-level pressure, 500-hPa geopotential, lower and upper tropospheric winds. The moisture flux convergence over Southeast Brazil in the HRE composites is 60% larger than in the NRE composites. The energetics calculations for the HRE that occurred in the beginning of February 1988 strongly suggest that the barotropic instability played an important role in the intensification of the perturbation. These results, especially the intensities of the wind, pressure anomalies, and the moisture convergence are useful for the meteorologists of the Southeast Brazil for forecasting heavy precipitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42..681O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42..681O"><span>First 3-D simulations of meteor plasma dynamics and turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oppenheim, Meers M.; Dimant, Yakov S.</p> <p>2015-02-01</p> <p>Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2168S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2168S"><span>Wind impact on the Black Sea ecosystem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanichny, Sergey; Ratner, Yuriy; Shokurov, Mike; Stanychna, Rimma; Soloviev, Dmytro; Burdyugov, Vyacheslav</p> <p>2010-05-01</p> <p>Combination of the recent satellite and meteorological data for the regional investigation allowed to describe new features of the processes in marine ecosystem and detect some relations with wind variability for different time scales. Next topics are highlighted in presentation: 1. Inter-annual variability of the wind stress curl over the Black Sea. Shift in the atmospheric processes after 2003 year and related variations in chlorophyll concentration and intensity of the mesoscale currents. 2. Like-tropical cyclone in September 2005 and its impact o the Black Sea upper layer. 3. Strong storm November 11, 2007 and oil pollutions of the Kerch Strait. 4. Relation of the Danube waters transport with wind fields for summer 2007 and 2008. 5. "Valley" wind in the Eastern part of the Black Sea and its impact on the Rim current formation. 6. Low wind conditions and blue -green algae bloom. NCEP, SKIRON and MHI MM5 wind data together with AVHRR, MODIS, MERIS, ETM+, QuikSCAT, ASAR (ESA) satellite data were used for investigation. Work was done with support of the SESAME FP7, "Stable Ecosystem" and Operational Oceanography NASU projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001490','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001490"><span>Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Decker, Ryan K.</p> <p>2017-01-01</p> <p>Space launch vehicles use day-of-launch steering commands based upon the upper-level (UL) atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, UL wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution (HR) rawinsondes. One inherent limitation with rawinsondes is the approximately one-hour sampling time necessary to measure tropospheric winds. Additionally, rawinsonde drift during ascent due to the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during HR rawinsonde ascent as a function of season. Will also discuss an alternative method to measure UL wind environments in closer proximity to the vehicle trajectory when launching from the ER.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100001491&hterms=Hurricane+Katrina&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DHurricane%2BKatrina','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100001491&hterms=Hurricane+Katrina&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DHurricane%2BKatrina"><span>Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.</p> <p>2005-01-01</p> <p>The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AMT.....4.2273S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AMT.....4.2273S"><span>Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schweitzer, S.; Kirchengast, G.; Proschek, V.</p> <p>2011-10-01</p> <p>LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that the set of SWIR channels proposed for implementing the LMIO method (Kirchengast and Schweitzer, 2011) provides adequate sensitivity to accurately retrieve eight trace species of key importance to climate and atmospheric chemistry (H2O, CO2, 13CO2, C18OO, CH4, N2O, O3, CO) in the upper troposphere/lower stratosphere region outside clouds under all atmospheric conditions. Two further species (HDO, H218O) can be retrieved in the upper troposphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA630179','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA630179"><span>Secretary of The Navy Professor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1999-09-30</p> <p>goal of this research is to develop a predictive capability for the upper ocean circulation and atmospheric interactions using numerical models...assimilation techniques to be used in these models. In addition, we are continuing the task of preparing long-term global surface fluxes for use in ocean...NASA, NSF, and NOAA. APPROACH We are using a suite of models forced with estimates of real winds, with very fine horizontal resolution and realistic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA373435','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA373435"><span>USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 394.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1977-04-13</p> <p>Abstracts of Scientific Articles 10 Temperature and Wind Variations in Upper Atmosphere 10 Prediction of Precipitation for Five Days 10 Short...34 Method in Sea Gravimetry ... 30 Frequency Characteristics of Filter in "Points of Intersection" Method 30 Page Gravitational Anomalies in the...Inclination of Axes of Rotation and Orbits of Planets 47 Effect of Solar Activity on Precipitation Regime 47 Gravitational Orientation Systems with Two</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1714905L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1714905L"><span>Quasi 18 h wave activity in ground-based observed mesospheric H2O over Bern, Switzerland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lainer, Martin; Hocke, Klemens; Rüfenacht, Rolf; Kämpfer, Niklaus</p> <p>2017-12-01</p> <p>Observations of oscillations in the abundance of middle-atmospheric trace gases can provide insight into the dynamics of the middle atmosphere. Long-term, high-temporal-resolution and continuous measurements of dynamical tracers within the strato- and mesosphere are rare but would facilitate better understanding of the impact of atmospheric waves on the middle atmosphere. Here we report on water vapor measurements from the ground-based microwave radiometer MIAWARA (MIddle Atmospheric WAter vapor RAdiometer) located close to Bern during two winter periods of 6 months from October to March. Oscillations with periods between 6 and 30 h are analyzed in the pressure range 0.02-2 hPa. Seven out of 12 months have the highest wave amplitudes between 15 and 21 h periods in the mesosphere above 0.1 hPa. The quasi 18 h wave signature in the water vapor tracer is studied in more detail by analyzing its temporal evolution in the mesosphere up to an altitude of 75 km. Eighteen-hour oscillations in midlatitude zonal wind observations from the microwave Doppler wind radiometer WIRA (WInd RAdiometer) could be identified within the pressure range 0.1-1 hPa during an ARISE (Atmospheric dynamics Research InfraStructure in Europe)-affiliated measurement campaign at the Observatoire de Haute-Provence (355 km from Bern) in France in 2013. The origin of the observed upper-mesospheric quasi 18 h oscillations is uncertain and could not be determined with our available data sets. Possible drivers could be low-frequency inertia-gravity waves or a nonlinear wave-wave interaction between the quasi 2-day wave and the diurnal tide.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016hasa.book.....S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016hasa.book.....S"><span>Heliophysics: Active Stars, their Astrospheres, and Impacts on Planetary Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schrijver, C. J.; Bagenal, F.; Sojka, J. J.</p> <p>2016-04-01</p> <p>Preface; 1. Introduction Carolus J. Schrijver, Frances Bagenal and Jan J. Sojka; 2. Solar explosive activity throughout the evolution of the Solar System Rachel Osten; 3. Astrospheres, stellar winds, and the interstellar medium Brian Wood and Jeffrey L. Linsky; 4. Effects of stellar eruptions throughout astrospheres Ofer Cohen; 5. Characteristics of planetary systems Debra Fischer and Ji Wang; 6. Planetary dynamos: updates and new frontiers Sabine Stanley; 7. Climates of terrestrial planets David Brain; 8. Upper atmospheres of the giant planets Luke Moore, Tom Stallard and Marina Garland; 9. Aeronomy of terrestrial upper atmospheres David E. Siskind and Stephen W. Bougher; 10. Moons, asteroids, and comets interacting with their surroundings Margaret G. Kivelson; 11. Dusty plasmas Mihály Horányi; 12. Energetic-particle environments in the Solar System Norbert Krupp; 13. Heliophysics with radio scintillation and occultation Mario M. Bisi; Appendix 1. Authors and editors; List of illustrations; List of tables; References; Index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760020660','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760020660"><span>Environmental dynamics at orbital altitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Karr, G. R.</p> <p>1976-01-01</p> <p>The influence of real satellite aerodynamics on the determination of upper atmospheric density was investigated. A method of analysis of satellite drag data is presented which includes the effect of satellite lift and the variation in aerodynamic properties around the orbit. The studies indicate that satellite lift may be responsible for the observed orbit precession rather than a super rotation of the upper atmosphere. The influence of simplifying assumptions concerning the aerodynamics of objects in falling sphere analysis were evaluated and an improved method of analysis was developed. Wind tunnel data was used to develop more accurate drag coefficient relationships for studying altitudes between 80 and 120 Km. The improved drag coefficient relationships revealed a considerable error in previous falling sphere drag interpretation. These data were reanalyzed using the more accurate relationships. Theoretical investigations of the drag coefficient in the very low speed ratio region were also conducted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930061203&hterms=Physical+Research+Study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPhysical%2BResearch%2BStudy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930061203&hterms=Physical+Research+Study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPhysical%2BResearch%2BStudy"><span>The Upper Atmosphere Research Satellite (UARS) mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reber, Carl A.; Trevathan, Charles E.; Mcneal, Robert J.; Luther, Michael R.</p> <p>1993-01-01</p> <p>The Upper Atmosphere Research Satellite (UARS) is a NASA program aimed at improving our knowledge of the physical and chemical processes controlling the stratosphere, mesosphere, and lower thermosphere, emphasizing those levels that are known to be particularly susceptible to change by human activities. The spacecraft was launched by the Space Shuttle Discovery on September 12, 1991 into a near-circular orbit at 585 km altitude and 57 deg inclination. Measurements include vertical profiles of temperature, many trace gases, and horizontal wind velocities, as well as solar energy inputs. Many of the limb-scanning instruments can measure to as high as 80 deg latitude, providing near-global coverage. The mission is supported by a large international correlative measurement program, yielding data both for validation of the UARS measurements and for complementary scientific studies. A dedicated data system provides rapid processing to geophysical quantities and makes these data available to UARS scientists.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO52D..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO52D..01M"><span>Oceanic Feedback to the Madden-Julian Oscillation: Mixing's Critical Role</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moum, J. N.; Pujiana, K.; Lien, R. C.; Smyth, W.</p> <p>2016-02-01</p> <p>The Madden-Julian Oscillation (MJO) in the Indian Ocean is a large-scale, propagating atmospheric disturbance in the equatorial latitude band characterized by reduced outgoing longwave radiation due to deep atmospheric convection, and at the surface by intense westerly wind bursts and a change in sign of the net surface heat flux. The ocean response is the formation of a near-surface Yoshida-Wyrtki Jet, which accelerates almost in balance with the surface wind stress. High shear at the Jet's base drives intense turbulence, both of which continue long after the atmospheric disturbance has passed (Moum et al., 2014). The sequence of MJOs observed in the 2011-2012 DYNAMO experiment suggested the possibility that the greater mixing due to more intense MJO wind bursts might reduce SST recovery rates following MJO passage, thus reducing upper ocean heat content available to drive future atmospheric convection. We have tested this with a statistical analysis of less-complete historical observations of MJOs documenting 50 previous events. Our analysis shows that 1) SST increases more rapidly following weak MJOs than strong MJOs, and within a 60-day window, 2) weak MJOs follow strong MJOs (and do not follow weak MJOs), 3) strong MJOs follow weak MJOs (and do not follow strong MJOs). We hypothesize that these results are the consequence of Jet-forced variations in subsurface mixing on SST recovery rates, thereby providing direct feedback to subsequent MJOs. Moum, J.N., S.P. de Szoeke, W.D. Smyth, J.B. Edson, H.L. DeWitt, A.J. Moulin, E.J. Thompson, C.J. Zappa, S.A. Rutledge, R.H. Johnson and C.W. Fairall, 2014. Air-sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull.Am.Met.Soc., 95, 1185-1199.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18216848','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18216848"><span>Depth of a strong jovian jet from a planetary-scale disturbance driven by storms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sánchez-Lavega, A; Orton, G S; Hueso, R; García-Melendo, E; Pérez-Hoyos, S; Simon-Miller, A; Rojas, J F; Gómez, J M; Yanamandra-Fisher, P; Fletcher, L; Joels, J; Kemerer, J; Hora, J; Karkoschka, E; de Pater, I; Wong, M H; Marcus, P S; Pinilla-Alonso, N; Carvalho, F; Go, C; Parker, D; Salway, M; Valimberti, M; Wesley, A; Pujic, Z</p> <p>2008-01-24</p> <p>The atmospheres of the gas giant planets (Jupiter and Saturn) contain jets that dominate the circulation at visible levels. The power source for these jets (solar radiation, internal heat, or both) and their vertical structure below the upper cloud are major open questions in the atmospheric circulation and meteorology of giant planets. Several observations and in situ measurements found intense winds at a depth of 24 bar, and have been interpreted as supporting an internal heat source. This issue remains controversial, in part because of effects from the local meteorology. Here we report observations and modelling of two plumes in Jupiter's atmosphere that erupted at the same latitude as the strongest jet (23 degrees N). The plumes reached a height of 30 km above the surrounding clouds, moved faster than any other feature (169 m s(-1)), and left in their wake a turbulent planetary-scale disturbance containing red aerosols. On the basis of dynamical modelling, we conclude that the data are consistent only with a wind that extends well below the level where solar radiation is deposited.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130008757','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130008757"><span>Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-level Winds For Space Launch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III; Flinn, Clay</p> <p>2012-01-01</p> <p>Launch directors need to know upper-level wind forecasts. We developed an Excel-based GUI to display upper-level winds: (1) Rawinsonde at CCAFS, (2) Wind profilers at KSC, (3) Model point data at CCAFS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA51B2074S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA51B2074S"><span>Retrieving mesospheric winds and gravity waves using high resolution radar measurements of polar mesospheric summer echoes with MAARSY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stober, G.; Sommer, S.; Schult, C.; Chau, J. L.; Latteck, R.</p> <p>2013-12-01</p> <p>The Middle Atmosphere Alomar Radar System (MAARSY) located at the northern Norwegian island of Andøya (69.3 ° N, 16° E) observes polar mesosphere summer echoes (PMSE) on a regular basis. This backscatter turned out to be an ideal tracer of atmospheric dynamics and to investigate the wind field at the mesosphere/lower thermosphere (MLT) at high spatial and temporal scales. MAARSY is dedicated to explore the polar mesosphere at such high resolution and employs an active phased array antenna with the capability to steer the beam on a pulse-to-pulse basis, which permits to perform systematic scanning of PMSE and to investigate the horizontal structure of the backscatter. The radar also uses a 16 channel receiver system for interferometric applications e.g. mean angle of arrival analysis or coherent radar imaging. Here we present measurements using these features of MAARSY to study the wind field at the MLT applying sophisticated wind analysis algorithms such as velocity azimuth display or volume velocity processing to derive gravity wave parameters such as horizontal wave length, phase speed and propagation direction. Further, we compare the interferometrically corrected and uncorrected wind measurements to emphasize the importance to account for likely edge effects using PMSE as tracer of the dynamics. The observations indicate huge deviations from the nominal beam pointing direction at the upper and lower edges of the PMSE altering the wind analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ClDy...31..909B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ClDy...31..909B"><span>Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Part 2: A diurnally coupled CGCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bernie, D. J.; Guilyardi, E.; Madec, G.; Slingo, J. M.; Woolnough, S. J.; Cole, J.</p> <p>2008-12-01</p> <p>Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2°C in the central and western Pacific to over 0.3°C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170°E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in the dynamical response of the ocean leads to a stronger equatorial upwelling. These two processes both lead to stronger seasonal basin scale feedbacks in the coupled system, increasing the strength of the seasonal cycle of the tropical Pacific sector by around 10%. This means that the diurnal cycle in the upper ocean plays a part in the coupled feedbacks between ocean and atmosphere that maintain the basic state and the timing of the seasonal cycle of SST and trade winds in the tropical Pacific. The Madden-Julian Oscillation (MJO) is examined by use of a large scale MJO index, lag correlations and composites of events. The inclusion of the diurnal cycle leads to a reduction in overall MJO activity. Precipitation composites show that the MJO is stronger and more coherent when the diurnal cycle of coupling is resolved, with the propagation and different phases being far more distinct both locally and to larger lead times across the tropical Indo-Pacific. Part one of this study showed that that diurnal variability of SST is modulated by the MJO and therefore increases the intraseasonal SST response to the different phases of the MJO. Precipitation-based composites of SST variability confirm this increase in the coupled simulations. It is argued that including this has increased the thermodynamical coupling of the ocean and atmosphere on the timescale of the MJO (20-100 days), accounting for the improvement in the MJO strength and coherency seen in composites of precipitation and SST. These results show that the diurnal cycle of ocean-atmosphere interaction has profound impact on a range of up-scale variability in the tropical climate and as such, it is an important feature of the modelled climate system which is currently either neglected or poorly resolved in state of the art coupled models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912972G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912972G"><span>Impacts of the cloud structure's latitudinal variation on the general circulation of the Venus atmosphere as modeled by the LMD-GCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garate-Lopez, Itziar; Lebonnois, Sébastien</p> <p>2017-04-01</p> <p>A new simulation of Venus atmospheric circulation obtained with the LMD Venus GCM is described and the impact of cloud's latitudinal structure on the general circulation is analyzed. The model used here is based on that presented in Lebonnois et al. (2016). However, in the present simulation we consider the latitudinal variation of the cloud structure (Haus et al., 2014) both for the solar heating and to compute the infrared net-exchange rate matrix used in the radiative transfer module. The new cloud treatment affects mainly the balance in the angular momentum and the zonal wind distribution. Consequently, the agreement between the vertical profile of the modeled mean zonal wind and the profiles measured by different probes, is clearly improved from previous simulations in which zonal winds below the clouds were weak (roughly half the observed values). Moreover, the equatorial jet obtained at the base of the cloud deck is now more consistent with the observations. In Lebonnois et al. (2016) it was too strong compared to mid-latitudes, but in the present simulation the equatorial jet is less intense than the mid-latitude jets, in concordance with cloud-tracking measurements (Hueso et al., 2015). Since the atmospheric waves play a crucial role in the angular momentum budget of the Venus's atmospheric circulation, we analyze the wave activity by means of the Fast Fourier Transform technique studying the frequency spectrum of temperature, zonal and meridional wind fields. Modifications in the activity of the different types of waves present in the Venusian atmosphere compared to Lebonnois et al. (2016) are discussed, in terms of horizontal and vertical transport of the angular momentum by diurnal and semi-diurnal tides, barotropic and baroclinic waves, and Rossby and Kelvin type waves. Haus R., Kappel D. and Arnold G., 2014. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232, 232-248. Hueso R., Peralta J., Garate-Lopez I., et al., 2015. Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus express. Planet. Space Sci. 113-114, 78-99. Lebonnois S., Sugimoto N., and Gilli G., 2016. Wave analysis in the atmosphere of Venus below 100km altitude, simulated by the LMD Venus GCM. Icarus 278, 38-51.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACPD...1533283K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACPD...1533283K"><span>Modelled thermal and dynamical responses of the middle atmosphere to EPP-induced ozone changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karami, K.; Braesicke, P.; Kunze, M.; Langematz, U.; Sinnhuber, M.; Versick, S.</p> <p>2015-11-01</p> <p>Energetic particles including protons, electrons and heavier ions, enter the Earth's atmosphere over the polar regions of both hemispheres, where they can greatly disturb the chemical composition of the upper and middle atmosphere and contribute to ozone depletion in the stratosphere and mesosphere. The chemistry-climate general circulation model EMAC is used to investigate the impact of changed ozone concentration due to Energetic Particle Precipitation (EPP) on temperature and wind fields. The results of our simulations show that ozone perturbation is a starting point for a chain of processes resulting in temperature and circulation changes over a wide range of latitudes and altitudes. In both hemispheres, as winter progresses the temperature and wind anomalies move downward with time from the mesosphere/upper stratosphere to the lower stratosphere. In the Northern Hemisphere (NH), once anomalies of temperature and zonal wind reach the lower stratosphere, another signal develops in mesospheric heights and moves downward. Analyses of Eliassen and Palm (EP) flux divergence show that accelerating or decelerating of the stratospheric zonal flow is in harmony with positive and negative anomalies of the EP flux divergences, respectively. This results suggest that the oscillatory mode in the downwelling signal of temperature and zonal wind in our simulations are the consequence of interaction between the resolved waves in the model and the mean stratospheric flow. Therefore, any changes in the EP flux divergence lead to anomalies in the zonal mean zonal wind which in turn feed back on the propagation of Rossby waves from the troposphere to higher altitudes. The analyses of Rossby waves refractive index show that the EPP-induced ozone anomalies are capable of altering the propagation condition of the planetary-scale Rossby waves in both hemispheres. It is also found that while ozone depletion was confined to mesospheric and stratospheric heights, but it is capable to alter Rossby wave propagation down to tropospheric heights. In response to an accelerated polar vortex in the Southern Hemisphere (SH) late wintertime, we found almost two weeks delay in the occurrence of mean dates of Stratospheric Final Warming (SFW). These results suggest that the stratosphere is not merely a passive sink of wave activity from below, but it plays an active role in determining its own budget of wave activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890020484','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890020484"><span>Japanese contributions to MAP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kato, S.</p> <p>1989-01-01</p> <p>Japan contributed much to MAP in many branches. The MU (middle and upper atmosphere) radar, in operation during the MAP period, produced various novel possibilities in observations of middle atmosphere dynamics; possibilities which were fairly well realized. Gravity wave saturation and its spectrum in the mesosphere were observed successfully. Campaign observations by radars between Kyoto and Adelaide were especially significant in tidal and planetary wave observations. In Antarctica, middle atmosphere observation of the dramatic behavior of aerosols in winter is well elucidated together with the ozone hole. Theoretical and numerical studies have been progressing actively since a time much earlier than MAP. Now it is pointed out that gravity waves play an important role in producing the weak wind region in the stratosphere as well as the mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50..939S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50..939S"><span>Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shonk, Jonathan K. P.; Guilyardi, Eric; Toniazzo, Thomas; Woolnough, Steven J.; Stockdale, Tim</p> <p>2018-02-01</p> <p>The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere-ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about 10 days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSA41A2048K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSA41A2048K"><span>Seasonal Variation of Wave Activities near the Mesopause Region Observed at King Sejong Station (62.22°S, 58.78°W), Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Y.; Lee, C.; Kim, J.; Jee, G.; Won, Y.; Wu, D. L.</p> <p>2012-12-01</p> <p>We have analyzed neutral wind data obtained from a VHF meteor radar at King Sejong Station (KSS), Antarctica to investigate wave activities in the altitude region of 80 - 100 km over the Antarctic vortex boundary. The seasonal behavior of semidiurnal tides is generally consistent with the prediction of GSWM (Global Scale Wave Model) except for the altitude region above ~96 km. The gravity wave activities inferred from variances of neutral winds show very similar seasonal characteristics to the semidiurnal tides, implying that there is a close interaction between the gravity wave and tide. Although the seasonal behaviors of the wind variance as an indicator of the gravity wave activity are consistent with those observed at the adjacent Rothera station, the magnitude of the variances at KSS is much larger above the mesopause, especially from May through September, than those at Rothera. The Aura Microwave Limb Sounder (MLS) satellite observations also confirmed the enhancement of gravity wave activity during the same period near the tip of Antarctic Peninsula, where KSS is located. The observed large wind variances at KSS may imply that the atmospheric conditions near the Antarctic vortex are very effective for generation of the gravity waves that propagate to the upper atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.971K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.971K"><span>Space Weather Studies at Istanbul Technical University</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaymaz, Zerefsan</p> <p>2016-07-01</p> <p>This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960001687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960001687"><span>The NASA/MSFC Global Reference Atmospheric Model-1995 version (GRAM-95)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; Jeffries, W. R., III; Yung, S. P.; Johnson, D. L.</p> <p>1995-01-01</p> <p>The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA43A2133C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA43A2133C"><span>New Discoveries Resulted from Lidar Investigation of Middle and Upper Atmosphere Temperature, Composition, Chemistry and Dynamics at McMurdo, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chu, X.; Yu, Z.; Fong, W.; Chen, C.; Huang, W.; Lu, X.; Gardner, C. S.; McDonald, A.; Fuller-Rowell, T. J.; Vadas, S.</p> <p>2013-12-01</p> <p>The scientific motivation to explore the neutral properties of the polar middle and upper atmosphere is compelling. Human-induced changes in the Earth's climate system are one of the most challenging social and scientific issues in this century. Besides monitoring climate change, to fully explore neutral-ion coupling in the critical region between 100 and 200 km is an objective of highest priority for the upper atmosphere science community. Meteorological sources of wave energy from the lower atmosphere are responsible for producing significant variability in the upper atmosphere. Energetic particles and fields originating from the magnetosphere regularly alter the state of the ionosphere. These influences converge through the tight coupling between the ionosphere plasma and neutral thermosphere gas in the space-atmosphere interaction region (SAIR). Unfortunately measurements of the neutral thermosphere are woefully incomplete and in critical need to advance our understanding of and ability to predict the SAIR. Lidar measurements of neutral thermospheric winds, temperatures and species can enable these explorations. To help address these issues, in December 2010 we deployed an Fe Boltzmann temperature lidar to McMurdo (77.8S, 166.7E), Antarctica via collaboration between the United States Antarctic Program and Antarctica New Zealand. Since then an extensive dataset (~3000 h) has been collected by this lidar during its first 32 months of operation, leading to several important new discoveries. The McMurdo lidar campaign will continue for another five years to acquiring long-term datasets for polar geospace research. In this paper we provide a comprehensive overview of the lidar campaign and scientific results, emphasizing several new discoveries in the polar middle and upper atmosphere research. In particular, the lidar has detected neutral Fe layers reaching 170 km in altitude, and derived neutral temperature from 30 to 170 km for the first time in the world. Such discoveries may have opened the new door to observing the neutral thermosphere with ground-based instruments. Extreme Fe events in summer were observed and understood as the interesting interactions among the meteoric metal atoms, sub-visible ice particles and energetic particles during aurora precipitation. Furthermore, the McMurdo middle and upper atmosphere is found to be very dynamical, especially in winter when inertia-gravity waves and eastward propagating planetary waves are predominant in the mesosphere and lower thermosphere and in the stratosphere, respectively. Despite small amplitudes below 100 km, the diurnal and semidiurnal tidal amplitudes exhibit fast growth from 100 to 110 km depending on the geomagnetic activities. These observations pose great challenges to our understanding of the Earth's upper atmosphere but also provide excellent opportunities to exploring how the electrodynamics and neutral dynamics work together at this high southern latitude to produce many intriguing geophysical phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.5020P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.5020P"><span>Upper Ocean Response to the Atmospheric Cold Pools Associated With the Madden-Julian Oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pei, Suyang; Shinoda, Toshiaki; Soloviev, Alexander; Lien, Ren-Chieh</p> <p>2018-05-01</p> <p>Atmospheric cold pools are frequently observed during the Madden-Julian Oscillation events and play an important role in the development and organization of large-scale convection. They are generally associated with heavy precipitation and strong winds, inducing large air-sea fluxes and significant sea surface temperature (SST) fluctuations. This study provides a first detailed investigation of the upper ocean response to the strong cold pools associated with the Madden-Julian Oscillation, based on the analysis of in situ data collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign and one-dimensional ocean model simulations validated by the data. During strong cold pools, SST drops rapidly due to the atmospheric cooling in a shoaled mixed layer caused by the enhanced near-surface salinity stratification generated by heavy precipitation. Significant contribution also comes from the component of surface heat flux produced by the cold rain temperature. After the period of heavy rain, while net surface cooling remains, SST gradually recovers due to the enhanced entrainment of warmer waters below the mixed layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22370204-electrodynamics-extrasolar-giant-planets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22370204-electrodynamics-extrasolar-giant-planets"><span>Electrodynamics on extrasolar giant planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Koskinen, T. T.; Yelle, R. V.; Lavvas, P.</p> <p>2014-11-20</p> <p>Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of Hmore » and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be used to constrain electrodynamics in the future.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900038069&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddynamo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900038069&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddynamo"><span>The dynamo of the diurnal tide and its effect on the thermospheric circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Harris, I.; Herrero, F. A.</p> <p>1990-01-01</p> <p>A theoretical multiconstituent model (including O, N2, and O2) which describes the interactions between neutral winds, dynamo electric fields, and ion drifts is used to interpret observations that revealed a dominance of the fundamental diurnal tide in the upper thermosphere and at equatorial latitudes, and its effect on the thermospheric circulation. The model is shown to reproduce reasonably well the magnitudes of the neutral winds, ion drift velocities, and the ratio between the two. A solution for the neutral winds in which the dynamo electric field is forced to zero shows that the dynamo-induced ion drift is very important in accelerating the neutral atmosphere at higher altitudes. The dynamo interaction primarily affects the curl component of the field; its effect on the temperature and density perturbations is small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010023075&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddynamo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010023075&hterms=dynamo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddynamo"><span>The DYNAMO Orbiter Project: High Resolution Mapping of Gravity/Magnetic Fields and In Situ Investigation of Mars Atmospheric Escape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smrekar, S.; Chassefiere, E.; Forget, F.; Reme, H.; Mazelle, C.; Blelly, P. -L.; Acuna, M.; Connerney, J.; Purucker, M.; Lin, R.</p> <p>2000-01-01</p> <p>Dynamo is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for Dynamo of 120-130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere, and water, from the planet. There is much room for debate on the importance of current atmosphere escape processes in the evolution of the Martian atmosphere, as early "exotic" processes including hydrodynamic escape and impact erosion are traditionally invoked to explain the apparent sparse inventory of present-day volatiles. Yet, the combination of low surface gravity and the absence of a substantial internally generated magnetic field have undeniable effects on what we observe today. In addition to the current losses in the forms of Jeans and photochemical escape of neutrals, there are solar wind interaction-related erosion mechanisms because the upper atmosphere is directly exposed to the solar wind. The solar wind related loss rates, while now comparable to those of a modest comet, nonetheless occur continuously, with the intriguing possibility of important cumulative and/or enhanced effects over the several billion years of the solar system's life. If the detailed history of the Martian internal field could be traced back, and the current escape processes could be understood well enough to model the expected stronger losses under early Sun conditions, one could go a long way toward constraining this part of the mysterious history of Mars' atmosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140001115','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140001115"><span>The Multi-Stage History of Mt. Sharp</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, C.; Dapremont, A.</p> <p>2013-01-01</p> <p>The Curiosity rover is exploring Gale crater and Mt. Sharp, Gale's 5-km high central mound. We are investigating the history of alteration and erosion of Mt. Sharp using orbital imagery, spectroscopy and rover observations. Our results suggest a significant time gap between emplacement of the upper and lower sections of the mound. Crater counts show that the lower mound was formed soon after Gale itself, and that it contains distinct units ranging in altitude from approximately -4,500 to -1,800 m. Spectral data suggest that many units contain phyllosilicates. We found that these clay-bearing rocks occur in distinct layers concentrated below -2,900 m. Parts of the lower mound exhibit a transition from clays to sulfates with increasing altitude. The lower mound shows evidence of flowing water, including canyons and inverted channels. Wind erosion produced km-scale yardangs and scalloped cliffs. Our mapping shows that many yardangs in the lower mound are clay-bearing, with a predominant orientation of around N-S. Curiosity's ground-level images show myriad fine-scale, mainly horizontal layers in the lower mound. The rover has found stream beds and conglomerates, indicating that water once flowed on the crater floor. Drilling near the deepest point in Gale produced abundant clay, providing additional evidence of aqueous alteration. Upper mound units range in altitude from -2,100 m to +500 m, and mantle the lower mound above an angular unconformity. Most upper mound units are composed of layers. The formation age of the upper mound is unknown, since few craters are preserved. Clay-bearing layers are detectable in several locations, mainly at altitudes near -2,000 m. There is no evidence of water flow, but wind erosion has scalloped the surfaces and edges of layers, and fine-scale yardangs are common. Correlations between yardangs and clay spectra are apparent only in the lowermost units of the upper mound. Yardang orientations vary, and include N-S, NW-SE, and NE-SW. Upper mound units resemble the planet-wide Medusae Fossae formation, dated as Hesperian and argued to be composed of ignimbrites. Medusae Fossae layers are easily eroded by wind, and our mapping demonstrates their resemblance to upper mound fine-scale yardangs. The history of Mt. Sharp started with deposition and lithification of sediments shortly after crater formation. Some lower mound layers were partially altered to clays and sulfates, and water formed streams and canyons. Wind erosion of the lower mound produced large-scale yardangs, particularly in clay-rich layers, oriented generally N-S. Upper mound units were emplaced following a considerable period of wind erosion. The absence of water flow on the upper mound suggests that these units were emplaced after atmospheric loss rendered water unstable at the surface. The shift in dominant wind direction, as indicated by yardang orientations, also argues for a time gap between erosion of the lower and upper mound. These observations are consistent with upper mound units being related to the Hesperian Medusae Fossae formation. During 2014 Curiosity is expected to reach the foot of Mt. Sharp and ascend through the clay-rich layers, into the sulfate-rich layers, and possibly past the interface with the upper mound. This will be a unique opportunity to field check geologic models on the surface of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-0101917.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-0101917.html"><span>Skylab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1973-01-01</p> <p>This montage is a sequence of soft x-ray photographs of the boot-shaped coronal hole rotating with the sun. The individual pictures were taken about 2 days apart by the Skylab telescope. Most of the apparent changes in this 6-day period resulted from a changing perspective. Skylab data helped demonstrate that coronal holes are sources of high-velocity streams in the solar wind. These high-velocity streams can be electrons, protons, and atomic nuclei that spray out from the Sun into interplanetary space. When the coronal hole is near the center of the Sun, as in view 2, the sprinkler is directed at Earth. These high-speed streams of solar wind distort Earth's magnetic field and disturb it's upper atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990116473&hterms=daniel+bender&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddaniel%2Bbender','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990116473&hterms=daniel+bender&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddaniel%2Bbender"><span>Wind-Related Features and Processes on Venus: Summary of Magellan Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, Ronald; Bender, Kelly; Thomas, Peggy E.; Schubert, Gerald; Limonadi, Daniel; Weitz, Catherine M.</p> <p>1995-01-01</p> <p>A search of Magellan synthetic aperture radar images covering approximately 98% of the venusian surface shows that aeolian features occur at all longitudes and latitudes. A global data base for wind streaks, the most common type of aeolian feature, was developed. For each of the 5970 streaks in the data base, information was compiled on location, streak type, radar backscatter, dimensions, azimuth, orientation with respect to local slope, and type of landform with which it is associated. In addition, streaks occurring in association with parabolic ejecta deposits were designated type P streaks, which constitute about 31% of the data base. Wind streak azimuths were analyzed to assess wind patterns at the time of their formation. Both hemispheres show strong westward and equatorward trends in azimuths, consistent with Hadley circulation and inferred upper atmospheric westward zonal winds. When type P streaks (those considered to result from transient impact events) were removed, the westward component was greatly reduced, suggesting that the upper zonal winds do not extend to the surface. The presence of equator-oriented streaks at high latitudes suggests that Hadley circulation extends to the poles. A field of possible yardangs found southwest of Mead Crater strikes NE-SW and occupies plains situated in a shallow topographic depression. Analysis of non-type P streaks in the area suggests that equatorward winds are funneled through the depression and are responsible for the erosion of the terrain to form the yardangs. Dune deposits are limited on Venus. Two dune fields were identified (Aglonice and Fortuna-Meshkenet) which total in area about 18,300 sq km. Microdunes are proposed for some southern hemisphere areas which show distinctive radar reflectivities. Bragg scattering and/or subpixel reflections from the leeward faces of microdune bedforms could account for the unusual radar backscatter cross sections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990116097&hterms=daniel+bender&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddaniel%2Bbender','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990116097&hterms=daniel+bender&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Ddaniel%2Bbender"><span>Wind-Related Features and Processes on Venus Summary of Magellan Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, Ronald; Bender, Kelly; Thomas, Peggy E.; Schubert, Gerald; Limonadi, Daniel; Weitz, Catherine M.</p> <p>1995-01-01</p> <p>A search of Magellan synthetic aperture radar images covering about 98% of the venusian surface shows that aeolian features occur at all longitudes and latitudes. A global data base for wind streaks, the most common type of aeolian feature, was developed. For each of the 5970 streaks in the data base, information was compiled on location, streak type, radar backscatter, dimensions, azimuth, orientation with respect to local slope, and type of landform with which it is associated. In addition, streaks occurring in association with parabolic ejecta deposits were designated type P streaks, which constitute about 31% of the data base. Wind streak azimuths were analyzed to assess wind patterns at the time of their formation. Both hemispheres show strong westward and equatorward trends in azimuths, consistent with Hadley circulation and inferred upper atmospheric westward zonal winds. When type P streaks (those considered to result from transient impact events) were removed, the westward component was greatly reduced, suggesting that the upper zonal winds do not extend to the surface. The presence of equator-oriented streaks at high latitudes suggests that Hadley circulation extends to the poles. A field of possible yardangs found southwest of Mead Crater strikes NE-SW and occupies plains situated in a shallow topographic depression. Analysis of non-type P streaks in the area suggests that equatorward winds are funneled through the depression and are responsible for the erosion of the terrain to form the yardangs. Dune deposits are limited on Venus. Two dune fields were identified (Aglonice and Fortuna-Meshkenet) which total in area about 18,300 square km. Microdunes are proposed for some southern hemisphere areas which show distinctive radar reflectivities. Bragg scattering and/or subpixel reflections from the leeward faces of microdune bedforms could account for the unusual radar backscatter cross sections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00724&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00724&hterms=Wave+filter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DWave%2Bfilter"><span>Mesoscale Waves in Jupiter's Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>These two images of Jupiter's atmosphere were taken with the violet filter of the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The images were obtained on June 26, 1996; the lower image was taken approximately one rotation (9 hours) later than the upper image.<p/>Mesoscale waves can be seen in the center of the upper image. They appear as a series of about 15 nearly vertical stripes; the wave crests are aligned north-south. The wave packet is about 300 kilometers in length and is aligned east-west. In the lower image there is no indication of the waves, though the clouds appear to have been disturbed. Such waves were seen also in images obtained by NASA's Voyager spacecraft in 1979, though lower spatial and time resolution made tracking of features such as these nearly impossible.<p/>Mesoscale waves occur when the wind shear is strong in an atmospheric layer that is sandwiched vertically between zones of stable stratification. The orientation of the wave crests is perpendicular to the shear. Thus, a wave observation gives information about how the wind direction changes with height in the atmosphere.<p/>North is at the top of these images which are centered at approximately 15 South latitude and 307 West longitude. In the upper image, each picture element (pixel) subtends a square of about 36 kilometers on a side, and the spacecraft was at a range of more than 1.7 million kilometers from Jupiter. In the lower image, each pixel subtends a square of about 30 kilometers on a side, and the spacecraft was at a range of more than 1.4 million kilometers from Jupiter.<p/>The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.<p/>This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110005649','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110005649"><span>Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kostiuk, Theodor</p> <p>2010-01-01</p> <p>Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be described, such as non-thermal and lasing phenomena on Mars and Venus, mid-infrared aurora on Jupiter [5], and results of small body impacts on Jupiter [6]. The heterodyne technique can also be applied for detailed study of the Earth's stratosphere and mesosphere by measuring trace constituent abundances and temporal and spatial variability as well as winds, which provide information of transport. All ground-based measurements will be described as complementary and supporting studies for on-going and future space missions [7] (Mars Express, Venus Express, Cassini Huygens, JUNO, ExoMars Trace Gas Orbiter, and the Europa Jupiter System Mission, an Earth Science Venture Class missions), Proposed instrument and technology development for a space flight infrared heterodyne spectrometer will be described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960022587&hterms=depletion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddepletion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960022587&hterms=depletion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddepletion"><span>Link Winds: A visual data analysis system and its application to the atmospheric ozone depletion problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacobson, Allan S.; Berkin, Andrew L.</p> <p>1995-01-01</p> <p>The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration system resulting from a NASA Jet Propulsion Laboratory (JPL) program of research into the application of graphical methods for rapidly accessing, displaying, and analyzing large multi variate multidisciplinary data sets. Running under UNIX it is an integrated multi-application executing environment using a data-linking paradigm to dynamically interconnect and control multiple windows containing a variety of displays and manipulators. This paradigm, resulting in a system similar to a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but leads to a highly intuitive, easy-to-learn user interface. It provides great flexibility in rapidly interacting with large masses of complex data to detect trends, correlations, and anomalies. The system, containing an expanding suite of non-domain-specific applications, provides for the ingestion of a variety of data base formats and hard -copy output of all displays. Remote networked workstations running LinkWinds may be interconnected, providing a multiuser science environment (MUSE) for collaborative data exploration by a distributed science team. The system is being developed in close collaboration with investigators in a variety of science disciplines using both archived and real-time data. It is currently being used to support the Microwave Limb Sounder (MLS) in orbit aboard the Upper Atmosphere Research Satellite (UARS). This paper describes the application of LinkWinds to this data to rapidly detect features, such as the ozone hole configuration, and to analyze correlations between chemical constituents of the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17609010T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17609010T"><span>Validation and deployment of the first Lidar based weather observation network in New York State: The NYS MesoNet Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thobois, L.; Freedman, J.; Royer, P.; Brotzge, J.; Joseph, E.</p> <p>2018-04-01</p> <p>The number and quality of atmospheric observations used by meteorologists and operational forecasters are increasing year after year, and yet, consistent improvements in forecast skill remains a challenge. While contributing factors involving these challenges have been identified, including the difficulty in accurately establishing initial conditions, improving the observations at regional and local scales is necessary for accurate depiction of the atmospheric boundary layer (below 2km), particularly the wind profile, in high resolution numerical models. Above the uncertainty of weather forecasts, the goal is also to improve the detection of severe and extreme weather events (severe thunderstorms, tornadoes and other mesoscale phenomena) that can adversely affect life, property and commerce, primarily in densely populated urban centers. This paper will describe the New York State Mesonet that is being deployed in the state of New York, USA. It is composed of 126 stations including 17 profiler sites. These sites will acquire continuous upper air observations through the combination of WINDCUBE Lidars and microwave radiometers. These stations will provide temperature, relative humidity & "3D" wind profile measurements through and above the planetary boundary layer (PBL) and will retrieve derived atmospheric quantities such as the PBL height, cloud base, momentum fluxes, and aerosol & cloud optical properties. The different modes and configurations that will be used for the Lidars are discussed. The performances in terms of data availability and wind accuracy and precision are evaluated. Several profiles with specific wind and aerosol features are presented to illustrate the benefits of the use of Coherent Doppler Lidars to monitor accurately the PBL.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950007312','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950007312"><span>Atmospheric and wind modeling for ATC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Slater, Gary L.</p> <p>1990-01-01</p> <p>The section on atmospheric modeling covers the following topics: the standard atmosphere, atmospheric variations, atmosphere requirements for ATC, and implementation of a software model for Center/Tracon Advisory System (CTAS). The section on wind modeling covers the following topics: wind data -- NOAA profiler system; wind profile estimation; incorporation of various data types into filtering scheme; spatial and temporal variation; and software implementation into CTAS. The appendices contain Matlab codes for atmospheric routines and for wind estimation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006917','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006917"><span>Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Decker, Ryan K.; Barbre, Robert E., Jr.</p> <p>2014-01-01</p> <p>Space launch vehicles incorporate upper-level wind profiles to determine wind effects on the vehicle and for a commit to launch decision. These assessments incorporate wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the upper-level winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Five sets of temporal wind pairs at various times (.75, 1.5, 2, 3 and 4-hrs) at the Eastern Range, Western Range and Wallops Flight Facility were developed for use in upper-level wind assessments. Database development procedures as well as statistical analysis of temporal wind variability at each launch range will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatAs...1E..26T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatAs...1E..26T"><span>Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Terada, Kentaro; Yokota, Shoichiro; Saito, Yoshifumi; Kitamura, Naritoshi; Asamura, Kazushi; Nishino, Masaki N.</p> <p>2017-01-01</p> <p>For five days of each lunar orbit, the Moon is shielded from solar wind bombardment by the Earth's magnetosphere, which is filled with terrestrial ions. Although the possibility of the presence of terrestrial nitrogen and noble gases in lunar soil has been discussed based on their isotopic composition 1 , complicated oxygen isotope fractionation in lunar metal 2,3 (particularly the provenance of a 16O-poor component) re­mains an enigma 4,5 . Here, we report observations from the Japanese spacecraft Kaguya of significant numbers of 1-10 keV O+ ions, seen only when the Moon was in the Earth's plasma sheet. Considering the penetration depth into metal of O+ ions with such energy, and the 16O-poor mass-independent fractionation of the Earth's upper atmosphere 6 , we conclude that biogenic terrestrial oxygen has been transported to the Moon by the Earth wind (at least 2.6 × 104 ions cm-2 s-1) and implanted into the surface of the lunar regolith, at around tens of nanometres in depth 3,4 . We suggest the possibility that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P13A1905H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P13A1905H"><span>High Resolution Observations of Escaping Ions in the Martian Magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halekas, J. S.; Raman, C.; Brain, D.; DiBraccio, G. A.; Harada, Y.; McFadden, J. P.; Mitchell, D. L.; Connerney, J. E. P.; Jakosky, B. M.</p> <p>2016-12-01</p> <p>Ions escape from the Martian upper atmosphere via a number of channels, including the central plasmasheet of the magnetotail. Mars Express observations show that the heavy ions O+ and O2+ escaping through the central tail often have approximately the same energy, suggesting acceleration in a quasi-static electric field, which has been interpreted as a Hall electric field. The Solar Wind Ion Analyzer (SWIA) on MAVEN was designed to measure the upstream solar wind. However, during orbit segments with appropriate spacecraft attitude, SWIA can also make high resolution measurements of escaping ions in the tail. During the prime mission, these observations were only returned sporadically, during periods of intense escaping fluxes that fortuitously triggered a mode switch. Now, in the extended mission, we return high resolution observations from SWIA routinely. Some of these high resolution measurements reveal slight differences in both the direction and energy of escaping O+ and O2+ ions, which may help determine the acceleration process(es). We investigate the location and solar wind conditions for which the escaping ions separate in energy and angle and the systematics of their energies and flow vectors, and discuss the implications for ion acceleration and the overall picture of Martian atmospheric escape.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000112946','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000112946"><span>Decadal Variability and Temperature Trends in the Middle Atmosphere From Historical Rocketsonde Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dunkerton, Timothy J.</p> <p>2000-01-01</p> <p>Observational studies were performed using historical rocketsonde data to investigate long-term temperature trends, solar-cycle variations, and interactions between tropical and extratropical latitudes in the middle atmosphere. Evidence from tropical, subtropical, and midlatitude North American rocketsonde stations indicated a consistent downward trend over 25 years, with a solar cycle component superposed. The trend is about -1.4 to -2.0 K per decade and the amplitude of the decadal oscillation is about 1.1 K. Prior to trend derivation it was necessary for us to correct temperatures for aerodynamic heating in the early years. The empirically derived correction profile agrees well with a theoretical profile of Krumins and Lyons. A study was also performed of the correlation between equatorial winds and north polar temperatures in winter, showing that the entire stratospheric wind profile near the equator -- including the quasi-biennial oscillation (QBO) and stratopause semiannual oscillation (SAO) -- is important to the extratropical flow, not merely the QBO component as previously thought. A strong correlation was discovered between winter polar temperatures and equatorial winds in the upper stratosphere during the preceding September, suggesting a role for the second cycle of the SAO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.7169M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.7169M"><span>A comparison of the momentum budget in reanalysis datasets during sudden stratospheric warming events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martineau, Patrick; Son, Seok-Woo; Taguchi, Masakazu; Butler, Amy H.</p> <p>2018-05-01</p> <p>The agreement between reanalysis datasets, in terms of the zonal-mean momentum budget, is evaluated during sudden stratospheric warming (SSW) events. It is revealed that there is a good agreement among datasets in the lower stratosphere and troposphere concerning zonal-mean zonal wind, but less so in the upper stratosphere. Forcing terms of the momentum equation are also relatively similar in the lower atmosphere, but their uncertainties are typically larger than uncertainties of the zonal-wind tendency. Similar to zonal-wind tendency, the agreement among forcing terms is degraded in the upper stratosphere. Discrepancies among reanalyses increase during the onset of SSW events, a period characterized by unusually large fluxes of planetary-scale waves from the troposphere to the stratosphere, and decrease substantially after the onset. While the largest uncertainties in the resolved terms of the momentum budget are found in the Coriolis torque, momentum flux convergence also presents a non-negligible spread among the reanalyses. Such a spread is reduced in the latest reanalysis products, decreasing the uncertainty of the momentum budget. It is also found that the uncertainties in the Coriolis torque depend on the strength of SSW events: the SSW events that exhibit the most intense deceleration of zonal-mean zonal wind are subject to larger discrepancies among reanalyses. These uncertainties in stratospheric circulation, however, are not communicated to the troposphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5722548-minor-scale-weather-watch-microbarograph-project-experiments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5722548-minor-scale-weather-watch-microbarograph-project-experiments"><span>Minor scale weather-watch and microbarograph project experiments 8620, 9415, 9416</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reed, J.W.; Church, H.W.</p> <p>1986-01-01</p> <p>Predictions and measurements of distant airblast propagations were made to identify, control, and document the environmental impact from this large explosion. Special meteorological observations were made to support this as well as other experiments. Rawinsonde balloon upper-air observations were made to about 30 km altitude. Pilot balloons were tracked by optical theodolite to give frequent wind observations to about 3 km above ground. A Tethersonde balloon was operated to give details on atmospheric structure below about 3 km. Rocketsondes were launched to measure temperature and wind conditions at 35- to 65-km heights, for explaining long range airblast propagations that focusmore » near 200 km distance. A meteorological towere was set up at the Admin Park to give continuous records of wind and temperature at three levels to 23 m height. An anemometer was installed near Ground Zero for reference during wind-sensitive helium bag operations. A weather advisory service was established, using WSMR observations as well as national weather data collections, and communicating through a computer terminal at the Stallion Radiosonde Station. Microbarograph (MB) airblast pressure recorders were operated at thirteen locations, from 3 km to 225 km from GZ. During the 10 days preceding MINOR SCALE, 31 ANFO charges, of 250 lb or 2500 lb yields, were fired to document the long range airblast propagation with MB recordings and upper air weather observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984maph...10..160S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984maph...10..160S"><span>Measurement of the vertical gradient of the semidiurnal tidal wind phase in winter at the 95 km level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schminder, R.; Kurschner, D.</p> <p>1984-05-01</p> <p>When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850012168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850012168"><span>Measurement of the Vertical Gradient of the Semidiurnal Tidal Wind Phase in Winter at the 95 Km Level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schminder, R.; Kurschner, D.</p> <p>1984-01-01</p> <p>When supplemented by absolute reflection height measurements, low frequency wind measurements in the 90-100 km height range become truly competitive in comparison with the more widely used radar meteor wind observations. For example, height profiles of the wind parameters in the so-called meteor zone can be obtained due to the considerable interdiurnal variability of the average nighttime reflection heights controlled by geomagnetic activity. The phase of the semidiurnal tidal wind is particularly height-dependent. The measured vertical gradient of 1/4 h/km in winter corresponds to a vertical wavelength of about 50 km. Wind measurements in the upper atmosphere, at heights between 90 and 100 km, were carried out at the Collm Geophysical Observatory of Karl Marx University Leipzig for a number of years. These measurements use the closely-spaced receiver method and three measuring paths, on 179, 227, and 272 kHz. They take place every day between sunset and sunrise, i.e., nightly. A night in this sense may last as long as 18 hours in winter. Both the measurements and their evaluation are completely automatic, and the prevailing winds and tides are separated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...179....1T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...179....1T"><span>Numerical modeling of the autumnal thermal bar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsydenov, Bair O.</p> <p>2018-03-01</p> <p>The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.628B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.628B"><span>Validation of Long Range Wind Lidar for Atmospheric Dynamics Studies during inter comparison campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boquet, M.; Cariou, J. P.; Lolli, S.; Sauvage, L.; Parmentier, R.</p> <p>2009-09-01</p> <p>To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity resolution (0.2m/s). Enhanced measurement range is now expected through new optical device.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B53B0463T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B53B0463T"><span>Similarity scaling of turbulence in small temperate lake: implication for gas flux: implication for gas flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tedford, E. W.; MacIntyre, S.; Miller, S. D.; Czikowsky, M. J.</p> <p>2013-12-01</p> <p>The actively mixing layer, or surface layer, is the region of the upper mixed layer of lakes, oceans and the atmosphere directly influenced by wind, heating and cooling. Turbulence within the surface mixing layer has a direct impact on important ecological processes. The Monin-Obukhov length scale (LMO) is a critical length scale used in predicting and understanding turbulence in the actively mixed layer. On the water side of the air-water interface, LMO is defined as: LMO=-u*^3/(0.4 JB0) where u*, the shear velocity, is defined as (τ/rho)^0.5 where τ is the shear stress and rho is the density of water and JBO is the buoyancy flux at the surface. Above the depth equal to the absolute value of the Monin-Obukhov length scale (zMO), wind shear is assumed to dominate the production of turbulent kinetic energy (TKE). Below zMO, the turbulence is assumed to be suppressed when JB0 is stabilizing (warming surface waters) and enhanced when the buoyancy flux is destabilizing (cooling surface waters). Our observed dissipations were well represented using the canonical similarity scaling equations. The Monin-Obukhov length scale was generally effective in separating the surface-mixing layer into two regions: an upper region, dominated by wind shear; and a lower region, dominated by buoyancy flux. During both heating and cooling and above a depth equal to |LMO|, turbulence was dominated by wind shear and dissipation followed law of the wall scaling although was slightly augmented by buoyancy flux during both heating and cooling. Below a depth equal to |LMO| during cooling, dissipation was nearly uniform with depth. Although distinguishing between an upper region of the actively mixing layer dominated by wind stress and a lower portion dominated by buoyancy flux is typically accurate the most accurate estimates of dissipation include the effects of both wind stress and buoyancy flux throughout the actively mixed layer. We demonstrate and discuss the impact of neglecting the non-dominant forcing (buoyancy flux above zMO and wind stress below zMO) above and below zMO.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRD..12111368W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRD..12111368W"><span>Atmospheric structure favoring high sea surface temperatures in the western equatorial Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wirasatriya, Anindya; Kawamura, Hiroshi; Shimada, Teruhisa; Hosoda, Kohtaro</p> <p>2016-10-01</p> <p>We investigated the atmospheric processes over high sea surface temperature called Hot Event (HE) in the western equatorial Pacific from climatological analysis and a case study of the HE which began on 28 May 2003 (hereafter, HE030528). Climatological analysis shows that during the development stage of HE, solar radiation inside the HE area is higher than its climatology and wind speed is lower than the decay stage. During the decay stage, strong westerly wind often occurs inside HE area. The case study of HE030528 shows that the suppressed convection above high SST area resulted from the deep convection from the northern and southern areas outside HE. The suppressed convection created a band-shaped structure of low cloud cover along HE area increasing solar radiation during the development stage. Thus, the theory of "remote convection" was supported for the HE030528 formation mechanisms. The large sea level pressure gradient magnitude between the southern side of the terrain gap and the northern coast of the Solomon Islands, through which strong wind blew, indicated the role of land topography for the increase of wind speed during the decay of HE030528. Moreover, surface wind had an important role to influence the variability of solar radiation during the occurrence of HE030528 by controlling the water vapor supply in the upper troposphere through surface evaporation and surface convergence variation. Thus, surface wind was the key factor for HE030528 occurrence. The representativeness of HE030528 and the possible relation between HE and Madden-Julian Oscillation are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890056420&hterms=power+balance&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpower%2Bbalance','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890056420&hterms=power+balance&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpower%2Bbalance"><span>Thermal structure and heat balance of the outer planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Conrath, B. J.; Hanel, R. A.; Samuelson, R. E.</p> <p>1989-01-01</p> <p>Current knowledge of the thermal structure and energy balance of the outer planets is summarized. The Voyager spacecraft experiments have provided extensive new information on the atmospheric temperatures and energetics of Jupiter, Saturn and Uranus. All three planets show remarkably small global-scale horizontal thermal contrast, indicating efficient redistribution of heat within the atmospheres or interiors. Horizontal temperature gradients on the scale of the zonal jets indicate that the winds decay with height in the upper troposphere. This suggests that the winds are driven at deeper levels and are subjected to frictional damping of unknown origin at higher levels. Both Jupiter and Saturn have internal power sources equal to about 70 percent of the absorbed solar power. This result is consistent with the view that significant helium differentiation has occurred on Saturn. Uranus has an internal power no greater than 13 percent of the absorbed solar power, while earth-based observations suggest Neptune has an internal power in excess of 100 percent of the absorbed solar power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850030606&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfunctional%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850030606&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfunctional%2Bstructure"><span>An analysis of the AVE-SESAME I period using statistical structure and correlation functions. [Atmospheric Variability Experiment-Severe Environmental Storm and Mesoscale Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fuelberg, H. E.; Meyer, P. J.</p> <p>1984-01-01</p> <p>Structure and correlation functions are used to describe atmospheric variability during the 10-11 April day of AVE-SESAME 1979 that coincided with the Red River Valley tornado outbreak. The special mesoscale rawinsonde data are employed in calculations involving temperature, geopotential height, horizontal wind speed and mixing ratio. Functional analyses are performed in both the lower and upper troposphere for the composite 24 h experiment period and at individual 3 h observation times. Results show that mesoscale features are prominent during the composite period. Fields of mixing ratio and horizontal wind speed exhibit the greatest amounts of small-scale variance, whereas temperature and geopotential height contain the least. Results for the nine individual times show that small-scale variance is greatest during the convective outbreak. The functions also are used to estimate random errors in the rawinsonde data. Finally, sensitivity analyses are presented to quantify confidence limits of the structure functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22660986-two-regimes-interaction-hot-jupiters-escaping-atmosphere-stellar-wind-generation-energized-atomic-hydrogen-corona','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22660986-two-regimes-interaction-hot-jupiters-escaping-atmosphere-stellar-wind-generation-energized-atomic-hydrogen-corona"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shaikhislamov, I. F.; Prokopov, P. A.; Berezutsky, A. G.</p> <p></p> <p>The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “ captured by the star ” regime, whenmore » the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “ blown by the wind ” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “ blown by the wind ” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “ captured by the star ” regime) are of importance for the interpretation of Ly α absorption features in exoplanetary transit spectra and characterization of the plasma environments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/7426','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/7426"><span>Meteorological Simulations of Ozone Episode Case Days during the 1996 Paso del Norte Ozone Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brown, M.J.; Costigan, K.; Muller, C.</p> <p>1999-02-01</p> <p>Meteorological simulations centered around the border cities of El Paso and Ciudad Juarez have been performed during an ozone episode that occurred on Aug. 13,1996 during the 1996 Paso del Norte Ozone Study field campaign. Simulations were petiormed using the HOTMAC mesoscale meteorological model using a 1,2,4, and 8 km horizontal grid size nested mesh system. Investigation of the vertical structure and evolution of the atmospheric boundary layer for the Aug. 11-13 time period is emphasized in this paper. Comparison of model-produced wind speed profiles to rawirisonde and radar profiler measurements shows reasonable agreement. A persistent upper-level jet was capturedmore » in the model simulations through data assimilation. In the evening hours, the model was not able to produce the strong wind direction shear seen in the radar wind profiles. Based on virtual potential temperature profile comparisons, the model appears to correctly simulate the daytime growth of the convective mixed layer. However, the model underestimates the cooling of the surface layer at night. We found that the upper-level jet significantly impacted the turbulence structure of the boundary layer, leading to relatively high turbulent kinetic energy (tke) values aloft at night. The model indicates that these high tke values aloft enhance the mid-morning growth of the boundary layer. No upper-level turbulence measurements were available to verify this finding, however. Radar profiler-derived mixing heights do indicate relatively rapid morning growth of the mixed layer.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720012689','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720012689"><span>Interhemispheric comparison of atmospheric circulation features as evaluated from NIMBUS satellite data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reiter, E. R.; Vonderhaar, T. H.; Lovill, J. E.; Adler, R.; Srivatsangam, S.; Abbey, R.</p> <p>1971-01-01</p> <p>Findings are presented for IRIS data from NIMBUS 3 in mapping the global ozone distribution. The seasonal and regional variations of ozone, especially in the Southern Hemisphere, reveal features that were not evident from the sparse ground-based ozone observation network in this hemisphere. A regression analysis was undertaken for temperature and height fields on radiance data. Spectrum analyses of upper wind data from the North American section and Australia were completed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910053709&hterms=ozone+layer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dozone%2Blayer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910053709&hterms=ozone+layer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dozone%2Blayer"><span>Satellite ozone measurements and the detection of trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hilsenrath, Ernest</p> <p>1990-01-01</p> <p>Due to the international scientific community's concern with the problem of anthropogenic gas-caused depletion of the ozone layer, an international observational program has been established to conduct stratospheric studies for at least a decade. These observations, which will be performed both by the Space Shuttle and the Upper Atmosphere Research Satellite, will encompass the energy input by solar UV irradiance, source and intermediate gases in ozone chemistry, and the global distributions of these ozone-affecting gases by winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014387','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014387"><span>Wind-driven Circulation and Freshwater Fluxes off Sri Lanka: 4D-Sampling with Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>riverine freshwater input, precipitation and atmospheric forcing act to govern Bay of Bengal upper ocean variability, water mass formation and...fraction of the water moving through the section is going south, carrying freshwater out of the Bay of Bengal. Currents near the coast have the same...transport of freshwater from the Northern Bay of Bengal, as well of the import of salty Arabian Sea Water , are being investigated are using all the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113143W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113143W"><span>New measurements of vertical thermal structure and wind velocities in the Venusian mesosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Widemann, T.; Sandor, B. J.; Clancy, R. T.; Lellouch, E.</p> <p>2009-04-01</p> <p>The Venus mesosphere is a highly variable transition region, in latitude, local time and over short time scales, between the zonal circulation of the lower atmosphere and the diurnal, sub-solar to anti-solar circulation in the upper atmosphere. In the framework of European Space Agency's second campaign of ground-based observations (Feb 8-22, 2009) in support of the Venus-Express mission, we coordinated new observations sampling a large range of altitudes in the Venus mesosphere on Feb. 7-8 and Feb. 14-15 : (1) James Clerk Maxwell Submillimeter Telescope (JCMT) submillimeter lines observations of mesospheric CO spectral lines measurements of temperature, CO mixing ratio and winds over the 95-115 km altitude range (Clancy et al., 2008), while SO2, SO and HDO observations were also probed in the 70-100 km range ; (2) Canada-France-Hawaii Telescope (CFHT) optical spectropolarimeter ESPaDOnS observations of visible Solar Fraunhofer lines measuring the winds at cloud tops near 70 km and visible CO2 lines 1-2 scale heights above (Widemann et al., 2007, 2008). Synchronization of wind measurements helps characterize possible correlation patterns between wind variations in the lower and middle mesosphere over a day time scale. Preliminary results will be presented at the meeting. Clancy, R.T., Sandor, B.J., and Moriarty-Schieven, G.H. 2008, Planet. Space Sci. 56, 1320-1334. Widemann, T., Lellouch, E., and Campargue, A. 2007, New Wind Measurements in Venus' Lower Mesosphere From Visible Spectroscopy, Planet. Space Sci. 55, 1741-1756 Widemann, T., Lellouch, E., Donati, J.-F., 2008, Venus Doppler winds at Cloud Tops Observed with ESPaDOnS at CFHT, Planet. Space Sci. 56, 1320-133 --</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JQSRT.188....3D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JQSRT.188....3D"><span>Implementing a wind measurement Doppler Lidar based on a molecular iodine filter to monitor the atmospheric wind field over Beijing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang</p> <p>2017-02-01</p> <p>A wind measurement Doppler Lidar system was developed, in which injection seeded laser was used to generate narrow linewidth laser pulse. Frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range,with long-time (>4 h) frequency-locking accuracy being ≤0.5 MHz and long-time frequency stability being 3.55×10-9. Design the continuous light velocity measuring system, which concluded the cure about doppler frequency shift and actual speed of chopped wave plate, the velocity error is less than 0.4 m/s. The experiment showed that the stabilized frequency of the seed laser was different from the transmission frequency of the Lidar. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10 MHz, long-time stability deviation was around 5 MHz. When the temporal and spatial resolutions were respectively set to 100 s and 96 m, the wind velocity measurement error of the horizontal wind field at the attitude of 15-35 km was within ±5 m/s, the results showed that the wind measurement Doppler Lidar implemented in Yanqing, Beijing was capable of continuously detecting in the middle and low atmospheric wind field at nighttime. With further development of this technique, system measurement error could be lowered, and long-run routine observations are promising.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13A2353H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13A2353H"><span>Does the Magnetosphere go to Sleep?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hesse, M.; Moretto, T.; Friis-Christensen, E. A.; Kuznetsova, M.; Østgaard, N.; Tenfjord, P.; Opgenoorth, H. J.</p> <p>2017-12-01</p> <p>An interesting question in magnetospheric research is related to the transition between magnetospheric configurations under substantial solar wind driving, and a putative relaxed state after the driving ceases. While it is conceivable that the latter state may be unique and only dependent on residual solar wind driving, a more likely scenario has magnetospheric memory playing a key role. Memory processes may be manifold: constraints from conservation of flux tube entropy to neutral wind inertia in the upper atmosphere may all contribute. In this presentation, we use high-resolution, global, MHD simulations to begin to shed light on this transition, as well as on the concept of a quiet state of the magnetosphere. We will discuss key elements of magnetospheric memory, and demonstrate their influence, as well as the actual memory time scale, through simulations and analytical estimates. Finally, we will point out processes with the potential to effect magnetospheric memory loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231398','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231398"><span>Compact Electron Gun Based on Secondary Emission Through Ionic Bombardment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal</p> <p>2011-01-01</p> <p>We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory. PMID:22163896</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15..746L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15..746L"><span>The non-storm time corrugated upper thermosphere: What is beyond MSIS?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Huixin; Thayer, Jeff; Zhang, Yongliang; Lee, Woo Kyoung</p> <p>2017-06-01</p> <p>Observations in the recent decade have revealed many thermospheric density corrugations/perturbations under nonstorm conditions (Kp < 2). They are generally not captured by empirical models like Mass Spectrometer Incoherent Scatter (MSIS) but are operationally important for long-term orbital evolution of Low Earth Orbiting satellites and theoretically for coupling processes in the atmosphere-ionosphere system. We review these density corrugations by classifying them into three types which are driven respectively by the lower atmosphere, ionosphere, and solar wind/magnetosphere. Model capabilities in capturing these features are discussed. A summary table of these corrugations is included to provide a quick guide on their magnitudes, occurring latitude, local time, and season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1819G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1819G"><span>Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.</p> <p>2018-04-01</p> <p>Parameterization schemes of atmospheric normal modes (NMs) and orographic gravity waves (OGWs) have been implemented into the mechanistic Middle and Upper Atmosphere Model (MUAM) simulating atmospheric general circulation. Based on the 12-members ensemble of runs with the MUAM, a composite of the stratospheric warming (SW) has been constructed using the UK Met Office data as the lower boundary conditions. The simulation results show that OGW amplitudes increase at altitudes above 30 km in the Northern Hemisphere after the SW event. At altitudes of about 50 km, OGWs have largest amplitudes over North American and European mountain systems before and during the composite SW, and over Himalayas after the SW. Simulations demonstrate substantial (up to 50-70%) variations of amplitudes of stationary planetary waves (PWs) during and after the SW in the mesosphere-lower thermosphere of the Northern Hemisphere. Westward travelling NMs have amplitude maxima not only in the Northern, but also in the Southern Hemisphere, where these modes have waveguides in the middle and upper atmosphere. Simulated variations of PW and NM amplitudes correspond to changes in the mean zonal wind, EP-fluxes and wave refractive index at different phases of the composite SW events. Inclusion of the parameterization of OGW effects leads to decreases in amplitudes (up to 15%) of almost all SPWs before and after the SW event and their increase (up to 40-60%) after the SW in the stratosphere and mesosphere at middle and high northern latitudes. It is suggested that observed changes in NM amplitudes in the Southern Hemisphere during SW could be caused by divergence of increased southward EP-flux. This EP-flux increases due to OGW drag before SW and extends into the Southern Hemisphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5522626-misty-picture-weather-watch-microbarograph-project-experiments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5522626-misty-picture-weather-watch-microbarograph-project-experiments"><span>Misty picture weather-watch and microbarograph project: Experiments 9412-14-18</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reed, J.W.; Church, H.W.; Huck, T.W.</p> <p>1987-01-01</p> <p>Special meteorological observations and predictions for MISTY PICTURE are described. Ground zero measurements of winds and temperatures were used to develop predictions for needed light winds during the night for deployment of the helium bag for the precursor experiment. This also entailed correlations with the White Sands network of automated surface observation stations as well as general circulation and upper air reports from the regional synoptic weather observing and reporting network. Pilot balloon observations of upper winds and Tethersonde observations were made during bag deployment to further document local circulation developments. During the test countdown, radiosonde balloon observations of uppermore » air temperatures and winds were made to allow prediction of atmospheric effects on airblast propagation that could break windows to nearly 200 km range from the MISTY PICTURE explosion yield. These data indicated that there would be no strong off-site propagations on shot day, but at shot time the weak convergence zone in the shot area disturbed the wind pattern and generated a northwestward sound duct. Some banded airblast focusing resulted that gave relatively high overpressures just south of the Admin Park, at the Observer's Area, and in San Antonio where a number of windows were claimed broken. Relatively weak blasts, between caustics or foci, were recorded by microbarographs at Admin Park, Stallion, and Socorro. Very weak and barely detectable waves were propagated eastward to Carrizozo where MINOR SCALE had broken windows in 1985, and to the southeast toward Tularosa and Alamogordo. Five microbarograph stations were also operated around the west side of a 200 km radius circle, to document airblast waves ducted and focused by relatively high temperatures and easterly monsoon winds near 50 km altitudes. 15 refs., 39 figs., 16 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Icar..225..828S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Icar..225..828S"><span>Venus' upper atmospheric dynamical structure from ground-based observations shortly before and after Venus' inferior conjunction 2009</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sornig, M.; Sonnabend, G.; Stupar, D.; Kroetz, P.; Nakagawa, H.; Mueller-Wodarg, I.</p> <p>2013-07-01</p> <p>Investigations on the dynamical structure of Venus upper atmosphere were carried out by infrared heterodyne Doppler wind measurements shortly before and after the venusian inferior conjunction on March 27, 2009. The Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) has been installed at the McMath-Pierce Solar Telescope on Kitt Peak, Arizona, USA to detect non-local thermodynamical equilibrium (non-LTE) emission lines of CO2 at a wavelength of 10.5 μm. These solar induced emission lines originate at a pressure level of 1 μbar corresponding to an altitude level of 110 ± 10 km. From the frequency position of the spectral lines we directly derived Doppler winds without any additional information. The high spatial resolution with a field-of-view of 1.6 arcsec compared to an apparent diameter of Venus of 57 arcsec allowed to collect information at different latitudes of the illuminated planet. Line of sight wind velocities between 189 ± 11 m/s and 41 ± 14 m/s were detected along the illuminated evening (western) limb in March and along the bright morning (eastern) limb in April. Single observations at the evening and morning terminator do not show a systematic difference of wind velocities. The measured wind is uniform at low and mid latitudes. In March a lower mean value of 134 ± 1 m/s was found compared to April where we retrieved a value of 141 ± 1 m/s. Poleward of a latitude of 50° we observed a strong decrease in wind speed down to 41 ± 14 m/s. In addition to the pure line of sight wind velocities we used the observing geometry for additional interpretations regarding a global flow from the subsolar point to the antisolar point (SS-AS flow) and a global retrograde superrotational zonal wind (RSZ). The estimations indicate a dominating SS-AS flow with a maximum wind velocity at the terminator of 138 ± 1 m/s at low and mid latitudes. No indication of a global RSZ component was found. Corresponding wind values for the latter yield wind velocities in the zonal direction between+20 m/s (retrograde direction) and -20 m/s (prograde direction) at different latitudes. An inversion of the wind direction is in disagreement with a global RSZ behavior. The comprehensive dataset was used to investigate short term wind variabilities and changes up to 58 m/s within few days were found. We included a detailed comparison of concurrent single position observations with sub-millimeter measurements (Clancy, R.T., Sandor, B.J., Moriarty-Schieven, G. [2012]. Icarus 217, 794-812) suggesting a cross terminator gradient at certain latitudes. A detailed interpretation of the observed time dependent behavior by global circulation models including wave activities will be addressed in future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43J..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43J..08M"><span>Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.</p> <p>2017-12-01</p> <p>Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and greater wave activity. Our findings suggest that increasing winds, along with retreating sea ice and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990116493&hterms=atmosphere+wind+profile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Datmosphere%2Bwind%2Bprofile','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990116493&hterms=atmosphere+wind+profile&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Datmosphere%2Bwind%2Bprofile"><span>Tropospheric Wind Profile Measurements with a Direct Detection Doppler Lidar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Chen, Huailin; Mathur, Savyasachee</p> <p>1998-01-01</p> <p>Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. In this paper we describe a recently developed prototype wind lidar system using a direct detection Doppler technique for measuring wind profiles from the surface through the troposphere. This system uses a pulsed ND:YAG laser operating at 1064 nm as the transmitter. The laser pulse is directed to the atmosphere using a 40 cm diameter scan mirror. The portion of the laser energy backscattered from aerosols and molecules is collected by a 40 cm diameter telescope and coupled via fiber optics into the Doppler receiver. Single photon counting APD's are used to detect the atmospheric backscattered signal. The principle element of the receiver is a dual bandpass tunable Fabry Perot etalon which analyzes the Doppler shift of the incoming laser signal using the double edge technique. The double edge technique uses two high resolution optical filters having bandpasses offset relative to one another such that the 'edge' of the first filter's transmission function crosses that of the second at the half power point. The outgoing laser frequency is located approximately at the crossover point. Due to the opposite going slopes of the edges, a Doppler shift in the atmospheric backscattered laser frequency produces a positive change in signal for one filter and a negative change in the second filter. Taking the ratio of the two edge channel signals yields a result which is directly proportional to the component of the wind along the line-of-sight of the laser. Measuring the radial wind in several directions provides sufficient information to determine the true wind speed and direction. The lidar has operated from our laboratory at Goddard since June, 1997. Wind profiles have been obtained to altitudes of 12 km with a vertical resolution of 330 in. Vector wind data are obtained by rotating the scan mirror to measure line-of-sight wind profiles for at least two azimuth angles at an elevation angle of 45 degrees. The precision of the data as determined from the standard deviation of multiple independent lidar profiles is in the range of 1 to 3 m/sec up to 10 km. Good agreement is obtained when the lidar data are compared with the upper air rawinsonde soundings taken at Dulles airport. Examples of the wind lidar data will be presented along with a description of the instrument and future developments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820006688&hterms=fishing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfishing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820006688&hterms=fishing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfishing"><span>The Seasat commercial demonstration program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mccandless, S. W.; Miller, B. P.; Montgomery, D. R.</p> <p>1981-01-01</p> <p>The background and development of the Seasat commercial demonstration program are reviewed and the Seasat spacecraft and its sensors (altimeter, wind field scatterometer, synthetic aperture radar, and scanning multichannel microwave radiometer) are described. The satellite data distribution system allows for selected sets of data, reformatted or tailored to specific needs and geographical regions, to be available to commercial users. Products include sea level and upper atmospheric pressure, sea surface temperature, marine winds, significant wave heights, primary wave direction and period, and spectral wave data. The results of a set of retrospective case studies performed for the commercial demonstration program are described. These are in areas of application such as marine weather and ocean condition forecasting, offshore resource exploration and development, commercial fishing, and marine transportation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19340230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19340230"><span>Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D</p> <p>2009-04-01</p> <p>With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4910801S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4910801S"><span>Cassini's Grand Finale Science Highlights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spilker, Linda</p> <p>2017-10-01</p> <p>After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini returned its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere satisfying planetary protection requirements. Cassini's Grand Finale covered a period of roughly five months and ended with the first time exploration of the region between the rings and planet.The final close flyby of Titan in late April 2017 propelled Cassini across Saturn’s main rings and into its Grand Finale orbits; 22 orbits that repeatedly dove between Saturn’s innermost rings and upper atmosphere making Cassini the first spacecraft to explore this region. The last orbit turned the spacecraft into the first Saturn upper atmospheric probe.The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet.Science highlights and new mysteries gleaned to date from the Grand Finale orbits will be discussed.The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017 California Institute of Technology. Government sponsorship is acknowledged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H23F1753H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H23F1753H"><span>Patterns of Precipitation and Streamflow Responses to Moisture Fluxes during Atmospheric Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henn, B. M.; Wilson, A. M.; Asgari Lamjiri, M.; Ralph, M.</p> <p>2017-12-01</p> <p>Precipitation from landfalling atmospheric rivers (ARs) have been shown to dominate the hydroclimate of many parts of the world. ARs are associated with saturated, neutrally-stable profiles in the lower atmosphere, in which forced ascent by topography induces precipitation. Understanding the spatial and temporal variability of precipitation over complex terrain during AR-driven precipitation is critical for accurate forcing of distributed hydrologic models and streamflow forecasts. Past studies using radar wind profilers and radiosondes have demonstrated predictability of precipitation rates based on upslope water vapor flux over coastal terrain, with certain levels of moisture flux exhibiting the greatest influence on precipitation. Additionally, these relationships have been extended to show that streamflow in turn responds predictably to upslope vapor flux. However, past studies have focused on individual pairs of profilers and precipitation gauges; the question of how orographic precipitation in ARs is distributed spatially over complex terrain, at different topographic scales, is less well known. Here, we examine profiles of atmospheric moisture transport from radiosondes and wind profilers, against a relatively dense network of precipitation gauges, as well as stream gauges, to assess relationships between upslope moisture flux and the spatial response of precipitation and streamflow. We focus on California's Russian River watershed in the 2016-2017 cool season, when regular radiosonde launches were made at two locations during an active sequence of landfalling ARs. We examine how atmospheric water vapor flux results in precipitation patterns across gauges with different topographic relationships to the prevailing moisture-bearing winds, and conduct a similar comparison of runoff volume response from several unimpaired watersheds in the upper Russian watershed, taking into account antecedent soil moisture conditions that influence runoff generation. Finally, we compare observed spatial patterns of precipitation accumulations to those in a topographically-aided gridded precipitation dataset to understand how atmospheric moisture transport may inform methods to downscale precipitation to high resolution for use in hydrologic modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA554423','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA554423"><span>Development of a Space Flight Prototype Doppler Asymmetric Spatial Heterodyne (DASH) Spectrometer for the Measurement of Upper Atmospheric Winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-10-31</p> <p>required for space flight. Dr. John Hughes and Dr. Abas Sivjee of Embry-Riddle Aeronautical University in Daytona FL and all the staff at the HAARP ...Laboratory, was conducted at the High Frequency Active Auroral Research Program ( HAARP ) facility in Alaska. ARROW was shipped to Anchorage AK from...the Naval Research Laboratory in Washington DC and was delivered, installed, and run at the HAARP facility by ARTEP Inc. personnel. The field</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780020637','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780020637"><span>Atmospheric model development in support of SEASAT. Volume 2: Analysis models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Langland, R. A.</p> <p>1977-01-01</p> <p>As part of the SEASAT program of NASA, two sets of analysis programs were developed for the Jet Propulsion Laboratory. One set of programs produce 63 x 63 horizontal mesh analyses on a polar stereographic grid. The other set produces 187 x 187 third mesh analyses. The parameters analyzed include sea surface temperature, sea level pressure and twelve levels of upper air temperature, height and wind analyses. The analysis output is used to initialize the primitive equation forecast models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA564420','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA564420"><span>The Equatorial Pacific Cold Tongue Simulated by IPCC AR4 Coupled GCMs: Upper Ocean Heat Budget and Feedback Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-05-15</p> <p>ET AL .: THE PACIFIC COLD TONGUE BIAS ANALYSIS C05024 circulation, which intensifies the surface easterly winds over the Pacific Basin, further...productivity, and in carbon cycling since it is the major oceanic source of C02 for the atmosphere [Field et al , 1998; Calvo et al , 2011]. Large SST anomalies...used for climate predictions and projec- tions [Neelin et al , 1992; Mechoso et al , 1995; Delecluse et al , 1998; Laufet al , 2001; Davey</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA115832','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA115832"><span>TMA Chemical Release Payloads for Stratospheric Wind Measurements Auroral E Program and Related Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-03-15</p> <p>this work was to provide a piston tank filled with trimethyl aluminum for release as a trail in the upper atmosphere. This payload was launched from the...trail payloads. II. PAYLOAD DESCRIPTION The payload consists of a programmer section with plumbing and a piston tank section. The outer shell of the...payload is the wall of the piston tank . The liquid side of the piston tank is filled with 20 pounds of tri- methyl- aluminum (TMA). After filling the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ASAJ..117Q2451M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ASAJ..117Q2451M"><span>Assessment of atmospheric models for tele-infrasonic propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McKenna, Mihan; Hayek, Sylvia</p> <p>2005-04-01</p> <p>Iron mines in Minnesota are ideally located to assess the accuracy of available atmospheric profiles used in infrasound modeling. These mines are located approximately 400 km away to the southeast (142) of the Lac-Du-Bonnet infrasound station, IS-10. Infrasound data from June 1999 to March 2004 was analyzed to assess the effects of explosion size and atmospheric conditions on observations. IS-10 recorded a suite of events from this time period resulting in well constrained ground truth. This ground truth allows for the comparison of ray trace and PE (Parabolic Equation) modeling to the observed arrivals. The tele-infrasonic distance (greater than 250 km) produces ray paths that turn in the upper atmosphere, the thermosphere, at approximately 120 km to 140 km. Modeling based upon MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and the NOGAPS (Navy Operational Global Atmospheric Prediction System) and NRL-GS2 (Naval Research Laboratory Ground to Space) augmented profiles are used to interpret the observed arrivals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990078606','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990078606"><span>Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.</p> <p>1999-01-01</p> <p>We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110022402','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110022402"><span>Neutral Mass Spectrometer (NMS) for the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Michael R.; Mahaffy, Paul R.; Benna, Mehdi; King, Todd T.; Hodges, Richard</p> <p>2011-01-01</p> <p>The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission currently scheduled for launch in early 2013 aboard a Minotaur V will orbit the moon at a nominal periselene of 50 km to characterized the lunar atmosphere and dust environment. The science instrument payload includes a neutral mass spectrometer as well as an ultraviolet spectrometer and a dust detector. Although to date only He, Ar-40, K, Na and Rn-222 have been firmly identified in the lunar exosphere and arise from the solar wind (He), the lunar regolith (K and Na) and the lunar interior (Ar-40, Rn-222), upper limits have been set for a large number of other species, LADEE Neutral Mass Spectrometer (NMS) observations will determine the abundance of several species and substantially lower the present upper limits for many others. Additionally, LADEE NMS will observe the spatial distribution and temporal variability of species which condense at nighttime and show peak concentrations at the dawn terminator (e,g, Ar-40), possible episodic release from the lunar interior, and the results of sputtering or desorption processes from the regolith. In this presentation, we describe the LADEE NMS hardware and the anticipated science results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810048727&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810048727&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwave%2Boscillation"><span>Wave transience in a compressible atmosphere. I - Transient internal wave, mean-flow interaction. II - Transient equatorial waves in the quasi-biennial oscillation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dunkerton, T. J.</p> <p>1981-01-01</p> <p>Analytical and numerical solutions are obtained in an approximate quasi-linear model, to describe the way in which vertically propagating waves give rise to mean flow accelerations in an atmosphere due to the effects of wave transience. These effects in turn result from compressibility and vertical group velocity feedback, and culminate in the spontaneous formation and descent of regions of strong mean wind shear. The numerical solutions display mean flow accelerations due to Kelvin waves in the equatorial stratosphere, with wave absorption altering the transience mechanism in such significant respects as causing the upper atmospheric mean flow acceleration to be very sensitive to the precise magnitude and distribution of the damping mechanisms. The numerical simulations of transient equatorial waves in the quasi-biennial oscillation are also considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140017114','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140017114"><span>Transition Marshall Space Flight Center Wind Profiler Splicing Algorithm to Launch Services Program Upper Winds Tool</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III</p> <p>2014-01-01</p> <p>NASAs LSP customers and the future SLS program rely on observations of upper-level winds for steering, loads, and trajectory calculations for the launch vehicles flight. On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds and provide forecasts to the launch team via the AMU-developed LSP Upper Winds tool for launches at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station. This tool displays wind speed and direction profiles from rawinsondes released during launch operations, the 45th Space Wing 915-MHz Doppler Radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP, and output from numerical weather prediction models.The goal of this task was to splice the wind speed and direction profiles from the 45th Space Wing (45 SW) 915-MHz Doppler radar Wind Profilers (DRWPs) and KSC 50-MHz DRWP at altitudes where the wind profiles overlap to create a smooth profile. In the first version of the LSP Upper Winds tool, the top of the 915-MHz DRWP wind profile and the bottom of the 50-MHz DRWP were not spliced, sometimes creating a discontinuity in the profile. The Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) created algorithms to splice the wind profiles from the two sensors to generate an archive of vertically complete wind profiles for the SLS program. The AMU worked with MSFC NE personnel to implement these algorithms in the LSP Upper Winds tool to provide a continuous spliced wind profile.The AMU transitioned the MSFC NE algorithms to interpolate and fill data gaps in the data, implement a Gaussian weighting function to produce 50-m altitude intervals in each sensor, and splice the data together from both DRWPs. They did so by porting the MSFC NE code written with MATLAB software into Microsoft Excel Visual Basic for Applications (VBA). After testing the new algorithms in stand-alone VBA modules, the AMU replaced the existing VBA code in the LSP Upper Winds tool with the new algorithms. They then tested the code in the LSP Upper Winds tool with archived data. The tool will be delivered to the 45 WS after the 50-MHz DRWP upgrade is complete and the tool is tested with real-time data. The 50-MHz DRWP upgrade is expected to be finished in October 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51D3062M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51D3062M"><span>WRF Model Simulations of Terrain-Driven Atmospheric Eddies in Marine Stratocumulus Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muller, B. M.; Herbster, C. G.; Mosher, F. R.</p> <p>2014-12-01</p> <p>It is not unusual to observe atmospheric eddies in satellite imagery of the marine stratus and stratocumulus clouds that characterize the summertime weather of the California coastal region and near-shore oceanic environment. The winds of the marine atmospheric boundary layer (MABL) over the ocean interact with the high terrain of prominent headlands and islands to create order-10 km scale areas of swirling air that can contain a cloud-free eye, 180-degree wind reversals at the surface over a period of minutes, and may be associated with mixing and turbulence between the high-humidity air of the MABL and the much warmer and drier inversion layer air above. However, synoptic and even subsynoptic surface weather measurements, and the synoptic upper-air observing network are inadequate, or in some cases, completely unable, to detect and characterize the formation, movement, and even the existence of the eddies. They can literally slip between land-based surface observation locations, or stay over the near-shore ocean environment where there may be no surface meteorological measurements. This study presents Weather Research and Forecasting (WRF) Model simulations of these small-scale, terrain-driven, atmospheric features in the MABL from cases detected in GOES satellite imagery. The purpose is to use model output to diagnose the formation mechanisms, sources of vorticity, and the air flow in and around the eddies. Satellite imagery is compared to simulated atmospheric variables to validate features generated within the model atmosphere, and model output is employed as a surrogate atmosphere to better understand the atmospheric characteristics of the eddies. Model air parcel trajectories are estimated to trace the movement and sources of the air contained in and around these often-observed, but seldom-measured features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3787P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3787P"><span>Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Jae-Heung; An, Soon-Il; Kug, Jong-Seong</p> <p>2017-12-01</p> <p>In this study, the interannual variability of sea surface temperature (SST) and its atmospheric teleconnection over the western North Pacific (WNP) toward the North Pacific/North America during boreal winter are investigated. First, we defined the WNP mode as the first empirical orthogonal function (EOF) mode of SST anomalies over the WNP region (100-165°E, 0-35°N), of which the principle component time-series are significantly correlated with several well-known climate modes such as the warm pool mode which is the second EOF mode of the tropical to North Pacific SST anomalies, North Pacific oscillation (NPO), North Pacific gyre oscillation (NPGO), and central Pacific (CP)-El Niño at 95% confidence level, but not correlated with the eastern Pacific (EP)-El Niño. The warm phase of the WNP mode (sea surface warming) is initiated by anomalous southerly winds through reduction of wind speed with the background of northerly mean winds over the WNP during boreal winter, i.e., reduced evaporative cooling. Meanwhile, the atmospheric response to the SST warming pattern and its diabatic heating further enhance the southerly wind anomaly, referred to the wind-evaporation-SST (WES) feedback. Thus, the WNP mode is developed and maintained through winter until spring, when the northerly mean wind disappears. Furthermore, it is also known that anomalous upper-level divergence associated with WNP mode leads to the NPO-like structure over the North Pacific and the east-west pressure contrast pattern over the North America through Rossby wave propagation, impacting the climate over the North Pacific and North America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990008757','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990008757"><span>Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newell, Reginald E.</p> <p>1998-01-01</p> <p>The seasonal changes of the upper tropospheric humidity are studied with the water vapor data from the Microwave Limb Sounder on the NASA Upper Atmosphere Research Satellite, and the winds and vertical velocity data obtained from the European Centre for Medium-Range Weather Forecasts. Using the same algorithm for vertical transport as that used for horizontal transport (Zhu and Newell, 1998), we find that the moisture in the tropical upper troposphere may be increased mainly by intensified local convection in a small portion, less than 10%, of the whole area between 40 deg S to 40 deg N. The contribution of large scale background circulations and divergence of horizontal transport is relatively small in these regions. These dynamic processes cannot be revealed by the traditional analyses of moisture fluxes. The negative feedback suggested by Lindzen (1990) also exists, if enhanced convection is concentrated in the tropics, but is apparently not the dominant process in the moisture budget.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170010717&hterms=gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgravity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170010717&hterms=gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgravity"><span>Global Distribution and Parameter Dependences of Gravity Wave Activity in the Martian Upper Thermosphere Derived from MAVEN NGIMS Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Terada, Naoki; Leblanc, Francois; Nakagawa, Hiromu; Medvedev, Alexander S.; Yigit, Erdal; Kuroda, Takeshi; Hara, Takuya; England, Scott L.; Fujiwara, Hitoshi; Terada, Kaori; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170010717'); toggleEditAbsImage('author_20170010717_show'); toggleEditAbsImage('author_20170010717_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170010717_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170010717_hide"></p> <p>2017-01-01</p> <p>Wavelike perturbations in the Martian upper thermosphere observed by the Neutral Gas Ion Mass Spectrometer (NGIMS) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft have been analyzed. The amplitudes of small-scale perturbations with apparent wavelengths between approx. 100 and approx. 500 km in the Ar density around the exobase show a clear dependence on temperature (T(sub 0)) of the upper thermosphere. The average amplitude of the perturbations is approx. 10% on the dayside and approx. 20% on the nightside, which is about 2 and 10 times larger than those observed in the Venusian upper thermosphere and in the low-latitude region of Earths upper thermosphere, respectively. The amplitudes are inversely proportional to T(sub 0), suggesting saturation due to convective instability in the Martian upper thermosphere. After removing the dependence on T(sub 0), dependences of the average amplitude on the geographic latitude and longitude and solar wind parameters are found to be not larger than a few percent. These results suggest that the amplitudes of small-scale perturbations are mainly determined by convective breaking saturation in the upper thermosphere on Mars, unlike those on Venus and Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.166..137B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.166..137B"><span>Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berri, Guillermo J.; Bertossa, Germán</p> <p>2018-01-01</p> <p>A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM33B2658D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM33B2658D"><span>MAVEN observations of complex magnetic field configuration in the Martian magnetotail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DiBraccio, G. A.; Luhmann, J. G.; Curry, S.; Espley, J. R.; Gruesbeck, J.; Xu, S.; Mitchell, D. L.; Soobiah, Y. I. J.; Connerney, J. E. P.; Dong, C.; Harada, Y.; Ruhunusiri, S.; Halekas, J. S.; Hara, T.; Ma, Y.; Brain, D.; Jakosky, B. M.</p> <p>2017-12-01</p> <p>The magnetosphere of Mars has attributes of both induced and intrinsic magnetospheres, forming as a result of direct solar wind interaction with the planet's upper atmosphere and local crustal magnetic fields. Magnetic reconnection is able to occur between the draped interplanetary magnetic field (IMF) and closed crustal magnetic fields, creating an open field topology with one end attached to the planet and the other flowing in the solar wind. For this reason, the Martian magnetotail becomes a complex menagerie of various field topologies that may contribute to atmospheric escape to space. We explore these magnetic topologies in the Martian magnetotail using a combination of observations from the the Mars Atmosphere Volatile EvolutioN (MAVEN) spacecraft along with magnetohydrodynamic (MHD) simulations. Preliminary MHD results suggest that the central tail contains two lobes composed of open crustal fields, which are twisted by roughly 45°, either clockwise or counterclockwise from the ecliptic plane, in response to the east-west component of the IMF. These simulated open-field lobes are enveloped by an induced comet-like tail formed by the draped IMF. Using two Earth years of data, we analyze MAVEN Magnetometer and Solar Wind Ion Analyzer (SWIA) measurements to assess the tail magnetic field configuration as a function of IMF orientation. We infer, through data-model comparisons, that the open-field tail lobes are likely a result of reconnection between the crustal fields and the IMF. The open topology of these fields may in fact contribute to atmospheric loss to space. This investigation confirms that the Martian magnetotail is a hybrid configuration between intrinsic and induced magnetospheres, shifting the paradigm of Mars' magnetosphere as we have understood it thus far.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031649','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031649"><span>Subtidal sea level variability in a shallow Mississippi River deltaic estuary, Louisiana</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Snedden, G.A.; Cable, J.E.; Wiseman, W.J.</p> <p>2007-01-01</p> <p>The relative roles of river, atmospheric, and tidal forcings on estuarine sea level variability are examined in Breton Sound, a shallow (0.7 m) deltaic estuary situated in an interdistributary basin on the Mississippi River deltaic plain. The deltaic landscape contains vegetated marshes, tidal flats, circuitous channels, and other features that frictionally dissipate waves propagating through the system. Direct forcing by local wind stress over the surface of the estuary is minimal, owing to the lack of significant fetch due to landscape features of the estuary. Atmospheric forcing occurs almost entirely through remote forcing, where alongshore winds facilitate estuary-shelf exchange through coastal Ekman convergence. The highly frictional nature of the deltaic landscape causes the estuary to act as a low-pass filter to remote atmospheric forcing, where high-frequency, coastally-induced fluctuations are significantly damped, and the damping increases with distance from the estuary mouth. During spring, when substantial quantities of controlled Mississippi River inputs (q?? = 62 m3 s-1) are discharged into the estuary, upper estuary subtidal sea levels are forced by a combination of river and remote atmospheric forcings, while river effects are less clear downestuary. During autumn (q?? = 7 m3 s-1) sea level variability throughout the estuary is governed entirely by coastal variations at the marine boundary. A frequency-dependent analytical model, previously used to describe sea level dynamics forced by local wind stress and coastal forcing in deeper, less frictional systems, is applied in the shallow Breton Sound estuary. In contrast to deeper systems where coastally-induced fluctuations exhibit little or no frictional attenuation inside the estuary, these fluctuations in the shallow Breton Sound estuary show strong frequency-dependent amplitude reductions that extend well into the subtidal frequency spectrum. ?? 2007 Estuarine Research Federation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50.2443Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50.2443Z"><span>Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Xu; Yang, Kun; Wang, Yan</p> <p>2018-04-01</p> <p>Sub-grid-scale orographic variation (smaller than 5 km) exerts turbulent form drag on atmospheric flows and significantly retards the wind speed. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the drag to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag from the surface layer to upper layers. To investigate the effect of the new scheme, WRF with the old scheme and with the new one was used to simulate the climate over the complex terrain of the Tibetan Plateau from May to October 2010. The two schemes were evaluated in terms of the direct impact (on wind fields) and the indirect impact (on air temperature and precipitation). The new TOFD scheme alleviates the mean bias in the surface wind components, and clearly reduces the root mean square error (RMSEs) in seasonal mean wind speed (from 1.10 to 0.76 m s-1), when referring to the station observations. Furthermore, the new TOFD scheme also generally improves the simulation of wind profile, as characterized by smaller biases and RMSEs than the old one when referring to radio sounding data. Meanwhile, the simulated precipitation with the new scheme is improved, with reduced mean bias (from 1.34 to 1.12 mm day-1) and RMSEs, which is due to the weakening of water vapor flux at low-level atmosphere with the new scheme when crossing the Himalayan Mountains. However, the simulation of 2-m air temperature is little improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970026618','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970026618"><span>Upper Thermosphere Winds and Temperatures in the Geomagnetic Polar Cap: Solar Cycle, Geomagnetic Activity, and Interplanetary Magnetic Field Dependencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.</p> <p>1995-01-01</p> <p>Ground-based Fabry-Perot interferometers located at Thule, Greenland (76.5 deg. N, 69.0 deg. W, lambda = 86 deg.) and at Sondre Stromfjord, Greenland (67.0 deg. N, 50.9 deg. W, lambda = 74 deg.) have monitored the upper thermospheric (approx. 240-km altitude) neutral wind and temperature over the northern hemisphere geomagnetic polar cap since 1983 and 1985, respectively. The thermospheric observations are obtained by determining the Doppler characteristics of the (OI) 15,867-K (630.0-nm) emission of atomic oxygen. The instruments operate on a routine, automatic, (mostly) untended basis during the winter observing seasons, with data coverage limited only by cloud cover and (occasional) instrument failures. This unique database of geomagnetic polar cap measurements now extends over the complete range of solar activity. We present an analysis of the measurements made between 1985 (near solar minimum) and 1991 (near solar maximum), as part of a long-term study of geomagnetic polar cap thermospheric climatology. The measurements from a total of 902 nights of observations are compared with the predictions of two semiempirical models: the Vector Spherical Harmonic (VSH) model of Killeen et al. (1987) and the Horizontal Wind Model (HWM) of Hedin et al. (1991). The results are also analyzed using calculations of thermospheric momentum forcing terms from the Thermosphere-ionosphere General Circulation Model TGCM) of the National Center for Atmospheric Research (NCAR). The experimental results show that upper thermospheric winds in the geomagnetic polar cap have a fundamental diurnal character, with typical wind speeds of about 200 m/s at solar minimum, rising to up to about 800 m/s at solar maximum, depending on geomagnetic activity level. These winds generally blow in the antisunward direction, but are interrupted by episodes of modified wind velocity and altered direction often associated with changes in the orientation of the Interplanetary Magnetic Field (IMF). The central polar cap (greater than approx. 80 magnetic latitude) antisunward wind speed is found to be a strong function of both solar and geomagnetic activity. The polar cap temperatures show variations in both solar and geomagnetic activity, with temperatures near 800 K for low K(sub p) and F(sub 10.7) and greater than about 2000 K for high K(sub p) and F(sub 10.7). The observed temperatures are significantly greater than those predicted by the mass spectrometer/incoherent scatter model for high activity conditions. Theoretical analysis based on the NCAR TIGCM indicates that the antisunward upper thermospheric winds, driven by upstream ion drag, basically 'coast' across the polar cap. The relatively small changes in wind velocity and direction within the polar cap are induced by a combination of forcing terms of commensurate magnitude, including the nonlinear advection term, the Coriolis term, and the pressure gradient force term. The polar cap thennospheric thermal balance is dominated by horizontal advection, and adiabatic and thermal conduction terms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002GMS...127...71T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002GMS...127...71T"><span>Numerical simulation of hydrodynamic processes beneath a wind-driven water surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsai, Wu-ting</p> <p></p> <p>Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA51A2416Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA51A2416Z"><span>Investigating the 90-day oscillations using ground-based, satellite and TIME-GCM model simulation data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Y.; Taylor, M.; Hagan, M. E.; Pautet, P. D.; Pugmire, J. R.; Pendleton, W. R., Jr.; Russell, J. M., III</p> <p>2016-12-01</p> <p>The Andes Lidar Observatory (ALO) is an upper atmospheric observatory located high in the Andes mountain range at Cerro Pachón, Chile (30.3°S, 70.7°W, 2530 m). The Utah State University (USU) Mesospheric Temperature Mapper (MTM) was deployed in August, 2009 collocated with a Na wind/temperature lidar and a meteor wind radar from University of Illinois at Urbana-Champaign (UIUC) as well as other optical instrumentation. In this presentation, we focus on the characteristics of a unique 90-day oscillation identified in the first 18 months in both the mesospheric wind and temperature data from ALO. This event appeared to be long-lived but transient, with similar amplitude to the AO and SAO at this location. Additional mesospheric temperature data from nearby El Leoncito Observatory (31.8°S, 69.3°W), Argentina also showed the same oscillation. The existence and extent of this oscillation are being further examined using SABER/TIMED temperature. The National Center for Atmosphere Research (NCAR) Thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulation of 2009/10 results are utilized to investigate the possible source of this event and the spatial structures are compared with the results from the SABER temperature data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CosRe..44..349Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CosRe..44..349Z"><span>Exploration of Venus with the Venera-15 IR Fourier spectrometer and the Venus Express planetary Fourier spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zasova, L. V.; Moroz, V. I.; Formisano, V.; Ignatiev, N. I.; Khatuntsev, I. V.</p> <p>2006-07-01</p> <p>The infrared spectrometry of Venus in the range 6-45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55-100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75-85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55-100 km and aerosol at altitudes 55-70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9-45 μm and a spectral resolution of 1.8 cm-1. It will allow one to sound the middle atmosphere (55-100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V33B0655H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V33B0655H"><span>Modeling Potential Tephra Dispersal at Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hooper, D.; Franklin, N.; Adams, N.; Basu, D.</p> <p>2006-12-01</p> <p>Quaternary basaltic volcanoes exist within 20 km [12 mi] of the potential radioactive waste repository at Yucca Mountain, Nevada, and future basaltic volcanism at the repository is considered a low-probability, potentially high-consequence event. If radioactive waste was entrained in the conduit of a future volcanic event, tephra and waste could be transported in the resulting eruption plume. During an eruption, basaltic tephra would be dispersed primarily according to the height of the eruption column, particle-size distribution, and structure of the winds aloft. Following an eruption, contaminated tephra-fall deposits would be affected by surface redistribution processes. The Center for Nuclear Waste Regulatory Analyses developed the computer code TEPHRA to calculate atmospheric dispersion and subsequent deposition of tephra and spent nuclear fuel from a potential eruption at Yucca Mountain and to help prepare the U.S. Nuclear Regulatory Commission to review a potential U.S. Department of Energy license application. The TEPHRA transport code uses the Suzuki model to simulate the thermo-fluid dynamics of atmospheric tephra dispersion. TEPHRA models the transport of airborne pyroclasts based on particle diffusion from an eruption column, horizontal diffusion of particles by atmospheric and plume turbulence, horizontal advection by atmospheric circulation, and particle settling by gravity. More recently, TEPHRA was modified to calculate potential tephra deposit distributions using stratified wind fields based on upper atmosphere data from the Nevada Test Site. Wind data are binned into 1-km [0.62-mi]-high intervals with coupled distributions of wind speed and direction produced for each interval. Using this stratified wind field and discretization with respect to height, TEPHRA calculates particle fall and lateral displacement for each interval. This implementation permits modeling of split wind fields. We use a parallel version of the code to calculate expected tephra and high-level waste accumulation at specified points on a two-dimensional spatial grid, thereby simulating a three- dimensional initial deposit. To assess subsequent tephra and high-level waste redistribution and resuspension, modeling grids were devised to measure deposition in eolian and fluvial source regions. The eolian grid covers an area of 2,600 km2 [1,000 mi2] and the fluvial grid encompasses 318 km2 [123 mi2] of the southernmost portion of the Fortymile Wash catchment basin. Because each realization is independent, distributions of tephra and high-level waste reflect anticipated variations in source-term and transport characteristics. This abstract is an independent product of the Center for Nuclear Waste Regulatory Analyses and does not necessarily reflect the view or regulatory position of the U.S. Nuclear Regulatory Commission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-03-22/pdf/2013-06614.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-03-22/pdf/2013-06614.pdf"><span>78 FR 17653 - Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-03-22</p> <p>... infrastructure development, including siting wind turbines, access roads, underground collector lines, overhead... Wildlife Service Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS... Plains Wind Energy Draft Programmatic Environmental Impact Statement (Draft [[Page 17654</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.B51B0368H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.B51B0368H"><span>Atmospheric Rawinsonde and Pigeon Release Data Implicate Infrasound as the Long- Range Map Cue in Avian Navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagstrum, J. T.</p> <p>2007-12-01</p> <p>Pigeons ( Columba livia) and other birds released from distant familiar and unfamiliar sites generally head in the homeward (loft) direction, but often vanish from view or radio contact consistently off the exact homeward bearing. At some sites the deviation can be a significant and stable amount, while at other sites birds can appear to become completely lost and depart in random directions. These deviations or biases can change from hour to hour, day to day, and year to year, but have not, over the last ~50 years of intensive research, been related to any atmospheric factor. They are, however, still considered to reflect significant irregularities in the pigeons' "map" function. Celestial and geomagnetic "compasses" have been shown to orient avian flight, but how pigeons determine their location in order to select the correct homeward bearing remains controversial. At present the debate is primarily between workers advocating an olfactory "map" and those advocating variations in the direction and intensity of the geomagnetic field as map functions. Alternatively, infrasonic cues can travel 1000s of km in the atmosphere with little attenuation, and can be detected in the laboratory by pigeons at frequencies down to 0.05 Hz. Although infrasound has been considered as a navigational tool for homing and migratory birds, little supporting evidence of its use has been found. Infrasonic ray paths in the atmosphere are controlled primarily by temperature and secondarily by wind. Assuming birds use infrasonic cues, atmospheric conditions could cause the perplexing changes (both geographic and temporal) observed in the mean vanishing bearings (MVBs) of pigeons released from experimental sites. To test for correlations between MVBs and tropospheric conditions, release data collected by the late W.T. Keeton between 1968 and 1980 from around the Cornell University lofts in upstate NY are compared to rawinsonde data from stations near Buffalo and Albany. For example, birds released at the Jersey Hill fire tower 132 km W of Ithaca most often departed at random. A singular exception was August 13, 1969; the Cornell birds released at Jersey Hill that day vanished in a tight cluster to the NE and arrived home the same day. Birds released the next day vanished randomly, and no evidence of what changed at Jersey Hill on August 13 has previously been presented. What did change, compared to the other release dates, were the speed and direction of the upper tropospheric winds over western NY. The jet stream winds are commonly from the SW and oppose infrasonic signals coming from the E, presumably near Ithaca, potentially creating an infrasonic "dead zone" at Jersey Hill. On August 13, 1969, the jet stream winds extraordinarily dropped sharply in speed and reversed direction to come from the NE. By the next day the upper tropospheric winds had returned to their normal westerly pattern explaining the Cornell birds' disorientation just one day later. This and several other examples will be presented indicating that infrasonic cues are a likely candidate for the long-range map cue in avian navigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSA41B2340M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSA41B2340M"><span>Lunar tidal effects during the 2013 stratospheric sudden warming as simulated by the TIME-GCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maute, A. I.; Forbes, J. M.; Zhang, X.; Fejer, B. G.; Yudin, V. A.; Pedatella, N. M.</p> <p>2015-12-01</p> <p>Stratospheric Sudden Warmings (SSW) are associated with strong planetary wave activity in the winterpolar stratosphere which result in a very disturbed middle atmosphere. The changes in the middle atmospherealter the propagation conditions and the nonlinear interactions of waves and tides, and result in SSW signals in the upper atmosphere in e.g., neutral winds, electric fields, ionospheric currents and plasma distribution. The upper atmosphere changes can be significant at low-latitudes even during medium solar flux conditions. Observationsalso reveal a strong lunar signal during SSW periods in the low latitude vertical drifts and in ionospheric quantities. Forbes and Zhang [2012] demonstrated that during the 2009 SSW period the Pekeris resonance peak of the atmosphere was altered such that the M2 and N2 lunar tidal componentsgot amplified. This study focuses on the effect of the lunar tidal forcing on the thermosphere-ionosphere system during theJanuary 2013 SSW period. We employthe NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM)with a nudging scheme using the Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of meteorological forcing on the upper atmosphere. Additionally lunar tidal forcingis included at the lower boundary of the model. To delineate the lunar tidal effects a base simulation without lunar forcingis employed. Interestingly, Jicamarca observations of that period reveal a suppression of the daytime vertical drift before and after the drift enhancement due the SSW. The simulation suggests that the modulation of the vertical driftmay be caused by the interplay of the migrating solar and lunar semidiurnal tide, and therefore can only be reproduced by the inclusion of both lunar and solar tidal forcings in the model. In this presentation the changes due to the lunar tidal forcing will be quantified, and compared to observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.1415C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.1415C"><span>Overview of our current understanding of the Titan ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cravens, Thomas</p> <p></p> <p>An ionosphere was first detected on Titan in 1980 by the Voyager 1 radio occultation experi-ment and the first in situ measurements were made in 2004 by the Cassini spacecraft, although many theoretical studies were carried out prior to the Cassini mission. Earth and Titan are similar in that molecular nitrogen is the major neutral atmospheric species but these bodies differ in that the next most abundant species at Earth is molecular oxygen and at Titan is methane. As a consequence, the chemistry in the upper atmosphere and ionosphere is quite different for the two bodies. Titan's upper atmosphere and ionosphere strongly interact with Saturn's magnetospheric plasma. Magnetic fields were observed in Titan's ionosphere by the Cassini magnetometer and are induced as a consequence of this interaction, which affects the flow and distribution of plasma. Energetic electrons and ions from Saturn's magnetosphere precipitate into the upper atmosphere, acting as both heat and ionization sources. However, on the dayside, absorption of solar extreme ultraviolet radiation is thought to be the dominant source of ionization and energy. The electron temperatures measured in the ionosphere by the Cassini Langmuir probe (RPWS/LP) are about 1000 K, greatly exceeding the neutral temper-ature (about 150 K). The ion and neutral mass spectrometer (INMS) onboard Cassini detected a large number of ion species with mass numbers up to 100 Daltons and the energetic plasma spectrometer (CAPS) detected both negative and positive ion species at even higher mass num-bers. Primary ionization processes create N2+, N+, CH4+, CH3+, and other ion species, but a complex ion-neutral chemistry, involving methane and other hydrocarbon and nitriles species (acetylene, ethylene, ethane, hydrogen cyanide, benzene,. . . .), convert these initial species into numerous other species including CH5+, C2H5+, HCNH+, C3H5+, CH2NH2+, C6H7+. As in most ionospheres, chemistry dominates the ionospheric structure at lower altitudes but trans-port is more important at higher altitudes. Just at at Venus during higher dynamics pressure solar wind conditions, the magnetic field plays a key role in the ionospheric dynamics at Titan but neutral winds also contribute to the flow of plasma. This talk will provide an overview of observations of Titan's ionosphere and will also review the physical and chemical processes operating in this ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900066541','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900066541"><span>Mars Aeronomy Observer: Report of the Science Working Team</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunten, Donald M.; Slavin, James A.; Brace, Lawrence H.; Deming, Drake; Frank, Louis A.; Grebowsky, Joseph M.; Haberle, Robert M.; Hanson, William B.; Intriligator, Devrie S.; Killeen, Timothy L.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19900066541'); toggleEditAbsImage('author_19900066541_show'); toggleEditAbsImage('author_19900066541_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19900066541_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19900066541_hide"></p> <p>1986-01-01</p> <p>The Mars Aeronomy Observer (MAO) is a candidate follow-on mission to Mars Observer (MO) in the Planetary Observer Program. The four Mariner and two Viking spacecraft sent to Mars between 1965 and 1976 have provided a wealth of information concerning Martian planetology. The Mars Observer, to be launched in 1990, will build on their results by further examining the elemental and mineralogical composition of the surface, the strength and multipolar composition of the planetary magnetic field, the gravitational field and topography, and the circulation of the lower atmosphere. The Mars Aeronomy Observer is intended to address the last major aspects of Martian environment which have yet to be investigated: the upper atmosphere, the ionsphere, and the solar wind interaction region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820017700&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dworlds%2Boceans','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820017700&hterms=worlds+oceans&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dworlds%2Boceans"><span>Analysis of the surface heat balance over the world ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Esbenson, S. K.</p> <p>1981-01-01</p> <p>The net surface heat fluxes over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface heat flux, Ts is the sea surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original heat flux formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, air temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface heat flux together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014fysc.confE..27L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014fysc.confE..27L"><span>Chandra Observations of the Solar System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lisse, Carey</p> <p>2014-11-01</p> <p>Many solar system objects are now known to emit X-rays due to charge-exchange between highly charged solar wind (SW) minor ions and neutrals in their extended atmospheres, including Earth, Venus, Mars, Jupiter, and the heliosphere, with total power outputs on the MW - GW scale. (Currently only upper limits exist for Saturn and Pluto.) Chandra observations of their morphology, spectra, and time dependence provide important information about the neutral atmosphere structure and the SW flux and charge state. Chandra observations of solar x-ray scattering from Earth, Venus, Mars, Jupiter, Saturn, and the Moon have also provided important clues for the scattering material and the solar radiation field at the body. We present here a 15 year summary of Chandra's solar system observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43J..05Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43J..05Z"><span>On the Roles of Upper- versus Lower-level Thermal Forcing in Shifting the Eddy-Driven Jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Y.; Nie, Y.; Chen, G.; Yang, X. Q.</p> <p>2017-12-01</p> <p>One most drastic atmospheric change in the global warming scenario is the increase in temperature over tropical upper-troposphere and polar surface. The strong warming over those two area alters the spacial distributions of the baroclinicity in the upper-troposphere of subtropics and in the lower-level of subpolar region, with competing effects on the mid-latitude atmospheric circulation. The final destination of the eddy-driven jet in future climate could be "a tug of war" between the impacts of such upper- versus lower-level thermal forcing. In this study, the roles of upper- versus lower-level thermal forcing in shifting the eddy-driven jet are investigated using a nonlinear multi-level quasi-geostrophic channel model. All of our sensitivity experiments show that the latitudinal position of the eddy-driven jet is more sensitive to the upper-level thermal forcing. Such upper-level dominance over the lower-level forcing can be attributed to the different mechanisms through which eddy-driven jet responses to them. The upper-level thermal forcing induces a jet shift mainly by affecting the baroclinic generation of eddies, which supports the latitudinal shift of the eddy momentum flux convergence. The jet response to the lower-level thermal forcing, however, is strongly "eddy dissipation control". The lower-level forcing, by changing the baroclinicity in the lower troposphere, induces a direct thermal zonal wind response in the upper level thus modifies the nonlinear wave breaking and the resultant irreversible eddy mixing, which amplifies the latitudinal shift of the eddy-driven jet. Whether the eddy response is "generation control" or "dissipation control" may strongly depend on the eddy behavior in its baroclinic processes. Only the anomalous eddy generation that penetrates into the upper troposphere can have a striking impact on the eddy momentum flux, which pushes the jet shift more efficiently and dominates the eddy response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA11A2238S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA11A2238S"><span>Derivation of the horizontal wind field in the polar mesopause region by using successive images of noctilucent clouds observed by a color digital camera in Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, H.; Yamashita, R.</p> <p>2017-12-01</p> <p>It is important to quantify amplitude of turbulent motion to understand the energy and momentum budgets and distribution of minor constituents in the upper mesosphere. In particular, to know the eddy diffusion coefficient of minor constituents which are locally and impulsively produced by energetic particle precipitations in the polar mesopause is one of the most important subjects in the upper atmospheric science. One of the straight methods to know the amplitude of the eddy motion is to measure the wind field with both spatial and temporal domain. However, observation technique satisfying such requirements is limited in this region. In this study, derivation of the horizontal wind field in the polar mesopause region by tracking the motion of noctilucent clouds (NLCs) is performed. NLC is the highest cloud in the Earth which appears in a mesopause region during summer season in both polar regions. Since the vertical structure of the NLC is sufficiently thin ( within several hundred meters in typical), the apparent horizontal motion observed from ground can be regarded as the result of transportation by the horizontal winds at a single altitude. In this presentation, initial results of wind field derivation by tracking a motion of noctilucent clouds (NLC) observed by a ground-based color digital camera in Iceland is reported. The procedure for wind field estimation consists with 3 steps; (1) projects raw images to a geographical map (2) enhances NLC structures by using FFT method (3) determines horizontal velocity vectors by applying template matching method to two sequential images. In this talk, a result of the wind derivation by using successive images of NLC with 3 minutes interval and 1.5h duration observed on the night of Aug 1st, 2013 will be reported as a case study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060027953','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060027953"><span>Low Reynolds Number Aerodynamic Characteristics of Several Airplane Configurations Designed to Fly in the Mars Atmosphere at Subsonic Speeds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Re, Richard J.; Pendergraft, Odis C., Jr.; Campbell, Richard L.</p> <p>2006-01-01</p> <p>A 1/4-scale wind tunnel model of an airplane configuration developed for short duration flight at subsonic speeds in the Martian atmosphere has been tested in the Langley Research Center Transonic Dynamics Tunnel. The tunnel was pumped down to extremely low pressures to represent Martian Mach/Reynolds number conditions. Aerodynamic data were obtained and upper and lower surface wind pressures were measured at one spanwise station on some configurations. Three unswept wings of the same planform but different airfoil sections were tested. Horizontal tail incidence was varied as was the deflection of plain and split trailing-edge flaps. One unswept wing configuration was tested with the lower part of the fuselage removed and the vertical/horizontal tail assembly inverted and mounted from beneath the fuselage. A sweptback wing was also tested. Tests were conducted at Mach numbers from 0.50 to 0.90. Wing chord Reynolds number was varied from 40,000 to 100,000 and angles of attack and sideslip were varied from -10deg to 20deg and -10deg to 10deg, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029622','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029622"><span>Climate anomalies generate an exceptional dinoflagellate bloom in San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cloern, J.E.; Schraga, T.S.; Lopez, C.B.; Knowles, N.; Grover, Labiosa R.; Dugdale, R.</p> <p>2005-01-01</p> <p>We describe a large dinoflagellate bloom, unprecedented in nearly three decades of observation, that developed in San Francisco Bay (SFB) during September 2004. SFB is highly enriched in nutrients but has low summer-autumn algal biomass because wind stress and tidally induced bottom stress produce a well mixed and light-limited pelagic habitat. The bloom coincided with calm winds and record high air temperatures that stratified the water column and suppressed mixing long enough for motile dinoflagellates to grow and accumulate in surface waters. This event-scale climate pattern, produced by an upper-atmosphere high-pressure anomaly off the U.S. west coast, followed a summer of weak coastal upwelling and high dinoflagellate biomass in coastal waters that apparently seeded the SFB bloom. This event suggests that some red tides are responses to changes in local physical dynamics that are driven by large-scale atmospheric processes and operate over both the event scale of biomass growth and the antecedent seasonal scale that shapes the bloom community. Copyright 2005 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatGe..10..908T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatGe..10..908T"><span>Enhanced poleward propagation of storms under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamarin-Brodsky, Talia; Kaspi, Yohai</p> <p>2017-12-01</p> <p>Earth's midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is achieved by applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25171182','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25171182"><span>Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soerensen, Anne L; Mason, Robert P; Balcom, Prentiss H; Jacob, Daniel J; Zhang, Yanxu; Kuss, Joachim; Sunderland, Elsie M</p> <p>2014-10-07</p> <p>Air-sea exchange of elemental mercury (Hg(0)) is a critical component of the global biogeochemical Hg cycle. To better understand variability in atmospheric and oceanic Hg(0), we collected high-resolution measurements across large gradients in seawater temperature, salinity, and productivity in the Pacific Ocean (20°N-15°S). We modeled surface ocean Hg inputs and losses using an ocean general circulation model (MITgcm) and an atmospheric chemical transport model (GEOS-Chem). Observed surface seawater Hg(0) was much more variable than atmospheric concentrations. Peak seawater Hg(0) concentrations (∼ 130 fM) observed in the Pacific intertropical convergence zone (ITCZ) were ∼ 3-fold greater than surrounding areas (∼ 50 fM). This is similar to observations from the Atlantic Ocean. Peak evasion in the northern Pacific ITCZ was four times higher than surrounding regions and located at the intersection of high wind speeds and elevated seawater Hg(0). Modeling results show that high Hg inputs from enhanced precipitation in the ITCZ combined with the shallow ocean mixed layer in this region drive elevated seawater Hg(0) concentrations. Modeled seawater Hg(0) concentrations reproduce observed peaks in the ITCZ of both the Atlantic and Pacific Oceans but underestimate its magnitude, likely due to insufficient deep convective scavenging of oxidized Hg from the upper troposphere. Our results demonstrate the importance of scavenging of reactive mercury in the upper atmosphere driving variability in seawater Hg(0) and net Hg inputs to biologically productive regions of the tropical ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5456D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5456D"><span>European SpaceCraft for the study of Atmospheric Particle Escape (ESCAPE): a mission proposed in response to the ESA M5-call</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dandouras, Iannis; Yamauchi, Masatoshi; Rème, Henri; De Keyser, Johan; Marghitu, Octav; Fazakerley, Andrew; Grison, Benjamin; Kistler, Lynn; Milillo, Anna; Nakamura, Rumi; Paschalidis, Nikolaos; Paschalis, Antonis; Pinçon, Jean-Louis; Sakanoi, Takeshi; Wieser, Martin; Wurz, Peter; Yoshikawa, Ichiro; Häggström, Ingemar; Liemohn, Mike; Tian, Feng</p> <p>2017-04-01</p> <p>ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The spatial distribution and temporal variability of the flux of these species and their isotopic composition will be for the first time systematically investigated in an extended altitude range, from the exobase/upper ionosphere (500 km altitude) up to the magnetosphere. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmosphere over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets. To achieve this goal, a slowly spinning spacecraft is proposed equipped with a suite of instruments developed and supplied by an international consortium. These instruments will detect the upper atmosphere and magnetosphere escaping populations by a combination of in-situ measurements and of remote-sensing observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990107329','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990107329"><span>The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; Johnson, D. L.</p> <p>1999-01-01</p> <p>The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007252','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007252"><span>Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.</p> <p>2009-01-01</p> <p>Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process of freeing oxygen within aerosols could be driven by cosmic ray interactions with aerosols at all heights. This process could drive pre-biotic chemistry within the descending aerosols. Cosmic ray interactions with grains at the surface, including water frost depositing on grains from cryovolcanism, would further add to abundance of trapped free oxygen. Pre-biotic chemistry could arise within surface microcosms of the composite organic-ice grains, in part driven by free oxygen in the presence of organics and any heat sources, thereby raising the astrobiological potential for microscopic equivalents of Darwin's "warm ponds" on Titan.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AdAtS..20..554L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AdAtS..20..554L"><span>A Laboratory model for the flow in urban street canyons induced by bottom heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Huizhi; Liang, Bin; Zhu, Fengrong; Zhang, Boyin; Sang, Jianguo</p> <p>2003-07-01</p> <p>Water tank experiments are carried out to investigate the convection flow induced by bottom heating and the effects of the ambient wind on the flow in non-symmetrical urban street canyons based on the PIV (Particle Image Visualization) technique. Fluid experiments show that with calm ambient wind, the flows in the street canyon are completely driven by thermal force, and the convection can reach the upper atmosphere of the street canyon. Horizontal and vertical motions also appear above the roofs of the buildings. These are the conditions which favor the exchange of momentum and air mass between the street canyon and its environment. More than two vortices are induced by the convection, and the complex circulation pattern will vary with time in a wider street canyon. However, in a narrow street canyon, just one vortex appears. With a light ambient wind, the bottom heating and the associated convection result in just one main vortex. As the ambient wind speed increases, the vortex becomes more organized and its center shifts closer to the leeward building.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASTP.105...30L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASTP.105...30L"><span>Seasonal variation of wave activities near the mesopause region observed at King Sejong Station (62.22°S, 58.78°W), Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Changsup; Kim, Yong Ha; Kim, Jeong-Han; Jee, Geonhwa; Won, Young-In; Wu, Dong L.</p> <p>2013-12-01</p> <p>We analyzed the neutral wind data at altitudes of 80-100 km obtained from a VHF meteor radar at King Sejong Station (KSS, 62.22°S, 58.78°W), a key location to study wave activities above the stratospheric vortex near the Antarctic Peninsula. The seasonal behavior of the semidiurnal tides is generally consistent with the prediction of Global Scale Wave Model (GSWM02) except in the altitude region above ~96 km. Gravity wave (GW) activities inferred from the neutral wind variances show a seasonal variation very similar to the semidiurnal tide amplitudes, suggesting a strong interaction between gravity waves and the tide. Despite the consistent seasonal variations of the GW wind variances observed at the adjacent Rothera station, the magnitudes of the wind variance obtained at KSS are much larger than those at Rothera, especially during May-September. The enhanced GW activity at KSS is also observed by Aura Microwave Limb Sounder (MLS) from space in its temperature variance. The observed large wind variances at KSS imply that the Antarctic vortex in the stratosphere may act as an effective filter and source for the GWs in the upper atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA23C..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA23C..02F"><span>Unraveling the Complexities of the Upper Atmosphere as a System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fuller-Rowell, T. J.</p> <p>2016-12-01</p> <p>The Earth's upper atmosphere responds as a system to external forcing from the Sun, magnetosphere, and lower atmosphere. The underlying system components comprise a highly dynamic, non-linear neutral fluid supporting fast propagating wave fields, advective transport, dissipation, and chemical changes, coupled to an active plasma constrained by all-encompassing magnetic and electric fields. More importantly, the plasma and more massive neutral gas are intimately coupled. Ion-neutral coupling can drive winds ten-times hurricane strength making inertia a dominant force; it can sometimes wipe out 90% of the plasma, and at other times allow plasma content to explode with dangerous consequences. Ion-neutral dissipation can result in intense heating, allowing the atmosphere to expand to double its normal size, dragging Earth orbiting satellites to the ground. The thermospheric dynamo, ultimately driven by the solar and magnetosphere dynamos, redistributes equatorial plasma and can drive structure, steep gradients, and irregularities. A single satellite sampling the medium is suitable for uncovering perhaps one or two of the many interacting processes, in what could be called discovery mode science. Without a three-dimensional imaging capability, a single satellite cannot explore the interaction and balance between the multiple of processes actually present. Unraveling the system-wide or global response requires multi-point in-situ constellation-type measurements, together with available two-dimensional imaging. Modeling the system can create an illusion of understanding, but until we really look we will never know.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA23A2042N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA23A2042N"><span>Mechanisms driving the global and seasonal structure of the 16-day planetary wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, V.; Chang, L. C.; Liu, H.; Palo, S. E.</p> <p>2013-12-01</p> <p>Past observations have shown that the effects of the quasi 16-day planetary wave, representing the second symmetric Rossby normal mode, are prevalent throughout the middle atmosphere and occasionally, some portions of the upper atmosphere. In the presented work, we investigate the mechanisms driving the propagation of the quasi 16-day planetary wave from a source in the lower atmosphere to higher altitudes by using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The quasi 16-day planetary wave is simulated in the model by introducing perturbations in geopotential height at the lower boundary of the model and comparing it to a control run. Analysis of the model runs over the course of a year show that the background zonal winds play an important role in driving seasonal changes in the quasi 16-day planetary wave structure. Derived quasi-geostrophic potential vorticity gradient and Eliassen-Palm flux from the model output also show that the penetration of the wave into regions of mean wind instability can drive wave amplification in certain regions. The model results are compared to the quasi 16-day wave structure derived from TIMED-SABER observations to identify similarities/differences between the model and observations, and provide further insight into the mechanisms driving the wave propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003456','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003456"><span>Observation Impact over the Antarctic During the Concordiasi Field Campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boullot, Nathalie; Rabier, Florence; Langland, Rolf; Gelaro, Ron; Cardinali, Carla; Guidard, Vincent; Bauer, Peter; Doerenbecher, Alexis</p> <p>2014-01-01</p> <p>The impact of observations on analysis uncertainty and forecast performance was investigated for Austral Spring 2010 over the Southern polar area for four different systems (NRL, GMAO, ECMWF and Meteo-France), at the time of the Concordiasi field experiment. The largest multi model variance in 500 hPa height analyses is found in the southern sub-Antarctic oceanic region, where there are strong atmospheric dynamics, rapid forecast error growth, and fewer upper air wind observation data to constrain the analyses. In terms of data impact the most important observation components are shown to be AMSU, IASI, AIRS, GPS-RO, radiosonde, surface and atmospheric motion vector observations. For sounding data, radiosondes and dropsondes, one can note a large impact of temperature at low levels and a large impact of wind at high levels. Observing system experiments using the Concordiasi dropsondes show a large impact of the observations over the Antarctic plateau extending to lower latitudes with the forecast range, with a large impact around 50 to 70deg South. These experiments indicate there is a potential benefit of better using radiance data over land and sea-ice and innovative atmospheric motion vectors obtained from a combination of various satellites to fill the current data gaps and improve NWP in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325410','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325410"><span>Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Office of Energy Efficiency and Renewable Energy</p> <p>2015-11-01</p> <p>The U.S. Department of Energy’s Atmosphere to Electrons research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth’s atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A23M..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A23M..04W"><span>How do Greenhouse Gases Warm the Ocean? Investigation of the Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong, E.; Minnett, P. J.</p> <p>2016-12-01</p> <p>There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020070844','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020070844"><span>Interseasonal Variations in the Middle Atmosphere Forced by Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Porter, H. S.; Chan, K. L.; Bhartia, P. K. (Technical Monitor)</p> <p>2002-01-01</p> <p>In our Numerical Spectral Model (NSM), which incorporates Hines' Doppler Spread Parameterization, gravity waves (GW) propagating in the east/west direction can generate the essential features of the observed equatorial oscillations in the zonal circulation and in particular the QBO (quasi-biennial oscillation) extending from the stratosphere into the upper mesosphere. We report here that the NSM also produces inter-seasonal variations in the zonally symmetric (m = 0) meridional circulation. A distinct but variable meridional wind oscillation (MWO) is generated, which appears to be the counterpart to the QBO. With a vertical grid-point resolution of about 0.5 km, the NSM produces the MWO through momentum deposition of GWs propagating in the north/south direction. The resulting momentum source represents a third (generally odd) order non-linear function of the meridional winds, and this enables the oscillation, as in the case of the QBO for the zonal winds. Since the meridional winds are relatively small compared to the zonal winds, however, the vertical wavelength that maintains the MWO is much smaller, i.e., only about 10 km instead of 40 km for the QBO. Consistent with the associated increase of the viscous stress, the period of the MWO is then short compared with that of the QBO, i.e., only about two to four months. Depending on the strength of the GW forcing, the computed amplitudes of the MWO are typically 4 m/s in the upper stratosphere and mesosphere, and the associated temperature amplitudes are between about 2 and 3 K. These amplitudes may be observable with the instruments on the TIMED spacecraft. Extended computer simulations with the NSM in 2D (two-dimensional) and 3D (three-dimensional) reveal that the MWO is modulated by and in turn influences the QBO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ExA....43..145N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ExA....43..145N"><span>Astronomical site survey report on dust measurement, wind profile, optical turbulence, and their correlation with seeing over IAO-Hanle. Astronomical site survey report over IAO-Hanle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ningombam, Shantikumar S.; Kathiravan, S.; Parihar, P. S.; L. Larson, E. J.; Mohanan, Sharika; Angchuk, Dorje; Jorphel, Sonam; Rangarajan, K. E.; Prabhu, K.</p> <p>2017-04-01</p> <p>The present work discusses astronomical site survey reports on dust content, vertical distribution of atmospheric turbulence, precipitable water vapor (PWV), surface and upper-air data, and their effects on seeing over the Indian Astronomical Observatory (IAO) Hanle. Using Laser Particulate Counter, ambient dust measurements at various sizes (0.3 μm to 25 μm) were performed at various locations at the site during November 2015. Estimated volume concentration for the particle size at 0.5 μm was around 10,000 per cubic foot, which is equivalent to ten thousand class of clean room standard protocol. During the measurement, surface wind speed varied from 0-20 m s -1, while estimated aerosol optical depth (AOD) using Sky radiometer (Prede) varied from 0.02-0.04 at 500 nm, which indicates the site is fairly clean. The two independent measurements of dust content and aerosol concentrations at the site agreed well. The turbulence or wind gust at the site was studied with wind profiles at three different heights above the ground. The strength of the wind gust varies with time and altitude. Nocturnal temperature across seasons varied with a moderate at summer (6-8 ∘C) and lower in winter (4-5 ∘C). However, the contrast between the two is significantly small due to cold and extremely dry typical climatic conditions of the site. The present study also examined the effects of surface and upper-air data along with Planetary Boundary Layer (PBL) dynamics with seeing measurement over the site. Further, a comparative study of such observed parameters was conducted with other high altitude astronomical observatories across the globe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050229905','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050229905"><span>Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kharchenko, Vasili; Dalgarno, A.</p> <p>2005-01-01</p> <p>This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910017751','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910017751"><span>The aeolian wind tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Iversen, J. D.</p> <p>1991-01-01</p> <p>The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130008703','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130008703"><span>Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III; Flinn, Clay</p> <p>2013-01-01</p> <p>On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA51C2405F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA51C2405F"><span>Understanding and Forecasting Upper Atmosphere Nitric Oxide Through Data Mining Analysis of TIMED/SABER Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flynn, S.; Knipp, D. J.; Matsuo, T.; Mlynczak, M. G.; Hunt, L. A.</p> <p>2017-12-01</p> <p>Storm time energy input to the upper atmosphere is countered by infrared radiative emissions from nitric oxide (NO). The temporal profile of these energy sources and losses strongly control thermospheric density profiles, which in turn affect the drag experienced by low Earth orbiting satellites. Storm time processes create NO. In some extreme cases an overabundance of NO emissions unexpectedly decreases atmospheric temperature and density to lower than pre-storm values. Quantifying the spatial and temporal variability of the NO emissions using eigenmodes will increase the understanding of how upper atmospheric NO behaves, and could be used to increase the accuracy of future space weather and climate models. Thirteen years of NO flux data, observed at 100-250 km altitude by the SABER instrument onboard the TIMED satellite, is decomposed into five empirical orthogonal functions (EOFs) and their amplitudes to: 1) determine the strongest modes of variability in the data set, and 2) develop a compact model of NO flux. The first five EOFs account for 85% of the variability in the data, and their uncertainty is verified using cross-validation analysis. Although these linearly independent EOFs are not necessarily independent in a geophysical sense, the first three EOFs correlate strongly with different geophysical processes. The first EOF correlates strongly with Kp and F10.7, suggesting that geomagnetic storms and solar weather account for a large portion of NO flux variability. EOF 2 shows annual variations, and EOF 3 correlates with solar wind parameters. Using these relations, an empirical model of the EOF amplitudes can be derived, which could be used as a predictive tool for future NO emissions. We illustrate the NO model, highlight some of the hemispheric asymmetries, and discuss the geophysical associations of the EOFs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122.2401L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122.2401L"><span>On the Origins of Mars' Exospheric Nonthermal Oxygen Component as Observed by MAVEN and Modeled by HELIOSARES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leblanc, F.; Chaufray, J. Y.; Modolo, R.; Leclercq, L.; Curry, S.; Luhmann, J.; Lillis, R.; Hara, T.; McFadden, J.; Halekas, J.; Schneider, N.; Deighan, J.; Mahaffy, P. R.; Benna, M.; Johnson, R. E.; Gonzalez-Galindo, F.; Forget, F.; Lopez-Valverde, M. A.; Eparvier, F. G.; Jakosky, B.</p> <p>2017-12-01</p> <p>The first measurements of the emission brightness of the oxygen atomic exosphere by Mars Atmosphere and Volatile EvolutioN (MAVEN) mission have clearly shown that it is composed of a thermal component produced by the extension of the upper atmosphere and of a nonthermal component. Modeling these measurements allows us to constrain the origins of the exospheric O and, as a consequence, to estimate Mars' present oxygen escape rate. We here propose an analysis of three periods of MAVEN observations based on a set of three coupled models: a hybrid magnetospheric model (LATmos HYbrid Simulation (LatHyS)), an Exospheric General Model (EGM), and the Global Martian Circulation model of the Laboratoire de Météorologie Dynamique (LMD-GCM), which provide a description of Mars' environment from the surface up to the solar wind. The simulated magnetosphere by LatHyS is in good agreement with MAVEN Plasma and Field Package instruments data. The LMD-GCM modeled upper atmospheric profiles for the main neutral and ion species are compared to Neutral Gas and Ion Mass Spectrometer/MAVEN data showing that the LMD-GCM can provide a satisfactory global view of Mars' upper atmosphere. Finally, we were able to reconstruct the expected emission brightness intensity from the oxygen exosphere using EGM. The good agreement with the averaged measured profiles by Imaging Ultraviolet Spectrograph during these three periods suggests that Mars' exospheric nonthermal component can be fully explained by the reactions of dissociative recombination of the O2+ ion in Mars' ionosphere, limiting significantly our ability to extract information from MAVEN observations of the O exosphere on other nonthermal processes, such as sputtering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2118Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2118Z"><span>Infragravity waves in the ocean as a source of acoustic-gravity waves in the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zabotin, Nikolay A.; Godin, Oleg A.</p> <p>2013-04-01</p> <p>Infragravity waves (IGWs) are surface gravity waves in the ocean with periods longer than the longest periods (~30s) of wind-generated waves. IGWs propagate transoceanic distances with very little attenuation in deep water and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, ice shelves, the atmosphere, and the solid Earth. Here, we build on recent advances in understanding spectral and spatial variability of background infragravity waves in deep ocean to evaluate the IGW manifestations in the atmosphere. Water compressibility has a minor effect on IGWs. On the contrary, much larger compressibility and vertical extent of the atmosphere makes it necessary to treat IGW extension into the atmosphere as acoustic-gravity waves. There exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has surface waves in the atmosphere propagating horizontally along the ocean surface and prominent up to heights of the order of the wavelength. At lower frequencies, IGWs are leaky waves, which continuously radiate their energy into the upper atmosphere. The transition between the two regimes occurs at a frequency of the order of 3 mHz, with the exact value of the transition frequency being a function of the ocean depth, the direction of IGW propagation and the vertical profiles of temperature and wind velocity. The transition frequency decreases with increasing ocean depth. Using recently obtained semi-empirical model of power spectra the IGWs over varying bathymetry [Godin O. A., Zabotin N. A., Sheehan A. F., Yang Z., and Collins J. A. Power spectra of infragravity waves in a deep ocean, Geophys. Res. Lett., under review (2012)], we derive an estimate of the flux of the mechanical energy from the deep ocean into the atmosphere due to IGWs. Significance will be discussed of the IGW contributions into the field of acoustic-gravity waves in the atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2671L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2671L"><span>On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.</p> <p>2017-04-01</p> <p>Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1197M"><span>Wind energy input into the upper ocean over a lengthening open water season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahoney, A. R.; Rolph, R.; Walsh, J. E.</p> <p>2017-12-01</p> <p>Wind energy input into the ocean has important consequences for upper ocean mixing, heat and gas exchange, and air-sea momentum transfer. In the Arctic, the open water season is increasing and extending further into the fall storm season, allowing for more wind energy input into the water column. The rate at which the delayed freeze-up timing extends into fall storm season is an important metric to evaluate because the expanding overlap between the open water period and storm season could contribute a significant amount of wind energy into the water column in a relatively short period of time. We have shown that time-integrated wind speeds over open water in the Chukchi Sea and southern Beaufort region have increased since 1979 through 2014. An integrated wind energy input value is calculated for each year in this domain over the open water season, as well as for periods over partial concentrations of ice cover. Spatial variation of this integrated wind energy is shown along the Alaskan coastline, which can have implications for different rates of coastal erosion. Spatial correlation between average wind speed over open water and open water season length from 1979-2014 show positive values in the southern Beaufort, but negative values in the northern Chukchi. This suggests possible differences in the role of the ocean on open water season length depending on region. We speculate that the warm Pacific water outflow plays a more dominant role in extending the open water season length in the northern Chukchi when compared to the southern Beaufort, and might help explain why we can show there is a relatively longer open water season length there. The negative and positive correlations in wind speeds over open water and open water season length might also be explained by oceanic changes tending to operate on longer timescales than the atmosphere. Seasonal timescales of wind events such as regional differences in overlap of the extended open water season due to regional differences in delayed freeze-up into the fall storm season are also investigated. In addition, we have shown that the increased integrated wind energy input over open water values are more a result of the increased open water season length, rather than the increase in wind speeds over open water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnGeo..36..181L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnGeo..36..181L"><span>Longitudinal structure of stationary planetary waves in the middle atmosphere - extraordinary years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lastovicka, Jan; Krizan, Peter; Kozubek, Michal</p> <p>2018-01-01</p> <p>One important but little studied factor in the middle atmosphere meridional circulation is its longitudinal structure. Kozubek et al. (2015) disclosed the existence of the two-cell longitudinal structure in meridional wind at 10 hPa at higher latitudes in January. This two-cell structure is a consequence of the stratospheric stationary wave SPW1 in geopotential heights. Therefore here the longitudinal structure in geopotential heights and meridional wind is analysed based on MERRA data over 1979-2013 and limited NOGAPS-ALPHA data in order to find its persistence and altitudinal dependence with focus on extraordinary years. The SPW1 in geopotential heights and related two-cell structure in meridional wind covers the middle stratosphere (lower boundary ˜ 50 hPa), upper stratosphere and most of the mesosphere (almost up to about 0.01 hPa). The two-cell longitudinal structure in meridional wind is a relatively persistent feature; only 9 out of 35 winters (Januaries) display more complex structure. Morphologically the deviation of these extraordinary Januaries consists in upward propagation of the second (Euro-Atlantic) peak (i.e. SPW2 structure) to higher altitudes than usually, mostly up to the mesosphere. All these Januaries occurred under the positive phase of PNA (Pacific North American) index but there are also other Januaries under its positive phase, which behave in an ordinary way. The decisive role in the existence of extraordinary years (Januaries) appears to be played by the SPW filtering by the zonal wind pattern. In all ordinary years the mean zonal wind pattern in January allows the upward propagation of SPW1 (Aleutian peak in geopotential heights) up to the mesosphere but it does not allow the upward propagation of the Euro-Atlantic SPW2 peak to and above the 10 hPa level. On the other hand, the mean zonal wind filtering pattern in extraordinary Januaries is consistent with the observed pattern of geopotential heights at higher altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010047411','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010047411"><span>Solar-Terrestrial Physics in the 1990s: Key Science Objectives for the IACG Mission Set</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>The International Solar-Terrestrial Physics (ISTP) program is an internationally coordinated multi-spacecraft mission that will study the production of the supersonic magnetized solar wind, its interaction with the Earth's magnetosphere, and the resulting transport of plasma, momentum and energy through the magnetosphere and into the ionosphere and upper atmosphere. The mission will involve l4spacecraft to be launched between 1992 and 1996, along with complementary ground-based observations and theoretical programs. A list of the spacecraft, their nominal orbits, and responsible agencies is shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11425111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11425111"><span>Acoustic sounding of wind velocity profiles in a stratified moving atmosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ostashev, V E; Georges, T M; Clifford, S F; Goedecke, G H</p> <p>2001-06-01</p> <p>The paper deals with analytical and numerical studies of the effects of atmospheric stratification on acoustic remote sensing of wind velocity profiles by sodars. Both bistatic and monostatic schemes are considered. Formulas for the Doppler shift of an acoustic echo signal scattered by atmospheric turbulence advected with the mean wind in a stratified moving atmosphere are derived. Numerical studies of these formulas show that errors in retrieving wind velocity can be of the order of 1 m/s if atmospheric stratification is ignored. Formulas for the height at which wind velocity is retrieved are also derived. Approaches are proposed which allow one to take into account the effects of atmospheric stratification when restoring the wind velocity profile from measured values of the Doppler shift and the time interval of acoustic impulse propagation from a sodar to the scattering volume and back to the ground.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P13C2569A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P13C2569A"><span>Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.</p> <p>2017-12-01</p> <p>To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001iaop.work...54M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001iaop.work...54M"><span>A Nuclear Ramjet Flyer for Exploration of Jovian Atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maise, G.; Powell, J.; Paniagua, J.; Lecat, R.</p> <p>2001-01-01</p> <p>We investigated the design, operation, and data gathering possibilities of a nuclear-powered ramjet flyer in the Jovian atmosphere. The MITEE nuclear rocket engine can be modified to operate as a ramjet in planetary atmospheres. (Note: MITEE is a compact, ultra-light-weight thermal nuclear rocket which uses hydrogen as the propellant.) To operate as a ramjet, MITEE requires a suitable inlet and diffuser to substitute for the propellant that is pumped from the supply tanks in a nuclear rocket engine. Such a ramjet would fly in the upper Jovian atmosphere, mapping in detail temperatures, pressures, compositions, lightning activity, and wind speeds in the highly turbulent equatorial zone and the Great Red Spot. The nuclear ramjet could operate for months because: (1) the Jovian atmosphere has unlimited propellant, (2) the MITEE nuclear reactor is a (nearly) unlimited power source, and (3) with few moving parts, mechanical wear should be minimal. This paper presents a conceptual design of a ramjet flyer and its nuclear engine. The flyer incorporates a swept-wing design with instruments located in the twin wing-tip pods (away from the radiation source and readily shielded, if necessary). The vehicle is 2 m long with a 2 m wingspan. Its mass is 220 kg, and its nominal flight Mach number is 1.5. Based on combined neutronic and thermal/hydraulic analyses, we calculated that the ambient pressure range over which the flyer can operate to be from about 0.04 to 4 (terrestrial) atmospheres. This altitude range encompasses the three uppermost cloud layers in the Jovian atmosphere: (1) the entire uppermost visible NH3 ice cloud layer (where lightning has been observed), (2) the entire NH4HS ice cloud layer, and (3) the upper portion of the H2O ice cloud layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Sci...351.9045B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Sci...351.9045B"><span>Pluto' interaction with its space environment: Solar wind, energetic particles, and dust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagenal, F.; Horányi, M.; McComas, D. J.; McNutt, R. L.; Elliott, H. A.; Hill, M. E.; Brown, L. E.; Delamere, P. A.; Kollmann, P.; Krimigis, S. M.; Kusterer, M.; Lisse, C. M.; Mitchell, D. G.; Piquette, M.; Poppe, A. R.; Strobel, D. F.; Szalay, J. R.; Valek, P.; Vandegriff, J.; Weidner, S.; Zirnstein, E. J.; Stern, S. A.; Ennico, K.; Olkin, C. B.; Weaver, H. A.; Young, L. A.; Gladstone, G. R.; Grundy, W. M.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Beyer, R. A.; Bhaskaran, S.; Binzel, R. P.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Bray, V. J.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Buie, M. W.; Buratti, B. J.; Bushman, S. S.; Calloway, A.; Carcich, B.; Cheng, A. F.; Conard, S.; Conrad, C. A.; Cook, J. C.; Cruikshank, D. P.; Custodio, O. S.; Dalle Ore, C. M.; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hinson, D. P.; Holdridge, M. E.; Howard, A. D.; Howett, C. J. A.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kusnierkiewicz, D.; Lauer, T. R.; Lee, J. E.; Lindstrom, K. L.; Linscott, I. R.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nimmo, F.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, A. H.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Porter, S. B.; Protopapa, S.; Redfern, J.; Reitsema, H. J.; Reuter, D. C.; Roberts, J. H.; Robbins, S. J.; Rogers, G.; Rose, D.; Runyon, K.; Retherford, K. D.; Ryschkewitsch, M. G.; Schenk, P.; Schindhelm, E.; Sepan, B.; Showalter, M. R.; Singer, K. N.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Stryk, T.; Summers, M. E.; Tapley, M.; Taylor, A.; Taylor, H.; Throop, H. B.; Tsang, C. C. C.; Tyler, G. L.; Umurhan, O. M.; Verbiscer, A. J.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weigle, G. E.; White, O. L.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zangari, A. M.</p> <p>2016-03-01</p> <p>The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers-3 for the dust density in the Pluto system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26989259','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26989259"><span>Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A</p> <p>2016-03-18</p> <p>The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830033749&hterms=1091&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231091','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830033749&hterms=1091&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231091"><span>Transport of aurorally produced N/2D/ by winds in the high latitude thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gerard, J.-C.; Roble, R. G.</p> <p>1982-01-01</p> <p>A time-dependent, two-dimensional model is developed for describing the meridional circulation of thermospheric odd nitrogen species produced in the auroral zone. The model is based on a previous model by Roble and Gary (1979) extended to upper altitude transport of the nitrogen species. Assumptions made include the existence of a steady neutral wind flowing from low to high latitudes, and an initial background due to scattered Lyman-beta and nightglow emissions. The aurora is also assumed as steady, along with a constant ion production. Predictions made using the model are compared with observations with the Atmosphere Explorer C spacecraft and rocket sounding measurements of the 5200 A distribution near the day-side polar cusp. The model requires thermospheric winds of 100-200 m/sec, flowing from day to nightside. Convective velocities near 1000 m/sec were detected by the Explorer spacecraft, as well as a day-to-nightside flow at the cusp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024183','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024183"><span>Effects of line-of-sight velocity on spaced-antenna measurements, part 3.5A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Royrvik, O.</p> <p>1984-01-01</p> <p>Horizontal wind velocities in the upper atmosphere, particularly the mesosphere, have been measured using a multitude of different techniques. Most techniques are based on stated or unstated assumptions about the wind field that may or may not be true. Some problems with the spaced antenna drifts (SAD) technique that usually appear to be overlooked are investigated. These problems are not unique to the SAD technique; very similar considerations apply to measurement of horizontal wind using multiple-beam Doppler radars as well. Simply stated, the SAD technique relies on scattering from multiple scatterers within an antenna beam of fairly large beam width. The combination of signals with random phase gives rise to an interference pattern on the ground. This pattern will drift across the ground with a velocity twice that of the ionospheric irregularities from which the radar signals are scattered. By using spaced receivers and measuring time delays of the signal fading in different antennas, it is possible to estimate the horizontal drift velocities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730018604','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730018604"><span>Upper atmosphere wind and temperature structure at sonmiani derived from the rocket grenade experiments conducted during 1965 - 1967</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rahmatullah, M.</p> <p>1972-01-01</p> <p>The grenade-TMA firing conducted in 1965-1967 bring out the following important features regarding the stratospheric circulation in the subtropics: (1) The temperature pattern during the month of March/April at Sonmiani is characterized by higher temperature than the corresponding CIRA 1965 value. (2) Double maxima in temperature has often been observed during spring. (3) In March the zonal wind is predominantly westerly reaching a maximum value of about 45 m/s at 55 km. (4) The meridional component exhibits oscillatory character between 45 and 60 kms. (5) The change from winter westerlies to summer easterlies first occurred around 50 km during April and gradually affected higher levels as the month progressed. (6) The height of the principal maxima at Sonmiani is located at 105 + or - 5 km. In autumn the wind at the principal maxima is below 100 m/s and is directed to NW, in spring it is of the order of 118 m/s but directed to E or NE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004931','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004931"><span>Multiple output power supply circuit for an ion engine with shared upper inverter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cardwell, Jr., Gilbert I. (Inventor); Phelps, Thomas K. (Inventor)</p> <p>2001-01-01</p> <p>A power supply circuit for an ion engine suitable for a spacecraft is coupled to a bus having a bus input and a bus return. The power supply circuit has a first primary winding of a first transformer. An upper inverter circuit is coupled to the bus input and the first primary winding. The power supply circuit further includes a first lower inverter circuit coupled to the bus return and the first primary winding. The second primary winding of a second transformer is coupled to the upper inverter circuit. A second lower inverter circuit is coupled to the bus return and the second primary winding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911634F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911634F"><span>Correlations between wave activity and electron temperature in the Martian upper ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fowler, Chris; Andersson, Laila; Ergun, Robert; Andrews, David</p> <p>2017-04-01</p> <p>Prior to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, only two electron temperature profiles of the Martian ionosphere existed, made by the Viking landers in the late 70s. Since MAVENs arrival at Mars in late 2014, electron temperature (and density) profiles have been measured every orbit, once every 4.5 hours. Recent analysis of this new dataset has shown that the Martian ionospheric electron temperature is significantly warmer than expected by factors of 2-3 above the exobase and within the upper ionosphere. We present correlations between electron temperature and electric field wave power (also measured by MAVEN), and discuss the possibility that such waves (which are likely produced by the Mars-solar wind interaction) may drive electron heating and contribute to the observed high temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913399S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913399S"><span>A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shamsoddin, Sina; Porté-Agel, Fernando</p> <p>2017-04-01</p> <p>In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge compared to the ones at the lower edge), only slight lateral asymmetries were observed at the optimum tip-speed ratio for which the simulations were performed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4840805G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4840805G"><span>Unfolding the atmospheric and deep internal flows on Jupiter and Saturn using the Juno and Cassini gravity measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galanti, Eli; Kaspi, Yohai</p> <p>2016-10-01</p> <p>In light of the first orbits of Juno at Jupiter, we discuss the Juno gravity experiment and possible initial results. Relating the flow on Jupiter and Saturn to perturbations in their density field is key to the analysis of the gravity measurements expected from both the Juno (Jupiter) and Cassini (Saturn) spacecraft during 2016-17. Both missions will provide latitude-dependent gravity fields, which in principle could be inverted to calculate the vertical structure of the observed cloud-level zonal flow on these planets. Current observations for the flow on these planets exists only at the cloud-level (0.1-1 bar). The observed cloud-level wind might be confined to the upper layers, or be a manifestation of deep cylindrical flows. Moreover, it is possible that in the case where the observed wind is superficial, there exists deep interior flow that is completely decoupled from the observed atmospheric flow.In this talk, we present a new adjoint based inverse model for inversion of the gravity measurements into flow fields. The model is constructed to be as general as possible, allowing for both cloud-level wind extending inward, and a decoupled deep flow that is constructed to produce cylindrical structures with variable width and magnitude, or can even be set to be completely general. The deep flow is also set to decay when approaching the upper levels so it has no manifestation there. The two sources of flow are then combined to a total flow field that is related to the density anomalies and gravity moments via a dynamical model. Given the measured gravitational moments from Jupiter and Saturn, the dynamical model, together with the adjoint inverse model are used for optimizing the control parameters and by this unfolding the deep and surface flows. Several scenarios are examined, including cases in which the surface wind and the deep flow have comparable effects on the gravity field, cases in which the deep flow is dominating over the surface wind, and an extreme case where the deep flow can have an unconstrained pattern. The method enables also the calculation of the uncertainties associated with each solution. We discuss the physical limitations to the method in view of the measurement uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A53B0141L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A53B0141L"><span>Global scale stratospheric processes as measured by the infrasound IMS network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Pichon, A.; Ceranna, L.; Kechut, P.</p> <p>2012-12-01</p> <p>IMS infrasound array data are routinely processed at the International Data Center (IDC). The wave parameters of the detected signals are estimated with the Progressive Multi-Channel Correlation method (PMCC). We have processed continuous recordings from 41 certified IMS stations from 2005 to 2010 in the 0.01-5 Hz frequency band using a new implementation of the PMCC algorithm. Microbaroms are the dominant source of signals near-continuously and globally detected. The observed azimuthal seasonal trend correlates well with the variation of the effective sound speed ratio (Veff-ratio) which is a proxy for the combined effects of refraction due to sound speed gradients and advection due to along-path stratospheric wind on infrasound propagation. Systematic correlations between infrasound parameters (e.g. number of detections, amplitude) and Veff-ratio calculated at different ranges of altitudes are performed. Combined with propagation modeling, we show that such an analysis enables a characterization of the wind and temperature structure above the stratosphere and may provide detailed information on upper atmospheric processes (e.g., large-scale planetary waves, stratospheric warming effects) from the seasonal trend to short time scale variability. We discuss the potential benefit of long-term infrasound monitoring to infer stratospheric processes for the first time on a global scale. This study suggests poorly resolved stratospheric wind fluctuations at low latitude regions with strengths of horizontal wind structures underestimated by at least ~10 m/s. It is expected that this correlation between infrasound observations and the state-of-the-art atmospheric specifications will allow to statistically quantify the spatial and temporal resolutions of the wind structures at different ranges of altitudes, latitudes and time scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1105914','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1105914"><span>FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>RICH, LAUREN</p> <p>2013-09-30</p> <p>A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe's Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616140W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616140W"><span>Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder</p> <p>2014-05-01</p> <p>The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE) and the atmosphere's thermal stability are important to estimate power production and loads. Especially the TKE is in the focus of our research since the Master Length Scale of the closure schemes depends on it. A third step is the validation of the results using wind measurements around the North Sea. Because the considered heights are much larger than available data from met masts, we use LiDAR observations (light detection and ranging) and prospectively UAVs (unmanned aerial vehicle).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol5/pdf/CFR-2010-title40-vol5-sec53-42.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title40-vol5/pdf/CFR-2010-title40-vol5-sec53-42.pdf"><span>40 CFR 53.42 - Generation of test atmospheres for wind tunnel tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Generation of test atmospheres for wind... Testing Performance Characteristics of Methods for PM10 § 53.42 Generation of test atmospheres for wind... particle delivery system shall consist of a blower system and a wind tunnel having a test section of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol5/pdf/CFR-2011-title40-vol5-sec53-42.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol5/pdf/CFR-2011-title40-vol5-sec53-42.pdf"><span>40 CFR 53.42 - Generation of test atmospheres for wind tunnel tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Generation of test atmospheres for wind... Testing Performance Characteristics of Methods for PM10 § 53.42 Generation of test atmospheres for wind... particle delivery system shall consist of a blower system and a wind tunnel having a test section of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ESDD....1..103G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ESDD....1..103G"><span>The problem of the second wind turbine - a note on a common but flawed wind power estimation method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gans, F.; Miller, L. M.; Kleidon, A.</p> <p>2010-06-01</p> <p>Several recent wind power estimates suggest how this renewable resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. Here we show that this common methodology is flawed because it does not account for energy removal by the turbines that is necessary to ensure the conservation of energy. We will first illustrate the common but flawed methodology using parameters from a recent global quantification of wind power in a simple experimental setup. For a small number of turbines at small scales, the conservation of energy hardly results in a difference when compared to the common method. However, when applied at large to global scales, the ability of radiative gradients to generate a finite amount of kinetic energy needs to be taken into account. Using the same experimental setup, we use the simplest method to ensure the conservation of energy to show a non-negligble decrease in wind velocity after the first turbine that will successively result in lower extraction of the downwind turbines. We then show how the conservation of energy inevitably results in substantially lower estimates of wind power at the global scale. Because conservation of energy is fundamental, we conclude that ultimately environmental constraints set the upper limit for wind power availability at the larger scale rather than detailed engineering specifications of the wind turbine design and placement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.A52A..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.A52A..01G"><span>State and Parameter Estimation for a Coupled Ocean--Atmosphere Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghil, M.; Kondrashov, D.; Sun, C.</p> <p>2006-12-01</p> <p>The El-Nino/Southern-Oscillation (ENSO) dominates interannual climate variability and plays, therefore, a key role in seasonal-to-interannual prediction. Much is known by now about the main physical mechanisms that give rise to and modulate ENSO, but the values of several parameters that enter these mechanisms are an important unknown. We apply Extended Kalman Filtering (EKF) for both model state and parameter estimation in an intermediate, nonlinear, coupled ocean--atmosphere model of ENSO. The coupled model consists of an upper-ocean, reduced-gravity model of the Tropical Pacific and a steady-state atmospheric response to the sea surface temperature (SST). The model errors are assumed to be mainly in the atmospheric wind stress, and assimilated data are equatorial Pacific SSTs. Model behavior is very sensitive to two key parameters: (i) μ, the ocean-atmosphere coupling coefficient between SST and wind stress anomalies; and (ii) δs, the surface-layer coefficient. Previous work has shown that δs determines the period of the model's self-sustained oscillation, while μ measures the degree of nonlinearity. Depending on the values of these parameters, the spatio-temporal pattern of model solutions is either that of a delayed oscillator or of a westward propagating mode. Estimation of these parameters is tested first on synthetic data and allows us to recover the delayed-oscillator mode starting from model parameter values that correspond to the westward-propagating case. Assimilation of SST data from the NCEP-NCAR Reanalysis-2 shows that the parameters can vary on fairly short time scales and switch between values that approximate the two distinct modes of ENSO behavior. Rapid adjustments of these parameters occur, in particular, during strong ENSO events. Ways to apply EKF parameter estimation efficiently to state-of-the-art coupled ocean--atmosphere GCMs will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159741','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159741"><span>Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lynch, Abigail J.; Taylor, William W.; Beard, T. Douglas; Lofgren, Brent M.</p> <p>2015-01-01</p> <p>Lake whitefish (Coregonus clupeaformis) is an ecologically, culturally, and economically important species in the Laurentian Great Lakes. Lake whitefish have been a staple food source for thousands of years and, since 1980, have supported the most economically valuable (annual catch value ≈ US$16.6 million) and productive (annual harvest ≈ 7 million kg) commercial fishery in the upper Great Lakes (Lakes Huron, Michigan, and Superior). Climate changes, specifically changes in temperature, wind, and ice cover, are expected to impact the ecology, production dynamics, and value of this fishery because the success of recruitment to the fishery has been linked with these climatic variables. We used linear regression to determine the relationship between fall and spring air temperature indices, fall wind speed, winter ice cover, and lake whitefish recruitment in 13 management units located in the 1836 Treaty Waters of the Upper Great Lakes ceded by the Ottawa and Chippewa nations, a culturally and commercially important region for the lake whitefish fishery. In eight of the 13 management units evaluated, models including one or more climate variables (temperature, wind, ice cover) explained significantly more variation in recruitment than models with only the stock–recruitment relationship, using corrected Akaike's Information Criterion comparisons (ΔAICc > 3). Isolating the climate–recruitment relationship and projecting recruitment with the Coupled Hydrosphere-Atmosphere Research Model (CHARM) indicated the potential for increased lake whitefish recruitment in the majority of the 1836 Treaty Waters management units. These results can inform adaptive management strategies by providing anticipated implications of climate on lake whitefish recruitment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P12B..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P12B..04K"><span>An upper limit on Early Mars atmospheric pressure from small ancient craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.</p> <p>2012-12-01</p> <p>Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These craters are interbedded with river deposits, and so the atmospheric state they record corresponds to an era when Mars was substantially wetter than the present, probably >3.7 Ga. An important caveat is that our technique cannot exclude atmospheric collapse-reinflation cycles on timescales much shorter than the sedimentary basin-filling time, so it sets an upper limit on the density of a thick stable paleoatmosphere. We will discuss our results in relation to previous estimates of ancient atmospheric pressure, and place new constraints on models of Early Mars climate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080014846&hterms=topography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtopography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080014846&hterms=topography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtopography"><span>Revised Atmospheric Angular Momentum Series Related to Earth's Variable Rotation under Consideration of Surface Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, Y. H.; Salstein, D. A.; Chen, J. L.</p> <p>2006-01-01</p> <p>The atmospheric angular momentum is closely related to variations in the Earth rotation. The atmospheric excitation function (AEF), or namely atmospheric effective angular momentum function, is introduced in studying the atmospheric excitation of the Earth's variable rotation. It may be separated into two portions, i.e, the "wind" terms due to the atmospheric motion relative to the mantle and the "pressure" terms due to the variations of atmospheric mass distribution evident through surface pressure changes. The AEF wind terms during the period of 1948-2004 are re-processed from the NCEP/NCAR (National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis 6-hourly wind and pressure fields. Some previous calculations were approximate, in that the wind terms were integrated from an isobaric lower boundary of 1000 hPa. To consider the surface topography effect, however, the AEF is computed by integration using the winds from the Earth's surface to 10 hPa, the top atmospheric model level, instead of from 1000 hPa. For these two cases, only a minor difference, equivalent to approx. 0.004 milliseconds in length-of-day variation, exists with respect to the axial wind term. However, considerable differences, equivalent to 5-6 milliarcseconds in polar motion, are found regarding equatorial wind terms. We further compare the total equatorial AEF (with and without the topographic effect) with the polar motion excitation function (PMEF) during the period of 1980-2003. The equatorial AEF gets generally closer to the PMEF, and improved coherences are found between them when the topography effect is included. Keywords: Atmospheric angular momentum, Atmospheric excitation function, Earth rotation, Topography, Wind, Pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870003617&hterms=GMT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGMT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870003617&hterms=GMT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGMT"><span>Variation objective analyses for cyclone studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Achtemeier, G. L.; Kidder, S. Q.; Ochs, H. T.</p> <p>1985-01-01</p> <p>The objectives were to: (1) develop an objective analysis technique that will maximize the information content of data available from diverse sources, with particular emphasis on the incorporation of observations from satellites with those from more traditional immersion techniques; and (2) to develop a diagnosis of the state of the synoptic scale atmosphere on a much finer scale over a much broader region than is presently possible to permit studies of the interactions and energy transfers between global, synoptic and regional scale atmospheric processes. The variational objective analysis model consists of the two horizontal momentum equations, the hydrostatic equation, and the integrated continuity equation for a dry hydrostatic atmosphere. Preliminary tests of the model with the SESMAE I data set are underway for 12 GMT 10 April 1979. At this stage of purpose of the analysis is not the diagnosis of atmospheric structures but rather the validation of the model. Model runs for rawinsonde data and with the precision modulus weights set to force most of the adjustment of the wind field to the mass field have produced 90 to 95 percent reductions in the imbalance of the initial data after only 4-cycles through the Euler-Lagrange equations. Sensitivity tests for linear stability of the 11 Euler-Lagrange equations that make up the VASP Model 1 indicate that there will be a lower limit to the scales of motion that can be resolved by this method. Linear stability criteria are violated where there is large horizontal wind shear near the upper tropospheric jet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..957S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..957S"><span>Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at 10μm wavelength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sornig, M.; Sonnabend, G.; Krötz, P.; Stupar, D.; Livengood, T.; Schieder, R.; Kostiuk, T.</p> <p>2008-09-01</p> <p>We present wind measurements in the Venusian upper mesosphere / lower thermosphere (at an altitude of 100-120km) by means of infrared heterodyne spectroscopy of CO2 P(2) features at 959.3917 cm-1. Provided high spectral resolution winds can be retrieved from Doppler-shifts of CO2 non-thermal emission lines.The mesosphere is the not very well understood transitions zone form the superrotating zonal circulation (RSZ) dominated troposphere and the subsolar to anti-solar flow (SS-AS flow) dominated thermosphere [1,2] hence the addressed altitude region is of special interest. Observations are carried out systematically on the day-side of the planet using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS). Measurements were gathered during two observing runs: a) May 25 to June 6 2007 at the McMath-Pierce solar telescope on KittPeak/Arizona; b) November 21-28 2007 at the McMath-Pierce solar telescope on KittPeak/Arizona; Both times Venus illumination was about 50%. Run a) took place shortly before Venus superior conjunction and b) shortly after Venus superior conjunction. Several positions on the planet with a diameter of approx. 20" were measured during each observing run. The telescope with a 1.5m main mirror provided a beamsize of 1.7". Zonal wind velocities as well as values for the SS-AS flow were retrieved and will be presented. The data analyzed so far show weak zonal wind velocities (from 3±7m/s to 32 ±4m/s ) with minimum values at the equator and maximum values at mid latitudes. Also the retrieved speed of the SS-AS flow was significantly lower than found by previous observations [3,4,5]. Together with results from space missions [6,7] and complementary ground based observing methods [8,3,4,5] probing wind velocities at different altitudes in the atmosphere of Venus, these measurements can provide global information about dynamical properties and increase the understanding about our neighbor planet. [1] Gierasch, P.J. et al. (1997) University of Arizona Press, 459. [2] Bougher, S.W. et al. (1986) Icarus, 68, 284-312. [3] Lellouch, E. et al. (1994) Icarus, 110, 315-339. [4] Shah, K et al. (1991) Icarus, 93, 96-121. [5] Goldstein, J. et al. (1991) Icarus, 94, 45-63. [6] Drossart, P. et al. (2007) Nature, 450(7170), 641- 645. [7] Markiewicz, W.J. et al. (2007) Nature, 450(7170), 633-636. [8] Widemann, T. et al. (2007) Planetary and Space Science, 55, 1741-1756.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2784W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2784W"><span>Sustained Observations of Air-Sea Fluxes and Air-Sea Interaction at the Stratus Ocean Reference Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weller, Robert</p> <p>2014-05-01</p> <p>Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net air-sea heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of sea water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in sea surface temperature. This process is proving hard to accurately model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.9146L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.9146L"><span>Global scale stratospheric processes as measured by the infrasound IMS network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Pichon, A.; Ceranna, L.; Kechut, P.</p> <p>2012-04-01</p> <p>IMS infrasound array data are routinely processed at the International Data Center (IDC). The wave parameters of the detected signals are estimated with the Progressive Multi-Channel Correlation method (PMCC). This new implementation of the PMCC algorithm allows the full frequency range of interest (0.01-5 Hz) to be processed efficiently in a single computational run. We have processed continuous recordings from 41 certified IMS stations from 2005 to 2010. We show that microbaroms are the dominant source of signals and are near-continuously globally detected. The observed azimuthal seasonal trend correlates well with the variation of the effective sound speed ratio which is a proxy for the combined effects of refraction due to sound speed gradients and advection due to along-path wind on infrasound propagation. A general trend in signal backazimuth is observed between winter and summer, driven by the seasonal reversal of the stratospheric winds. Combined with propagation modeling, we show that such an analysis enables a characterization of the wind and temperature structure above the stratosphere and may provide detailed information on upper atmospheric processes (e.g., large-scale planetary waves, stratospheric warming effects). We correlate perturbations and deviations from the seasonal trend to short time-scale variability of the atmosphere. We discuss the potential benefit of long-term infrasound monitoring to infer stratospheric processes for the first time on a global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930071514&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930071514&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dvertical%2Bheight"><span>Satellite observations of a polar low over the Norwegian Sea by Special Sensor Microwave Imager, Geosat, and TIROS-N Operational Vertical Sounder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Claud, Chantal; Mognard, Nelly M.; Katsaros, Kristina B.; Chedin, Alain; Scott, Noelle A.</p> <p>1993-01-01</p> <p>Many polar lows are generated at the boundary between sea ice and the ocean, in regions of large temperature gradients, where in situ observations are rare or nonexistent. Since satellite observations are frequent in high-latitude regions, they can be used to detect polar lows and track their propagation and evolution. The Special Sensor Microwave/Imager (SSM/I) providing estimates of surface wind speed, integrated cloud liquid water content, water vapor content, and precipitation size ice-scattering signal over the ocean; the Geosat radar altimeter measuring surface wind speed and significant wave height; and the TIROS-N Operational Vertical Sounder (TOVS) allowing the determination of temperature and humidity profiles in the atmosphere have been used in synergy for a specific case which occurred in the Norwegian Sea on January, 23-24 1988. All three instruments show sharp atmospheric gradients associated with the propagation of this low across the ocean, which permit the detection of the polar low at a very early stage and tracking it during its development, propagation, and decay. The wind speed gradients are measured with good qualitative agreement between the altimeter and SSM/I. TOVS retrieved fields prior to the formation of the low confirm the presence of an upper level trough, while during the mature phase baroclinicity can be observed in the 1000-500 hPa geopotential thicknesses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DPS....4441306K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DPS....4441306K"><span>Effect of the Solar UV/EUV Heating on the Intensity and Spatial Distribution of Jupiter's Synchrotron Radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.</p> <p>2012-10-01</p> <p>Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160012695','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160012695"><span>Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.</p> <p>2016-01-01</p> <p>The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000879','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000879"><span>Constraints on Saturn's Tropospheric General Circulation from Cassini ISS Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>DelGenio, Anthony D.; Barbara, John M.</p> <p>2013-01-01</p> <p>An automated cloud tracking algorithm is applied to Cassini Imaging Science Subsystem high-resolution apoapsis images of Saturn from 2005 and 2007 and moderate resolution images from 2011 and 2012 to define the near-global distribution of zonal winds and eddy momentum fluxes at the middle troposphere cloud level and in the upper troposphere haze. Improvements in the tracking algorithm combined with the greater feature contrast in the northern hemisphere during the approach to spring equinox allow for better rejection of erroneous wind vectors, a more objective assessment at any latitude of the quality of the mean zonal wind, and a population of winds comparable in size to that available for the much higher contrast atmosphere of Jupiter. Zonal winds at cloud level changed little between 2005 and 2007 at all latitudes sampled. Upper troposphere zonal winds derived from methane band images are approx. 10 m/s weaker than cloud level winds in the cores of eastward jets and approx. 5 m/s stronger on either side of the jet core, i.e., eastward jets appear to broaden with increasing altitude. In westward jet regions winds are approximately the same at both altitudes. Lateral eddy momentum fluxes are directed into eastward jet cores, including the strong equatorial jet, and away from westward jet cores and weaken with increasing altitude on the flanks of the eastward jets, consistent with the upward broadening of these jets. The conversion rate of eddy to mean zonal kinetic energy at the visible cloud level is larger in eastward jet regions (5.2x10(exp -5) sq m/s) and smaller in westward jet regions (1.6x10(exp -5) sqm/s) than the global mean value (4.1x10(ep -5) sq m/s). Overall the results are consistent with theories that suggest that the jets and the overturning meridional circulation at cloud level on Saturn are maintained at least in part by eddies due to instabilities of the large-scale flow near and/or below the cloud level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132..905J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132..905J"><span>Uganda rainfall variability and prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jury, Mark R.</p> <p>2018-05-01</p> <p>This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16319831','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16319831"><span>The vertical profile of winds on Titan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bird, M K; Allison, M; Asmar, S W; Atkinson, D H; Avruch, I M; Dutta-Roy, R; Dzierma, Y; Edenhofer, P; Folkner, W M; Gurvits, L I; Johnston, D V; Plettemeier, D; Pogrebenko, S V; Preston, R A; Tyler, G L</p> <p>2005-12-08</p> <p>One of Titan's most intriguing attributes is its copious but featureless atmosphere. The Voyager 1 fly-by and occultation in 1980 provided the first radial survey of Titan's atmospheric pressure and temperature and evidence for the presence of strong zonal winds. It was realized that the motion of an atmospheric probe could be used to study the winds, which led to the inclusion of the Doppler Wind Experiment on the Huygens probe. Here we report a high resolution vertical profile of Titan's winds, with an estimated accuracy of better than 1 m s(-1). The zonal winds were prograde during most of the atmospheric descent, providing in situ confirmation of superrotation on Titan. A layer with surprisingly slow wind, where the velocity decreased to near zero, was detected at altitudes between 60 and 100 km. Generally weak winds (approximately 1 m s(-1)) were seen in the lowest 5 km of descent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5198J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5198J"><span>Met UM Upper-tropospheric summer jet teleconnections: A model assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joao Carvalho, Maria; Rodriguez, Jose; Milton, Sean</p> <p>2017-04-01</p> <p>The upper tropospheric jet stream has been documented to act as a waveguide (Hoskins and Ambrizzi, 1993) and supporting quasi-stationary Rossby waves (Schubert et al. 2011). These have been associated with remote effects in surface level weather such as rainfall anomalies in the East Asian Summer Monsoon as well as extreme temperature events. The goal of this work was to analyse the intraseasonal to interannual upper level boreal summer jet variability and its coupling with low level atmospheric dynamics within the Met Office Unified Model using climate runs. Using the Wallace and Gutzler (1981) proposed approach to find teleconnection patterns on the 200 hPa level wind, lead-lag correlation and Empirical Orthogonal Function analysis on the upper-level jet and relating the results with surface weather variables as well as dynamical variables, it was found that the model presents too strong jet variability, particularly in the tropical region and. In addition, the model presents high teleconnectivity hotspots with higher importance in areas such as the Mediterranean and Caspian Sea which are important source areas for Rossby Waves. Further to this, the model was found to produce an area of teleconnectivity between the tropical Atlantic and western Africa which is not observed in the reanalysis but coexists with long lasting precipitation biases. As comparison for the model results, ERA-Interim circulation and wind data and the TRMM precipitation dataset were used. In order to assess the relative importance of relevant model parameters in the biases and process errors, work is currently underway using perturbed model parameter ensembles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..250..368B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..250..368B"><span>Winds, waves and shorelines from ancient martian seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Banfield, Don; Donelan, Mark; Cavaleri, Luigi</p> <p>2015-04-01</p> <p>We consider under what environmental conditions water waves (and thus eventually shorelines) should be expected to be produced on hypothetical ancient martian seas and lakes. For winds and atmospheric pressures that are too small, no waves should be expected, and thus no shorelines. If the winds and atmospheric pressure are above some threshold, then waves can be formed, and shorelines are possible. We establish these criteria separating conditions under which waves will or will not form on an ancient martian open body of water. We consider not only atmospheric pressure and wind, but also temperature and salinity, but find these latter effects to be secondary. The normal criterion for the onset of water waves under terrestrial conditions is extended to recognize the greater atmospheric viscous boundary layer depth for low atmospheric pressures. We used terrestrial wave models to predict the wave environment expected for reasonable ranges of atmospheric pressure and wind for end-member cases of ocean salinity. These models were modified only to reflect the different fluids considered at Mars, the different martian surface gravity, and the varying atmospheric pressure, wind and fetch. The models were favorably validated against one another, and also against experiments conducted in a wave tank in a pressure controlled wind tunnel (NASA Ames MARSWIT). We conclude that if wave-cut shorelines can be confirmed on Mars, this can constrain the range of possible atmospheric pressures and wind speeds that could have existed when the open water was present on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC24B2150S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC24B2150S"><span>Contributions of the atmosphere-land and ocean-sea ice model components to the tropical Atlantic SST bias in CESM1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Z.; Lee, S. K.; Wang, C.; Kirtman, B. P.; Qiao, F.</p> <p>2016-02-01</p> <p>In order to identify and quantify intrinsic errors in the atmosphere-land and ocean-sea ice model components of the Community Earth System Model version 1 (CESM1) and their contributions to the tropical Atlantic sea surface temperature (SST) bias in CESM1, we propose a new method of diagnosis and apply it to a set of CESM1 simulations. Our analyses of the model simulations indicate that both the atmosphere-land and ocean-sea ice model components of CESM1 contain large errors in the tropical Atlantic. When the two model components are fully coupled, the intrinsic errors in the two components emerge quickly within a year with strong seasonality in their growth rates. In particular, the ocean-sea ice model contributes significantly in forcing the eastern equatorial Atlantic warm SST bias in early boreal summer. Further analysis shows that the upper thermocline water underneath the eastern equatorial Atlantic surface mixed layer is too warm in a stand-alone ocean-sea ice simulation of CESM1 forced with observed surface flux fields, suggesting that the mixed layer cooling associated with the entrainment of upper thermocline water is too weak in early boreal summer. Therefore, although we acknowledge the potential importance of the westerly wind bias in the western equatorial Atlantic and the low-level stratus cloud bias in the southeastern tropical Atlantic, both of which originate from the atmosphere-land model, we emphasize here that solving those problems in the atmosphere-land model alone does not resolve the equatorial Atlantic warm bias in CESM1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070010482&hterms=modeling+ozone+production&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Bozone%2Bproduction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070010482&hterms=modeling+ozone+production&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Bozone%2Bproduction"><span>The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.</p> <p>2006-01-01</p> <p>Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint deficiencies in the representation of chemical/dynamical processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10000E..1DG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10000E..1DG"><span>HATS (High Altitude Thermal Sounder): a passive sensor solution to 3D high-resolution mapping of upper atmosphere dynamics (Conference Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordley, Larry; Marshall, Benjamin T.; Lachance, Richard L.</p> <p>2016-10-01</p> <p>This presentation introduces a High Altitude Thermal Sensor (HATS) that has the potential to resolve the thermal structure of the upper atmosphere (cloud top to 100km) with both horizontal and vertical resolution of 5-7 km or better. This would allow the complete characterization of the wave structures that carry weather signature from the underlying atmosphere. Using a novel gas correlation technique, an extremely high-resolution spectral scan is accomplished by measuring a Doppler modulated signal as the atmospheric thermal scene passes through the HATS 2D FOV. This high spectral resolution, difficult to impossible to achieve with any other passive technique, enables the separation of radiation emanating at high altitudes from that emanating at low altitudes. A principal component analysis of these modulation signals then exposes the complete thermal structure of the upper atmosphere. We show that nadir sounding from low earth orbit, using various branches of CO2 emission in the 17 to 15 micron region, with sufficient spectral resolution and spectral measurement range, can distinguish thermal energy that peaks at various altitudes. By observing the up-welling atmospheric emission through a low pressure (Doppler broadened) gas cell, as the scene passes through our FOV, a modulation signal is created as the atmospheric emission lines are shifted through the spectral position of the gas cell absorption lines. The modulation signal is shown to be highly correlated to the emission coming from the spectral location of the gas cell lines relative to the atmospheric emission lines. This effectively produces a scan of the atmospheric emission with a Doppler line resolution. Similar to thermal sounding of the troposphere, a principal component analysis of the modulation signal can be used to produce an altitude resolved profile, given a reasonable a priori temperature profile. It is then shown that with the addition of a limb observation with one CO2 broadband channel (similar to methods employed with sensors like LIMS on Nimbus 7, HIRDLS on Aura, and SABER on TIMED), a limb temperature profile can be retrieved and used as the a priori profile, nearly eliminating uncertainty due to a priori inaccuracy. Feasibility studies and proposed instrument designs are presented. A tutorial for a similar technique proposed for measuring winds and temperature with limb observations can be found at http://www.gats-inc.com/future_missions.html</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PCE....94...56F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PCE....94...56F"><span>On the relationship between atmospheric water vapour transport and extra-tropical cyclones development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, Juan A.; Liberato, Margarida L. R.; Ramos, Alexandre M.</p> <p>2016-08-01</p> <p>In this study we seek to investigate the role of atmospheric water vapour on the intensification of extra-tropical cyclones over the North Atlantic Ocean and more specifically to investigate the linkage between atmospheric rivers' conditions leading to the explosive development of extra-tropical cyclones. Several WRF-ARW simulations for three recent extra-tropical storms that had major negative socio-economic impacts in the Iberian Peninsula and south-western Europe (Klaus, 2009; Gong, 2013 and Stephanie, 2014) are performed in which the water vapour content of the initial and boundary conditions are tuned. Analyses of the vertically integrated vapour transport show the dependence of the storms' development on atmospheric water vapour. In addition, results also show changes in the shape of the jet stream resulting in a reduction of the upper wind divergence, which in turn affects the intensification of the extra-tropical cyclones studied. This study suggests that atmospheric rivers tend to favour the conditions for explosive extra-tropical storms' development in the three case studies, as simulations performed without the existence of atmospheric rivers produce shallow mid-latitude cyclones, that is, cyclones that are not so intense as those on the reference simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890012054','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890012054"><span>Operational implications of a cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zak, J. A.</p> <p>1989-01-01</p> <p>A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030095973','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030095973"><span>The Correlation Between Tropical Convection and Upper Tropospheric Momentum Flux Convergence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'CStarr, David; Boehm, Matthew T.</p> <p>2003-01-01</p> <p>In this study, the relationship between tropical convection and the meridional convergence of zonal momentum flux in the tropical upper troposphere is investigated using NOAA interpolated outgoing longwave radiation data and NCEP-NCAR reanalysis wind data. In particular, a variety of correlation coefficients are calculated between the data sets, both of which are filtered to isolate disturbances with frequencies and wavenumbers consistent with the Madden-Julian oscillation. The results show regions of significant correlation during each season, with the magnitude and area covered by significant correlation coefficients varying with season. Furthermore, it is found that the correlation structures look very similar to theoretical calculations of the atmospheric response to a region of tropical heating. This result suggests that tropical waves, in particular mixed Rossby-gravity waves, play an important role in the meridional transport zonal momentum into the deep tropical upper troposphere. Finally, these findings have implications to the generation of rising motion near the tropical tropopause, which in turn has ramifications for vertical moisture transport and tropopause cirrus formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10570E..0LK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10570E..0LK"><span>ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krawczyk, R.; Ghibaudo, JB.; Labandibar, JY.; Willetts, D.; Vaughan, M.; Pearson, G.; Harris, M.; Flamant, P. H.; Salamitou, P.; Dabas, A.; Charasse, R.; Midavaine, T.; Royer, M.; Heimel, H.</p> <p>2018-04-01</p> <p>This paper, "ALADIN: an atmospheric laser Doppler wind lidar instrument for wind velocity measurements from space," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171526&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dland%2Buse%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171526&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dland%2Buse%2Bchange"><span>NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, Michael D.</p> <p>2004-01-01</p> <p>The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050177043&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dland%2Buse%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050177043&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dland%2Buse%2Bchange"><span>NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, Michael D.</p> <p>2005-01-01</p> <p>The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130000755','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130000755"><span>Assessing Upper-Level Winds on Day-of-Launch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III; Wheeler, Mark M.</p> <p>2012-01-01</p> <p>On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1255115-turbulent-kinetics-large-wind-farm-impact-neutral-boundary-layer','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1255115-turbulent-kinetics-large-wind-farm-impact-neutral-boundary-layer"><span>Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; ...</p> <p>2015-12-28</p> <p>High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8229B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8229B"><span>Study of wind retrieval from space-borne infrared coherent lidar in cloudy atmosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Okamoto, Kozo; Ochiai, Satoshi</p> <p>2015-04-01</p> <p>Future spaceborne tropospheric wind missions using infrared coherent lidar are currently being studied in Japan and in the United States [1,2]. The line-of-sight wind velocity is retrieved from the Doppler shift frequency of the signal returned by aerosol particles. However a large percentage (70-80%) of the measured single-shot intensity profiles are expected to be contaminated by clouds [3]. A large number of cloud contaminated profiles (>40%) will be characterized by a cloud-top signal intensity stronger than the aerosol signal by a factor of one order of magnitude, and by a strong attenuation of the signal backscattered from below the clouds. Profiles including more than one cloud layer are also expected. This work is a simulation study dealing with the impacts of clouds on wind retrieval. We focus on the three following points: 1) definition of an algorithm for optimizing the wind retrieval from the cloud-top signal, 2) assessment of the clouds impact on the measurement performance and, 3) definition of a method for averaging the measurements before the retrieval. The retrieval simulations are conducted considering the instrumental characteristics selected for the Japanese study: wavelength at 2 µm, PRF of 30 Hz, pulse power of 0.125 mJ and platform altitude between 200-400 km. Liquid and ice clouds are considered. The analysis uses data from atmospheric models and statistics of cloud effects derived from CALIPSO measurements such as in [3]. A special focus is put on the average method of the measurements before retrieval. Good retrievals in the mid-upper troposphere implie the average of measured single-range power spectra over large horizontal (100 km) and vertical (1 km) ranges. Large differences of signal intensities due to the presence of clouds and the clouds non-uniform distribution have to be taken into account when averaging the data to optimize the measurement performances. References: [1] S. Ishii, T. Iwasaki, M. Sato, R. Oki, K. Okamoto, T. Ishibashi, P. Baron, and T. Nishizawa: Future Doppler lidar wind measurement from space in Japan, Proc. of SPIE Vol. 8529, 2012 [2] D. Wu, J. Tang, Z. Liu, and Y. Hu: Simulation of coherent doppler wind lidar measurement from space based on CALIPSO lidar global aerosol observations. Journal of Quantitative Spectroscopy and Radiative Transfer, 122(0), 79-86, 2013 [3] G.D Emmitt: CFLOS and cloud statistics from satellite and their impact on future space-based Doppler Wind Lidar development. Symposium on Recent Developments in Atmospheric Applications of Radar and Lidar, 2008</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0749943','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0749943"><span>Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860004399','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860004399"><span>Atmospheric environment for Space Shuttle (STS-51D)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.</p> <p>1985-01-01</p> <p>A summary of selected atmospheric conditions observed near the space shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51D vehicle ascent is constructed. The STS-51D ascent atmospheric data tape is compiled by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post-flight performance assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930000036&hterms=grams&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgrams','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930000036&hterms=grams&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgrams"><span>Global Reference Atmosphere Model (GRAM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, D. L.; Blocker, Rhonda; Justus, C. G.</p> <p>1993-01-01</p> <p>4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20577209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20577209"><span>The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Snellen, Ignas A G; de Kok, Remco J; de Mooij, Ernst J W; Albrecht, Simon</p> <p>2010-06-24</p> <p>For extrasolar planets discovered using the radial velocity method, the spectral characterization of the host star leads to a mass estimate of the star and subsequently of the orbiting planet. If the orbital velocity of the planet could be determined, the masses of both star and planet could be calculated using Newton's law of gravity, just as in the case of stellar double-line eclipsing binaries. Here we report high-dispersion ground-based spectroscopy of a transit of the extrasolar planet HD 209458b. We see a significant wavelength shift in absorption lines from carbon monoxide in the planet's atmosphere, which we conclude arises from a change in the radial component of the planet's orbital velocity. The masses of the star and planet are 1.00 +/- 0.22M(Sun) and 0.64 +/- 0.09M(Jup) respectively. A blueshift of the carbon monoxide signal of approximately 2 km s(-1) with respect to the systemic velocity of the host star suggests the presence of a strong wind flowing from the irradiated dayside to the non-irradiated nightside of the planet within the 0.01-0.1 mbar atmospheric pressure range probed by these observations. The strength of the carbon monoxide signal suggests a carbon monoxide mixing ratio of (1-3) x 10(-3) in this planet's upper atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040016323','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040016323"><span>Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.</p> <p>2003-01-01</p> <p>The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001849','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001849"><span>Upper Atmosphere Research Satellite (UARS): A program to study global ozone change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>A general overview of NASA's Upper Atmosphere Research Satellite (UARS) program is presented in a broad based informational publication. The UARS will be responsible for carrying out the first systematic, comprehensive study of the stratosphere and will furnish important new data on the mesosphere and thermosphere. The UARS mission objectives are to provide an increased understanding of energy input into the upper atmosphere; global photochemistry of the upper atmosphere; dynamics of the upper atmosphere; coupling among these processes; and coupling between the upper and lower atmosphere. These mission objectives are briefly described along with the UARS on-board instrumentation and related data management systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000EOSTr..81..146V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000EOSTr..81..146V"><span>Physics of the Space Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vasyliünas, Vytenis M.</p> <p></p> <p>This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of magnetosphereionosphere coupling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010069580','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010069580"><span>Laboratory for Extraterrestrial Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vondrak, Richard R. (Technical Monitor)</p> <p>2001-01-01</p> <p>The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study the interplanetary medium, asteroids, comets, and planets. Suborbital sounding rockets and groundbased observing platforms form an integral part of these research activities. This report covers the period from approximately October 1999 through September 2000.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998BAMS...79...39L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998BAMS...79...39L"><span>Clarifying the Dynamics of the General Circulation: Phillips's 1956 Experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lewis, John M.</p> <p>1998-01-01</p> <p>In the mid-1950s, amid heated debate over the physical mechanisms that controlled the known features of the atmosphere's general circulation, Norman Phillips simulated hemispheric motion on the high-speed computer at the Institute for Advanced Study. A simple energetically consistent model was integrated for a simulated time of approximately 1 month. Analysis of the model results clarified the respective roles of the synoptic-scale eddies (cyclones-anticyclones) and mean meridional circulation in the maintenance of the upper-level westerlies and the surface wind regimes. Furthermore, the modeled cyclones clearly linked surface frontogenesis with the upper-level Charney-Eady wave. In addition to discussing the model results in light of the controversy and ferment that surrounded general circulation theory in the 1940s-1950s, an effort is made to follow Phillips's scientific path to the experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-STS106-718-056.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-STS106-718-056.html"><span>View of a dust storm taken from Atlantis during STS-106</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-09-11</p> <p>STS106-718-056 (11 September 2000) --- One of the STS-106 crew members on board the Space Shuttle Atlantis used a handheld 70mm camera to photograph this image of Afghanistan dust/front winds in the upper Amu Darya Valley. The strong winds along the northern border of Afghanistan lofted thick, light brown dust into the air (top half of the view). In this desert environment land surfaces are not protected by vegetation from the effect of blowing wind. The central Asian deserts experience the greatest number of dust storm days on the planet each year. The sharp dust front shows that the dust has not traveled far, but has been raised from the surfaces in the view. Dust is entrained in the atmosphere by horizontal winds but also by vertical movements. Here the vertical component is indicated by the fact that the higher points along the dust front are each topped by a small cumulus cloud, which appear as a line of small white puffballs. Cumulus clouds indicate upward motion and here the air which has entrained the dust is lifting the air above to the level of condensation at each point where a small cloud has formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790006507','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790006507"><span>Summary of atmospheric wind design criteria for wind energy conversion system development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frost, W.; Turner, R. E.</p> <p>1979-01-01</p> <p>Basic design values are presented of significant wind criteria, in graphical format, for use in the design and development of wind turbine generators for energy research. It is a condensed version of portions of the Engineering Handbook on the Atmospheric Environmental Guidelines for Use in Wind Turbine Generator Development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036766','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036766"><span>Atmospheric stability effects on wind fields and scalar mixing within and just above a subalpine forest in sloping terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Burns, Sean P.; Sun, Jielun; Lenschow, D.H.; Oncley, S.P.; Stephens, B.B.; Yi, C.; Anderson, D.E.; Hu, Jiawen; Monson, Russell K.</p> <p>2011-01-01</p> <p>Air temperature Ta, specific humidity q, CO2 mole fraction ??c, and three-dimensional winds were measured in mountainous terrain from five tall towers within a 1 km region encompassing a wide range of canopy densities. The measurements were sorted by a bulk Richardson number Rib. For stable conditions, we found vertical scalar differences developed over a "transition" region between 0.05 < Rib < 0.5. For strongly stable conditions (Rib > 1), the vertical scalar differences reached a maximum and remained fairly constant with increasing stability. The relationships q and ??c have with Rib are explained by considering their sources and sinks. For winds, the strong momentum absorption in the upper canopy allows the canopy sublayer to be influenced by pressure gradient forces and terrain effects that lead to complex subcanopy flow patterns. At the dense-canopy sites, soil respiration coupled with wind-sheltering resulted in CO2 near the ground being 5-7 ??mol mol-1 larger than aloft, even with strong above-canopy winds (near-neutral conditions). We found Rib-binning to be a useful tool for evaluating vertical scalar mixing; however, additional information (e.g., pressure gradients, detailed vegetation/topography, etc.) is needed to fully explain the subcanopy wind patterns. Implications of our results for CO2 advection over heterogenous, complex terrain are discussed. ?? 2010 Springer Science+Business Media B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1439G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1439G"><span>Quantifying the Impact of Background Atmospheric Stability on Air-Ice-Ocean Interactions the Arctic Ocean During the Fall Freeze-Up</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guest, P. S.; Persson, O. P. G.; Blomquist, B.; Fairall, C. W.</p> <p>2016-02-01</p> <p>"Background" stability refers to the effect of vertical virtual temperature variations above the surface layer on fluxes within the surface layer. This is different from the classical surface layer stability quantified by the Obhukhov length scale. In most locations, changes in the background stability do not have a significant direct impact on surface fluxes. However in polar regions, where there is usually a strong low-level temperature inversion capping the boundary layer, changes in background stability can have big impacts on surface fluxes. Therefore, in the Arctic, there is potential for a positive feedback effect between ice cover and surface wind speed (and momentum flux) due to the background stability effects. As the surface becomes more ice free, heat fluxes from the surface weaken the temperature inversion which in turn increases the surface wind speed which further increases the surface turbulent heat fluxes and removes more sea ice by melting or advection. It is not clear how important feedbacks involving the background stability are during the fall freeze up of the Arctic Ocean; that will be the focus of this study. As part of an ONR-sponsored cruise in the fall of 2015 to examine sea state and boundary layer processes in the Beaufort Sea on the R/V Sikuliaq, the authors will perform a variety of surface layer and upper level atmospheric measurements of temperature, humidity and wind vector using ship platform instruments, radiosonde weather balloons, tethered balloons, kites, and miniature quad-rotor unmanned aerial vehicles. In addition, the authors will deploy a full suite of turbulent and radiational flux measurements from the vessel. These measurements will be used to quantify the impact of changing surface conditions on atmospheric structure and vice-versa. The goal is to directly observe how the surface and atmosphere above the surface layer interact and feedback with each other through radiational and turbulent fluxes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1082348','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1082348"><span>Vertical axis wind turbine airfoil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich</p> <p>2012-12-18</p> <p>A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521394-axisymmetric-simulations-hot-jupiterstellar-wind-hydrodynamic-interaction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521394-axisymmetric-simulations-hot-jupiterstellar-wind-hydrodynamic-interaction"><span>AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Christie, Duncan; Arras, Phil; Li, Zhi-Yun</p> <p>2016-03-20</p> <p>Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out undermore » axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1215326S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1215326S"><span>Validation campaigns of a coherent Doppler Wind Lidar for PBL Continuous Profiling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sauvage, Laurent; Cariou, Jean-Pierre; Boquet, Matthieu; Parmentier, Remy</p> <p>2010-05-01</p> <p>To fully understand atmospheric dynamics, climate studies, energy transfer and weather prediction, the wind field is one of the most important atmospheric state variables. Studies indicate that a global determination of the tropospheric wind field to an accuracy of 0.5 m/s is critical for improved numerical weather forecasting. LEOSPHERE recently developed a long range compact, eye safe and transportable wind Lidar capable to fully determine locally the wind field in real time in the planetary boundary layer (PBL). The WLS70 is a new generation wind Lidar developed for meteorological applications. The Lidar is derived from the commercial Windcube™ widely used by the wind industry and has been modified increasing the range up to 2 km. In this paper are presented results of the inter comparison measurement campaigns EUCAARI, LUAMI and WAVES in which the WLS70 participated together with both up-to-date active and passive ground-based remote-sensing systems for providing high-quality meteorological parameters reference or ground-truth e.g. to satellite sensors. In May 2008, the first WLS70 prototype started retrieving vertical wind speed profiles during the EUCAARI campaign at Cabauw, the Netherlands. First results were very promising with vertical profiles up to 2km showing high frequency updrafts and downdrafts in the boundary layer. From November 2008 to January 2009, a WLS70 was deployed in Germany, together with an EZ Lidar™ ALS450, in the frame of the Lindenberg Upper Air Methods Intercomparison (LUAMI) campaign. During 62 days, the WLS70 Lidar retrieved 24/24 hours vertical profiles of the 3 wind components, putting in evidence wind shears and veers, as well as gusts and high frequency convective effects with the raise of the mixing layer or with incoming rain fronts. In-cloud and multilayer measurements are also available allowing a large range of additional investigations such as cloud-aerosol interactions or cloud droplet activation. From March to May 2009, LEOSPHERE deployed a WLS70 prototype unit at the Howard University Research Campus in Beltsville, Maryland, for the Water Vapor Validation Experiments (WAVES) from the initiative of the NOAA. The presence of numerous wind profilers, lidars and radio soundings was a perfect opportunity to test and improve this new compact and autonomous long range wind Lidar. The WLS70 showed Low Level Jet phenomena which have strong impact on air quality. In July 2009, the WLS70 took its definitive configuration with a new optical device installed on it allowing enhanced measurement range. New measurements were done at PNNL in Richland, Washington, and NASA Langley in Hampton, Virginia. These results are now processed and will bring a further proof on reliability and accuracy. During these intensive inter comparison campaigns the WLS70 Wind Lidar was validated against Lidars, Radars, Sodars and anemometers. The results show mostly a very good agreement between the instruments. Moreover, the measurements put in evidence both horizontal and vertical wind speed and wind direction vertical profiles and atmosphere structure (PBL height , clouds base) derived from Lidar data with good time resolution (10s/profile), good range resolution (50m from 100m to 2000m), and good velocity accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eosweb.larc.nasa.gov/project/polarwindsii/polarwindsii_dawn_dc8_1','SCIGOV-ASDC'); return false;" href="https://eosweb.larc.nasa.gov/project/polarwindsii/polarwindsii_dawn_dc8_1"><span>PolarWindsII_DAWN_DC8_1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://eosweb.larc.nasa.gov/">Atmospheric Science Data Center </a></p> <p></p> <p>2018-04-18</p> <p>... Layer Winds Surface Winds Upper Level Winds Wind Profiles LIDAR Calibration/Validation Order Data:  ... Model Barrier Flow Case Study DAWN Coherent Wind Profiling Flights DAWN Overview and Preliminary Flight Results ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1255115','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1255115"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo</p> <p></p> <p>High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740007409','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740007409"><span>The space shuttle payload planning working groups. Volume 5: Solar physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1973-01-01</p> <p>The findings of the Solar Physics working group of the space shuttle payload planning activity are presented. The areas to be investigated by the solar physics experiments are: (1) the production of mechanical energy in the subphotospheric layers and its transport and dissipation in the upper layers of the atmosphere, (2) the mass flux from the subphotospheric layers into the chromosphere and corona and beyond the solar wind, (3) solar activity and its relationship to magnetic fields, and (4) the production of solar flares. The approach to be followed in conducting the experiments and the equipment required are defined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA018434','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA018434"><span>Atmospheric Structure White Sands Missile Range, New Mexico. Part 3. Upper Air and Surface Data: White Sands Desert Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1975-07-01</p> <p>Parameter and Instrument Types WIND VELOCITY Range of Values or Environemnt Data Reliability Rawin Sets, AN/GMD-IA, WBRT -47 (with- out slant...Environment PRESSURE Rawin Sets, AN/GMD-1A, 2A*, A*, WBRT -57, etc. 10 to 50 mb 50 to 200 mb 200 to 500 mb greater than 500 mb Data...Reliability Rawin Sets, (5 to 99%) AN/GMD-IA, 2A Temperature greater 4, WBRT -57, etc. than 0oC 5% using ML-A76 Hy- Temperature 0° to gristor or</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993IJRSP..22..197S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993IJRSP..22..197S"><span>All sky imaging Fabry-Perot spectrometer for optical investigation of the upper atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sekar, R.; Gurubaran, S.; Sridharan, R.</p> <p>1993-06-01</p> <p>A simple optical design, keeping in view of the available components, has been worked out to develop the 'all sky imaging Fabry-Perot spectrometer' to study the spatial structures in thermospheric winds and temperature. This system comprises three subsystems, namely, (1) field widening front-end optics, (2) high resolution Fabry-Perot spectrometer and (3) a two-dimensional detector. The design details of the above imaging spectrometer that has been commissioned for routine observations from Mt. Abu along with the first results on OI 6300 A airglow emission are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770020624','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770020624"><span>Interhemispheric survey of minor upper atmospheric constituents during October - November 1976</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gauntner, D. J. (Compiler); Haughney, L. C. (Compiler)</p> <p>1977-01-01</p> <p>The CV-990 aircraft coordinated several flights with a NASA U-2 aircraft, NOAA ground station measurements in Alaska, Hawaii, and American Samoa, and with Australian and New Zealand ground stations, aircraft, and a balloon experiment in the Southern hemisphere. Data were obtained for species including ozone, total ozone, the oxides of nitrogen, the chlorofluoromethanes, water vapor, nitric acid, carbon monoxide, carbon dioxide, hydrogen chloride, Aitken nuclei, ammonia, aerosols, temperatures, and winds. Individual experiment results and selected analyses are presented. The experimental data include total column densities, latitude variations, interhemisphere differences, and vertical profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26074664','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26074664"><span>Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hauck, J; Völker, C; Wang, T; Hoppema, M; Losch, M; Wolf-Gladrow, D A</p> <p>2013-12-01</p> <p>Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO 2 . In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO 2 . In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO 2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1335209-incorporating-atmospheric-stability-effects-floris-engineering-model-wakes-wind-farms','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1335209-incorporating-atmospheric-stability-effects-floris-engineering-model-wakes-wind-farms"><span>Incorporating atmospheric stability effects into the FLORIS engineering model of wakes in wind farms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gebraad, Pieter M. O.; Churchfield, Matthew J.; Fleming, Paul A.</p> <p>2016-10-03</p> <p>Atmospheric stability conditions have an effect on wind turbine wakes. This is an important factor in wind farms in which the wake properties affect the performance of downstream turbines. In the stable atmosphere, wind direction shear has a lateral skewing effect on the wakes. In this study, we describe changes to the FLOw Redirection and Induction in Steady-state (FLORIS) wake engineering model to incorporate and parameterize this effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26SS....5...50L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26SS....5...50L"><span>The Impacts of Bias in Cloud-Radiation-Dynamics Interactions on Central Pacific Seasonal and El Niño Simulations in Contemporary GCMs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, J.-L. F.; Suhas, E.; Richardson, Mark; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Lee, Tong; Fetzer, Eric; Stephens, Graeme; Shen, Min-Hua</p> <p>2018-02-01</p> <p>Most of the global climate models (GCMs) in the Coupled Model Intercomparison Project, phase 5 do not include precipitating ice (aka falling snow) in their radiation calculations. We examine the importance of the radiative effects of precipitating ice on simulated surface wind stress and sea surface temperatures (SSTs) in terms of seasonal variation and in the evolution of central Pacific El Niño (CP-El Niño) events. Using controlled simulations with the CESM1 model, we show that the exclusion of precipitating ice radiative effects generates a persistent excessive upper-level radiative cooling and an increasingly unstable atmosphere over convective regions such as the western Pacific and tropical convergence zones. The invigorated convection leads to persistent anomalous low-level outflows which weaken the easterly trade winds, reducing upper-ocean mixing and leading to a positive SST bias in the model mean state. In CP-El Niño events, this means that outflow from the modeled convection in the central Pacific reduces winds to the east, allowing unrealistic eastward propagation of warm SST anomalies following the peak in CP-El Niño activity. Including the radiative effects of precipitating ice reduces these model biases and improves the simulated life cycle of the CP-El Niño. Improved simulations of present-day tropical seasonal variations and CP-El Niño events would increase the confidence in simulating their future behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC43F..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC43F..05W"><span>The Role of Atmospheric Measurements in Wind Power Statistical Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wharton, S.; Bulaevskaya, V.; Irons, Z.; Newman, J. F.; Clifton, A.</p> <p>2015-12-01</p> <p>The simplest wind power generation curves model power only as a function of the wind speed at turbine hub-height. While the latter is an essential predictor of power output, it is widely accepted that wind speed information in other parts of the vertical profile, as well as additional atmospheric variables including atmospheric stability, wind veer, and hub-height turbulence are also important factors. The goal of this work is to determine the gain in predictive ability afforded by adding additional atmospheric measurements to the power prediction model. In particular, we are interested in quantifying any gain in predictive ability afforded by measurements taken from a laser detection and ranging (lidar) instrument, as lidar provides high spatial and temporal resolution measurements of wind speed and direction at 10 or more levels throughout the rotor-disk and at heights well above. Co-located lidar and meteorological tower data as well as SCADA power data from a wind farm in Northern Oklahoma will be used to train a set of statistical models. In practice, most wind farms continue to rely on atmospheric measurements taken from less expensive, in situ instruments mounted on meteorological towers to assess turbine power response to a changing atmospheric environment. Here, we compare a large suite of atmospheric variables derived from tower measurements to those taken from lidar to determine if remote sensing devices add any competitive advantage over tower measurements alone to predict turbine power response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A53B0272L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A53B0272L"><span>Atmospheric rivers causing high accumulation storms in East Antarctica: regional climate model evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lazzara, M. A.; Tsukernik, M.; Gorodetskaya, I.</p> <p>2016-12-01</p> <p>Recent studies confirmed that atmospheric rivers (ARs) reach the continent of Antarctica and thus influence the Antarctic accumulation patterns and the ice sheet mass balance (Gorodetskaya et al. 2014, GRL). Similar to mid-latitude ARs, Antarctic ARs are associated with a blocking pattern downstream of a cyclone, which allows channeling of moisture toward the continent. However, due to the extremely cold atmosphere, Antarctic ARs possess some unique features. First, the existence of an AR in high latitudes is always associated with warm advection. Second, in order for an AR to penetrate the continent, it needs to overcome strong low-level outflow winds - katabatic winds - coming from the interior of the continent. Thirdly, sea ice surrounding the Antarctic ice sheet introduces an additional "cold barrier" decreasing the tropospheric moisture holding capacity and promoting precipitation before reaching the ice sheet. We believe these factors contribute to the scarcity of AR events influencing the ice sheet surface mass balance. Nevertheless, their presence is clearly seen in the long-term record. In particular, anomalous accumulation in 2009 and 2011 in Dronning Maud Land in East Antarctica has been linked to atmospheric rivers. We performed a detailed investigation of several AR storm events from 2009 and 2011 using the Weather Research and Forecasting (WRF) model simulations. These simulations depicted the synoptic scale development of storms that led to an anomalous precipitation pattern in the East Antarctic. We investigated the role of the upper level vs. lower level forcing in the formation of the contributing storms. The moisture and temperature anomalies of each case are evaluated in the context of synoptic and large-scale atmospheric forcing. We also performed sensitivity studies to determine the role of sea ice in the development of these systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...832..173S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...832..173S"><span>Two Regimes of Interaction of a Hot Jupiter’s Escaping Atmosphere with the Stellar Wind and Generation of Energized Atomic Hydrogen Corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shaikhislamov, I. F.; Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Prokopov, P. A.; Berezutsky, A. G.; Zakharov, Yu. P.; Posukh, V. G.</p> <p>2016-12-01</p> <p>The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “captured by the star” regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “blown by the wind” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “blown by the wind” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “captured by the star” regime) are of importance for the interpretation of Lyα absorption features in exoplanetary transit spectra and characterization of the plasma environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1393325','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1393325"><span>Why wind-farm developers should care about measuring atmospheric turbulence? [Chaos in the Air: Unraveling the Complex Relationship Between Wind Power and Atmospheric turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wharton, Sonia; Newman, Jennifer F.</p> <p></p> <p>The role of atmospheric turbulence in influencing wind-turbine power production remains an unsolved mystery despite a growing number of researchers who have attempted to make sense of this issue. Turbulence, a term for short-term deviations around the average wind speed, can cause fluctuations in turbine power production and structural loads. While research strongly suggests that ignoring atmospheric turbulence can result in significant errors in power-curve measurements and annual energy production, it appears that there may be no universal relationship between turbulence and power production. Typically when we think of a wind farm operating in a turbulent atmosphere, we picture amore » waked turbine, battered by vortex eddies (circular wind flow) shed from turbine blades upwind. However, turbulence is present nearly everywhere, and is constantly produced and diminished over a wide range of temporal and spatial scales. This article aims to unravel some of the complex factors that remain unsolved regarding turbulence and wind power« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1393325-why-wind-farm-developers-should-care-about-measuring-atmospheric-turbulence-chaos-air-unraveling-complex-relationship-between-wind-power-atmospheric-turbulence','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1393325-why-wind-farm-developers-should-care-about-measuring-atmospheric-turbulence-chaos-air-unraveling-complex-relationship-between-wind-power-atmospheric-turbulence"><span>Why wind-farm developers should care about measuring atmospheric turbulence? [Chaos in the Air: Unraveling the Complex Relationship Between Wind Power and Atmospheric turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wharton, Sonia; Newman, Jennifer F.</p> <p>2017-09-11</p> <p>The role of atmospheric turbulence in influencing wind-turbine power production remains an unsolved mystery despite a growing number of researchers who have attempted to make sense of this issue. Turbulence, a term for short-term deviations around the average wind speed, can cause fluctuations in turbine power production and structural loads. While research strongly suggests that ignoring atmospheric turbulence can result in significant errors in power-curve measurements and annual energy production, it appears that there may be no universal relationship between turbulence and power production. Typically when we think of a wind farm operating in a turbulent atmosphere, we picture amore » waked turbine, battered by vortex eddies (circular wind flow) shed from turbine blades upwind. However, turbulence is present nearly everywhere, and is constantly produced and diminished over a wide range of temporal and spatial scales. This article aims to unravel some of the complex factors that remain unsolved regarding turbulence and wind power« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130008193','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130008193"><span>Determining the Probability of Violating Upper-Level Wind Constraints for the Launch of Minuteman Ill Ballistic Missiles At Vandenberg Air Force Base</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shafer, Jaclyn A.; Brock, Tyler M.</p> <p>2013-01-01</p> <p>The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman Ill ballistic missile. The 30 OSSWF requested the Applied Meteorology Unit (AMU) analyze VAFB sounding data to determine the probability of violating (PoV) upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a graphical user interface (GUI) that will calculate the PoV of each constraint on the day of launch. The AMU suggested also including forecast sounding data from the Rapid Refresh (RAP) model. This would provide further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours, and help to improve the overall upper winds forecast on launch day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830049370&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkinetic%2Benergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830049370&hterms=kinetic+energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dkinetic%2Benergy"><span>The analysis and kinetic energy balance of an upper-level wind maximum during intense convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fuelberg, H. E.; Jedlovec, G. J.</p> <p>1982-01-01</p> <p>The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22037166-constraining-high-speed-winds-exoplanet-atmospheres-through-observations-anomalous-doppler-shifts-during-transit','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22037166-constraining-high-speed-winds-exoplanet-atmospheres-through-observations-anomalous-doppler-shifts-during-transit"><span>CONSTRAINING HIGH-SPEED WINDS IN EXOPLANET ATMOSPHERES THROUGH OBSERVATIONS OF ANOMALOUS DOPPLER SHIFTS DURING TRANSIT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miller-Ricci Kempton, Eliza; Rauscher, Emily, E-mail: ekempton@ucolick.org</p> <p>2012-06-01</p> <p>Three-dimensional (3D) dynamical models of hot Jupiter atmospheres predict very strong wind speeds. For tidally locked hot Jupiters, winds at high altitude in the planet's atmosphere advect heat from the day side to the cooler night side of the planet. Net wind speeds on the order of 1-10 km s{sup -1} directed towards the night side of the planet are predicted at mbar pressures, which is the approximate pressure level probed by transmission spectroscopy. These winds should result in an observed blueshift of spectral lines in transmission on the order of the wind speed. Indeed, Snellen et al. recently observedmore » a 2 {+-} 1 km s{sup -1} blueshift of CO transmission features for HD 209458b, which has been interpreted as a detection of the day-to-night (substellar to anti-stellar) winds that have been predicted by 3D atmospheric dynamics modeling. Here, we present the results of a coupled 3D atmospheric dynamics and transmission spectrum model, which predicts the Doppler-shifted spectrum of a hot Jupiter during transit resulting from winds in the planet's atmosphere. We explore four different models for the hot Jupiter atmosphere using different prescriptions for atmospheric drag via interaction with planetary magnetic fields. We find that models with no magnetic drag produce net Doppler blueshifts in the transmission spectrum of {approx}2 km s{sup -1} and that lower Doppler shifts of {approx}1 km s{sup -1} are found for the higher drag cases, results consistent with-but not yet strongly constrained by-the Snellen et al. measurement. We additionally explore the possibility of recovering the average terminator wind speed as a function of altitude by measuring Doppler shifts of individual spectral lines and spatially resolving wind speeds across the leading and trailing terminators during ingress and egress.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790008306','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790008306"><span>Asymmetries in ozone depressions between the polar stratospheres following a solar proton event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maeda, K.; Heath, D. F.</p> <p>1978-01-01</p> <p>Ozone depletions in the polar stratosphere during the energetic solar proton event on 4 August 1972 were observed by the backscattered ultraviolet (BUV) experiments on the Nimbus 4 satellite. The observed ozone contents, the ozone depressions and their temporal variations above the 4 mb level exhibited distinct asymmetries between the northern and southern hemispheres. Since the ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres, due to the geomagnetic dipole field, it is suggested that these asymmetries may be explained in terms of the differences in dynamics between the summer and the winter polar atmospheres. In the summer (northern) hemisphere, the stratospheric and mesospheric ozone depletion and recovery are smooth functions of time due to the preponderance of undistributed orderly flow in this region. On the other hand, the temporal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) exhibits large amplitude irregularities. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperatures and winds observed by balloons and rocket soundings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JPhCS.555a2071M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JPhCS.555a2071M"><span>Simulation of a 5MW wind turbine in an atmospheric boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meister, Konrad; Lutz, Thorsten; Krämer, Ewald</p> <p>2014-12-01</p> <p>This article presents detached eddy simulation (DES) results of a 5MW wind turbine in an unsteady atmospheric boundary layer. The evaluation performed in this article focuses on turbine blade loads as well as on the influence of atmospheric turbulence and tower on blade loads. Therefore, the turbulence transport of the atmospheric boundary layer to the turbine position is analyzed. To determine the influence of atmospheric turbulence on wind turbines the blade load spectrum is evaluated and compared to wind turbine simulation results with uniform inflow. Moreover, the influences of different frequency regimes and the tower on the blade loads are discussed. Finally, the normal force coefficient spectrum is analyzed at three different radial positions and the influence of tower and atmospheric turbulence is shown.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJMPS..4260175Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJMPS..4260175Y"><span>Wake Numerical Simulation Based on the Park-Gauss Model and Considering Atmospheric Stability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiangsheng; Zhao, Ning; Tian, Linlin; Zhu, Jun</p> <p>2016-06-01</p> <p>In this paper, a new Park-Gauss model based on the assumption of the Park model and the Eddy-viscosity model is investigated to conduct the wake numerical simulation for solving a single wind turbine problem. The initial wake radius has been modified to improve the model’s numerical accuracy. Then the impact of the atmospheric stability based on the Park-Gauss model has been studied in the wake region. By the comparisons and the analyses of the test results, it turns out that the new Park-Gauss model could achieve better effects of the wind velocity simulation in the wake region. The wind velocity in the wake region recovers quickly under the unstable atmospheric condition provided the wind velocity is closest to the test result, and recovers slowly under stable atmospheric condition in case of the wind velocity is lower than the test result. Meanwhile, the wind velocity recovery falls in between the unstable and stable neutral atmospheric conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AnGeo..14..986E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AnGeo..14..986E"><span>Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eymard, L.; Planton, S.; Durand, P.; Le Visage, C.; Le Traon, P. Y.; Prieur, L.; Weill, A.; Hauser, D.; Rolland, J.; Pelon, J.; Baudin, F.; Bénech, B.; Brenguier, J. L.; Caniaux, G.; de Mey, P.; Dombrowski, E.; Druilhet, A.; Dupuis, H.; Ferret, B.; Flamant, C.; Flamant, P.; Hernandez, F.; Jourdan, D.; Katsaros, K.; Lambert, D.; Lefèvre, J. M.; Le Borgne, P.; Le Squere, B.; Marsoin, A.; Roquet, H.; Tournadre, J.; Trouillet, V.; Tychensky, A.; Zakardjian, B.</p> <p>1996-09-01</p> <p>The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-07pd0420.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-07pd0420.html"><span>KSC-07pd0420</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2007-02-16</p> <p>KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, the Delta II rocket with the THEMIS spacecraft atop awaits launch on Pad 17-B. Friday's launch attempt was scrubbed due to upper-level wind violation. The launch window is 6:01 p.m. to 6:19 p.m. EST on Saturday. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Kim Shiflett</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003267&hterms=theory+everything&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtheory%2Beverything','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003267&hterms=theory+everything&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtheory%2Beverything"><span>Solar Coronal Jets: Observations, Theory, and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A. C.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; DeVore, C. R.; Archontis, V.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003267'); toggleEditAbsImage('author_20170003267_show'); toggleEditAbsImage('author_20170003267_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003267_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003267_hide"></p> <p>2016-01-01</p> <p>Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of "nominal" solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850027226','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850027226"><span>A preliminary intercomparison between numerical upper wind forecasts and research aircraft measurements of jet streams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shapiro, M. A.</p> <p>1982-01-01</p> <p>During the past several years, research on the structure of extra-tropical jet streams has been carried out with direct measurements with instrumented research aircraft from the National Center for Atmospheric Research (NCAR). These measurements have been used to describe the wind, temperature, turbulence and chemical characteristics of jet streams. A fundamental question is one of assessing the potential value of existing operational numerical forecast models for forecasting the meteorological conditions along commercial aviation flight routes so as to execute Minimum Flight Time tracks and thus obtain the maximum efficiency in aviation fuel consumption. As an initial attempt at resolving this question, the 12 hour forecast output from two models was expressed in terms of a common output format to ease their intercomparison. The chosen models were: (1) the Fine-Mesh Spectral hemispheric and (2) the Limited Area Fine Mesh (LFM) model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003317','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003317"><span>Solar Coronal Jets: Observations, Theory, and Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003317'); toggleEditAbsImage('author_20170003317_show'); toggleEditAbsImage('author_20170003317_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003317_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003317_hide"></p> <p>2016-01-01</p> <p>Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760004551','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760004551"><span>A feasibility study for the detection of upper atmospheric winds using a ground based laser Doppler velocimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomson, J. A. L.; Meng, J. C. S.</p> <p>1975-01-01</p> <p>A possible measurement program designed to obtain the information requisite to determining the feasibility of airborne and/or satellite-borne LDV (Laser Doppler Velocimeter) systems is discussed. Measurements made from the ground are favored over an airborne measurement as far as for the purpose of determining feasibility is concerned. The expected signal strengths for scattering at various altitude and elevation angles are examined; it appears that both molecular absorption and ambient turbulence degrade the signal at low elevation angles and effectively constrain the ground based measurement of elevation angles exceeding a critical value. The nature of the wind shear and turbulence to be expected are treated from a linear hydrodynamic model - a mountain lee wave model. The spatial and temporal correlation distances establish requirements on the range resolution, the maximum detectable range and the allowable integration time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830063492&hterms=1584&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2526%25231584','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830063492&hterms=1584&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3D%2526%25231584"><span>The latitude-height structure of 40-50 day variations in atmospheric angular momentum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, J. R.; Rosen, R. D.</p> <p>1983-01-01</p> <p>Using five years of U.S. National Meteorological Center twice-daily global analyses, a description of the two-dimensional latitude-height structure of the winds responsible for quasi-periodic variations in the relative angular momentum of the atmosphere observed by Langley et al. (1981) is constructed. Cross-spectral and amplitude phase eigenvector techniques indicate that these variations are associated with wave-like motions in the tropical upper troposphere which propagate poleward and downward in phase within the tropics. The tropical component is suggested to be the zonally averaged part of the motions described by Madden and Julian (1971, 1972), while a Northern Hemisphere midlatitude component whose phase is essentially independent of height may be a direct response to the tropical motions. Alternatively, both motions may be the common response to an as yet unidentified tropical forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoRL..35.6804R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoRL..35.6804R"><span>Vertical propagation of information in a middle atmosphere data assimilation system by gravity-wave drag feedbacks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Shuzhan; Polavarapu, Saroja M.; Shepherd, Theodore G.</p> <p>2008-03-01</p> <p>The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030001123&hterms=Administration+Global&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAdministration%2BGlobal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030001123&hterms=Administration+Global&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DAdministration%2BGlobal"><span>Global Reference Atmospheric Model and Trace Constituents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)</p> <p>2002-01-01</p> <p>Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of the Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR Intemationa1 Reference Atmosphere (CIRA). MAP data in GRAM are augmented by a specially-derived longitude variation climatology. Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH, and CO2. Water vapor in GRAM is based on a combination of GUACA, Air Force Geophysics Laboratory (AFGL), and NASA Langley Research Center climatologies. Other constituents below 120 km are based on a combination of AFGL and h4AP/CIRA climatologies. This report presents results of comparisons between GRAM Constituent concentrations and those provided by the Naval Research Laboratory (NRL) climatology of Summers (NRL,/MR/7641-93-7416, 1993). GRAM and NRL concentrations were compared for seven species (CH4, CO, CO2, H2O, N2O, O2, and O3) for months January, April, July, and October, over height range 0-115 km, and latitudes -90deg to + 90deg at 10deg increments. Average GRAM-NRL correlations range from 0.878 (for CO) to 0.975 (for O3), with an average over all seven species of 0.936 (standard deviation 0.049).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.8348Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.8348Z"><span>Effects of magnetospheric lobe cell convection on dayside upper thermospheric winds at high latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, B.; Wang, W.; Wu, Q.; Knipp, D.; Kilcommons, L.; Brambles, O. J.; Liu, J.; Wiltberger, M.; Lyon, J. G.; Häggström, I.</p> <p>2016-08-01</p> <p>This paper investigates a possible physical mechanism of the observed dayside high-latitude upper thermospheric wind using numerical simulations from the coupled magnetosphere-ionosphere-thermosphere (CMIT) model. Results show that the CMIT model is capable of reproducing the unexpected afternoon equatorward winds in the upper thermosphere observed by the High altitude Interferometer WIND observation (HIWIND) balloon. Models that lack adequate coupling produce poleward winds. The modeling study suggests that ion drag driven by magnetospheric lobe cell convection is another possible mechanism for turning the climatologically expected dayside poleward winds to the observed equatorward direction. The simulation results are validated by HIWIND, European Incoherent Scatter, and Defense Meteorological Satellite Program. The results suggest a strong momentum coupling between high-latitude ionospheric plasma circulation and thermospheric neutral winds in the summer hemisphere during positive IMF Bz periods, through the formation of magnetospheric lobe cell convection driven by persistent positive IMF By. The CMIT simulation adds important insight into the role of dayside coupling during intervals of otherwise quiet geomagnetic activity</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11F1941B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11F1941B"><span>Estimating the mass density in the thermosphere with the CYGNSS mission.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bussy-Virat, C.; Ridley, A. J.</p> <p>2017-12-01</p> <p>The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December 2016, is a constellation of eight satellites orbiting the Earth at 510 km. Its goal is to improve our understanding of rapid hurricane wind intensification. Each CYGNSS satellite uses GPS signals that are reflected off of the ocean's surface to measure the wind. The GPS can also be used to specify the orbit of the satellites quite precisely. The motion of satellites in low Earth orbit are greatly influenced by the neutral density of the surrounding atmosphere through drag. Modeling the neutral density in the upper atmosphere is a major challenge as it involves a comprehensive understanding of the complex coupling between the thermosphere and the ionosphere, the magnetosphere, and the Sun. This is why thermospheric models (such as NRLMSIS, Jacchia-Bowman, HASDM, GITM, or TIEGCM) can only approximate it with a limited accuracy, which decreases during strong geomagnetic events. Because atmospheric drag directly depends on the thermospheric density, it can be estimated applying filtering methods to the trajectories of the CYGNSS observatories. The CYGNSS mission can provide unique results since the constellation of eight satellites enables multiple measurements of the same region at close intervals ( 10 minutes), which can be used to detect short time scale features. Moreover, the CYGNSS spacecraft can be pitched from a low to high drag attitude configuration, which can be used in the filtering methods to improve the accuracy of the atmospheric density estimation. The methodology and the results of this approach applied to the CYGNSS mission will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033389','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033389"><span>Northerly surface winds over the eastern North Pacific Ocean in spring and summer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.</p> <p>2008-01-01</p> <p>Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850006049','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850006049"><span>Atmospheric environment for Space Shuttle (STS-41D) launch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.</p> <p>1984-01-01</p> <p>Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51I1384L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51I1384L"><span>Disturbance Driven Rainfall in O`ahu, Hawai`i (1990-2010)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Longman, R. J.; Elison Timm, O.; Giambelluca, T. W.; Kaiser, L.; Newman, A. J.; Arnold, J.; Clark, M. P.</p> <p>2017-12-01</p> <p>Trade wind orographic rainfall is the most prevalent synoptic weather pattern in Hawai`i and provides a year-round source of moisture to the windward areas across the Island chain. Significant contributions to total and extreme precipitation have also been linked to one of four atmospheric disturbance situations that include: cold fronts, Kona storms, upper-tropospheric disturbances (upper level lows), and tropical systems. The primary objective of this research is to determine how these disturbance types contribute to total wet-season rainfall (RF) on the Island of O`ahu, Hawai`i and to identify any significant changes in the frequency of occurrence and or the intensity of these events. Atmospheric fronts that occurred in the Hawai`i region (17-26°N, 150-165°W) were extracted from a global dataset and combined with a Kona low and upper level low dataset to create a daily categorical weather classification time series (1990-2010). Mean rainfall was extracted from gridded daily O`ahu RF maps. Results show that the difference between a wet and dry year is predominantly explained by the RF contributions from disturbance events (r2 = 0.57, p < 0.01), in particularly, the contributions coming from Kona low and cold fronts that cross the Island. During the wettest season on record, disturbances accounted for 48% of the total RF, while during the driest season they accounted for only 6% of the total RF. The event-based RF analysis also compared the RF intensity in the absence of disturbance events with the average RF intensity on days when atmospheric fronts are present but do not cross the island. The results show that non-crossing fronts reduce the average RF intensity. A possible explanation is that these events are too far away to produce RF, but close enough to disrupt normal trade wind flow, thus limiting orographic RF on the island. This new event-based RF analysis has important implications for the projection of regional climate change in Hawai`i. Our results suggest that if storm tracks were to shift poleward, O`ahu wet season RF would be reduced. The most obvious effect is that fronts crossing the Island would likely occur less frequently reducing the number of days per year with heavy cold front rainfall. In addition, non-crossing fronts could occur more often and hence reducing the orographic RF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A44B..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A44B..07S"><span>Piecewise Potential Vorticity Inversion for Intense Extratropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seiler, C.; Zwiers, F. W.</p> <p>2017-12-01</p> <p>Global climate models (GCMs) tend to simulate too few intense extratropical cyclones (ETCs) in the Northern Hemisphere (NH) under historic climate conditions. This bias may arise from the interactions of multiple drivers, including surface temperature gradients, latent heating in the lower troposphere, and the upper-level jet stream. Previous attempts to quantify the importance of these drivers include idealized model experiments or statistical approaches. The first method however cannot easily be implemented for a multi-GCM ensemble, and the second approach does not disentangle the interactions among drivers, nor does it prove causality. An alternative method that overcomes these limitations is piecewise potential vorticity inversion (PPVI). PPVI derives the wind and geopotential height fields by inverting potential vorticity (PV) for discrete atmospheric levels. Despite being a powerful diagnostic tool, PPVI has primarily been used to study the dynamics of individual events only. This study presents the first PPVI climatology for the 5% most intense NH ETCs that occurred from 1980 to 2016. Conducting PPVI to 3273 ETC tracks identified in ERA-Interim reanalysis, we quantified the contributions from 3 atmospheric layers to ETC intensity. The respective layers are the surface (1000 hPa), a lower atmospheric level (700-850 hPa) and an upper atmospheric level (100-500 hPa) that are associated with the contributions from surface temperature gradients, latent heating, and the jet stream, respectively. Results show that contributions are dominated by the lower level (40%), followed by the upper level (20%) and the surface (17%), while the remaining 23% are associated with the background flow. Contributions from the surface and the lower level are stronger in the western ocean basins owed to the presence of the warm ocean currents, while contributions from the upper level are stronger in the eastern basins. Vertical cross sections of ETC-centered composites show an undulation of the dynamic tropopause and the formation of a PV tower with values exceeding 1 PV unit during maximum ETC intensity. The dominant contribution from the lower level underlines the importance of latent heating for intense ETCs. The ability of GCMs to reproduce this mechanism remains to be assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810016481','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810016481"><span>Thermal structure and dynamics of the Jovian Atmosphere. 1: The Great Red Spot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flasar, F. M.; Cunrath, B. J.; Pirraglia, J. A.; Clark, P. C.; French, R. G.; Gierasch, P. J.</p> <p>1980-01-01</p> <p>Temperatures and thermal winds, derived from Voyager infrared spectroscopy (IRIS) data over the Great Red Spot (GRS) and its environs, are presented. The atmosphere over the GRS is characterized by a tropopause which is cold relative to its environment and an upper stratosphere which is relatively warm. The cold tropopause implies a decrease in anticyclonic vorticity with height above 500 mb through the lower stratosphere. IRIS observations at 5 microns indicate little emission from the GRS itself, but enhanced emission in a ring about it, in agreement with recent ground based results. The behavior of the tropopause and 5 micron temperatures can be consistently interpreted as resulting from a circulation which rises within the GRS and subsides in the area around it. The explanation of the upper stratospheric temperatures is not so straightforward. A previous suggestion that they may be a manifestation of the linear vertical propagation of Rossby waves appears inconsistent with the gross east-west symmetry in the stratospheric temperatures over the GRS. The implications of the present results for various theoretical models of the GRS are examined, and the possibility that latent heat release drives the GRS is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770051551&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770051551&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DTidal%2Bwaves"><span>Theoretical aspects of tidal and planetary wave propagation at thermospheric heights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Volland, H.; Mayr, H. G.</p> <p>1977-01-01</p> <p>A simple semiquantitative model is presented which allows analytic solutions of tidal and planetary wave propagation at thermospheric heights. This model is based on perturbation approximation and mode separation. The effects of viscosity and heat conduction are parameterized by Rayleigh friction and Newtonian cooling. Because of this simplicity, one gains a clear physical insight into basic features of atmospheric wave propagation. In particular, we discuss the meridional structures of pressure and horizontal wind (the solutions of Laplace's equation) and their modification due to dissipative effects at thermospheric heights. Furthermore, we solve the equations governing the height structure of the wave modes and arrive at a very simple asymptotic solution valid in the upper part of the thermosphere. That 'system transfer function' of the thermosphere allows one to estimate immediately the reaction of the thermospheric wave mode parameters such as pressure, temperature, and winds to an external heat source of arbitrary temporal and spatial distribution. Finally, the diffusion effects of the minor constituents due to the global wind circulation are discussed, and some results of numerical calculations are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1355906','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1355906"><span>A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brasseur, James G.</p> <p></p> <p>The central aims of the DOE-supported “Cyber Wind Facility” project center on the recognition that wind turbines over land and ocean generate power from atmospheric winds that are inherently turbulent and strongly varying, both spatially over the rotor disk and in temporally as the rotating blades pass through atmospheric eddies embedded within the mean wind. The daytime unstable atmospheric boundary layer (ABL) is particularly variable in space time as solar heating generates buoyancy-driven motions that interact with strong mean shear in the ABL “surface layer,” the lowest 200 - 300 m where wind turbines reside in farms. With the “Cybermore » Wind Facility” (CWF) program we initiate a research and technology direction in which “cyber data” are generated from “computational experiments” within a “facility” akin to a wind tunnel, but with true space-time atmospheric turbulence that drive utility-scale wind turbines at full-scale Reynolds numbers. With DOE support we generated the key “modules” within a computational framework to create a first generation Cyber Wind Facility (CWF) for single wind turbines in the daytime ABL---both over land where the ABL globally unstable and over water with closer-to-neutral atmospheric conditions but with time response strongly affected by wave-induced forcing of the wind turbine platform (here a buoy configuration). The CWF program has significantly improved the accuracy of actuator line models, evaluated with the Cyber Wind Facility in full blade-boundary-layer-resolved mode. The application of the CWF made in this program showed the existence of important ramp-like response events that likely contribute to bearing fatigue failure on the main shaft and that the advanced ALM method developed here captures the primary nonsteady response characteristics. Long-time analysis uncovered distinctive key dynamics that explain primary mechanisms that underlie potentially deleterious load transients. We also showed that blade bend-twist coupling plays a central role in the elastic responses of the blades to atmospheric turbulence, impacting turbine power.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1225154-wind-forecast-improvement-project-wfip-public-private-partnership-addressing-wind-energy-forecast-needs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1225154-wind-forecast-improvement-project-wfip-public-private-partnership-addressing-wind-energy-forecast-needs"><span>The Wind Forecast Improvement Project (WFIP). A Public-Private Partnership Addressing Wind Energy Forecast Needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilczak, James M.; Finley, Cathy; Freedman, Jeff</p> <p></p> <p>The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collectionmore » of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122..901H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122..901H"><span>Seasonal variability of the hydrogen exosphere of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halekas, J. S.</p> <p>2017-05-01</p> <p>The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission measures both the upstream solar wind and collisional products from energetic neutral hydrogen atoms that precipitate into the upper atmosphere after their initial formation by charge exchange with exospheric hydrogen. By computing the ratio between the densities of these populations, we derive a robust measurement of the column density of exospheric hydrogen upstream of the Martian bow shock. By comparing with Chamberlain-type model exospheres, we place new constraints on the structure and escape rates of exospheric hydrogen, derived from observations sensitive to a different and potentially complementary column from most scattered sunlight observations. Our observations provide quantitative estimates of the hydrogen exosphere with nearly complete temporal coverage, revealing order of magnitude seasonal changes in column density and a peak slightly after perihelion, approximately at southern summer solstice. The timing of this peak suggests either a lag in the response of the Martian atmosphere to solar inputs or a seasonal effect driven by lower atmosphere dynamics. The high degree of seasonal variability implied by our observations suggests that the Martian atmosphere and the thermal escape of light elements depend sensitively on solar inputs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1438C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1438C"><span>Seasonal and spatial variations in surface pCO2 and air-sea CO2 flux in the Chesapeake Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, W. J.; Chen, B.</p> <p>2017-12-01</p> <p>Bay-wide observations of surface water partial pressure of carbon dioxide (pCO2) were conducted in May, June, August, and October 2016 to study the spatial and seasonal variations in surface pCO2 and to estimate air-sea CO2 flux in the Chesapeake Bay. Overall, high surface pCO2 in the upper-bay decreased downstream rapidly below the atmospheric value near the bay bridge in the mid-bay and then increased slightly to the lower-bay where pCO2 approached the atmospheric level. Over the course of a year, pCO2 was higher than 1000 µatm in the upper bay and the highest pCO2 (2500 µatm) was observed in August. Significant biologically-induced pCO2 undersaturation was observed at the upper part of the mid-bay in August with pCO2 as low as 50 µatm and oversaturated DO% of 200%. In addition to biological control, vertical mixing and upwelling controlled by wind direction and tidal stage played an important role in controlling surface pCO2 in the mid-bay as is evidenced by co-occurrence of high pCO2 with low temperature and low oxygen or high salinity from the subsurface. These physical processes occurred regularly and in short time scale of hours, suggesting they must be considered in the assessment of annual air-sea CO2 flux. Seasonally, the upper-bay acted as a source for atmospheric CO2 over the course of a year. The boundary of upper and mid bay transited from a CO2 source to a sink from May to August and was a source again in October due to strong biological production in summer. In contrast, the mid-bay represented as a CO2 source with large temporal variation due to dynamic hydrographic settings. The lower-bay transited from a weak sink in May to equilibrated with the atmosphere from June to August, while became a source again in October. Moreover, the CO2 flux could be reversed very quickly under episodic severe weather events. Thus further research, including the influence of severe weather and subsequent bloom, is needed to get better understanding of the carbon cycling in the Chesapeake Bay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18046399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18046399"><span>Little or no solar wind enters Venus' atmosphere at solar minimum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, T L; Delva, M; Baumjohann, W; Auster, H-U; Carr, C; Russell, C T; Barabash, S; Balikhin, M; Kudela, K; Berghofer, G; Biernat, H K; Lammer, H; Lichtenegger, H; Magnes, W; Nakamura, R; Schwingenschuh, K; Volwerk, M; Vörös, Z; Zambelli, W; Fornacon, K-H; Glassmeier, K-H; Richter, I; Balogh, A; Schwarzl, H; Pope, S A; Shi, J K; Wang, C; Motschmann, U; Lebreton, J-P</p> <p>2007-11-29</p> <p>Venus has no significant internal magnetic field, which allows the solar wind to interact directly with its atmosphere. A field is induced in this interaction, which partially shields the atmosphere, but we have no knowledge of how effective that shield is at solar minimum. (Our current knowledge of the solar wind interaction with Venus is derived from measurements at solar maximum.) The bow shock is close to the planet, meaning that it is possible that some solar wind could be absorbed by the atmosphere and contribute to the evolution of the atmosphere. Here we report magnetic field measurements from the Venus Express spacecraft in the plasma environment surrounding Venus. The bow shock under low solar activity conditions seems to be in the position that would be expected from a complete deflection by a magnetized ionosphere. Therefore little solar wind enters the Venus ionosphere even at solar minimum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDG27007V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDG27007V"><span>Influences of Atmospheric Stability State on Wind Turbine Aerodynamic Loadings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vijayakumar, Ganesh; Lavely, Adam; Brasseur, James; Paterson, Eric; Kinzel, Michael</p> <p>2011-11-01</p> <p>Wind turbine power and loadings are influenced by the structure of atmospheric turbulence and thus on the stability state of the atmosphere. Statistical differences in loadings with atmospheric stability could impact controls, blade design, etc. Large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layer (NBL, MCBL) are used as inflow to the NREL FAST advanced blade-element momentum theory code to predict wind turbine rotor power, sectional lift and drag, blade bending moments and shaft torque. Using horizontal homogeneity, we combine time and ensemble averages to obtain converged statistics equivalent to ``infinite'' time averages over a single turbine. The MCBL required longer effective time periods to obtain converged statistics than the NBL. Variances and correlation coefficients among wind velocities, turbine power and blade loadings were higher in the MCBL than the NBL. We conclude that the stability state of the ABL strongly influences wind turbine performance. Supported by NSF and DOE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E.206B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E.206B"><span>ENA diagnostic of the solar wind interaction with Mars and Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barabash, Stas</p> <p></p> <p>Charge - exchange of the solar wind ions flowing around non-magnetized Mars and Venus on their exospheres results in hydrogen energetic neutral atom (ENA) emissions. Accelerated planetary ions may also experience charge - exchange resulting in planetary ENAs, mainly oxygen. The ENAs carry information on the ion distribution functions integrated over the line-of-sight and are used for remote sensing of the original plasma populations. The ASPERA-3/4 instruments (Analyzer of Space Plasmas and Energetic Atoms) onboard Mars Express and Venus Express missions performed the first-ever measurements of ENAs from these bodies in the energy range 100 eV - 10 keV. ENAs are mostly emitted by the magnetospheath plasma flowing around the induced magnetosphere. Due to lower gravity the Martian exosphere extends further in the magnetosheath than at Venus that makes Mars a “brighter ENA source”. We thus focus mostly on Mars and only briefly discuss ENA observations at Venus. ENA emissions from an elementary emitting volume in the magnetosheath are highly anisotropic and occur along the tangential line to the stream-line in this point. That makes impossible to obtain a global ENA image of the object from a single vantage point contrary to, for example, “classical” ENA imaging of the terrestrial ring current. At Mars the statistically obtained emission pattern shows an increase in the ENA flux perpendicular to the sun direction resembling a thick layer or a wall. The emissions coming mostly from the sub-solar point show an increase in the direction opposite to the convective electric field indicating the induced magnetosphere boundary is not cylindrically symmetric and closer to planet in this direction. Measurements of ENAs turned out to be an effective way to reveal the global dynamics of an induced magnetosphere. Arrival of an interplanetary shock to Mars and the associated compression of the induced magnetosphere are clearly detected as an abrupt termination of the ENA signal because the ENA wall suddenly moved away from the spacecraft. When the spacecraft stays sufficiently long inside the ENA wall, oscillations of the ENA signal with a period of 30 sec - few min (~0.01 Hz) can be observed. The oscillations of the similar frequency are observed in the electron and ion fluxes in the magnetosheath as well as magnetic field. Their physics is not understood. Mars Express/ASPERA-3 detected a slight increase of the ENA emissions above the magnetic anomalies. It may be related to the increase of the neutral densities above these regions. Contrary to the predictions, Mars Express/ASPERA-3 did not detect any oxygen ENAs. That allowed to provide upper limits for the hydrogen exospheric densities which turned out to be much lower at the solar minimum than expected. Finally, we introduce a few “exotic” ideas of using ENAs for studies the near-Venus and near-Mars space. Using ENAs backscattered from the atmosphere one may obtain global precipitating maps. Using the neutral solar wind passing through the upper atmosphere at the terminate region, one may realize neutral solar wind occultation geometry and use the ENA signal variation for the upper atmosphere profiling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P12A..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P12A..05G"><span>Estimating Collisionally-Induced Escape Rates of Light Neutrals from Early Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gacesa, M.; Zahnle, K. J.</p> <p>2016-12-01</p> <p>Collisions of atmospheric gases with hot oxygen atoms constitute an important non-thermal mechanism of escape of light atomic and molecular species at Mars. In this study, we present revised theoretical estimates of non-thermal escape rates of neutral O, H, He, and H2 based on recent atmospheric density profiles obtained from the NASA Mars Atmosphere and Volatile Evolution (MAVEN) mission and related theoretical models. As primary sources of hot oxygen, we consider dissociative recombination of O2+ and CO2+ molecular ions. We also consider hot oxygen atoms energized in primary and secondary collisions with energetic neutral atoms (ENAs) produced in charge-exchange of solar wind H+ and He+ ions with atmospheric gases1,2. Scattering of hot oxygen and atmospheric species of interest is modeled using fully-quantum reactive scattering formalism3. This approach allows us to construct distributions of vibrationally and rotationally excited states and predict the products' emission spectra. In addition, we estimate formation rates of excited, translationally hot hydroxyl molecules in the upper atmosphere of Mars. The escape rates are calculated from the kinetic energy distributions of the reaction products using an enhanced 1D model of the atmosphere for a range of orbital and solar parameters. Finally, by considering different scenarios, we estimate the influence of these escape mechanisms on the evolution of Mars's atmosphere throughout previous epochs and their impact on the atmospheric D/H ratio. M.G.'s research was supported by an appointment to the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Universities Space Research Association under contract with NASA. 1N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere", Astroph. J., 790, 98 (2014) 2M. Gacesa, N. Lewkow, and V. Kharchenko, "Non-thermal production and escape of OH from the upper atmosphere of Mars", arXiv:1607.03602 (2016) 3M. Gacesa and V. Kharchenko, "Non-thermal escape of molecular hydrogen from Mars", Geophys. Res. Lett., 39, L10203 (2012).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.6635D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.6635D"><span>Trajectories of thermospheric air parcels flowing over Alaska, reconstructed from ground-based wind measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dhadly, Manbharat; Conde, Mark</p> <p>2017-06-01</p> <p>It is widely presumed that the convective stability and enormous kinematic viscosity of Earth's upper thermosphere hinders development of both horizontal and vertical wind shears and other gradients. Any strong local structure (over scale sizes of several hundreds of kilometers) that might somehow form would be expected to dissipate rapidly. Air flow in such an atmosphere should be relatively simple, and transport effects only slowly disperse and mix air masses. However, our observations show that wind fields in Earth's thermosphere have much more local-scale structure than usually predicated by current modeling techniques, at least at auroral latitudes; they complicate air parcel trajectories enormously, relative to typical expectations. For tracing air parcels, we used wind measurements of an all-sky Scanning Doppler Fabry-Perot interferometer and reconstructed time-resolved two-dimensional maps of the horizontal vector wind field to infer forward and backward air parcel trajectories over time. This is the first comprehensive study to visualize the complex motions of thermospheric air parcels carried through the actual observed local-scale structures in the high-latitude winds. Results show that thermospheric air parcel transport is a very difficult observational problem, because the trajectories followed are very sensitive to the detailed features of the driving wind field. To reconstruct the actual motion of a given air parcel requires wind measurements everywhere along the trajectory followed, with spatial resolutions of 100 km or less, and temporal resolutions of a few minutes or better. Understanding such transport is important, for example, in predicting the global-scale impacts of aurorally generated composition perturbations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SSRv..147..233W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SSRv..147..233W"><span>Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.</p> <p>2009-11-01</p> <p>The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1472D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1472D"><span>Magnetised winds and their influence in the escaping upper atmosphere of HD 209458b</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>D'Angelo, Carolina Villarreal; Esquivel, Alejandro; Schneiter, Matías; Sgró, Mario Agustín</p> <p>2018-06-01</p> <p>Lyman α observations during an exoplanet transit have proved to be very useful to study the interaction between the stellar wind and the planetary atmosphere. They have been extensively used to constrain planetary system parameters that are not directly observed, such as the planetary mass loss rate. In this way, Ly α observations can be a powerful tool to infer the existence of a planetary magnetic field, since it is expected that the latter will affect the escaping planetary material. To explore the effect that magnetic fields have on the Ly α absorption of HD 209458b, we run a set of 3D MHD simulations including dipolar magnetic fields for the planet and the star. We assume values for the surface magnetic field at the poles of the planet in the range of [0-5] G, and from 1 to 5 G at the poles of the star. Our models also include collisional and photo-ionisation, radiative recombination, and an approximation for the radiation pressure. Our results show that the magnetic field of the planet and the star change the shape of the Ly α absorption profile, since it controls the extent of the planetary magnetosphere and the amount of neutral material inside it. The model that best reproduces the absorption observed in HD 209458b (with canonical values for the stellar wind parameters) corresponds to a dipole planetary field of ≲ 1 gauss at the poles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007P%26SS...55.1936L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007P%26SS...55.1936L"><span>Descent motions of the Huygens probe as measured by the Surface Science Package (SSP): Turbulent evidence for a cloud layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenz, Ralph D.; Zarnecki, John C.; Towner, Martin C.; Leese, Mark R.; Ball, Andrew J.; Hathi, Brijen; Hagermann, Axel; Ghafoor, Nadeem A. L.</p> <p>2007-11-01</p> <p>The Huygens probe underwent vigorous short-period motions during its parachute descent through the atmosphere of Saturn's moon Titan in January 2005, at least some of which were excited by the Titan environment. Several sensors in the Huygens Surface Science Package (SSP) detect these motions, indicating the transition to the smaller stabilizer parachute, the changing probe spin rate, aerodynamic buffeting, and pendulum motions. Notably, in an altitude range of about 20-30 km where methane drops will freeze, the frequency content and statistical kurtosis of the tilt data indicate excitation by turbulent air motions like those observed in freezing clouds on Earth, supporting the suggestion of Tokano et al. [Tokano, T., McKay, C.P., Neubauer, F.M., Atreya, S.K., Ferri, F., Fulchignoni, M., Niemann, H.B. (2006a). Methane drizzle on Titan. Nature 442, 432-435] that the probe passed through such a cloud layer. Motions are weak below 20 km, suggesting a quiescent lower atmosphere with turbulent fluctuations of nominally <0.15 m/s (to within a factor of ˜2) but more violent motions in the upper troposphere may have been excited by turbulent winds with amplitudes of 1-2 m/s. Descent in part of the stratosphere (150-120 km) was smooth despite strong ambient wind (˜100 m/s), but known anomalies in the probe spin prevent investigation of turbulence in the known wind-shear layer from 60 to 100 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082189','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082189"><span>Structure of the Highly Sheared Tropical Storm Chantal During CAMEX-4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.</p> <p>2004-01-01</p> <p>NASA's 4th Convection and Moisture Experiment (CAMEX-4) focused on Atlantic hurricanes during the 2001 hurricane season and it involved both NASA and NOAA participation. The NASA ER-2 and DC-8 aircraft were instrumented with unique remote sensing instruments to help increase the overall understanding of hurricanes. This paper is concerned about one of the storms studied, Tropical Storm Chantal, that was a weak storm which failed to intense into a hurricane. One of the practical questions of high importance is why some tropical stoins intensify into hurricanes, and others remain weak or die altogether. The magnitude of the difference between the horizontal winds at lower levels and upper altitudes in a tropical storm, i.e., the wind shear, is one important quantity that can affect the intensification of a tropical storm. Strong shear as was present during Tropical Storm Chantal s lifetime and it was detrimental to its intensification. The paper presents an analysis of unique aircraft observations collected from Chantal including an on-board radar, radiometers, dropsondes, and flight level measurements. These measurements have enabled us to examine the internal structure of the winds and thermal structure of Chantal. Most of the previous studies have involved intense hurricanes that overcame the effects of shear and this work has provided new insights into what prevents a weaker storm from intensifying. The storm had extremely intense thunderstorms and rainfall, yet its main circulation was confined to low levels of the atmosphere. Chantal's thermal structure was not configured properly for the storm to intensify. It is most typical that huricanes have a warm core structure where warm temperatures in upper levels of a storm s circulation help intensify surface winds and lower its central pressure. Chantal had two weaker warm layers instead of a well-defined warm core. These layers have been related to the horizontal and vertical winds and precipitation structure and have helped us learn more about why this storm didn't develop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P13A1647H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P13A1647H"><span>Dynamics of Venus' Southern hemisphere and South Polar Vortex from VIRTIS data obtained during the Venus Expres Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hueso, R.; Garate-Lopez, I.; Sanchez-Lavega, A.</p> <p>2011-12-01</p> <p>The VIRTIS instrument onboard Venus Express observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. The images have been used to trace the motions of the atmosphere at different layers of clouds [1-3]. We review the VIRTIS cloud image data and wind results obtained by different groups [1-3] and we present new results concerning the morphology and evolution of the South Polar Vortex at the upper and lower cloud levels with data covering the first 900 days of the mission. We present wind measurements of the South hemisphere obtained by cloud tracking individual cloud features and higher-resolution wind results of the polar region covering the evolution of the South polar vortex. The later were obtained by an image correlation algorithm run under human supervision to validate the data. We present day-side data of the upper clouds obtained at 380 and 980 nm sensitive to altitudes of 66-70 km, night-side data in the near infrared at 1.74 microns of the lower cloud (45-50 km) and day and night-side data obtained in the thermal infrared (wavelengths of 3.8 and 5.1 microns) which covers the dynamical evolution of Venus South Polar vortex at the cloud tops (66-70 km). We explore the different dynamics associated to the varying morphology of the vortex, its dynamical structure at different altitudes, the variability of the global wind data of the southern hemisphere and the interrelation of the polar vortex dynamics with the wind dynamics at subpolar and mid-latitudes. Acknowledgements: Work funded by Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07. References [1] A. Sánchez-Lavega et al., Geophys. Res. Lett. 35, L13204, (2008). [2] D. Luz et al., Science, 332, 577-580 (2011). [3] R. Hueso, et al., Icarus doi:10.1016/j.icarus.2011.04.020 (2011)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970022791','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970022791"><span>Geomagnetic Storm Effects in the Low- to Middle-Latitude Upper Thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burns, A. G.; Killeen, T. L.; Deng, W.; Carignan, G. R.; Roble, R. G.</p> <p>1995-01-01</p> <p>In this paper, we use data from the Dynamics Explorer 2 (DE 2) satellite and a theoretical simulation made by using the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (NCAR-TIGCM) to study storm-induced changes in the structure of the upper thermosphere in the low- to middle-latitude (20 deg-40 deg N) region of the winter hemisphere. Our principal results are as follows: (1) The winds associated with the diurnal tide weaken during geomagnetic storms, causing primarily zonally oriented changes in the evening sector, few changes in the middle of the afternoon, a combination of zonal and meridional changes in the late morning region, and mainly meridional changes early in the morning; (2) Decreases in the magnitudes of the horizontal winds associated with the diurnal tide lead to a net downward tendency in the vertical winds blowing through a constant pressure surface; (3) Because of these changes in the vertical wind, there is an increase in compressional heating (or a decrease in cooling through expansion), and thus temperatures in the low- to middle-latitudes of the winter hemisphere increase; (4) Densities of all neutral species increase on a constant height surface, but the pattern of changes in the O/N2 ratio is not well ordered on these surfaces; (5) The pattern of changes in the O/N2 ratio is better ordered on constant pressure surfaces. The increases in this ratio on constant pressure surfaces in the low- to middle-latitude, winter hemisphere are caused by a more downward tendency in the vertical winds that blow through the constant pressure surfaces. Nitrogen-poor air is then advected downward through the pressure surface, increasing the O/N2 ratio; (6) The daytime geographical distribution of the modeled increases in the O/N2 ratio on a constant pressure surface in the low- to middle-latitudes of the winter hemisphere correspond very closely with those of increases in the modeled electron densities at the F2 peak.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1345354-mesoscale-microscale-wind-farm-flow-modeling-evaluation-mesoscale-microscale-wind-farm-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1345354-mesoscale-microscale-wind-farm-flow-modeling-evaluation-mesoscale-microscale-wind-farm-models"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sanz Rodrigo, Javier; Chávez Arroyo, Roberto Aurelio; Moriarty, Patrick</p> <p></p> <p>The increasing size of wind turbines, with rotors already spanning more than 150 m diameter and hub heights above 100 m, requires proper modeling of the atmospheric boundary layer (ABL) from the surface to the free atmosphere. Furthermore, large wind farm arrays create their own boundary layer structure with unique physics. This poses significant challenges to traditional wind engineering models that rely on surface-layer theories and engineering wind farm models to simulate the flow in and around wind farms. However, adopting an ABL approach offers the opportunity to better integrate wind farm design tools and meteorological models. The challenge ismore » how to build the bridge between atmospheric and wind engineering model communities and how to establish a comprehensive evaluation process that identifies relevant physical phenomena for wind energy applications with modeling and experimental requirements. A framework for model verification, validation, and uncertainty quantification is established to guide this process by a systematic evaluation of the modeling system at increasing levels of complexity. In terms of atmospheric physics, 'building the bridge' means developing models for the so-called 'terra incognita,' a term used to designate the turbulent scales that transition from mesoscale to microscale. This range of scales within atmospheric research deals with the transition from parameterized to resolved turbulence and the improvement of surface boundary-layer parameterizations. The coupling of meteorological and wind engineering flow models and the definition of a formal model evaluation methodology, is a strong area of research for the next generation of wind conditions assessment and wind farm and wind turbine design tools. Some fundamental challenges are identified in order to guide future research in this area.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730030269&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbackground%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730030269&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbackground%2Bwind"><span>Internal gravity wave-atmospheric wind interaction - A cause of clear air turbulence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bekofske, K.; Liu, V. C.</p> <p>1972-01-01</p> <p>The interaction between an internal gravity wave (IGW) and a vertical wind shear is discussed as a possible cause in the production of clear air turbulence in the free atmosphere. It is shown that under certain typical condition the interaction of an IGW with a background wind shear near a critical level provides a mechanism for depositing sufficient momentum in certain regions of the atmosphere to significantly increase the local mean wind shear and to lead to the production of turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030053065&hterms=galileo+make&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgalileo%2Bmake','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030053065&hterms=galileo+make&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgalileo%2Bmake"><span>The Galileo Probe: How it Has Changed Our Understanding of Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, Richard E.</p> <p>2003-01-01</p> <p>The Galileo Mission to Jupiter, which arrived in December of 1995, provided the first study by an orbiter, and the first in-situ sampling via an entry probe, of an outer planet atmosphere. The rationale for an entry probe is that, even from an orbiter, remote sensing of the jovian atmosphere could not adequately retrieve the information desired. This paper provides a current summary of the most significant aspects of the data returned from the Galileo entry probe. As a result of the probe measurements, there has been a reassessment of our understanding of outer planet formation and evolution of the solar system. The primary scientific objective of the Galileo probe was to determine the composition of the jovian atmosphere, which from remote sensing remained either very uncertain, or completely unknown, with respect to several key elements. The probe found that the global He mass fraction is. significantly above the value reported from the Voyager Jupiter flybys but is slightly below the protosolar value, implying that there has been some settling of He to the deep jovian interior. The probe He measurements have also led to a reevaluation of the Voyager He mass fraction for Saturn, which is now determined to be much closer to that of Jupiter. The elements C, N, S, Ar, Kr, Xe were all found to have global abundances approximately 3 times their respective solar abundances. This result has raised a number of fundamental issues with regard to properties of planetesimals and the solar nebula at the time of giant planet formation. Ne, on the other hand, was found to be highly depleted, probably as the result of it being carried along with helium as helium settles towards the deep interior. The global abundance of O was not obtained by the probe because of the influence of local processes at the probe entry site (PES), processes which depleted condensible species, in this case H2O, well below condensation levels. Other condensible species, namely NH3 and H2S, were similarly affected but attained their deep equilibrium mixing ratios before the maximum depth sampled by the probe. Processes that might be capable of producing such effects on the condensibles are still under investigation. Measured isotopic ratios of noble gases and other heavy elements are solar, and (D + (Sup 3)He)/H is the same to within measurement uncertainties as in the local interstellar medium. No thick clouds were detected, and in particular no significant water cloud, but the PES location clearly affected the probe measurements of clouds. In fact, the probe data must be understood in the context of the location of the PES, which was within what is termed a 5 micron hot spot, a local clearing in the clouds that is bright near the 5 microns spectral region. The thermal structure at the PES was determined from approximately 1000 km above the 1 bar pressure level (10(exp -9 bars)) to 132 km 1 bar (22bars). The probe showed the atmosphere to have a generally sub-adiabatic temperature gradient (static stability) of = 0.1 K/km to as deep as the probe made measurements. In the upper atmosphere the probe derived a maximum positive vertical temperature gradient of approximately 5 K/km, and maximum temperature of = 900 K. The energy sources producing the warm upper atmosphere have yet to be completely identified. At first glance, Doppler tracking of the probe indicates that the long observed cloud level zonal winds extend to levels at least as deep as the probe made measurements. Zonal wind increases from = 80 m/s at pressures less than a bar to about 180 m/s near 5 bars, and remains approximately constant with depth thereafter. However, there is a question as to whether the winds measured from probe tracking are representative of the general wind field, or are considerably influenced by localized winds associated with the PES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN31F..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN31F..08L"><span>Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leung, L. R.; Balaguru, K.; Foltz, G. R.</p> <p>2017-12-01</p> <p>During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850035425&hterms=sass&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsass','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850035425&hterms=sass&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsass"><span>Error trends in SASS winds as functions of atmospheric stability and sea surface temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, W. T.</p> <p>1983-01-01</p> <p>Wind speed measurements obtained with the scatterometer instrument aboard the Seasat satellite are compared equivalent neutral wind measurements obtained from ship reports in the western N. Atlantic and eastern N. Pacific where the concentration of ship reports are high and the ranges of atmospheric stability and sea surface temperature are large. It is found that at low wind speeds the difference between satellite measurements and surface reports depends on sea surface temperature. At wind speeds higher than 8 m/s the dependence was greatly reduced. The removal of systematic errors due to fluctuations in atmospheric stability reduced the r.m.s. difference from 1.7 m/s to 0.8 m/s. It is suggested that further clarification of the effects of fluctuations in atmospheric stability on Seasat wind speed measurements should increase their reliability in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BoLMe.157...81L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BoLMe.157...81L"><span>On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Hao; Porté-Agel, Fernando</p> <p>2015-10-01</p> <p>With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..11512054V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..11512054V"><span>Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vagle, Svein; McNeil, Craig; Steiner, Nadja</p> <p>2010-12-01</p> <p>Simultaneous observations of upper-ocean bubble clouds, and dissolved gaseous nitrogen (N2) and oxygen (O2) from three winter storms are presented and analyzed. The data were collected on the Canadian Surface Ocean Lower Atmosphere Study (C-SOLAS) mooring located near Ocean Station Papa (OSP) at 50°N, 145°W in the NE Pacific during winter of 2003/2004. The bubble field was measured using an upward looking 200 kHz echosounder. Direct estimates of bubble mediated gas fluxes were made using assumed bubble size spectra and the upward looking echosounder data. A one-dimensional biogeochemical model was used to help compare data and various existing models of bubble mediated air-sea gas exchange. The direct bubble flux calculations show an approximate quadratic/cubic dependence on mean bubble penetration depth. After scaling from N2/O2 to carbon dioxide, near surface, nonsupersaturating, air-sea transfer rates, KT, for U10 > 12 m s-1 fall between quadratic and cubic relationships. Estimates of the subsurface bubble induced air injection flux, VT, show an approximate quadratic/cubic dependence on mean bubble penetration depth. Both KT and VT are much higher than those measured during Hurricane Frances over the wind speed range 12 < U10 < 23 m s-1. This result implies that over the open ocean and this wind speed range, older and more developed seas which occur during winter storms are more effective in exchanging gases between the atmosphere and ocean than younger less developed seas which occur during the rapid passage of a hurricane.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>