Boo, Jung-A; Moon, Sang-Hyun; Lee, Sun-Min; Choi, Jung-Hyun; Park, Si-Eun
2016-01-01
[Purpose] The purpose of this study was to determine the effect of whole-body vibration exercise in a sitting position prior to therapy in stroke patients. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. Prior to occupational therapy, whole-body exercise was performed for 10 minutes, 5 times per week, for a total of 8 weeks. Muscle tone and upper extremity function were measured. The Modified Ashworth Scale (MAS) was used to measure muscle tone, and the Manual Function Test (MFT) and Fugl-Meyer Assessment scale (FugM) were used to measure upper extremity function. [Results] MAS score was significantly decreased, and MFT and FugM were significantly increased. [Conclusion] These results indicate that whole-body vibration exercise in a sitting position prior to therapy had a positive effect on muscle tone, and upper extremity function in stroke patients.
Analysis of Human Swing Movement and Transferring into Robot
NASA Astrophysics Data System (ADS)
Shimodaira, Jun; Amaoka, Yuki; Hamatani, Shinsuke; Takeuchi, Masahiro; Hirai, Hiroaki; Miyazaki, Fumio
Based on Generalized Motor Program, we analyzed the skill of human's table-tennis movement We hypothesized that it can be divided into arm swing and translational movements by upper and lower body movements, respectively. We expressed 3D position of the racket by only one parameter resulted from the analysis using Principal Component Analysis. Body trunk position measurement attested the lower body plays the role of keeping fixed relative-position between the ball and the body trunk at any hitting time. By applying human skills in upper and lower body movements, we could make the robot properly play table-tennis with a human.
Evaluation of An Upper Elementary School Program To Prevent Body Image, Eating, and Weight Concerns.
ERIC Educational Resources Information Center
Kater, Kathy J.; Rohwer, John; Londre, Karen
2002-01-01
Examined whether the 11-lesson "Healthy Body Image: Teaching Kids to Eat and Love Their Bodies Too!" curriculum would have a positive effect on upper elementary students. Pretest- posttest measures indicated that, compared to control children, children who completed the curriculum showed significant or notable improvement regarding body image,…
Fire resistant PV shingle assembly
Lenox, Carl J.
2012-10-02
A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.
Chen, L-J; Zhao, M-C; Pan, X-F; Wei, Y-Q; Wang, D-Y
2013-09-01
This study analyses the different parts of the upper airway space and the changes in hyoid position. The results provide a clinical reference for developing timely and effective treatment programmes for patients with mandibular fractures caused by maxillofacial trauma. Standard X-cephalometric measurements of the lateral skull of 210 subjects were taken. The subjects were divided into four fracture groups: condylar, mandibular angle, mandibular body, and parasymphyseal. The radiographs of the mandibular fracture groups were compared with the normal occlusion group to analyse the upper airway space and the changes in hyoid position. Different types of fractures have different effects on the upper airway space. Bilateral mandibular body fracture and the parasymphyseal fracture have a significant influence on the lower oropharyngeal and laryngopharyngeal airway spaces, with serious obstructions severely restricting the ventilatory function of patients. Fractures at different parts of the mandibular structure are closely related to the upper airway and hyoid position.
Franchini, Emerson; Julio, Ursula F.; Panissa, Valéria L. G.; Lira, Fábio S.; Gerosa-Neto, José; Branco, Braulio H. M.
2016-01-01
Purpose: The present study investigated the effects of high-intensity intermittent training (HIIT) on lower- and upper-body graded exercise and high-intensity intermittent exercise (HIIE, four Wingate bouts) performance, and on physiological and muscle damage markers responses in judo athletes. Methods: Thirty-five subjects were randomly allocated to a control group (n = 8) or to one of the following HIIT groups (n = 9 for each) and tested pre- and post-four weeks (2 training d·wk−1): (1) lower-body cycle-ergometer; (2) upper-body cycle-ergometer; (3) uchi-komi (judo technique entrance). All HIIT were constituted by two blocks of 10 sets of 20 s of all out effort interspersed by 10 s set intervals and 5-min between blocks. Results: For the upper-body group there was an increase in maximal aerobic power in graded upper-body exercise test (12.3%). The lower-body group increased power at onset blood lactate in graded upper-body exercise test (22.1%). The uchi-komi group increased peak power in upper- (16.7%) and lower-body (8.5%), while the lower-body group increased lower-body mean power (14.2%) during the HIIE. There was a decrease in the delta blood lactate for the uchi-komi training group and in the third and fourth bouts for the upper-body training group. Training induced testosterone-cortisol ratio increased in the lower-body HIIE for the lower-body (14.9%) and uchi-komi (61.4%) training groups. Conclusion: Thus, short-duration low-volume HIIT added to regular judo training was able to increase upper-body aerobic power, lower- and upper-body HIIE performance. PMID:27445856
Rotary union for use with ultrasonic thickness measuring probe
Nachbar, H.D.
1992-09-15
A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body. 5 figs.
Rotary union for use with ultrasonic thickness measuring probe
Nachbar, Henry D.
1992-01-01
A rotary union for rotatably supporting an ultrasonic probe operable to nondestructively measure the thickness of steam generator tubes to determine the amount of corrosion experienced by the tubes includes a stationary body having a bore therethrough and an outlet drain, and a fitting rotatably mounted within the upper end of the body. The fitting has a bore aligned with the bore of the body. An electrical cable positioned within a water supply tube in an annular arrangement passes through the bore of the body and the bore of the fitting. This annular arrangement, in turn, is positioned within a connector element which extends outwardly from the fitting bore and is connected to the ultrasonic probe. An elastomeric lower bushing seals the annular arrangement to the lower end of the rotary union body and an elastomeric upper bushing seals the connector element to the fitting to permit the connector element and the ultrasonic probe connected thereto to rotate with the fitting relative to the body. The lower and upper bushings permit water to be passed through the annular arrangement and into the ultrasonic probe and thereafter discharged between the annular arrangement and the connector element to the outlet drain of the rotary union body.
Validation and Reliability of a Novel Test of Upper Body Isometric Strength.
Bellar, David; Marcus, Lena; Judge, Lawrence W
2015-09-29
The purpose of the present investigation was to examine the association of a novel test of upper body isometric strength against a 1RM bench press measurement. Forty college age adults (n = 20 female, n = 20 male; age 22.8 ± 2.8 years; body height 171.6 ± 10.8 cm; body mass 73.5 ± 16.3 kg; body fat 23.1 ± 5.4%) volunteered for the present investigation. The participants reported to the lab on three occasions. The first visit included anthropometric measurements and familiarization with both the upper body isometric test and bench press exercise. The final visits were conducted in a randomized order, with one being a 1RM assessment on the bench press and the other consisting of three trials of the upper body isometric assessment. For the isometric test, participants were positioned in a "push-up" style position while tethered (stainless steel chain) to a load cell (high frequency) anchored to the ground. The peak isometric force was consistent across all three trials (ICC = 0.98) suggesting good reliability. Multiple regression analysis was completed with the predictors: peak isometric force, gender, against the outcome variable 1RM bench press. The analysis resulted in a significant model (r2 = 0.861, p≤0.001) with all predictor variables attaining significance in the model (p<0.05). Isometric peak strength had the greatest effect on the model (Beta = 5.19, p≤0.001). Results from this study suggest that the described isometric upper body strength assessment is likely a valid and reliable tool to determine strength. Further research is warranted to gather a larger pool of data in regard to this assessment.
Validation and Reliability of a Novel Test of Upper Body Isometric Strength
Bellar, David; Marcus, Lena; Judge, Lawrence W.
2015-01-01
The purpose of the present investigation was to examine the association of a novel test of upper body isometric strength against a 1RM bench press measurement. Forty college age adults (n = 20 female, n = 20 male; age 22.8 ± 2.8 years; body height 171.6 ± 10.8 cm; body mass 73.5 ± 16.3 kg; body fat 23.1 ± 5.4%) volunteered for the present investigation. The participants reported to the lab on three occasions. The first visit included anthropometric measurements and familiarization with both the upper body isometric test and bench press exercise. The final visits were conducted in a randomized order, with one being a 1RM assessment on the bench press and the other consisting of three trials of the upper body isometric assessment. For the isometric test, participants were positioned in a “push-up” style position while tethered (stainless steel chain) to a load cell (high frequency) anchored to the ground. The peak isometric force was consistent across all three trials (ICC = 0.98) suggesting good reliability. Multiple regression analysis was completed with the predictors: peak isometric force, gender, against the outcome variable 1RM bench press. The analysis resulted in a significant model (r2 = 0.861, p≤0.001) with all predictor variables attaining significance in the model (p<0.05). Isometric peak strength had the greatest effect on the model (Beta = 5.19, p≤0.001). Results from this study suggest that the described isometric upper body strength assessment is likely a valid and reliable tool to determine strength. Further research is warranted to gather a larger pool of data in regard to this assessment. PMID:26557203
Martinez, Bruno Prata; Silva, Joilma Ribeiro; Silva, Vanessa Salgado; Gomes Neto, Mansueto; Forgiarini Júnior, Luiz Alberto
2015-01-01
The changes in body position can cause changes in lung function, and it is necessary to understand them, especially in the postoperative upper abdominal surgery, since these patients are susceptible to postoperative pulmonary complications. To assess the vital capacity in the supine position (head at 0° and 45°), sitting and standing positions in patients in the postoperative upper abdominal surgery. A cross-sectional study conducted between August 2008 and January 2009 in a hospital in Salvador/BA. The instrument used to measure vital capacity was analogic spirometer, the choice of the sequence of positions followed a random order obtained from the draw of the four positions. Secondary data were collected from the medical records of each patient. The sample consisted of 30 subjects with a mean age of 45.2 ± 11.2 years, BMI 20.2 ± 1.0 kg/m(2). The position on orthostasis showed higher values of vital capacity regarding standing (mean change: 0.15 ± 0.03 L; p=0.001), the supine to 45 (average difference: 0.32 ± 0.04 L; p = 0.001) and 0° (0.50 ± 0.05 L; p = 0.001). There was a positive trend between the values of forced vital capacity supine to upright posture (1.68 ± 0.47; 1.86 ± 0.48; 2.02 ± 0.48 and 2.18 ± 0.52 L; respectively). Body position affects the values of vital capacity in patients in the postoperative upper abdominal surgery, increasing in postures where the chest is vertical. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P
2015-06-01
This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhu, Kun; Hunter, Michael; James, Alan; Lim, Ee Mun; Walsh, John P
2015-05-01
Low BMI is a risk factor for osteoporosis, but it is not clear if relationships between BMI, lean mass (LM), fat mass (FM) and BMD are consistent across different levels of BMI. We studied 1929 Caucasian participants (1014 females) aged 45-66years in the Busselton Healthy Ageing Study in Western Australia. Body composition and BMD of total body, lumbar spine, total hip and femoral neck were measured using DXA. From generalized additive models, the positive relationships between BMI and BMD were weaker at high BMI, particularly at the spine and in males. In the entire cohort, adjusting for relevant covariates, LM and FM were significant predictors of all BMD measures in both genders. In men, analysis by tertiles of BMI showed that LM and FM (in kg) were positively associated with BMD (in mg/cm(2)) in tertile 1 except for LM and spine BMD (LM β: 5.18-6.80, FM β: 3.38-9.24, all P<0.05), but not in the middle or upper tertiles (LM β: -3.12-3.07, FM β: -4.75-1.82, P>0.05). In women, LM was positively associated with BMD in each tertile of BMI, except for spine BMD in the upper tertile, with regression coefficients lower in the upper tertile (β: 5.16-9.95, 5.76-9.56 and 2.80-5.78, respectively, all P<0.05). FM was positively associated with total body, spine and total hip BMD in women in BMI tertile 1 (β: 2.86-6.68, P<0.05); these associations were weaker or absent in the middle and upper tertiles. In conclusion, in middle-aged adults the positive relationships between lean or fat mass with BMD among those with higher BMI are absent in males and weaker in females. Copyright © 2015 Elsevier Inc. All rights reserved.
Electromyographic Activity of Scapular Muscle Control in Free-Motion Exercise
Nakamura, Yukiko; Tsuruike, Masaaki; Ellenbecker, Todd S.
2016-01-01
Context: The appropriate resistance intensity to prescribe for shoulder rehabilitative exercise is not completely known. Excessive activation of the deltoid and upper trapezius muscles could be counterproductive for scapulohumeral rhythm during humeral elevation. Objective: To identify the effects of different exercise intensities on the scapular muscles during a free-motion “robbery” exercise performed in different degrees of shoulder abduction in seated and standing positions. Design: Descriptive laboratory study. Setting: Kinesiology Adapted Physical Education Laboratory. Patients or Other Participants: A total of 15 healthy male college students (age = 20.5 ± 2.2 years, height = 174.5 ± 5.3 cm, mass = 63.8 ± 6.0 kg). Intervention(s): Participants performed 5 repetitions of a randomized exercise sequence of the robbery exercise in 2 body positions (seated, standing), 2 shoulder-abducted positions (W [20°], 90/90 [90°]) at 3 intensities (0%, 3%, and 7% body weight). Main Outcome Measure(s): Electromyographic (EMG) activity of the upper trapezius, lower trapezius, serratus anterior, anterior deltoid, and infraspinatus muscles of the upper extremity was collected. All EMG activities were normalized by the maximal voluntary isometric contraction of each corresponding muscle (%). Results: The serratus anterior, anterior deltoid, and infraspinatus EMG activities were greater at 7% body weight in the seated position compared with the standing position (P < .05). The EMG activities in all 5 muscles were greater in the 90/90 position than in the W position (P < .05). Conclusions: Scapular muscle activity modulated relative to changes in body posture and resistance intensity. These findings will enable clinicians to prescribe the appropriate level of exercise intensity and positioning during shoulder rehabilitation. PMID:26986055
Milić, M; Grgantov, Z; Chamari, K; Bianco, A; Padulo, J
2016-01-01
The aim of our study was to determine the differences in some anthropometric and physical performance variables of young Croatian female volleyball players (aged 13 to 15) in relation to playing position (i.e., independent variable) and performance level within each position (i.e., independent variable). Players were categorized according to playing position (i.e., role) as middle blockers (n=28), opposite hitters (n=41), passer-hitters (n=54), setters (n=30), and liberos (n=28). Within each position, players were divided into a more successful group and a less successful group according to team ranking in the latest regional championship and player quality within the team. Height and body mass, somatotype by the Heath-Carter method, and four tests of lower body power, speed, agility and upper body power (i.e., dependent variables) were assessed. Players in different positions differed significantly in height and all three somatotype components, but no significant differences were found in body mass, body mass index or measured physical performance variables. Players of different performance level differed significantly in both anthropometric and physical performance variables. Generally, middle blockers were taller, more ectomorphic, less mesomorphic and endomorphic, whereas liberos were shorter, less ectomorphic, more mesomorphic and endomorphic than players in other positions. More successful players in all positions had a lower body mass index, were less mesomorphic and endomorphic, and more ectomorphic than less successful players. Furthermore, more successful players showed better lower body power, speed, agility and upper body power. The results of this study can potentially provide coaches with useful indications about the use of somatotype selection and physical performance assessment for talent identification and development. PMID:28416892
Godoy, Ivan R. B.; Martinez-Salazar, Edgar Leonardo; Eajazi, Alireza; Genta, Pedro R.; Bredella, Miriam A.; Torriani, Martin
2017-01-01
Objective To examine associations between tongue adiposity with upper airway measures, whole-body adiposity and gender. We hypothesized that increased tongue adiposity is higher in males and positively associated with abnormal upper airway measures and whole-body adiposity. Methods We studied subjects who underwent whole-body positron emission tomography/computed tomography to obtain tongue attenuation (TA) values and cross-sectional area, pharyngeal length (PL) and mandibular-hyoid distance (MPH), as well as abdominal circumference, abdominal subcutaneous and visceral (VAT) adipose tissue areas, neck circumference (NC) and neck adipose tissue area. Metabolic syndrome was determined from available clinical and laboratory data. Results We identified 206 patients (104 females, 102 males) with mean age 56±17y and mean body mass index (BMI) 28±6kg/m2 (range 16–47kg/m2). Males had lower TA values (P=0.0002) and higher upper airway measures (P< 0.0001) independent of age and BMI (P<0.001). In all subjects, TA was negatively associated with upper airway measures (P<0.001). TA was negatively associated with body composition parameters (all P<0.0001), most notably with VAT (r=−0.53) and NC (r=−0.47). TA values were lower in subjects with metabolic syndrome (P<0.0001). Conclusion Increased tongue adiposity is influenced by gender and is associated with abnormal upper airway patency and body composition parameters. PMID:27733254
Godoy, Ivan R B; Martinez-Salazar, Edgar Leonardo; Eajazi, Alireza; Genta, Pedro R; Bredella, Miriam A; Torriani, Martin
2016-11-01
To examine associations between tongue adiposity with upper airway measures, whole-body adiposity and gender. We hypothesized that increased tongue adiposity is higher in males and positively associated with abnormal upper airway measures and whole-body adiposity. We studied subjects who underwent whole-body positron emission tomography/computed tomography to obtain tongue attenuation (TA) values and cross-sectional area, pharyngeal length (PL) and mandibular plane to hyoid distance (MPH), as well as abdominal circumference, abdominal subcutaneous and visceral (VAT) adipose tissue areas, neck circumference (NC) and neck adipose tissue area. Metabolic syndrome was determined from available clinical and laboratory data. We identified 206 patients (104 females, 102 males) with mean age 56±17years and mean body mass index (BMI) 28±6kg/m 2 (range 16-47kg/m 2 ). Males had lower TA values (P=0.0002) and higher upper airway measures (P<0.0001) independent of age and BMI (P<0.001). In all subjects, TA was negatively associated with upper airway measures (P<0.001). TA was negatively associated with body composition parameters (all P<0.0001), most notably with VAT (r=-0.53) and NC (r=-0.47). TA values were lower in subjects with metabolic syndrome (P<0.0001). Increased tongue adiposity is influenced by gender and is associated with abnormal upper airway patency and body composition parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of asymmetrical stance and movement on body rotation in pushing.
Lee, Yun-Ju; Aruin, Alexander S
2015-01-21
Pushing objects in the presence of body asymmetries could increase the risk of back injury. Furthermore, when the object is heavy, it could exacerbate the effects induced by asymmetrical posture. We investigated how the use of asymmetrical posture and/or upper extremity movement affect vertical torque (Tz) and center of pressure (COP) displacement during pushing. Ten healthy volunteers were instructed to push objects of three different weights using two hands (symmetrical hand use) or one hand (asymmetrical hand use) while standing in symmetrical or asymmetrical foot-positions. The peak values of Tz and COP displacement in the medial-lateral direction (COPML) were analyzed. In cases of isolated asymmetry, changes in the Tz were mainly linked with effects of hand-use whereas effects of foot-position dominated changes in the COPML displacement. In cases of a combined asymmetry, the magnitudes of both Tz and COPML were additive when asymmetrical hand-use and foot-position induced the rotation of the lower and upper body in the same direction or subtractive when asymmetries resulted in the rotation of the body segments in the opposite directions. Moreover, larger Tz and COP displacements were seen when pushing the heavy weight. The results point out the importance of using Tz and COPML to describe the isolated or combined effects of asymmetrical upper extremity movement and asymmetrical posture on body rotation during pushing. Furthermore, it suggests that a proper combination of unilateral arm movement and foot placements could help to reduce body rotation even when pushing heavy objects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of asymmetrical stance and movement on body rotation in pushing
Lee, Yun-Ju; Aruin, Alexander S.
2014-01-01
Pushing objects in the presence of body asymmetries could increase the risk of back injury. Furthermore, when the object is heavy, it could exacerbate the effects induced by asymmetrical posture. We investigated how the use of asymmetrical posture and/or upper extremity movement affect vertical torque (Tz) and center of pressure (COP) displacement during pushing. Ten healthy volunteers were instructed to push objects of three different weights using two hands (symmetrical hand use) or one hand (asymmetrical hand use) while standing in symmetrical or asymmetrical foot-positions. The peak values of Tz and COP displacement in the medial-lateral direction (COPML) were analyzed. In cases of isolated asymmetry, changes in the Tz were mainly linked with effects of hand-use whereas effects of foot-position dominated changes in the COPML displacement. In cases of a combined asymmetry, the magnitudes of both Tz and COPML were additive when asymmetrical hand-use and foot-position induced the rotation of the lower and upper body in the same direction or subtractive when asymmetries resulted in the rotation of the body segments in the opposite directions. Moreover, larger Tz and COP displacements were seen when pushing the heavy weight. The results point out the importance of using Tz and COPML to describe the isolated or combined effects of asymmetrical upper extremity movement and asymmetrical posture on body rotation during pushing. Furthermore, it suggests that a proper combination of unilateral arm movement and foot placements could help to reduce body rotation even when pushing heavy objects. PMID:25498915
Lin, Ming-I Brandon; Hong, Ruei-Hong; Chang, Jer-Hao; Ke, Xin-Min
2015-01-01
Purpose The increase in tablet usage allows people to perform computer work in non-traditional office environments. The aim of this study was to assess the effects of changes in tablet keyboard design on postures of the upper extremities and neck, discomfort, and usability under different usage positions during prolonged touch-typing. Methods Eighteen healthy participants familiar with touch-screen devices were randomized into three usage positions (desk, lap, and bed) and completed six, 60-minute typing sessions using three virtual keyboard designs (standard, wide, split). Electrogoniometers continuously measured the postures of the wrists, elbow, and neck. Body discomfort and system usability were evaluated by questionnaires before and immediately after each typing session. Results Separate linear mixed effects models on various postural measures and subjective ratings are conducted with usage position as the between-subject factors, keyboard design and typing duration as the with-in subject factors were conducted. Using the tablet in bed led to more extended wrists but a more natural elbow flexion than the desk position. The angled split virtual keyboard significantly reduced the extent of wrist ulnar deviation than the keyboard with either standard or wide design. However, little difference was observed across the usage position and keyboard design. When the postural data were compared between the middle and end of typing sessions, the wrists, elbow, and neck all exhibited a substantially increased range of joint movements (13% to 38%). The discomfort rating also increased significantly over time in every upper body region investigated. Additionally, the split keyboard design received a higher usability rating in the bed position, whereas participants had more satisfactory experience while using the wide keyboard in the traditional desk setting. Conclusions Prolonged use of tablets in non-traditional office environments may result in awkward postures in the upper body that may expose users to greater risks of developing musculoskeletal symptoms. Adequate virtual keyboard designs show the potential to alleviate some postural effects and improve the user experience without changing the tablet form factors. PMID:26629989
Wilhelmsen, Kjersti; Kvåle, Alice
2014-07-01
Persistent dizziness and balance problems have been reported in some patients with unilateral vestibular pathology. The purpose of this case series was to address the examination and treatment of musculoskeletal dysfunction in patients with unilateral vestibular hypofunction. The musculoskeletal system was evaluated with the Global Physiotherapy Examination, dynamic balance was measured during walking with triaxial accelerometers positioned on the lower and upper trunk, and symptoms and functional limitations were assessed with standardized self-report measures. The 4 included patients had symptoms of severe dizziness that had lasted more than 1 year after the onset of vestibular dysfunction and a moderate level of perceived disability. Musculoskeletal abnormalities typically included postural misalignment, restricted abdominal respiration, restricted trunk movements, and tense muscles of the upper trunk and neck. The patients attended a modified vestibular rehabilitation program consisting of body awareness exercises addressing posture, movements, and respiration. After the intervention, self-reported symptoms and perceived disability improved. Improvements in mobility and positive physical changes were found in the upper trunk and respiratory movements. The attenuation of mediolateral accelerations (ie, body oscillations) in the upper trunk changed; a relatively more stable upper trunk and a concomitantly more flexible lower trunk were identified during walking in 3 patients. The recovery process may be influenced by self-inflicted rigid body movements and behavior strategies that prevent compensation. Addressing physical dysfunction and enhancing body awareness directly and dizziness indirectly may help patients with unilateral vestibular hypofunction break a self-sustaining cycle of dizziness and musculoskeletal problems. Considering the body as a functional unit and including both musculoskeletal and vestibular systems in examination and treatment may be important. © 2014 American Physical Therapy Association.
Jones, Margaret T; Martin, Joel R; Jagim, Andrew R; Oliver, Jonathan M
2017-05-01
Jones, MT, Martin, JR, Jagim, AR, and Oliver, JM. Effect of direct whole-body vibration on upper-body muscular power in recreational, resistance-trained men. J Strength Cond Res 31(5): 1371-1377, 2017-To determine the acute effect of whole-body vibration (WBV) on upper-body power, 15 men (mean ± SD; age 21.5 ± 2.3 years; height 173.1 ± 6.5 cm; and weight 77.2 ± 13.8 kg) with ≥1-year resistance training experience and a bench press (BP): body mass ratio ≥1.25 participated in a repeated-measures crossover design. Session 1 included body composition ([Bod Pod] 15.76 ± 6.7% body fat), 3 repetition maximum BP, and familiarization with: seated medicine ball throw (SMBT), plyometric push-up (PPU) on a force plate, and vertical WBV platform. Sessions 2-5 were randomly ordered across condition and test, separated by 24 hours, and consisted of a warm-up followed by 4 × 30-second push-up holds (2 × elbows at 90° and 2 × arms extended) performed on the vibration platform with WBV (frequency: 30 Hz, amplitude: 2-4 mm, 1:1 work: relief ratio) or no WBV. Seated medicine ball throw and PPU were tested immediately, 1, 5, and 10 minutes post. Standardized magnitude-based inferences were used to define outcomes. A likely positive effect of WBV was observed for SMBT at 10 minutes post. A likely negative effect of WBV resulted at 1 minute in time-to-peak force. A possibly positive effect was observed 10 minutes post. A possibly negative effect was observed 10 minutes post for peak power, and a likely negative effect of WBV was observed on time-to-peak power immediate post. Incorporating a 10-minute rest period is recommended when implementing power exercises after upper-body static-hold exercises during WBV exposure.
Fish elevator and method of elevating fish
Truebe, Jonathan; Drooker, Michael S.
1984-01-01
A means and method for transporting fish from a lower body of water to a higher body of water. The means comprises a tubular lock with a gated entrance below the level of the lower body of water through which fish may enter the lock and a discharge passage above the level of the upper body of water. The fish raising means in the lock is a crowder pulled upward by a surface float as water from the upper body of water gravitationally flows into the closed lock filling it to the level of the upper body. Water is then pumped into the lock to raise the level to the discharge passage. The crowder is then caused to float upward the remaining distance through the water to the level of the discharge passage by the introduction of air into a pocket on the underside of the crowder. The fish are then automatically discharged from the lock into the discharge passage by the out of water position of the crowder. The movement of the fish into the discharge passage is aided by the continuous overflow of water still being pumped into the lock. A pipe may be connected to the discharge passage to deliver the fish to a selected location in the upper body of water.
Hart, Nicolas H.; Nimphius, Sophia; Spiteri, Tania; Cochrane, Jodie L.; Newton, Robert U.
2015-01-01
Musculoskeletal examinations provide informative and valuable quantitative insight into muscle and bone health. DXA is one mainstream tool used to accurately and reliably determine body composition components and bone mass characteristics in-vivo. Presently, whole body scan models separate the body into axial and appendicular regions, however there is a need for localised appendicular segmentation models to further examine regions of interest within the upper and lower extremities. Similarly, inconsistencies pertaining to patient positioning exist in the literature which influence measurement precision and analysis outcomes highlighting a need for standardised procedure. This paper provides standardised and reproducible: 1) positioning and analysis procedures using DXA and 2) reliable segmental examinations through descriptive appendicular boundaries. Whole-body scans were performed on forty-six (n = 46) football athletes (age: 22.9 ± 4.3 yrs; height: 1.85 ± 0.07 cm; weight: 87.4 ± 10.3 kg; body fat: 11.4 ± 4.5 %) using DXA. All segments across all scans were analysed three times by the main investigator on three separate days, and by three independent investigators a week following the original analysis. To examine intra-rater and inter-rater, between day and researcher reliability, coefficients of variation (CV) and intraclass correlation coefficients (ICC) were determined. Positioning and segmental analysis procedures presented in this study produced very high, nearly perfect intra-tester (CV ≤ 2.0%; ICC ≥ 0.988) and inter-tester (CV ≤ 2.4%; ICC ≥ 0.980) reliability, demonstrating excellent reproducibility within and between practitioners. Standardised examinations of axial and appendicular segments are necessary. Future studies aiming to quantify and report segmental analyses of the upper- and lower-body musculoskeletal properties using whole-body DXA scans are encouraged to use the patient positioning and image analysis procedures outlined in this paper. Key points Musculoskeletal examinations using DXA technology require highly standardised and reproducible patient positioning and image analysis procedures to accurately measure and monitor axial, appendicular and segmental regions of interest. Internal rotation and fixation of the lower-limbs is strongly recommended during whole-body DXA scans to prevent undesired movement, improve frontal mass accessibility and enhance ankle joint visibility during scan performance and analysis. Appendicular segmental analyses using whole-body DXA scans are highly reliable for all regional upper-body and lower-body segmentations, with hard-tissue (CV ≤ 1.5%; R ≥ 0.990) achieving greater reliability and lower error than soft-tissue (CV ≤ 2.4%; R ≥ 0.980) masses when using our appendicular segmental boundaries. PMID:26336349
Body composition and bone mineral density of national football league players.
Dengel, Donald R; Bosch, Tyler A; Burruss, T Pepper; Fielding, Kurt A; Engel, Bryan E; Weir, Nate L; Weston, Todd D
2014-01-01
The purpose of the present study was to examine the body composition of National Football League (NFL) players before the start of the regular season. Four hundred eleven NFL players were measured for height, weight and lean, fat, and bone mass using dual-energy x-ray absorptiometry (DXA). Subjects were categorized by their offensive or defensive position for comparison. On average, positions that mirror each other (i.e., offensive lineman [OL] vs. defensive lineman [DL]) have very similar body composition. Although OL had more fat mass than DL, they were similar in total and upper and lower lean mass. Linebackers (LB) and running backs (RB) were similar for all measures of fat and lean mass. Tight ends were unique in that they were similar to RB and LB on measures of fat mass; however, they had greater lean mass than both RB and LB and upper-body lean mass that was similar to OL. Quarterbacks and punters/kickers were similar in fat and lean masses. All positions had normal levels of bone mineral density. The DXA allowed us to measure differences in lean mass between arms and legs for symmetry assessments. Although most individuals had similar totals of lean mass in each leg and or arms, there were outliers who may be at risk for injury. The data presented demonstrate not only differences in total body composition, but also show regional body composition differences that may provide positional templates.
Funnel for localizing biological cell placement and arrangement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soscia, David; Benett, William J.; Mukerjee, Erik V.
2018-03-06
The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface. The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited into the flow paths at the upper surface of the funnel apparatus to be channeled into a plurality ofmore » distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface.« less
Pierella, C; De Luca, A; Tasso, E; Cervetto, F; Gamba, S; Losio, L; Quinland, E; Venegoni, A; Mandraccia, S; Muller, I; Massone, A; Mussa-Ivaldi, F A; Casadio, M
2017-07-01
Body machine interfaces (BMIs) are used by people with severe motor disabilities to control external devices, but they also offer the opportunity to focus on rehabilitative goals. In this study we introduced in a clinical setting a BMI that was integrated by the therapists in the rehabilitative treatments of 2 spinal cord injured (SCI) subjects for 5 weeks. The BMI mapped the user's residual upper body mobility onto the two coordinates of a cursor on a screen. By controlling the cursor, the user engaged in playing computer games. The BMI allowed the mapping between body and cursor spaces to be modified, gradually challenging the user to exercise more impaired movements. With this approach, we were able to change our subjects' behavior, who initially used almost exclusively their proximal upper body-shoulders and arms - for using the BMI. By the end of training, cursor control was shifted toward more distal body regions - forearms instead of upper arms - with an increase of mobility and strength of all the degrees of freedom involved in the control. The clinical tests and the electromyographic signals from the main muscles of the upper body confirmed the positive effect of the training. Encouraging the subjects to explore different and sometimes unusual movement combinations was beneficial for recovering distal arm functions and for increasing their overall mobility.
Petit, Philippe; Trosseille, Xavier; Dufaure, Nicolas; Dubois, Denis; Potier, Pascal; Vallancien, Guy
2014-11-01
In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11 m/s) plus 2 tests at 9 m/s. Autopsies were performed on the lower limbs and an injury assessment was established. The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°.
NASA Astrophysics Data System (ADS)
Klassen, Gerald A.; Paton, Barry E.; Maksym, Geoff; Janigan, David; Perey, Bernard
1992-08-01
Using a laser Doppler velocimeter (LDV) subcutaneous adipose tissue blood flow (AF) was recorded in the upright and supine positions in the upper and lower abdomen in 22 morbidly obese patients before gastroplasty. Age was 42 +/- 3 (mean +/- SEM), weight 135 +/- 7 kg, and body mass index (BMI) 51 +/- 3. Adipose flow expressed as mV was: supine, upper abdomen 647 +/- 23, lower abdomen 604 +/- 24; upright, upper abdomen 621 +/- 27, lower abdomen 607 +/- 29. AF was significantly more in the upper than lower abdomen (supine position) and AF was significantly lower in the lower abdomen upright than the upper abdomen supine. Regression analysis of age indicates that blood flow decreases in the lower abdomen so that in the supine position the difference between upper and lower abdomen AF increases. Similar analysis of BMI did not indicate significant trends. These data indicate that with morbid obesity there is lower tissue blood flow to the lower abdomen. This may explain why such patients may develop areas of painful ischemic necrosis in the dependent region of their anterior abdominal pannus.
Ottenheimer Carrier, Lydia; Leca, Jean-Baptiste; Pellis, Sergio; Vasey, Paul L
2015-10-01
In certain populations, female Japanese macaques (Macaca fuscata) mount both males and females. Vasey (2007) proposed that female-female sexual mounting in Japanese macaques may be a neutral evolutionary by-product of a purported adaptation, namely, female-male mounting. In this study, we aim to further examine the proposed link between female-male and female-female mounting in Japanese macaques by comparing the structural characteristics that define both forms of mounting. We do so using Eshkol-Wachman Movement Notation (EWMN), a globographic reference system that can be used to describe the position of body segments. No significant differences were observed in the female mounters' positioning of eight different body segments (i.e., lower torso, mid-torso, upper torso, upper arm, lower arm, upper leg, lower leg, and foot) during female-male and female-female mounting. This finding lends support to the conclusion that female-female and female-male mounting are structurally, and thus, evolutionarily, related. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Terry D.; Bingham, Dennis N.; Benefiel, Bradley C.
Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. A downtube is disposed at least partially within the interior crucible along an axis. At least one structure is coupled with the downtube and extends substantially across the cross-sectional area of the interior volume taken in a direction substantially perpendicular to the axis. A plurality of holes is formed in the structure enabling fluid flow therethrough. The structure coupled with themore » downtube may include a lower body portion and an upper body portion coupled with the lower body portion, wherein the plurality of holes is formed in the lower body portion adjacent to, and radially outward from, a periphery of the upper body portion.« less
Inoue, Yusuke; Nagahara, Kazunori; Kudo, Hiroko; Itoh, Hiroyasu
2018-01-01
Automatic exposure control (AEC) modulates tube current and consequently X-ray exposure in CT. We investigated the behavior of AEC systems in whole-body PET/CT. CT images of a whole-body phantom were acquired using AEC on two scanners from different manufactures. The effects of scout imaging direction and arm positioning on dose modulation were evaluated. Image noise was assessed in the chest and upper abdomen. On one scanner, AEC using two scout images in the posteroanterior (PA) and lateral (Lat) directions provided relatively constant image noise along the z-axis with the arms at the sides. Raising the arms increased tube current in the head and neck and decreased it in the body trunk. Image noise increased in the upper abdomen, suggesting excessive reduction in radiation exposure. AEC using the PA scout alone strikingly increased tube current and reduced image noise in the shoulder. Raising the arms did not substantially influence dose modulation and decreased noise in the abdomen. On the other scanner, AEC using the PA scout alone or Lat scout alone resulted in similar dose modulation. Raising the arms increased tube current in the head and neck and decreased it in the trunk. Image noise was higher in the upper abdomen than in the middle and lower chest, and was not influenced by arm positioning. CT dose modulation using AEC may vary greatly depending on scout direction. Raising the arms tended to decrease radiation exposure; however, the effect depends on scout direction and the AEC system.
Ashnagar, Zinat; Shadmehr, Azadeh; Hadian, Mohammadreza; Talebian, Saeed; Jalaei, Shohreh
2016-08-10
Whole Body Vibration (WBV) has been reported to change neuromuscular activity which indirectly assessed by electromyography (EMG). Although researches regarding the influence of WBV on EMG activity of the upper extremity muscles are in their infancy, contradictory findings have been reported as a result of dissimilar protocols. The purpose of this study was to investigate the effects of WBV on electromyography (EMG) activity of upper extremity muscles in static modified push up position. Forty recreationally active females were randomly assigned in WBV and control groups. Participants in WBV group received 5 sets of 30 seconds vibration at 5 mm (peak to peak) and 30 Hz by using vibratory platform. No vibration stimulus was used in the control group. Surface EMG was recorded from Upper Trapezius (UT), Serratus Anterior (SA), Biceps Brachii (BB) and Triceps Brachii (TB) muscles before, during and after the vibration protocol while the subjects maintained the static modified push up position. EMG signals were expressed as root mean square (EMGrms) and normalized by maximum voluntary exertion (MVE). EMGrms activity of the studied muscles increased significantly during the vibration protocol in the WBV group comparing to the control group (P ≤ 0.05). The results indicated that vibration stimulus transmitting via hands increased muscle activity of UT, SA, BB and TB muscles by an average of 206%, 60%, 106% and 120%, respectively, comparing to pre vibration values. These findings suggest that short exposure to the WBV could increase the EMGrms activity of the upper extremity muscles in the static modified push-up position. However, more sessions of WBV application require for a proper judgment.
Limanowski, Jakub; Blankenburg, Felix
2016-03-02
The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual information. These brain areas thus likely integrate visual and proprioceptive information into a flexible multisensory body representation. Copyright © 2016 the authors 0270-6474/16/362582-08$15.00/0.
Study of an orbiting tethered dumbbell system having positive orbital energy
NASA Technical Reports Server (NTRS)
Arnold, David A.
1988-01-01
For very long tethered systems the sum of the kinetic and potential energy can be positive. The system remains in a circular orbit as long as the masses remain vertically aligned. The system is unstable without constant control of the alignment. If the upper mass rotates forward in the direction of the orbital motion, the system escapes out of orbit. If the upper mass rotates backward, the system falls out of orbit and the lower mass impacts the body around which the system is orbiting.
Rodriguez-Ayllon, M; Cadenas-Sanchez, C; Esteban-Cornejo, I; Migueles, J H; Mora-Gonzalez, J; Henriksson, P; Martín-Matillas, M; Mena-Molina, A; Molina-García, P; Estévez-López, F; Enriquez, G M; Perales, J C; Ruiz, J R; Catena, A; Ortega, F B
2018-02-01
To examine the associations of physical fitness (i.e. cardiorespiratory fitness, muscular strength, and speed/agility) with psychological distress and psychological well-being in overweight/obese pre-adolescent children. 110 overweight/obese children (10.0±1.1years old, 61 boys) from the ActiveBrains project (http://profith.ugr.es/activebrains) participated in this cross-sectional study. Physical fitness was evaluated by the ALPHA battery test. Cardiorespiratory fitness was additionally evaluated by a maximal incremental treadmill. Stress was assessed by the Children's Daily Stress Inventory, anxiety by the State-Trait Anxiety Inventory, depression by the Children Depression Inventory, positive affect and negative affect by the Positive and Negative Affect Scale for Children, happiness by the Subjective Happiness Scale, optimism by the Life Orientation Test, and self-esteem by the Rosenberg Self-Esteem questionnaire. Linear regression adjusted for sex and peak height velocity was used to examine associations. Absolute upper-body muscular strength was negatively associated with stress and negative affect (β=-0.246, p=0.047; β=-0.329, p=0.010, respectively). Furthermore, absolute lower-body muscular strength was negatively associated with negative affect (β=-0.301, p=0.029). Cardiorespiratory fitness, expressed by the last completed lap, and relative upper-body muscular strength were positively associated with optimism (β=0.220, p=0.042; β=0.240, p=0.017, respectively). Finally, absolute upper-body muscular strength was positively associated with self-esteem (β=0.362, p=0.003) independently of sex and weight status (p for interactions >0.3), and absolute lower-body muscular strength was also positively associated with self-esteem (β=0.352, p=0.008). Muscular strength was associated with psychological distress (i.e. stress and negative affect) and psychological well-being (i.e. optimism and self-esteem) as well as cardiorespiratory fitness was associated with optimism. Therefore, increased levels of physical fitness, specifically muscular strength, could have significant benefits for overweight/obese children psychological health. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
A systematic review of the effects of upper body warm-up on performance and injury.
McCrary, J Matt; Ackermann, Bronwen J; Halaki, Mark
2015-07-01
This systematic review was conducted to identify the impact of upper body warm-up on performance and injury prevention outcomes. Web of Science, MEDLINE, SPORTDiscus, PsycINFO and Cochrane databases were searched using terms related to upper extremity warm-up. Inclusion criteria were English language randomised controlled trials from peer-reviewed journals in which investigation of upper body warm-up on performance and injury prevention outcomes was a primary aim. Included studies were assessed for methodological quality using the PEDro scale. A wide variety of warm-up modes and outcomes precluded meta-analysis except for one group of studies. The majority of warm-ups were assessed as having 'positive', 'neutral', 'negative' or 'specific' effects on outcomes. Thirty-one studies met the inclusion criteria with 21 rated as having 'good' methodological quality. The studies investigated a total of 25 warm-up modes and 43 outcome factors that could be grouped into eight mode and performance outcome categories. No studies of upper body warm-up effects on injury prevention were discovered. Strong research-based evidence was found for the following: high-load dynamic warm-ups enhance power and strength performance; warm-up swings with a standard weight baseball bat are most effective for enhancing bat speed; short-duration static stretching warm-up has no effect on power outcomes; and passive heating/cooling is a largely ineffective warm-up mode. A clear knowledge gap in upper body warm-up literature is the lack of investigation of injury prevention outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The formation of giant clastic extrusions at the end of the Messinian Salinity Crisis
NASA Astrophysics Data System (ADS)
Kirkham, Christopher; Cartwright, Joe; Hermanrud, Christian; Jebsen, Christopher
2018-01-01
This paper documents the discovery of five multi-km scale lensoid bodies that directly overlie the upper surface of the thick (>1 km) Messinian Evaporite sequence. They were identified through the analysis of 3D seismic data from the western Nile Cone. The convergence of the upper and lower bounding reflections of these lensoid bodies, their external and internal reflection configuration, the positive 'depositional' relief at their upper surface, and the stratal relationship with underlying and overlying deposits supports the interpretation that these are giant clastic extrusions. The interpretations combined with the stratal position of these clastic extrusions demonstrate a prior unsuspected link between periods of major environment change and basin hydrodynamics on a plate scale. All five lensoid bodies were extruded onto a single, seismically resolvable marker horizon correlatable with the end of the Messinian Salinity Crisis (Horizon M). It is argued that the source of these clastic extrusions is pre-Messinian in origin, which implies massive sediment remobilisation at depth in the pre-evaporitic succession and intrusion through the thick evaporite layer. We propose that the scale and timing of this dramatic event was primed and triggered by near-lithostatic overpressure in the pre-evaporitic sediments generated through (1) their rapid burial and loading during the Messinian Salinity Crisis and (2) catastrophic re-flooding during its immediate aftermath. The largest of these clastic extrusions has a volume of over c. 116 km3, making it amongst the largest extruded sedimentary bodies described on Earth. The findings extend the understanding of the upper scale of other analogous clastic extrusions such as mud volcanoes and sediment-hosted hydrothermal systems. Following the 2006 eruption of the Lusi sediment-hosted hydrothermal system in Indonesia, an understanding of the upper scale limit of clastic extrusions has even greater societal relevance, in order to increase awareness of the risk posed by the potential size and longevity of future giant clastic extrusions.
Suprak, David N; Dawes, Jay; Stephenson, Mark D
2011-02-01
The push-up is a popular upper-extremity weight-bearing exercise. However, limited information is available regarding its effectiveness. Much of the past research has focused on muscle activation levels, whereas very little has examined the forces encountered during push-up variants. The purpose of the present study was to examine the effect of position within the range of motion on the percentage of body mass (BM) supported by the upper extremities during the traditional and modified (knees-down) push-up. Twenty-eight highly strength-trained male subjects were positioned with their hands on a force platform in 4 static positions, consisting of the up and down position in both the traditional and modified push-up exercise. The performance measures included the average vertical ground reaction force (GRF), expressed as a percentage of BM, supported in each of the 4 static positions and the percentage of change between the up and down positions in each push-up exercise. In both the traditional and modified push-ups, subjects supported less weight in the up vs. the down position. The percentage change in % BM from the up to the down position was greater in the modified push-up variant. The pattern of resistances to the push-up exercises observed in this study may be a result of differing moment arms between the support surface contact point (knees or feet) and the hands. These results may be useful in prescribing programs for strengthening and/or rehabilitation for both the prime movers and stabilizers of the upper extremity. Further, range of motion may need to be altered to accommodate strength differences in beginners and clients rehabilitating from injury.
NASA Technical Reports Server (NTRS)
Ware, George M.
1989-01-01
An investigation was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers from 1.6 to 4.5. The model had a low-aspect-ratio body with a flat undersurface. A center fin and two outboard fins were mounted on the aft portion of the upper body. The outboard fins were rolled outboard 40 deg from the vertical. Elevon surfaces made up the trailing edges of the outboard fins, and body flaps were located on the upper and lower aft fuselage. The center fin pivoted about its midchord for yaw control. The model was longitudinally stable about the design center-of-gravity position at 54 percent of the body length. The configuration with undeflected longitudinal controls trimmed near 0 deg angle of attack at Mach numbers from 1.6 to 3.0 where lift and lift-drag ratio were negative. Longitudinal trim was near the maximum lift-drag ratio (1.4) at Mach 4.5. The model was directionally stable over Mach number range except at angles of attack around 4 deg at M = 2.5. Pitch control deflection of more than -10 deg with either elevons or body flaps is needed to trim the model to angles of attack at which lift becomes positive. With increased control deflection, the lifting-body configuration should perform the assured crew return mission through the supersonic speed range.
Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo
2016-01-01
Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008
Schroeder, Elizabeth C; Rosenberg, Alexander J; Hilgenkamp, Thessa I M; White, Daniel W; Baynard, Tracy; Fernhall, Bo
2017-12-01
To evaluate changes in arterial stiffness with positional change and whether the stiffness changes are due to hydrostatic pressure alone or if physiological changes in vasoconstriction of the conduit arteries play a role in the modulation of arterial stiffness. Thirty participants' (male = 15, 24 ± 4 years) upper bodies were positioned at 0, 45, and 72° angles. Pulse wave velocity (PWV), cardio-ankle vascular index, carotid beta-stiffness index, carotid blood pressure (cBP), and carotid diameters were measured at each position. A gravitational height correction was determined using the vertical fluid column distance (mmHg) between the heart and carotid artery. Carotid beta-stiffness was calibrated using three methods: nonheight corrected cBP of each position, height corrected cBP of each position, and height corrected cBP of the supine position (theoretical model). Low frequency systolic blood pressure variability (LFSAP) was analyzed as a marker of sympathetic activity. PWV and cardio-ankle vascular index increased with position (P < 0.05). Carotid beta-stiffness did not increase if not corrected for hydrostatic pressure. Arterial stiffness indices based on Method 2 were not different from Method 3 (P = 0.65). LFSAP increased in more upright positions (P < 0.05) but diastolic diameter relative to diastolic pressure did not (P > 0.05). Arterial stiffness increases with a more upright body position. Carotid beta-stiffness needs to be calibrated accounting for hydrostatic effects of gravity if measured in a seated position. It is unclear why PWV increased as this increase was independent of blood pressure. No difference between Methods 2 and 3 presumably indicates that the beta-stiffness increases are only pressure dependent, despite the increase in vascular sympathetic modulation.
Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares
2016-01-01
ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228
Mellor, David; Hucker, Alice; Waterhouse, Monique; binti Mamat, Norul Hidayah; Xu, Xiaoyan; Cochrane, Jamie; McCabe, Marita; Ricciardelli, Lina
2014-11-01
This study investigated how dissatisfaction with particular aspects of the body was associated with overall body dissatisfaction among male adolescents in Western and Asian cultures. One hundred and six Malaysian Malays, 55 Malaysian Chinese, 195 Chinese from China, and 45 non-Asian Australians aged 12 to 19 years completed a questionnaire assessing dissatisfaction with their overall body and dissatisfaction with varying aspects of their body. Dissatisfaction with the face, height, and hair was positively correlated with overall body dissatisfaction among Malaysian Malays after body mass index, age and dissatisfaction with body areas typically included in measures (weight/shape, upper, middle, and lower body, and muscles) had been controlled for. Dissatisfaction with the face was positively correlated with overall body dissatisfaction among Malaysian Chinese. These findings demonstrate the differences in body focus for males from different cultures and the importance of using assessment measures that address all possible areas of body focus. © The Author(s) 2014.
Typical action perception and interpretation without motor simulation.
Vannuscorps, Gilles; Caramazza, Alfonso
2016-01-05
Every day, we interact with people synchronously, immediately understand what they are doing, and easily infer their mental state and the likely outcome of their actions from their kinematics. According to various motor simulation theories of perception, such efficient perceptual processing of others' actions cannot be achieved by visual analysis of the movements alone but requires a process of motor simulation--an unconscious, covert imitation of the observed movements. According to this hypothesis, individuals incapable of simulating observed movements in their motor system should have difficulty perceiving and interpreting observed actions. Contrary to this prediction, we found across eight sensitive experiments that individuals born with absent or severely shortened upper limbs (upper limb dysplasia), despite some variability, could perceive, anticipate, predict, comprehend, and memorize upper limb actions, which they cannot simulate, as efficiently as typically developed participants. We also found that, like the typically developed participants, the dysplasic participants systematically perceived the position of moving upper limbs slightly ahead of their real position but only when the anticipated position was not biomechanically awkward. Such anticipatory bias and its modulation by implicit knowledge of the body biomechanical constraints were previously considered as indexes of the crucial role of motor simulation in action perception. Our findings undermine this assumption and the theories that place the locus of action perception and comprehension in the motor system and invite a shift in the focus of future research to the question of how the visuo-perceptual system represents and processes observed body movements and actions.
Typical action perception and interpretation without motor simulation
Vannuscorps, Gilles; Caramazza, Alfonso
2016-01-01
Every day, we interact with people synchronously, immediately understand what they are doing, and easily infer their mental state and the likely outcome of their actions from their kinematics. According to various motor simulation theories of perception, such efficient perceptual processing of others’ actions cannot be achieved by visual analysis of the movements alone but requires a process of motor simulation—an unconscious, covert imitation of the observed movements. According to this hypothesis, individuals incapable of simulating observed movements in their motor system should have difficulty perceiving and interpreting observed actions. Contrary to this prediction, we found across eight sensitive experiments that individuals born with absent or severely shortened upper limbs (upper limb dysplasia), despite some variability, could perceive, anticipate, predict, comprehend, and memorize upper limb actions, which they cannot simulate, as efficiently as typically developed participants. We also found that, like the typically developed participants, the dysplasic participants systematically perceived the position of moving upper limbs slightly ahead of their real position but only when the anticipated position was not biomechanically awkward. Such anticipatory bias and its modulation by implicit knowledge of the body biomechanical constraints were previously considered as indexes of the crucial role of motor simulation in action perception. Our findings undermine this assumption and the theories that place the locus of action perception and comprehension in the motor system and invite a shift in the focus of future research to the question of how the visuo-perceptual system represents and processes observed body movements and actions. PMID:26699468
3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor
NASA Astrophysics Data System (ADS)
Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki
The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].
Cheng, Hsin-Yi Kathy; Lien, Yueh-Ju; Yu, Yu-Chun; Ju, Yan-Ying; Pei, Yu-Cheng; Cheng, Chih-Hsiu; Wu, David Bin-Chia
2013-04-01
A high percentage of children with cerebral palsy (CP) have difficulty keeping up with the handwriting demands at school. Previous studies have addressed the effects of proper sitting and writing tool on writing performance, but less on body biomechanics. The aim of this study was to investigate the influence of lower body stabilization and pencil design on body biomechanics in children with CP. Fourteen children (12.31±4.13 years old) with CP were recruited for this study. A crossover repeated measures design was employed, with two independent variables: lower body stabilization (with/without) and pencil (regular/assigned grip height/biaxial). The writing task was to trace the Archimedean spiral mazes. Electromyography (EMG) of the upper extremity, the wrist flexion/extension movements, and the whole body photography were recorded to quantify the changes in posture and upper extremity biomechanics. Two-way repeated measures ANOVA was used for statistical analysis. No significant main effects were revealed in the EMG and wrist kinematics. The lower body stabilization significantly decreased the trunk lateral and forward deviations, and the visual focus-vertical angle. The biaxial pencil and the assigned grip height design significantly decreased the head, shoulder, trunk, and pelvic deviations compared with the regular design. The results indicated that the lower body positioning was effective in improving the trunk posture. A pencil with an assigned grip height or with a biaxial design could improve head, shoulder, trunk and pelvic alignment, but did not influence the muscle exertion of the upper extremity. This study could provide guidelines for parents, teachers and clinicians regarding the selection of writing tools and the knowledge of proper positioning for the children with handwriting difficulties. Further analyses can focus on the design, modification and clinical application of assitive sitting and writing devices for the use in children with handwriting difficulties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quantile regression analyses of associated factors for body mass index in Korean adolescents.
Kim, T H; Lee, E K; Han, E
2015-05-01
This study examined the influence of home and school environments, and individual health-risk behaviours on body weight outcomes in Korean adolescents. This was a cross-sectional observational study. Quantile regression models to explore heterogeneity in the association of specific factors with body mass index (BMI) over the entire conditional BMI distribution was used. A nationally representative web-based survey for youths was used. Paternal education level of college or more education was associated with lower BMI for girls, whereas college or more education of mothers was associated with higher BMI for boys; for both, the magnitude of association became larger at the upper quantiles of the conditional BMI distribution. Girls with good family economic status were more likely to have higher BMIs than those with average family economic status, particularly at the upper quantile of the conditional BMI distribution. Attending a co-ed school was associated with lower BMI for both genders with a larger association at the upper quantiles. Substantial screen time for TV watching, video games, or internet surfing was associated with a higher BMI with a larger association at the upper quantiles for both girls and boys. Dental prevention was negatively associated with BMI, whereas suicide consideration was positively associated with BMIs of both genders with a larger association at a higher quantile. These findings suggest that interventions aimed at behavioural changes and positive parental roles are needed to effectively address high adolescent BMI. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Tsay, Anthony J; Giummarra, Melita J
2016-07-01
Awareness of limb position is derived primarily from muscle spindles and higher-order body representations. Although chronic pain appears to be associated with motor and proprioceptive disturbances, it is not clear if this is due to disturbances in position sense, muscle spindle function, or central representations of the body. This study examined position sense errors, as an indicator of spindle function, in participants with unilateral chronic limb pain. The sample included 15 individuals with upper limb pain, 15 with lower limb pain, and 15 sex- and age-matched pain-free control participants. A 2-limb forearm matching task in blindfolded participants, and a single-limb pointer task, with the reference limb hidden from view, was used to assess forearm position sense. Position sense was determined after muscle contraction or stretch, intended to induce a high or low spindle activity in the painful and nonpainful limbs, respectively. Unilateral upper and lower limb chronic pain groups produced position errors comparable with healthy control participants for position matching and pointer tasks. The results indicate that the painful and nonpainful limb are involved in limb-matching. Lateralized pain, whether in the arm or leg, does not influence forearm position sense. Painful and nonpainful limbs are involved in bilateral limb-matching. Muscle spindle function appears to be preserved in the presence of chronic pain. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
An ergonomic intervention to reduce musculoskeletal discomfort among semiconductor assembly workers.
Aghilinejad, Mashallah; Azar, Neda Soleimanvandy; Ghasemi, Mohammad Sadegh; Dehghan, Naser; Mokamelkhah, Elahe Kabir
2016-06-14
Work-related musculoskeletal disorders (MSDs) and ergonomics-related injuries are the single largest category of workplace injuries and are responsible for almost 30% of all worker's compensation costs. Awkward working posture refers to positions of the body that deviate significantly from the neutral position while job tasks are being performed and it is the primary ergonomic risk factor for developing musculoskeletal discomfort. This study was conducted among assembly workers of a semiconductor in Tehran province with the objective of implementing an interventional ergonomic program to minimize musculoskeletal discomfort. This study that was conducted on 105 male assembly workers of a semiconductor industry based on a census method. The standardized Nordic Musculoskeletal Questionnaire (NMQ) was used to determine the prevalence of MSDs. Corlett and Bishop's body part discomfort scale (BPD) was applied to evaluate body discomfort before and after the intervention (using a magnifying loupes to improve visibility of the parts). The results of NMQ showed the highest rate of MSDs were in neck, shoulder, upper arm and lower back regions (more than 75%). After ergonomic intervention, significant decrements of discomfort was observed in neck, shoulder, upper arm, elbows, lower arm, lower back and whole body discomfort (p < 0.05). It can be concluded that using magnifying loupes reduced discomfort in different body regions and the whole body. A conclusion of this research is that ergonomic interventions can decrease MSDs of at risk body regions in the long term.
2014-01-01
Background The sagittal alignment of the spine changes depending on body posture and degenerative changes. This study aimed to observe changes in sagittal alignment of the lumbar spine with different positions (standing, supine, and various sitting postures) and to verify the effect of aging on lumbar sagittal alignment. Methods Whole-spine lateral radiographs were obtained for young volunteers (25.4 ± 2.3 years) and elderly volunteers (66.7 ± 1.7 years). Radiographs were obtained in standing, supine, and sitting (30°, 60°, and 90°) positions respectively. We compared the radiological changes in the lordotic and segmental angles in different body positions and at different ages. Upper and lower lumbar lordosis were defined according to differences in anatomical sagittal mobility and kinematic behavior. Results Lumbar lordosis was greater in a standing position (52.79° and 53.90° in young and old groups, respectively) and tended to decrease as position changed from supine to sitting. Compared with the younger group, the older group showed significantly more lumbar lordosis in supine and 60° and 90° sitting positions (P = 0.043, 0.002, 0.011). Upper lumbar lordosis in the younger group changed dynamically in all changed positions compared with the old group (P = 0.019). Lower lumbar lordosis showed a decreasing pattern in both age groups, significantly changing as position changed from 30° to 60° (P = 0.007, 0.007). Conclusions Lumbar lordosis decreases as position changes from standing to 90°sitting. The upper lumbar spine is more flexible in individuals in their twenties compared to those in their sixties. Changes in lumbar lordosis were concentrated in the lower lumbar region in the older group in sitting positions. PMID:24571953
Kato, Hideki; Sawada, Michito
2015-12-01
When an inhomogeneous medium such as bone, whose composition or density are clearly different from that of soft tissue of human body, exist in irradiated body, a subjective contrast of X-ray image changes by the location of these inhomogeneous medium. This cause due to the change of behavior of scattered photons in the body depends on the location of inhomogeneous medium besides due to the influence of a penumbra. But this mechanism is not explained clearly yet. In this paper, it was analyzed by means of the Monte Carlo simulation that what kind of difference occurs to a subjective contrast by the difference in location of inhomogeneous medium in water phantom and that a change in behavior of scattered photons in the phantom influences a subjective contrast by what kind of mechanism. In this case the inhomogeneous medium is bone, whose effective atomic number and density are higher than that of water, the subjective contrast of X-ray image degrades when bone is located near the entrance surface (upper position) than located near the exit surface (lower position). This is caused by the number of scattered photons, originated in primary photons incident upon the zone besides the region from entrance surface to exit surface including inhomogeneous medium and incident on the area of shadow of inhomogeneous medium on the image detector, is greater in case of the upper position than in case of the lower position. In the lower position, many of these scattered photons are interacted in bone located near the exit surface by the photo-electric absorption and only a small amount is incident on the image detector.
Hasan, Y; Go, J; Hashmi, S M; Valestin, J; Schey, R
2015-04-01
The standard protocol for esophageal manometry involves placing the patient in the supine position with head turned to left (supine head left [SHL]) while evaluating liquid bolus swallows. Routinely, semisolid or solid boluses are not evaluated. Currently, the daily American diet includes up to 40% solid or semisolid texture. Thus far, the data on the effect of different bolus on high-resolution esophageal pressure topography (HREPT) parameters are scarce. This study aims to evaluate the effect of every day bolus consistencies in different body positions on HREPT variables. HREPT was performed on healthy volunteers with a modified protocol including liquid swallows in the SHL position followed by applesauce (semisolid), cracker (solid), and marshmallow (soft solid) in three different positions (SHL, sitting, and standing). A total of 38 healthy adult subjects (22 males and 16 females, median age = 27, and mean body mass index = 25) were evaluated. The resting upper esophageal sphincter pressure was significantly different while subjects swallowed crackers, applesauce, and marshmallows in most positions compared with liquid SHL (P < 0.05). The lower esophageal sphincter, contractile front velocity, and distal contractile integral pressures did not differ in all different consistencies compared with SHL. The integrated relaxation period was significantly higher with solid bolus compared with liquid bolus only in SHL position. The intrabolus pressure was significantly different with solid and soft solid boluses in all postures compared to liquid SHL. The American diet consistency affects upper esophageal sphincter pressure and partially integrated relaxation period and intrabolus pressure in various positions. Semisolid bolus swallows do not cause substantial pressure changes and are safe for evaluation and maintaining adequate caloric intake in patients with dysphagia who cannot tolerate solids. © 2014 International Society for Diseases of the Esophagus.
Upper limb kinetic analysis of three sitting pivot wheelchair transfer techniques.
Koontz, Alicia M; Kankipati, Padmaja; Lin, Yen-Sheng; Cooper, Rory A; Boninger, Michael L
2011-11-01
The objective of this study was to investigate differences in shoulder, elbow and hand kinetics while performing three different SPTs that varied in terms of hand and trunk positioning. Fourteen unimpaired individuals (8 male and 6 female) performed three variations of sitting pivot transfers in a random order from a wheelchair to a level tub bench. Two transfers involved a forward flexed trunk (head-hips technique) and the third with the trunk remaining upright. The two transfers involving a head hips technique were performed with two different leading hand initial positions. Motion analysis equipment recorded upper body movements and force sensors recorded hand reaction forces. Shoulder and elbow joint and hand kinetics were computed for the lift phase of the transfer. Transferring using either of the head hips techniques compared to the trunk upright style of transferring resulted in reduced superior forces at the shoulder (P<0.002), elbow (P<0.004) and hand (P<0.013). There was a significant increase in the medial forces in the leading elbow (P=0.049) for both head hip transfers and the trailing hand for the head hip technique with the arm further away from the body (P<0.028). The head hip techniques resulted in higher shoulder external rotation, flexion and extension moments compared to the trunk upright technique (P<0.021). Varying the hand placement and trunk positioning during transfers changes the load distribution across all upper limb joints. The results of this study may be useful for determining a technique that helps preserve upper limb function overtime. Published by Elsevier Ltd.
Kriboy, M; Tarasiuk, A; Zigel, Y
2014-01-01
Obstructive sleep apnea (OSA) is a common sleep disorder. OSA is associated with several anatomical and functional abnormalities of the upper airway. It was shown that these abnormalities in the upper airway are also likely to be the reason for increased rate of apneic events in the supine position. Functional and structural changes in the vocal tract can affect the acoustic properties of speech. We hypothesize that acoustic properties of speech that are affected by body position may aid in distinguishing between OSA and non-OSA patients. We aimed to explore the possibility to differentiate OSA and non-OSA patients by analyzing the acoustic properties of their speech signal in upright sitting and supine positions. 35 awake patients were recorded while pronouncing sustained vowels in the upright sitting and supine positions. Using linear discriminant analysis (LDA) classifier, accuracy of 84.6%, sensitivity of 92.7%, and specificity of 80.0% were achieved. This study provides the proof of concept that it is possible to screen for OSA by analyzing and comparing speech properties acquired in upright sitting vs. supine positions. An acoustic-based screening system during wakefulness may address the growing needs for a reliable OSA screening tool; further studies are needed to support these findings.
Force-Velocity-Power Assessment in Semiprofessional Rugby Union Players.
McMaster, Daniel T; Gill, Nicholas D; Cronin, John B; McGuigan, Michael R
2016-04-01
There is a constant and necessary evolution of training and assessment methods in the elite contact sports; as is required to continually improve the physical qualities of these respective athletes to match the growing sport and position-specific performance demands. Our aim was to examine the differences between ballistic upper body performance profiles and maximum upper body strength of elite rugby union forwards and backs. Twenty semiprofessional male rugby union players (age = 21.1 ± 3.0 years; mass = 94.9 ± 9.7 kg) were assessed for maximum bench press strength (1RM bench press = 121.3 ± 21.8 kg) and maximum throw power (Pmax), force (Fmax), and velocity (V[Combining Dot Above]max) from an incremental relative load testing protocol (15, 30, 45, 60, and 75% 1RM). Player rankings were also included to identify individual strength and weaknesses. The forwards were moderately stronger (effect size [ES] = 0.96; p = 0.01), produced significantly greater Fmax (ES = 1.17-1.41; p = 0.01) and were more powerful (ES = 0.57-0.64; p < 0.43) than the backs. V[Combining Dot Above]max differences were trivial to small (ES = -0.32 to -0.65; p > 0.15). There were inherent differences in strength and Fmax between the forwards and backs most likely because of the physical demands of these respective positions. Improvements in upper body strength may in turn improve ballistic force and power production, but not necessarily velocity capabilities. From the Fmax and V[Combining Dot Above]max observations, the forwards seem to be more force dominant and the backs more velocity dominant. Pmax, Fmax, and V[Combining Dot Above]max may be used to highlight proficient and deficient areas in ballistic upper body performance; the individual rankings could be further used to identify and possibly rectify individual deficiencies.
[Size of lower jaw as an early indicator of skeletal class III development].
Stojanović, Zdenka; Nikodijević, Angelina; Udovicić, Bozidar; Milić, Jasmina; Nikolić, Predrag
2008-08-01
Malocclusion of skeletal class III is a complex abnormality, with a characteristic sagital position of the lower jaw in front of the upper one. A higher level of prognatism of the lower jaw in relation to the upper one can be the consequence of its excessive length. The aim of this study was to find the differences in the length of the lower jaw in the children with skeletal class III and the children with normal sagital interjaw relation (skeletal class I) in the period of mixed dentition. After clinical and x-ray diagnostics, profile tele-x-rays of the head were analyzed in 60 examinees with mixed dentition, aged from 6 to 12 years. The examinees were divided into two groups: group 1--the children with skeletal class III and group 2--the children with skeletal class I. The length of the lower jaw, upper jaw and cranial base were measured. The proportional relations between the lengths measured within each group were established and the level of difference in the lengths measured and their proportions between the groups were estimated. No significant difference between the groups was found in the body length, ramus and the total length of the lower jaw. Proportional relation between the body length and the length of the lower jaw ramus and proportional relation between the forward cranial base and the lower jaw body were not significantly different. A significant difference was found in proportional relations of the total length of the lower jaw with the total lengths of cranial base and the upper jaw and proportional relation of the length of the lower and upper jaw body. Of all the analyzed parameters, the following were selected as the early indicators of the development of skeletal class III on the lower jaw: greater total length of the lower jaw, proportional to the total lengths of cranial base and theupper jaw, as well as greater length of the lower jaw body, proportional to the length of the upper jaw body.
Jung, Ji-Yun; Kim, Eun-Hee; Song, In-Kyung; Lee, Ji-Hyun; Kim, Hee-Soo; Kim, Jin-Tae
2016-12-01
The purpose of this study was to analyze the distances between the conus medullaris and the Tuffier's line, and between the dural sac and the sacrococcygeal membrane (SCM) in the same pediatric population. Spinal magnetic resonance images and simple X-ray images of 350 patients aged from 1 month to 20 years were reviewed. Positions of the conus medullaris, Tuffier's line, the dural sac, and the SCM were identified. Each position was recorded in relation to the corresponding vertebral body segments. The distances between the conus medullaris and Tuffier's line, and between the dural sac and the SCM, were measured and then assessed according to age using an analysis of variance and a linear regression analysis. The median levels of the conus medullaris and Tuffier's line were in the lower third of L1 [the first lumbar vertebral body] and the middle third of L5, respectively. The levels of the conus medullaris and Tuffier's line were lower in younger populations. The distance between the conus medullaris and Tuffier's line ranged from 1.5 to 4.75 vertebral body height. However, a narrow range of 1.5-2.5 vertebral height was observed only in children younger than 2 years. The level of the dural sac did not differ greatly by age, but the upper limit of the SCM was lower in older populations. The distance between the dural sac and the upper limit of the SCM increased with age. In children, there is a distance of 1.5-4.75 vertebral body height between the conus medullaris and the Tuffier's line. However, these distances were narrower among younger populations. The distance between the dural sac and the upper limit of the SCM increased with age. © 2016 John Wiley & Sons Ltd.
Sexual relationship power and malnutrition among HIV-positive women in rural Uganda.
Siedner, Mark J; Tsai, Alexander C; Dworkin, Shari; Mukiibi, Nozmo F B; Emenyonu, Nneka I; Hunt, Peter W; Haberer, Jessica E; Martin, Jeffrey N; Bangsberg, David R; Weiser, Sheri D
2012-08-01
Inequality within partner relationships is associated with HIV acquisition and gender violence, but little is known about more pervasive effects on women's health. We performed a cross-sectional analysis of associations between sexual relationship power and nutritional status among women in Uganda. Participants completed questionnaires and anthropometric measurements. We assessed sexual relationship power using the Sexual Relationship Power Scale (SRPS). We performed logistic regression to test for associations between sexual relationship power and poor nutritional status including body mass index, body fat percentage, and mid-upper arm circumference. Women with higher sexual relationship power scores had decreased odds of low body mass index (OR 0.29, p = 0.01), low body fat percentage (OR 0.54, p = 0.04), and low mid-upper arm circumference (OR 0.22, p = 0.01). These relationships persisted in multivariable models adjusted for potential confounders. Targeted interventions to improve intimate partner relationship equality should be explored to improve health status among women living with HIV in rural Africa.
Kankipati, Padmaja; Boninger, Michael L; Gagnon, Dany; Cooper, Rory A; Koontz, Alicia M
2015-07-01
Repeated measures design. This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Research laboratory. Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head-hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement.
Ergonomics and comfort in lawn mower handle positioning: An evaluation of handle geometry.
Lowndes, Bethany R; Heald, Elizabeth A; Hallbeck, M Susan
2015-11-01
Hand operation accompanied with any combination of large forces, awkward positions and repetition may lead to upper limb injury or illness and may be exacerbated by vibration. Commercial lawn mowers expose operators to these factors during actuation of hand controls and therefore may be a health concern. A nontraditional lawn mower control system may decrease upper limb illnesses and injuries through more neutral hand and body positioning. This study compared maximum grip strength in twelve different orientations (3 grip spans and 4 positions) and evaluated self-described comfortable handle positions. The results displayed force differences between nontraditional (X) and both vertical (V) and pistol (P) positions (p < 0.0001) and among the different grip spans (p < 0.0001). Based on these results, recommended designs should incorporate a tilt between 45 and 70°, handle rotations between 48 and 78°, and reduced force requirements or decreased grip spans to improve user health and comfort. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
The effects of strength training on cognitive performance in elderly women.
Smolarek, André de Camargo; Ferreira, Luis Henrique Boiko; Mascarenhas, Luis Paulo Gomes; McAnulty, Steven R; Varela, Karla Daniele; Dangui, Mônica C; de Barros, Marcelo Paes; Utter, Alan C; Souza-Junior, Tácito P
2016-01-01
Aging is a degenerative process marked by recognized functional, physiological, and metabolic impairments, such as dynapenia and diminished cognitive capacity. Therefore, the search for innovative strategies to prevent/delay these physiological and cognitive disorders is essential to guarantee the independence and life quality of an elderly population. The aim of this work is to verify the effect of a 12-week resistance exercise program on the general physical aptitude and cognitive capacities of elderly and sedentary women. Twenty-nine women (65.87±5.69 years) were divided into two groups. The control group was composed of eight elderly women who met the same inclusion criteria of the study and the strength training group was composed of 29 elderly women who were subjected to a resistance exercise program defined by 12 upper and lower limb exercises combined in 3×10 repetitions with 1-minute interval between repetitions and two resting minutes between exercises (three times/week). Weight loads were fixed between 60% and 75% of the apparent 1 repetition maximum, which was estimated by the test of 10 maximum repetitions. The direct curl was performed for upper body strength evaluation with 2.3 kg dumbbells for 30 seconds, whereas the chair test was used for lower body evaluation (total sit-stand movements in 30 seconds). The cognitive capacities of subjects were evaluated by "The Montreal Cognitive Assessment" questionnaire. After 12 weeks, the elderly group showed significant increases in the average upper body strength (58%), lower body strength (68%), and cognitive capacity (19%). The present study demonstrated that regular resistance exercises could provide significant gains on the upper and lower body strength concomitant to positive improvements on cognitive capacities of elderly women, bringing enhanced life quality.
Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind
2015-01-01
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers.
Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind
2015-01-01
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers. PMID:26000713
Legaye, Jean; Duval-Beaupere, Ginette
2017-11-01
To evaluate the influence of the position of the arms on the location of the body's gravity line. The sagittal balance of the pelvi-spinal unit is organized so that the gravity line is localized in a way that limits the mechanical loads and the muscle efforts. This position of the gravity line was analyzed in vivo, in standing position, the arms dangling, by the barycentremeter, a gamma rays scanner. Then, several teams had the same purpose but using a force platform combined with radiographies. Their results differed significantly among themselves and with the data of the barycentremetry. However, in these studies, the positions of the arms varied noticeably, either slightly bent forwards on a support, or the fingers on the clavicles or on the cheeks. We estimated, for each varied posture of the arms, the sagittal coordinates of the masses of the upper limbs and their influence on the anatomical position of the gravity line of the whole body. Using a simple equation and the data of the barycentremeter, we observed that the variations in the location of the gravity line were proportionally connected to the changes of the sagittal position of the mass of the upper limbs induced by the various positions of the arms. We conclude in a validation of the data of the barycentremeter, as well as of the data obtained by the force platforms as long as the artifact of the position of the arms is taken into account.
Quantifying anti-gravity torques in the design of a powered exoskeleton.
Ragonesi, Daniel; Agrawal, Sunil; Sample, Whitney; Rahman, Tariq
2011-01-01
Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the passive and active residual force capabilities of users. This paper experimentally measures the passive gravitational torques of 3 groups of subjects: able-bodied adults, able bodied children, and children with neurological disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the gravitational force at the wrist. This force is then converted to static gravitational torques at the elbow and shoulder. Data are compared between look-up table data based on anthropometry and empirical data. Results show that the look-up torques deviate from experimentally measured torques as the arm reaches up and down. This experiment informs designers of Upper Limb orthoses on the contribution of passive human joint torques.
Follow-Up Care for Older Women With Breast Cancer
2000-05-01
better predictor of upper body mor therapy, all cause mortality, self -reported function and overall physical function than upper body function, and...outcomes, including primary tu- Major Analytic Variables mor therapy and all cause mortality, as well as self -reported upper body and overall physical ...comorbidity and their relation to a range of patient outcomes, including primary tumor therapy and mortality, self -reported upper body function, and overall
Stein, George Juraj; Múcka, Peter; Chmúrny, Rudolf; Hinz, Barbara; Blüthner, Ralph
2007-01-01
For modelling purposes and for evaluation of driver's seat performance in the vertical direction various mechano-mathematical models of the seated human body have been developed and standardized by the ISO. No such models exist hitherto for human body sitting in an upright position in a cushioned seat upper part, used in industrial environment, where the fore-and-aft vibrations play an important role. The interaction with the steering wheel has to be taken into consideration, as well as, the position of the human body upper torso with respect to the cushioned seat back as observed in real driving conditions. This complex problem has to be simplified first to arrive at manageable simpler models, which still reflect the main problem features. In a laboratory study accelerations and forces in x-direction were measured at the seat base during whole-body vibration in the fore-and-aft direction (random signal in the frequency range between 0.3 and 30 Hz, vibration magnitudes 0.28, 0.96, and 2.03 ms(-2) unweighted rms). Thirteen male subjects with body masses between 62.2 and 103.6 kg were chosen for the tests. They sat on a cushioned driver seat with hands on a support and backrest contact in the lumbar region only. Based on these laboratory measurements a linear model of the system-seated human body and cushioned seat in the fore-and-aft direction has been developed. The model accounts for the reaction from the steering wheel. Model parameters have been identified for each subject-measured apparent mass values (modulus and phase). The developed model structure and the averaged parameters can be used for further bio-dynamical research in this field.
Positional asphyxia without active restraint following an assault.
Fernando, Tarini; Byard, Roger W
2013-11-01
Deaths due to positional asphyxia are most often accidental, associated with alcohol and/or drug intoxication. A 19-year-old male is reported who was assaulted and placed in a head-down position in the back of a car were he was later found dead. Brush abrasions indicated that he had been dragged to the vehicle. The head and right shoulder were wedged into the foot well with the body uppermost. At autopsy, there was marked congestion of the face, neck, and upper chest with conjunctival ecchymoses, bruising of the face and scalp, focal subarachnoid hemorrhage, minor cerebral contusion, and diffuse cerebral swelling with early hypoxic ischemic encephalopathy (HIE). Toxicology was negative. Death was attributed to HIE resulting from the unusual positioning of the body. Cases of positional asphyxia involving others may not always include restraint, and when encountered should initiate a careful evaluation of the possible events and lethal pathophysiological processes. © 2013 American Academy of Forensic Sciences.
Preparing for Combat Readiness for the Fight: Physical Performance Profile of Female U.S. Marines.
Kelly, Karen R; Jameson, Jason T
2016-03-01
Females have been restricted from serving in direct combat arms' positions for decades. One reason for the exclusion derives from the perceived physical demands of these positions. As a result, many current efforts are directed toward defining the physical demands of combat arms' positions. The purpose of this study was to develop a physical performance and body composition profile of females who could overcome the physical demands of combat tasks that rely primarily on upper body strength. This study is based on an analysis of archival data from 2 separate samples of active-duty female Marines (n = 802), who had been recruited to participate in heavy lifting tasks. These tasks included lifting a heavy machine gun (HMG) lift (cohort 1, n = 423) and Clean and Press lifts (29.5-52.3 kg) (cohort 2, n = 379). To develop the physical performance profile, data from annual physical fitness tests were collected, which included run times, ammunition can lift, 804. Seven-meter (880-yard) movement to contact, and the maneuver under fire. In cohort 1, 65 females (∼15%; n = 423 females) successfully completed HMG; in cohort 2, 33 females (∼9%; n = 379 females) successfully completed another strength task, a Clean and Press of 52.3 kg. In both samples, female Marines who were successful on these tasks also outperformed their unsuccessful counterparts on the annual physical fitness tests. In addition, larger females typically outperformed their smaller counterparts. Females seeking assignment to closed combat arms' positions would thus be well served by targeting upper body strength, while maintaining overall physical fitness.
Makarov, Sergey N.; Yanamadala, Janakinadh; Piazza, Matthew W.; Helderman, Alex M.; Thang, Niang S.; Burnham, Edward H.; Pascual-Leone, Alvaro
2016-01-01
Goals Transcranial magnetic stimulation (TMS) is increasingly used as a diagnostic and therapeutic tool for numerous neuropsychiatric disorders. The use of TMS might cause whole-body exposure to undesired induced currents in patients and TMS operators. The aim of the present study is to test and justify a simple analytical model known previously, which may be helpful as an upper estimate of eddy current density at a particular distant observation point for any body composition and any coil setup. Methods We compare the analytical solution with comprehensive adaptive mesh refinement-based FEM simulations of a detailed full-body human model, two coil types, five coil positions, about 100,000 observation points, and two distinct pulse rise times, thus providing a representative number of different data sets for comparison, while also using other numerical data. Results Our simulations reveal that, after a certain modification, the analytical model provides an upper estimate for the eddy current density at any location within the body. In particular, it overestimates the peak eddy currents at distant locations from a TMS coil by a factor of 10 on average. Conclusion The simple analytical model tested in the present study may be valuable as a rapid method to safely estimate levels of TMS currents at different locations within a human body. Significance At present, safe limits of general exposure to TMS electric and magnetic fields are an open subject, including fetal exposure for pregnant women. PMID:26685221
Fan, Yu; Kong, Gaiqing; Meng, Yisen; Tan, Shutao; Wei, Kunlin; Zhang, Qian; Jin, Jie
2014-11-01
Flank position is extensively used in retroperitoneoscopic urological practice. Most surgeons follow the patients' position in open approaches. However, surgical ergonomics of the conventional position in the retroperitoneoscopic surgery is poor. We introduce a modified position and evaluated task performance and surgical ergonomics of both positions with simulated surgical tasks. Twenty-one novice surgeons were recruited to perform four tasks: bead transfer, ring transfer, continuous suturing, and cutting a circle. The conventional position was simulated by setting an endo-surgical simulator parallel to the long axis of a surgical desk. The modified position was simulated by rotating the simulator 30° with respect to the long axis of the desk. The outcome measurements include task performance measures, kinematic measures for body alignment, surface electromyography, relative loading between feet, and subjective ratings of fatigue. We observed significant improvements in both task performance and surgical ergonomics parameters under the modified position. For all four tasks, subjects finished tasks faster with higher accuracy (p < 0.005 or < 0.001). For ergonomics part: (1) The angle between the upper body and the head was decreased by 7.4 ± 1.7°; (2) The EMG amplitude collected from shoulders and left lumber was significantly lower (p < 0.05); (3) Relative loading between feet was more balanced (p < 0.001); (4) Manual-action muscles and postural muscles are rated less fatiguing according to the questionnaire (p < 0.05). Conventional position of patient in retroperitoneoscopic upper urinary tract surgery is associated with poor surgical ergonomics. With a simulated surgery, we demonstrated that our modified position could significantly improve task performance and surgical ergonomics. Further studies are still warranted to validate these benefits for both patients and surgeons.
Cephalometric norms for the upper airway of 12-year-old Chinese children.
Gu, Min; McGrath, Colman P J; Wong, Ricky W K; Hägg, Urban; Yang, Yanqi
2014-09-13
To establish cephalometric norms for the upper airway of 12-year-old Chinese children, and to assess these norms with regard to gender, age, ethnicity and other craniofacial structures. Lateral cephalograms were obtained from a random sample of 425 12-year-old Chinese children (224 boys and 201 girls) to establish the Chinese norms, and from a matched group of 108 12-year-old Caucasian children (61 boys and 47 girls) as an ethnic comparison. Published data on the upper airway norms of Chinese adults were used to make age comparisons. Nine upper airway and 14 craniofacial variables were measured. Chinese boys tended to have a thicker soft palate (P = 0.008), and less depth in the retropalatal (P = 0.011), retroglossal (P = 0.034) and hypopharyngeal (P < 0.001) pharynx than Chinese girls, whereas no gender dimorphism was found in Caucasian children. Ethnic differences were found in the depth of the retroglossal oropharynx in both genders and the position of the hyoid bone in boys. Compared with Chinese adults, the overall size of the upper airway in Chinese children was smaller. The mandibular body length and the craniocervical inclination were found to be statistically significantly, albeit weakly correlated with upper airway variables. Cephalometric norms for the upper airway of Chinese 12-year-old children were established, indicating gender-specific differences, and some ethnic differences were found in comparison with those of 12-year-old Caucasian children. An association between the mandibular body length and the craniocervical inclination with upper airway variables was also noticeable.
The Contribution of Upper Body Movements to Dynamic Balance Regulation during Challenged Locomotion
Boström, Kim J.; Dirksen, Tim; Zentgraf, Karen; Wagner, Heiko
2018-01-01
Recent studies suggest that in addition to movements between ankle and hip joints, movements of the upper body, in particular of the arms, also significantly contribute to postural control. In line with these suggestions, we analyzed regulatory movements of upper and lower body joints supporting dynamic balance regulation during challenged locomotion. The participants walked over three beams of varying width and under three different verbally conveyed restrictions of arm posture, to control the potential influence of arm movements on the performance: The participants walked (1) with their arms stretched out perpendicularly in the frontal plane, (2) spontaneously, i.e., without restrictions to the arm movements, and (3) with their hands on their thighs. After applying an inverse-dynamics analysis to the measured joint kinematics, we investigated the contribution of upper and lower body joints to balance regulation in terms of torque amplitude and variation. On the condition with the hands on the thighs, the contribution of the upper body remains significantly lower than the contribution of the lower body irrespective of beam widths. For spontaneous arm movements and for outstretched arms we find that the upper body (including the arms) contributes to the balancing to a similar extent as the lower body. Moreover, when the task becomes more difficult, i.e., for narrower beam widths, the contribution of the upper body increases, while the contribution of the lower body remains nearly constant. These findings lend further support to the hypothetical existence of an “upper body strategy” complementing the ankle and hip strategies especially during challenging dynamic balance tasks. PMID:29434544
Bertolaccini, Guilherme da Silva; Carvalho Filho, Idinei Francisco Pires de; Christofoletti, Gustavo; Paschoarelli, Luis Carlos; Medola, Fausto Orsi
2018-06-01
Wheelchair configuration is an important factor influencing the ergonomics of the user-device interface and, from a biomechanical point of view, small changes in chair setup may have a positive influence on the demand on the upper limbs during manual propulsion. This study aimed to investigate the influence of the position of the rear wheels' axle and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion. Electromyography signals of the biceps, triceps, anterior deltoids and pectoralis major were collected for 11 able-bodied subjects in a wheelchair propulsion protocol with four different wheelchair configurations (differing in axle position and the use of accessories) on a straightforward sprint and a slalom course. With accessories, moving the axle forward led to a decrease in the activity of all muscles in both the straightforward sprint (significant differences in triceps, anterior deltoids and biceps) and the slalom course (significant difference in anterior deltoids and biceps). However, when propelling the chair without accessories, no difference was found related to axle position. Changes in wheelchair configuration can influence the ergonomics of manual wheelchair propulsion. Reducing the biomechanical loads may benefit users' mobility, independence and social participation.
Kankipati, Padmaja; Boninger, Michael L.; Gagnon, Dany; Cooper, Rory A.; Koontz, Alicia M.
2015-01-01
Study design Repeated measures design. Objective This study compared the upper extremity (UE) joint kinetics between three transfer techniques. Setting Research laboratory. Methods Twenty individuals with spinal cord injury performed three transfer techniques from their wheelchair to a level tub bench. Two of the techniques involved a head–hips method with leading hand position close (HH-I) and far (HH-A) from the body, and the third technique with the trunk upright (TU) and hand far from body. Motion analysis equipment recorded upper body movements and force sensors recorded their hand and feet reaction forces during the transfers. Results Several significant differences were found between HH-A and HH-I and TU and HH-I transfers indicating that hand placement was a key factor influencing the UE joint kinetics. Peak resultant hand, elbow, and shoulder joint forces were significantly higher for the HH-A and TU techniques at the trailing arm (P < 0.036) and lower at the leading arm (P < 0.021), compared to the HH-I technique. Conclusion Always trailing with the same arm if using HH-A or TU could predispose that arm to overuse related pain and injuries. Technique training should focus on initial hand placement close to the body followed by the amount of trunk flexion needed to facilitate movement. PMID:25130053
Effects of Exercise on Bone Mineral Content in Postmenopausal Women.
ERIC Educational Resources Information Center
Rikli, Roberta E.; McManis, Beth G.
1990-01-01
Study tested the effect of exercise programs on bone mineral content (BMC) and BMC/bone width in 31 postmenopausal women. Subjects were placed in groups with aerobic exercise, aerobics plus upper-body weight training, or no exercise. Results indicate that regular exercise programs positively affect bone mineral maintenance in postmenopausal women.…
Gravitropism of basidiomycetous fungi — On Earth and in microgravity
NASA Astrophysics Data System (ADS)
Kern, V. D.
1999-01-01
In order to achieve perfect positioning of their lamellae for spore dispersal, fruiting bodies of higher fungi rely on the omnipresent force gravity. Only accurate negatively gravitropic orientation of the fruiting body cap will guarantee successful reproduction. A spaceflight experiment during the STS-55 Spacelab mission in 1993 confirmed that the factor gravity is employed for spatial orientation. Most likely every hypha in the transition zone between the stipe and the cap region is capable of sensing gravity. Sensing presumably involves slight sedimentation of nuclei which subsequently causes deformation of the net-like arrangement of F-actin filament strands. Hyphal elongation is probably driven by hormone-controlled activation and redistribution of vesicle traffic and vesicle incorporation into the vacuoles and cell walls to subsequently cause increased water uptake and turgor pressure. Stipe bending is achieved by way of differential growth of the flanks of the upper-most stipe region. After reorientation to a horizontal position, elongation of the upper flank hyphae decreases 40% while elongation of the lower flank slightly increases. On the cellular level gravity-stimulated vesicle accumulation was observed in hyphae of the lower flank.
Upper airway sleep-disordered breathing in women.
Guilleminault, C; Stoohs, R; Kim, Y D; Chervin, R; Black, J; Clerk, A
1995-04-01
To investigate the various clinical presentations of sleep-disordered breathing in women. A retrospective case-control study. A sleep disorders clinic. 334 women, aged 18 years and older, seen between 1988 and 1993, who were diagnosed with upper airway sleep-disordered breathing. Controls were 60 women with insomnia and 100 men with sleep-disordered breathing. Clinical, anatomic, and polygraphic information. The mean lag time (+/- SD) in women between the appearance of symptoms and a positive diagnosis was 9.7 +/- 3.1 years; among participants 30 to 60 years of age, the duration of untreated symptoms differed (P < 0.001) between women and men. Sleep-disordered breathing was blamed for divorce or social isolation by 40% of the case patients. Abnormal maxillomandibular features were noted in 45% of the women with disordered breathing. Dysmenorrhea and amenorrhea (which disappeared after treatment with nasal continuous positive airway pressure) were reported in 43% of premenopausal women compared with 13% of persons in the control group of women with insomnia. Thirty-eight women (11.4%) with upper airway sleep-disordered breathing had a respiratory disturbance index of less than 5 and were significantly younger, had a smaller neck circumference, and had a lower body mass index than women with a respiratory disturbance index of 5 or more. Physicians should revise their understanding of upper airway sleep-disordered breathing so that they notice women with certain craniofacial features, a low body mass index, a small neck circumference, and a respiratory disturbance index of less than 5. These revisions may enable more rapid diagnosis and treatment of women with sleep-disordered breathing.
Costa, L; Mantha, V R; Silva, A J; Fernandes, R J; Marinho, D A; Vilas-Boas, J P; Machado, L; Rouboa, A
2015-07-16
Computational fluid dynamics (CFD) plays an important role to quantify, understand and "observe" the water movements around the human body and its effects on drag (D). We aimed to investigate the flow effects around the swimmer and to compare the drag and drag coefficient (CD) values obtained from experiments (using cable velocimetry in a swimming pool) with those of CFD simulations for the two ventral gliding positions assumed during the breaststroke underwater cycle (with shoulders flexed and upper limbs extended above the head-GP1; with shoulders in neutral position and upper limbs extended along the trunk-GP2). Six well-trained breaststroke male swimmers (with reasonable homogeneity of body characteristics) participated in the experimental tests; afterwards a 3D swimmer model was created to fit within the limits of the sample body size profile. The standard k-ε turbulent model was used to simulate the fluid flow around the swimmer model. Velocity ranged from 1.30 to 1.70 m/s for GP1 and 1.10 to 1.50 m/s for GP2. Values found for GP1 and GP2 were lower for CFD than experimental ones. Nevertheless, both CFD and experimental drag/drag coefficient values displayed a tendency to jointly increase/decrease with velocity, except for GP2 CD where CFD and experimental values display opposite tendencies. Results suggest that CFD values obtained by single model approaches should be considered with caution due to small body shape and dimension differences to real swimmers. For better accuracy of CFD studies, realistic individual 3D models of swimmers are required, and specific kinematics respected. Copyright © 2015 Elsevier Ltd. All rights reserved.
Valtueña, J; Gracia-Marco, L; Huybrechts, I; Breidenassel, C; Ferrari, M; Gottrand, F; Dallongeville, J; Sioen, I; Gutierrez, A; Kersting, M; Kafatos, A; Manios, Y; Widhalm, K; Moreno, L A; González-Gross, M
2013-09-01
High prevalence of vitamin D insufficiency (<75 nmol/l) has been previously reported in European adolescents. Vitamin D deficiency has been related to physical fitness and adiposity but it is not clearly known whether this relationship applies to growing children and adolescents. To determine how body composition and physical fitness are related to 25-hydroxyvitamin D [25(OH)D] concentrations in European adolescents. The HEalthy Lifestyle in Europe by Nutrition in Adolescence-CSS study was a multi-centre cross-sectional study. Plasma 25(OH)D, body composition and physical fitness measures were obtained in 1006 European adolescents (470 males) aged 12.5-17.5 years. Stepwise regression and ANCOVA were performed by gender using 25(OH)D as dependent variable, with body composition, physical fitness as independent variables controlling for age, seasonality and latitude. For males, maximum oxygen consumption (VO2max) (B = 0.189) and body mass index (BMI) (B = -0.124) were independently associated with 25(OH)D concentrations (both P < 0.05). For females, handgrip strength (B = 0.168; P < 0.01) was independently associated with 25(OH)D concentrations. Those adolescents at lower BMI and high fitness score presented significant higher 25(OH)D concentrations than those at lower fitness score in the other BMI groups (P < 0.05). Cardiorespiratory fitness and upper limbs muscular strength are positively associated with 25(OH)D concentrations in male and female adolescents, respectively. Adiposity in males and low fat free mass in females are related to hypovitaminosis D. The interaction between fitness and BMI has a positive effect on 25(OH)D concentrations. Therapeutic interventions to correct the high rates of vitamin D deficiency in adolescents should consider physical fitness.
NASA Astrophysics Data System (ADS)
Müller, Roy; Rode, Christian; Aminiaghdam, Soran; Vielemeyer, Johanna; Blickhan, Reinhard
2017-11-01
Directing the ground reaction forces to a focal point above the centre of mass of the whole body promotes whole body stability in human and animal gaits similar to a physical pendulum. Here we show that this is the case in human hip-flexed walking as well. For all upper body orientations (upright, 25°, 50°, maximum), the focal point was well above the centre of mass of the whole body, suggesting its general relevance for walking. Deviations of the forces' lines of action from the focal point increased with upper body inclination from 25 to 43 mm root mean square deviation (RMSD). With respect to the upper body in upright gait, the resulting force also passed near a focal point (17 mm RMSD between the net forces' lines of action and focal point), but this point was 18 cm below its centre of mass. While this behaviour mimics an unstable inverted pendulum, it leads to resulting torques of alternating sign in accordance with periodic upper body motion and probably provides for low metabolic cost of upright gait by keeping hip torques small. Stabilization of the upper body is a consequence of other mechanisms, e.g. hip reflexes or muscle preflexes.
Miljkovic-Gacic, Iva; Wang, Xiaojing; Kammerer, Candace M; Bunker, Clareann H; Patrick, Alan L; Wheeler, Victor W; Kuller, Lewis H; Evans, Rhobert W; Zmuda, Joseph M
2008-06-01
Very few studies have comprehensively defined the genetic and environmental influences on body fat storage in the arms and legs and their association with diabetes, especially in families of African heritage. We analyzed body fat distribution by dual-energy x-ray absorptiometry (percentage total fat, percentage trunk fat, percentage arm fat, and percentage leg fat) and fasting serum glucose in 471 individuals (mean age, 43 years) from 8 multigenerational Afro-Caribbean families (mean family size = 51; 3535 relative pairs). Diabetes was inversely associated with percentage leg fat (P = .009) and, to some extent, positively associated with percentage arm fat independent of age, sex, and body size (P = .08), but not with anthropometric or dual-energy x-ray absorptiometric measures of total and central adiposity. Furthermore, percentage leg fat was inversely, whereas percentage arm fat was positively, associated with body mass index, waist circumference, and serum glucose (P < .01). Residual heritability (h2r) for arm and leg fat was significant (P < .01) and high: 62% (for percentage arm fat) and 40% (for percentage leg fat). Moreover, sex-specific h2r for leg fat was considerably higher (P = .02) in women than in men (h2r values, 58% vs 17%, respectively). Genetic correlation (rho(G)) between arm and leg fat was -0.61 (P < .01), suggesting that only 37% of the covariation between these 2 adipose tissue depots may be due to shared genetic influences. This study provides new evidence for a strong genetic and sex contribution to upper and lower body fat, with relatively little covariation between these traits due to shared genes. Our findings also suggest that, in this population, leg fat is associated with diabetes independent of overall adiposity.
Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W
2002-09-01
Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.
Physiological Motion Axis for the Seat of a Dynamic Office Chair.
Kuster, Roman Peter; Bauer, Christoph Markus; Oetiker, Sarah; Kool, Jan
2016-09-01
The aim of this study was to determine and verify the optimal location of the motion axis (MA) for the seat of a dynamic office chair. A dynamic seat that supports pelvic motion may improve physical well-being and decrease the risk of sitting-associated disorders. However, office work requires an undisturbed view on the work task, which means a stable position of the upper trunk and head. Current dynamic office chairs do not fulfill this need. Consequently, a dynamic seat was adapted to the physiological kinematics of the human spine. Three-dimensional motion tracking in free sitting helped determine the physiological MA of the spine in the frontal plane. Three dynamic seats with physiological, lower, and higher MA were compared in stable upper body posture (thorax inclination) and seat support of pelvic motion (dynamic fitting accuracy). Spinal kinematics during sitting and walking were compared. The physiological MA was at the level of the 11th thoracic vertebra, causing minimal thorax inclination and high dynamic fitting accuracy. Spinal motion in active sitting and walking was similar. The physiological MA of the seat allows considerable lateral flexion of the spine similar to walking with a stable upper body posture and a high seat support of pelvic motion. The physiological MA enables lateral flexion of the spine, similar to walking, without affecting stable upper body posture, thus allowing active sitting while focusing on work. © 2016, Human Factors and Ergonomics Society.
van der Kruk, E; Veeger, H E J; van der Helm, F C T; Schwab, A L
2017-11-07
Advice about the optimal coordination pattern for an individual speed skater, could be addressed by simulation and optimization of a biomechanical speed skating model. But before getting to this optimization approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of this study is to present a verified three dimensional inverse skater model with minimal complexity, which models the speed skating motion on the straights. The model simulates the upper body transverse translation of the skater together with the forces exerted by the skates on the ice. The input of the model is the changing distance between the upper body and the skate, referred to as the leg extension (Euclidean distance in 3D space). Verification shows that the model mimics the observed forces and motions well. The model is most accurate for the position and velocity estimation (respectively 1.2% and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5-10%). The model can be used to further investigate variables in the skating motion. For this, the input of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Track and Field Practice and Bone Outcomes among Adolescents: A Pilot Study (ABCD-Growth Study).
Faustino-da-Silva, Yuri da Silva Ventura; Agostinete, Ricardo Ribeiro; Werneck, André Oliveira; Maillane-Vanegas, Santiago; Lynch, Kyle Robinson; Exupério, Isabella Neto; Ito, Igor Hideki; Fernandes, Romulo Araújo
2018-02-01
Osteoporosis is considered a public health problem with high worldwide prevalence. One approach to prevention is through the promotion of physical activity, especially exercise, during adolescence. This study compared bone variables in different body segments in adolescents according to participation in track and field. The study included 34 adolescents (22 boys), of whom 17 were track and field athletes and 17 were control subjects. Bone mineral density (BMD, g/cm 2 ) and bone mineral content (BMC, g) were analyzed using dual energy X-ray absorptiometry (total body stratified by body segments). Peak height velocity was used to estimate somatic maturation. Athletes had higher BMD ( P =0.003) and BMC ( P =0.011) values in the lower limbs and higher whole body BMD ( P =0.025) than the control group. However, when adjusted for confounding factors, the difference was not maintained. The groups had similar lean soft tissue values ( P =0.094). Training overload was positively correlated with BMD in the upper limbs (r=0.504; 95% confidence interval, 0.031-0.793). Although track and field athletes had higher BMD and BMC values in the lower limbs, these differences were not significant when adjusted for confounding factors. Track and field participation in adolescence appears to influence BMD and BMC in lower limbs, and fat-free mass seems to mediate this effect. Also, higher training loads were found to be positive for bone health in upper limbs.
Track and Field Practice and Bone Outcomes among Adolescents: A Pilot Study (ABCD-Growth Study)
Faustino-da-Silva, Yuri da Silva Ventura; Werneck, André Oliveira; Maillane-Vanegas, Santiago; Lynch, Kyle Robinson; Exupério, Isabella Neto; Ito, Igor Hideki; Fernandes, Romulo Araújo
2018-01-01
Background Osteoporosis is considered a public health problem with high worldwide prevalence. One approach to prevention is through the promotion of physical activity, especially exercise, during adolescence. Methods This study compared bone variables in different body segments in adolescents according to participation in track and field. The study included 34 adolescents (22 boys), of whom 17 were track and field athletes and 17 were control subjects. Bone mineral density (BMD, g/cm2) and bone mineral content (BMC, g) were analyzed using dual energy X-ray absorptiometry (total body stratified by body segments). Peak height velocity was used to estimate somatic maturation. Results Athletes had higher BMD (P=0.003) and BMC (P=0.011) values in the lower limbs and higher whole body BMD (P=0.025) than the control group. However, when adjusted for confounding factors, the difference was not maintained. The groups had similar lean soft tissue values (P=0.094). Training overload was positively correlated with BMD in the upper limbs (r=0.504; 95% confidence interval, 0.031-0.793). Although track and field athletes had higher BMD and BMC values in the lower limbs, these differences were not significant when adjusted for confounding factors. Conclusions Track and field participation in adolescence appears to influence BMD and BMC in lower limbs, and fat-free mass seems to mediate this effect. Also, higher training loads were found to be positive for bone health in upper limbs. PMID:29564304
Kim, Jin-young; Kim, Jong-man; Ko, Eun-young
2014-01-01
The purpose this study was to investigate the effect of action observation physical training (AOPT) on the functioning of the upper extremities in children with cerebral palsy (CP), using an evaluation framework based on that of the International Classification of Functioning, Disability and Health (ICF). The subjects were divided into an AOPT group and a physical training (PT) group. AOPT group practiced repeatedly the actions they observed on video clips, in which normal child performed an action with their upper extremities. PT group performed the same actions as the AOPT group did after observing landscape photographs. The subjects participated in twelve 30-min sessions, 3 days a week, for 4 weeks. Evaluation of upper extremity function using the following: the power of grasp and Modified Ashworth Scale for body functions and structures, a Box and Block test, an ABILHAND-Kids questionnaire, and the WeeFIM scale for activity and participation. Measurements were performed before and after the training, and 2 weeks after the end of training. The results of this study showed that, in comparison with the PT group, the functioning of the upper extremities in the AOPT group was significantly improved in body functions and activity and participation according to the ICF framework. This study demonstrates that AOPT has a positive influence on the functioning of the upper extremities in children with CP. It is suggested that this alternative approach for functioning of the upper extremities could be an effective method for rehabilitation in children with CP. PMID:25061598
Muscle Activity Patterns Do Not Differ Between Push-Up and Bench Press Exercises.
Gottschall, Jinger S; Hastings, Bryce; Becker, Zachary
2018-05-29
Popular topics for upper body resistance training involve the differences between hand positions, open versus closed chain exercises, and movement variations for the novice to the advanced. We hypothesized that there will be no difference between closed (push-up) versus open (bench press) chain exercises for the primary muscle group activity nor would there be a difference between push-ups on the toes versus knees with respect to the percent contribution of each muscle. We measured surface muscle activity of 8 upper body and core muscles during a sequence of push-up and bench press variations with a normalized weight for twelve active men. Each participant completed push-ups and bench press exercises at each of three hand positions. Our results demonstrated that there were few differences between closed versus open chain exercises for the primary muscle groups with the exception of core activation. To add, in general, narrow hand positions yielded greater activation and there were no significant differences between push-ups on the toes versus knees with respect to the percent contribution for the primary muscle groups. To sum, closed chain exercises may be preferred for functional training and knee push-ups may be ideal as a novice push-up variation.
Changes in strength, power, and steroid hormones during a professional rugby union competition.
Argus, Christos K; Gill, Nicholas D; Keogh, Justin W L; Hopkins, Will G; Beaven, C Martyn
2009-08-01
The purpose of this investigation was to assess changes in strength, power, and levels of testosterone and cortisol over a 13-week elite competitive rugby union season. Thirty-two professional rugby union athletes from a Super 14 rugby team (age, 24.4 +/- 2.7 years; height, 184.7 +/- 6.2 cm; mass, 104.0 +/- 11.2 kg; mean +/- SD) were assessed for upper-body and lower-body strength (bench press and box squat, respectively) and power (bench throw and jump squat, respectively) up to 5 times throughout the competitive season. Salivary testosterone and cortisol samples, along with ratings of perceived soreness and tiredness, were also obtained before each power assessment. An effect size of 0.2 was interpreted as the smallest worthwhile change. A small increase in lower-body strength was observed over the study period (8.5%; 90% confidence limits +/-7.2%), whereas upper-body strength was maintained (-1.2%; +/-2.7%). Decreases in lower-body power (-3.3%; +/-5.5%) and upper-body power (-3.4; +/-4.9%) were small and trivial. There were moderate increases in testosterone (54%; +/-27%) and cortisol (97%; +/-51%) over the competitive season, and the testosterone to cortisol ratio showed a small decline (22%; +/-25%), whereas changes in perceived soreness and tiredness were trivial. Individual differences over the competitive season for all measures were mostly trivial or inestimable. Some small to moderate relationships were observed between strength and power; however, relationships between hormonal concentrations and performance were mainly trivial but unclear. Positive adaptation in strength and power may be primarily affected by cumulative training volume and stimulus over a competitive season. Greater than 2 resistance sessions per week may be needed to improve strength and power in elite rugby union athletes during a competitive season.
Laird, Myra F; Kozma, Elaine E; Kwekason, Amandus; Harrison, Terry
2018-05-01
Detailed analyses and comparisons of postcranial specimens of Plio-Pleistocene cercopithecids provide an opportunity to examine the recent evolutionary history and locomotor diversity in Old World monkeys. Studies examining the positional behavior and substrate preferences of fossil cercopithecids are also important for reconstructing the paleoenvironments of Plio-Pleistocene hominin sites. Here we describe a new fossil cercopithecid tibia (EP 1100/12) from the Australopithecus afarensis-bearing Upper Laetolil Beds (∼3.7 Ma) of Laetoli in northern Tanzania. The fossil tibia is attributed to cf. Rhinocolobus sp., which is the most common colobine at Laetoli. In addition to qualitative comparisons, the tibial shape of EP 1100/12 was compared to that of 190 extant cercopithecids using three-dimensional landmarks. Discriminant function analyses of the shape data were used to assess taxonomic affinity and shape variation relating to positional behavior. EP 1100/12 clustered with extant colobines, particularly the large-bodied genera Nasalis and Rhinopithecus. Comparisons reveal that EP 1100/12 belongs to a large-bodied monkey that engaged in arboreal pronograde quadrupedalism. These findings add further support to previous inferences that woodland and forest environments dominated the paleoenvironment of the Upper Laetolil Beds, which supported the diverse community of cercopithecids at Laetoli. The inferred paleoecology and the presence of large-bodied arboreally-adapted monkeys at Laetoli show that A. afarensis had access to a range of diverse habitats, including woodlands and forests. This supports the possibility that A. afarensis, with its potential range of positional capabilities, was able to utilize arboreal settings for food acquisition and refuge from predators. Copyright © 2018 Elsevier Ltd. All rights reserved.
Correlates of blood pressure in Yanomami Indians of northwestern Brazil.
Crews, D E; Mancilha-Carvalho, J J
1993-01-01
We determined associations of measures of body habitus with blood pressure for 100 adult Yanomami Indians (61 men, 39 women) examined during February and March 1990. Measurements included body weight and height, four skinfolds (triceps, subscapular, suprailiac, abdomen), four circumferences (wrist, upper arm, abdomen, hip), systolic and diastolic blood pressures, pulse rate, and estimated age. Various indices of fat distribution were determined from the measurements of skinfolds, circumferences, weight, and height. Estimated age averaged 35.0 years in men and 33.4 years in women (range: 15 to 63 years). Mean systolic and diastolic blood pressures were low in both men (104.8/70.4 mm Hg) and women (94.8/63.5 mm Hg), as was body mass index (men: 20.7; women: 21.4 kg/m2). In Yanomami women, all four skinfolds, wrist circumference, and the indices of hip and abdominal fat were significant correlates of systolic blood pressure, while the abdominal skinfold and wrist and hip circumferences correlated significantly with diastolic blood pressure. Among men, there was a negative correlation between estimated age and systolic blood pressure and a positive correlation between BMI and upper arm and hip circumferences and systolic blood pressure. There was a significant positive correlation between wrist, upper arm, and hip circumferences and diastolic blood pressure among Yanomami men. We used stepwise regression to generate sex-specific predictive equations for blood pressure. For men, estimated age and hip circumference, and for women, abdominal skinfold measurement and age were included in the model for systolic blood pressure. Among men, wrist circumference and height, and among women, wrist circumference alone entered the model for diastolic blood pressure. On the basis of these results, we suggest that even in a low-blood pressure, low-body fat, no-salt setting, systolic blood pressure is associated with the amount and placement of adipose tissue. However, diastolic blood pressure is more closely correlated with skeletal size.
[Automobile versus pedestrian accidents analysis by fixed-parameters computer simulation].
Mao, Ming-Yuan; Chen, Yi-Jiu; Liu, Ning-Guo; Zou, Dong-Hua; Liu, Jun-Yong; Jin, Xian-Long
2008-04-01
Using computer simulation to analyze the effects of speed, type of automobile and impacted position on crash-course and injuries of pedestrians in automobile vs. pedestrian accidents. Automobiles (bus, minibus, car and truck) and pedestrian models were constructed with multi-body dynamics computing method. The crashes were simulated at different impact speeds (20, 30, 40, 50 and 60 km/h) and different positions (front, lateral and rear of pedestrians). Crash-courses and their biomechanical responses were studied. If the type of automobile and impact position were the same, the crash-courses were similar (impact speed < or = 60 km/h). There were some characteristics in the head acceleration, upper neck axial force and leg axial force. Multi-body dynamics computer simulation of crash can be applied to analyze crash-course and injuries (head, neck and leg) of pedestrians.
Upper Body Venous Compliance Exceeds Lower Body Venous Compliance in Humans
NASA Technical Reports Server (NTRS)
Watenpaugh, Donald E.
1996-01-01
Human venous compliance hypothetically decreases from upper to lower body as a mechanism for maintenance of the hydrostatic indifference level 'headward' in the body, near the heart. This maintains cardiac filling pressure, and thus cardiac output and cerebral perfusion, during orthostasis. This project entailed four steps. First, acute whole-body tilting was employed to alter human calf and neck venous volumes. Subjects were tilted on a tilt table equipped with a footplate as follows: 90 deg, 53 deg, 30 deg, 12 deg, O deg, -6 deg, -12 deg, -6 deg, O deg, 12 deg, 30 deg, 53 deg, and 90 deg. Tilt angles were held for 30 sec each, with 10 sec transitions between angles. Neck volume increased and calf volume decreased during head-down tilting, and the opposite occurred during head-up tilt. Second, I sought to cross-validate Katkov and Chestukhin's (1980) measurements of human leg and neck venous pressures during whole-body tilting, so that those data could be used with volume data from the present study to calculate calf and neck venous compliance (compliance = (Delta)volume/(Delta)pressure). Direct measurements of venous pressures during postural chances and whole-body tilting confirmed that the local changes in venous pressures seen by Katkov and Chestukhin (1980) are valid. The present data also confirmed that gravitational changes in calf venous pressure substantially exceed those changes in upper body venous pressure. Third, the volume and pressure data above were used to find that human neck venous compliance exceeds calf venous compliance by a factor of 6, thereby upholding the primary hypothesis. Also, calf and neck venous compliance correlated significantly with each other (r(exp 2) = 0.56). Fourth, I wished to determine whether human calf muscle activation during head-up tilt reduces calf venous compliance. Findings from tilting and from supine assessments of relaxed calf venous compliance were similar, indicating that tilt-induced muscle activation is relatively unimportant. Low calf venous compliance probably results from stiffer venous, skeletal muscle, and connective tissues, and better-developed local and central neural controls of venous distensibility. This research establishes that upper-to-lower body reduction of venous compliance can explain headward positioning of the hydrostatic indifference level in humans.
High pressure capillary connector
Renzi, Ronald F.
2005-08-09
A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.
ERIC Educational Resources Information Center
Faigenbaum, Avery D.; Loud, Rita LaRosa; O'Connell, Jill; Glover, Scott; O'Connell, Jason; Westcott, Wayne L.
2001-01-01
Examined the effects of four resistance training protocols on upper body strength and muscular endurance development in children. Untrained children trained twice per week for 8 weeks, using general conditioning exercises and different upper-body conditioning protocols. Results indicated that higher-repetition training protocols enhanced…
Upper Body Muscular Endurance Among Children 2-5 Years.
ERIC Educational Resources Information Center
Gabbard, Carl P.; And Others
The upper body muscular endurance of males and females 2-5 years of age was assessed, and relationships relative to sex, age, endurance and selected anthropometric measures were investigated. None of the relationships were found to be of practical predicative value; while upper body muscular strength increased with age, no significant differences…
Korshøj, Mette; Skotte, Jørgen H; Christiansen, Caroline S; Mortensen, Pelle; Kristiansen, Jesper; Hanisch, Christiana; Ingebrigtsen, Jørgen; Holtermann, Andreas
2014-01-01
The validity of inclinometer measurements by ActiGraph GT3X+ (AG) accelerometer, when analysed with the Acti4 customised software, was examined by comparison of inclinometer measurements with a reference system (TrakStar) in a protocol with standardised arm movements and simulated working tasks. The sensors were placed at the upper arm (distal to the deltoid insertion) and at the spine (level of T1-T2) on eight participants. Root mean square errors (RMSEs) values of inclination between the two systems were low for the slow- and medium-speed standardised arm movements and in simulated working tasks. Fast arm movements caused the inclination estimated by the AG to deviate from the reference measurements (RMSE values up to ∼10°). Furthermore, it was found that AG positioned at the upper arm provided inclination data without bias compared to the reference system. These findings indicate that the AG provides valid estimates of arm and upper body inclination in working participants. Being inexpensive, small, water-resistant and without wires, ActiGraph GT3X+ seems to be a valid mean for direct long-term field measurements of arm and trunk inclinations when analysed by the Acti4 customised software.
"Ballistic Six" Upper-Extremity Plyometric Training for the Pediatric Volleyball Players.
Turgut, Elif; Cinar-Medeni, Ozge; Colakoglu, Filiz F; Baltaci, Gul
2017-09-19
The Ballistic Six exercise program includes commonly used upper-body exercises, and the program is recommended for overhead throwing athletes. The purpose of the current study was to investigate the effects of a 12-week the Ballistic Six upper-extremity plyometric training program on upper-body explosive power, endurance, and reaction time in pediatric overhead athletes. Twenty-eight female pediatric volleyball players participated in the study. The participants were randomly divided into 2 study groups: an intervention group (upper-extremity plyometric training in addition to the volleyball training; n = 14) and a control group (the volleyball training only; n = 14). All the participants were assessed before and after a 12-week training program for upper-body power, strength and endurance, and reaction time. Statistical comparison was performed using an analysis of variance test. Comparisons showed that after a 12-week training program, the Ballistic Six upper-body plyometric training program resulted in more improvements in an overhead medicine ball throwing distance and a push-up performance, as well as greater improvements in the reaction time in the nonthrowing arm when compared with control training. In addition, a 12-week training program was found to be effective in achieving improvements in the reaction time in the throwing arm for both groups similarly. Compared with regular training, upper-body plyometric training resulted in additional improvements in upper-body power and strength and endurance among pediatric volleyball players. The findings of the study provide a basis for developing training protocols for pediatric volleyball players.
Croatian rugby project-Part I. Anthropometric characteristics, body composition and constitution.
Babić, Z; Misigoj-Duraković, M; Matasić, H; Jancić, J
2001-06-01
There are no data in important literature about the anthropometric characteristics of rugby players in countries where rugby is not a popular sport. The goals of this study were to analyze morphological anthropometric characteristics, body composition and constitution of players in the first Croatian-Slovenian rugby league (CSRL) with regard to player's position in the team, team position in the division, and to compare results with the results of rugby players from the more popular rugby leagues. The study was carried out in a sample of voluntarily included 111 male rugby players from six clubs members of the CSRL, in the season 1996/97. Eleven anthropometric measures required for the calculations of body mass index (BMI), body fat percentage (BF%), and somatotype components were obtained in the clubs according to the recommendations by Jackson and Pollock and Heath and Carter. Forwards in the CSRL are on the average 93.5 kg heavy, 182.4 cm tall, with BMI 28.3 kg/m2, BF% 20.8% and somatotype 6.7-5.9-1.4. Backs are on average 82.2 kg heavy, 178.3 cm tall, with BMI 26.1 kg/m2, BF% 16.9% and somatotype 5.3-5.3-1.5. Backs from upper half of the division are on the average heavier than those from lower half, BF% in forwards from upper half of the division is higher than in forwards from lower half. Both differences were found to be statistically significant (p<0.05). Compared with the rugby players from more developed rugby leagues, forwards from the CSRL are lighter, backs are heavier and both have higher body fat percentage. Backs and forwards are more endomorphic and forwards are less mesomorphic compared with the rugby players from more developed rugby leagues.
Shingle assembly with support bracket
Almy, Charles
2007-01-02
A shingle system, mountable to a support surface, includes overlapping shingle assemblies. Each shingle assembly comprises a support bracket, having upper and lower ends, secured to a shingle body. The upper end has an upper support portion, extending away from the shingle body, and an upper support-surface-engaging part, engageable with a support surface so that the upper edge of the shingle body is positionable at a first distance from the support surface to create a first gap therebetween. The lower end has a lower support portion extending away from the lower surface. The support brackets create: (1) a second gap between shingle bodies of the first and second shingle assemblies, and (2) an open region beneath the first shingle assembly fluidly coupling the first and second gaps.
Mellor, David; Waterhouse, Monique; Mamat, Norul Hidayah Bt; Xu, Xiaoyan; Cochrane, Jamie; McCabe, Marita; Ricciardelli, Lina
2013-01-01
This study investigated how dissatisfaction with various aspects of the body is associated with overall body dissatisfaction among female adolescents in Western and Asian cultures. Data used in the study were obtained from 58 Malaysian Malays, 95 Malaysian Chinese, 242 Chinese from China, and 81 non-Asian Australians aged 12-19 years (M=15.72, SD=1.72) who were recruited from high schools. Participants completed a questionnaire assessing dissatisfaction with their body overall, and dissatisfaction with varying aspects of their body. Malaysian Chinese were the most dissatisfied with their bodies. After controlling for body mass index (BMI), age and dissatisfaction with weight/shape, upper, middle and lower body, and muscles, dissatisfaction with the face was positively correlated with overall body dissatisfaction among Malaysian Malays and Australians. These findings demonstrate the importance of using assessment measures that address all possible areas of body focus as well as being tailored to the relevant culture. Copyright © 2012 Elsevier Ltd. All rights reserved.
Upper Extremity Injuries in NASCAR Drivers and Pit Crew: An Epidemiological Study.
Wertman, Gary; Gaston, R Glenn; Heisel, William
2016-02-01
Understanding the position-specific musculoskeletal forces placed on the body of athletes facilitates treatment, prevention, and return-to-play decisions. While position-specific injuries are well documented in most major sports, little is known about the epidemiology of position-specific injuries in National Association for Stock Car Automobile Racing (NASCAR) drivers and pit crew. To investigate position-specific upper extremity injuries in NASCAR drivers and pit crew members. Descriptive epidemiological study. A retrospective chart review was performed to assess position-specific injuries in NASCAR drivers and pit crew members. Included in the study were patients seen by a single institution between July 2003 and October 2014 with upper extremity injuries from race-related NASCAR events or practices. Charts were reviewed to identify the diagnosis, mechanism of injury, and position of each patient. A total of 226 NASCAR team members were treated between July 2003 and October 2014. Of these, 118 injuries (52%) occurred during NASCAR racing events or practices. The majority of these injuries occurred in NASCAR changers (42%), followed by injuries in drivers (16%), carriers (14%), jack men (11%), fuel men (9%), and utility men (8%). The majority of the pit crew positions are at risk for epicondylitis, while drivers are most likely to experience neuropathies, such as hand-arm vibration syndrome. The changer sustains the most hand-related injuries (42%) on the pit crew team, while carriers commonly sustain injuries to their digits (29%). Orthopaedic injuries in NASCAR vary between positions. Injuries in NASCAR drivers and pit crew members are a consequence of the distinctive forces associated with each position throughout the course of the racing season. Understanding these forces and position-associated injuries is important for preventive measures and facilitates diagnosis and return-to-play decisions so that each team can function at its maximal efficiency.
Aktaş, Osman; Aydin, Hakan; Uslu, Hakan
2016-02-17
Human parvovirus B19 is a pathogen that affects different parts of the body. We planned this study because of the lack of data on B19 seroprevalence based on different body-system diseases. The prevalence of parvovirus B19 antibodies was investigated retrospectively in 1239 patients by review of medical records from 2009-2012, according to their diseases classified under general titles in compliance with the International Classification of Diseases (ICD-10). Parvovirus B19-specific antibodies were detected by quantitative enzyme immunoassays. The positivity rate was 27.8% for only IgG, 8.5% for only IgM, and 2.6% for both IgG and IgM. The highest positivity for IgG alone was found in musculoskeletal system and connective tissue diseases (55.9%), while the highest positivity for IgM was found in neoplasms (16.4%). The highest positivity for IgG was seen in rheumatoid arthritis (72.2%) and pregnancy (52.6%), and the highest positivity for total IgM was found in upper respiratory tract disease (21.0%) and hepatic failure (17.1%). Parvovirus B19 seroprevalence was relatively low in northeastern Anatolia compared to most serological studies conducted in other regions. We think that this study has provided the first wide-ranging information on the seroprevalence of B19 in diseases and disorders of the major human body systems.
Low energy high pressure miniature screw valve
Fischer, Gary J [Sandia Park, NM; Spletzer, Barry L [Albuquerque, NM
2006-12-12
A low energy high pressure screw valve having a valve body having an upper portion and a lower portion, said lower portion of said valve body defining an inlet flow passage and an outlet flow passage traversing said valve body to a valve seat, said upper portion of said valve body defining a cavity at said valve seat, a diaphragm restricting flow between said upper portion of said valve body and said lower portion, said diaphragm capable of engaging said valve seat to restrict fluid communication between said inlet passage and said outlet passage, a plunger within said cavity supporting said diaphragm, said plunger being capable of engaging said diaphragm with said valve seat at said inlet and outlet fluid passages, said plunger being in point contact with a drive screw having threads engaged with opposing threads within said upper portion of said valve body such engagement allowing motion of said drive screw within said valve body.
Hoebink, Eric A; Journée, Henricus L; de Kleuver, Marinus; Berends, Hanneke; Racz, Ilona; van Hal, Chantal
2016-07-15
A prospective, nonrandomized cohort study. To describe a technique quantifying movement induced by transcranial electrical stimulation (TES) induced movement in relation to the positioning of electrodes during spinal deformity surgery. TES induced movement may cause injuries and delay surgical procedures. When TES movements are evoked, muscles other than those being monitored any adjustments in stimulation protocols and electrode positioning may be expected to minimize movement whereas preserving quality of monitoring. In this study, seismic evoked responses (SER) induced through TES were studied at different electrode positions. Intraoperative TES-motor evoked potentials were carried out in 12 patients undergoing corrective spine surgery. Accelerometer transducers recorded SER in two directions at four different locations of the spine for TES-electrode montage groups Cz-Fz and C3-C4. A paired t test was used to compare the means of SER and the relationship between movement and TES electrode positioning. SERs were strongest in the upper body. All mean SERs values for the Cz-Fz group were up to five times larger when compared with the C3-C4 group. However, there were no differences between the C3-C4 and Cz-Fz groups in the lower body locations. Both electrode montage groups showed a gradual stepwise reduction in all mean SER values along the spine from the cranial to caudal region. For the upper body locations, there were no significant associations between SER and both montages; in contrast, a significant association SER was demonstrated in the lumbar region. At supramaximum levels, movements resulting from multipulse TES are likely caused by relatively strong contractions from muscles in the neck resulting from direct extracranial stimulation. When interchanging electrode montages in individual cases, the movement in the neck may become reduced. At lumbar levels transcranial evoked muscle contractions dominate movement in the surgically exposed areas. 4.
Body composition and bone mineral density of collegiate American football players
Turnagöl, Hüseyin Hüsrev
2016-01-01
Abstract The aim of this study was to compare whole and segmental body composition and bone mineral density of collegiate American football players by playing positions. Forty collegiate American football players voluntarily participated in this study. Participants were categorized by playing positions into one of five categories i.e., defensive linemen, offensive linemen, defensive secondary players, offensive secondary players and receivers. Whole body composition and bone mineral density were measured by dual x-ray absorptiometry. Offensive and defensive linemen had higher body mass, a body mass index, lean mass and a fat mass index compared to the remaining three positions and a higher lean mass index compared to offensive secondary players and receivers. Offensive linemen had a higher body fat percentage and lower values of upper to lower lean mass than offensive and defensive secondary players and receivers, and higher total mass to the lean mass ratio and fat mass to the lean mass ratio compared to the other players. Offensive linemen had a higher fat mass index and fat mass to the lean mass ratio than defensive linemen. However, in all other measures they were similar. Offensive and defensive secondary players and receivers were similar with respect to the measured variables. Bone mineral density of the players was within the normal range and no difference in lean mass was observed between the legs. In conclusion, findings of this study showed that the total and segmental body composition profile of collegiate American football players reflected the demands of particular playing positions. PMID:28149373
Responses to negative pressure surrounding the neck in anesthetized animals.
Wolin, A D; Strohl, K P; Acree, B N; Fouke, J M
1990-01-01
Continuous positive pressure applied at the nose has been shown to cause a decrease in upper airway resistance. The present study was designed to determine whether a similar positive transmural pressure gradient, generated by applying a negative pressure at the body surface around the neck, altered upper airway patency. Studies were performed in nine spontaneously breathing anesthetized supine dogs. Airflow was measured with a pneumotachograph mounted on an airtight muzzle placed over the nose and mouth of each animal. Upper airway pressure was measured as the differential pressure between the extrathoracic trachea and the inside of the muzzle. Upper airway resistance was monitored as an index of airway patency. Negative pressure (-2 to -20 cmH2O) was applied around the neck by using a cuirass extending from the jaw to the thorax. In each animal, increasingly negative pressures were transmitted to the airway wall in a progressive, although not linear, fashion. Decreasing the pressure produced a progressive fall in upper airway resistance, without causing a significant change in respiratory drive or respiratory timing. At -5 cmH2O pressure, there occurred a significant fall in upper airway resistance, comparable with the response of a single, intravenous injection of sodium cyanide (0.5-3.0 mg), a respiratory stimulant that produces substantial increases in respiratory drive. We conclude that upper airway resistance is influenced by the transmural pressure across the airway wall and that such a gradient can be accomplished by making the extraluminal pressure more negative.(ABSTRACT TRUNCATED AT 250 WORDS)
VO2 Max in Variable Type Exercise Among Well-Trained Upper Body Athletes.
ERIC Educational Resources Information Center
Seals, Douglas R.; Mullin, John P.
1982-01-01
The maximal oxygen consumption (VO2 max) of well-trained upper body athletes was compared to that of untrained individuals in four types of exercise: arm cranking, legs only cycling, graded treadmill running, and combined arm cranking and leg cycling. Results of the study showed that well-trained upper body athletes attained a significantly higher…
Quantifying anti-gravity torques for the design of a powered exoskeleton.
Ragonesi, Daniel; Agrawal, Sunil K; Sample, Whitney; Rahman, Tariq
2013-03-01
Designing an upper extremity exoskeleton for people with arm weakness requires knowledge of the joint torques due to gravity and joint stiffness, as well as, active residual force capabilities of users. The objective of this research paper is to describe the characteristics of the upper limb of children with upper limb impairment. This paper describes the experimental measurements of the torque on the upper limb due to gravity and joint stiffness of three groups of subjects: able-bodied adults, able-bodied children, and children with neuromuscular disabilities. The experiment involves moving the arm to various positions in the sagittal plane and measuring the resultant force at the forearm. This force is then converted to torques at the elbow and shoulder. These data are compared to a two-link lumped mass model based on anthropomorphic data. Results show that the torques based on anthropometry deviate from experimentally measured torques as the arm goes through the range. Subjects with disabilities also maximally pushed and pulled against the force sensor to measure maximum strength as a function of arm orientation. For all subjects, the maximum voluntary applied torque at the shoulder and elbow in the sagittal plane was found to be lower than gravity torques throughout the disabled subjects' range of motion. This experiment informs designers of upper limb orthoses on the contribution of passive human joint torques due to gravity and joint stiffness and the strength capability of targeted users.
39. CLOSE UP DETAIL OF THE FEEDER AND STAMP CONNECTION. ...
39. CLOSE UP DETAIL OF THE FEEDER AND STAMP CONNECTION. THE STAMP AN MORTAR BOX ARE ON THE LEFT AND THE FEEDER WITH ITS FEEDER DISK IS ON THE RIGHT. NOTE THE COLLAR ON THE CENTER STAMP STEM (UPPER LEFT CORNER OF THE IMAGE) THAT ACTIVATES THE LEVER IN THE CENTER OF THE PHOTO. THE COLLAR IS POSITIONED SUCH THAT WHEN THE LEVEL OF THE MATERIAL REACHES A LOW POINT IN THE MORTAR BOX IT PUSHES DOWN ON THE LEVER WHICH IN TURN ACTIVATES THE AUTOMATIC FEEDER DRIVE MECHANISM WHICH THEM DELIVERS ORE INTO THE BACKSIDE OF THE MORTAR BOX. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Kochanowicz, Andrzej; Kochanowicz, Kazimierz; Mieszkowski, Jan; Niespodziński, Bartłomiej; Sawczyn, Stanisław
2017-01-01
This study aimed to compare the effect of upper and lower body high intensity exercise (HIE) on select gene expression in athletes. Fourteen elite male artistic gymnasts (age 20.9 ± 2.6 years; weight 68.6 ± 7.2 kg; fat free mass 63.6 ± 6.7 kg; height 1.70 ± 0.04 m) performed lower and upper body 30 s Wingate Tests (WAnTs) before and after eight weeks of specific HIIT. Two milliliters of blood was collected before and after (5, 30 min, resp.) lower and upper body WAnTs, and select gene expression was determined by PCR. Eight weeks of HIIT caused a significant increase in maximal power (722 to 751 Wat), relative peak power in the lower body WAnTs (10.1 to 11 W/kg), mean power (444 to 464 W), and relative mean power (6.5 to 6.8 W/kg). No significant differences in lower versus upper body gene expression were detected after HIIT, and a significant decrease in the IL6/IL10 ratio was observed after lower (−2∧0.57 p = 0.0019) and upper (−2∧0.5 p = 0.03) WAnTs following eight weeks of HIIT. It is hypothesized that a similar adaptive response to exercise may be obtained by lower and upper body exercise. PMID:28589135
Knudsen, Julian R.; Welch, Christopher B.
2005-04-26
In an engine having a rocker member adapted to rock about an axis intermediate the rocker member and a pushrod extending from a lower body to an upper body and engaging an end of the rocker member, a gasket for sealing the lower body to the upper body is provided. The gasket includes a sealing portion adapted to substantially seal at least a portion of the upper body to the lower body, and a pushrod support portion extending outwardly from the sealing portion adapted to engage the pushrod. At least a portion of the pushrod support portion engaging the pushrod is constructed from a material that is softer than the material of the pushrod.
Yoo, Sylvia H; Rootman, Dan B; Goh, Alice; Savar, Aaron; Goldberg, Robert A
2016-01-01
A patient was found to have a metallic foreign body in the left anterior orbit on CT imaging, but the foreign body was not evident on clinical examination. On high-resolution ultrasonography, an object was identified in the left upper eyelid; however, the typical shadow with metallic foreign bodies was not seen. A high-power oscillating magnet was then applied to the eyelid, which revealed a subcutaneous metallic foreign body in the left upper eyelid. When used in conjunction, the high-resolution ultrasound and oscillating magnet successfully localized and facilitated retrieval of the metallic foreign body from the left upper eyelid.
Follow-Up Care for Older Women With Breast Cancer
1999-08-01
range of patient outcomes, including primary tumor therapy and mortality, self -reported upper body function, and overall physical function. Methods...mor therapy, all cause mortality, self -reported function and overall physical function than upper body function, and overall physical was the interview...Major Analytic Variables mor therapy and all cause mortality, as well as self -reported upper body and overall physical Dependent Variables. Our first
Huang, C-C; Yang, Y-H; Chen, C-H; Chen, T-W; Lee, C-L; Wu, C-L; Chuang, S-H; Huang, M-H
2008-03-01
The aim of this study was to compare the flexibility of the upper extremities in collegiate students involved in Aikido (a kind of soft martial art attracting youth) training with those involved in other sports. Fifty freshmen with a similar frequency of exercise were divided into the Aikido group (n = 18), the upper-body sports group (n = 17), and the lower-body sports group (n = 15) according to the sports that they participated in. Eight classes of range of motion in upper extremities were taken for all subjects by the same clinicians. The Aikido group had significantly better flexibility than the upper-body sports group except for range of motion in shoulder flexion (p = 0.22), shoulder lateral rotation (p > 0.99), and wrist extension (p > 0.99). The Aikido group also had significantly better flexibility than the lower-body sports group (p < 0.01) and the sedentary group (p < 0.01) in all classes of range of motion. The upper-body sports group was significantly more flexible in five classes of range of motion and significantly tighter in range of motion of wrist flexion (p < 0.01) compared to the lower-body sports group. It was concluded that the youths participating in soft martial arts had good upper extremities flexibility that might not result from regular exercise alone.
Stability of a Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Fletcher, Richard J.; Gaunt, Alexander L.; Navon, Nir; Smith, Robert P.; Hadzibabic, Zoran
2013-09-01
We study the stability of a thermal K39 Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length a exceeds the thermal wavelength λ. We measure the general scaling laws relating the particle-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive a≪λ we find agreement with three-body theory. However, for a<0 and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, L3∝λ4, is 3 times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes K39 particularly promising for studies of many-body physics in a unitary Bose gas.
NASA Astrophysics Data System (ADS)
Jiang, Shengqian; Liu, Peng; Fu, Danni; Xue, Yiming; Luo, Wentao; Wang, Mingjie
2017-04-01
As an effective survey method of upper limb disorder, rapid upper limb assessment (RULA) has a wide application in industry period. However, it is very difficult to rapidly evaluate operator's postures in real complex work place. In this paper, a real-time RULA method is proposed to accurately assess the potential risk of operator's postures based on the somatosensory data collected from Kinect sensor, which is a line of motion sensing input devices by Microsoft. First, the static position information of each bone point is collected to obtain the effective angles of body parts based on the calculating methods based on joints angles. Second, a whole RULA score of body is obtained to assess the risk level of current posture in real time. Third, those RULA scores are compared with the results provided by a group of ergonomic practitionerswho were asked to observe the same static postures. All the experiments were carried out in an ergonomic lab. The results show that the proposed method can detect operator's postures more accurately. What's more, this method is applied in a real-time condition which can improve the evaluating efficiency.
Radar cross section of human cardiopulmonary activity for recumbent subject.
Kiriazi, John E; Boric-Lubecke, Olga; Lubecke, Victor M
2009-01-01
The radar cross section (RCS) corresponding to human cardio-respiratory motion is measured for a subject in two different recumbent positions. Lying face-up (supine), the subject showed an RCS of 0.326 m(2). But when lying face-down (prone), the RCS increased to 2.9 m(2). This is the first reported RCS measurement corresponding to human cardio-respiratory motion. The results obtained in this experiment suggest modeling the upper part of the human body as a half-cylinder where the front body corresponds to the cylindrical surface and the back corresponds to the rectangular one.
Gray, C.F.; Thompson, R.H.
1958-09-23
An apparatus is described for casting small quantities of uranlum. It consists of a crucible having a hole in the bottom with a mold positioned below. A vertical rcd passes through the hole in the crucible and has at its upper end a piercing head adapted to break the oxide skin encasing a molten uranium body. An air tight cylinder surrounds the crucible and mold, and is arranged to be evacuated.
Thermal effects of dorsal head immersion in cold water on nonshivering humans.
Giesbrecht, Gordon G; Lockhart, Tamara L; Bristow, Gerald K; Steinman, Allan M
2005-11-01
Personal floatation devices maintain either a semirecumbent flotation posture with the head and upper chest out of the water or a horizontal flotation posture with the dorsal head and whole body immersed. The contribution of dorsal head and upper chest immersion to core cooling in cold water was isolated when the confounding effect of shivering heat production was inhibited with meperidine (Demerol, 2.5 mg/kg). Six male volunteers were immersed four times for up to 60 min, or until esophageal temperature = 34 degrees C. An insulated hoodless dry suit or two different personal floatation devices were used to create four conditions: 1) body insulated, head out; 2) body insulated, dorsal head immersed; 3) body exposed, head (and upper chest) out; and 4) body exposed, dorsal head (and upper chest) immersed. When the body was insulated, dorsal head immersion did not affect core cooling rate (1.1 degrees C/h) compared with head-out conditions (0.7 degrees C/h). When the body was exposed, however, the rate of core cooling increased by 40% from 3.6 degrees C/h with the head out to 5.0 degrees C/h with the dorsal head and upper chest immersed (P < 0.01). Heat loss from the dorsal head and upper chest was approximately proportional to the extra surface area that was immersed (approximately 10%). The exaggerated core cooling during dorsal head immersion (40% increase) may result from the extra heat loss affecting a smaller thermal core due to intense thermal stimulation of the body and head and resultant peripheral vasoconstriction. Dorsal head and upper chest immersion in cold water increases the rate of core cooling and decreases potential survival time.
Shahar, Suzana; Kamaruddin, Norshafarina Shari; Badrasawi, Manal; Sakian, Noor Ibrahim Mohamed; Abd Manaf, Zahara; Yassin, Zaitun; Joseph, Leonard
2013-01-01
Sarcopenia, characterized as muscle loss that occurs with aging, is a major health problem in an aging population, due to its implications on mobility, quality of life, and fall risk. Protein supplementation could improve the physical fitness by increasing protein anabolism, and exercise has a documented evidence of positive effect on functional status among the elderly. However, the combined effect of both protein supplementation and exercise has not been investigated among sarcopenic elderly in the Asian population. Thus, this study aimed to determine the effectiveness of exercise intervention and protein supplementation either alone or in combination for 12 weeks, on body composition, functional fitness, and oxidative stress among elderly Malays with sarcopenia. Sixty five sarcopenic elderly Malays aged 60-74 years were assigned to the control group, exercise group (ExG), protein supplementation group (PrG), or the combination of exercise and protein supplementation group. A significant interaction effect between body weight and body mass index (BMI) was observed, with the PrG (-2.1% body weight, -1.8% BMI) showing the highest reductions. Further, there was a decrease in % body fat (-4.5%) and an increase in fat-free mass (kg) (+5.7%) in the ExG after 12 weeks (P < 0.05). The highest increments in lower and upper body strength were observed in the PrG (73.2%) and ExG (47.6%), respectively. In addition, the ExG showed a reduction in superoxide dismutase (SOD) levels, and both interventions did not alter either lipid or protein oxidation. In conclusion, the exercise program was found to improve muscle strength and body composition, while protein supplementation reduced body weight and increased upper body strength, among sarcopenic elderly in Malaysia.
Shahar, Suzana; Kamaruddin, Norshafarina Shari; Badrasawi, Manal; Sakian, Noor Ibrahim Mohamed; Manaf, Zahara Abd; Yassin, Zaitun; Joseph, Leonard
2013-01-01
Sarcopenia, characterized as muscle loss that occurs with aging, is a major health problem in an aging population, due to its implications on mobility, quality of life, and fall risk. Protein supplementation could improve the physical fitness by increasing protein anabolism, and exercise has a documented evidence of positive effect on functional status among the elderly. However, the combined effect of both protein supplementation and exercise has not been investigated among sarcopenic elderly in the Asian population. Thus, this study aimed to determine the effectiveness of exercise intervention and protein supplementation either alone or in combination for 12 weeks, on body composition, functional fitness, and oxidative stress among elderly Malays with sarcopenia. Sixty five sarcopenic elderly Malays aged 60–74 years were assigned to the control group, exercise group (ExG), protein supplementation group (PrG), or the combination of exercise and protein supplementation group. A significant interaction effect between body weight and body mass index (BMI) was observed, with the PrG (−2.1% body weight, −1.8% BMI) showing the highest reductions. Further, there was a decrease in % body fat (−4.5%) and an increase in fat-free mass (kg) (+5.7%) in the ExG after 12 weeks (P < 0.05). The highest increments in lower and upper body strength were observed in the PrG (73.2%) and ExG (47.6%), respectively. In addition, the ExG showed a reduction in superoxide dismutase (SOD) levels, and both interventions did not alter either lipid or protein oxidation. In conclusion, the exercise program was found to improve muscle strength and body composition, while protein supplementation reduced body weight and increased upper body strength, among sarcopenic elderly in Malaysia. PMID:24143082
Diniz, Tiego A; Rossi, Fabricio E; Fortaleza, Ana Claudia Souza; Neves, Lucas Melo; Christofaro, Diego Giulliano Destro; Buonani, Camila; Lira, Fabio S; Campos, Eduardo Zapaterra; Prado, Wagner Luiz do; Freitas, Ismael Forte
2018-01-01
This study aimed to investigate the individual characteristics of body composition and metabolic profile that could explain interindividual variation in high-density lipoprotein cholesterol (HDL-c) concentrations in response to 16 weeks of combined strength plus aerobic (combined) training in postmenopausal women. The participants were divided into tertiles based on percentage of changes in HDL-c concentrations after combined training. Only women in the upper tertile (positive responders: Δ > 10.4%; n = 19) and lower tertile (negative responders: Δ < -1.4%; n = 19) were considered for analyses. The total body fat (BF), trunk fat (TF), android fat (AF), gynoid fat, and lean body mass were estimated by dual-energy X-ray absorptiometry. The metabolic profile - glucose, triacylglycerol, total cholesterol, HDL-c, low-density lipoprotein cholesterol, and very-low-density lipoprotein (VLDL) - were assessed. After 16 weeks, both positive and negative responders presented similar improvement in body composition, such as a decrease in percentage and kilograms of BF, TF, and AF, and increase in lean body mass (p value for time < 0.05). As expected, there was an effect of time and also a significant interaction (time vs. group) (p value < 0.001) in the improvement of HDL-c, with higher values for positive responders. Regarding metabolic profile, there were significant interactions (time vs. group) for triacylglycerol (p value = 0.032) and VLDL (p value = 0.027) concentrations, with lower values for positive responders. Our results suggests there is heterogeneity in combined training-induced HDL-c changes in postmenopausal women, and the positive responders were those who presented more pronounced decreases in triacylglycerol and VLDL concentrations.
Whole-body kinematic and dynamic response of restrained PMHS in frontal sled tests.
Forman, Jason; Lessley, David; Kent, Richard; Bostrom, Ola; Pipkorn, Bengt
2006-11-01
The literature contains a wide range of response data describing the biomechanics of isolated body regions. Current data for the validation of frontal anthropomorphic test devices and human body computational models lack, however, a detailed description of the whole-body response to loading with contemporary restraints in automobile crashes. This study presents data from 14 frontal sled tests describing the physical response of postmortem human surrogates (PMHS) in the following frontal crash environments: A) (5 tests) driver position, force-limited 3-point belt plus airbag restraint (FLB+AB), 48 km/h deltaV. B) (3 tests) passenger position, FLB+AB restraint, 48 km/h deltaV. C) (3 tests) passenger position, standard (not force-limited) 3-point belt plus air bag restraint (SB+AB), 48 km/h deltaV. D) (3 tests) passenger position, standard 3-point belt restraint (SB), 29 km/h deltaV. Reported data include x-axis and z-axis (SAE occupant reference frame) accelerations of the head, spine (upper, middle, and lower), and pelvis; rate of angular rotation of the head about y-axis; displacements of the head, upper spine, pelvis and knee relative to the vehicle buck; and deformation contours of the upper and lower chest. A variety of kinematic trends are identified across the different test conditions, including a decrease in head and thorax excursion and a change in the nature of the excursion in the driver position compared to the passenger position. Despite this increase in forward excursion when compared to the driver's side FLB+AB tests, the passenger's side FLB+AB tests resulted in greater peak thoracic (T8) x-axis accelerations (passenger's side -29 g; driver's side -22 g;) and comparable maximum chest deflection (passenger's side - 23+/-3.1% of the undeformed chest depth; driver's side - 23+/-5.6%; ). In the 48 km/h passenger's side tests, the head excursion associated with the force-limiting belt system was approximately 15% greater than that for a standard belt system in tests that were otherwise identical. This was accompanied by a decrease in chest deflection of approximately 20% with the force-limiting system. Despite the decrease in test speed, the 29 km/h passenger's side tests with standard (not force-limiting) 3-point belt restraints resulted in maximum chest deflection (16+/-5.6% average) comparable to that observed in the 48 km/h, FLB+AB, driver's side tests (21+/-3.1% average). Finally, forward head excursion was slightly higher in the 29 km/h passenger's side tests (33+/-1.1 cm average) than in the 48 km/h driver's side tests (27+/-3.7 cm average), and was lower than that in the 48 km/h FLB+AB (58+/-4.4 cm average) and SB+AB (46+/-2.1 cm average) passenger's side tests.
Brogioli, Michael; Popp, Werner L; Albisser, Urs; Brust, Anne K; Frotzler, Angela; Gassert, Roger; Curt, Armin; Starkey, Michelle L
2016-11-01
After spinal cord injury (SCI), levels of independence are commonly assessed with standardized clinical assessments. However, such tests do not provide information about the actual extent of upper limb activities or the impact on independence of bi- versus unilateral usage throughout daily life following cervical SCI. The objective of this study was to correlate activity intensity and laterality of upper extremity activity measured by body-fixed inertial measurement units (IMUs) with clinical assessment scores of independence. Limb-use intensity and laterality of activities performed by the upper extremities was measured in 12 subjects with cervical SCI using four IMUs (positioned on both wrists, on the chest, and on one wheel of the wheelchair). Algorithms capable of reliably detecting self-propulsion and arm activity in a clinical environment were applied to rate functional outcome levels, and were related to clinical independence measures during inpatient rehabilitation. Measures of intensity of upper extremity activity during self-propulsion positively correlated (p < 0.05, r = 0.643) with independence measures related to mobility. Clinical measures of laterality were positively correlated (p < 0.01, r = 0.900) with laterality as measured by IMUs during "daily life," and increased laterality was negatively correlated (p < 0.01, r = -0.739) with independence. IMU sensor technology is sensitive in assessing and quantifying upper limb-use intensity and laterality in human cervical SCI. Continuous and objective movement data of distinct daily activities (i.e., mobility and day-to-day activities) can be related to levels of independence. Therefore, IMU sensor technology is suitable not only for monitoring activity levels during rehabilitation (including during clinical trials) but could also be used to assess levels of participation after discharge.
Changes in skill and physical fitness following training in talent-identified volleyball players.
Gabbett, Tim; Georgieff, Boris; Anderson, Steve; Cotton, Brad; Savovic, Darko; Nicholson, Lee
2006-02-01
This study investigated the effect of a skill-based training program on measurements of skill and physical fitness in talent-identified volleyball players. Twenty-six talented junior volleyball players (mean +/- SE age, 15.5 +/- 0.2 years) participated in an 8-week skill-based training program that included 3 skill-based court sessions per week. Skills sessions were designed to develop passing, setting, serving, spiking, and blocking technique and accuracy as well as game tactics and positioning skills. Coaches used a combination of technical and instructional coaching, coupled with skill-based games to facilitate learning. Subjects performed measurements of skill (passing, setting, serving, and spiking technique and accuracy), standard anthropometry (height, standing-reach height, body mass, and sum of 7 skinfolds), lower-body muscular power (vertical jump, spike jump), upper-body muscular power (overhead medicine-ball throw), speed (5- and 10-m sprint), agility (T-test), and maximal aerobic power (multistage fitness test) before and after training. Training induced significant (p < 0.05) improvements in spiking, setting, and passing accuracy and spiking and passing technique. Compared with pretraining, there were significant (p < 0.05) improvements in 5- and 10-m speed and agility. There were no significant differences between pretraining and posttraining for body mass, skinfold thickness, lower-body muscular power, upper-body muscular power, and maximal aerobic power. These findings demonstrate that skill-based volleyball training improves spiking, setting, and passing accuracy and spiking and passing technique, but has little effect on the physiological and anthropometric characteristics of players.
Swanson, Eric
2014-08-01
Some studies have indicated that liposuction may cause breast enlargement. Fat redistribution to the upper body as a compensatory mechanism after liposuction has also been reported. To evaluate the possibility of secondary breast hypertrophy and fat redistribution after liposuction, breast size and upper body measurements were obtained and compared for women who did not gain weight postoperatively. Eighty-two women who underwent cosmetic surgery, not including breast surgery, were enrolled in this prospective controlled study. Participants represented 1 of 3 procedure groups: cosmetic surgery not including liposuction (n = 24), liposuction (n = 41), and liposuction combined with abdominoplasty (n = 17). Breast measurements were obtained from standardized lateral photographs matched for size and orientation. Results were compared among the study groups. Postoperatively, there were no significant changes in mean body weight among the study groups. No significant increases in upper pole projection, breast projection, or breast area were found in patients treated with liposuction alone and those who received liposuction plus abdominoplasty. Upper body dimensions were unchanged except for a significant (P < .01) decrease in upper abdominal width in women treated with liposuction plus abdominoplasty. The findings were the same for a subset of 17 women with liposuction aspirate volumes >1500 mL. Results indicate that neither liposuction nor abdominoplasty produces secondary breast enlargement. Upper body dimensions are unchanged, consistent with findings of a previous study and contrary to the theory of fat redistribution. 2. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.
Held, Jeremia P O; Klaassen, Bart; Eenhoorn, Albert; van Beijnum, Bert-Jan F; Buurke, Jaap H; Veltink, Peter H; Luft, Andreas R
2018-01-01
Upper-limb impairments in stroke patients are usually measured in clinical setting using standard clinical assessment. In addition, kinematic analysis using opto-electronic systems has been used in the laboratory setting to map arm recovery. Such kinematic measurements cannot capture the actual function of the upper extremity in daily life. The aim of this study is to longitudinally explore the complementarity of post-stroke upper-limb recovery measured by standard clinical assessments and daily-life recorded kinematics. The study was designed as an observational, single-group study to evaluate rehabilitation progress in a clinical and home environment, with a full-body sensor system in stroke patients. Kinematic data were recorded with a full-body motion capture suit during clinical assessment and self-directed activities of daily living. The measurements were performed at three time points for 3 h: (1) 2 weeks before discharge of the rehabilitation clinic, (2) right after discharge, and (3) 4 weeks after discharge. The kinematic analysis of reaching movements uses the position and orientation of each body segment to derive the joint angles. Newly developed metrics for classifying activity and quality of upper extremity movement were applied. The data of four stroke patients (three mildly impaired, one sever impaired) were included in this study. The arm motor function assessment improved during the inpatient rehabilitation, but declined in the first 4 weeks after discharge. A change in the data (kinematics and new metrics) from the daily-life recording was seen in in all patients. Despite this worsening patients increased the number of reaches they performed during daily life in their home environment. It is feasible to measure arm kinematics using Inertial Measurement Unit sensors during daily life in stroke patients at the different stages of rehabilitation. Our results from the daily-life recordings complemented the data from the clinical assessments and illustrate the potential to identify stroke patient characteristics, based on kinematics, reaching counts, and work area. https://clinicaltrials.gov, identifier NCT02118363.
Assessment of body parameters' symmetry in child violinists.
Cygańska, Anna; Truszczyńska-Baszak, Aleksandra; Drzał-Grabiec, Justyna; Tarnowski, Adam
2017-09-22
Playing violin may lead to overload of the locomotor system. The aim of this study was to assess body parameters for trunk symmetry in child violinists and compare with the control group. We analyzed body posture of 101 children aged 7-12 years, mean age 11.09 ± 9.46, 49 child violinists and control group of 52 children. We found statistically significant differences for the difference in depth of the lower corners of scapulae and upper posterior spina iliaca, though greater asymmetries were found in the clinical control group. The remaining parameter values are close to significance, which may suggest that the process of postural change among the children had just started and that the existing asymmetries were easy to correct. We found positive correlation between body height and the difference in distance of the lower corners of scapulae from the spine: OL (p= 0.029, correlation coefficient value was 0.167) and the Thales triangle height: (p= 0.018, correlation coefficient was 0.214). Position maintained while playing the violin changed some parameters characterizing the curvature of the spine in frontal plane. We found the importance of detailed analysis of children body posture and its critical assessment.
Vandbakk, Kristine; Welde, Boye; Kruken, Andrea Hovstein; Baumgart, Julia; Ettema, Gertjan; Karlsen, Trine; Sandbakk, Øyvind
2017-01-01
This study compared the effects of adding upper-body sprint-intervals or continuous double poling endurance training to the normal training on maximal upper-body strength and endurance capacity in female cross-country skiers. In total, 17 female skiers (age: 18.1±0.8yr, body mass: 60±7 kg, maximal oxygen uptake (VO2max): 3.30±0.37 L.min-1) performed an 8-week training intervention. Here, either two weekly sessions of six to eight 30-s maximal upper-body double poling sprint-intervals (SIG, n = 8) or 45–75 min of continuous low-to-moderate intensity double poling on roller skis (CG, n = 9) were added to their training. Before and after the intervention, the participants were tested for physiological and kinematical responses during submaximal and maximal diagonal and double poling treadmill roller skiing. Additionally, we measured maximal upper-body strength (1RM) and average power at 40% 1RM in a poling-specific strength exercise. SIG improved absolute VO2max in diagonal skiing more than CG (8% vs 2%, p<0.05), and showed a tendency towards higher body-mass normalized VO2max (7% vs 2%, p = 0.07). Both groups had an overall improvement in double poling peak oxygen uptake (10% vs 6% for SIG and CG) (both p<0.01), but no group-difference was observed. SIG improved 1RM strength more than CG (18% vs 10%, p<0.05), while there was a tendency for difference in average power at 40% 1RM (20% vs 14%, p = 0.06). Oxygen cost and kinematics (cycle length and rate) in double poling and diagonal remained unchanged in both groups. In conclusion, our study demonstrates that adding upper-body sprint-interval training is more effective than continuous endurance training in improving upper-body maximal strength and VO2max. PMID:28241030
Chen, Wei-Han; Wu, Huey-June; Lo, Shin-Liang; Chen, Hui; Yang, Wen-Wen; Huang, Chen-Fu; Liu, Chiang
2018-05-28
Chen, WH, Wu, HJ, Lo, SL, Chen, H, Yang, WW, Huang, CF, and Liu, C. Eight-week battle rope training improves multiple physical fitness dimensions and shooting accuracy in collegiate basketball players. J Strength Cond Res XX(X): 000-000, 2018-Basketball players must possess optimally developed physical fitness in multiple dimensions and shooting accuracy. This study investigated whether (battle rope [BR]) training enhances multiple physical fitness dimensions, including aerobic capacity (AC), upper-body anaerobic power (AnP), upper-body and lower-body power, agility, and core muscle endurance, and shooting accuracy in basketball players and compared its effects with those of regular training (shuttle run [SR]). Thirty male collegiate basketball players were randomly assigned to the BR or SR groups (n = 15 per group). Both groups received 8-week interval training for 3 sessions per week; the protocol consisted of the same number of sets, exercise time, and rest interval time. The BR group exhibited significant improvements in AC (Progressive Aerobic Cardiovascular Endurance Run laps: 17.6%), upper-body AnP (mean power: 7.3%), upper-body power (basketball chest pass speed: 4.8%), lower-body power (jump height: 2.6%), core muscle endurance (flexion: 37.0%, extension: 22.8%, and right side bridge: 23.0%), and shooting accuracy (free throw: 14.0% and dynamic shooting: 36.2%). However, the SR group exhibited improvements in only AC (12.0%) and upper-body power (3.8%) (p < 0.05). The BR group demonstrated larger pre-post improvements in upper-body AnP (fatigue index) and dynamic shooting accuracy than the SR group did (p < 0.05). The BR group showed higher post-training performance in upper-body AnP (mean power and fatigue index) than the SR group did (p < 0.05). Thus, BR training effectively improves multiple physical fitness dimensions and shooting accuracy in collegiate basketball players.
Human location estimation using thermopile array sensor
NASA Astrophysics Data System (ADS)
Parnin, S.; Rahman, M. M.
2017-11-01
Utilization of Thermopile sensor at an early stage of human detection is challenging as there are many things that produce thermal heat other than human such as electrical appliances and animals. Therefrom, an algorithm for early presence detection has been developed through the study of human body temperature behaviour with respect to the room temperature. The change in non-contact detected temperature of human varied according to body parts. In an indoor room, upper parts of human body change up to 3°C whereas lower part ranging from 0.58°C to 1.71°C. The average changes in temperature of human is used as a conditional set-point value in the program algorithm to detect human presence. The current position of human and its respective angle is gained when human is presence at certain pixels of Thermopile’s sensor array. Human position is estimated successfully as the developed sensory system is tested to the actuator of a stand fan.
Upper body fat predicts metabolic syndrome similarly in men and women.
Grundy, Scott M; Williams, Corbin; Vega, Gloria L
2018-04-23
The metabolic syndrome is a constellation of risk factors including dyslipidemia, dysglycemia, hypertension, a pro-inflammatory state, and a prothrombotic state. All of these factors are accentuated by obesity. However, obesity can be defined by body mass index (BMI), percent body fat, or by body fat distribution. The latter consists of upper body fat (subcutaneous and visceral fat) and lower body fat (gluteofemoral fat). Waist circumference is a common surrogate marker for upper body fat. Data from the National Health and Nutrition Examination Survey (NHANES) for the years 1999-2006 was examined for associations of metabolic risk factors with percent body fat, waist circumference, and BMI. Associations between absolute measures of waist circumference and risk factors were similiar for men and women. The similarities of associations between waist circumference and risk factors suggests that greater visceral fat in men does not accentuate the influence of upper body fat on risk factors. Different waist concumference values should not be used to define abdominal obesity in men and women. © 2018 The Authors. European Journal of Clinical Investigation published by John Wiley & Sons Ltd on behalf of Stichting European Society for Clinical Investigation Journal Foundation.
Black, Oliver; Keegel, Tessa; Sim, Malcolm R; Collie, Alexander; Smith, Peter
2018-03-01
Purpose Work absence can result in substantial losses to the economy and workers. As a result, identifying modifiable factors associated with return-to-work (RTW) following an injury or illness is the focus of many empirical investigations. Self-efficacy, the belief about one's ability to undertake behaviours to achieve desired goals, has been identified as an important factor in RTW for injured workers. This paper systematically reviewed the literature on the association between self-efficacy and RTW outcomes for workers with an upper-body musculoskeletal injury or psychological injury. Methods A systematic search was conducted across five databases using two main search concepts- 'self-efficacy' and 'RTW'. After removing duplicates, our search strategy identified 836 studies, which were screened for relevance using titles and abstracts. Results A two stage screening process reduced the study pool to six studies using psychological injury cohorts and three using upper-body musculoskeletal (UB-MSK) cohorts. Eight cohorts from seven prospective cohort studies and one sample from a randomised control trial (RCT) were subjected to a risk of bias assessment. Higher levels of self-efficacy appeared to have a consistent and positive association with RTW across return-to-work status and work absence outcomes, injury type and follow-up periods. Effect ratios ranged from 1.00 to 5.26 indicating a potentially large impact of self-efficacy on RTW outcomes. The relationship between self-efficacy and RTW strengthened as the domain of self-efficacy became more specific to RTW and job behaviours. Studies assessing workers with psychological injuries were of a lower quality compared to those assessing workers with UB-MSK injuries. Conclusions Higher self-efficacy had consistent positive associations with RTW outcomes. Further empirical research should identify the determinants of self-efficacy, and explore the processes by which higher self-efficacy improves RTW outcomes.
The use of the German V-2 in US for upper atmosphere research
NASA Technical Reports Server (NTRS)
Curtis, S. A.
1979-01-01
Early U.S. space experiments involving the liquid propellant German V-2 are discussed. Although the primary objective of the experiments conducted under project Hermes after World War II was initially the development of missile technology, scientific objectives were soon given the priority. The missile was modified for scientific experiments and the payload increased from 6.8% to 47% between 1946 and 1949. Among other instruments, the payload included a cosmic ray telescope, ionosphere transmitter and spectrograph for solar spectral measurements. While the scientific success of the program established a positive public attitude towards space research, the Upper Atmosphere Research Panel, formed to coordinate the project, set a pattern for future scientific advisory bodies.
Accuracy of Kinect's skeleton tracking for upper body rehabilitation applications.
Mobini, Amir; Behzadipour, Saeed; Saadat Foumani, Mahmoud
2014-07-01
Games and their use in rehabilitation have formed a new and rapidly growing area of research. A critical hardware component of rehabilitation programs is the input device that measures the patients' movements. After Microsoft released Kinect, extensive research has been initiated on its applications as an input device for rehabilitation. However, since most of the works in this area rely on a qualitative determination of the joints' movements rather than an accurate quantitative one, detailed analysis of patients' movements is hindered. The aim of this article is to determine the accuracy of the Kinect's joint tracking. To fulfill this task, a model of upper body was fabricated. The displacements of the joint centers were estimated by Kinect at different positions and were then compared with the actual ones from measurement. Moreover, the dependency of Kinect's error on distance and joint type was measured and analyzed. It measures and reports the accuracy of a sensor that can be directly used for monitoring physical therapy exercises. Using this sensor facilitates remote rehabilitation.
Bliekendaal, S; Goossens, L; Stubbe, J H
2017-12-01
Injuries can have a major impact on the physical performance and academic career of physical education teacher education (PETE) students. To investigate the injury problem, risk factors, and the impact of injuries on academic success, 252 PETE students were followed during their first semester. Risk factor analysis was conducted by means of logistic regression analysis with a differentiation for upper body, lower body, acute, overuse, and severe injuries. An incidence of 1.26 injuries/student/semester was found. Most injuries involved the lower body (61%), were new injuries (76%), occurred acutely (66%), and were sustained during curricular gymnastics (25%) or extracurricular soccer (28%). Significant risk factors for lower body acute injuries were age (OR=2.14; P=.01), previous injury (OR=2.23; P=.01), and an injury at the start of the year (OR=2.56; P=.02). For lower body overuse injuries, gender (OR=2.85; P=.02) and the interval shuttle run test score (OR=2.44; P=.04) were significant risk factors. Previous injury (OR=2.59; P=.04) and injury at the start of the year (upper body: OR=4.57; P=.02; lower body: OR=3.75; P<.01) were risk factors for severe injuries. Injury-related time loss was positively related to total academic success (r=.20; P=.02) and success in theoretical courses (r=.24; P=<.01). No association was found between time loss and academic success for sport courses. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jurkojć, Jacek; Michnik, Robert; Czapla, Krzysztof
2017-06-01
This article deals with kinematic and kinetic conditions in volleyball attack and identifies loads in the shoulder joint. Joint angles and velocities of individual segments of upper limb were measured with the use of the motion capture system XSENS. Muscle forces and loads in skeletal system were calculated by means of mathematical model elaborated in AnyBody system. Spikes performed by players in the best and worst way were compared with each other. The relationships were found between reactions in shoulder joint and flexion/extension, abduction/adduction and rotation angles in the same joint and flexion/extension in the elbow joint. Reactions in shoulder joint varied from 591 N to 2001 N (in relation to body weight [BW] 83-328%). The analysis proved that hand velocity at the moment of the ball hit (which varied between 6.8 and 13.3 m s -1 ) influences on the value of reaction in joints, but positions of individual segments relative to each other are also crucial. It was also proved in objective way, that position of the upper limb during spike can be more or less harmful assuming that bigger reaction increases possibility of injury, what can be an indication for trainers and physiotherapists how to improve injury prevention.
Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras
NASA Astrophysics Data System (ADS)
Gómez Martínez, Harvey; Giorgi, Gabriele; Eissfeller, Bernd
2017-10-01
This paper presents a methodology for estimating the position and orientation of a rocket body in orbit - the target - undergoing a roto-translational motion, with respect to a chaser spacecraft, whose task is to match the target dynamics for a safe rendezvous. During the rendezvous maneuver the chaser employs a Time-of-Flight camera that acquires a point cloud of 3D coordinates mapping the sensed target surface. Once the system identifies the target, it initializes the chaser-to-target relative position and orientation. After initialization, a tracking procedure enables the system to sense the evolution of the target's pose between frames. The proposed algorithm is evaluated using simulated point clouds, generated with a CAD model of the Cosmos-3M upper stage and the PMD CamCube 3.0 camera specifications.
Differential color brightness as a body orientation cue
NASA Technical Reports Server (NTRS)
Barbour, Christopher G.; Coss, Richard G.
1988-01-01
Ninety male and female college students reclining on their backs in the dark were disoriented when positioned on a rotating platform under a slowly rotating disk that filled their entire visual field. Half of the disk was painted with a brighter value (about 69 percent higher luminance level) of the color on the other half. The effects of red, blue, and yellow were examined. Subjects wearing frosted goggles viewed the illuminated disk for three rotations. The disk was stopped when the subjects felt that they were right side up. A significant proportion of subjects selected the disk position in which the brighter side of each of the three colors filled their upper visual field. These results suggest that color brightness as well as lighting variation could provide Space Station crew members with body orientation cues as they move around.
Young, W B; Newton, R U; Doyle, T L A; Chapman, D; Cormack, S; Stewart, G; Dawson, B
2005-09-01
A purpose of this study was to determine if pre-season anthropometric and physiological measures were significantly different for the players from one Australian Football League (AFL) club selected to play in the first game of the season compared to the players not selected. Another purpose was to compare fitness test results for defenders, forwards and mid-fielders in the same AFL club. Thirty-four players were tested for isolated quadriceps and hamstrings strength, leg extensor muscle strength and power, upper body strength, sprinting speed, vertical jump (VJ), endurance, skinfolds and hamstring flexibility. The starters who were selected to play the first game were a significantly older and more experienced playing group, and were significantly better (p < 0.05) in measures of leg power, sprinting speed and the distance covered in the Yo Yo intermittent recovery test compared to the non-starters. Although there were trends for the superiority of the starters, the differences in lower and upper body strength, VJ and predicted VO2max were non-significant. The forwards generally produced the worst fitness scores of the playing positions with the midfielders having significantly lower skinfolds and the defenders possessing better hamstring strength and VJ compared to the forwards. It was concluded that some fitness qualities can differentiate between starters and non-starters, at least in one AFL club. Comparisons of playing positions and the development of fitness norms for AFL players require further research.
Ozmeric, A; Yucens, M; Gultaç, E; Açar, H I; Aydogan, N H; Gül, D; Alemdaroglu, K B
2015-05-01
We hypothesised that the anterior and posterior walls of the body of the first sacral vertebra could be visualised with two different angles of inlet view, owing to the conical shape of the sacrum. Six dry male cadavers with complete pelvic rings and eight dry sacrums with K-wires were used to study the effect of canting (angling the C-arm) the fluoroscope towards the head in 5° increments from 10° to 55°. Fluoroscopic images were taken in each position. Anterior and posterior angles of inclination were measured between the upper sacrum and the vertical line on the lateral view. Three authors separately selected the clearest image for overlapping anterior cortices and the upper sacral canal in the cadaveric models. The dry bone and K-wire models were scored by the authors, being sure to check whether the K-wire was in or out. In the dry bone models the mean score of the relevant inlet position of the anterior or posterior inclination was 8.875 (standard deviation (sd) 0.35), compared with the inlet position of the opposite inclination of -5.75 (sd 4.59). We found that two different inlet views should be used separately to evaluate the borders of the body of the sacrum using anterior and posterior inclination angles of the sacrum, during placement of iliosacral screws. ©2015 The British Editorial Society of Bone & Joint Surgery.
Myette-Côté, Étienne; Doucet, Éric; Prud'homme, Denis; Rabasa-Lhoret, Rémi; Lavoie, Jean-Marc; Brochu, Martin
2015-01-01
This study aims to investigate individual characteristics that explain interindividual variations in glucose disposal in response to a 6-month weight loss program in obese postmenopausal women. The cohort was divided into tertiles based on changes in glucose disposal after weight loss. Only women in the upper tertile (positive responders: Δ glucose disposal ≥ 0.92 mg/kg/min; n = 19) and lower tertile (negative responders: Δ glucose disposal ≤ -0.23 mg/kg/min; n = 19) were considered for analyses. Outcome measures included body weight, lean body mass (LBM), LBM index (= LBM / height [m]), fat mass (FM), FM index (= FM / height [m]), visceral fat, subcutaneous abdominal fat, high-sensitivity C-reactive protein (hsCRP) levels, interleukin-6, lipid profile, physical activity levels, fasting blood glucose and insulin levels, glucose disposal by hyperinsulinemic-euglycemic clamp technique, and resting blood pressure. At baseline, positive responders had higher triglycerides and hsCRP levels and lower glucose disposal (0.01 < P < 0.05) than negative responders. Except for visceral fat, the entire cohort showed significant decreases in all measures of body composition (P < 0.005) after weight loss, with greater decreases in body weight, body mass index, and FM index in positive responders (P < 0.005). Finally, data revealed that only positive responders showed decreases in LBM, LBM index, and hsCRP levels after weight loss (P between 0.01 and 0.001). An important interindividual variability in changes in glucose disposal after weight loss is observed. Interestingly, participants who display improvements in glucose disposal also show significant decreases in LBM, LBM index, and hsCRP after weight loss.
Allometric associations between body size, shape, and 100-m butterfly speed performance.
Sammoud, Senda; Nevill, Alan M; Negra, Yassine; Bouguezzi, Raja; Chaabene, Helmi; Hachana, Younés
2018-05-01
This study aimed to estimate the optimal body size, limb-segment length, and girth or breadth ratios associated with 100-m butterfly speed performance in swimmers. One-hundred-sixty-seven swimmers as subjects (male: N.=103; female: N.=64). Anthropometric measurements comprised height, body-mass, skinfolds, arm-span, upper-limb-length, upper-arm, forearm, hand-lengths, lower-limb-length, thigh-length, leg-length, foot-length, arm-relaxed-girth, forearm-girth, wrist-girth, thigh-girth, calf-girth, ankle-girth, biacromial and biiliocristal-breadths. To estimate the optimal body size and body composition components associated with 100-m butterfly speed performance, we adopted a multiplicative allometric log-linear regression model, which was refined using backward elimination. Fat-mass was the singularly most important whole-body characteristic. Height and body-mass did not contribute to the model. The allometric model identified that having greater limb segment length-ratio (arm-ratio = [arm-span]/[forearm]) and limb girth-ratio (girth-ratio = [calf-girth]/[ankle-girth]) were key to butterfly speed performance. A greater arm-span to forearm-length ratio and a greater calf to ankle-girth-ratio suggest that a combination of larger arm-span and shorter forearm-length and the combination of larger calves and smaller ankles-girth may benefit butterfly swim speed performance. In addition having greater biacromial and biliocristal breadths is also a major advantage in butterfly swimming speed performance. Finally, the estimation of these ratios was made possible by adopting a multiplicative allometric model that was able to confirm, theoretically, that swim speeds are nearly independent of total body size. The 100-m butterfly speed performance was strongly negatively associated with fat mass and positively associated with the segment length ratio (arm-span/forearm-length) and girth ratio (calf-girth)/(ankle-girth), having controlled for the developmental changes in age.
Glenn, Jordan M; Gray, Michelle; Wethington, Lauren N; Stone, Matthew S; Stewart, Rodger W; Moyen, Nicole E
2017-03-01
Citrulline malate (CM) is a nonessential amino acid that increases exercise performance in males. However, based on physiological differences between genders, these results cannot be extrapolated to females. Therefore, the purpose of this investigation was to evaluate effects of acute CM supplementation on upper- and lower-body weightlifting performance in resistance-trained females. Fifteen females (23 ± 3 years) completed two randomized, double-blind trials consuming either CM (8 g dextrose + 8 g CM) or a placebo (8 g dextrose). One hour after supplement consumption, participants performed six sets each of upper- (i.e., bench press) and lower-body (i.e., leg press) exercises to failure at 80 % of previously established one-repetition maximum. Immediately after each set, repetitions completed, heart rate and rating of perceived exertion (RPE) were recorded. Repeated-measures analysis of variance indicated that subjects completed significantly (p = .045) more repetitions throughout upper-body exercise when consuming CM versus placebo (34.1 ± 5.7 vs. 32.9 ± 6.0, respectively). When consuming CM, similar significant (p = .03) improvements in total repetitions completed were observed for lower-body exercise (66.7 ± 30.5 vs. 55.13 ± 20.64, respectively). Overall RPE score was significantly lower (p = .02) in upper-body exercise when subjects consumed CM versus placebo (7.9 ± 0.3 and 8.6 ± 0.2, respectively). The supplement consumed exhibited no significant effects on heart rate at any time point. Acute CM supplementation in females increased upper- and lower-body resistance exercise performance and decreased RPE during upper-body exercise. These data indicate that athletes competing in sports with muscular endurance-based requirements may potentially improve performance by acutely supplementing CM.
The impact of maternal adiposity specialization on infant birthweight: upper versus lower body fat.
Sundermann, Alexandra C; Abell, Troy D; Baker, Lisa C; Mengel, Mark B; Reilly, Kathryn E; Bonow, Michael A; Hoy, Gregory E; Clover, Richard D
2016-11-01
The specialization of human fat deposits is an inquiry of special importance in the study of fetal growth. It has been theorized that maternal lower-body fat is designated specifically for lactation and not for the growth of the fetus. Our goal was to compare the contributions of maternal upper-body versus lower-body adiposity to infant birth weight. We hypothesized that upper-body adiposity would be strongly associated with infant birth weight and that lower-body adiposity would be weakly or negligibly associated with infant birth weight-after adjusting for known determinants. In this prospective cohort study, 355 women initiated medical pre-natal care during the first trimester of pregnancy at The University of Oklahoma Health Sciences Center during 1990-1993. Maternal anthropometric measurements were assessed at the first clinic visit: (a) height; (b) weight; (c) circumferences of the upper arm, forearm, and thigh; and, (d) skin-fold measurements of the bicep, subscapular region, and thigh. Infant birth weight was regressed on known major determinants to create the foundational model. Maternal anthropometric variables subsequently were added one at a time into this multiple regression model. The highest contribution by a single anthropometric variable to infant birthweight was, in order: subscapular skin-fold, forearm circumference, and thigh circumference. With one upper-body (subscapular skin-fold) and one lower-body (circumference of the thigh) adiposity measure in the model, the z-score regression coefficient (s.e.) was 85.7g (30.8) [p=0.0057] for maternal subscapular skin-fold and 19.0g (31.6) [p=0.5477] for circumference of the thigh. When the second-best upper-body contributor to infant birthweight (circumference of the forearm) was entered with one lower-body measure into the model, the z-score regression coefficient (s.e.) was 77.5g (38.5) [p=0.0451] for maternal forearm circumference and 14.1g (38.5) [p=0.7146] for circumference of the thigh. When both subscapular skinfold and forearm circumference were added to the model in place of BMI, the explained variance (r 2 =0.5478) was similar to the model using BMI (r 2 =0.5487). Upper-body adiposity - whether operationalized by subscapular skin-fold or circumference of the forearm - was a markedly larger determinant of infant birth weight than lower-body adiposity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kravik, Stein E.
1989-01-01
Because of their erect posture, humans are more vulnerable to gravitational changes than any other animal. During standing or walking man must constantly use his antigravity muscles and his two columns, his legs, to balance against the force of gravity. At the same time, blood is surging downward to the dependent portions of the body, draining blood away from the brain and heart, and requiring a series of complex cardiovascular adjustments to maintain the human in a bipedal position. It was not until 12 April 1961, when Yuri Gagarin became the first human being to orbit Earth, that we could confirm man's ability to maintain vital functions in space -- at least for 90 min. Nevertheless, man's adaptation to weightlessness entails the deconditioning of various organs in the body. Muscles atrophy, and calcium loss leads to loss of bone strength as the demands on the musculoskeletal system are almost nonexistent in weightlessness. Because of the lack of hydrostatic pressures in space, blood rushes to the upper portions of the body, initiating a complex series of cardioregulatory responses. Deconditioning during spaceflight, however, first becomes a potentially serious problem in humans returning to Earth, when the cardiovascular system, muscles and bones are suddenly exposed to the demanding counterforce of gravity -- weight. One of the main purposes of our studies was to test the feasibility of using Lower Body Positive Pressure, applied with an antigravity suit, as a new and alternative technique to bed rest and water immersion for studying cardioregulatory, renal, electrolyte, and hormonal changes in humans. The results suggest that Lower Body Positive Pressure can be used as an analog of microgravity-induced physiological responses in humans.
... the blood vessels that supply blood to the head, neck, upper body and arms. It is also called ... the blood vessels that supply blood to the head, neck, upper body, and arms. It most commonly occurs ...
NASA Astrophysics Data System (ADS)
Cao, Wei-Guang; Zhou, Tian-Yi; Xie, Yi
2017-10-01
As a continuing investigation of an earlier work that establishes the collinear solutions to the three-body problem with general masses under a scalar-tensor theory, we study these solutions and prove their uniqueness up to the first order post-Newtonian approximation. With the help of observed bounds on the scalar field in the Solar System, we show that the seventh-order polynomial equation determining the distance ratio among the three masses has either one or three positive roots. However, in the case with three positive roots, it is found that two positive roots break down the slow-motion condition for the post-Newtonian approximation so that only one positive root is physically valid. The resulting uniqueness suggests that the locations of the three masses are very close to their Newtonian positions with post-Newtonian corrections of general relativity and the scalar field. We also prove that, in the framework of the scalar-tensor theory, the angular velocity of the collinear configuration is always less than the Newtonian one when all other parameters are fixed. These results are valid only for three-body systems where upper-bounds on the scalar field are compatible with those of the Solar System. Supported by the National Natural Science Foundation of China under Grant Nos. 11573015 and J1210039, and the Innovation Training Project for Undergraduates of Nanjing University, China
Prediction of Tennis Performance in Junior Elite Tennis Players
Kramer, Tamara; Huijgen, Barbara C.H.; Elferink-Gemser, Marije T.; Visscher, Chris
2017-01-01
Predicting current and future tennis performance can lead to improving the development of junior tennis players. The aim of this study is to investigate whether age, maturation, or physical fitness in junior elite tennis players in U13 can explain current and future tennis performance. The value of current tennis performance for future tennis performance is also investigated. A total of 86 junior elite tennis players (boys, n = 44; girls, n = 42) U13 (aged: 12.5 ± 0.3 years), and followed to U16, took part in this study. All players were top-30 ranked on the Dutch national ranking list at U13, and top-50 at U16. Age, maturation, and physical fitness, were measured at U13. A principal component analysis was used to extract four physical components from eight tests (medicine ball throwing overhead and reverse, ball throwing, SJ, CMJas, Sprint 5 and 10 meter, and the spider test). The possible relationship of age, maturation, and the physical components; “upper body power”, “lower body power”, “speed”, and “agility” with tennis performance at U13 and U16 was analyzed. Tennis performance was measured by using the ranking position on the Dutch national ranking list at U13 and U16. Regression analyses were conducted based on correlations between variables and tennis performance for boys and girls, separately. In boys U13, positive correlations were found between upper body power and tennis performance (R2 is 25%). In girls, positive correlations between maturation and lower body power with tennis performance were found at U13. Early maturing players were associated with a better tennis performance (R2 is 15%). In girls U16, only maturation correlated with tennis performance (R2 is 13%); later-maturing girls at U13 had better tennis performances at U16. Measuring junior elite tennis players at U13 is important for monitoring their development. These measurements did not predict future tennis performance of junior elite tennis players three years later. Future research should focus on other aspects in order to predict tennis performance better. Key points In boys, tennis performance can be partly explained by upper body power at U13, it is not a predictor for performance at U16. In girls, APHV is of influence for tennis performance at U13 and U16. At younger age earlier-matured girls were ranked higher, however at U16 later-matured girls were ranked higher. Overall, physical fitness in junior tennis is important for monitoring physical fitness development however this should not solely be used for selection criteria in a homogenous group of junior elite players. PMID:28344446
Endo, Minoru; Kondo, Takahito; Shimada, Rie; Tsukahara, Kiyoaki
2018-06-01
Patients with body mass index (BMI) < 25 kg/m 2 and obstructive sleep apnea syndrome (OSAS) are highly suspicious for position-dependent OSAS. Diagnosis of position-dependent/position-independent OSAS can be difficult in patients satisfying both 'BMI >25 kg/m 2 ' and 'any of tongue enlargement (TE), palatine tonsil hypertrophy (PTH) and obstruction by Muller's maneuver (OMM)'. Polysomnography is warranted in such patients. The objective was to retrospectively elucidate criteria for differentiating position-dependent OSAS on the basis of patient information and physical examinations of the upper airway obtainable in clinics. The 643 patients were categorized as positional patients (PPs) or non-positional patients (NPPs). The patient background factors examined were sex, age, BMI, and hypertension. TE, PTH, pharyngeal tonsil hypertrophy, and OMM were evaluated. Cross-validation was performed using even-numbered registrations as the training set group (Group A) and odd-numbered registrations as the test case group (Group B). In Group A, patients with BMI <25 kg/m 2 were clearly more frequent among PP than among NPP. In Group A with BMI ≥25 kg/m 2 , significant differences were found for TE, PTH and OMM. Significant differences were found between 0 and 1/2/3 for number of factors. Results generated from Group A were validated in Group B.
Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises
Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz
2017-01-01
Objectives The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Method Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Results Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Conclusions Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise. PMID:28141870
Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ander, M.E.; Heiken, G.; Eichelberger, J.
1981-05-01
A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed.more » The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaplin, J.R.
1989-08-01
Poor well control and the absence of surface stratigraphic control made previous interpretations of the stratigraphic relations of sandstone-producing reservoirs tenuous. Recent extensive analyses of surface outcrops and well and core data support the contention that the major sandstone-producing reservoirs can be physically correlated with formations in the outcrop section. Sandstone bodies within the upper Council Grove Group include Neva sand and Blackwell sand (Neva Limestone), Hotson-Kisner sand (Eskridge Shale), and the Whitney-Hodges sand. The Whitney-Hodges sand correlates, in part, with the Speiser Shale (Garrison Formation) of the outcrop section. However, previous usage suggested tentative correlations with sandstone bodies stratigraphicallymore » lower in the section. These sands were probably deposited in channels that were, in part, fluvial, tidal, or estuarine. Production from the Chase Group occurs locally within channelform sandstone bodies referred to as the Hoy-Matfield sand. These sands appear to be equivalent, occupying essentially the position of the Kinney Limestone Member (Matfield Shale) of the outcrop section. Detailed core-hole data at and in the vicinity of Kaw Dam, southeastern Kay County, and outcrops along the shoreline of Kaw Lake at Kaw City, Kay County, clearly demonstrate the facies distribution of the Hoy sand. Core-hole data has also delineated additional potential sandstone reservoirs within and near or at the top of the Fort Riley Limestone Member (Barneston Limestone). The Wolfe sand, a producing sandstone locally, occupies a stratigraphic position within the Doyle Shale.« less
Predicting Performance on a Firefighter's Ability Test from Fitness Parameters
ERIC Educational Resources Information Center
Michaelides, Marcos A.; Parpa, Koulla M.; Thompson, Jerald; Brown, Barry
2008-01-01
The purpose of this project was to identify the relationships between various fitness parameters such as upper body muscular endurance, upper and lower body strength, flexibility, body composition and performance on an ability test (AT) that included simulated firefighting tasks. A second intent was to create a regression model that would predict…
Active dehydration impairs upper and lower body anaerobic muscular power.
Jones, Leon C; Cleary, Michelle A; Lopez, Rebecca M; Zuri, Ron E; Lopez, Richard
2008-03-01
We examined the effects of active dehydration by exercise in a hot, humid environment on anaerobic muscular power using a test-retest (euhydrated and dehydrated) design. Seven subjects (age, 27.1 +/- 4.6 years; mass, 86.4 +/- 9.5 kg) performed upper and lower body Wingate anaerobic tests prior to and after a 1.5-hour recovery from a heat stress trial of treadmill exercise in a hot, humid environment (33.1 +/- 3.1C = 55.1 +/- 8.9% relative humidity) until a 3.1 +/- 0.3% body mass loss was achieved. Dehydration was confirmed by a significant body mass loss (P < 0.001), urine color increase (P = 0.004), and urine specific gravity increase (P = 0.041). Motivation ratings were not significantly different (P = 0.059), and fatigue severity was significantly (P = 0.009) increased 70% in the dehydrated compared to the euhydrated condition. Compared to the euhydrated condition, the dehydrated condition mean power was significantly (P = 0.014) decreased 7.17% in the upper body and 19.20% in the lower body. Compared to the euhydrated condition, the dehydrated condition peak power was significantly (P = 0.013) decreased 14.48% in the upper body and 18.36% in the lower body. No significant differences between the euhydrated and dehydrated conditions were found for decrease in power output (P = 0.219, power = 0.213). Our findings suggest that dehydration of 2.9% body mass decreases the ability to generate upper and lower body anaerobic power. Coaches and athletes must understand that sports performance requiring anaerobic strength and power can be impaired by inadequate hydration and may contribute to increased susceptibility to musculoskeletal injury.
Risk factors for complications associated with upper gastrointestinal foreign bodies
Hong, Kyong Hee; Kim, Yoon Jae; Kim, Jae Hak; Chun, Song Wook; Kim, Hee Man; Cho, Jae Hee
2015-01-01
AIM: To investigate predictive risk factors associated with complications in the endoscopic removal of foreign bodies from the upper gastrointestinal tract. METHODS: We retrospectively reviewed the medical records of 194 patients with a diagnosis of foreign body impaction in the upper gastrointestinal tract, confirmed by endoscopy, at two university hospital in South Korea. Patient demographic data, including age, gender, intention to ingestion, symptoms at admission, and comorbidities, were collected. Clinical features of the foreign bodies, such as type, size, sharpness of edges, number, and location, were analyzed. Endoscopic data those were analyzed included duration of foreign body impaction, duration of endoscopic performance, endoscopic device, days of hospitalization, complication rate, 30-d mortality rate, and the number of operations related to foreign body removal. RESULTS: The types of upper gastrointestinal foreign bodies included fish bones, drugs, shells, meat, metal, and animal bones. The locations of impacted foreign bodies were the upper esophagus (57.2%), mid esophagus (28.4%), stomach (10.8%), and lower esophagus (3.6%). The median size of the foreign bodies was 26.2 ± 16.7 mm. Among 194 patients, endoscopic removal was achieved in 189, and complications developed in 51 patients (26.9%). Significant complications associated with foreign body impaction and removal included deep lacerations with minor bleeding (n = 31, 16%), ulcer (n = 11, 5.7%), perforation (n = 3, 1.5%), and abscess (n = 1, 0.5%). Four patients underwent operations because of incomplete endoscopic foreign body extraction. In multivariate analyses, risk factors for endoscopic complications and failure were sharpness (HR = 2.48, 95%CI: 1.07-5.72; P = 0.034) and a greater than 12-h duration of impaction (HR = 2.42, 95%CI: 1.12-5.25, P = 0.025). CONCLUSION: In cases of longer than 12 h since foreign body ingestion or sharp-pointed objects, rapid endoscopic intervention should be provided in patients with ingested foreign bodies. PMID:26185385
de Freitas, Maiara Brusco; Moreira, Emilia Addison Machado; Oliveira, Diane de Lima; Tomio, Camila; da Rosa, Julia Salvan; Moreno, Yara Maria Franco; Barbosa, Eliana; Ludwig Neto, Norberto; Buccigrossi, Vittoria; Guarino, Alfredo; Fröde, Tânia Silvia
2018-05-01
Cystic fibrosis (CF) is characterized by excessive activation of immune processes. The aim of this study was to evaluate the effect of synbiotic supplementation on the inflammatory response in children/adolescents with CF. A randomized, placebo-controlled, double-blind, clinical-trial was conducted with control group (CG, n = 17), placebo-CF-group (PCFG, n = 19), synbiotic CF-group (SCFG, n = 22), PCFG negative (n = 8) and positive (n = 11) bacteriology, and SCFG negative (n = 12) and positive (n = 10) bacteriology. Markers of lung function (FEV 1 ), nutritional status [body mass index-for age (BMI/A), height-for-age (H/A), weight-for-age (W/A), upper-arm fat area (UFA), upper-arm muscle area (UMA), body fat (%BF)], and inflammation [interleukin (IL)-12, tumor necrosis factor-alpha (TNF-α), IL-10, IL-6, IL-1β, IL-8, myeloperoxidase (MPO), nitric oxide metabolites (NOx)] were evaluated before and after 90-day of supplementation with a synbiotic. No significance difference was found between the baseline and end evaluations of FEV 1 and nutricional status markers. A significant interaction (time vs. group) was found for IL-12 (p = 0.010) and myeloperoxidase (p = 0.036) between PCFG and SCFG, however, the difference was not maintained after assessing the groups individually. NOx diminished significantly after supplementation in the SCFG (p = 0.030). In the SCFG with positive bacteriology, reductions were found in IL-6 (p = 0.033) and IL-8 (p = 0.009) after supplementation. Synbiotic supplementation shown promise at diminishing the pro-inflammatory markers IL-6, IL-8 in the SCFG with positive bacteriology and NOx in the SCFG in children/adolescents with CF.
Miller, Michelle; Wong, Wing Ki; Wu, Jing; Cavenett, Sally; Daniels, Lynne; Crotty, Maria
2008-10-01
To evaluate the utility of body mass index (BMI) and corrected-arm-muscle area (CAMA) as measures of nutritional health for lower-limb amputees attending prosthetics clinics. Cross-sectional study. Prosthetics clinic in Australia. Unilateral lower-extremity amputees (N=58; age range, 21-91y; 37 transtibial, 21 transfemoral) attending a regional prosthetics clinic between May and November 2003. Not applicable. Weight (without prosthesis), corrected and uncorrected for the amputated limb was used with height estimated from knee height to calculate corrected BMI (cBMI) and uncorrected BMI (uBMI). CAMA was calculated using the mean of triplicate mid-upper-arm circumference (MUAC) and triceps skinfold thickness (TST) measurements. The Mini Nutritional Assessment (MNA) and Assessment of Quality of Life were administered according to recommended protocols. The Pearson correlation was used to determine the strength and significance of associations between variables, and bivariate regression analyses were performed to determine whether an association existed between the nutritional variables (BMI, CAMA, MNA) and quality of life (QOL). There were no statistically significant differences in the measures of nutritional health according to site (transtibial, transfemoral) of amputation. MUAC, TST, and CAMA all showed moderate to high positive correlations (r range, .541-.782) with both cBMI and uBMI. The strength of the relationship between the MNA and cBMI/uBMI was weaker (r=.383, r=.380, respectively) but remained positive and statistically significant (P=.003). QOL was not associated with cBMI or uBMI but was related to CAMA (beta=-.132; P=.030) and MNA (beta=-.561; P=.017). For persons with unilateral lower-extremity amputation, measurement of upper-arm anthropometry may be a more useful indicator of nutritional health and its consequences than BMI.
Evaluating Upper-Body Strength and Power From a Single Test: The Ballistic Push-up.
Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R
2017-05-01
Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Evaluating upper-body strength and power from a single test: the ballistic push-up. J Strength Cond Res 31(5): 1338-1345, 2017-The purpose of this study was to examine the reliability of the ballistic push-up (BPU) exercise and to develop a prediction model for both maximal strength (1 repetition maximum [1RM]) in the bench press exercise and upper-body power. Sixty recreationally active men completed a 1RM bench press and 2 BPU assessments in 3 separate testing sessions. Peak and mean force, peak and mean rate of force development, net impulse, peak velocity, flight time, and peak and mean power were determined. Intraclass correlation coefficients were used to examine the reliability of the BPU. Stepwise linear regression was used to develop 1RM bench press and power prediction equations. Intraclass correlation coefficient's ranged from 0.849 to 0.971 for the BPU measurements. Multiple regression analysis provided the following 1RM bench press prediction equation: 1RM = 0.31 × Mean Force - 1.64 × Body Mass + 0.70 (R = 0.837, standard error of the estimate [SEE] = 11 kg); time-based power prediction equation: Peak Power = 11.0 × Body Mass + 2012.3 × Flight Time - 338.0 (R = 0.658, SEE = 150 W), Mean Power = 6.7 × Body Mass + 1004.4 × Flight Time - 224.6 (R = 0.664, SEE = 82 W); and velocity-based power prediction equation: Peak Power = 8.1 × Body Mass + 818.6 × Peak Velocity - 762.0 (R = 0.797, SEE = 115 W); Mean Power = 5.2 × Body Mass + 435.9 × Peak Velocity - 467.7 (R = 0.838, SEE = 57 W). The BPU is a reliable test for both upper-body strength and power. Results indicate that the mean force generated from the BPU can be used to predict 1RM bench press, whereas peak velocity and flight time measured during the BPU can be used to predict upper-body power. These findings support the potential use of the BPU as a valid method to evaluate upper-body strength and power.
A new 4-dimensional imaging system for jaw tracking.
Lauren, Mark
2014-01-01
A non-invasive 4D imaging system that produces high resolution time-based 3D surface data has been developed to capture jaw motion. Fluorescent microspheres are brushed onto both tooth and soft-tissue areas of the upper and lower arches to be imaged. An extraoral hand-held imaging device, operated about 12 cm from the mouth, captures a time-based set of perspective image triplets of the patch areas. Each triplet, containing both upper and lower arch data, is converted to a high-resolution 3D point mesh using photogrammetry, providing the instantaneous relative jaw position. Eight 3D positions per second are captured. Using one of the 3D frames as a reference, a 4D model can be constructed to describe the incremental free body motion of the mandible. The surface data produced by this system can be registered to conventional 3D models of the dentition, allowing them to be animated. Applications include integration into prosthetic CAD and CBCT data.
Anttalainen, Ulla; Tenhunen, Mirja; Rimpilä, Ville; Polo, Olli; Rauhala, Esa; Himanen, Sari-Leena; Saaresranta, Tarja
2016-01-01
Obstructive sleep apnea syndrome (OSAS) is a well-recognized disorder conventionally diagnosed with an elevated apnea–hypopnea index. Prolonged partial upper airway obstruction is a common phenotype of sleep-disordered breathing (SDB), which however is still largely underreported. The major reasons for this are that cyclic breathing pattern coupled with arousals and arterial oxyhemoglobin saturation are easy to detect and considered more important than prolonged episodes of increased respiratory effort with increased levels of carbon dioxide in the absence of cycling breathing pattern and repetitive arousals. There is also a growing body of evidence that prolonged partial obstruction is a clinically significant form of SDB, which is associated with symptoms and co-morbidities which may partially differ from those associated with OSAS. Partial upper airway obstruction is most prevalent in women, and it is treatable with the nasal continuous positive pressure device with good adherence to therapy. This review describes the characteristics of prolonged partial upper airway obstruction during sleep in terms of diagnostics, pathophysiology, clinical presentation, and comorbidity to improve recognition of this phenotype and its timely and appropriate treatment. PMID:27608271
Pandis, Petros; Prinold, Joe A.I.; Bull, Anthony M.J.
2015-01-01
Background Driving is one of the most common everyday tasks and the rotator cuff muscles are the primary shoulder stabilisers. Muscle forces during driving are not currently known, yet knowledge of these would influence important clinical advice such as return to activities after surgery. The aim of this study is to quantify shoulder and rotator cuff muscle forces during driving in different postures. Methods A musculoskeletal modelling approach is taken, using a modified driving simulator in combination with an upper limb musculoskeletal model (UK National Shoulder Model). Motion data and external force vectors were model inputs and upper limb muscle and joint forces were the outputs. Findings Comparisons of the predicted glenohumeral joint forces were compared to in vivo literature values, with good agreement demonstrated (61 SD 8% body weight mean peak compared to 60 SD 1% body weight mean peak). High muscle activation was predicted in the rotator cuff muscles; particularly supraspinatus (mean 55% of the maximum and up to 164 SD 27 N). This level of loading is up to 72% of mean failure strength for supraspinatus repairs, and could therefore be dangerous for some cases. Statistically significant and large differences are shown to exist in the joint and muscle forces for different driving positions as well as steering with one or both hands (up to 46% body weight glenohumeral joint force). Interpretation These conclusions should be a key consideration in rehabilitating the shoulder after surgery, preventing specific upper limb injuries and predicting return to driving recommendations. PMID:26139549
Saeterbakken, Atle H; Andersen, Vidar; Jansson, June; Kvellestad, Ann C; Fimland, Marius S
2014-12-01
The objective of this study was to assess the electromyographic activity of the rectus abdominis (upper and lower part) and external oblique during sit-ups performed on BOSU ball(s). Twenty-four men participated in a familiarization session, and in the next session, they performed the experimental tests in randomized order. The sit-ups were performed with 10 repetitions with body weight and with 10 repetition maximum (10RM) using elastic bands as external resistance under 4 different conditions: (a) on a stable surface, (b) with the BOSU ball under their feet (dome side down, lower-body instability), (c) BOSU ball under the low back (dome side up, upper-body instability), and (d) with BOSU balls under both feet and the low back (dual instability). The feet were not attached to the surface. We observed that with body weight, external oblique activation was decreased by upper-body instability and dual instability by 22-24% (p = 0.002-0.006), whereas the rectus abdominis was not affected by the surface. Using 10RM loads, the upper and lower rectus abdominis activities were increased by upper body and dual instability by 21-24% compared with that for a stable surface (P ≤ 0.001-0.036). Further, lower-body instability did not affect muscle activities significantly with either load for any condition. Hence, BOSU balls under the low back can increase and decrease abdominal muscle activation depending on the load, whereas placing a BOSU ball under the feet with the dome side down had little impact.
Rietveld, A; Pye, S R; Mariampillai, K; Benveniste, O; Peeters, M T J; Miller, J A L; Hanna, M G; Machado, P M; Parton, M J; Gheorghe, K R; Badrising, U A; Lundberg, I E; Sacconi, S; Herbert, M K; McHugh, N J; Lecky, B R F; Brierley, C; Hilton-Jones, D; Lamb, J A; Roberts, M E; Cooper, R G; Saris, C G J; Pruijn, G J M; Chinoy, H; van Engelen, B G M
2017-01-01
Objectives Autoantibodies directed against cytosolic 5′-nucleotidase 1A have been identified in many patients with inclusion body myositis. This retrospective study investigated the association between anticytosolic 5′-nucleotidase 1A antibody status and clinical, serological and histopathological features to explore the utility of this antibody to identify inclusion body myositis subgroups and to predict prognosis. Materials and methods Data from various European inclusion body myositis registries were pooled. Anticytosolic 5′-nucleotidase 1A status was determined by an established ELISA technique. Cases were stratified according to antibody status and comparisons made. Survival and mobility aid requirement analyses were performed using Kaplan-Meier curves and Cox proportional hazards regression. Results Data from 311 patients were available for analysis; 102 (33%) had anticytosolic 5′-nucleotidase 1A antibodies. Antibody-positive patients had a higher adjusted mortality risk (HR 1.89, 95% CI 1.11 to 3.21, p=0.019), lower frequency of proximal upper limb weakness at disease onset (8% vs 23%, adjusted OR 0.29, 95% CI 0.12 to 0.68, p=0.005) and an increased prevalence of excess of cytochrome oxidase deficient fibres on muscle biopsy analysis (87% vs 72%, adjusted OR 2.80, 95% CI 1.17 to 6.66, p=0.020), compared with antibody-negative patients. Interpretation Differences were observed in clinical and histopathological features between anticytosolic 5′-nucleotidase 1A antibody positive and negative patients with inclusion body myositis, and antibody-positive patients had a higher adjusted mortality risk. Stratification of inclusion body myositis by anticytosolic 5′-nucleotidase 1A antibody status may be useful, potentially highlighting a distinct inclusion body myositis subtype with a more severe phenotype. PMID:28122761
Optimal Body Size and Limb Length Ratios Associated with 100-m Personal-Best Swim Speeds.
Nevill, Alan M; Oxford, Samuel W; Duncan, Michael J
2015-08-01
This study aims to identify optimal body size and limb segment length ratios associated with 100-m personal-best (PB) swim speeds in children and adolescents. Fifty national-standard youth swimmers (21 males and 29 females age 11-16 yr; mean ± SD age, 13.5 ± 1.5 yr) participated in the study. Anthropometry comprised stature; body mass; skinfolds; maturity offset; upper arm, lower arm, and hand lengths; and upper leg, lower leg, and foot lengths. Swimming performance was taken as the PB time recorded in competition for the 100-m freestyle swim. To identify the optimal body size and body composition components associated with 100-m PB swim speeds (having controlled for age and maturity offset), we adopted a multiplicative allometric log-linear regression model, which was refined using backward elimination. Lean body mass was the singularly most important whole-body characteristic. Stature and body mass did not contribute to the model, suggesting that the advantage of longer levers was limb-specific rather than a general whole-body advantage. The allometric model also identified that having greater limb segment length ratios [i.e., arm ratio = (low arm)/(upper arm); foot-to-leg ratio = (foot)/(lower leg)] was key to PB swim speeds. It is only by adopting multiplicative allometric models that the above mentioned ratios could have been derived. The advantage of having a greater lower arm is clear; however, having a shorter upper arm (achieved by adopting a closer elbow angle technique or by possessing a naturally endowed shorter upper arm), at the same time, is a new insight into swimming performance. A greater foot-to-lower-leg ratio suggests that a combination of larger feet and shorter lower leg length may also benefit PB swim speeds.
Corcoran, Anthony T; Smaldone, Marc C; Mally, Dev; Ost, Michael C; Bellinger, Mark F; Schneck, Francis X; Docimo, Steven G; Wu, Hsi-Yang
2008-10-01
We studied the possibility that age, height, weight and body mass index could be used to predict the likelihood of successful ureteroscopic access to the upper urinary tract without previous stent placement in prepubertal children. We retrospectively reviewed all ureteroscopic procedures for upper tract calculi in prepubertal children from 2003 to 2007. We compared age, height, weight and body mass index in patients who underwent successful primary flexible ureteroscopic access and in those who required initial stent placement to perform ureteroscopy. Successful primary ureteroscopic access to the upper tract was achieved in 18 of 30 patients (60%). There was no difference in mean age (9.9 vs 9.5 years, p = 0.8), height (132 vs 128 cm, p = 0.6), weight (37 vs 36 kg, p = 0.86) or body mass index (19.3 vs 20.5 kg/m(2), p = 0.55) between patients with successful vs unsuccessful upper tract access. Locations that prevented access to the upper urinary tract were evenly distributed among the ureteral orifice, iliac vessels and ureteropelvic junction. Age, height, weight and body mass index could not predict the likelihood of successful ureteroscopic access to the upper tract. Placement of a ureteral stent for passive ureteral dilation is not necessary for successful ureteroscopic access to the renal pelvis in prepubertal children. An initial attempt at ureteroscopy, with placement of a ureteral stent if upper tract access is unsuccessful, decreases the number of procedures while maintaining a low complication rate.
Effects of acute upper-body vibration on strength and power variables in climbers.
Cochrane, Darryl J; Hawke, Emma J
2007-05-01
Whole-body vibration training has recently received a lot of attention with reported enhancements of strength and power qualities in athletes. This study investigated whether upper-body vibration would be able to augment muscular attributes for climbing performance. Twelve healthy active climbers volunteered for the study. All participants underwent 3 treatments--arm cranking (AC), upper-body vibration (UBV), and non-UBV (NUBV)--in a balanced random order, conducted on separate days. Upper-body vibration was generated via a commercialized electric-powered dumbbell with a rotating axis that delivered oscillatory movements to the shoulders and arms. The UBV treatment consisted of performing 5 upper-body exercises for a total duration of 5 minutes. The UBV frequency was set at 26 Hz, amplitude 3 mm. For the NUBV treatment, the participants performed the exact exercises and time constraints as UBV; however, the vibration dumbbell was set at 0 Hz and 0 mm amplitude. The third treatment consisted of AC, which was performed at 75 k.min(-1) for 5 minutes. Pre- and postmuscular performance measures of medicine ball throw, hand grip strength, and a specific climbing maneuver were performed after each treatment. There were no significant treatment differences on medicine ball throw, hand grip strength, and the specific climbing maneuver. Acute UBV exposure did not demonstrate the expected potential neuromuscular enhancements on the climbing performance tests selected for this study.
Conner England, J; Levengood, Jeffrey M; Osborn, Josh M; Yetter, Aaron P; Suski, Cory D; Cole, Rebecca A; Hagy, Heath M
2018-06-01
Thousands of lesser scaup (Aythya affinis) die during spring and fall migrations through the upper Midwest, USA, from infections with Cyathocotyle bushiensis and Sphaeridiotrema spp. (Class: Trematoda) after ingesting infected intermediate hosts, such as non-native faucet snails (Bithynia tentaculata). The lesser scaup is a species of conservation concern and is highly susceptible to these infections. We collected female lesser scaup from spring migratory stopover locations throughout Illinois and Wisconsin and assessed biochemical and morphological indicators of health in relation to intestinal helminth loads. Helminth species diversity, total trematode abundance, and the infection intensities of the trematodes C. bushiensis and Sphaeridiotrema spp. were associated with percent body fat, blood metabolites, hematological measures, and an index of foraging habitat quality. Helminth diversity was negatively associated with percent body fat, albumin concentrations, and monocytes, whereas glucose concentrations displayed a slight, positive association. Total trematode abundance was negatively associated with blood concentrations of non-esterified fatty acids and albumin. Infections of C. bushiensis were positively related to basophil levels, whereas Sphaeridiotrema spp. infection intensity was negatively associated with packed cell volume and foraging habitat quality. Thus, commonly measured health metrics may indicate intestinal parasite infections and help waterfowl managers understand overall habitat quality. Intestinal parasitic loads offer another plausible mechanism underlying the spring condition hypothesis.
Walters, D.M.; Blocksom, K.A.; Lazorchak, J.M.; Jicha, T.; Angradi, T.R.; Bolgrien, D.W.
2010-01-01
We measured mercury (Hg) concentrations in whole fish from the Upper Mississippi, Missouri, and Ohio Rivers to characterize the extent and magnitude of Hg contamination and to identify environmental factors influencing Hg accumulation. Concentrations were generally lower (80% of values between 20?200 ng g1 wet weight) than those reported for other regions (e.g., upper Midwest and Northeast U.S.). Mercury exceeded the risk threshold for belted kingfisher (Ceryle alcyon, the most sensitive species considered) in 33?75% of river length and 1?7% of river length for humans. Concentrations were lower in the Missouri than in the Mississippi and Ohio Rivers, consistent with continental-scale patterns in atmospheric Hg deposition. Body size and trophic guild were the best predictors of Hg concentrations, which were highest in large-bodied top predators. Site geochemical and landscape properties were weakly related with fish Hg. Moreover, relationships often ran contrary to conventional wisdom, and the slopes of the relationships (positive or negative) were inconsistent among fish guilds and rivers. For example, sulfate is positively associated with fish Hg concentrations but was negatively correlated with Hg in five of six regression models of tissue concentrations. Variables such as pH, acid neutralizing capacity, and total phosphorus did not occur at levels associated with high fish Hg concentrations, partially explaining the relatively low Hg values we observed. ?? 2010 American Chemical Society.
Iyer, H.M.
1984-01-01
The Snake River Plain-Yellowstone volcanic system is one of the largest, basaltic, volcanic field in the world. Here, there is clear evidence for northeasterly progression of rhyolitic volcanism with its present position in Yellowstone. Many theories have been advanced for the origin of the Snake River Plain-Yellowstone system. Yellowstone and Eastern Snake River Plain have been studied intensively using various geophysical techniques. Some sparse geophysical data are available for the Western Snake River Plain as well. Teleseismic data show the presence of a large anomalous body with low P- and S-wave velocities in the crust and upper mantle under the Yellowstone caldera. A similar body in which compressional wave velocity is lower than in the surrounding rock is present under the Eastern Snake River Plain. No data on upper mantle anomalies are available for the Western Snake River Plain. Detailed seismic refraction data for the Eastern Snake River Plain show strong lateral heterogeneities and suggest thinning of the granitic crust from below by mafic intrusion. Available data for the Western Snake River Plain also show similar thinning of the upper crust and its replacement by mafic material. The seismic refraction results in Yellowstone show no evidence of the low-velocity anomalies in the lower crust suggested by teleseismic P-delay data and interpreted as due to extensive partial melting. However, the seismic refraction models indicate lower-than-normal velocities and strong lateral inhomogeneities in the upper crust. Particularly obvious in the refraction data are two regions of very low seismic velocities near the Mallard Eake and Sour Creek resurgent domes in the Yellowstone caldera. The low-velocity body near the Sour Creek resurgent dome is intepreted as partially molten rock. Together with other geophysical and thermal data, the seismic results indicate that a sub-lithospheric thermal anomaly is responsible for the time-progressive volcanism along the Eastern Snake River Plain. However, the exact mechanism responsible for the volcanism and details of magma storage and migration are not yet fully understood. ?? 1984.
Upper limb amputees can be induced to experience a rubber hand as their own
Rosén, Birgitta; Stockselius, Anita; Ragnö, Christina; Köhler, Peter; Lundborg, Göran
2008-01-01
We describe how upper limb amputees can be made to experience a rubber hand as part of their own body. This was accomplished by applying synchronous touches to the stump, which was out of view, and to the index finger of a rubber hand, placed in full view (26 cm medial to the stump). This elicited an illusion of sensing touch on the artificial hand, rather than on the stump and a feeling of ownership of the rubber hand developed. This effect was supported by quantitative subjective reports in the form of questionnaires, behavioural data in the form of misreaching in a pointing task when asked to localize the position of the touch, and physiological evidence obtained by skin conductance responses when threatening the hand prosthesis. Our findings outline a simple method for transferring tactile sensations from the stump to a prosthetic limb by tricking the brain, thereby making an important contribution to the field of neuroprosthetics where a major goal is to develop artificial limbs that feel like a real parts of the body. PMID:19074189
The influential factors on the morphological changes of upper airway associated with mouth opening.
Hu, Bin; Ye, Jingying; Yin, Guoping; Zhang, Yuhuan
2018-04-15
This study aimed to evaluate the influential factors on the morphological changes of upper airway caused by mouth opening (MO). One hundred and thirty-eight obstructive sleep apnea-hypopnea syndrome (OSAHS) patients were enrolled. Anthropometric and demographic data, Friedman tongue position (FTP), and tonsil scores were recorded. Overnight polysomnography and upper airway computed tomography scans under two conditions (mouth closed [MC] and MO) were acquired. Morphological parameters of upper airway were compared between MC and MO. Stepwise multiple linear regression analyses were performed with the variation ratio of upper airway parameters (Para-VRs) from MC to MO as the dependent variable, with age, gender, body mass index, neck circumference, waist circumference, four mandibular indexes, net angle or amount of MO, FTP, and tonsil scores as the independent variables. Overall analysis and subgroup analyses based on OSAHS severity revealed that the minimal cross-sectional area of oropharyngeal lumen (OXmin) significantly decreased (P < 0.05) with MO, whereas the minimal cross-sectional area of velopharyngeal lumen (VXmin) did not significantly change with MO (P > 0.05). The net angle of MO or amount of MO combined with tonsil scores were identified to have significant positive correlation with EXP (OXmin-VR), [OXmin-VR was logarithmically transformed with an exponential function, EXP(n) = e n ]; FTP appeared to be more related to EXP (VXmin-VR). Mouth opening induced a significant increase VXmin for patient subgroup with FTP grading I and a significant decrease VXmin for patient subgroup with FTP grading IV (P < 0.05). Wider MO combined with larger tonsils lead to narrower oropharyngeal airway. The relative position of tongue to soft palate is the main factor influencing the changes of velopharyngeal lumen with MO. IV. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.
Sheppard, Jeremy M; McNamara, Phil; Osborne, Mark; Andrews, Mark; Oliveira Borges, Thiago; Walshe, Phil; Chapman, Dale W
2012-12-01
This study aimed to evaluate the potential association with anthropometry and upper-body pulling strength with sprint kinematics of competitive surfers. Ten competitive male surfers (23.9 ± 6.8 years, 177.0 ± 6.5 cm, 72.2 ± 2.4 kg) were assessed for stature, mass, arm span, ∑ 7 site skinfold thickness, pronated pull-up strength, and sprint paddling performance from a stationary start to 15 m. Pearson correlation analysis, and independent t-tests were used to compare potential differences between the slower and faster group of sprint paddlers. Strong associations were found between relative (total kilograms lifted per athlete mass) upper-body pulling strength and sprint paddling time to 5, 10, and 15 m, and peak sprint paddling velocity (r = 0.94, 0.93, 0.88, 0.66, respectively, p < 0.05) and relative upper-body pulling strength was found to be superior (p < 0.05) in the faster group, with large effect (d = 1.88). The results of this study demonstrate a strong association between relative upper-body pulling strength and sprint paddling ability in surfers. Strength and conditioning coaches working with competitive surfers should implement strength training with surfers, including an emphasis on developing relative strength, because this may have a strong influence on sprint paddling performance.
Acute Effect of Upper and Lower Body Postactivation Exercises on Shot Put Performance.
Kontou, Eleni I; Berberidou, Fani T; Pilianidis, Theophilos C; Mantzouranis, Nikolaos I; Methenitis, Spyridon K
2018-04-01
Kontou, EI, Berberidou, FT, Pilianidis, TC, Mantzouranis, NI, and Methenitis, SK. Acute effect of upper and lower body postactivation exercises on shot put performance. J Strength Cond Res 32(4): 970-982, 2018-The purpose of this study was to investigate the effect of different types of upper and lower' extremities exercises on acute increase of shot put performance, in moderate experienced throwers. Eight (n = 8) males and 9 (n = 9) female throwers participated in this study. Their bench press and squat maximum strength were measured while their shot put performance from power position was evaluated before and after 4 interventions: (a) plyometric push-ups (Plyo), (b) 6 s isometric push-ups (Iso), (c) 3 countermovement jumps (CMJs) and (d) 10 reps. of skipping (Skip). Interventions were performed in counterbalanced order with a 48-hour interval. Significant increase (p < 0.05) of shot put performances was observed after Plyo, Iso, and CMJ (range: 2.30 ± 1.82%-5.72 ± 4.32%). In addition, Iso induced the highest increase while Skip did not induce any improvement of throwing performance. The highest increases were recorded in men's performance after CMJ (5.72 ± 4.32%) while in women's performance after Iso (3.59 ± 2.7%). Javelin and discus throwers increase higher their performance after CMJs while shot putters after Iso. Significant correlations were found between training experience, maximum/relative strength, shot put performance and increase of throwing performance (%) after the interventions (r: 0.519-0.991, p < 0.05). Percentage increase of performance between Iso and Plyo have negative correlations (r: -0.569, p < 0.05) in contrast of those between Skip and CMJ (r: 0.710, p < 0.05). These results suggest that upper or lower body postactivation interventions may acutely increase the throwing performance. However, experience and strength are significant determinant of this increase.
Terminator assembly for a floating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, H.; Hall, J.E.
1987-10-20
A terminator assembly is described for use in mooring a floating surface to the floor of a body of water. The floating structure has has an upper support and a lower support, comprising: a hawsepipe extending downwardly from adjacent the upper support and supported by the lower support, a tension member extending downwardly from adjacent the upper support through the hawsepipe and the lower support. The tension member has a lower end adapted for connection to the floor of the body of water. Locking means connected to an upper portion of the tension member for maintaining the tension member inmore » tension by acting upon an upper portion of the hawsepipe without transferring primary tension load forces to the upper support.« less
Bifurcation and chaos in the simple passive dynamic walking model with upper body.
Li, Qingdu; Guo, Jianli; Yang, Xiao-Song
2014-09-01
We present some rich new complex gaits in the simple walking model with upper body by Wisse et al. in [Robotica 22, 681 (2004)]. We first show that the stable gait found by Wisse et al. may become chaotic via period-doubling bifurcations. Such period-doubling routes to chaos exist for all parameters, such as foot mass, upper body mass, body length, hip spring stiffness, and slope angle. Then, we report three new gaits with period 3, 4, and 6; for each gait, there is also a period-doubling route to chaos. Finally, we show a practical method for finding a topological horseshoe in 3D Poincaré map, and present a rigorous verification of chaos from these gaits.
Bifurcation and chaos in the simple passive dynamic walking model with upper body
NASA Astrophysics Data System (ADS)
Li, Qingdu; Guo, Jianli; Yang, Xiao-Song
2014-09-01
We present some rich new complex gaits in the simple walking model with upper body by Wisse et al. in [Robotica 22, 681 (2004)]. We first show that the stable gait found by Wisse et al. may become chaotic via period-doubling bifurcations. Such period-doubling routes to chaos exist for all parameters, such as foot mass, upper body mass, body length, hip spring stiffness, and slope angle. Then, we report three new gaits with period 3, 4, and 6; for each gait, there is also a period-doubling route to chaos. Finally, we show a practical method for finding a topological horseshoe in 3D Poincaré map, and present a rigorous verification of chaos from these gaits.
Effects of intra-session exercise sequence during water-based concurrent training.
Pinto, S S; Cadore, E L; Alberton, C L; Zaffari, P; Bagatini, N C; Baroni, B M; Radaelli, R; Lanferdini, F J; Colado, J C; Pinto, R S; Vaz, M A; Bottaro, M; Kruel, L F M
2014-01-01
The aim was to investigate the effects of the intra-session exercise order during water-based concurrent training on the neuromuscular adaptations in young women. 26 women (25.1±2.9 years) were placed into 2 groups: resistance prior to (RA) or after (AR) aerobic training. Subjects performed resistance (sets at maximal effort) and aerobic training (exercises at heart rate corresponding to the second ventilatory threshold) twice a week over 12 weeks, performing both exercise types in the same training session. Upper (elbow flexion) and lower-body (knee extension) one-repetition maximum test (1RM) and peak torque (PT) were evaluated. The muscle thickness (MT) of upper (sum of MT of biceps brachii and brachialis) and lower-body (sum of MT of vastus lateralis, vastus medialis, vastus intermedius, and rectus femoris) was determined by ultrasonography. Moreover, the maximal electromyographic activity (EMG) of upper (biceps brachii) and lower-body (sum of EMG of vastus lateralis and rectus femoris) was measured. Both RA and AR groups increased the upper and lower-body 1RM and PT, while the lower-body 1RM increases observed in the RA was greater than AR (43.58±14.00 vs. 27.01±18.05%). RA and AR showed MT increases in all muscles evaluated, while the lower-body MT increases observed in the RA were also greater than AR (10.24±3.11 vs. 5.76±1.88%). There were increases in the maximal EMG of upper and lower-body in both RA and AR, with no differences between groups. Performing resistance prior to aerobic exercise during water-based concurrent training seems to optimize the lower-body strength and hypertrophy. © Georg Thieme Verlag KG Stuttgart · New York.
Body Composition Changes in Severely Burned Children During ICU Hospitalization.
Cambiaso-Daniel, Janos; Malagaris, Ioannis; Rivas, Eric; Hundeshagen, Gabriel; Voigt, Charles D; Blears, Elizabeth; Mlcak, Ron P; Herndon, David N; Finnerty, Celeste C; Suman, Oscar E
2017-12-01
Prolonged hospitalization due to burn injury results in physical inactivity and muscle weakness. However, how these changes are distributed among body parts is unknown. The aim of this study was to evaluate the degree of body composition changes in different anatomical regions during ICU hospitalization. Retrospective chart review. Children's burn hospital. Twenty-four severely burned children admitted to our institution between 2000 and 2015. All patients underwent a dual-energy x-ray absorptiometry within 2 weeks after injury and 2 weeks before discharge to determine body composition changes. No subject underwent anabolic intervention. We analyzed changes of bone mineral content, bone mineral density, total fat mass, total mass, and total lean mass of the entire body and specifically analyzed the changes between the upper and lower limbs. In the 24 patients, age was 10 ± 5 years, total body surface area burned was 59% ± 17%, time between dual-energy x-ray absorptiometries was 34 ± 21 days, and length of stay was 39 ± 24 days. We found a significant (p < 0.001) average loss of 3% of lean mass in the whole body; this loss was significantly greater (p < 0.001) in the upper extremities (17%) than in the lower extremities (7%). We also observed a remodeling of the fat compartments, with a significant whole-body increase in fat mass (p < 0.001) that was greater in the truncal region (p < 0.0001) and in the lower limbs (p < 0.05). ICU hospitalization is associated with greater lean mass loss in the upper limbs of burned children. Mobilization programs should include early mobilization of upper limbs to restore upper extremity function.
Correlation between Body Composition and Walking Capacity in Severe Obesity
2015-01-01
Background Obesity is associated with mobility reduction due to mechanical factors and excessive body fat. The six-minute walk test (6MWT) has been used to assess functional capacity in severe obesity. Objective To determine the association of BMI, total and segmental body composition with distance walked (6MWD) during the six-minute walk test (6MWT) according to gender and obesity grade. Setting University of São Paulo Medical School, Brazil; Public Practice. Methods Functional capacity was assessed by 6MWD and body composition (%) by bioelectrical impedance analysis in 90 patients. Results The mean 6MWD was 514.9 ± 50.3 m for both genders. The male group (M: 545.2 ± 46.9 m) showed a 6MWD higher (p = 0.002) than the female group (F: 505.6 ± 47.9 m). The morbid obese group (MO: 524.7 ± 44.0 m) also showed a 6MWD higher (p = 0.014) than the super obese group (SO: 494.2 ± 57.0 m). There was a positive relationship between 6MWD and fat free mass (FFM), FFM of upper limps (FFM_UL), trunk (FFM_TR) and lower limbs (FFM_LL). Female group presented a positive relationship between 6MWD and FFM, FFM_UL and FFM_LL and male group presented a positive relationship between 6MWD and FFM_TR. In morbid obese group there was a positive relationship between 6MWD with FFM, FFM_UL, FFM_TR and FFM_LL. The super obese group presented a positive relationship between 6MWD with FFM, FFM_TR and FFM_LL. Conclusions Total and segmental FFM is associated with a better walking capacity than BMI. PMID:26098769
Correlation between Body Composition and Walking Capacity in Severe Obesity.
Correia de Faria Santarém, G; de Cleva, R; Santo, Marco Aurélio; Bernhard, Aline Biaseto; Gadducci, Alexandre Vieira; Greve, Julia Maria D'Andrea; Silva, Paulo Roberto Santos
2015-01-01
Obesity is associated with mobility reduction due to mechanical factors and excessive body fat. The six-minute walk test (6MWT) has been used to assess functional capacity in severe obesity. To determine the association of BMI, total and segmental body composition with distance walked (6MWD) during the six-minute walk test (6MWT) according to gender and obesity grade. University of São Paulo Medical School, Brazil; Public Practice. Functional capacity was assessed by 6MWD and body composition (%) by bioelectrical impedance analysis in 90 patients. The mean 6MWD was 514.9 ± 50.3 m for both genders. The male group (M: 545.2 ± 46.9 m) showed a 6MWD higher (p = 0.002) than the female group (F: 505.6 ± 47.9 m). The morbid obese group (MO: 524.7 ± 44.0 m) also showed a 6MWD higher (p = 0.014) than the super obese group (SO: 494.2 ± 57.0 m). There was a positive relationship between 6MWD and fat free mass (FFM), FFM of upper limps (FFM_UL), trunk (FFM_TR) and lower limbs (FFM_LL). Female group presented a positive relationship between 6MWD and FFM, FFM_UL and FFM_LL and male group presented a positive relationship between 6MWD and FFM_TR. In morbid obese group there was a positive relationship between 6MWD with FFM, FFM_UL, FFM_TR and FFM_LL. The super obese group presented a positive relationship between 6MWD with FFM, FFM_TR and FFM_LL. Total and segmental FFM is associated with a better walking capacity than BMI.
NASA Technical Reports Server (NTRS)
Sayenko, G.
2004-01-01
Balance control is disrupted following prolonged microgravity exposure, and to better understand this, both upper and lower body perturbations have been used to study postural control in space flight crewmembers. However, differences between several postural response indicators observed using the two techniques suggest that different sensory systems may be involved in organizing responses to these different perturbation approaches. The present study sought to compare differences in parameters of corrective postural responses between upper body perturbations (pushes to the chest) and forward translations of the support surface. Nine subjects participated in this study. Forward translations were performed using a NeuroCom EquiTest(TM) CDP system, which was synchronized with a Northern Digital OptoTrak motion tracking system (3 subjects). Chest pushes were applied using a hand-held force transducer device and were performed using a stabilometric system (6 subjects). Analysis of EMG has shown that: i) the earliest response of the leg muscles was registered significantly later during forward translation of the support surface than during chest pushes, and ii) there was a tendency for the different order of leg muscles activation during the translation tests. Analysis of the kinematic data showed a significant difference in the subject's body segments inclinations during corrective postural responses to upper and lower body perturbations. It appears that upper body perturbations likely engage the vestibular system more rapidly, while lower body perturbations likely engage somatosensory systems more rapidly. These differences must be taken into account when choosing the type of perturbation for testing postural function.
Kinematic Patterns Associated with the Vertical Force Produced during the Eggbeater Kick.
Oliveira, Nuno; Chiu, Chuang-Yuan; Sanders, Ross H
2015-01-01
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.
Suzuki, Makoto; Yamada, Sumio; Omori, Mikayo; Hatakeyama, Mayumi; Sugimura, Yuko; Matsushita, Kazuhiko; Tagawa, Yoshikatsu
2008-09-01
A patient with poststroke hemiparesis learns to use the nonparetic arm to compensate for the weakness of the paretic arm to achieve independence in dressing. This is the learning process of new component actions on dressing. The purpose of this study was to develop the Upper-Body Dressing Scale (UBDS) for buttoned shirt dressing, which evaluates the component actions of upper-body dressing, and to provide preliminary data on internal consistency of the UBDS, as well as its reproducibility, validity, and sensitivity to clinical change. Correlational study of concurrent validity and reliability in which 63 consecutive stroke patients were enrolled in the study and were assessed repeatedly by the UBDS and the dressing item of Functional Independent Measure (FIM). Fifty-one patients completed the 3-wk study. The Cronbach's coefficient alpha of UBDS was 0.88. The principal component analysis extracted two components, which explained 62.3% of total variance. All items of the scale had high loading on the first component (0.65-0.83). Actions on the paralytic side were the positive loadings and actions on the healthy side were the negative loadings on the second component. Intraclass correlation coefficient was 0.87. The level of correlation between UBDS score and FIM dressing item scores was -0.72. Logistic regression analysis showed that only the score of UBDS on the first day of evaluation was a significant independent predictor of dressing ability (odds ratio, 0.82; 95% confidence interval, 0.71-0.95). The UBDS scores for paralytic hand passed into the sleeve, sleeve pulled up beyond the elbow joint, and sleeve pulled up beyond the shoulder joint were worse than the score for the other components of the task. These component actions had positive loading on the second component, which was identified by the principal component analysis. The UBDS has good internal consistency, reproducibility, validity, and sensitivity to clinical changes of patients with poststroke hemiparesis. This detailed UBDS assessment enables us to document the most difficult stages in dressing and to assess motor and process skills for independence of dressing.
McKean, Danielle L.; Tsao, Jack W.; Chan, Annie W.-Y.
2017-01-01
The Body Inversion Effect (BIE; reduced visual discrimination performance for inverted compared to upright bodies) suggests that bodies are visually processed configurally; however, the specific importance of head posture information in the BIE has been indicated in reports of BIE reduction for whole bodies with fixed head position and for headless bodies. Through measurement of gaze patterns and investigation of the causal relation of fixation location to visual body discrimination performance, the present study reveals joint contributions of feature and configuration processing to visual body discrimination. Participants predominantly gazed at the (body-centric) upper body for upright bodies and the lower body for inverted bodies in the context of an experimental paradigm directly comparable to that of prior studies of the BIE. Subsequent manipulation of fixation location indicates that these preferential gaze locations causally contributed to the BIE for whole bodies largely due to the informative nature of gazing at or near the head. Also, a BIE was detected for both whole and headless bodies even when fixation location on the body was held constant, indicating a role of configural processing in body discrimination, though inclusion of the head posture information was still highly discriminative in the context of such processing. Interestingly, the impact of configuration (upright and inverted) to the BIE appears greater than that of differential preferred gaze locations. PMID:28085894
NASA Astrophysics Data System (ADS)
Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.
2008-10-01
Lumped parameter mathematical models representing anatomical parts of the human body have been developed to represent body motions associated with resonances of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body standing in five different postures: 'upright', 'lordotic', 'anterior lean', 'knees bent', and 'knees more bent'. The inertial and geometric parameters of the models were determined from published anthropometric data. Stiffness and damping parameters were obtained by comparing model responses with experimental data obtained previously. The principal resonance of the vertical apparent mass, and the first peak in the fore-and-aft cross-axis apparent mass, of the standing body in an upright posture (at 5-6 Hz) corresponded to vertical motion of the viscera in phase with the vertical motion of the entire body due to deformation of the tissues at the soles of the feet, with pitch motion of the pelvis out of phase with pitch motion of the upper body above the pelvis. Upward motion of the body was in phase with the forward pitch motion of the pelvis. Changing the posture of the upper body had minor effects on the mode associated with the principal resonances of the apparent mass and cross-axis apparent mass, but the mode changed significantly with bending of the legs. In legs-bent postures, the principal resonance (at about 3 Hz) was attributed to bending of the legs coupled with pitch motion of the pelvis in phase with pitch motion of the upper body. In this mode, extension of the legs was in phase with the forward pitch motion of the upper body and the upward vertical motion of the viscera.
Cooling Different Body Surfaces during Upper-and-Lower Body Exercise.
1986-09-01
exercise (02 uptake, 1.2 lmin -) tests in a hot environment. (ambient temperature - 38*C, relative humidity - 30%) while dressed in a clothing ... exercise (02 uptake, 1.2 l’min-) t,sts in a hot environment (ambient temperature a 380C, relative humidity = 30%) while , - dressed in a clothing ...AD-A173 328 COOLING DIFFERENT BODY SURFACES DURING UPPER-AND-LONEi 1i/I BODY EXERCISE (U) ARMY RESEARCH INST OF ENYVIONMENTAL MEDICINE NATICK MR A J
A comparison of whole-body vibration and resistance training on total work in the rotator cuff.
Hand, Jason; Verscheure, Susan; Osternig, Louis
2009-01-01
Whole-body vibration machines are a relatively new technology being implemented in the athletic setting. Numerous authors have examined the proposed physiologic mechanisms of vibration therapy and performance outcomes. Changes have mainly been observed in the lower extremity after individual exercises, with minimal attention to the upper extremity and resistance training programs. To examine the effects of a novel vibration intervention directed at the upper extremity as a precursor to a supervised, multijoint dynamic resistance training program. Randomized controlled trial. National Collegiate Athletic Association Division IA institution. Thirteen female student-athletes were divided into the following 2 treatment groups: (1) whole-body vibration and resistance training or (2) resistance training only. Participants in the vibration and resistance training group used an experimental vibration protocol of 2 x 60 seconds at 4 mm and 50 Hz, in a modified push-up position, 3 times per week for 10 weeks, just before their supervised resistance training session. Isokinetic total work measurements of the rotator cuff were collected at baseline and at week 5 and week 10. No differences were found between the treatment groups (P > .05). However, rotator cuff output across time increased in both groups (P < .05). Although findings did not differ between the groups, the use of whole-body vibration as a precursor to multijoint exercises warrants further investigation because of the current lack of literature on the topic. Our results indicate that indirectly strengthening the rotator cuff using a multijoint dynamic resistance training program is possible.
The Tsaoling 1941 Landslide, New Insight of Numerical Simulation of Discrete Element Model
NASA Astrophysics Data System (ADS)
Tang, C.-L.; Hu, J.-C.; Lin, M.-L.
2009-04-01
Large earthquakes in the southeastern Taiwan are not rare in the historical catalogue. Tsaoling, located southeast of Taiwan, last five large landslides occurred in the 19th and 20th centuries. According to the literature about the Tsaoling landslide, we concluded four characteristics of the Tsaoling landslide, (1) repeated (2) multi-landslide surface, (3) huge landslide block, and (4) some people survived after sliding a long distance (>2 km). This is the reason why we want to understand the causes of the repeated landslides in Tsaoling and its mechanisms. However, there is not any record about the landslide in 1862 and the most of the landslide evidence disappeared. Hence, we aim at the landslide dynamics of the 1941 landslide in this study. Tsaoling area is located in a large dipping towards the south-southwest monocline. The dip of strata toward the SSW is similar to the both sides of the Chinshui River valley. The bedrock of the Tsaoling area is Pliocene in age and belongs to the upper Chinshui Shale and the lower Cholan Formation. The plane failure analysis and Newmark displacement method are common for slope stability in recent years. However, the plane failure analysis can only provide a safety factor. When the safe factor (FS) is less than 1, it can only indicate that the slope is unstable. The result of Newmark displacement method is a value of displacement length. Both assumptions of the analysis are based on a rigid body. For the large landslide, like the Tsaoling landslide, the volume of landslide masses are over 108 m3, and the landslide block cannot be considered a rigid body. We considered the block as a quasi-rigid body, because the blocks are deformable and jointed. The original version of Distinct Element Method (DEM) was devoted to the modeling of rock-block systems and it was lately applied to the modeling of granular material. The calculation cycle in PFC2D is a time-stepping algorithm that consists of the repeated application of the law of motion to each particle, a force-displacement law to each contact, and a constant updating of wall positions. The physical properties of the particles in the model can be traced in time dominant (i.e. velocity, displacement, force, and stress). During the simulating, we can get the variation of physical properties, so the inter-block change of displacement, force, and stress could be monitored. After the seismic shaking, the result of the PFC model can be divided into three portions, upper (thick), middle (transitional) and lower (thin). The shear displacements of the three parts on the sliding plane are not agreement. The displacement of the lower part block is large than the upper and middle part of the blocks. The shear displacement of middle part is between upper and lower part. During the shaking of the earthquake, the different parts in the block collide with each other, and the upper part of the block was hit back and stayed in origin position or slid a short distance, but the lower part of the block was hit down by the upper block. The collision pushed down a certain length to the lower part of the block. The shear length just lost the strength of the sliding plane and induced the landslide during the 1941 earthquake. The upper part of the block stayed on the slope but revealed unstable. Eight months later, the upper part of the block slid down was induced by a 700 mm downpour in three days.
Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots
Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.
1987-09-04
After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.
[Upper extremities, neck and back symptoms in office employees working at computer stations].
Zejda, Jan E; Bugajska, Joanna; Kowalska, Małgorzata; Krzych, Lukasz; Mieszkowska, Marzena; Brozek, Grzegorz; Braczkowska, Bogumiła
2009-01-01
To obtain current data on the occurrence ofwork-related symptoms of office computer users in Poland we implemented a questionnaire survey. Its goal was to assess the prevalence and intensity of symptoms of upper extremities, neck and back in office workers who use computers on a regular basis, and to find out if the occurrence of symptoms depends on the duration of computer use and other work-related factors. Office workers in two towns (Warszawa and Katowice), employed in large social services companies, were invited to fill in the Polish version of Nordic Questionnaire. The questions included work history and history of last-week symptoms of pain of hand/wrist, elbow, arm, neck and upper and lower back (occurrence and intensity measured by visual scale). Altogether 477 men and women returned the completed questionnaires. Between-group symptom differences (chi-square test) were verified by multivariate analysis (GLM). The prevalence of symptoms in individual body parts was as follows: neck, 55.6%; arm, 26.9%; elbow, 13.3%; wrist/hand, 29.9%; upper back, 49.6%; and lower back, 50.1%. Multivariate analysis confirmed the effect of gender, age and years of computer use on the occurrence of symptoms. Among other determinants, forearm support explained pain of wrist/hand, wrist support of elbow pain, and chair adjustment of arm pain. Association was also found between low back pain and chair adjustment and keyboard position. The findings revealed frequent occurrence of symptoms of pain in upper extremities and neck in office workers who use computers on a regular basis. Seating position could also contribute to the frequent occurrence of back pain in the examined population.
Influence of upper and lower body adipose tissue on insulin sensitivity in South Asian men.
Balakrishnan, Preetha; Grundy, Scott M; Islam, Arsalla; Dunn, Fredrick; Vega, Gloria Lena
2012-10-01
South Asians have a high prevalence of insulin resistance, which predisposes to type 2 diabetes. In the current study, we examined whether insulin sensitivity in South Asian men and men of European descent (Europids) relates to truncal and lower body fat, number of adipocytes, and cell size distribution. Fifteen South Asian men and 15 Europid young men with comparable body mass indexes completed assessments of insulin sensitivity, body composition analysis by dual-energy x-ray absorptiometry, and measurement of adipocyte cellularity in the subcutaneous abdominal (truncal) and gluteal (lower body) adipose tissue. The South Asians and the Europids had similar total body fat and fat contents in truncal and lower body regions. Compared to the Europids, the South Asians had a greater insulin resistance shown by fasting insulin, area-under-the-curve for postprandial insulin, oral glucose insulin sensitivity, homeostatic model assessment of insulin resistance, β-cell index, and triglyceride-to-high-density lipoprotein ratio. The South Asians had similar number of adipocytes to the Europids, but the South Asians had significantly higher ratios of small-to-larger adipocytes. The South Asians further had a higher fraction of very large adipocytes. In both South Asians and Europids, truncal fat was positively associated with insulin resistance. In the South Asians but not in the Europids, lower body fat was associated with severity of insulin resistance. The results suggest first, a higher ratio of small-to-larger adipocytes in the South Asians consistent with a lesser lipid storage capacity of adipose tissue; and second, the positive association of lower body fat with insulin resistance in the South Asians implies that fat in their lower body worsens insulin resistance. This association was not observed in the Europids.
Upper Body Strength. Helping Kids Win the Battle.
ERIC Educational Resources Information Center
Rupnow, Allan
1985-01-01
A sedentary lifestyle, along with program cutbacks and changes in teaching emphasis, have led to lower scores every year on tests of upper body strength of elementary school children. Pulling, pushing and hanging activities are described, and a yearly program of fitness activities is suggested. (MT)
Fedorowich, Larissa M; Côté, Julie N
2018-10-01
Standing is a popular alternative to traditionally seated computer work. However, no studies have described how standing impacts both upper body muscular and vascular outcomes during a computer typing task. Twenty healthy adults completed two 90-min simulated work sessions, seated or standing. Upper limb discomfort, electromyography (EMG) from eight upper body muscles, typing performance and neck/shoulder and forearm blood flow were collected. Results showed significantly less upper body discomfort and higher typing speed during standing. Lower Trapezius EMG amplitude was higher during standing, but this postural difference decreased with time (interaction effect), and its variability was 68% higher during standing compared to sitting. There were no effects on blood flow. Results suggest that standing computer work may engage shoulder girdle stabilizers while reducing discomfort and improving performance. Studies are needed to identify how standing affects more complex computer tasks over longer work bouts in symptomatic workers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ni, Pengsheng; McDonough, Christine M.; Jette, Alan M.; Bogusz, Kara; Marfeo, Elizabeth E.; Rasch, Elizabeth K.; Brandt, Diane E.; Meterko, Mark; Chan, Leighton
2014-01-01
Objectives To develop and test an instrument to assess physical function (PF) for Social Security Administration (SSA) disability programs, the SSA-PF. Item Response Theory (IRT) analyses were used to 1) create a calibrated item bank for each of the factors identified in prior factor analyses, 2) assess the fit of the items within each scale, 3) develop separate Computer-Adaptive Test (CAT) instruments for each scale, and 4) conduct initial psychometric testing. Design Cross-sectional data collection; IRT analyses; CAT simulation. Setting Telephone and internet survey. Participants Two samples: 1,017 SSA claimants, and 999 adults from the US general population. Interventions None. Main Outcome Measure Model fit statistics, correlation and reliability coefficients, Results IRT analyses resulted in five unidimensional SSA-PF scales: Changing & Maintaining Body Position, Whole Body Mobility, Upper Body Function, Upper Extremity Fine Motor, and Wheelchair Mobility for a total of 102 items. High CAT accuracy was demonstrated by strong correlations between simulated CAT scores and those from the full item banks. Comparing the simulated CATs to the full item banks, very little loss of reliability or precision was noted, except at the lower and upper ranges of each scale. No difference in response patterns by age or sex was noted. The distributions of claimant scores were shifted to the lower end of each scale compared to those of a sample of US adults. Conclusions The SSA-PF instrument contributes important new methodology for measuring the physical function of adults applying to the SSA disability programs. Initial evaluation revealed that the SSA-PF instrument achieved considerable breadth of coverage in each content domain and demonstrated noteworthy psychometric properties. PMID:23578594
Lean body mass and creatine kinase are associated with reduced inflammation in obesity.
Bekkelund, Svein I; Jorde, Rolf
2017-11-01
Obesity is associated with inflammation, but the role of lean mass and creatine kinase (CK) on the inflammatory process is less known. We investigated the associations between lean mass, CK and fat mass upon inflammatory parameters in an overweight and obese adult population. Body composition examined by dual-energy X-ray absorptiometry, high-sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), CK and supplementary clinical parameters were measured in 454 overweight and obese individuals. This is a secondary analysis from a cohort of obese individuals treated with Vitamin D. Mean age was 47·6 ± 11·4 years and mean body mass index 34·6 ± 3·9 kg/m 2 . Lean mass correlated negatively with hs-CRP (r = -0·127, P = 0·042) and ESR (r = -0·381, P < 0·001). Median lean mass in the lower ESR quartile was significantly higher than in the upper quartile (P < 0·001) but not between lower and upper hs-CRP quartiles (P = 0·114). CK was negatively correlated with hs-CRP (r = -0·151, P < 0·001) and ESR (r = -0·240, P < 0·001). Median CK in the lower hs-CRP and ESR quartiles were significantly higher than in the upper quartiles (P < 0·001 for both). Conversely, fat mass was positively associated with hs-CRP and ESR. Inflammatory parameters were related to reduced lean mass and CK in an overweight and obese population. Hypothetically, lean mass has a favourable effect on obesity-related inflammation, and CK may play a role as an inhibitor of inflammation in obesity. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.
Azuma, Arata; Kudoh, Shoji; Nakashima, Mitsuyoshi; Nagatake, Tsuyoshi
2011-01-01
A multicenter, placebo-controlled, double-dummy, randomized, parallel-group, double-blind study was conducted to verify the hypothesis of noninferiority for single-dose administration of zaltoprofen 160 mg, a nonsteroidal anti-inflammatory drug, compared with loxoprofen sodium 60 mg (loxoprofen), in terms of antipyretic and analgesic effects in patients with acute upper respiratory tract infection. The eligible 330 patients were assigned to one of 3 groups: zaltoprofen 160 mg, loxoprofen 60 mg and placebo. The analysis set consisted of 322 patients. Antipyretic effects were assessed by measuring body temperature, and analgesic effects were evaluated using a visual analog scale (VAS) for 4 h under the control of study staff. A detection kit for influenza virus A and B antigens was used to determine the presence of influenza virus infection. Compared with immediately before administration and with the placebo group, significant decreases in body temperature and summary VAS pain scores were noted in both the zaltoprofen and loxoprofen groups at 4 h after drug administration. Based on the degree of decrease in body temperature and the summary VAS pain scores up to 4 h after administration, noninferiority in terms of antipyretic and analgesic effects of zaltoprofen compared with those of loxoprofen was confirmed after single administration. Similar antipyretic and analgesic effects were also confirmed in influenza virus antigen-positive patients (73 patients). No clinical concerns were identified regarding safety. Zaltoprofen and loxoprofen are confirmed to be safe and useful for patients with acute upper respiratory tract infection, including those with influenza infection. Copyright © 2011 S. Karger AG, Basel.
Ni, Pengsheng; McDonough, Christine M; Jette, Alan M; Bogusz, Kara; Marfeo, Elizabeth E; Rasch, Elizabeth K; Brandt, Diane E; Meterko, Mark; Haley, Stephen M; Chan, Leighton
2013-09-01
To develop and test an instrument to assess physical function for Social Security Administration (SSA) disability programs, the SSA-Physical Function (SSA-PF) instrument. Item response theory (IRT) analyses were used to (1) create a calibrated item bank for each of the factors identified in prior factor analyses, (2) assess the fit of the items within each scale, (3) develop separate computer-adaptive testing (CAT) instruments for each scale, and (4) conduct initial psychometric testing. Cross-sectional data collection; IRT analyses; CAT simulation. Telephone and Internet survey. Two samples: SSA claimants (n=1017) and adults from the U.S. general population (n=999). None. Model fit statistics, correlation, and reliability coefficients. IRT analyses resulted in 5 unidimensional SSA-PF scales: Changing & Maintaining Body Position, Whole Body Mobility, Upper Body Function, Upper Extremity Fine Motor, and Wheelchair Mobility for a total of 102 items. High CAT accuracy was demonstrated by strong correlations between simulated CAT scores and those from the full item banks. On comparing the simulated CATs with the full item banks, very little loss of reliability or precision was noted, except at the lower and upper ranges of each scale. No difference in response patterns by age or sex was noted. The distributions of claimant scores were shifted to the lower end of each scale compared with those of a sample of U.S. adults. The SSA-PF instrument contributes important new methodology for measuring the physical function of adults applying to the SSA disability programs. Initial evaluation revealed that the SSA-PF instrument achieved considerable breadth of coverage in each content domain and demonstrated noteworthy psychometric properties. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Reanalysis of “Raptorex kriegsteini”: A Juvenile Tyrannosaurid Dinosaur from Mongolia
Fowler, Denver W.; Woodward, Holly N.; Freedman, Elizabeth A.; Larson, Peter L.; Horner, John R.
2011-01-01
The carnivorous Tyrannosauridae are among the most iconic dinosaurs: typified by large body size, tiny forelimbs, and massive robust skulls with laterally thickened teeth. The recently described small-bodied tyrannosaurid Raptorex kreigsteini is exceptional as its discovery proposes that many of the distinctive anatomical traits of derived tyrannosaurids were acquired in the Early Cretaceous, before the evolution of large body size. This inference depends on two core interpretations: that the holotype (LH PV18) derives from the Lower Cretaceous of China, and that despite its small size, it is a subadult or young adult. Here we show that the published data is equivocal regarding stratigraphic position and that ontogenetic reanalysis shows there is no reason to conclude that LH PV18 has reached this level of maturity. The probable juvenile status of LH PV18 makes its use as a holotype unreliable, since diagnostic features of Raptorex may be symptomatic of its immature status, rather than its actual phylogenetic position. These findings are consistent with the original sale description of LH PV18 as a juvenile Tarbosaurus from the Upper Cretaceous of Mongolia. Consequently, we suggest that there is currently no evidence to support the conclusion that tyrannosaurid skeletal design first evolved in the Early Cretaceous at small body size. PMID:21738646
Yuan, Fangfang; Tang, Xiaowei; Gong, Wei; Su, Lei; Zhang, Yali
2018-01-01
Foreign body ingestion is a relatively common occurrence, which may lead to morbidity and mortality. The aim of the present study was to report the experience of management of upper gastrointestinal foreign bodies by endoscopy in a large center. All patients who presented at the Department of Gastroenterology at Nanfang Hospital (Guangzhou, China) with complaints regarding upper gastrointestinal (GI) foreign body ingestion from December 1987 to December 2013. Hospital medical charts and endoscopic records were examined to evaluate etiology, treatment, and outcomes for these patients. A total of 846 patients were enrolled in the present study, from which foreign bodies were detected in 737 (87.1%) patients via X-ray or endoscopy. The objects most frequently ingested were bones (n=395, 53.6%). The detected foreign bodies were predominantly located in the cervical esophagus (n=325, 44.1%). Endoscopic foreign body extraction was successful in 92.5% of cases, whereas surgery was required in 6 patients. The most frequently used endoscopic accessory devices were retrieval forceps (n=480, 65.1%). The complication rate was 6.9%, including mucosal laceration (n=10) and others, all of which were managed conservatively. Associated GI diseases were reported in 74 (10.0%) patients, including postesophagectomy (n=34) and others. In conclusion, the endoscopic procedure was safe and effective for the removal of foreign bodies from the upper gastrointestinal tract, with a high success rate and low complication rate. PMID:29434711
Variability in EIT Images of Lung Ventilation as a Function of Electrode Planes and Body Positions
Zhang, Jie; Patterson, Robert
2014-01-01
This study is aimed at investigating the variability in resistivity changes in the lung region as a function of air volume, electrode plane and body position. Six normal subjects (33.8 ± 4.7 years, range from 26 to 37 years) were studied using the Sheffield Electrical Impedance Tomography (EIT) portable system. Three transverse planes at the level of second intercostal space, the level of the xiphisternal joint, and midway between upper and lower locations were chosen for measurements. For each plane, sixteen electrodes were uniformly positioned around the thorax. Data were collected with the breath held at end expiration and after inspiring 0.5, 1.0, or 1.5 liters of air from end expiration, with the subject in both the supine and sitting position. The average resistivity change in five regions, two 8x8 pixel local regions in the right lung, entire right, entire left and total lung regions, were calculated. The results show the resistivity change averaged over electrode positions and subject positions was 7-9% per liter of air, with a slightly larger resistivity change of 10 % per liter air in the lower electrode plane. There was no significant difference (p>0.05) between supine and sitting. The two 8x8 regions show a larger inter individual variability (coefficient of variation, CV, is from 30% to 382%) compared to the entire left, entire right and total lung (CV is from 11% to 51%). The results for the global regions are more consistent. The large inter individual variability appears to be a problem for clinical applications of EIT, such as regional ventilation. The variability may be mitigated by choosing appropriate electrode plane, body position and region of interest for the analysis. PMID:25110529
Variability in EIT Images of Lung Ventilation as a Function of Electrode Planes and Body Positions.
Zhang, Jie; Patterson, Robert
2014-01-01
This study is aimed at investigating the variability in resistivity changes in the lung region as a function of air volume, electrode plane and body position. Six normal subjects (33.8 ± 4.7 years, range from 26 to 37 years) were studied using the Sheffield Electrical Impedance Tomography (EIT) portable system. Three transverse planes at the level of second intercostal space, the level of the xiphisternal joint, and midway between upper and lower locations were chosen for measurements. For each plane, sixteen electrodes were uniformly positioned around the thorax. Data were collected with the breath held at end expiration and after inspiring 0.5, 1.0, or 1.5 liters of air from end expiration, with the subject in both the supine and sitting position. The average resistivity change in five regions, two 8x8 pixel local regions in the right lung, entire right, entire left and total lung regions, were calculated. The results show the resistivity change averaged over electrode positions and subject positions was 7-9% per liter of air, with a slightly larger resistivity change of 10 % per liter air in the lower electrode plane. There was no significant difference (p>0.05) between supine and sitting. The two 8x8 regions show a larger inter individual variability (coefficient of variation, CV, is from 30% to 382%) compared to the entire left, entire right and total lung (CV is from 11% to 51%). The results for the global regions are more consistent. The large inter individual variability appears to be a problem for clinical applications of EIT, such as regional ventilation. The variability may be mitigated by choosing appropriate electrode plane, body position and region of interest for the analysis.
An intrinsic approach in the curved n-body problem: The negative curvature case
NASA Astrophysics Data System (ADS)
Diacu, Florin; Pérez-Chavela, Ernesto; Reyes Victoria, J. Guadalupe
We consider the motion of n point particles of positive masses that interact gravitationally on the 2-dimensional hyperbolic sphere, which has negative constant Gaussian curvature. Using the stereographic projection, we derive the equations of motion of this curved n-body problem in the Poincaré disk, where we study the elliptic relative equilibria. Then we obtain the equations of motion in the Poincaré upper half plane in order to analyze the hyperbolic and parabolic relative equilibria. Using techniques of Riemannian geometry, we characterize each of the above classes of periodic orbits. For n=2 and n=3 we recover some previously known results and find new qualitative results about relative equilibria that were not apparent in an extrinsic setting.
Measuring upper limb function in children with hemiparesis with 3D inertial sensors.
Newman, Christopher J; Bruchez, Roselyn; Roches, Sylvie; Jequier Gygax, Marine; Duc, Cyntia; Dadashi, Farzin; Massé, Fabien; Aminian, Kamiar
2017-12-01
Upper limb assessments in children with hemiparesis rely on clinical measurements, which despite standardization are prone to error. Recently, 3D movement analysis using optoelectronic setups has been used to measure upper limb movement, but generalization is hindered by time and cost. Body worn inertial sensors may provide a simple, cost-effective alternative. We instrumented a subset of 30 participants in a mirror therapy clinical trial at baseline, post-treatment, and follow-up clinical assessments, with wireless inertial sensors positioned on the arms and trunk to monitor motion during reaching tasks. Inertial sensor measurements distinguished paretic and non-paretic limbs with significant differences (P < 0.01) in movement duration, power, range of angular velocity, elevation, and smoothness (normalized jerk index and spectral arc length). Inertial sensor measurements correlated with functional clinical tests (Melbourne Assessment 2); movement duration and complexity (Higuchi fractal dimension) showed moderate to strong negative correlations with clinical measures of amplitude, accuracy, and fluency. Inertial sensor measurements reliably identify paresis and correlate with clinical measurements; they can therefore provide a complementary dimension of assessment in clinical practice and during clinical trials aimed at improving upper limb function.
Ho Hoang, Khai-Long; Mombaur, Katja
2015-10-15
Dynamic modeling of the human body is an important tool to investigate the fundamentals of the biomechanics of human movement. To model the human body in terms of a multi-body system, it is necessary to know the anthropometric parameters of the body segments. For young healthy subjects, several data sets exist that are widely used in the research community, e.g. the tables provided by de Leva. None such comprehensive anthropometric parameter sets exist for elderly people. It is, however, well known that body proportions change significantly during aging, e.g. due to degenerative effects in the spine, such that parameters for young people cannot be used for realistically simulating the dynamics of elderly people. In this study, regression equations are derived from the inertial parameters, center of mass positions, and body segment lengths provided by de Leva to be adjustable to the changes in proportion of the body parts of male and female humans due to aging. Additional adjustments are made to the reference points of the parameters for the upper body segments as they are chosen in a more practicable way in the context of creating a multi-body model in a chain structure with the pelvis representing the most proximal segment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sexual Relationship Power and Malnutrition Among HIV-Positive Women in Rural Uganda
Siedner, Mark J.; Tsai, Alexander C.; Dworkin, Shari; Mukiibi, Nozmo F. B.; Emenyonu, Nneka I.; Hunt, Peter W.; Haberer, Jessica E.; Martin, Jeffrey N.; Bangsberg, David R.; Weiser, Sheri D.
2012-01-01
Inequality within partner relationships is associated with HIV acquisition and gender violence, but little is known about more pervasive effects on women’s health. We performed a cross-sectional analysis of associations between sexual relationship power and nutritional status among women in Uganda. Participants completed questionnaires and anthropometric measurements. We assessed sexual relationship power using the Sexual Relationship Power Scale (SRPS). We performed logistic regression to test for associations between sexual relationship power and poor nutritional status including body mass index, body fat percentage, and mid-upper arm circumference. Women with higher sexual relationship power scores had decreased odds of low body mass index (OR 0.29, p = 0.01), low body fat percentage (OR 0.54, p = 0.04), and low midupper arm circumference (OR 0.22, p = 0.01). These relationships persisted in multivariable models adjusted for potential confounders. Targeted interventions to improve intimate partner relationship equality should be explored to improve health status among women living with HIV in rural Africa. PMID:22382629
NASA Technical Reports Server (NTRS)
Abeyounis, W. K.; Patterson, J. C., Jr.
1985-01-01
As part of a propulsion/airframe integration program, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the longitudinal aerodynamic effects of installing flow through engine nacelles in the aft underwing position of a high wing transonic transfer airplane. Mixed flow nacelles with circular and D-shaped inlets were tested at free stream Mach numbers from 0.70 to 0.85 and angles of attack from -2.5 deg to 4.0 deg. The aerodynamic effects of installing antishock bodies on the wing and nacelle upper surfaces as a means of attaching and supporting nacelles in an extreme aft position were investigated.
Can, Aslı Gençay; Ekşioğlu, Emel; Bahtiyarca, Zeynep Tuba; Çakcı, Fatma Aytül
2016-01-01
Objective Lymphedema is one of the most debilitating outcomes of breast cancer treatment. We aimed to compare the demographic and clinical characteristics of breast cancer patients with and without lymphedema, to assess risk factors for lymphedema, and to evaluate treatment outcomes in lymphedema patients. Materials and Methods Demographic and clinical characteristics of 84 women with previous surgery for breast cancer who presented to the outpatient clinic between March 2014 and May 2015 were retrospectively extracted from patient records. Results Upper extremity lymphedema was detected in 34 of 84 patients (40.5%). The mean age, body mass index, the number of positive lymph nodes and the number of patients with postoperative radiotherapy were significantly higher among patients with lymphedema than those without (p<0.05). Educational level of patients with lymphedema was significantly lower than the other group (p<0.05). The correlation analysis revealed an association between age, educational level, body mass index, tumor stage, number of positive lymph nodes, postoperative radiotherapy and presence of lymphedema. Postoperative radiotherapy was detected as the only independent risk factor by logistic regression analysis. Fourteen out of 26 lymphedema patients were assigned to education, skin care, exercise and compression bandaging therapy. Upper extremity volumes and volume differences were significantly improved after treatment. Conclusion Advanced age, low educational level, obesity, tumor size, the number of positive lymph nodes and postoperative radiotherapy correlated with the development of lymphedema. Within these factors, postoperative radiotherapy was detected as an independent risk factor for the development of lymphedema. Patient education, skin care, exercise and compression bandage therapy are effective treatment options in breast cancer-related lymphedema. PMID:28331728
NASA Technical Reports Server (NTRS)
Gatlin, Gregory M.; Vicroy, Dan D.; Carter, Melissa B.
2012-01-01
A low-speed experimental investigation has been conducted on a 5.8-percent scale Hybrid Wing Body configuration in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This Hybrid Wing Body (HWB) configuration was designed with specific intention to support the NASA Environmentally Responsible Aviation (ERA) Project goals of reduced noise, emissions, and fuel burn. This HWB configuration incorporates twin, podded nacelles mounted on the vehicle upper surface between twin vertical tails. Low-speed aerodynamic characteristics were assessed through the acquisition of force and moment, surface pressure, and flow visualization data. Longitudinal and lateral-directional characteristics were investigated on this multi-component model. The effects of a drooped leading edge, longitudinal flow-through nacelle location, vertical tail shape and position, elevon deflection, and rudder deflection have been studied. The basic configuration aerodynamics, as well as the effects of these configuration variations, are presented in this paper.
Explaining the sex difference in depression with a unified bargaining model of anger and depression
Hagen, Edward H.; Rosenström, Tom
2016-01-01
Background: Women are twice as likely as men to be depressed, a bias that is poorly understood. One evolutionary model proposes that depression is a bargaining strategy to compel reluctant social partners to provide more help in the wake of adversity. An evolutionary model of anger proposes that high upper body strength predisposes individuals to angrily threaten social partners who offer too few benefits or impose too many costs. Here, we propose that when social partners provide too few benefits or impose too many costs, the physically strong become overtly angry and the physically weak become depressed. The sexual dimorphism in upper body strength means that men will be more likely to bargain with anger and physical threats and women with depression. Methodology: We tested this idea using the 2011–12 National Health and Nutrition Examination Survey (NHANES), a large nationally representative sample of US households that included measures of depression and upper body strength. Results: A 2 SD increase in grip strength decreased the odds of depression by more than half (OR=0.4, P=0.0079), which did not appear to be a consequence of confounds with anthropometric, hormonal or socioeconomic variables, but was partially explained by a confound with physical disability. Nevertheless, upper body strength mediated 63% of the effect of sex on depression, but the mediation effect was unexpectedly moderated by age. Conclusions: Low upper body strength is a risk factor for depression, especially in older adults, and the sex difference in body strength appears to explain much of the perplexing sex difference in depression. PMID:26884416
Pickett, T; Lewis, R; Cash, T; Pope, H
2005-01-01
Objectives: To investigate body image and psychosocial adjustment among competitive bodybuilders, non-competitive weight trainers, and athletically active men. Methods: Participants were 40 men in each of the three groups who were assessed on body composition and multiple facets of body image evaluation, investment and anxiety, eating attitudes, and social self esteem. Results: Relative to the other two groups, competitive bodybuilders had greater body mass due to fat-free body mass. Although groups did not differ in their situational body image discomfort, competitive bodybuilders and weight trainers had a more positive global appearance evaluation and were more psychologically invested in their physical appearance. Compared with active controls, men in both weightlifting groups were more satisfied with their upper torso and muscle tone. Competitive bodybuilders reported more mid torso satisfaction than the other two groups. Competitive bodybuilders also wished to be significantly heavier than controls did and reported higher social self esteem but greater eating disturbance. Conclusions: The findings suggest that competitive bodybuilders as a group are not more "muscle dysmorphic" than either non-competitive weight trainers or physically active men who do not train with weights. PMID:15793091
Foreign body ingestion in children
Dereci, Selim; Koca, Tuğba; Serdaroğlu, Filiz; Akçam, Mustafa
2015-01-01
Aim: Foreign bodies ingested by the oral route enter into the gastrointestinal tract and are considered a significant health problem in the childhood. In this study, we evaluated the pediatric patients who presented to our hospital with the complaint of ingestion of foreign body. Material and Methods: The hospital records of all children who presented to our clinic because of ingestion of foreign body between January 2008 and January 2015 were examined retrospectively. The complaints at admission, the types of foreign bodies ingested, the localization of the foreign body in the gastrointestinal tract and the approaches and treatment methods used were examined. Results: Thirty-six (56%) of 64 patients included in the study were male and 28 (44%) were female and the mean age was 5.7±4.6 years (10 months–17 years). Thirty eight (59%) of 64 children who were included in the assessment were below the age of five years. The most common complaint at presentation was parental recognition of the ingested object and dysphagia. The most commonly ingested foreign bodies included coins, sewing pins, safety pins and hairclips. Nail clipper detected in the stomach, sewing pin which penetrated through the duodenal wall and stuck to hepatic parenchyma were the first pediatric cases in the literature. Upper esophagus was the most common location for foreign bodies. Endoscopic examinations were performed in 55 of 64 children. Conclusions: Early detection and treatment of ingested foreign bodies in the upper gastrointestinal system is important in terms of preventing possible complications. In our study, the most frequent foreign bodies detected in the upper digestive tract were coins and they were most frequently detected in the upper esophagus. Most of our patients were below the age of five years. Flexible endoscopic method was used commonly for treatment. PMID:26884693
Transmission of Insult in Out-of-Position Subjects: III. Thoracic Spine Injury
NASA Astrophysics Data System (ADS)
Shaibani, Saami J.
2004-03-01
In two related papers,[1-2] the behavior of vehicle occupants subjected to low-severity insults was calculated. The same low level of impact was experienced by a train operator in the engine compartment studied here. It is important to recognize that the operator chair is totally different from passenger vehicle seats, which means that results for the latter cannot meaningfully be employed for the former. Instead, the chair design must be examined thoroughly to show that the top of the chair reaches only the mid-point of the operator's back and the line of the chair is rotated to the right of the line of forward travel. The first feature offers no protection against rearward motion of the upper body, and the second compounds this by twisting the body into a non-standard posture. Physics principles once again enabled consequent injury to be diagnosed. 1. Transmission of Insult in Out-of-Position Subjects: I. Shoulder Injury, Bull. Am. Phys. Soc., 47, 544 (2002); 2. ibid: II. Lumbosacral Injury.
The problem of obesity: fundamental concepts of energy metabolism gone awry.
Dausch, J G
1992-01-01
The growing prevalence and complex issues related to obesity continue to draw the interest and concern of health researchers and practitioners. This review summarizes pertinent background information on the multiple factors involved in the causes of obesity. Factors such as percentage of body fat, upper- vs. lower-body obesity, family history, past dieting history, and underlying medical conditions should be assessed on an individual basis and applied in the development of successful weight-reducing strategies. The recommended approach to nonpharmacologic intervention for weight loss is to first educate individuals about fat storage and energy balance and then focus on the development of positive behavioral skills such as wise food selections, favorable eating patterns, and regular physical activity. Although preventive measures such as positive eating patterns and exercise habits are ideally acquired in childhood and adolescence, successful weight management can still be achieved in adulthood. The information presented in the following sections provides clinicians with essential material to assist individuals in developing realistic goals at the outset of a weight-control program.
Dual-Band Dual-Mode Button Antenna for On-Body and Off-Body Communications.
Zhang, Xiu Yin; Wong, Hang; Mo, Te; Cao, Yun Fei
2017-08-01
A dual-band dual-mode button antenna for body centric communications is presented. At the lower band, a spiral inverted-F antenna is designed with omnidirectional radiation pattern for on-body communication. At the upper band, the high-order mode of the inverted-F antenna is utilized together with a metal reflector to realize broadside radiation for off-body communication. For demonstration, a prototype is implemented. The measured peak gains on the phantom at the lower and upper bands are -0.6 and 4.3 dBi, respectively. The antenna operating on the phantom has measured efficiencies of 46.3% at the lower band and 69.3% at the upper band. The issue of specific absorption rate (SAR) is studied. The maximum transmitted power under the SAR regulation of 1.6 W/kg is found to be 26.4 dB·m, which is high enough for body centric communications. In addition, the transmission performance between two proposed antennas mounted on the body is investigated by measuring the transmission loss. With an overall miniaturized size, the robust button antenna could be integrated in clothes and be a potential candidate for wireless body area network applications.
Lee, Tzong-Hsi; Lin, Chien-Chu; Chung, Chen-Shuan; Lin, Cheng-Kuan; Liang, Cheng-Chao; Tsai, Kuang-Chau
2015-02-01
Previous studies demonstrated that the sensitivity of rapid urease test (RUT) for diagnosis of Helicobacter pylori infection decreased during peptic ulcer bleeding. We designed this study and tried to find a better method to improve the detection rate of H. pylori infection at the same session of endoscopic diagnosis of peptic ulcer bleeding. We prospectively enrolled 116 patients with peptic ulcer bleeding. These patients received intravenous proton pump inhibitor and then received upper gastrointestinal endoscopy within 24 h after arrival. We took one piece of biopsy from gastric antrum (Group 1), four pieces from gastric antrum (Group 2), and one piece from the gastric body (Group 3) for three separate RUTs, respectively. (13)C-urease breath test was used as gold standard for diagnosis of H. pylori infection. There were 74 patients (64 %) with positive (13)C-urease breath test. Among these 74 patients, 45 patients had positive RUT (sensitivity: 61 %) in Group 1; 55 patients had positive RUT (sensitivity: 74 %) in Group 2; 54 patients had positive RUT (sensitivity: 73 %) in Group 3. There were significant differences between Group 1 and Group 2 (p = 0.02) and between Group 1 and Group 3 (p = 0.022). The sensitivity of RUT was 61 % during peptic ulcer bleeding. The sensitivity of RUT can be increased significantly by increased biopsy number from gastric antrum or biopsy from gastric body.
Rademacher, Holger; Bruder, Ralph; Sinn-Behrendt, Andrea; Landau, Kurt
2012-01-01
This paper describes a field study in production areas of a vehicle manufacturing plant, where 106 male workers (aged from 20 to 63 years) were examined and interviewed by the authors. Aim of study was to identify relationships between specific physical worker capabilities and doses of mechanical exposures using self-developed standardized questionnaires as well as a battery of work-specific tests. The dependent variables are different "physical capabilities", classified using a five-point rating scale with regard to the grade of limitation of the respective capability. Independent variables are "age" and specific "mechanical exposures". Several exposures were combined and multiplied with their respective durations in order to determine doses on three different body regions - back, shoulder-neck and upper limbs. There are significant positive correlations between "age" and "dose of mechanical exposure on back/shoulder-neck/upper limbs region". The analysis of the relationship between dose of exposure and different capabilities to lift or reposition loads (with variable weight) shows weak significant correlations for all three body regions. Data analysis shows no significant correlations between any dose of mechanical exposure and capabilities to work in awkward body postures.These results should be considered in age management programs when scheduling future employee assignments to workplaces, especially for production systems where manual handling tasks are dominant.
Frère, Julien; Göpfert, Beat; Slawinski, Jean; Tourny-Chollet, Claire
2012-04-01
This study aimed at determining the upper limb muscles coordination during a power backward giant swing (PBGS) and the recruitment pattern of motor units (MU) of co-activated muscles. The wavelet transformation (WT) was applied to the surface electromyographic (EMG) signal of eight shoulder muscles. Total gymnast's body energy and wavelet synergies extracted from the WT-EMG by using a non-negative matrix factorization were analyzed as a function of the body position angle of the gymnast. A cross-correlation analysis of the EMG patterns allowed determining two main groups of co-activated muscles. Two wavelet synergies representing the main spectral features (82% of the variance accounted for) discriminated the recruitment of MU. Although no task-group of MU was found among the muscles, it appeared that a higher proportion of fast MU was recruited within the muscles of the first group during the upper part of the PBGS. The last increase of total body energy before bar release was induced by the recruitment of the muscles of the second group but did not necessitate the recruitment of a higher proportion of fast MU. Such muscle coordination agreed with previous simulations of elements on high bar as well as the findings related to the recruitment of MU. Copyright © 2012 Elsevier B.V. All rights reserved.
The effect of hand position on perceived finger orientation in left- and right-handers.
Fraser, Lindsey E; Harris, Laurence R
2017-12-01
In the absence of visual feedback, the perceived orientation of the fingers is systematically biased. In right-handers these biases are asymmetrical between the left and right hands in the horizontal plane and may reflect common functional postures for the two hands. Here we compared finger orientation perception in right- and left-handed participants for both hands, across various hand positions in the horizontal plane. Participants rotated a white line on a screen optically superimposed over their hand to indicate the perceived position of the finger that was rotated to one of seven orientations with the hand either aligned with the body midline, aligned with the shoulder, or displaced by twice the shoulder-to-midline distance from the midline. We replicated the asymmetric pattern of biases previously reported in right-handed participants (left hand biased towards an orientation ~30° inward, right hand ~10° inward). However, no such asymmetry was found for left-handers, suggesting left-handers may use different strategies when mapping proprioception to body or space coordinates and/or have less specialization of function between the hands. Both groups' responses rotated further outward as distance of the hand from the body midline increased, consistent with other research showing spatial orientation estimates diverge outward in the periphery. Finally, for right-handers, precision of responses was best when the hand was aligned with the shoulder compared to the other two conditions. These results highlight the unique role of hand dominance and hand position in perception of finger orientation, and provide insight into the proprioceptive position sense of the upper limbs.
Biomechanical Analysis of the Closed Kinetic Chain Upper-Extremity Stability Test.
Tucci, Helga T; Felicio, Lilian R; McQuade, Kevin J; Bevilaqua-Grossi, Debora; Camarini, Paula Maria Ferreira; Oliveira, Anamaria S
2017-01-01
The closed kinetic chain upper-extremity stability (CKCUES) test is a functional test for the upper extremity performed in the push-up position, where individuals support their body weight on 1 hand placed on the ground and swing the opposite hand until touching the hand on the ground, then switch hands and repeat the process as fast as possible for 15 s. To study scapular kinematic and kinetic measures during the CKCUES test for 3 different distances between hands. Experimental. Laboratory. 30 healthy individuals (15 male, 15 female). Participants performed 3 repetitions of the test at 3 distance conditions: original (36 in), interacromial, and 150% interacromial distance between hands. Participants completed a questionnaire on pain intensity and perceived exertion before and after the procedures. Scapular internal/external rotation, upward/downward rotation, and posterior/anterior tilting kinematics and kinetic data on maximum force and time to maximum force were measured bilaterally in all participants. Percentage of body weight on upper extremities was calculated. Data analyses were based on the total numbers of hand touches performed for each distance condition, and scapular kinematics and kinetic values were averaged over the 3 trials. Scapular kinematics, maximum force, and time to maximum force were compared for the 3 distance conditions within each gender. Significance level was set at α = .05. Scapular internal rotation, posterior tilting, and upward rotation were significantly greater in the dominant side for both genders. Scapular upward rotation was significantly greater in original distance than interacromial distance in swing phase. Time to maximum force in women was significantly greater in the dominant side. CKCUES test kinematic and kinetic measures were not different among 3 conditions based on distance between hands. However, the test might not be suitable for initial or mild-level rehabilitation due to its challenging requirements.
Effects of visual focus and gait speed on walking balance in the frontal plane.
Goodworth, Adam; Perrone, Kathryn; Pillsbury, Mark; Yargeau, Michelle
2015-08-01
We investigated how head position and gait speed influenced frontal plane balance responses to external perturbations during gait. Thirteen healthy participants walked on a treadmill at three different gait speeds. Visual conditions included either focus downward on lower extremities and walking surface only or focus forward on a stationary scene with horizontal and vertical lines. The treadmill was positioned on a platform that was stationary (non-perturbed) or moving in a pattern that appeared random to the subjects (perturbed). In non-perturbed walking, medial-lateral upper body motion was very similar between visual conditions. However, in perturbed walking, there was significantly less body motion when focus was on the stationary visual scene, suggesting visual feedback of stationary vertical and horizontal cues are particularly important when balance is challenged. Sensitivity of body motion to perturbations was significantly decreased by increasing gait speed, suggesting that faster walking was less sensitive to frontal plane perturbations. Finally, our use of external perturbations supported the idea that certain differences in balance control mechanisms can only be detected in more challenging situations, which is an important consideration for approaches to investigating sensory contribution to balance during gait. Copyright © 2015 Elsevier B.V. All rights reserved.
Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H
2018-04-27
Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Influence of weight and body fat distribution on bone density in postmenopausal women.
Murillo-Uribe, A; Carranza-Lira, S; Martínez-Trejo, N; Santos-González, J
2000-01-01
To determine whether obesity or body fat distribution induces a greater modification on bone remodeling biochemistry (BRB) and bone density in postmenopausal women. One hundred and thirteen postmenopausal patients were studied. They were initially divided according to body mass index (BMI), and afterwards by waist-hip ratio (WHR) as well as combinations of the two factors. Hormone measurements and assessments of BRB were also done. Dual-emission X-ray absorptiometry from the lumbar column and hip was performed with Lunar DPXL equipment, and the standard deviation in relation to young adult (T) and age-matched subjects (Z) was calculated. Statistical analysis was done by the Mann-Whitney U test. The relation of BMI and WHR with the variables was calculated by simple regression analysis. When divided according to BMI, there was greater bone density in the femoral neck in those with normal weight. After dividing according to WHR, the Z scores had a trend to a lesser decrease in those with upper level body fat distribution. Divided according to BMI and WHR, obese patients with upper-level body fat distribution had greater bone density in the lumbar column than those with normal weight and lower-level body fat distribution. With the same WHR, those with normal weight had greater bone density than those who were obese. A beneficial effect of upper-level body fat distribution on bone density was found. It is greater than that from obesity alone, and obesity and upper-level body fat distribution have an additive effect on bone density.
Body-Machine Interfaces after Spinal Cord Injury: Rehabilitation and Brain Plasticity.
Seáñez-González, Ismael; Pierella, Camilla; Farshchiansadegh, Ali; Thorp, Elias B; Wang, Xue; Parrish, Todd; Mussa-Ivaldi, Ferdinando A
2016-12-19
The purpose of this study was to identify rehabilitative effects and changes in white matter microstructure in people with high-level spinal cord injury following bilateral upper-extremity motor skill training. Five subjects with high-level (C5-C6) spinal cord injury (SCI) performed five visuo-spatial motor training tasks over 12 sessions (2-3 sessions per week). Subjects controlled a two-dimensional cursor with bilateral simultaneous movements of the shoulders using a non-invasive inertial measurement unit-based body-machine interface. Subjects' upper-body ability was evaluated before the start, in the middle and a day after the completion of training. MR imaging data were acquired before the start and within two days of the completion of training. Subjects learned to use upper-body movements that survived the injury to control the body-machine interface and improved their performance with practice. Motor training increased Manual Muscle Test scores and the isometric force of subjects' shoulders and upper arms. Moreover, motor training increased fractional anisotropy (FA) values in the cingulum of the left hemisphere by 6.02% on average, indicating localized white matter microstructure changes induced by activity-dependent modulation of axon diameter, myelin thickness or axon number. This body-machine interface may serve as a platform to develop a new generation of assistive-rehabilitative devices that promote the use of, and that re-strengthen, the motor and sensory functions that survived the injury.
Cross- and triple-ratios of human body parts during development.
Lundh, Torbjörn; Udagawa, Jun; Hänel, Sven-Erik; Otani, Hiroki
2011-08-01
Recently developed landmark-based geometric morphometry has been used to depict the morphological development of organisms. In geometry, four landmarks can be mapped to any other four by Möbius transformations, if the cross-ratio of the landmarks is invariant and vice versa. To geometrically analyze the morphological development of the human body, we examined the cross-ratio of three consecutive body parts that are segmented by four landmarks in their configuration. Moreover, we introduced the triple-ratio of five landmarks that segments four consecutive parts (e.g., the shoulder, upper arm, forearm, and hand) and examined their growth patterns. The cross- and triple-ratios of the upper limb and shoulder girdle in fetuses were constant when biomechanical landmarks were used, although the cross-ratio of the upper limb varied when anatomical landmarks were used. The cross-ratios of the lower limbs, trunk, and pelvic girdles in fetuses differed from their corresponding cross-ratios in adults. These results suggest Möbius growth in the fetal upper limb and shoulder girdle but not in the other body parts examined. However, the growth balance of the three contiguous body parts was represented by the developmental change in the cross-ratio. Therefore, the cross- and triple-ratios may be applicable for simple but significant assessments of growth balance or proportion of the body parts. Copyright © 2011 Wiley-Liss, Inc.
Cosio-Lima, Ludmila; Knapik, Joseph J; Shumway, Richard; Reynolds, Katy; Lee, Youngil; Greska, Eric; Hampton, Michael
2016-07-01
Tests that have the ability to predict injuries in various military and athletic populations are important because of the role they could play in primary prevention. Functional Movement Screen (FMS) and Y Balance Tests (YBT) may provide this prognostic ability. This study examined the association between injuries and age, physical characteristics, FMS, and upper and lower body YBTs among Coast Guard Maritime Security Response Team (MSRT) candidates. Thirty-one male Coast Guard Maritime Security Response Team candidates were administered the 7 FMS tests and lower- and upper-body YBTs before their intense 2-month training course. Age, height, weight, and body mass index were also obtained. Physical training-related injuries were recorded during the course. Injury incidence was 41%. Older age and lower scores on either FMS or the upper-body YBT were associated with higher injury risk. Performance of the lower-body YBT was not associated with injury risk. This is the first investigation showing that lower scores on the upper-body YBT were associated with higher injury risk and is in consonance with previous investigations demonstrating associations between lower FMS scores and higher injury risk. Certain limitations need to be addressed. Future studies should determine if FMS and the YBTs have prognostic ability in other populations. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Juul-Kristensen, Birgit; Østengaard, Lasse; Hansen, Sebrina; Boyle, Eleanor; Junge, Tina; Hestbaek, Lise
2017-05-30
Generalised Joint Hypermobility (GJH) is a hereditary condition with an ability to exceed the joints beyond the normal range. The prevalence of GJH in the adult population and its impact on upper body musculoskeletal health and quality of life has mostly been studied in selected populations. The aims of this study were therefore, firstly to study the prevalence of GJH and GJH including shoulder hypermobility (GJHS), in the general Danish adult population; secondly to test the associations between GJH or GJHS and upper body musculoskeletal symptoms and health-related quality of life (HRQoL). The study was cross-sectional where 2072 participants, aged 25-65, randomly extracted from the Danish Civil Registration System), were invited to answer a questionnaire battery (Five-Part Questionnaire for classification of GJH, Standardised Nordic Questionnaire for musculoskeletal symptoms, EuroQoL-5D for HRQoL). Totally 1006 (49%) participants responded. The prevalence of GJH and GJHS were 30% (n = 300) and 5% (n = 51), respectively. Compared with Non GJH (NGJH), participants with GJH and GJHS had Odds Ratio (OR) of 1.5-3.5 for upper body musculoskeletal symptoms within the last 12 months (mostly shoulders and hands/wrists). GJH and GJHS also had OR 1.6-4.4 for being prevented from usual activities, mostly due to shoulder and neck symptoms. Furthermore, GJH and GJHS had OR 2.2-3.1 for upper body musculoskeletal symptoms lasting for more than 90 days (neck, shoulders, hand/wrists), and 1.5-3.5 for reduced HRQoL (all dimensions, but anxiety/depression) compared with NGJH. Generally, most OR for GJHS were about twice as high as for those having GJH alone. GJH and GJHS are frequently self-reported musculoskeletal conditions in the Danish adult population. Compared with NGJH, GJH and especially GJHS, present with higher OR for upper body musculoskeletal symptoms, more severe symptoms and decreased HRQoL.
Method for fabricating prescribed flaws in the interior of metals
Hsu, David K.; Thompson, Donald O.
1989-03-07
The method for fabricating a metal body having a flaw of predetermined size and shape located therein comprises placing half of the metal powder required to make the metal body in the die of a press and pressing it to create a flat upper surface thereon. A piece of copper foil is cut to the size and shape of the desired interior crack and placed on the upper surface of the powder and centered in position. The remaining powder is then placed in the die to cover the copper foil. The powder is first cold pressed and removed from the press. The powder metal piece is then sintered in a furnace at a temperature above the melting point of the copper and below the melting point of the metal. It is then removed from the furnace, cooled to room temperature, and placed back in the die and pressed further. This procedure results in an interior flaw or crack. Modified forms of the method involve using a press-sinter-press-sinter cycle with the first sinter being below the melting point of the copper and the second sinter being above the melting point of the copper and below the melting point of the metal.
Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention.
Nakagawa, Shotaro; Hasegawa, Yasuhisa; Fukuda, Toshio; Kondo, Izumi; Tanimoto, Masanori; Di, Pei; Huang, Jian; Huang, Qiang
2016-05-01
Fall prevention is one of the most important functions of walking assistance devices for user's safety. It is preferable that these devices prevent the user from being in the state where the risk of falling is high rather than helping them recovering from falling motion. During turning, when the user is in the tandem stance, a state where both legs form a line along walking direction, a support base that is surrounded by two legs becomes small, and a stability margin becomes small. This paper therefore aims to prevent the tandem stance by using nonwearable robot "intelligent cane" for the elderly or physically challenged person. Generally, the behavior of the lower limb follows the upper body turning. This paper therefore introduces a cane robot control method which constrains the behavior of user's upper body. By adjusting an admittance parameter of the robot according to the positions of a support leg, the robot resists to turn while a support leg is on the same side of the turning direction. A swing leg on the turning direction side therefore freely moves to the turning direction, while a swing leg on the opposite direction side of turning hardly move to the turning direction.
Riemer, Valentin; Frommel, Julian; Layher, Georg; Neumann, Heiko; Schrader, Claudia
2017-01-01
The importance of emotions experienced by learners during their interaction with multimedia learning systems, such as serious games, underscores the need to identify sources of information that allow the recognition of learners’ emotional experience without interrupting the learning process. Bodily expression is gaining in attention as one of these sources of information. However, to date, the question of how bodily expression can convey different emotions has largely been addressed in research relying on acted emotion displays. Following a more contextualized approach, the present study aims to identify features of bodily expression (i.e., posture and activity of the upper body and the head) that relate to genuine emotional experience during interaction with a serious game. In a multimethod approach, 70 undergraduates played a serious game relating to financial education while their bodily expression was captured using an off-the-shelf depth-image sensor (Microsoft Kinect). In addition, self-reports of experienced enjoyment, boredom, and frustration were collected repeatedly during gameplay, to address the dynamic changes in emotions occurring in educational tasks. Results showed that, firstly, the intensities of all emotions indeed changed significantly over the course of the game. Secondly, by using generalized estimating equations, distinct features of bodily expression could be identified as significant indicators for each emotion under investigation. A participant keeping their head more turned to the right was positively related to frustration being experienced, whereas keeping their head more turned to the left was positively related to enjoyment. Furthermore, having their upper body positioned more closely to the gaming screen was also positively related to frustration. Finally, increased activity of a participant’s head emerged as a significant indicator of boredom being experienced. These results confirm the value of bodily expression as an indicator of emotional experience in multimedia learning systems. Furthermore, the findings may guide developers of emotion recognition procedures by focusing on the identified features of bodily expression. PMID:28798717
Rezai, Ali R; Finelli, Daniel; Nyenhuis, John A; Hrdlicka, Greg; Tkach, Jean; Sharan, Ashwini; Rugieri, Paul; Stypulkowski, Paul H; Shellock, Frank G
2002-03-01
To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). Different configurations were evaluated for bilateral neurostimulators (Soletra Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gel-filled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98-3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI. Using the body RF coil, the highest temperature changes ranged from 2.5 degrees-25.3 degrees C. Using the head RF coil, the highest temperature changes ranged from 2.3 degrees-7.1 degrees C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.
Kulathinal, Sangita; Freese, Riitta; Korkalo, Liisa; Ismael, Carina; Mutanen, Marja
2016-08-01
Biochemically determined nutritional status measurements in low-income countries are often too expensive. Therefore, we hypothesized that some anthropometrical or functional measurements (handgrip) could reflect nutritional status measured by specific biochemical indicators. We did a population-based study from 1 urban area and 2 rural districts in Zambézia Province of Mozambique. The participants (n=386) were non-pregnant adolescent girls between 15 and 18 years of age. 96% had a normal BMI-for-age score. Weight and mid-upper arm circumference (MUAC) were highly correlated (r>0.8) with each other and with total body muscle mass, body mass index (BMI), and with waist circumference, as well as with skinfolds (r>0.6). Upper and total arm lengths were correlated (r>0.7) with height and with each other, and right and left handgrip were correlated only with each other, as were triceps and subscapular skinfolds (r>0.7). Serum albumin correlated negatively with waist circumference (P<.001) and positively with MUAC (P=.007). Stepwise regressions showed that waist circumference, MUAC, weight, and handgrip were important nutritional status indicators in the models using hemoglobin, serum albumin, ferritin, zinc, and plasma retinol concentrations as dependent variables. MUAC could be a valuable anthropometric marker of the overall nutritional status of adolescent girls in low-income countries. When nutrition transition proceeds, waist circumference together with MUAC could form tools for the prediction of worsening of nutritional status. Copyright © 2016 Elsevier Inc. All rights reserved.
Lilleker, J B; Rietveld, A; Pye, S R; Mariampillai, K; Benveniste, O; Peeters, M T J; Miller, J A L; Hanna, M G; Machado, P M; Parton, M J; Gheorghe, K R; Badrising, U A; Lundberg, I E; Sacconi, S; Herbert, M K; McHugh, N J; Lecky, B R F; Brierley, C; Hilton-Jones, D; Lamb, J A; Roberts, M E; Cooper, R G; Saris, C G J; Pruijn, G J M; Chinoy, H; van Engelen, B G M
2017-05-01
Autoantibodies directed against cytosolic 5'-nucleotidase 1A have been identified in many patients with inclusion body myositis. This retrospective study investigated the association between anticytosolic 5'-nucleotidase 1A antibody status and clinical, serological and histopathological features to explore the utility of this antibody to identify inclusion body myositis subgroups and to predict prognosis. Data from various European inclusion body myositis registries were pooled. Anticytosolic 5'-nucleotidase 1A status was determined by an established ELISA technique. Cases were stratified according to antibody status and comparisons made. Survival and mobility aid requirement analyses were performed using Kaplan-Meier curves and Cox proportional hazards regression. Data from 311 patients were available for analysis; 102 (33%) had anticytosolic 5'-nucleotidase 1A antibodies. Antibody-positive patients had a higher adjusted mortality risk (HR 1.89, 95% CI 1.11 to 3.21, p=0.019), lower frequency of proximal upper limb weakness at disease onset (8% vs 23%, adjusted OR 0.29, 95% CI 0.12 to 0.68, p=0.005) and an increased prevalence of excess of cytochrome oxidase deficient fibres on muscle biopsy analysis (87% vs 72%, adjusted OR 2.80, 95% CI 1.17 to 6.66, p=0.020), compared with antibody-negative patients. Differences were observed in clinical and histopathological features between anticytosolic 5'-nucleotidase 1A antibody positive and negative patients with inclusion body myositis, and antibody-positive patients had a higher adjusted mortality risk. Stratification of inclusion body myositis by anticytosolic 5'-nucleotidase 1A antibody status may be useful, potentially highlighting a distinct inclusion body myositis subtype with a more severe phenotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Naclerio, Fernando; Larumbe-Zabala, Eneko
2016-01-01
Even though the positive effects of whey protein-containing supplements for optimizing the anabolic responses and adaptations process in resistance-trained individuals have been supported by several investigations, their use continues to be controversial. Additionally, the administration of different multi-ingredient formulations where whey proteins are combined with carbohydrates, other protein sources, creatine, and amino acids or derivatives, has been extensively proposed as an effective strategy to maximize strength and muscle mass gains in athletes. We aimed to systematically summarize and quantify whether whey protein-containing supplements, administered alone or as a part of a multi-ingredient, could improve the effects of resistance training on fat-free mass or lean body mass, and strength in resistance-trained individuals when compared with other iso-energetic supplements containing carbohydrates or other sources of proteins. A structured literature search was conducted on PubMed, Science Direct, Web of Science, Cochrane Libraries, US National Institutes of Health clinicaltrials.gov, SPORTDiscus, and Google Scholar databases. Main inclusion criteria comprised randomized controlled trial study design, adults (aged 18 years and over), resistance-trained individuals, interventions (a resistance training program for a period of 6 weeks or longer, combined with whey protein supplementation administered alone or as a part of a multi-ingredient), and a calorie equivalent contrast supplement from carbohydrates or other non-whey protein sources. Continuous data on fat-free mass and lean body mass, and maximal strength were pooled using a random-effects model. Data from nine randomized controlled trials were included, involving 11 treatments and 192 participants. Overall, with respect to the ingestion of contrast supplements, whey protein supplementation, administered alone or as part of a multi-ingredient, in combination with resistance training, was associated with small extra gains in fat-free mass or lean body mass, resulting in an effect size of g = 0.301, 95% confidence interval (CI) 0.032-0.571. Subgroup analyses showed less clear positive trends resulting in small to moderate effect size g = 0.217 (95% CI -0.113 to 0.547) and g = 0.468 (95% CI 0.003-0.934) in favor of whey and multi-ingredient, respectively. Additionally, a positive overall extra effect was also observed to maximize lower (g = 0.316, 95% CI 0.045-0.588) and upper body maximal strength (g = 0.458, 95% CI 0.161-0.755). Subgroup analyses showed smaller superiority to maximize strength gains with respect to the contrast groups for lower body (whey protein: g = 0.343, 95% CI -0.016 to 0.702, multi-ingredient: g = 0.281, 95% CI -0.135 to 0.697) while in the upper body, multi-ingredient (g = 0.612, 95% CI 0.157-1.068) seemed to produce more clear effects than whey protein alone (g = 0.343, 95% CI -0.048 to 0.735). Studies involving interventions of more than 6 weeks on resistance-training individuals are scarce and account for a small number of participants. Furthermore, no studies with an intervention longer than 12 weeks have been found. The variation regarding the supplementation protocol, namely the different doses criteria or timing of ingestion also add some concerns to the studies comparison. Whey protein alone or as a part of a multi-ingredient appears to maximize lean body mass or fat-free mass gain, as well as upper and lower body strength improvement with respect to the ingestion of an iso-energetic equivalent carbohydrate or non-whey protein supplement in resistance-training individuals. This enhancement effect seems to be more evident when whey proteins are consumed within a multi-ingredient containing creatine.
Johnston, Rich D; Gabbett, Tim J; Jenkins, David G; Speranza, Michael J
2016-04-01
To assess the impact of different repeated-high-intensity-effort (RHIE) bouts on player activity profiles, skill involvements, and neuromuscular fatigue during small-sided games. 22 semiprofessional rugby league players (age 24.0 ± 1.8 y, body mass 95.6 ± 7.4 kg). During 4 testing sessions, they performed RHIE bouts that each differed in the combination of contact and running efforts, followed by a 5-min off-side small-sided game before performing a second bout of RHIE activity and another 5-min small-sided game. Global positioning system microtechnology and video recordings provided information on activity profiles and skill involvements. A countermovement jump and a plyometric push-up assessed changes in lower- and upper-body neuromuscular function after each session. After running-dominant RHIE bouts, players maintained running intensities during both games. In the contact-dominant RHIE bouts, reductions in moderate-speed activity were observed from game 1 to game 2 (ES = -0.71 to -1.06). There was also moderately lower disposal efficiency across both games after contact-dominant RHIE activity compared with running-dominant activity (ES = 0.62-1.02). Greater reductions in lower-body fatigue occurred as RHIE bouts became more running dominant (ES = -0.01 to -1.36), whereas upper-body fatigue increased as RHIE bouts became more contact dominant (ES = -0.07 to -1.55). Physical contact causes reductions in running intensity and the quality of skill involvements during game-based activities. In addition, the neuromuscular fatigue experienced by players is specific to the activities performed.
Zutt, Rodi; Dijk, Joke M; Peall, Kathryn J; Speelman, Hans; Dreissen, Yasmine E M; Contarino, Maria Fiorella; Tijssen, Marina A J
2016-01-01
Myoclonus-dystonia (M-D) is a young onset movement disorder typically involving myoclonus and dystonia of the upper body. A proportion of the cases are caused by mutations to the autosomal dominantly inherited, maternally imprinted, epsilon-sarcoglycan gene (SGCE). Despite several sets of diagnostic criteria, identification of patients most likely to have an SGCE mutation remains difficult. Forty consecutive patients meeting pre-existing diagnostic clinical criteria for M-D underwent a standardized clinical examination (20 SGCE mutation positive and 20 negative). Each video was reviewed and systematically scored by two assessors blinded to mutation status. In addition, the presence and coexistence of myoclonus and dystonia was recorded in four body regions (neck, arms, legs, and trunk) at rest and with action. Thirty-nine patients were included in the study (one case was excluded owing to insufficient video footage). Based on previously proposed diagnostic criteria, patients were subdivided into 24 "definite," 5 "probable," and 10 "possible" M-D. Motor symptom severity was higher in the SGCE mutation-negative group. Myoclonus and dystonia were most commonly observed in the neck and upper limbs of both groups. Truncal dystonia with action was significantly seen more in the mutation-negative group (p < 0.05). Coexistence of myoclonus and dystonia in the same body part with action was more commonly seen in the mutation-negative cohort (p < 0.05). Truncal action dystonia and coexistence of myoclonus and dystonia in the same body part with action might suggest the presence of an alternative mutation in patients with M-D.
Activity and topographic changes in the somatosensory system in embouchure dystonia.
Mantel, Tobias; Dresel, Christian; Altenmüller, Eckart; Zimmer, Claus; Noe, Jonas; Haslinger, Bernhard
2016-11-01
Embouchure dystonia is a highly disabling focal task-specific dystonia affecting professional brass players. This study was designed to analyze activity changes along with topographic representations in primary and nonprimary centers for somatosensory processing in patients with embouchure dystonia. We used event-related functional magnetic resonance imaging with automized tactile stimulation of dystonic (upper lip) and nondystonic (forehead and dorsal hand) body regions in 15 professional brass players with and without embouchure dystonia. Statistical analyses included whole-brain between-group comparisons of stimulation-induced activation and region-of-interest-based single patient analyses of topographic activation characteristics. Affected musicians revealed increased stimulation-induced activity in contralateral primary and bilateral secondary somatosensory representations of dystonic and nondystonic body regions as well as in the cerebellum ipsilateral to the left dystonic upper lip. Changes of somatotopic organization with altered intracortical distances and between-group differences of the centers of representations were found in the right primary and the bilateral secondary somatosensory cortex and in the left cerebellum. Positional variability of dystonic and nondystonic body regions was reduced with an emphasis on face representations. The present findings are supportive of the concept of an abnormal processing of somatosensory information in embouchure dystonia affecting multiple domains. The underlying neurophysiological mechanisms (eg, changes in inhibition, maladaptive plasticity, changes in baseline activity) remain unclear. The involvement of nondystonic body areas can be viewed in the context of possible compensation or an endophenotypic predisposition. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Removal of press-through-packs impacted in the upper esophagus using an overtube.
Seo, Yeon-Seok; Park, Jong-Jae; Kim, Ji-Hoon; Kim, Jin-Yong; Yeon, Jong-Eun; Kim, Jae-Seon; Byun, Kwan-Soo; Bak, Young-Tae
2006-09-28
Foreign bodies in the upper esophagus should be removed as soon as possible to avoid serious complications. However, removals of foreign bodies in the upper esophagus are very difficult, especially if they have sharp edges, such as press-through-packs (PTPs). We experienced four cases of the impacted PTPs in the upper esophagus which was successfully extracted endoscopically with the overtube. Because two edges of PTPs were so firmly impacted in the esophageal wall in all cases, the PTPs were not movable in the upper esophagus. However, after insertion of the overtube, PTPs became movable and were successfully extracted and no serious complications occurred after extraction of PTPs. In one case, insertion of the overtube rapidly expanded the upper esophagus and PTP progressed to the gastric cavity and it could be extracted with the endoscopic protector hood. The endoscopic removal with the overtube was a simple, safe and effective technique for the removal of the impacted PTPs in upper esophagus.
Removal of press-through-packs impacted in the upper esophagus using an overtube
Seo, Yeon Seok; Park, Jong-Jae; Kim, Ji Hoon; Kim, Jin Yong; Yeon, Jong Eun; Kim, Jae Seon; Byun, Kwan Soo; Bak, Young-Tae
2006-01-01
Foreign bodies in the upper esophagus should be removed as soon as possible to avoid serious complications. However, removals of foreign bodies in the upper esophagus are very difficult, especially if they have sharp edges, such as press-through-packs (PTPs). We experienced four cases of the impacted PTPs in the upper esophagus which was successfully extracted endoscopically with the overtube. Because two edges of PTPs were so firmly impacted in the esophageal wall in all cases, the PTPs were not movable in the upper esophagus. However, after insertion of the overtube, PTPs became movable and were successfully extracted and no serious complications occurred after extraction of PTPs. In one case, insertion of the overtube rapidly expanded the upper esophagus and PTP progressed to the gastric cavity and it could be extracted with the endoscopic protector hood. The endoscopic removal with the overtube was a simple, safe and effective technique for the removal of the impacted PTPs in upper esophagus. PMID:17007065
Explaining the sex difference in depression with a unified bargaining model of anger and depression.
Hagen, Edward H; Rosenström, Tom
2016-01-01
Women are twice as likely as men to be depressed, a bias that is poorly understood. One evolutionary model proposes that depression is a bargaining strategy to compel reluctant social partners to provide more help in the wake of adversity. An evolutionary model of anger proposes that high upper body strength predisposes individuals to angrily threaten social partners who offer too few benefits or impose too many costs. Here, we propose that when social partners provide too few benefits or impose too many costs, the physically strong become overtly angry and the physically weak become depressed. The sexual dimorphism in upper body strength means that men will be more likely to bargain with anger and physical threats and women with depression. We tested this idea using the 2011-12 National Health and Nutrition Examination Survey (NHANES), a large nationally representative sample of US households that included measures of depression and upper body strength. A 2 SD increase in grip strength decreased the odds of depression by more than half ([Formula: see text],[Formula: see text]), which did not appear to be a consequence of confounds with anthropometric, hormonal or socioeconomic variables, but was partially explained by a confound with physical disability. Nevertheless, upper body strength mediated 63% of the effect of sex on depression, but the mediation effect was unexpectedly moderated by age. Low upper body strength is a risk factor for depression, especially in older adults, and the sex difference in body strength appears to explain much of the perplexing sex difference in depression. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.
Begon, Mickaël; Leardini, Alberto; Belvedere, Claudio; Farahpour, Nader; Allard, Paul
2015-10-01
While sagittal trunk inclinations alter upper body biomechanics, little is known about the extent of frontal trunk bending on upper body and pelvis kinematics in adults during gait and its relation to sagittal trunk inclinations. The objective was to determine the effect of the mean lateral trunk attitude on upper body and pelvis three-dimensional kinematics during gait in asymptomatic subjects. Three gait cycles were collected in 30 subjects using a motion analysis system (Vicon 612) and an established protocol. Sub-groups were formed based on the mean thorax lateral bending angle, bending side, and also sagittal tilt. These were compared based on 38 peak angles identified on pelvis, thorax and shoulder kinematics using MANOVAs. A main effect for bending side (p = 0.038) was found, especially for thorax peak angles. Statistics revealed also a significant interaction (p = 0.04993) between bending side and tilt for the thorax sagittal inclination during body-weight transfer. These results reinforce the existence of different gait patterns, which correlate upper body and pelvis motion measures. The results also suggest that frontal and sagittal trunk attitude should be considered carefully when treating a patient with impaired gait. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Chávez Rossell, Miguel
2012-01-01
The ingestion of a foreign body is one of the most common endoscopic emergencies. Foreign bodies in the upper gastrointestinal tract should be extracted as soon as possible to avoid serious complications such as perforation o bleeding. However, removals of foreign bodies with sharp edges are very difficult and can develop complications during their removal. Various devices have therefore been developed to prevent mucosal injury from the sharp edges during endoscopic extraction. We report a new technique for the successful foreign body extraction of upper digestive tract using the cap from six shooter variceal banding reused. We present 17 cases (9 males and 8 females). The types of foreign bodies removed were: chicken bones (n:7), fish bones (n:3), denture prosthesis (n:2), food bolus (n:2), long pin (n:1), golden thumb tack (n: 1) and press-through package (n:1). There were no complications. This new technique is safe and effective. Highlights its advantages: enhanced sight pharyngo esophageal junction, foreign bodies disimpact at that level, food bolus suck, avoid sharp object damage mucosal or scope and decrease time removal.
Mission Specialist (MS) Ride sleeps in airlock
1983-06-24
STS007-26-1438 (18-24 June 1983) --- Astronaut Sally K. Ride, mission specialist, was captured at her sleep station in the Space Shuttle Challenger's middeck by a fellow crew member using a 35mm camera. This method of sleep is just one used by the 20 astronauts who have now flown aboard NASA's first two Space Shuttle Orbiters. Some astronauts choose to sleep in various positions with either their feet or upper bodies or both anchored and others elect to use the sleep restraint device demonstrated here by Dr. Ride.
Effect of Heavy Dynamic Resistive Exercise on Acute Upper-Body Power.
ERIC Educational Resources Information Center
Hrysomallis, Con; Kidgell, Dawson
2001-01-01
Determined the influence of a heavy-load bench press on indicators of upper-body power during an explosive pushup, examining the influence of a set of 5 repetitions of 5 repetition maximum (RM) bench press preceding explosive pushups. There were no significant differences for any of the force platform data when explosive pushups were preceded by…
ERIC Educational Resources Information Center
Machado, Marco; Willardson, Jeffrey M.; Silva, Dailson P.; Frigulha, Italo C.; Koch, Alexander J.; Souza, Sergio C.
2012-01-01
In the current study, we examined the relationship between serum creatine kinase (CK) activity following upper body resistance exercise with a 1- or 3-min rest between sets. Twenty men performed two sessions, each consisting of four sets with a 10-repetition maximum load. The results demonstrated significantly greater volume for the 3-min…
ERIC Educational Resources Information Center
Kjaran, Jón Ingvar; Kristinsdóttir, Guðrún
2015-01-01
In this paper, we study how Lesbian, Gay, Bisexual and Transgender people (LGBT) students in Icelandic upper secondary schools interpret their experience of heteronormative environment and how they respond to it. The aim is to explore how sexualities and gendered bodies are constructed through "schooling". The article draws on interview…
A Field Test for Upper Body Strength and Endurance.
ERIC Educational Resources Information Center
Nelson, Jack K.; And Others
1991-01-01
Researchers studied the reliability of the modified push-up test in measuring upper body strength and endurance in elementary through college students. It also examined the accuracy of partner scoring. The test proved much easier to administer than the regular floor push-up. It was valid and reliable for all students and suitable for partner…
Surgical intervention for gastrointestinal foreign bodies in adults: a case series.
Syrakos, Theodoros; Zacharakis, Emmanouil; Antonitsis, Polichronis; Zacharakis, Evangelos; Spanos, Constantinos; Georgantis, G; Kiskinis, Dimitrios
2008-01-01
The aim of our study was to demonstrate our experience regarding the surgical treatment of complications after foreign body ingestion. From 1997 to 2005, we treated 16 adult patients (mean age 44.8 years, range 21-77), who presented with complications after foreign body ingestion. The complications treated were perforation-peritonitis: n = 7 (44%), intra-abdominal abscess formation: n = 5 (31%), upper gastrointestinal bleeding: n = 3 (19%) and inflammatory mass formation: n = 1 (6%) patient. The diagnosis was made intra-operatively in 13 (81.3%) of the cases. The commonest anatomical position of the perforation was the large bowel, in 7 (43%) of the cases. Bony food parts were the commonest foreign bodies accidentally swallowed, in 9 (56%) patients. The median hospital stay was 7 days (2-18), while no death occurred in the postoperative period among the patients of the study. The postoperative morbidity rate was 22.2%. The most common complication after foreign body ingestion was the perforation of the gastrointestinal tract. The risk of perforation was higher when sharp foreign bodies were ingested. The pre-operative diagnosis was difficult, and it was usually achieved intra-operatively. (c) 2008 S. Karger AG, Basel
Determining loads acting on the pelvis in upright and recumbent birthing positions: A case study.
Hemmerich, Andrea; Geens, Emily; Diesbourg, Tara; Dumas, Geneviève A
2018-05-24
The biomechanics of mothers' birthing positions and their impact on maternal and newborn health outcomes are poorly understood. Our objectives were to determine the loads applied to the female pelvis during dynamic movement that may occur during childbirth; findings are intended to inform clinical understanding and further research on birth positioning mechanics. An optical motion capture system and force platforms were used to collect upright and supine movement data from two pregnant and three non-pregnant participants. Using an inverse dynamics approach, normalized three-dimensional hip and sagittal plane lumbosacral joint moments were estimated during squatting, all-fours, and supine activities. During squatting, peak hip abduction moments were greater for our pregnant (compared with non-pregnant) participants and lumbosacral extension moments substantially exceeded those during walking. The all-fours activity, conversely, generated flexion moments at the L5/S1 joint throughout most of the cycle. In supine, the magnitude of the ground reaction force reached 100% body weight with legs and upper body raised (McRoberts' position); the centre of pressure remained cranial to the sacrum. Squatting generated appreciable moments at the hip and lumbosacral joints that could potentially affect pelvic motion during childbirth. Copyright © 2018 Elsevier Ltd. All rights reserved.
Segmentation of human upper body movement using multiple IMU sensors.
Aoki, Takashi; Lin, Jonathan Feng-Shun; Kulic, Dana; Venture, Gentiane
2016-08-01
This paper proposes an approach for the segmentation of human body movements measured by inertial measurement unit sensors. Using the angular velocity and linear acceleration measurements directly, without converting to joint angles, we perform segmentation by formulating the problem as a classification problem, and training a classifier to differentiate between motion end-point and within-motion points. The proposed approach is validated with experiments measuring the upper body movement during reaching tasks, demonstrating classification accuracy of over 85.8%.
[Anthropometric parameters in assessment of patients with Marfan syndrome or with Marfan phenotype].
Głowacki, M; Ignyś, A; Szulc, A; Kraśny, I; Krawczyński, M
1998-01-01
A series of 37 patients aged 4-64 years has been evaluated with criteria of Lee and Ramirez. Diagnosis of Marfan syndrome has been established in 13 cases, in 24 patients the Marfan phenotype has been found. In both groups body height, upper extremities length, the length of upper and lower body segment, length of the foot and hand have been recorded. Metacarpal index has been calculated. Antropometric measurements did not reveal significant differences in body parts proportions between these two groups.
Fluid and electrolyte homeostasis during spaceflight: Elucidation of mechanisms in a primate
NASA Technical Reports Server (NTRS)
Churchill, Susanne
1990-01-01
Although it is now well accepted that exposure to the hypogravic environment of space induces a shift of fluid from the lower extremities toward the upper body, the actual physiological responses to this central volume expansion have not been well characterized. Because it is likely that the fluid and electrolyte response to hypogravity plays a critical role in the development of Cardiovascular Deconditioning, elucidation of these mechanisms is of critical importance. The goal of flight experiment 223, scheduled to fly on SLS-2, is the definition of the basic renal, fluid and electrolyte response to spaceflight in four instrumented squirrel monkeys. The studies were those required to support the development of flight hardware and optimal inflight procedures, and to evaluate a ground-based model for weightlessness, lower body positive pressure (LBPP).
Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu
2016-10-01
This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.
Functional anatomy of the temporomandibular joint (I).
Sava, Anca; Scutariu, Mihaela Monica
2012-01-01
Jaw movement is analyzed as the action between two rigid components jointed together in a particular way, the movable mandible against the stabilized cranium. Jaw articulation distinguishes form most other synovial joints of the body by the coincidence of certain characteristic features. Its articular surfaces are not covered by hyaline cartilage as elsewhere. The two jointed components carry teeth the shape, position and occlusion of which having a unique influence on specific positions and movements within the joint. A fibrocartilaginous disc is interposed between upper and lower articular surfaces; this disc compensates for the incongruities in opposing parts and allows sliding, pivoting, and rotating movements between the bony components. These are the reasons for our review of the functional anatomy of the temporomandibular joint.
Prokopy, Max P; Ingersoll, Christopher D; Nordenschild, Edwin; Katch, Frank I; Gaesser, Glenn A; Weltman, Arthur
2008-11-01
Closed-kinetic chain resistance training (CKCRT) of the lower body is superior to open-kinetic chain resistance training (OKCRT) to improve performance parameters (e.g., vertical jump), but the effects of upper-body CKCRT on throwing performance remain unknown. This study compared shoulder strength, power, and throwing velocity changes in athletes training the upper body exclusively with either CKCRT (using a system of ropes and slings) or OKCRT. Fourteen female National Collegiate Athletic Association Division I softball player volunteers were blocked and randomly placed into two groups: CKCRT and OKCRT. Blocking ensured the same number of veteran players and rookies in each training group. Training occurred three times weekly for 12 weeks during the team's supervised off-season program. Olympic, lower-body, core training, and upper-body intensity and volume in OKCRT and CKCRT were equalized between groups. Criterion variables pre- and posttraining included throwing velocity, bench press one-repetition maximum (1RM), dynamic single-leg balance, and isokinetic peak torque and power (PWR) (at 180 degrees x s(-1)) for shoulder flexion, extension, internal rotation, and external rotation (ER). The CKCRT group significantly improved throwing velocity by 2.0 mph (3.4%, p < 0.05), and the OKCRT group improved 0.3 mph (0.5%, NS). A significant interaction was observed (p < 0.05). The CKCRT group improved its 1RM bench press to the same degree (1.9 kg) as the OKCRT group (p < 0.05 within each group). The CKCRT group improved all measures of shoulder strength and power, whereas OKCRT conferred little change in shoulder torque and power scores. Although throwing is an open-chain movement, adaptations from CKCRT may confer benefits to subsequent performance. Strength coaches can incorporate upper-body CKCRT without sacrificing gains in maximal strength or performance criteria associated with an athletic open-chain movement such as throwing.
Abaïdia, Abd-Elbasset; Delecroix, Barthélémy; Leduc, Cédric; Lamblin, Julien; McCall, Alan; Baquet, Georges; Dupont, Grégory
2017-01-01
Abaïdia, A-E, Delecroix, B, Leduc, C, Lamblin, J, McCall, A, Baquet, G, and Dupont, G. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 31(1): 115-125, 2017-The purpose of this study was to investigate the effects of an upper-limb strength training session the day after an exercise inducing muscle damage on recovery of performance. In a randomized crossover design, subjects performed the day after the exercise, on 2 separate occasions (passive vs. active recovery conditions) a single-leg exercise (dominant in one condition and nondominant in the other condition) consisting of 5 sets of 15 eccentric contractions of the knee flexors. Active recovery consisted of performing an upper-body strength training session the day after the exercise. Creatine kinase, hamstring strength, and muscle soreness were assessed immediately and 20, 24, and 48 hours after exercise-induced muscle damage. The upper-body strength session, after muscle-damaging exercise accelerated the recovery of slow concentric force (effect size = 0.65; 90% confidence interval = -0.06 to 1.32), but did not affect the recovery kinetics for the other outcomes. The addition of an upper-body strength training session the day after muscle-damaging activity does not negatively affect the recovery kinetics. Upper-body strength training may be programmed the day after a competition.
Bartolomei, Sandro; Nigro, Federico; Ruggeri, Sandro; Lanzoni, Ivan Malagoli; Ciacci, Simone; Merni, Franco; Sadres, Eliahu; Hoffman, Jay R; Semprini, Gabriele
2018-03-06
The purpose of the present study was to validate the ballistic push-up test performed with hands on a force plate (BPU) as a method to measure upper-body power. Twenty-eight experienced resistance trained men (age = 25.4 ± 5.2 y; body mass = 78.5 ± 9.0 kg; body height = 179.6 ± 7.8 cm) performed, two days apart, a bench press 1RM test and upper-body power tests. Mean power and peak power were assessed using the bench press throw test (BT) and the BPU test performed in randomized order. The area under the force/power curve (AUC) obtained at BT was also calculated. Power expressed at BPU was estimated using a time-based prediction equation. Mean force and the participant's body weight were used to predict the bench press 1RM. Pearson product moment correlations were used to examine relationships between the power assessment methods and between the predicted 1RM bench and the actual value. Large correlations (0.79; p < 0.001) were found between AUC and mean power expressed at BPU. Large correlations were also detected between mean power and peak power expressed at BT and BPU (0.75; p < 0.001 and 0.74; p < 0.001, respectively). Very large correlations (0.87; p < 0.001) were found between the 1RM bench and the 1RM predicted by the BPU. Results of the present study indicate that BPU represents a valid and reliable method to estimate the upper-body power in resistance-trained individuals.
The effects of short-cycle sprints on power, strength, and salivary hormones in elite rugby players.
Crewther, Blair T; Cook, Christian J; Lowe, Tim E; Weatherby, Robert P; Gill, Nicholas
2011-01-01
This study examined the effects of short-cycle sprints on power, strength, and salivary hormones in elite rugby players. Thirty male rugby players performed an upper-body power and lower-body strength (UPLS) and/or a lower-body power and upper-body strength (LPUS) workout using a crossover design (sprint vs. control). A 40-second upper-body or lower-body cycle sprint was performed before the UPLS and LPUS workouts, respectively, with the control sessions performed without the sprints. Bench throw (BT) power and box squat (BS) 1 repetition maximum (1RM) strength were assessed in the UPLS workout, and squat jump (SJ) power and bench press (BP) 1RM strength were assessed in the LPUS workout. Saliva was collected across each workout and assayed for testosterone (Sal-T) and cortisol (Sal-C). The cycle sprints improved BS (2.6 ± 1.2%) and BP (2.8 ± 1.0%) 1RM but did not affect BT and SJ power. The lower-body cycle sprint produced a favorable environment for the BS by elevating Sal-T concentrations. The upper-body cycle sprint had no hormonal effect, but the workout differences (%) in Sal-T (r = -0.59) and Sal-C (r = 0.42) concentrations correlated to the BP, along with the Sal-T/C ratio (r = -0.49 to -0.66). In conclusion, the cycle sprints improved the BP and BS 1RM strength of elite rugby players but not power output in the current format. The improvements noted may be explained, in part, by the changes in absolute or relative hormone concentrations. These findings have practical implications for prescribing warm-up and training exercises.
Abdulrazzaq, Yousef M; Nagelkerke, Nico; Moussa, Mohamed A
2011-11-01
To determine a range of anthropometric measurements including skinfold thickness measurements in four different areas of the body, to construct population growth charts for body mass index (BMI), skinfolds, and to compare these with growth charts from other countries. One aim was also to validate body fat charts derived from skinfold thickness. A national cross-sectional growth survey of children, 0-18 years old, was conducted using multistage stratified random sampling. The sample size included at least 200 children in each age-sex group. Height, weight, biceps skinfold, triceps skinfold, subscapular skinfold, suprailiac skinfold, and mid-upper-arm circumference were measured in each child. We describe correlation, standard deviation scores relative to the other standards, and calculation of body density in the United Arab Emirates population. We determined whether any of the above is a good indicator of fatness in children. BMI, upper-arm circumference, sum of four skinfolds, and percentage body fat charts were constructed using the LMS method of smoothing. BMI was very significantly correlated with sum of skinfold thicknesses, and mid-upper-arm circumference. Prevalence of obesity and overweight in ages 13-17 years was respectively 9.94% and 15.16% in females and 6.08% and 14.16% in males. Derived body fat charts were found not to be accurate. A national BMI, upper-arm circumference, and sum of four skinfolds chart has been constructed that can be used as a reference standard for the United Arab Emirates. Sum of four skinfold thickness charts can be used as crude determinants of adiposity in children, but derived body fat charts were shown to be inaccurate.
USDA-ARS?s Scientific Manuscript database
Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...
Equivalence Reliability among the FITNESSGRAM[R] Upper-Body Tests of Muscular Strength and Endurance
ERIC Educational Resources Information Center
Sherman, Todd; Barfield, J. P.
2006-01-01
This study was designed to investigate the equivalence reliability between the suggested FITNESSGRAM[R] muscular strength and endurance test, the 90[degrees] push-up (PSU), and alternate FITNESSGRAM[R] tests of upper-body strength and endurance (i.e., modified pull-up [MPU], flexed-arm hang [FAH], and pull-up [PU]). Children (N = 383) in Grades 3…
ERIC Educational Resources Information Center
Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco
2015-01-01
Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40…
Maximal strength and power assessment in novice weight trainers.
Cronin, John B; Henderson, Melanie E
2004-02-01
The purpose of this study was to investigate whether changes in maximal strength and power output occurred over time in the absence of strength and power training in novice weight trainers. It also investigated whether differences existed between upper- and lower-body assessments and unilateral and bilateral assessments. The power output and maximal strength (1 repetition maximum [1RM]) of 10 male novice subjects were measured on 4 occasions, each assessment 7-10 days apart. The exercises used to measure the upper- and lower-body strength and power outputs were the bench press and supine squat, respectively. Significant (p < 0.05) changes in unilateral (9.8-16.8%) and bilateral 1RM (6.8-15.0%) leg strength were found, the first assessment being significantly different from all other assessments and assessment 2 significantly different from assessment 4. Changes in the upper body (10-13.6%) were also observed. The only significant difference was between assessment 1 and the other testing occasions. No differences in power output were observed for both the upper and lower body during the study. It would seem that considerable changes in maximal strength occur rapidly and in the absence of any formal strength training program in novice weight trainers.
Mammalian spinal biomechanics: postural support in seated macaques.
Gal, Julianna
2002-06-01
The aim of this study was to investigate whether the ligamentous lumbar vertebral column of a macaque could potentially provide passive mechanical support to the weight of the head, upper body and forelimbs during upright sitting. The seated flexed curvature of the lumbar spine of Macaca sylvana was estimated from a photograph and was partitioned equally among the lumbar-lumbar intervertebral joints. This flexed curvature was compared with the hyper-extended profile of the unloaded excised ligamentous spine of a related species (Macaca fascicularis) and used to calculate changes in intervertebral angle from the unloaded excised state to the loaded in vivo state. Changes in intervertebral angle were then used to calculate the net flexion moment required to bend the spine from the unloaded curvature to the seated curvature. The moment arm of the ventrally displaced weight of the head, upper body and forelimbs was estimated and used to calculate a corresponding net force. It was found that this force corresponded to approximately 18 % of the total body weight of the 2.34 kg sample animal. This compares with a likely fractional body weight of approximately 30-40 % for the head, upper body and forelimbs of these primates. Therefore, approximately half of the ventral flexion moment associated with the combined weight of the head, upper body and forelimbs during sitting in these animals may be supported by the passive mechanical properties associated with the ligamentous lumbar spine. This represents a potential means of relieving muscular effort and saving metabolic energy.
Compston, Juliet E; Flahive, Julie; Hosmer, David W; Watts, Nelson B; Siris, Ethel S; Silverman, Stuart; Saag, Kenneth G; Roux, Christian; Rossini, Maurizio; Pfeilschifter, Johannes; Nieves, Jeri W; Netelenbos, J Coen; March, Lyn; LaCroix, Andrea Z; Hooven, Frederick H; Greenspan, Susan L; Gehlbach, Stephen H; Díez-Pérez, Adolfo; Cooper, Cyrus; Chapurlat, Roland D; Boonen, Steven; Anderson, Frederick A; Adami, Silvano; Adachi, Jonathan D
2014-02-01
Low body mass index (BMI) is a well-established risk factor for fracture in postmenopausal women. Height and obesity have also been associated with increased fracture risk at some sites. We investigated the relationships of weight, BMI, and height with incident clinical fracture in a practice-based cohort of postmenopausal women participating in the Global Longitudinal study of Osteoporosis in Women (GLOW). Data were collected at baseline and at 1, 2, and 3 years. For hip, spine, wrist, pelvis, rib, upper arm/shoulder, clavicle, ankle, lower leg, and upper leg fractures, we modeled the time to incident self-reported fracture over a 3-year period using the Cox proportional hazards model and fitted the best linear or nonlinear models containing height, weight, and BMI. Of 52,939 women, 3628 (6.9%) reported an incident clinical fracture during the 3-year follow-up period. Linear BMI showed a significant inverse association with hip, clinical spine, and wrist fractures: adjusted hazard ratios (HRs) (95% confidence intervals [CIs]) per increase of 5 kg/m(2) were 0.80 (0.71-0.90), 0.83 (0.76-0.92), and 0.88 (0.83-0.94), respectively (all p < 0.001). For ankle fractures, linear weight showed a significant positive association: adjusted HR per 5-kg increase 1.05 (1.02-1.07) (p < 0.001). For upper arm/shoulder and clavicle fractures, only linear height was significantly associated: adjusted HRs per 10-cm increase were 0.85 (0.75-0.97) (p = 0.02) and 0.73 (0.57-0.92) (p = 0.009), respectively. For pelvic and rib fractures, the best models were for nonlinear BMI or weight (p = 0.05 and 0.03, respectively), with inverse associations at low BMI/body weight and positive associations at high values. These data demonstrate that the relationships between fracture and weight, BMI, and height are site-specific. The different associations may be mediated, at least in part, by effects on bone mineral density, bone structure and geometry, and patterns of falling. © 2014 American Society for Bone and Mineral Research.
[Injuries to the upper limbs in competitive wrestlers].
Michael, J W-P; Müller, L; Schikora, N; Eysel, P; König, D P
2008-06-01
Great variety of tackling and defence in wrestling in standing position and on the floor cannot be compared to other kind of sports. High demand to motoric characteristics and tournament specific movability is required. However wrestling in Germany belongs to a fringe sport there is an increase of professionality. This leads to a sufficient and high-demanded supervision. Aim of this retrospective study was to evaluate sport injuries using a questionnaire and to figure out a correlation between kind and frequency of sport injuries of different body regions. 163 questionnaires out of 200 had been evaluated. In the region of the upper limb injuries had been found in 23%. The injury rate was higher in the athletes wrestling in the 2nd league. Wrestling is a technically and tactically ambitious sport. Injuries should be evaluated very careful to minimize the risk changing tactics and training methods.
Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor
ERIC Educational Resources Information Center
Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang
2012-01-01
There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation…
Pawłowska, Katarzyna; Umławska, Wioleta; Iwańczak, Barbara
2018-04-27
To investigate nutritional status and growth status of pediatric patients with functional gastrointestinal disorders (FGIDs) and to examine the relationship between nutritional status and linear growth in these children. In total, 102 pediatric patients diagnosed with functional constipation (FC), irritable bowel syndrome (IBS), or functional abdominal pain (FAP) in years 2013-2015 were subjected to anthropometric measurements. Anthropometry comprised body height, leg and trunk lengths, body weight, mid-upper arm circumference, and 3 skinfold thicknesses. Body fat percentage was obtained with bioelectrical impedance analysis. Indices of the nutritional status and body proportions were calculated and adjusted for age and sex. Excessive body weight and excessive fatness were the most common in children with IBS. Being underweight was most common in children with FAP, but fat deficiency was similarly frequent in the FAP and in FC groups. Short stature was the most common in children with FC. Children with IBS were the best nourished and the tallest for age and sex due to increased trunk length. Body height and linear body proportions adjusted for age and sex were positively associated with body weight and body fatness in the total sample. Children with FGIDs present various linear growth abnormalities that are associated with body weight and body fatness. Although excessive body weight and body fat are common in children with IBS, pediatricians should be aware of the risk of malnutrition in children with other FGIDs. Copyright © 2018 Elsevier Inc. All rights reserved.
Gernand, Alison D.; Christian, Parul; Paul, Rina Rani; Shaikh, Saijuddin; Labrique, Alain B.; Schulze, Kerry J.; Shamim, Abu Ahmed; West, Keith P.
2012-01-01
Placental growth is a strong predictor of fetal growth, but little is known about maternal predictors of placental growth in malnourished populations. Our objective was to investigate in a prospective study the associations of maternal weight and body composition [total body water (TBW) estimated by bioelectrical impedance and fat and fat-free mass derived from upper arm fat and muscle areas (UAFA, UAMA)] and changes in these with placental and birth weights. Within a cluster-randomized trial of maternal micronutrient supplementation, a subsample of 350 women was measured 3 times across gestation. Longitudinal analysis was used to examine independent associations of ∼10-wk measurements and ∼10–20 wk and ∼20–32 wk changes with birth outcomes. Weight, TBW, and UAMA, but not UAFA, at ∼10 wk were each positively and independently associated with placental weight and birth weight (P < 0.05). Of the maternal ∼10–20 wk changes in measurements, only TBW change and placental weight, and maternal weight and birth weight were positively associated (P < 0.05). Gains in weight, TBW, and UAMA from 20 to 32 wk were positively and UAFA gain was negatively associated with placental weight (P ≤ 0.01). Gains in weight and UAMA from 20 to 32 wk were positively associated with birth weight (P ≤ 0.01). Overall, higher maternal weight and measures of fat-free mass at ∼10 wk gestation and gains from 20 to 32 wk are independently associated with higher placental and birth weight. PMID:22990469
Gernand, Alison D; Christian, Parul; Paul, Rina Rani; Shaikh, Saijuddin; Labrique, Alain B; Schulze, Kerry J; Shamim, Abu Ahmed; West, Keith P
2012-11-01
Placental growth is a strong predictor of fetal growth, but little is known about maternal predictors of placental growth in malnourished populations. Our objective was to investigate in a prospective study the associations of maternal weight and body composition [total body water (TBW) estimated by bioelectrical impedance and fat and fat-free mass derived from upper arm fat and muscle areas (UAFA, UAMA)] and changes in these with placental and birth weights. Within a cluster-randomized trial of maternal micronutrient supplementation, a subsample of 350 women was measured 3 times across gestation. Longitudinal analysis was used to examine independent associations of ∼10-wk measurements and ∼10-20 wk and ∼20-32 wk changes with birth outcomes. Weight, TBW, and UAMA, but not UAFA, at ∼10 wk were each positively and independently associated with placental weight and birth weight (P < 0.05). Of the maternal ∼10-20 wk changes in measurements, only TBW change and placental weight, and maternal weight and birth weight were positively associated (P < 0.05). Gains in weight, TBW, and UAMA from 20 to 32 wk were positively and UAFA gain was negatively associated with placental weight (P ≤ 0.01). Gains in weight and UAMA from 20 to 32 wk were positively associated with birth weight (P ≤ 0.01). Overall, higher maternal weight and measures of fat-free mass at ∼10 wk gestation and gains from 20 to 32 wk are independently associated with higher placental and birth weight.
Improvement on upper limb body-powered prostheses (1921-2016): A systematic review.
Hashim, Nur Afiqah; Abd Razak, Nasrul Anuar; Abu Osman, Noor Azuan; Gholizadeh, Hossein
2018-01-01
Body-powered prostheses are known for their advantages of cost, reliability, training period, maintenance, and proprioceptive feedback. This study primarily aims to analyze the work related to the improvement of upper limb body-powered prostheses prior to 2016. A systematic review conducted via the search of the Web of Science electronic database, Google Scholar, and Google Patents identified 155 papers from 1921 to 2016. Sackett's initial rules of evidence were used to determine the levels of evidence, and only papers categorized in the design and development category and patents were analyzed. A total of 40 papers in the sixth level of "Design and Development" of an upper limb body-powered prosthesis were found. Approximately 81% were categorized under mechanical alteration. Most papers were patent-type documents (48%), with the Journal of Rehabilitation Research and Development publishing most of the articles related to the design and development of body-powered prostheses. Papers in the scope of the study were published once every 3 years in almost a century, proving that only a few studies were conducted to improve body-powered arms compared with myoelectric technology. Further research should be carried out mainly in areas that have received less attention.
An Eye Tracking Examination of Men's Attractiveness by Conceptive Risk Women.
Garza, Ray; Heredia, Roberto R; Cieślicka, Anna B
2017-03-01
Previous research has indicated that women prefer men who exhibit an android physical appearance where fat distribution is deposited on the upper body (i.e., shoulders and arms) and abdomen. This ideal physical shape has been associated with perceived dominance, health, and immunocompetence. Although research has investigated attractability of men with these ideal characteristics, research on how women visually perceive these characteristics is limited. The current study investigated visual perception and attraction toward men in Hispanic women of Mexican American descent. Women exposed to a front-posed image, where the waist-to-chest ratio (WCR) and hair distribution were manipulated, rated men's body image associated with upper body strength (low WCR 0.7) as more attractive. Additionally, conceptive risk did not play a strong role in attractiveness and visual attention. Hair distribution did not contribute to increased ratings of attraction but did contribute to visual attraction when measuring total time where men with both facial and body hair were viewed longer. These findings suggest that physical characteristics in men exhibiting upper body strength and dominance are strong predictors of visual attraction.
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Watanabe, Chiaki; Fujii, Nobuharu; Miyazawa, Yutaka
Cucumber seedlings develop a protuberance, peg, by which seed coats are pulled out just af-ter germination. The peg is usually formed on the lower side of the transition zone between hypocotyl and root of the seedlings grown in a horizontal position. Our previous spaceflight experiment showed that unilateral positioning of a peg in cucumber seedlings occurred due to its suppression on the upper side of the transition zone because seedlings grown in microgravity developed a peg on each side of the transition zone. We also showed that auxin was a major factor responsible for peg development. There was a redistribution of auxin in the gravistimu-lated transition zone, decreasing IAA level on the upper side, and IAA application induced a peg on both lower and upper sides of the transition zone. In addition, peg was released from its suppression in the seedlings treated with inhibitors of auxin efflux. Namely, two pegs devel-oped in the TIBA-treated seedlings even when they were grown in a horizontal position. These results imply that a reduction of auxin level due to its efflux is required for the suppression of peg development on the upper side of the transition zone in a horizontal position. To under-stand molecular mechanism underlying the negative control of morphogenesis by graviresponse in cucumber seedlings, we isolated cDNAs of auxin efflux facilitators, CsPINs, from cucumber and examined the expressions of their proteins, in relation to the redistribution of endogenous auxin and peg development. We isolated six cDNAs of PIN homologues CsPIN1 to CsPIN6 from cucumber. By immunohistochemical study using some of their anti-bodies, we revealed that CsPIN1 was localized in endodermis, vascular tissue and pith around the transition zone of cucumber seedlings. In cucumber seedlings grown in a vertical position with radicles pointing down, CsPIN1 in endodermal cells was mainly localized on the plasma membrane neighboring vascular bundle but not on the plasma membrane next to the cortex. This CsPIN1 localization could play a role in transporting auxin from cortex to vascular bundle. In both vascular and pith tissues, CsPIN1 was localized on the bottom plasma membrane of the cells, which could allow auxin to move toward the roots. In the seedlings grown in a horizontal position, endoder-mal cells situated above the vascular bundle localized CsPIN1 on the lower plasma membrane, whereas the polarized localization of CsPIN1 in endodermal cells situated below the vascular bundle became less clear. This differential expression of CsPIN1 in the endodermis commenced within 30 min after gravistimulation. We measured endogenous IAA contents in the transi-tion zone of the 24-hour-old seedlings. In the longitudinally halved transition zone of seedlings grown in a horizontal position, free IAA content was significantly lowered in the upper side, compared to that of the lower side or either side of the transition zone in a vertical position. When 24-hour-old seedlings grown in a vertical position were gravistimulated by reorienting them to the horizontal, free IAA in the lower side of the transition zone increased by 30 min after gravistimulation and eventually decreased to the control level by 180 min after gravistim-ulation. IAA content in the upper side of the transition zone did not change much and was comparable to that in the vertical transition zone during 180 min after gravistimulation. Thus, it appears that gravistimulation causes an immediate increase of IAA level in the lower side and its eventual decrease in the upper side of the transition zone. The gravity-induced changes in CsPIN1 localization in endodermal cells could be involved in auxin redistribution that leads to unilateral positioning of a peg in cucumber seedlings.
Wang, Chia-Chi; Lin, Shu-Cheng; Hsu, Shu-Ching; Yang, Ming-Ta; Chan, Kuei-Hui
2017-10-27
Creatine supplementation reduces the impact of muscle fatigue on post-activation potentiation (PAP) of the lower body, but its effects on the upper body remain unknown. This study examined the effects of creatine supplementation on muscle strength, explosive power, and optimal individual PAP time of the upper body during a set of complex training bouts in canoeists. Seventeen male high school canoeists performed a bench row for one repetition at maximum strength and conducted complex training bouts to determine the optimal individual timing of PAP and distance of overhead medicine ball throw before and after the supplementation. Subjects were assigned to a creatine or placebo group, and later consumed 20 g of creatine or carboxymethyl cellulose per day for six days. After supplementation, the maximal strength in the creatine group significantly increased ( p < 0.05). The optimal individual PAP time in the creatine group was significantly earlier than the pre-supplementation times ( p < 0.05). There was no significant change in explosive power for either group. Our findings support the notion that creatine supplementation increases maximal strength and shortens the optimal individual PAP time of the upper body in high school athletes, but has no effect on explosive power. Moreover, it was found that the recovery time between a bench row and an overhead medicine ball throw in a complex training bout is an individual phenomenon.
A Multimodal Adaptive Wireless Control Interface for People With Upper-Body Disabilities.
Fall, Cheikh Latyr; Quevillon, Francis; Blouin, Martine; Latour, Simon; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit
2018-06-01
This paper describes a multimodal body-machine interface (BoMI) to help individuals with upper-limb disabilities using advanced assistive technologies, such as robotic arms. The proposed system uses a wearable and wireless body sensor network (WBSN) supporting up to six sensor nodes to measure the natural upper-body gesture of the users and translate it into control commands. Natural gesture of the head and upper-body parts, as well as muscular activity, are measured using inertial measurement units (IMUs) and surface electromyography (sEMG) using custom-designed multimodal wireless sensor nodes. An IMU sensing node is attached to a headset worn by the user. It has a size of 2.9 cm 2.9 cm, a maximum power consumption of 31 mW, and provides angular precision of 1. Multimodal patch sensor nodes, including both IMU and sEMG sensing modalities are placed over the user able-body parts to measure the motion and muscular activity. These nodes have a size of 2.5 cm 4.0 cm and a maximum power consumption of 11 mW. The proposed BoMI runs on a Raspberry Pi. It can adapt to several types of users through different control scenarios using the head and shoulder motion, as well as muscular activity, and provides a power autonomy of up to 24 h. JACO, a 6-DoF assistive robotic arm, is used as a testbed to evaluate the performance of the proposed BoMI. Ten able-bodied subjects performed ADLs while operating the AT device, using the Test d'Évaluation des Membres Supérieurs de Personnes Âgées to evaluate and compare the proposed BoMI with the conventional joystick controller. It is shown that the users can perform all tasks with the proposed BoMI, almost as fast as with the joystick controller, with only 30% time overhead on average, while being potentially more accessible to the upper-body disabled who cannot use the conventional joystick controller. Tests show that control performance with the proposed BoMI improved by up to 17% on average, after three trials.
NASA Astrophysics Data System (ADS)
Horn, Bruno Ludovico Dihl; Goldberg, Karin; Schultz, Cesar Leandro
2018-01-01
Ephemeral rivers display a wide range of upper- and lower-flow regime structures due to great flow-velocity changes during the floods. The development of flow structures in these setting is yet to be understood, especially in the formation of thick, massive sandstones. The Upper Triassic of Southern Gondwana was marked by a climate with great seasonal changes, yet there is no description of river systems with seasonal characteristics in Southern Gondwana. This work aims to characterize a ephemeral alluvial system of the Upper Triassic of the Paraná Basin. The characteristics of the deposits are discussed in terms of depositional processes through comparison with similar deposits from literature, flow characteristics and depositional signatures compared to flume experiments. The alluvial system is divided in four facies associations: (1) channels with wanning fill, characterized by low width/thickness ratio, tabular bodies, scour-and-fill structures with upper- and lower-flow regime bedforms; (2) channels with massive fill, characterized by low w/t ratio, sheet-like bodies, scour-and-fill structures with massive sandstones; (3) proximal sheetfloods, characterized by moderate w/t ratio, sheet-like bodies with upper- and lower-flow regime bedforms and (4) distal sheetfloods, characterized by high w/t ratio, sheet-like bodies with lower-flow regime bedforms. Evidence for the seasonal reactivation of the riverine system includes the scarcity of well-developed macroforms and presence of in-channel mudstones, thick intraformational conglomerates, and the occurrence of well- and poorly-preserved vertebrate bones in the same beds. The predominantly massive sandstones indicate deposition from a hyperconcentrated flow during abrupt changes in flow speed, caused by de-confinement or channel avulsion, whereas turbulent portions of the flow formed the upper- and lower-flow regime bedforms after the deposition of the massive layers. The upper portion of the Candelária Sequence records a good example of strongly ephemeral alluvial systems, where the predominance of massive sandstones is a particular characteristic.
NASA Astrophysics Data System (ADS)
Yi, Murong; Zhao, Chunxu; Su, Xin; Tao, Yajin; Yan, Yunrong
2017-11-01
Specimens belonging to the family Blenniidae were collected in a fishery resource investigation from the coastal waters of Xisha Islands and Hainan Island, South China Sea in 2016. Combining morphological results with sequence analysis, we identified one specimen as Xiphasia matsubarai Okada & Suzuki, 1952. This represents a new record in the South China Sea. In morphology, the specimen has the following traits: body elongated, eel-like or ribbon-like in shape; flanks medium flat; the head small bluntly rounded anteriorly and without a moustache; eyes is slightly smaller, on upper lateral position of head, which is about equal to 1/5 of the length of the head; body without scales, lateral line has been degraded; both sides of the upper and lower jaws with a canine; gill is opening at the top of the pectoral fin base, approximately equal to the length of eye diameter. Dorsal fin XI, 96; pectoral fin 10; anal fin II, 95. Head and body grey-brown, including 26 dark grey-brown bands; abdomen and lower operculum yellowish grey and colour lighter; and dorsal base long with dark grey. Origin of dorsal is located over the anterior margin of pupil; black blotch on dorsal fin between 8th and 10th dorsal spine; anal and caudal fins dark grey, pectoral and ventral fins pale yellow. Sequence analysis of cytochrome oxidase subunit I gene (COI) strongly supports the identity of the specimen as X. matsubarai.
Endoscopic management of foreign bodies in the upper-GI tract: experience with 1088 cases in China.
Li, Zhao-Shen; Sun, Zhen-Xing; Zou, Duo-Wu; Xu, Guo-Ming; Wu, Ren-Pei; Liao, Zhuan
2006-10-01
Reports on endoscopic management of ingested foreign bodies of the upper-GI tract in China are scarce. To report our experience and outcome in the management of ingestion of foreign bodies in Chinese patients. Between January 1980 and January 2005, a total of 1088 patients (685 men and 403 women; age range, 1 day to 96 years old) with suspected foreign bodies were admitted to our endoscopy center. All patients underwent endoscopic procedure after admission. Demographic and endoscopic data, including age, sex, and referral sources of patients, types, number and location of foreign bodies, associated upper-GI diseases, endoscopic methods, and accessory devices for removal of foreign bodies were collected and analyzed. A total of 1090 foreign bodies were found in 988 (90.8%) patients. The types of foreign bodies varied greatly: mainly food boluses, coins, fish bones, dental prostheses, or chicken bones. The foreign bodies were located in the pharynx (n = 12), the esophagus (n = 577), the stomach (n = 441), the duodenum (n = 50), and the surgical anastomosis (n = 10). The associated GI diseases (n = 88) included esophageal carcinoma (33.0%), stricture (23.9%), diverticulum (15.9%), postgastrectomy (11.4%), hiatal hernia (10.2%), and achalasia (5.7%). A rat-tooth forceps and a snare were the most frequently used accessory devices. The success rate for foreign-body removal was 94.1% (930/988). Ingestion of foreign bodies is a common clinic problem in China. Endoscopy procedures are frequently performed, and a high proportion of patients with foreign bodies require endoscopic intervention.
Biomechanical factors critical for performance in the men's javelin throw.
Morriss, C; Bartlett, R
1996-06-01
In the men's javelin event the athlete throws an 800g implement into a 40 degrees sector. The objective is to throw as far as possible. Compared with most other throwing implements, the javelin is relatively aerodynamic. Even so, the most important release parameter is still the release speed. Maximising this parameter gives the athlete the best chance of attaining success in the event. For an elite thrower, as much as 70% of the release speed of the javelin is developed in the last 0.1 second. As such, the movements of throwers during this period and immediately preceding it have received attention from researchers. It would appear that a thrower's body position at the instant of final foot strike, his ability to transfer momentum between the lower body and the upper body during the delivery, and coordination of the working body segments in the most effective manner are linked to his success in the event. This paper reviews the most important biomechanical research on the men's javelin throw and highlights findings such as these which may improve the understanding of how elite javelin throwers achieve success.
Control of vortical separation on conical bodies
NASA Technical Reports Server (NTRS)
Mourtos, Nikos J.; Roberts, Leonard
1987-01-01
In a variety of aeronautical applications, the flow around conical bodies at incidence is of interest. Such applications include, but are not limited to, highly maneuverable aircraft with delta wings, the aerospace plane and nose portions of spike inlets. The theoretical model used has three parts. First, the single line vortex model is used within the framework of slender body theory, to compute the outer inviscid field for specified separation lines. Next, the three dimensional boundary layer is represented by a momentum equation for the cross flow, analogous to that for a plane boundary layer; a von Karman Pohlhausen approximation is applied to solve this equation. The cross flow separation for both laminar and turbulent layers is determined by matching the pressure at the upper and lower separation points. This iterative procedure yields a unique solution for the separation lines and consequently for the position of the vortices and the vortex lift on the body. Lastly, control of separation is achieved by blowing tangentially from a slot located along a cone generator. It is found that for very small blowing coefficients, the separation can be postponed or suppressedy completely.
A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements
NASA Astrophysics Data System (ADS)
Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji
2017-02-01
Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81 ± 0.09, 0.85 ± 0.09, and 0.76 ± 0.13, respectively) and the patients (e.g. 0.91 ± 0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.
A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji
2017-02-01
Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81 ± 0.09, 0.85 ± 0.09, and 0.76 ± 0.13, respectively) and the patients (e.g. 0.91 ± 0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of daily actions.
Black breast cancer survivors experience greater upper extremity disability.
Dean, Lorraine T; DeMichele, Angela; LeBlanc, Mously; Stephens-Shields, Alisa; Li, Susan Q; Colameco, Chris; Coursey, Morgan; Mao, Jun J
2015-11-01
Over one-third of breast cancer survivors experience upper extremity disability. Black women present with factors associated with greater upper extremity disability, including: increased body mass index (BMI), more advanced disease stage at diagnosis, and varying treatment type compared with Whites. No prior research has evaluated the relationship between race and upper extremity disability using validated tools and controlling for these factors. Data were drawn from a survey study among 610 women with stage I-III hormone receptor positive breast cancer. The disabilities of the arm, shoulder and hand (QuickDASH) is an 11-item self-administered questionnaire that has been validated for breast cancer survivors to assess global upper extremity function over the past 7 days. Linear regression and mediation analysis estimated the relationships between race, BMI and QuickDASH score, adjusting for demographics and treatment types. Black women (n = 98) had 7.3 points higher average QuickDASH scores than White (n = 512) women (p < 0.001). After adjusting for BMI, age, education, cancer treatment, months since diagnosis, and aromatase inhibitor status, Black women had an average 4-point (95 % confidence interval 0.18-8.01) higher QuickDASH score (p = 0.04) than White women. Mediation analysis suggested that BMI attenuated the association between race and disability by 40 %. Even several years post-treatment, Black breast cancer survivors had greater upper extremity disability, which was partially mediated by higher BMIs. Close monitoring of high BMI Black women may be an important step in reducing disparities in cancer survivorship. More research is needed on the relationship between race, BMI, and upper extremity disability.
Gandolla, Marta; Costa, Andrea; Aquilante, Lorenzo; Gfoehler, Margit; Puchinger, Markus; Braghin, Francesco; Pedrocchi, Alessandra
2017-07-01
People with neuromuscular diseases such as muscular dystrophy experience a distributed and evolutive weakness in the whole body. Recent technological developments have changed the daily life of disabled people strongly improving the perceived quality of life, mostly concentrating on powered wheelchairs, so to assure autonomous mobility and respiratory assistance, essential for survival. The key concept of the BRIDGE project is to contrast the everyday experience of losing functions by providing them of a system able to exploit the best their own residual capabilities in arm movements so to keep them functional and autonomous as much as possible. BRIDGE is composed by a light, wearable and powered five degrees of freedom upper limb exoskeleton under the direct control of the user through a joystick or gaze control. An inverse kinematic model allows to determine joints position so to track patient desired hand position. BRIDGE prototype has been successfully tested in simulation environment, and by a small group of healthy volunteers. Preliminary results show a good tracking performance of the implemented control scheme. The interaction procedure was easy to understand, and the interaction with the system was successful.
Muscle Strength Endurance Testing Development Based Photo Transistor with Motion Sensor Ultrasonic
NASA Astrophysics Data System (ADS)
Rusdiana, A.
2017-03-01
The endurance of upper-body muscles is one of the most important physical fitness components. As technology develops, the process of test and assessment is now getting digital; for instance, there are a sensor stuck to the shoe (Foot Pod, Polar, and Sunto), Global Positioning System (GPS) and Differential Global Positioning System (DGPS), radar, photo finish, kinematic analysis, and photocells. Those devices aim to analyze the performances and fitness of athletes particularly the endurance of arm, chest, and shoulder muscles. In relation to that, this study attempt to create a software and a hardware for pull-ups through phototransistor with ultrasonic motion sensor. Components needed to develop this device consist of microcontroller MCS-51, photo transistor, light emitting diode, buzzer, ultrasonic sensor, and infrared sensor. The infrared sensor is put under the buffer while the ultrasonic sensor is stuck on the upper pole. The components are integrated with an LED or a laptop made using Visual Basic 12 software. The results show that pull-ups test using digital device (mean; 9.4 rep) is lower than using manual calculation (mean; 11.3 rep). This is due to the fact that digital test requires the test-takers to do pull-ups perfectly.
McGowan, C P; Skinner, J; Biewener, A A
2008-01-01
The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (∼250 kg) were likely limited in locomotor capacity. PMID:18086129
Zhu, Shankuan; Kim, Jong-Eun; Ma, Xiaoguang; Shih, Alan; Laud, Purushottam W; Pintar, Frank; Shen, Wei; Heymsfield, Steven B; Allison, David B
2010-03-30
Men tend to have more upper body mass and fat than women, a physical characteristic that may predispose them to severe motor vehicle crash (MVC) injuries, particularly in certain body regions. This study examined MVC-related regional body injury and its association with the presence of driver obesity using both real-world data and computer crash simulation. Real-world data were from the 2001 to 2005 National Automotive Sampling System Crashworthiness Data System. A total of 10,941 drivers who were aged 18 years or older involved in frontal collision crashes were eligible for the study. Sex-specific logistic regression models were developed to analyze the associations between MVC injury and the presence of driver obesity. In order to confirm the findings from real-world data, computer models of obese subjects were constructed and crash simulations were performed. According to real-world data, obese men had a substantially higher risk of injury, especially serious injury, to the upper body regions including head, face, thorax, and spine than normal weight men (all p<0.05). A U-shaped relation was found between body mass index (BMI) and serious injury in the abdominal region for both men and women (p<0.05 for both BMI and BMI(2)). In the high-BMI range, men were more likely to be seriously injured than were women for all body regions except the extremities and abdominal region (all p<0.05 for interaction between BMI and sex). The findings from the computer simulation were generally consistent with the real-world results in the present study. Obese men endured a much higher risk of injury to upper body regions during MVCs. This higher risk may be attributed to differences in body shape, fat distribution, and center of gravity between obese and normal-weight subjects, and between men and women. Please see later in the article for the Editors' Summary.
Zhu, Shankuan; Kim, Jong-Eun; Ma, Xiaoguang; Shih, Alan; Laud, Purushottam W.; Pintar, Frank; Shen, Wei; Heymsfield, Steven B.; Allison, David B.
2010-01-01
Background Men tend to have more upper body mass and fat than women, a physical characteristic that may predispose them to severe motor vehicle crash (MVC) injuries, particularly in certain body regions. This study examined MVC-related regional body injury and its association with the presence of driver obesity using both real-world data and computer crash simulation. Methods and Findings Real-world data were from the 2001 to 2005 National Automotive Sampling System Crashworthiness Data System. A total of 10,941 drivers who were aged 18 years or older involved in frontal collision crashes were eligible for the study. Sex-specific logistic regression models were developed to analyze the associations between MVC injury and the presence of driver obesity. In order to confirm the findings from real-world data, computer models of obese subjects were constructed and crash simulations were performed. According to real-world data, obese men had a substantially higher risk of injury, especially serious injury, to the upper body regions including head, face, thorax, and spine than normal weight men (all p<0.05). A U-shaped relation was found between body mass index (BMI) and serious injury in the abdominal region for both men and women (p<0.05 for both BMI and BMI2). In the high-BMI range, men were more likely to be seriously injured than were women for all body regions except the extremities and abdominal region (all p<0.05 for interaction between BMI and sex). The findings from the computer simulation were generally consistent with the real-world results in the present study. Conclusions Obese men endured a much higher risk of injury to upper body regions during MVCs. This higher risk may be attributed to differences in body shape, fat distribution, and center of gravity between obese and normal-weight subjects, and between men and women. Please see later in the article for the Editors' Summary PMID:20361024
Intestinal leishmaniasis in acquired immunodeficiency syndrome.
Molaei, M; Minakari, M; Pejhan, Sh; Mashayekhi, R; Modaress Fatthi, A R; Zali, M R
2011-05-01
In endemic regions, visceral leishmaniasis is one of the most common opportunistic infections in HIV positive patients. Simultaneous infection with Leishmania and HIV has been reported in some countries but this is the first report of such a case in Iran. Our patient was a 27 years old man with intermittent night fever, abdominal pain, loss of appetite, vomiting, watery diarrhea and severe weight loss for 6 months. He had low socio-economic status with an imprisonment history. The patient was quite cachectic and had low grade fever. Physical exam and upper GI endoscopy revealed oropharyngeal candidiasis. Microscopic evaluation of duodenal biopsy material showed Leishmania amastigotes in macrophages of lamina propria. Leishman bodies were also observed in bone marrow aspiration specimen. Serologic tests were positive for Leishmania infantum. HIV antibody was also positive with a CD4+cell count of 80/μl. The diagnosis was acquired immunodeficiency syndrome with simultaneous visceral leishmaniasis involving intestinal mucosa.
Are Upper-Body Axial Symptoms a Feature of Early Parkinson’s Disease?
Moreau, Caroline; Baille, Guillaume; Delval, Arnaud; Tard, Céline; Perez, Thierry; Danel-Buhl, Nicolas; Seguy, David; Labreuche, Julien; Duhamel, Alain; Delliaux, Marie; Dujardin, Kathy; Defebvre, Luc
2016-01-01
Background Axial disorders are considered to appear late in the course of Parkinson’s disease (PD). The associated impact on quality of life (QoL) and survival and the lack of an effective treatment mean that understanding and treating axial disorders is a key challenge. However, upper-body axial disorders (namely dysarthria, swallowing and breathing disorders) have never been prospectively assessed in early-stage PD patients. Objectives To characterize upper-body axial symptoms and QoL in consecutive patients with early-stage PD. Methods We prospectively enrolled 66 consecutive patients with early-stage PD (less than 3 years of disease progression) and assessed dysarthria, dysphagia and respiratory function (relative to 36 controls) using both objective and patient-reported outcomes. Results The mean disease duration was 1.26 years and the mean UPDRS motor score was 19.4 out of 108. 74% of the patients presented slight dysarthria (primarily dysprosodia). Men appeared to be more severely affected (i.e. dysphonia). This dysfunction was strongly correlated with low swallowing speed (despite the absence of complaints about dysphagia), respiratory insufficiency and poor QoL. Videofluorography showed that oral-phase swallowing disorders affected 60% of the 31 tested patients and that pharyngeal-phase disorders affected 21%. 24% of the patients reported occasional dyspnea, which was correlated with anxiety in women but not in men. Marked diaphragmatic dysfunction was suspected in 42% of the patients (predominantly in men). Conclusion Upper body axial symptoms were frequent in men with early-stage PD, whereas women presented worst non-motor impairments. New assessment methods are required because currently available tools do not reliably detect these upper-body axial disorders. PMID:27654040
Hertzog, Maxime; Rumpf, Michael Clemens; Hader, Karim
2017-08-26
Soccer is classified as a contact/collision sport with many player-to-player duels. Winning these duels, shielding the ball or fending off an opponent requires upper-body strength and power. Therefore this study aimed, a) to examine the time-related effect of an upper-body RT on maximal strength and power changes in highly trained soccer players, b) to investigate if the resistance-training (RT) status influences these changes throughout a competitive season. Twenty-eight soccer players participated in this study and were divided into an untrained (UG) and a trained (TG) group, according to their RT status. Both groups performed the same upper-body RT once a week, over 30 weeks. Maximal strength (1RM) and maximal power (MP) were assessed before, during and after the competitive season. Both groups significantly improved 1RM and MP over the entire competitive season, with a moderate (TG, 13%) to very large (UG, 21%) magnitude in 1RM and with a small (TG, 8%) to moderate (UG, 13%) magnitude in MP. After the initial 10 weeks of RT, UG presented significant and slightly (1RM) to moderately (MP) greater improvements than TG. For all other time intervals, the between-groups changes in 1RM were rated as similar. For the last 20 weeks of the RT, the change in MP was significantly lower for UG compared to TG. One upper-body RT-session per week will provide sufficient stimulus to enable an almost certain improvement in strength and power throughout a competitive season for all players disregarding their initial RT status.
Yang, Yabo; Han, Yang; Wang, Wenjun; Du, Tao; Li, Yu; Zhang, Jianping; Yang, Dongzi; Zhao, Xiaomiao
2016-02-01
To study the distribution and progression of terminal hair growth in pregnant women and to determine the feasibility of a simplified scoring system for assessing hirsutism. Prospective follow-up observational study. Academic hospital. A total of 115 pregnant women (discovery cohort) and 1,159 women with polycystic ovary syndrome (PCOS) (validation cohort). Facial and body terminal hair growth assessed by modified Ferriman and Gallwey score system (mFG score), and total testosterone (TT) level detected by liquid chromatography with tandem mass spectrometry. Degree of facial and body terminal hair growth. The serum TT level and mFG score increased as pregnancy progressed. Both the prospective study and receiver operating characteristics curve indicated that the body areas with the greatest contribution to hirsutism (defined as an mFG score ≥5) with new terminal hair growth were the upper lip, lower back, lower abdomen, and thigh. A simplified mFG scoring system (sFG) was developed, and a cutoff value of ≥3 was defined as hirsutism. Pregnant hirsute women were distinguished from nonhirsute women with an accuracy of 95.2%, sensitivity of 96.8%, and specificity of 94.3% for detecting hirsutism. This was further validated in the PCOS population with a sensitivity, specificity, and positive predictive value of 97.6%, 96.4%, and 96.4%, respectively. This study suggests that the upper lip, lower back, lower abdomen, and thigh may be an effective simplified combination of the mFG system for the evaluation of excess hair growth in Chinese women. ChiCTR-OCH-14005012. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Anthropometric and performance characteristics of the German rugby union 7s team.
Hohenauer, Erich; Rucker, Alfred M; Clarys, Peter; Küng, Ursula M; Stoop, Rahel; Clijsen, Ron
2017-12-01
Somatotyping is advantageous in sports for the optimal development of performance level and injury prevention. The aim of this study was to describe the anthropometric and physical performance characteristics of the German national rugby union 7s team. Seventeen male rugby players, classified as forwards (N.=9; 24.2±2.1 years) and backs (N.=8; 24.3±5.05 years) were assessed. Anthropometric measurements included: body height, weight, height to weight ratio (H/W), five skinfolds, biepicondylar humerus and femur breadth, upper arm- and calf girth, estimated lower body fat percentage and determination of the individual and mean somatotype. The physical performance tests included: sit-and-reach, handgrip strength, one minute of sit-ups, one minute of push-ups, vertical jump performance, peak power performance, bent arm hanging, 40-m sprint, and the Yo-Yo Intermittent Endurance Test. The forward players were significantly taller (P=0.003), heavier (P=0.001) with a smaller H/W (P=0.009) compared to the backs. Humerus and femur bone breadths (P<0.05) and flexed upper arm and calf girths (P<0.05) were significantly different between the groups. Handgrip strength left (P=0.04), one minute of sit-ups (P=0.03), and peak power output (P=0.015) were also significantly different between the groups. The data indicate that German forward and back players have a similar somatotype and performance level. However, a higher body mass of forward players could be advantageous in that their playing position is much more body contact intensive, and requires a significant amount of tackling. The nominative data of this study may assist coaches to detect weak links in rugby specific athletic performance.
A Comparison of Whole-Body Vibration and Resistance Training on Total Work in the Rotator Cuff
Hand, Jason; Verscheure, Susan; Osternig, Louis
2009-01-01
Abstract Context: Whole-body vibration machines are a relatively new technology being implemented in the athletic setting. Numerous authors have examined the proposed physiologic mechanisms of vibration therapy and performance outcomes. Changes have mainly been observed in the lower extremity after individual exercises, with minimal attention to the upper extremity and resistance training programs. Objective: To examine the effects of a novel vibration intervention directed at the upper extremity as a precursor to a supervised, multijoint dynamic resistance training program. Design: Randomized controlled trial. Setting: National Collegiate Athletic Association Division IA institution. Patients or Other Participants: Thirteen female student-athletes were divided into the following 2 treatment groups: (1) whole-body vibration and resistance training or (2) resistance training only. Intervention(s): Participants in the vibration and resistance training group used an experimental vibration protocol of 2 × 60 seconds at 4 mm and 50 Hz, in a modified push-up position, 3 times per week for 10 weeks, just before their supervised resistance training session. Main Outcome Measure(s): Isokinetic total work measurements of the rotator cuff were collected at baseline and at week 5 and week 10. Results: No differences were found between the treatment groups (P > .05). However, rotator cuff output across time increased in both groups (P < .05). Conclusions: Although findings did not differ between the groups, the use of whole-body vibration as a precursor to multijoint exercises warrants further investigation because of the current lack of literature on the topic. Our results indicate that indirectly strengthening the rotator cuff using a multijoint dynamic resistance training program is possible. PMID:19771284
Women, work and musculoskeletal health.
Strazdins, Lyndall; Bammer, Gabriele
2004-03-01
Why are employed women at increased risk for upper limb musculoskeletal disorders and what can this tell us about the way work and family life shape health? Despite increases in women's labour force participation, gender differences in work-related health conditions have received little research attention. This appears be the first study to examine why employed women are much more likely than men to experience upper body musculoskeletal disorders. A mailed self-report survey gathered data from 737 Australian Public Service employees (73% women). The majority of respondents were clerical workers (73%). Eighty one per cent reported some upper body symptoms; of these, 20% reported severe and continuous upper body pain. Upper body musculoskeletal symptoms were more prevalent and more severe among women. The gender difference in symptom severity was explained by risk factors at work (repetitive work, poor ergonomic equipment), and at home (having less opportunity to relax and exercise outside of work). Parenthood exacerbated this gender difference, with mothers reporting the least time to relax or exercise. There was no suggestion that women were more vulnerable than men to pain, nor was there evidence of systematic confounding between perceptions of work conditions and reported health status. Changes in the nature of work mean that more and more employees, especially women, use computers for significant parts of their workday. The sex-segregation of women into sedentary, repetitive and routine work, and the persisting gender imbalance in domestic work are interlinking factors that explain gender differences in musculoskeletal disorders.
Song, Yun-Gyu; Won, Yu Hui; Park, Sung-Hee; Ko, Myoung-Hwan
2015-01-01
Objective To investigate changes in the core temperature and body surface temperature in patients with incomplete spinal cord injuries (SCI). In incomplete SCI, the temperature change is difficult to see compared with complete spinal cord injuries. The goal of this study was to better understand thermal regulation in patients with incomplete SCI. Methods Fifty-six SCI patients were enrolled, and the control group consisted of 20 healthy persons. The spinal cord injuries were classified according to International Standards for Neurological Classification of Spinal Cord Injury. The patients were classified into two groups: upper (neurological injury level T6 or above) and lower (neurological injury level T7 or below) SCIs. Body core temperature was measured using an oral thermometer, and body surface temperature was measured using digital infrared thermographic imaging. Results Twenty-nine patients had upper spinal cord injuries, 27 patients had lower SCIs, and 20 persons served as the normal healthy persons. Comparing the skin temperatures of the three groups, the temperatures at the lower abdomen, anterior thigh and anterior tibia in the patients with upper SCIs were lower than those of the normal healthy persons and the patients with lower SCIs. No significant temperature differences were observed between the normal healthy persons and the patients with lower SCIs. Conclusion In our study, we found thermal dysregulation in patients with incomplete SCI. In particular, body surface temperature regulation was worse in upper SCIs than in lower injuries. Moreover, cord injury severity affected body surface temperature regulation in SCI patients. PMID:26605167
[Body proportions of healthy and short stature adolescent girls].
Milde, Katarzyna; Tomaszewski, Paweł; Majcher, Anna; Pyrżak, Beata; Stupnicki, Romuald
2011-01-01
Regularly conducted assessment of body proportions is of importance as early detection of possible growth disorders and immediate prevention may allow gathering an optimum of child's genetically conditioned level of development. To assess body proportions of adolescent girls, healthy or with growth deficiency. Three groups were studied: 104 healthy, short-statured girls (body height below the 10th percentile), 84 girls with Turner's syndrome (ZT) and 263 healthy girls of normal stature (between percentiles 25 and 75), all aged 11-15 years. The following measurements were conducted according to common anthropometric standards: body height, sitting body height, shoulder width, upper extremity length and lower extremity length - the last one was computed as the difference between standing and sitting body heights. All measurements were converted to logarithms and allometric linear regressions vs log body height were computed. The Turner girls proved to have allometrically shorter legs (p<0.001) and wider shoulders (p<0.001) compared with both groups of healthy girls, and longer upper extremities (p<0.001) compared with the girls of normal stature. Healthy, short-statured girls had longer lower extremities (p<0.001) as compared to other groups; they also had wider shoulders (p<0.001) and longer upper extremities (p<0.001) compared to healthy girls of normal height. Allometric relations of anthropometric measurements enable a deeper insight into the body proportions, especially in the growth period. The presented discrimination of Turner girls may serve as a screening test, and recommendation for further clinical treatment.
Weightman, Andrew; Preston, Nick; Levesley, Martin; Bhakta, Bipin; Holt, Raymond; Mon-Williams, Mark
2014-05-01
To compare upper limb kinematics of children with spastic cerebral palsy (CP) using a passive rehabilitation joystick with those of adults and able-bodied children, to better understand the design requirements of computer-based rehabilitation devices. A blocked comparative study involving seven children with spastic CP, nine able-bodied adults and nine able-bodied children, using a joystick system to play a computer game whilst the kinematics of their upper limb were recorded. The translational kinematics of the joystick's end point and the participant's shoulder movement (protraction/retraction) and elbow rotational kinematics (flexion/extension) were analysed for each group. Children with spastic CP matched their able-bodied peers in the time taken to complete the computer task, but this was due to a failure to adhere to the task instructions of travelling along a prescribed straight line when moving between targets. The spastic CP group took longer to initiate the first movement, which showed jerkier trajectories and demonstrated qualitatively different movement patterns when using the joystick, with shoulder movements that were significantly of greater magnitude than the able-bodied participants. Children with spastic CP generate large shoulder and hence trunk movements when using a joystick to undertake computer-generated arm exercises. This finding has implications for the development and use of assistive technologies to encourage exercise and the instructions given to users of such systems. A kinematic analysis of upper limb function of children with CP when using joystick devices is presented. Children with CP may use upper body movements to compensate for limitations in voluntary shoulder and elbow movements when undertaking computer games designed to encourage the practice of arm movement. The design of rehabilitative computer exercise systems should consider movement of the torso/shoulder as it may have implications for the quality of therapy in the rehabilitation of the upper limb in children with CP.
Proposal for methods of diagnosis of fish bone foreign body in the Esophagus.
Woo, Seung Hoon; Kim, Kyung Hee
2015-11-01
To investigate the methods of diagnosis of fish bone foreign body in the esophagus and suggest a diagnostic protocol. Prospective cohort study. A prospective study was performed on 286 patients with a history of fish bone foreign body impaction. Among them, 88 patients had negative findings in the oral cavity and laryngopharynx. Subsequent radiologic assessment of these patients included plain radiography and computed tomography (CT). Sixty-six patients showed positive findings in the esophagus, and an attempt was made to remove the obstruction using transnasal esophagoscopy. In 66 patients, a fish bone foreign body was detected in the esophagus by CT. In contrast, plain radiography detected a foreign body in only 30 patients. The overall detection rate of plain radiography compared with CT for fish bones was 45.5%. Plain radiography detected 35.9% of the simple type fish bones and 54.5% of the gill bone detected by CT. However, jaw bones had a detection rate of 100% with both methods. The fish bone foreign bodies were most commonly located in the upper esophagus (n=65, 98.5%), followed by the lower esophagus (n=1, 1.5%). CT is a useful method for identification of esophageal fish bone foreign bodies. Therefore, CT should be considered as the first-choice technique for the diagnosis of esophageal fish bone foreign body. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
ERIC Educational Resources Information Center
Hobayan, Kalani; Patterson, Debra; Sherman, Clay; Wiersma, Lenny
2014-01-01
In a society in which obesity levels have tripled in the past 30 years, the importance of increased fitness levels within the academic setting has become even more critical. The purpose of this study was to investigate the validity of alternative Fitnessgram upper body tests of muscular strength and endurance among seventh and eighth grade males…
Gigantism, temperature and metabolic rate in terrestrial poikilotherms
Makarieva, Anastassia M; Gorshkov, Victor G; Li, Bai-Lian
2005-01-01
The mechanisms dictating upper limits to animal body size are not well understood. We have analysed body length data for the largest representatives of 24 taxa of terrestrial poikilotherms from tropical, temperate and polar environments. We find that poikilothermic giants on land become two–three times shorter per each 10 degrees of decrease in ambient temperature. We quantify that this diminution of maximum body size accurately compensates the drop of metabolic rate dictated by lower temperature. This supports the idea that the upper limit to body size within each taxon can be set by a temperature-independent critical minimum value of mass-specific metabolic rate, a fall below which is not compatible with successful biological performance. PMID:16191647
Di Blasio, Andrea; Morano, Teresa; Napolitano, Giorgio; Bucci, Ines; Di Santo, Serena; Gallina, Sabina; Cugusi, Lucia; Di Donato, Francesco; D'Arielli, Alberto; Cianchetti, Ettore
2016-12-01
The negative side effects of breast cancer treatments can include upper limb lymphoedema. The growing literature indicates that Nordic walking is an effective discipline against several disease symptoms. The aim of this study was to determine whether introduction to Nordic walking alone is effective against total body extracellular water and upper limb circumferences in breast cancer survivors compared to its combination with a series of specifically created exercises (i.e. the Isa method). 16 breast cancer survivors (49.09 ± 2.24 years) were recruited and randomly assigned to 1 of 2 different training groups. 10 lessons on Nordic walking technique plus the Isa method significantly reduced both extracellular body water and the extracellular-to-total body water ratio (p = 0.01 for both), and also the circumference of the upper limb, (both relaxed arm and forearm circumferences) (p = 0.01 for all), whereas Nordic walking alone did not. Introduction to Nordic walking does not seem to affect lymphoedema in breast cancer survivors. This might be because novice Nordic Walkers do not adequately generate an effective muscular pump through coordination of the alternated bimanual open-close cycle. The Isa method appears to close this gap.
Di Blasio, Andrea; Morano, Teresa; Napolitano, Giorgio; Bucci, Ines; Di Santo, Serena; Gallina, Sabina; Cugusi, Lucia; Di Donato, Francesco; D'Arielli, Alberto; Cianchetti, Ettore
2016-01-01
Background The negative side effects of breast cancer treatments can include upper limb lymphoedema. The growing literature indicates that Nordic walking is an effective discipline against several disease symptoms. The aim of this study was to determine whether introduction to Nordic walking alone is effective against total body extracellular water and upper limb circumferences in breast cancer survivors compared to its combination with a series of specifically created exercises (i.e. the Isa method). Methods 16 breast cancer survivors (49.09 ± 2.24 years) were recruited and randomly assigned to 1 of 2 different training groups. Results 10 lessons on Nordic walking technique plus the Isa method significantly reduced both extracellular body water and the extracellular-to-total body water ratio (p = 0.01 for both), and also the circumference of the upper limb, (both relaxed arm and forearm circumferences) (p = 0.01 for all), whereas Nordic walking alone did not. Conclusions Introduction to Nordic walking does not seem to affect lymphoedema in breast cancer survivors. This might be because novice Nordic Walkers do not adequately generate an effective muscular pump through coordination of the alternated bimanual open-close cycle. The Isa method appears to close this gap. PMID:28228712
Secular changes in body size and body composition in schoolchildren from La Plata City (Argentina).
Guimarey, Luis Manuel; Castro, Luis Eduardo; Torres, María Fernanda; Cesani, María Florencia; Luis, María Antonia; Quintero, Fabián Aníbal; Oyhenart, Evelia Edith
2014-01-01
To analyze the secular changes in body size and composition of two cohorts of children from La Plata City, Argentina, with a 35-year follow-up. subjects and methods: Cohort 1 (C1) was measured in 1969-1970 and included 1772 children (889 boys, 883 girls), and Cohort 2 (C2), measured in 2004-2005, included 1059 children (542 boys, 517 girls). Both cohorts were obtained from matching geographical areas and comprised children from 4 to 12 years. Body weight (W); Height (H); Upper arm circumference (UAC); Tricipital (TS) and Subscapular skinfolds (SS) were measured, and Body Mass Index (BMI) and muscle (UMA) and fat (AFA) brachial areas were calculated. Prevalence of overweight and obesity was estimated by IOTF. To compare C1-C2 we used a generalized linear model with log-transformed variables, and chi square test. There were significant and positive differences between C2-C1 in W, UAC, SS, TS, and AFA. In contrast, H was not significantly different and UMA was significantly different but with negative values. The prevalence of overweight and obesity was 14.5% and 3.8% in C1, and 17.0% and 6.8% in C2. Differences between cohorts were significant for obesity. The shifts observed for soft tissues--positive trend for fat and negative for muscle area--occurring without changes in height lead us to suppose that in these three decades, La Plata's population has experienced deterioration in living conditions and important changes in their lifestyle, such as an increased consumption of energy-dense foods and sedentary habits.
Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo
2014-09-01
The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p < 0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.
Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review.
Carey, Stephanie L; Lura, Derek J; Highsmith, M Jason
2015-01-01
The choice of a myoelectric or body-powered upper-limb prosthesis can be determined using factors including control, function, feedback, cosmesis, and rejection. Although body-powered and myoelectric control strategies offer unique functions, many prosthesis users must choose one. A systematic review was conducted to determine differences between myoelectric and body-powered prostheses to inform evidence-based clinical practice regarding prescription of these devices and training of users. A search of 9 databases identified 462 unique publications. Ultimately, 31 of them were included and 11 empirical evidence statements were developed. Conflicting evidence has been found in terms of the relative functional performance of body-powered and myoelectric prostheses. Body-powered prostheses have been shown to have advantages in durability, training time, frequency of adjustment, maintenance, and feedback; however, they could still benefit from improvements of control. Myoelectric prostheses have been shown to improve cosmesis and phantom-limb pain and are more accepted for light=intensity work. Currently, evidence is insufficient to conclude that either system provides a significant general advantage. Prosthetic selection should be based on a patient's individual needs and include personal preferences, prosthetic experience, and functional needs. This work demonstrates that there is a lack of empirical evidence regarding functional differences in upper-limb prostheses.
Wigner, E.P.; Weinberg, A.W.; Young, G.J.
1958-04-15
A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.
Anshul
2011-01-01
ABSTRACT Purpose: The purpose of this article was to determine whether strength is altered in the upper trapezius in the presence of latent myofascial trigger points (MTrP). Methods: This study was case controlled and used convenience sampling. The sample recruited was homogeneous with respect to age, sex, height, and body mass. Participants were assessed for the presence of latent MTrP in the upper trapezius and placed into two groups: an experimental group that had latent MTrP in the upper trapezius and a control group that did not. Eighteen women (mean age 21.4 y, SD 1.89; mean height 156.9 cm, SD 4.03; and mean body mass 51.7 kg, SD 5.84) made up the experimental group, and 19 women (mean age 20.3 y, SD 1.86; mean height 158.6 cm, SD 3.14; and mean body mass 53.2 kg, SD 5.17) made up the control group. We obtained strength measurements of the non-dominant arm using a handheld dynamometer and compared them between the two groups. Results: The difference in the strength measurements between the two groups was not statistically significant (p=0.59). Conclusions: The presence of latent MTrPs may not affect the strength of the upper trapezius. PMID:22942517
Emergence of postural patterns as a function of vision and translation frequency
NASA Technical Reports Server (NTRS)
Buchanan, J. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)
1999-01-01
Emergence of postural patterns as a function of vision and translation frequency. We examined the frequency characteristics of human postural coordination and the role of visual information in this coordination. Eight healthy adults maintained balance in stance during sinusoidal support surface translations (12 cm peak to peak) in the anterior-posterior direction at six different frequencies. Changes in kinematic and dynamic measures revealed that both sensory and biomechanical constraints limit postural coordination patterns as a function of translation frequency. At slow frequencies (0.1 and 0.25 Hz), subjects ride the platform (with the eyes open or closed). For fast frequencies (1.0 and 1.25 Hz) with the eyes open, subjects fix their head and upper trunk in space. With the eyes closed, large-amplitude, slow-sway motion of the head and trunk occurred for fast frequencies above 0.5 Hz. Visual information stabilized posture by reducing the variability of the head's position in space and the position of the center of mass (CoM) within the support surface defined by the feet for all but the slowest translation frequencies. When subjects rode the platform, there was little oscillatory joint motion, with muscle activity limited mostly to the ankles. To support the head fixed in space and slow-sway postural patterns, subjects produced stable interjoint hip and ankle joint coordination patterns. This increase in joint motion of the lower body dissipated the energy input by fast translation frequencies and facilitated the control of upper body motion. CoM amplitude decreased with increasing translation frequency, whereas the center of pressure amplitude increased with increasing translation frequency. Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs. The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.
Human adaptations for the visual assessment of strength and fighting ability from the body and face
Sell, Aaron; Cosmides, Leda; Tooby, John; Sznycer, Daniel; von Rueden, Christopher; Gurven, Michael
2008-01-01
Selection in species with aggressive social interactions favours the evolution of cognitive mechanisms for assessing physical formidability (fighting ability or resource-holding potential). The ability to accurately assess formidability in conspecifics has been documented in a number of non-human species, but has not been demonstrated in humans. Here, we report tests supporting the hypothesis that the human cognitive architecture includes mechanisms that assess fighting ability—mechanisms that focus on correlates of upper-body strength. Across diverse samples of targets that included US college students, Bolivian horticulturalists and Andean pastoralists, subjects in the US were able to accurately estimate the physical strength of male targets from photos of their bodies and faces. Hierarchical linear modelling shows that subjects were extracting cues of strength that were largely independent of height, weight and age, and that corresponded most strongly to objective measures of upper-body strength—even when the face was all that was available for inspection. Estimates of women's strength were less accurate, but still significant. These studies are the first empirical demonstration that, for humans, judgements of strength and judgements of fighting ability not only track each other, but accurately track actual upper-body strength. PMID:18945661
Takemoto, R M; Pavanelli, G C; Lizama, M A P; Luque, J L; Poulin, R
2005-03-01
A comparative analysis of parasite species richness was performed across 53 species of fish from the floodplain of the upper Paraná River, Brazil. Values of catch per unit effort, CPUE (number of individuals of a given fish species captured per 1000 m(2) of net during 24 h) were used as a rough measure of population density for each fish species in order to test its influence on endoparasite species richness. The effects of several other host traits (body size, social behaviour, reproductive behaviour, spawning type, trophic category, feeding habits, relative position in the food web, preference for certain habitats and whether the fish species are native or exotic) on metazoan endoparasite species richness were also evaluated. The CPUE was the sole significant predictor of parasite species richness, whether controlling for the confounding influences of host phylogeny and sampling effort or not. The results suggest that in the floodplain of the upper Paraná River (with homogeneous physical characteristics and occurrence of many flood pulses), population density of different host species might be the major determinant of their parasite species richness.
Tethered satellite control mechanism
NASA Technical Reports Server (NTRS)
Kyrias, G. M.
1983-01-01
The tethered satellite control mechanisms consist of four major subsystems. The reel drive mechanism stores the tether. It is motor driven and includes a level wind to uniformly feed the tether to the reel. The lower boom mechanism serves two primary functions: (1) it measures tether length and velocity as the tether runs through the mechanism, and (2) it reads the tether tension at the reel. It also provides change the direction for the tether from the reel to the upper boom mechanism. The deployment boom positions the upper boom mechanism with satellite out of the cargo bay. The deployment function places the 500-kg satellite 20 m away from the Space Shuttle (producing a small natural gravity gradient force), impacts an initial velocity to the satellite for deployment, and allows for satellite docking at a safe distance from the body of the Space Shuttle. The upper boom mechanism (UBM) services three functions: (1) it provides tether control to the satellite as the satellite swings in and out of plane; (2) it reads tether tension in the low range during the early deployment and final retrieval parts of the mission; and (3) it produces additional tether tension at the reel when tether tension to the satellite is in the low range.
Milligan, Alexandra; Mills, Chris; Corbett, Jo; Scurr, Joanna
2015-08-01
Many women wear sports bras due to positive benefits associated with these garments (i.e. reduction in breast movement and breast pain), however the effects these garments have on upper body running kinematics has not been investigated. Ten female participants (32 DD or 34 D) completed two five kilometer treadmill runs (9 km h(-1)), once in a low and once in a high breast support. The range of motion (ROM) and peak torso, pelvis, and upper arm Cardan joint angles were calculated over five gait cycles during a five kilometer run. Peak torso yaw, peak rotation of the pelvis, peak pelvis obliquity, ROM in rotation of the pelvis, and ROM in upper arm extension were significant, but marginally reduced when participants ran in the high breast support. The running kinematics reported in the high breast support condition more closely align with economical running kinematics previously defined in the literature, therefore, running in a high breast support may be more beneficial to female runners, with a high breast support advocated for middle distance runners. Copyright © 2015 Elsevier B.V. All rights reserved.
Guerra, Jorge; Uddin, Jasim; Nilsen, Dawn; Mclnerney, James; Fadoo, Ammarah; Omofuma, Isirame B.; Hughes, Shatif; Agrawal, Sunil; Allen, Peter; Schambra, Heidi M.
2017-01-01
There currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements. Data were generated from inertial measurement units (IMUs) placed on upper body segments of older healthy individuals and chronic stroke patients. Subjects performed activities commonly trained during rehabilitation after stroke. Data processing involved the use of a sliding window to obtain statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). The likelihoods of the states, resulting from the HMM, were segmented by a second sliding window and their averages were calculated. The final predictions were mapped to human functional movement primitives using a Logistic Regression algorithm. Algorithm performance was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and positive and negative predictive values for all classified primitives. In healthy control and stroke participants, our approach identified functional movement primitives embedded in training activities with, on average, 80% precision. This approach may support functional movement dosing in stroke rehabilitation. PMID:28813877
The nature of crustal reflectivity at the southwest Iberian margin
NASA Astrophysics Data System (ADS)
Buffett, G. G.; Torne, M.; Carbonell, R.; Melchiorre, M.; Vergés, J.; Fernàndez, M.
2017-11-01
Reprocessing of multi-channel seismic reflection data acquired over the northern margin of the Gulf of Cádiz (SW Iberian margin) places new constraints on the upper crustal structure of the Guadalquivir-Portimão Bank. The data presented have been processed with optimized stacking and interval velocity models, a better approach to multiple attenuation, preserved amplitude information to derive the nature of seismic reflectivity, and accurate time-to-depth conversion after migration. The reprocessed data reveal a bright upper crustal reflector just underneath the Paleozoic basement that spatially coincides with the local positive free-air gravity high called the Gulf of Cádiz Gravity High. To investigate the nature of this reflector and to decipher whether it could be associated with pieces of mantle material emplaced at upper crustal levels, we calculated its reflection coefficient and compared it to a buried high-density ultramafic body (serpentinized peridotite) at the Gorringe Bank. Its reflection coefficient ratio with respect to the sea floor differs by only 4.6% with that calculated for the high-density ultramafic body of the Gorringe Bank, while it differs by 35.8% compared to a drilled Miocene limestone unconformity. This means that the Gulf of Cádiz reflector has a velocity and/or density contrast similar to the peridotite at the Gorringe Bank. However, considering the depth at which it is found (between 2.0 and 4.0 km) and the available geological information, it seems unlikely that the estimated shortening from the Oligocene to present is sufficient to emplace pieces of mantle material at these shallow levels. Therefore, and despite the similarity in its reflection coefficient with the peridotites of the Gorringe Bank, our preferred interpretation is that the upper crustal Gulf of Cádiz reflector represents the seismic response of high-density intracrustal magmatic intrusions that may partially contribute to the Gulf of Cádiz Gravity High.
Slavens, Brooke A; Harris, Gerald F
2008-01-01
Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.
Choi, Kevin; Peters, Jaclyn; Tri, Andrew; Chapman, Elizabeth; Sasaki, Ayako; Ismail, Farooq; Boulias, Chris; Reid, Shannon
2017-01-01
Purpose: Goal Attainment Scaling (GAS) is used to assess functional gains in response to treatment. Specific characteristics of the functional goals set by individuals receiving botulinum toxin type A (BoNTA) injections for spasticity management are unknown. The primary objectives of this study were to describe the characteristics of the goals set by patients before receiving BoNTA injections using the International Classification of Functioning, Disability and Health (ICF) and to determine whether the pattern of spasticity distribution affected the goals set. Methods: A cross-sectional retrospective chart review was carried out in an outpatient spasticity-management clinic in Toronto. A total of 176 patients with a variety of neurological lesions attended the clinic to receive BoNTA injections and completed GAS from December 2012 to December 2013. The main outcome measures were the characteristics of the goals set by the participants on the basis of ICF categories (body functions and structures, activity and participation) and the spasticity distribution using Modified Ashworth Scale scores. Results: Of the patients, 73% set activity and participation goals, and 27% set body functions and structures goals (p<0.05). In the activity and participation category, 30% of patients set moving and walking goals, 28% set self-care and dressing goals, and 12% set changing and maintaining body position goals. In the body functions and structures category, 18% set neuromuscular and movement-related goals, and 8% set pain goals. The ICF goal categories were not related to the patterns of spasticity (upper limb vs. lower limb or unilateral vs. bilateral spasticity) or type of upper motor neuron (UMN) lesion (p>0.05). Conclusion: Our results show that patients receiving BoNTA treatment set a higher percentage of activity and participation goals than body functions and structures goals. Goal classification was not affected by type of spasticity distribution or type of UMN disorder. PMID:28539691
The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin.
Francois, Fritz; Roper, Jatin; Joseph, Neal; Pei, Zhiheng; Chhada, Aditi; Shak, Joshua R; de Perez, Asalia Z Olivares; Perez-Perez, Guillermo I; Blaser, Martin J
2011-04-14
Appetite and energy expenditure are regulated in part by ghrelin and leptin produced in the gastric mucosa, which may be modified by H. pylori colonization. We prospectively evaluated the effect of H. pylori eradication on meal-associated changes in serum ghrelin and leptin levels, and body weight. Veterans referred for upper GI endoscopy were evaluated at baseline and ≥8 weeks after endoscopy, and H. pylori status and body weight were ascertained. During the first visit in all subjects, and during subsequent visits in the initially H. pylori-positive subjects and controls, blood was collected after an overnight fast and 1 h after a standard high protein meal, and levels of eight hormones determined. Of 92 enrolled subjects, 38 were H. pylori-negative, 44 H. pylori-positive, and 10 were indeterminate. Among 23 H. pylori-positive subjects who completed evaluation after treatment, 21 were eradicated, and 2 failed eradication. After a median of seven months following eradication, six hormones related to energy homeostasis showed no significant differences, but post-prandial acylated ghrelin levels were nearly six-fold higher than pre-eradication (p=0.005), and median integrated leptin levels also increased (20%) significantly (p<0.001). BMI significantly increased (5 ± 2%; p=0.008) over 18 months in the initially H. pylori-positive individuals, but was not significantly changed in those who were H. pylori-negative or indeterminant at baseline. Circulating meal-associated leptin and ghrelin levels and BMI changed significantly after H. pylori eradication, providing direct evidence that H. pylori colonization is involved in ghrelin and leptin regulation, with consequent effects on body morphometry. © 2011 Francois et al; licensee BioMed Central Ltd.
The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin
2011-01-01
Background Appetite and energy expenditure are regulated in part by ghrelin and leptin produced in the gastric mucosa, which may be modified by H. pylori colonization. We prospectively evaluated the effect of H. pylori eradication on meal-associated changes in serum ghrelin and leptin levels, and body weight. Methods Veterans referred for upper GI endoscopy were evaluated at baseline and ≥8 weeks after endoscopy, and H. pylori status and body weight were ascertained. During the first visit in all subjects, and during subsequent visits in the initially H. pylori-positive subjects and controls, blood was collected after an overnight fast and 1 h after a standard high protein meal, and levels of eight hormones determined. Results Of 92 enrolled subjects, 38 were H. pylori-negative, 44 H. pylori-positive, and 10 were indeterminate. Among 23 H. pylori-positive subjects who completed evaluation after treatment, 21 were eradicated, and 2 failed eradication. After a median of seven months following eradication, six hormones related to energy homeostasis showed no significant differences, but post-prandial acylated ghrelin levels were nearly six-fold higher than pre-eradication (p = 0.005), and median integrated leptin levels also increased (20%) significantly (p < 0.001). BMI significantly increased (5 ± 2%; p = 0.008) over 18 months in the initially H. pylori-positive individuals, but was not significantly changed in those who were H. pylori-negative or indeterminant at baseline. Conclusions Circulating meal-associated leptin and ghrelin levels and BMI changed significantly after H. pylori eradication, providing direct evidence that H. pylori colonization is involved in ghrelin and leptin regulation, with consequent effects on body morphometry. PMID:21489301
Johnson, Edward A.; Warwick, Peter D.; Roberts, Stephen B.; Khan, Intizar H.
1999-01-01
The coal-bearing, lower Eocene Ghazij Formation is exposed intermittently over a distance of 750 kilometers along the western margin of the Axial Belt in north-central Pakistan. Underlying the formation are Jurassic to Paleocene carbonates that were deposited on a marine shelf along the pre- and post-rift northern margin of the Indian subcontinent. Overlying the formation are middle Eocene to Miocene marine and nonmarine deposits capped by Pliocene to Pleistocene collision molasse.The lower part of the Ghazij comprises mostly dark gray calcareous mudrock containing foraminifers and rare tabular to lenticular bodies of very fine grained to finegrained calcareous sandstone. We interpret the lower portion of this part of the Ghazij as outer-shelf deposits, and the upper portion as prodelta deposits. The middle part of the formation conformably overlies the lower part. It comprises medium-gray calcareous mudrock containing nonmarine bivalves, fine- to medium-grained calcareous sandstone, and rare intervals of carbonaceous shale and coal. Sandstone bodies in the middle part, in ascending stratigraphic order, are classified as Type I (coarsening-upward grain size, contain the trace fossil Ophiomorpha, and are commonly overlain by carbonaceous shale or coal), Type II (mixed grain size, display wedge-planar cross stratification, and contain fossil oyster shells and Ophiomorpha), and Type III (finingupward grain size, lenticular shape, erosional bases, and display trough cross stratification). These three types of bodies represent shoreface deposits, tidal channels, and fluvial channels, respectively. Mudrock intervals in the lower portion of this part of the formation contain fossil plant debris and represent estuarine deposits, and mudrock intervals in the upper portion contain fossil root traces and represent overbank deposits. We interpret the middle part of the Ghazij as a lower delta plain sequence. Overlying the middle part of the Ghazij, possibly unconformably, is the upper part of the formation, which comprises calcareous, nonfossiliferous, light-gray, brown, and red-banded mudrock, and rare Type III sandstone bodies. Much of the mudrock in this part of the formation represents multiple paleosol horizons. Locally, a limestone-pebble conglomerate is present in the upper part of the formation, either at the base or occupying most of the sequence. We interpret all but the uppermost portion of the upper part of the Ghazij as an upper delta plain deposit.Thin sections of Ghazij sandstones show mostly fragments of limestone, and heavy-liquid separations reveal the presence of chromite. Paleocurrent data and other evidence indicate a northwestern source area.During earliest Eocene time, the outer edge of the marine shelf off the Indian subcontinent collided with a terrestrial fragment positioned adjacent to, but detached from, the Asian mainland. This collision caused distal carbonateplatform deposits to be uplifted, and an intervening intracratonic sea, the Indus Foreland Basin, was created. Thus for the first time, the depositional slope switched from northwest facing to southeast facing, and a northwestern source for detritus was provided. We conclude that the Ghazij was deposited as a prograding clastic wedge along the northwestern shore of this sea, and that the formation contains sedimentologic evidence of a collisional event that predates the main impact between India and Asia.
Neuromuscular Control During the Bench Press Movement in an Elite Disabled and Able-Bodied Athlete
Zwierzchowska, Anna; Maszczyk, Adam; Wilk, Michał; Stastny, Petr; Zając, Adam
2017-01-01
Abstract The disabled population varies significantly in regard to physical fitness, what is conditioned by the damage to the locomotor system. Recently there has been an increased emphasis on the role of competitive sport in enhancing health and the quality of life of individuals with disability. One of the sport disciplines of Paralympics is the flat bench press. The bench press is one of the most popular resistance exercises used for the upper body in healthy individuals. It is used not only by powerlifters, but also by athletes in most strength-speed oriented sport disciplines. The objective of the study was to compare neuromuscular control for various external loads (from 60 to 100% 1RM) during the flat bench press performed by an elite able-bodied athlete and an athlete with lower limb disability. The research project is a case study of two elite bench press athletes with similar sport results: an able-bodied athlete (M.W., age 34 years, body mass 103 kg, body height 1.72 m, 1RM in the flat bench press 200 kg) and a disabled athlete (M.T., age 31 years, body mass 92 kg, body height 1.70 m, 1RM in the flat bench press 190 kg). The activity was recorded for four muscles: pectoralis major (PM), anterior deltoid (AD), as well as for the lateral and long heads of the triceps brachii (TBlat and TBlong). The T-test revealed statistically significant differences between peak activity of all the considered muscles (AD with p = 0.001; PM with p = 0.001; TBlat with p = 0.0021 and TBlong with p = 0.002) between the 2 athletes. The analysis of peak activity differences of M.W and M.T. in relation to the load revealed statistically significant differences for load changes between: 60 to 100% 1RM (p = 0.007), 70 to 100% 1RM (p = 0.016) and 80 to 100% 1RM (p = 0.032). The flat bench press performed without legs resting firmly on the ground leads to the increased engagement of upper body muscles and to their greater activation. Isolated initial positions can be used to generate greater engagement of muscle groups during the bench press exercise and evoke their higher activation. PMID:29340001
Neuromuscular Control During the Bench Press Movement in an Elite Disabled and Able-Bodied Athlete.
Gołaś, Artur; Zwierzchowska, Anna; Maszczyk, Adam; Wilk, Michał; Stastny, Petr; Zając, Adam
2017-12-01
The disabled population varies significantly in regard to physical fitness, what is conditioned by the damage to the locomotor system. Recently there has been an increased emphasis on the role of competitive sport in enhancing health and the quality of life of individuals with disability. One of the sport disciplines of Paralympics is the flat bench press. The bench press is one of the most popular resistance exercises used for the upper body in healthy individuals. It is used not only by powerlifters, but also by athletes in most strength-speed oriented sport disciplines. The objective of the study was to compare neuromuscular control for various external loads (from 60 to 100% 1RM) during the flat bench press performed by an elite able-bodied athlete and an athlete with lower limb disability. The research project is a case study of two elite bench press athletes with similar sport results: an able-bodied athlete (M.W., age 34 years, body mass 103 kg, body height 1.72 m, 1RM in the flat bench press 200 kg) and a disabled athlete (M.T., age 31 years, body mass 92 kg, body height 1.70 m, 1RM in the flat bench press 190 kg). The activity was recorded for four muscles: pectoralis major (PM), anterior deltoid (AD), as well as for the lateral and long heads of the triceps brachii (TBlat and TBlong). The T-test revealed statistically significant differences between peak activity of all the considered muscles (AD with p = 0.001; PM with p = 0.001; TBlat with p = 0.0021 and TBlong with p = 0.002) between the 2 athletes. The analysis of peak activity differences of M.W and M.T. in relation to the load revealed statistically significant differences for load changes between: 60 to 100% 1RM (p = 0.007), 70 to 100% 1RM (p = 0.016) and 80 to 100% 1RM (p = 0.032). The flat bench press performed without legs resting firmly on the ground leads to the increased engagement of upper body muscles and to their greater activation. Isolated initial positions can be used to generate greater engagement of muscle groups during the bench press exercise and evoke their higher activation.
Thrust vector control of upper stage with a gimbaled thruster during orbit transfer
NASA Astrophysics Data System (ADS)
Wang, Zhaohui; Jia, Yinghong; Jin, Lei; Duan, Jiajia
2016-10-01
In launching Multi-Satellite with One-Vehicle, the main thruster provided by the upper stage is mounted on a two-axis gimbal. During orbit transfer, the thrust vector of this gimbaled thruster (GT) should theoretically pass through the mass center of the upper stage and align with the command direction to provide orbit transfer impetus. However, it is hard to be implemented from the viewpoint of the engineering mission. The deviations of the thrust vector from the command direction would result in large velocity errors. Moreover, the deviations of the thrust vector from the upper stage mass center would produce large disturbance torques. This paper discusses the thrust vector control (TVC) of the upper stage during its orbit transfer. Firstly, the accurate nonlinear coupled kinematic and dynamic equations of the upper stage body, the two-axis gimbal and the GT are derived by taking the upper stage as a multi-body system. Then, a thrust vector control system consisting of the special attitude control of the upper stage and the gimbal rotation of the gimbaled thruster is proposed. The special attitude control defined by the desired attitude that draws the thrust vector to align with the command direction when the gimbal control makes the thrust vector passes through the upper stage mass center. Finally, the validity of the proposed method is verified through numerical simulations.
Bisai, Samiran; Bose, Kaushik
2009-03-01
Undernutrition among adult tribal women is a major health problem in India. To compare the utility of two different anthropometric indicators of chronic energy deficiency (CED) among tribal Kora Mudi women and to determine which of these two is a better indicator of undernutrition. A cross-sectional study of 123 individuals was conducted. The body mass index (BMI) and mid-upper-arm circumference (MUAC) were used to evaluate CED. The prevalence of CED based on BMI less than 18.5 was 55.3%, and the prevalence of CED based on MUAC less than 22.0 cm was 51.2%. Both of these prevalence rates are classified in the very high-prevalence category (> or = 40%) and indicate a critical situation according to World Health Organization recommendations. Mean BMI increased significantly with higher quartile of MUAC. There was a significant difference in the prevalence of CED between the MUAC quartiles. The risk ratio for CED for women in the lowest quartile of MUAC was 9.33 compared with those in the highest quartile. There was a significant positive association between MUAC and BMI. Regression analysis demonstrated that MUAC had a significant positive impact on BMI; the percentage of the variation in BMI explained by MUAC was 52%. Logistic regression analysis demonstrated that overall, 82.11% of cases of CED were correctly classified with the use of MUAC. The use of MUAC correctly diagnosed 82.35% of cases of CED and 81.82% of women with normal nutritional status. This population was facing severe nutritional stress. With limited resources and in the absence of skilled manpower, it may be more appropriate to use MUAC for human population surveys, particularly among tribal populations of developing countries.
Di Blasio, Andrea; Morano, Teresa; Bucci, Ines; Di Santo, Serena; D’Arielli, Alberto; Castro, Cristina Gonzalez; Cugusi, Lucia; Cianchetti, Ettore; Napolitano, Giorgio
2016-01-01
[Purpose] The aims of this study were to verify the effects on upper limb circumferences and total body extracellular water of 10 weeks of Nordic Walking (NW) and Walking (W), both alone and combined with a series of exercises created for breast cancer survivors, the ISA method. [Subjects and Methods] Twenty breast cancer survivors were randomly assigned to 4 different training groups and evaluated for upper limb circumferences, total body and extracellular water. [Results] The breast cancer survivors who performed NW, alone and combined with the ISA method, and Walking combined with the ISA method (but not alone) showed significantly reduced arm and forearm circumferences homolateral to the surgical intervention. [Conclusion] For breast cancer survivors, NW, alone and combined with the ISA method, and Walking combined with the ISA method should be prescribed to prevent the onset and to treat light forms of upper limb lymphedema because Walking training practiced alone had no significant effect on upper limb circumference reduction. PMID:27821934
... causes, such as infection. You may also undergo flexible sigmoidoscopy, colonoscopy, body CT, body MRI, MR enterography, upper GI, small ... Flexible sigmoidoscopy , performed by inserting a sigmoidoscope (a flexible tube ... can also sometimes be seen. Body CT scan , a special type of x-ray ...
Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome
ERIC Educational Resources Information Center
Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German
2013-01-01
The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…
Jia, Yi-lin; Fu, Min-kui; Ma, Lian
2004-05-01
To examine the effect of pre-surgical orthodontics on the outcome of the secondary alveolar bone grafting in the patients with complete cleft lip and palate. Sixteen complete cleft lip and palate patients (9 males and 7 females) with collapsed upper arch or severe mal-positioned upper incisors were selected. The cleft was not easily grafted because of the poor access. The total cleft sites were 22 (10 patients with UCLP and 6 patients with BCLP). The age range of the patients was from 8 to 22 years. Pre-surgical orthodontic treatment was mainly to expand the collapsed upper arch and correct the mal-positioned upper incisors. After the secondary alveolar bone grafting, the patients were followed up and anterior occlusal radiograph/intraoral panograph were taken regularly. The observation period was from 6 months to 4 years. Bergland criteria were used to evaluate the interdental septal height. Upper arch expansion and the correction of the mal-positioned upper incisors done by the orthodontic treatment made the bone grafting procedure easier. The clinically successful rate reached 86%. The severe upper arch collapse and mal-positioned upper incisors in the patients with complete cleft lip and palate should be corrected orthodontically before the secondary alveolar bone grafting.
Emergency endoscopic management of dietary foreign bodies in the esophagus.
Lin, Hsuan-Hwai; Lee, Shih-Chun; Chu, Heng-Cheng; Chang, Wei-Kuo; Chao, You-Chen; Hsieh, Tsai-Yuan
2007-07-01
We report our experience of endoscopy in the emergency management of dietary foreign bodies. One hundred thirty-six patients were admitted to the emergency department (ED) between January 1997 and October 2006 for the endoscopic removal of esophageal dietary foreign bodies. They had a mean age of 47.7 years, and 91 (67%) were women. Most of the ingested materials (98.5%) were successfully extracted using either flexible or rigid endoscope. The objects most frequently ingested were fish bones (48%) and chicken bones (46%). Most of the objects (84%) were lodged in the upper esophagus. Two patients with irretrievable foreign bodies or complicated perforations were taken to surgery. Because most of these foreign bodies lodged in the upper esophagus, physicians should take care of this area to avoid secondary injury or complications, especially with sharp bones.
A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance.
Bridges, Nathaniel R; Meyers, Michael; Garcia, Jonathan; Shewokis, Patricia A; Moxon, Karen A
2018-05-31
Most brain machine interfaces (BMI) focus on upper body function in non-injured animals, not addressing the lower limb functional needs of those with paraplegia. A need exists for a novel BMI task that engages the lower body and takes advantage of well-established rodent spinal cord injury (SCI) models to study methods to improve BMI performance. A tilt BMI task was designed that randomly applies different types of tilts to a platform, decodes the tilt type applied and rights the platform if the decoder correctly classifies the tilt type. The task was tested on female rats and is relatively natural such that it does not require the animal to learn a new skill. It is self-rewarding such that there is no need for additional rewards, eliminating food or water restriction, which can be especially hard on spinalized rats. Finally, task difficulty can be adjusted by making the tilt parameters. This novel BMI task bilaterally engages the cortex without visual feedback regarding limb position in space and animals learn to improve their performance both pre and post-SCI.Comparison with Existing Methods: Most BMI tasks primarily engage one hemisphere, are upper-body, rely heavily on visual feedback, do not perform investigations in animal models of SCI, and require nonnaturalistic extrinsic motivation such as water rewarding for performance improvement. Our task addresses these gaps. The BMI paradigm presented here will enable researchers to investigate the interaction of plasticity after SCI and plasticity during BMI training on performance. Copyright © 2018. Published by Elsevier B.V.
Cardiovascular models of simulated moon and mars gravities: head-up tilt vs. lower body unweighting.
Kostas, Vladimir I; Stenger, Michael B; Knapp, Charles F; Shapiro, Robert; Wang, Siqi; Diedrich, André; Evans, Joyce M
2014-04-01
In this study we compare two models [head-up tilt (HUT) vs. body unweighting using lower body positive pressure (LBPP)] to simulate Moon, Mars, and Earth gravities. A literature search did not reveal any comparisons of this type performed previously. We hypothesized that segmental fluid volume shifts (thorax, abdomen, upper and lower leg), cardiac output, and blood pressure (BP), heart rate (HR), and total peripheral resistance to standing would be similar in the LBPP and HUT models. There were 21 subjects who were studied while supine (simulation of spaceflight) and standing at 100% (Earth), 40% (Mars), and 20% (Moon) bodyweight produced by LBPP in Alter-G and while supine and tilted at 80 degrees, 20 degrees, and 10 degrees HUT (analogues of Earth, Mars, and Moon gravities, respectively). Compared to supine, fluid shifts from the chest to the abdomen, increases in HR, and decreases in stroke volume were greater at 100% bodyweight than at reduced weights in response to both LBPP and HUT. Differences between the two models were found for systolic BP, diastolic BP, mean arterial BP, stroke volume, total peripheral resistance, and thorax and abdomen impedances, while HR, cardiac output, and upper and lower leg impedances were similar. Bodyweight unloading via both LBPP and HUT resulted in cardiovascular changes similar to those anticipated in actual reduced gravity environments. The LBPP model/Alter-G has the advantage of providing an environment that allows dynamic activity at reduced bodyweight; however, the significant increase in blood pressures in the Alter-GC may favor the HUT model.
USDA-ARS?s Scientific Manuscript database
Technical Summary Objectives: Determine the effect of body mass index (BMI) on the accuracy of body density (Db) estimated with skinfold thickness (SFT) measurements compared to air displacement plethysmography (ADP) in adults. Subjects/Methods: We estimated Db with SFT and ADP in 131 healthy men an...
Beretta, Elena; Cesareo, Ambra; Biffi, Emilia; Schafer, Carolyn; Galbiati, Sara; Strazzer, Sandra
2018-01-01
Acquired brain injuries (ABIs) can lead to a wide range of impairments, including weakness or paralysis on one side of the body known as hemiplegia. In hemiplegic patients, the rehabilitation of the upper limb skills is crucial, because the recovery has an immediate impact on patient quality of life. For this reason, several treatments were developed to flank physical therapy (PT) and improve functional recovery of the upper limbs. Among them, Constraint-Induced Movement Therapy (CIMT) and robot-aided therapy have shown interesting potentialities in the rehabilitation of the hemiplegic upper limb. Nevertheless, there is a lack of quantitative evaluations of effectiveness in a standard clinical setting, especially in children, as well as a lack of direct comparative studies between these therapeutic techniques. In this study, a group of 18 children and adolescents with hemiplegia was enrolled and underwent intensive rehabilitation treatment including PT and CIMT or Armeo®Spring therapy. The effects of the treatments were assessed using clinical functional scales and upper limb kinematic analysis during horizontal and vertical motor tasks. Results showed CIMT to be the most effective in terms of improved functional scales, while PT seemed to be the most significant in terms of kinematic variations. Specifically, PT resulted to have positive influence on distal movements while CIMT conveyed more changes in the proximal kinematics. Armeo treatment delivered improvements mainly in the vertical motor task, showing trends of progresses of the movement efficiency and reduction of compensatory movements of the shoulder with respect to other treatments. Therefore, every treatment gave advantages in a specific and different upper limb district. Therefore, results of this preliminary study may be of help to define the best rehabilitation treatment for each patient, depending on the goal, and may thus support clinical decision.
Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots
Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.
1989-01-01
After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.
Tidal disruption of Periodic Comet Shoemaker-Levy 9 and a constraint on its mean density
NASA Technical Reports Server (NTRS)
Boss, Alan P.
1994-01-01
The apparent tidal disruption of Periodic Comet Shoemaker-Levy 9 (1993e) during a close encounter within approximately 1.62 planetary radii of Jupiter can be used along with theoretical models of tidal disruption to place an upper bound on the density of the predisruption body. Depending on the theoretical model used, these upper bounds range from rho(sub c) less than 0.702 +/- 0.080 g/cu cm for a simple analytical model calibrated by numerical smoothed particle hydrodynamics (SPH) simulations to rho(sub c) less than 1.50 +/- 0.17 g/cu cm for a detailed semianalytical model. The quoted uncertainties stem from an assumed uncertainty in the perijove radius. However, the uncertainty introduced by the different theoretical models is the major source of error; this uncertainty could be eliminated by future SPH simulations specialized to cometary disruptions, including the effects of initially prolate, spinning comets. If the SPH-based upper bound turns out to be most appropriate, it would be consistent with the predisruption body being a comet with a relatively low density and porous structure, as has been asserted previously based on observations of cometary outgassing. Regardless of which upper bound is preferable, the models all agree that the predisruption body could not have been a relatively high-density body, such as an asteroid with rho approximately = 2 g/cu cm.
Renal responses to central vascular expansion are suppressed at night in conscious primates
NASA Technical Reports Server (NTRS)
Kass, D. A.; Sulzman, F. M.; Fuller, C. A.; Moore-Ede, M. C.
1980-01-01
The renal and hemodynamic responses of squirrel monkeys to central vascular volume expansion induced by lower body positive pressure (LBPP) during the day and night are investigated. Twelve unanesthetized animals trained to sit in a metabolism chair in which they were restrained only at the waist by a partition separating upper and lower body chambers were subjected to 4 h of continuous LBPP during the day and night, and hemodynamic, urinary and drinking data were monitored. LBPP during day and night is found to induce similar increases in central venous pressure, rises in heart rate and elevations in mean arterial blood pressure. However, although daytime LBPP induced a significant increase in urine flow and sodium excretion, a marked nocturnal inhibition of the renal response to LBPP is observed. Analysis of the time course and circadian regulation patterns of the urinary responses suggests that several separate efferent control pathways are involved.
A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot
NASA Astrophysics Data System (ADS)
Zheng, Dongtian; Tan, Haishu; Zhou, Fuqiang
2017-03-01
An endoscopic imaging system of hyper long pipeline is designed to acquire the inner surface image in advance for the hyper long pipeline detects measurement. The system consists of structured light sensors, pipe robots and control system. The pipe robot is in the form of wheel structure, with the sensor which is at the front of the vehicle body. The control system is at the tail of the vehicle body in the form of upper and lower computer. The sensor can be translated and scanned in three steps: walking, lifting and scanning, then the inner surface image can be acquired at a plurality of positions and different angles. The results of imaging experiments show that the system's transmission distance is longer, the acquisition angle is more diverse and the result is more comprehensive than the traditional imaging system, which lays an important foundation for later inner surface vision measurement.
Relationship between the upper mantle high velocity seismic lid and the continental lithosphere
NASA Astrophysics Data System (ADS)
Priestley, Keith; Tilmann, Frederik
2009-04-01
The lithosphere-asthenosphere boundary corresponds to the base of the "rigid" plates - the depth at which heat transport changes from advection in the convecting deeper upper mantle to conduction in the shallow upper mantle. Although this boundary is a fundamental feature of the Earth, mapping it has been difficult because it does not correspond to a sharp change in temperature or composition. Various definitions of the lithosphere and asthenosphere are based on the analysis of different types of geophysical and geological observations. The depth to the lithosphere-asthenosphere boundary determined from these different observations often shows little agreement when they are applied to the same region because the geophysical and geological observations (i.e., seismic velocity, strain rate, electrical resistivity, chemical depletion, etc.) are proxies for the change in rheological properties rather than a direct measure of the rheological properties. In this paper, we focus on the seismic mapping of the upper mantle high velocity lid and low velocity zone and its relationship to the lithosphere and asthenosphere. We have two goals: (a) to examine the differences in how teleseismic body-wave travel-time tomography and surface-wave tomography image upper mantle seismic structure; and (b) to summarise how upper mantle seismic velocity structure can be related to the structure of the lithosphere and asthenosphere. Surface-wave tomography provides reasonably good depth resolution, especially when higher modes are included in the analysis, but lateral resolution is limited by the horizontal wavelength of the long-period surface waves used to constrain upper mantle velocity structure. Teleseismic body-wave tomography has poor depth resolution in the upper mantle, particularly when no strong lateral contrasts are present. If station terms are used, features with large lateral extent and gradual boundaries are attenuated in the tomographic image. Body-wave models are not useful in mapping the thickness of the high velocity upper mantle lid because this type of analysis often determines wave speed perturbations from an unknown horizontal average and not absolute velocities. Thus, any feature which extends laterally across the whole region beneath a seismic network becomes invisible in the teleseismic body-wave tomographic image. We compare surface-wave and body-wave tomographic results using southern Africa as an example. Surface-wave tomographic images for southern Africa show a strong, high velocity upper mantle lid confined to depths shallower than ~ 200 km, whereas body-wave tomographic images show weak high velocity in the upper mantle extending to depths of ~ 300 km or more. However, synthetic tests show that these results are not contradictory. The absolute seismic velocity structure of the upper mantle provided by surface wave analysis can be used to map the thermal lithosphere. Priestley and McKenzie (Priestley, K., McKenzie, D., 2006. The thermal structure of the lithosphere from shear wave velocities. Earth and Planetary Science Letters 244, 285-301.) derive an empirical relationship between shear wave velocity and temperature. This relationship is used to obtain temperature profiles from the surface-wave tomographic models of the continental mantle. The base of the lithosphere is shown by a change in the gradient of the temperature profiles indicative of the depth where the mode of heat transport changes from conduction to advection. Comparisons of the geotherms determined from the conversion of surface-wave wave speeds to temperatures with upper mantle nodule-derived geotherms demonstrate that estimates of lithospheric thickness from Vs and from the nodule mineralogy agree to within about 25 km. The lithospheric thickness map for Africa derived from the surface-wave tomographic results shows that thick lithosphere underlies most of the Archean crust in Africa. The distribution of diamondiferous kimberlites provides an independent estimate of where thick lithosphere exists. Diamondiferous kimberlites generally occur where the lower part of the thermal lithosphere as indicated by seismology is in the diamond stability field.
Dietary Inference from Upper and Lower Molar Morphology in Platyrrhine Primates
Allen, Kari L.; Cooke, Siobhán B.; Gonzales, Lauren A.; Kay, Richard F.
2015-01-01
The correlation between diet and dental topography is of importance to paleontologists seeking to diagnose ecological adaptations in extinct taxa. Although the subject is well represented in the literature, few studies directly compare methods or evaluate dietary signals conveyed by both upper and lower molars. Here, we address this gap in our knowledge by comparing the efficacy of three measures of functional morphology for classifying an ecologically diverse sample of thirteen medium- to large-bodied platyrrhines by diet category (e.g., folivore, frugivore, hard object feeder). We used Shearing Quotient (SQ), an index derived from linear measurements of molar cutting edges and two indices of crown surface topography, Occlusal Relief (OR) and Relief Index (RFI). Using SQ, OR, and RFI, individuals were then classified by dietary category using Discriminate Function Analysis. Both upper and lower molar variables produce high classification rates in assigning individuals to diet categories, but lower molars are consistently more successful. SQs yield the highest classification rates. RFI and OR generally perform above chance. Upper molar RFI has a success rate below the level of chance. Adding molar length enhances the discriminatory power for all variables. We conclude that upper molar SQs are useful for dietary reconstruction, especially when combined with body size information. Additionally, we find that among our sample of platyrrhines, SQ remains the strongest predictor of diet, while RFI is less useful at signaling dietary differences in absence of body size information. The study demonstrates new ways for inferring the diets of extinct platyrrhine primates when both upper and lower molars are available, or, for taxa known only from upper molars. The techniques are useful in reconstructing diet in stem representatives of anthropoid clade, who share key aspects of molar morphology with extant platyrrhines. PMID:25738266
Robinson, J.W.; McCabea, P.J.
1997-01-01
Excellent three-dimensional exposures of the Upper Jurassic Salt Wash Sandstone Member of the Morrison Formation in the Henry Mountains area of southern Utah allow measurement of the thickness and width of fluvial sandstone and shale bodies from extensive photomosaics. The Salt Wash Sandstone Member is composed of fluvial channel fill, abandoned channel fill, and overbank/flood-plain strata that were deposited on a broad alluvial plain of low-sinuosity, sandy, braided streams flowing northeast. A hierarchy of sandstone and shale bodies in the Salt Wash Sandstone Member includes, in ascending order, trough cross-bedding, fining-upward units/mudstone intraclast conglomerates, singlestory sandstone bodies/basal conglomerate, abandoned channel fill, multistory sandstone bodies, and overbank/flood-plain heterolithic strata. Trough cross-beds have an average width:thickness ratio (W:T) of 8.5:1 in the lower interval of the Salt Wash Sandstone Member and 10.4:1 in the upper interval. Fining-upward units are 0.5-3.0 m thick and 3-11 m wide. Single-story sandstone bodies in the upper interval are wider and thicker than their counterparts in the lower interval, based on average W:T, linear regression analysis, and cumulative relative frequency graphs. Multistory sandstone bodies are composed of two to eight stories, range up to 30 m thick and over 1500 m wide (W:T > 50:1), and are also larger in the upper interval. Heterolithic units between sandstone bodies include abandoned channel fill (W:T = 33:1) and overbank/flood-plain deposits (W:T = 70:1). Understanding W:T ratios from the component parts of an ancient, sandy, braided stream deposit can be applied in several ways to similar strata in other basins; for example, to (1) determine the width of a unit when only the thickness is known, (2) create correlation guidelines and maximum correlation lengths, (3) aid in interpreting the controls on fluvial architecture, and (4) place additional constraints on input variables to stratigraphie and fluid-flow modeling. The usefulness of these types of data demonstrates the need to develop more data sets from other depositional environments.
Workplace-Based Rehabilitation of Upper Limb Conditions: A Systematic Review.
Hoosain, Munira; de Klerk, Susan; Burger, Marlette
2018-05-23
Purpose The objective of this systematic review was to identify, collate and analyse the current available evidence on the effectiveness of workplace-based rehabilitative interventions in workers with upper limb conditions on work performance, pain, absenteeism, productivity and other outcomes. Methods We searched Medline, Cochrane Library, Scopus, Web of Science, Academic Search Premier, Africa-Wide Information, CINAHL, OTSeeker and PEDro with search terms in four broad areas: upper limb, intervention, workplace and clinical trial (no date limits). Studies including neck pain only or musculoskeletal pain in other areas were not included. Results Initial search located 1071 articles, of which 80 were full text reviewed. Twenty-eight articles were included, reporting on various outcomes relating to a total of seventeen studies. Nine studies were of high methodological quality, seven of medium quality, and one of low quality. Studies were sorted into intervention categories: Ergonomic controls (n = 3), ergonomic training and workstation adjustments (n = 4), exercise and resistance training (n = 6), clinic-based versus workplace-based work hardening (n = 1), nurse case manager training (n = 1), physiotherapy versus Feldenkrais (n = 1), and ambulant myofeedback training (n = 1). The largest body of evidence supported workplace exercise programs, with positive effects for ergonomic training and workstation adjustments, and mixed effects for ergonomic controls. Ambulant myofeedback training had no effect. The remaining three categories had positive effects in the single study on each intervention. Conclusion While there is substantial evidence for workplace exercise programs, other workplace-based interventions require further high quality research. Systematic review registration PROSPERO CRD42017059708.
Gonzalez, Brian D; Jim, Heather S L; Small, Brent J; Sutton, Steven K; Fishman, Mayer N; Zachariah, Babu; Heysek, Randy V; Jacobsen, Paul B
2016-05-01
The purpose of the study is to examine changes in muscle strength and self-reported physical functioning in men receiving androgen deprivation therapy (ADT) for prostate cancer compared to matched controls. Prostate cancer patients scheduled to begin ADT (n = 62) were assessed within 20 days of starting ADT and 6 and 12 months later. Age and geographically matched prostate cancer controls treated with prostatectomy only (n = 86) were assessed at similar time intervals. Grip strength measured upper body strength, the Chair Rise Test measured lower body strength, and the SF-12 Physical Functioning scale measured self-reported physical functioning. As expected, self-reported physical functioning and upper body muscle strength declined in ADT recipients but remained stable in prostate cancer controls. Contrary to expectations, lower body muscle strength remained stable in ADT recipients but improved in prostate cancer controls. Higher Gleason scores, more medical comorbidities, and less exercise at baseline predicted greater declines in physical functioning in ADT recipients. ADT is associated with declines in self-reported physical functioning and upper body muscle strength as well as worse lower body muscle strength relative to prostate cancer controls. These findings should be included in patient education regarding the risks and benefits of ADT. Findings also underscore the importance of conducting research on ways to prevent or reverse declines in physical functioning in this patient population.
NASA Astrophysics Data System (ADS)
Fang, H.; Yao, H.; Zhang, H.
2017-12-01
Reliable crustal and upper mantle structure is important to understand expansion of material from the Tibetan plateau to its northeastern margin. Previous studies have used either ambient noise tomography or body wave traveltime tomography to obtain the crustal velocity models in northeastern Tibetan Plateau. However, clear differences appear in these models obtained using different datasets. Here we propose to jointly invert local and teleseismic body wave arrival times and surface wave dispersion data from ambient noise cross correlation to obtain a unified P and S wavespeed model of the crust and upper mantle in NE Tibetan Plateau. Following Fang et al. (2016), we adopt the direct inversion strategy for surface wave data (Fang et al., 2015), which eliminates the need to construct the phase/group velocity maps and allows the straightforward incorporation of surface wave dispersion data into the body wave inversion framework. For body wave data including both local and teleseismic arrival times, we use the fast marching method (Rawlinson et al., 2004) in order to trace multiple seismic phases simultaneously. The joint inversion method takes advantage of the complementary strengths of different data types, with local body wave data constraining more on the P than S wavespeed in the crust, surface wave data most sensitive to S wavespeed in the crust and upper mantle, teleseismic body wave data resolving the upper mantle structure. A series of synthetic tests will be used to show the robustness and superiority of the joint inversion method. Besides, the inverted model will be validated by waveform simulation and comparison with other studies, like receiver function imaging. The resultant P and S wavespeed models, as well as the derived Vp/Vs model, will be essential to understand the regional tectonics of the northeastern Tibetan Plateau, and to address the related geodynamic questions of the Tibetan Plateau formation and expansion.
NASA Technical Reports Server (NTRS)
Kim, Kyu-Jung
2005-01-01
Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.
Poliszczuk, Tatiana; Mańkowska, Maja; Poliszczuk, Dmytro; Wiśniewski, Andrzej
2013-01-01
The role of psychomotor abilities and their relationship to the morphofunctional characteristics of athletes is becoming more and more emphasized in studies on the subject, especially for disciplines that require athletes to notice and to respond to signals originating in dynamically changing conditions. At the same time, athletes who perform symmetrically are more effective and less likely to sustain an injury through unilateral strain. Assessment of the degree of symmetry and asymmetry of reaction time to stimuli in the central and peripheral visual fields, and assessment of body composition of upper limbs in young female basketball players. Participants of the study comprised 17 young female basketball players. Their average age was 18.11-0.8 years. On average, they had been training basketball for 6.83-1.75 years. Body tissue composition was measured using the bioelectrical impedance method. The degree of symmetry and asymmetry of reaction time to signals in the central and peripheral visual fields were measured using the Reaction Test (RT-S1) and a modified Peripheral Perception (PP) test within the Vienna Test System. An analysis of body tissue composition of the upper right and upper left limbs found an asymmetry (p<0.01 and p<0.05) in the FAT [%], FAT MASS [kg], and FFM [kg] parameters. The values of these parameters were higher for the non-dominant arm. No statistically significant differences were found in reaction time and motor time for the dominant and non-dominant arm. A correlation was found between motor time and the FFM [kg] (r=-0.62; p<0.05) and PMM [kg] (r=-0.63; p<0.05) parameters. A significant asymmetry was found in the body tissue composition of the upper limbs. Asymmetry of reaction time was found only for signals in the peripheral visual field.
Influence of Gender and Age on Upper-Airway Length During Development
Ronen, Ohad; Malhotra, Atul; Pillar, Giora
2008-01-01
OBJECTIVE Obstructive sleep apnea has a strong male predominance in adults but not in children. The collapsible portion of the upper airway is longer in adult men than in women (a property that may increase vulnerability to collapse during sleep). We sought to test the hypothesis that in prepubertal children, pharyngeal airway length is equal between genders, but after puberty boys have a longer upper airway than girls, thus potentially contributing to this change in apnea propensity. METHODS Sixty-nine healthy boys and girls who had undergone computed tomography scans of their neck for other reasons were selected from the computed tomography archives of Rambam and Carmel hospitals. The airway length was measured in the midsagittal plane and defined as the length between the lower part of the posterior hard palate and the upper limit of the hyoid bone. Airway length and normalized airway length/body height were compared between the genders in prepubertal (4- to 10-year-old) and postpubertal (14- to 19-year-old) children. RESULTS In prepubertal children, airway length was similar between boys and girls (43.2 ± 5.9 vs 46.8 ± 7.7 mm, respectively). When normalized to body height, airway length/body height was significantly shorter in prepubertal boys than in girls (0.35 ± 0.03 vs 0.38 ± 0.04 mm/cm). In contrast, postpubertal boys had longer upper airways (66.5 ± 9.2 vs 52.2 ± 7.0 mm) and normalized airway length/body height (0.38 ± 0.05 vs 0.33 ± 0.05 mm/cm) than girls. CONCLUSIONS Although boys have equal or shorter airway length compared with girls among prepubertal children, after puberty, airway length and airway length normalized for body height are significantly greater in boys than in girls. These data suggest that important anatomic changes at puberty occur in a gender-specific manner, which may be important in explaining the male predisposition to pharyngeal collapse in adults. PMID:17908723
Skeletal muscle mass in human athletes: What is the upper limit?
Abe, Takashi; Buckner, Samuel L; Dankel, Scott J; Jessee, Matthew B; Mattocks, Kevin T; Mouser, J Grant; Loenneke, Jeremy P
2018-01-22
To examine the amount of absolute and relative skeletal muscle mass (SM) in large sized athletes to investigate the potential upper limit of whole body muscle mass accumulation in the human body. Ninety-five large-sized male athletes and 48 recreationally active males (control) had muscle thickness measured by ultrasound at nine sites on the anterior and posterior aspects of the body. SM was estimated from an ultrasound-derived prediction equation. Body density was estimated by hydrostatic weighing technique, and then body fat percentage and fat-free mass (FFM) were calculated. We used the SM index and FFM index to adjust for the influence of standing height (ie, divided by height squared). Ten of the athletes had more than 100 kg of FFM, including the largest who had 120.2 kg, while seven of the athletes had more than 50 kg of SM, including the largest who had 59.3 kg. FFM index and SM index were higher in athletes compared to controls and the percentage differences between the two groups were 44% and 56%, respectively. The FFM index increased linearly up to 90 kg of body mass, and then the values leveled off in those of increasing body mass. Similarly, the SM index increased in a parabolic fashion reaching a plateau (approximately 17 kg/m 2 ) beyond 120 kg body mass. SM index may be a valuable indicator for determining skeletal muscle mass in athletes. A SM index of approximately 17 kg/m 2 may serve as the potential upper limit in humans. © 2018 Wiley Periodicals, Inc.
Emotion categorization of body expressions in narrative scenarios
Volkova, Ekaterina P.; Mohler, Betty J.; Dodds, Trevor J.; Tesch, Joachim; Bülthoff, Heinrich H.
2014-01-01
Humans can recognize emotions expressed through body motion with high accuracy even when the stimuli are impoverished. However, most of the research on body motion has relied on exaggerated displays of emotions. In this paper we present two experiments where we investigated whether emotional body expressions could be recognized when they were recorded during natural narration. Our actors were free to use their entire body, face, and voice to express emotions, but our resulting visual stimuli used only the upper body motion trajectories in the form of animated stick figures. Observers were asked to perform an emotion recognition task on short motion sequences using a large and balanced set of emotions (amusement, joy, pride, relief, surprise, anger, disgust, fear, sadness, shame, and neutral). Even with only upper body motion available, our results show recognition accuracy significantly above chance level and high consistency rates among observers. In our first experiment, that used more classic emotion induction setup, all emotions were well recognized. In the second study that employed narrations, four basic emotion categories (joy, anger, fear, and sadness), three non-basic emotion categories (amusement, pride, and shame) and the “neutral” category were recognized above chance. Interestingly, especially in the second experiment, observers showed a bias toward anger when recognizing the motion sequences for emotions. We discovered that similarities between motion sequences across the emotions along such properties as mean motion speed, number of peaks in the motion trajectory and mean motion span can explain a large percent of the variation in observers' responses. Overall, our results show that upper body motion is informative for emotion recognition in narrative scenarios. PMID:25071623
Kumahara, H; Tanaka, H; Schutz, Y
2004-09-01
The movement of the upper limbs (eg fidgeting-like activities) is a meaningful component of nonexercise activity thermogenesis (NEAT). This study examined the relationship between upper limb movements and whole body trunk movements, by simultaneously measuring energy expenditure during the course of the day. A cross-sectional study consisting of 88 subjects with a wide range in body mass index (17.3-32.5 kg/m(2)). The energy expenditure over a 24-h period was measured in a large respiratory chamber. The body movements were assessed by two uniaxial-accelerometers during daytime, one on the waist and the other on the dominant arm. The accelerometry scores from level 0 (=immobile) up to level 9 (=maximal intensity) were recorded. The activities of subjects were classified into eight categories: walking at two speeds on a horizontal treadmill (A & B), ambling (C), self-care tasks (D), desk work (E), meals (F), reading (G), watching TV (H). There was a significant relationship between the accelerometry scores from the waist (ACwaist) and that from the wrist (ACwrist) over the daytime period (R(2)=0.64; P<0.001). The ACwrist was systematically higher than the ACwaist during sedentary activities, whereas it was the reverse for walking activities. ACwrist to ACwaist ratio of activities E-H were above 1.0 and for walking activities (A-C) were below 1.0. A multiple regression analysis for predicting daytime energy expenditure revealed that the explained variance improved by 2% only when the ACwrist was added as a second predictor in addition to the ACwaist. This indicates that the effect of the ACwrist for predicting energy expenditure was of limited importance in our conditions of measurement. The acceleration of the upper limbs which includes fidgeting is more elevated than that of the whole body for sitting/lying down activities. However, their contribution to energy expenditure is lower than whole body trunk movements, thus indicating that the weight-bearing locomotion activities may be a key component of NEAT. However, its contribution may depend on the total duration of the upper limb movements during the course of the day.
A Case of Postmortem Canine Depredation.
Chute, Dennis J; Bready, Robert J
2017-06-01
We report the case of postmortem animal depredation that produced initial confusion for investigators who responded to the scene. A decomposing elderly woman was found in her presumed home with bilateral upper extremity amputations and craniocerebral trauma. This raised suspicion of foul play. Subsequent investigations together with autopsy led the medical examiner to conclude that the cause of death was natural disease and that those injuries found on her body were produced by at least one of the dogs who shared the premises. We linked the canine culprit to the postmortem trauma and positively identified the remains by collecting material defecated by the animal and by using radiologic and dental comparison techniques.
Real-time upper-body human pose estimation from depth data using Kalman filter for simulator
NASA Astrophysics Data System (ADS)
Lee, D.; Chi, S.; Park, C.; Yoon, H.; Kim, J.; Park, C. H.
2014-08-01
Recently, many studies show that an indoor horse riding exercise has a positive effect on promoting health and diet. However, if a rider has an incorrect posture, it will be the cause of back pain. In spite of this problem, there is only few research on analyzing rider's posture. Therefore, the purpose of this study is to estimate a rider pose from a depth image using the Asus's Xtion sensor in real time. In the experiments, we show the performance of our pose estimation algorithm in order to comparing the results between our joint estimation algorithm and ground truth data.
[Medical problems of musicians].
van de Wiel, Albert; Rietveld, Boni
2010-01-01
Most individuals enjoy making music, but pleasure may be diminished by physical complaints. The most common complaints in musicians include injuries of the upper part of the body including the shoulder and spine, skin disorders and hearing problems. Injuries are not so much related to the extent of rehearsing and playing but are mostly the result of a wrong position and misuse of the instrument. Adequate preparation before playing and professional coaching to avoid injuries or to detect problems at an early stage are exceptions rather than the rule. Because of the large number of amateur and professional musicians in the Netherlands, music medicine deserves a more prominent role.
NASA Astrophysics Data System (ADS)
Gurrola, R. M.; Neal, B. A.; Bennington, N. L.; Cronin, R.; Fry, B.; Hart, L.; Imamura, N.; Kelbert, A.; Bowles-martinez, E.; Miller, D. J.; Scholz, K. J.; Schultz, A.
2017-12-01
Wideband magnetotellurics (MT) presents an ideal method for imaging conductive shallow magma bodies associated with contemporary Yellowstone-Snake River Plain (YSRP) magmatism. Particularly, how do these magma bodies accumulate in the mid to upper crust underlying the Yellowstone Caldera, and furthermore, what role do hydrothermal fluids play in their ascent? During the summer 2017 field season, two field teams from Oregon State University and the University of Wisconsin-Madison installed forty-four wideband MT stations within and around the caldera, and using data slated for joint 3-D inversion with existing seismic data, two 2-D vertical conductivity sections of the crust and upper mantle were constructed. These models, in turn, provide preliminary insight into the emplacement of crustal magma bodies and hydrothermal processes in the YSRP region.
Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data
2012-09-01
CRUSTAL AND UPPER MANTLE STRUCTURE FROM JOINT INVERSION OF BODY WAVE AND GRAVITY DATA Eric A. Bergman1, Charlotte Rowe2, and Monica Maceira2...for these events include many readings of direct crustal P and S phases, as well as regional (Pn and Sn) and teleseismic phases. These data have been...the usefulness of the gravity data, we apply high-pass filtering, yielding gravity anomalies that possess higher resolving power for crustal and
Stotz, Paula J.; Normandin, Sarah C.; Robinovitch, Stephen N.
2010-01-01
Background Falls are the number one cause of unintentional injury in older adults. The protective response of “breaking the fall” with the outstretched hand is often essential for avoiding injury to the hip and head. In this study, we compared the ability of young and older women to absorb the impact energy of a fall in the outstretched arms. Methods Twenty young (mean age = 21 years) and 20 older (M = 78 years) women were instructed to slowly lower their body weight, similar to the descent phase of a push-up, from body lean angles ranging from 15° to 90°. Measures were acquired of peak upper extremity energy absorption, arm deflection, and hand contact force. Results On average, older women were able to absorb 45% less energy in the dominant arm than young women (1.7 ± 0.5% vs 3.1 ± 0.4% of their body weight × body height; p < .001). These results suggest that, even when both arms participate equally, the average energy content of a forward fall exceeds by 5-fold the average energy that our older participants could absorb and exceeds by 2.7-fold the average energy that young participants could absorb. Conclusions During a descent movement that simulates fall arrest, the energy-absorbing capacity of the upper extremities in older women is nearly half that of young women. Absorbing the full energy of a fall in the upper extremities is a challenging task even for healthy young women. Strengthening of upper extremity muscles should enhance this ability and presumably reduce the risk for injury to the hip and head during a fall. PMID:19861641
Sran, Meena M; Stotz, Paula J; Normandin, Sarah C; Robinovitch, Stephen N
2010-03-01
Falls are the number one cause of unintentional injury in older adults. The protective response of "breaking the fall" with the outstretched hand is often essential for avoiding injury to the hip and head. In this study, we compared the ability of young and older women to absorb the impact energy of a fall in the outstretched arms. Twenty young (mean age = 21 years) and 20 older (M = 78 years) women were instructed to slowly lower their body weight, similar to the descent phase of a push-up, from body lean angles ranging from 15 degrees to 90 degrees . Measures were acquired of peak upper extremity energy absorption, arm deflection, and hand contact force. On average, older women were able to absorb 45% less energy in the dominant arm than young women (1.7 +/- 0.5% vs 3.1 +/- 0.4% of their body weight x body height; p < .001). These results suggest that, even when both arms participate equally, the average energy content of a forward fall exceeds by 5-fold the average energy that our older participants could absorb and exceeds by 2.7-fold the average energy that young participants could absorb. During a descent movement that simulates fall arrest, the energy-absorbing capacity of the upper extremities in older women is nearly half that of young women. Absorbing the full energy of a fall in the upper extremities is a challenging task even for healthy young women. Strengthening of upper extremity muscles should enhance this ability and presumably reduce the risk for injury to the hip and head during a fall.
Bläsing, Bettina; Schack, Thomas; Brugger, Peter
2010-05-01
We investigated mental representations of body parts and body-related activities in two subjects with congenitally absent limbs (one with, the other without phantom sensations), a wheelchair sports group of paraplegic participants, and two groups of participants with intact limbs. To analyse mental representation structures, we applied Structure Dimensional Analysis. Verbal labels indicating body parts and related activities were presented in randomized lists that had to be sorted according to a hierarchical splitting paradigm. Participants were required to group the items according to whether or not they were considered related, based on their own body perception. Results of the groups of physically intact and paraplegic participants revealed separate clusters for the lower body, upper body, fingers and head. The participant with congenital phantom limbs also showed a clear separation between upper and lower body (but not between fingers and hands). In the participant without phantom sensations of the absent arms, no such modularity emerged, but the specific practice of his right foot in communication and daily routines was reflected. Sorting verbal labels of body parts and activities appears a useful method to assess body representation in individuals with special body anatomy or function and leads to conclusions largely compatible with other assessment procedures.
Hunters of the Ice Age: The biology of Upper Paleolithic people.
Holt, Brigitte M; Formicola, Vincenzo
2008-01-01
The Upper Paleolithic represents both the phase during which anatomically modern humans appeared and the climax of hunter-gatherer cultures. Demographic expansion into new areas that took place during this period and the diffusion of burial practices resulted in an unprecedented number of well-preserved human remains. This skeletal record, dovetailed with archeological, environmental, and chronological contexts, allows testing of hypotheses regarding biological processes at the population level. In this article, we review key studies about the biology of Upper Paleolithic populations based primarily on European samples, but integrating information from other areas of the Old World whenever possible. Data about cranial morphology, skeletal robusticity, stature, body proportions, health status, diet, physical activity, and genetics are evaluated in Late Pleistocene climatic and cultural contexts. Various lines of evidence delineate the Last Glacial Maximum (LGM) as a critical phase in the biological and cultural evolution of Upper Paleolithic populations. The LGM, a long phase of climatic deterioration culminating around 20,000 BP, had a profound impact on the environment, lifestyle, and behavior of human groups. Some of these effects are recorded in aspects of skeletal biology of these populations. Groups living before and after the LGM, Early Upper Paleolithic (EUP) and Late Upper Paleolithic (LUP), respectively, differ significantly in craniofacial dimensions, stature, robusticity, and body proportions. While paleopathological and stable isotope data suggest good health status throughout the Upper Paleolithic, some stress indicators point to a slight decline in quality of life in LUP populations. The intriguing and unexpected incidence of individuals affected by congenital disorders probably indicates selective burial practices for these abnormal individuals. While some of the changes observed can be explained through models of biocultural or environmental adaptation (e.g., decreased lower limb robusticity following decreased mobility; changes in body proportions along with climatic change), others are more difficult to explain. For instance, craniodental and upper limb robusticity show complex evolutionary patterns that do not always correspond to expectations. In addition, the marked decline in stature and the mosaic nature of change in body proportions still await clarifications. These issues, as well as systematic analysis of specific pathologies and possible relationships between genetic lineages, population movements and cultural complexes, should be among the goals of future research.
Appraisal of Space Words and Allocation of Emotion Words in Bodily Space
Marmolejo-Ramos, Fernando; Elosúa, María Rosa; Yamada, Yuki; Hamm, Nicholas Francis; Noguchi, Kimihiro
2013-01-01
The body-specificity hypothesis (BSH) predicts that right-handers and left-handers allocate positive and negative concepts differently on the horizontal plane, i.e., while left-handers allocate negative concepts on the right-hand side of their bodily space, right-handers allocate such concepts to the left-hand side. Similar research shows that people, in general, tend to allocate positive and negative concepts in upper and lower areas, respectively, in relation to the vertical plane. Further research shows a higher salience of the vertical plane over the horizontal plane in the performance of sensorimotor tasks. The aim of the paper is to examine whether there should be a dominance of the vertical plane over the horizontal plane, not only at a sensorimotor level but also at a conceptual level. In Experiment 1, various participants from diverse linguistic backgrounds were asked to rate the words “up”, “down”, “left”, and “right”. In Experiment 2, right-handed participants from two linguistic backgrounds were asked to allocate emotion words into a square grid divided into four boxes of equal areas. Results suggest that the vertical plane is more salient than the horizontal plane regarding the allocation of emotion words and positively-valenced words were placed in upper locations whereas negatively-valenced words were placed in lower locations. Together, the results lend support to the BSH while also suggesting a higher saliency of the vertical plane over the horizontal plane in the allocation of valenced words. PMID:24349112
Assessing body composition in infants and toddlers
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare different body composition techniques in infants and toddlers. Anthropometric measures including mid-upper arm circumference (MAC), triceps skinfold thickness (TSF), and weight-for-height or -length Z-scores (WHZ), and measures of body fat mass assessed wit...
Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes
NASA Astrophysics Data System (ADS)
Lythgoe, K.; Deuss, A. F.
2017-12-01
The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.
Padilla-Moledo, Carmen; Ruiz, Jonatan R; Ortega, Francisco B; Mora, Jesús; Castro-Piñero, José
2012-01-01
We examined the association of muscular fitness with psychological positive health, health complaints, and health risk behaviors in 690 (n = 322 girls) Spanish children and adolescents (6-17.9 years old). Lower body muscular strength was assessed with the standing long jump test, and upper-body muscular strength was assessed with the throw basketball test. A muscular fitness index was computed by means of standardized measures of both tests. Psychosocial positive health, health complaints, and health risk behaviors were self-reported using the items of the Health Behavior in School-aged Children questionnaire. Psychological positive health indicators included the following: perceived health status, life satisfaction, quality of family relationships, quality of peer relationships, and academic performance. We computed a health complaints index from 8 registered symptoms: headache, stomach ache, backache, feeling low, irritability or bad temper, feeling nervous, difficulties getting to sleep, and feeling dizzy. The health risk behavior indicators studied included tobacco use, alcohol use, and getting drunk. Children and adolescents with low muscular fitness (below the mean) had a higher odds ratio (OR) of reporting fair (vs. excellent) perceived health status, low life satisfaction (vs. very happy), low quality of family relationships (vs. very good), and low academic performance (vs. very good). Likewise, children and adolescents having low muscular fitness had a significantly higher OR of reporting smoking tobacco sometimes (vs. never), drinking alcohol sometimes (vs. never), and getting drunk sometimes (vs. never). The results of this study suggest a link between muscular fitness and psychological positive health and health risk behavior indicators in children and adolescents.
Cushing's syndrome is a hormonal disorder. The cause is long-term exposure to too much cortisol, a hormone that ... your body to make too much cortisol. Cushing's syndrome is rare. Some symptoms are Upper body obesity ...
Smith, Lindsey W; Delgado, Roberto A
2015-08-01
The gestural repertoires of bonobos and chimpanzees are well documented, but the relationship between gestural signaling and positional behavior (i.e., body postures and locomotion) has yet to be explored. Given that one theory for language evolution attributes the emergence of increased gestural communication to habitual bipedality, this relationship is important to investigate. In this study, we examined the interplay between gestures, body postures, and locomotion in four captive groups of bonobos and chimpanzees using ad libitum and focal video data. We recorded 43 distinct manual (involving upper limbs and/or hands) and bodily (involving postures, locomotion, head, lower limbs, or feet) gestures. In both species, actors used manual and bodily gestures significantly more when recipients were attentive to them, suggesting these movements are intentionally communicative. Adults of both species spent less than 1.0% of their observation time in bipedal postures or locomotion, yet 14.0% of all bonobo gestures and 14.7% of all chimpanzee gestures were produced when subjects were engaged in bipedal postures or locomotion. Among both bonobo groups and one chimpanzee group, these were mainly manual gestures produced by infants and juvenile females. Among the other chimpanzee group, however, these were mainly bodily gestures produced by adult males in which bipedal posture and locomotion were incorporated into communicative displays. Overall, our findings reveal that bipedality did not prompt an increase in manual gesturing in these study groups. Rather, body postures and locomotion are intimately tied to many gestures and certain modes of locomotion can be used as gestures themselves. © 2015 Wiley Periodicals, Inc.
Nerve Injuries in Gynecologic Laparoscopy.
Abdalmageed, Osama S; Bedaiwy, Mohamed A; Falcone, Tommaso
2017-01-01
Nerve injuries during gynecologic endoscopy are an infrequent but distressing complication. In benign gynecologic surgery, most of these injuries are associated with patient positioning, although some are related to port placement. Most are potentially preventable with attention to patient placement on the operating room bed and knowledge of the relative anatomy of the nerves. The highest risk group vulnerable to these injuries includes women who have extreme body mass index and those with longer surgical times in the Trendelenburg position. Upper and lower limb peripheral nerves are the most common nerves injured during gynecologic endoscopy. These injuries can result in transient or permanent sensory and motor disabilities that can interrupt patient recovery in an otherwise successful surgery. Numerous strategies are suggested to reduce the frequency of nerve injuries during gynecologic endoscopies. Proper patient positioning and proper padding of the pressure areas are mandatory to prevent malposition-related nerve injuries. Anatomic knowledge of the course of nerves, especially ilioinguinal and iliohypogastric, nerves can minimize injury. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qingdu; Guo, Jianli; Yang, Xiao-Song, E-mail: yangxs@hust.edu.cn
We present some rich new complex gaits in the simple walking model with upper body by Wisse et al. in [Robotica 22, 681 (2004)]. We first show that the stable gait found by Wisse et al. may become chaotic via period-doubling bifurcations. Such period-doubling routes to chaos exist for all parameters, such as foot mass, upper body mass, body length, hip spring stiffness, and slope angle. Then, we report three new gaits with period 3, 4, and 6; for each gait, there is also a period-doubling route to chaos. Finally, we show a practical method for finding a topological horseshoemore » in 3D Poincaré map, and present a rigorous verification of chaos from these gaits.« less
Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.
Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J
2005-10-01
To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p < .05) and were able to stand and ambulate. All weaned from mechanical ventilation, but three required subsequent intermittent support. Six patients died before hospital discharge. Upper extremity strength on admission inversely correlated with time to wean from mechanical ventilation (R = .72, p < .001). : Patients receiving chronic ventilation are weak and deconditioned but respond to aggressive whole-body and respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.
Correlation and prediction of dynamic human isolated joint strength from lean body mass
NASA Technical Reports Server (NTRS)
Pandya, Abhilash K.; Hasson, Scott M.; Aldridge, Ann M.; Maida, James C.; Woolford, Barbara J.
1992-01-01
A relationship between a person's lean body mass and the amount of maximum torque that can be produced with each isolated joint of the upper extremity was investigated. The maximum dynamic isolated joint torque (upper extremity) on 14 subjects was collected using a dynamometer multi-joint testing unit. These data were reduced to a table of coefficients of second degree polynomials, computed using a least squares regression method. All the coefficients were then organized into look-up tables, a compact and convenient storage/retrieval mechanism for the data set. Data from each joint, direction and velocity, were normalized with respect to that joint's average and merged into files (one for each curve for a particular joint). Regression was performed on each one of these files to derive a table of normalized population curve coefficients for each joint axis, direction, and velocity. In addition, a regression table which included all upper extremity joints was built which related average torque to lean body mass for an individual. These two tables are the basis of the regression model which allows the prediction of dynamic isolated joint torques from an individual's lean body mass.
Yamamoto, Nana; Yamamoto, Takumi; Hayashi, Nobuko; Hayashi, Akitatsu; Iida, Takuya; Koshima, Isao
2016-06-01
Volumetry, measurement of extremity volume, is a commonly used method for upper extremity lymphedema (UEL) evaluation. However, comparison between different patients with different physiques is difficult with volumetry, because body-type difference greatly affects arm volume. Seventy arms of 35 participants who had no history of arm edema or breast cancer were evaluated. Arm volume was calculated using a summed truncated cone model, and UEL index was calculated using circumferences and body mass index (BMI). Examinees' BMI was classified into 3 groups, namely, low BMI (BMI, <20 kg/m), middle BMI (BMI, 20-25 kg/m), and high BMI (BMI, >25 kg/m). Arm volume and UEL index were compared with corresponding BMI groups. Mean (SD) arm volume was 1090.9 (205.5) mL, and UEL index 96.9 (5.6). There were significant differences in arm volume between BMI groups [low BMI vs middle BMI vs high BMI, 945.2 (107.4) vs 1045.2 (87.5) vs 1443.1 (244.4) mL, P < 0.001]. There was no significant difference in UEL index between BMI groups [low BMI vs middle BMI vs high BMI, 97.2 (4.2) vs 96.6 (4.6) vs 96.7 (9.9), P > 0.5]. Arm volume significantly increased with increase of BMI, whereas UEL index stayed constant regardless of BMI. Upper extremity lymphedema index would allow better body-type corrected arm volume evaluation compared with arm volumetry.
Valades, David; Palao, José M; Femia, Pedro; Ureña, Aurelio
2017-07-25
The purpose of this study was to assess the effect of incorporating specific upper-body plyometric training for the spike into the competitive season of a women's professional volleyball team. A professional team from the Spanish first division participated in the study. An A-B-A' quasi-experimental design with experimental and control groups was used. The independent variable was the upper-body plyometric training for eight weeks during the competitive season. The dependent variables were the spiked ball's speed (Km/h); the player's body weight (Kg), BMI (Kg/m2), and muscle percentage in arms (%); 1 repetition maximum (1RM) in the bench press (Kg); 1RM in the pullover (Kg); and overhead medicine ball throws of 1, 2, 3, 4, and 5 kg (m). Inter-player and inter-group statistical analyses of the results were carried out (Wilcoxon test and linear regression model). The experimental group significantly improved their spike speed 3.8% from phase A to phase B, and they maintained this improvement after the retention phase. No improvements were found in the control group. The experimental group presented a significant improvement from phase A to phase B in dominant arm muscle area (+10.8%), 1RM for the bench press (+8.41%), 1RM for the pullover (+14.75%), and overhead medicine ball throws with 1 kg (+7.19%), 2 kg (+7.69%), and 3 kg (+5.26%). The control group did not present differences in these variables. Data showed the plyometric exercises that were tested could be used by performance-level volleyball teams to improve spike speed. The experimental group increased their upper-body maximal strength, their power application, and spike speed.
Betthauser, Joseph L; Hunt, Christopher L; Osborn, Luke E; Masters, Matthew R; Levay, Gyorgy; Kaliki, Rahul R; Thakor, Nitish V
2018-04-01
Myoelectric signals can be used to predict the intended movements of an amputee for prosthesis control. However, untrained effects like limb position changes influence myoelectric signal characteristics, hindering the ability of pattern recognition algorithms to discriminate among motion classes. Despite frequent and long training sessions, these deleterious conditional influences may result in poor performance and device abandonment. We present a robust sparsity-based adaptive classification method that is significantly less sensitive to signal deviations resulting from untrained conditions. We compare this approach in the offline and online contexts of untrained upper-limb positions for amputee and able-bodied subjects to demonstrate its robustness compared against other myoelectric classification methods. We report significant performance improvements () in untrained limb positions across all subject groups. The robustness of our suggested approach helps to ensure better untrained condition performance from fewer training conditions. This method of prosthesis control has the potential to deliver real-world clinical benefits to amputees: better condition-tolerant performance, reduced training burden in terms of frequency and duration, and increased adoption of myoelectric prostheses.
Zhang, Peng; Hu, Wei; Cao, Xu; Xu, Shi-gang; Li, De-kui; Xu, Lin
2009-10-01
To explore the feasibility and the result for the surgical treatment of spastic cerebral paralysis of the upper limbs in patients who underwent the selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy. From March 2004 to April 2008, 27 patients included 19 boys and 8 girls, aging 13-21 years with an average of 15 years underwent selective cervical dorsal root cutting off part of the vertebral lateral mass fixation with exercise therapy. The AXIS 8 holes titanium plate was inserted into the lateral mass of spinous process through guidance of the nerve stimulator, choosed fasciculus of low-threshold nerve dorsal root and cut off its 1.5 cm. After two weeks, training exercise therapy was done in patients. Training will include lying position, turning body, sitting position, crawling, kneeling and standing position, walking and so on. Spastic Bobath inhibiting abnormal pattern was done in the whole process of training. The muscular tension, motor function (GMFM), functional independence (WeeFIM) were observed after treatment. All patients were followed up from 4 to 16 months with an average of 6 months. Muscular tension score were respectively 3.30 +/- 0.47 and 1.25 +/- 0.44 before and after treatment;GMFM score were respectively 107.82 +/- 55.17 and 131.28 +/- 46.45; WeeFIM score were respectively 57.61 +/- 25.51 and 87.91 +/- 22.39. There was significant improvement before and after treatment (P < 0.01). Selective cervical dorsal root cutting off part of the vertebral lateral mass fixation combined with exercise therapy was used to treat spastic cerebral paralysis of the upper limbs is safe and effective method, which can decrease muscular tension and improve motor function, which deserves more wide use.
Interactive wearable systems for upper body rehabilitation: a systematic review.
Wang, Qi; Markopoulos, Panos; Yu, Bin; Chen, Wei; Timmermans, Annick
2017-03-11
The development of interactive rehabilitation technologies which rely on wearable-sensing for upper body rehabilitation is attracting increasing research interest. This paper reviews related research with the aim: 1) To inventory and classify interactive wearable systems for movement and posture monitoring during upper body rehabilitation, regarding the sensing technology, system measurements and feedback conditions; 2) To gauge the wearability of the wearable systems; 3) To inventory the availability of clinical evidence supporting the effectiveness of related technologies. A systematic literature search was conducted in the following search engines: PubMed, ACM, Scopus and IEEE (January 2010-April 2016). Forty-five papers were included and discussed in a new cuboid taxonomy which consists of 3 dimensions: sensing technology, feedback modalities and system measurements. Wearable sensor systems were developed for persons in: 1) Neuro-rehabilitation: stroke (n = 21), spinal cord injury (n = 1), cerebral palsy (n = 2), Alzheimer (n = 1); 2) Musculoskeletal impairment: ligament rehabilitation (n = 1), arthritis (n = 1), frozen shoulder (n = 1), bones trauma (n = 1); 3) Others: chronic pulmonary obstructive disease (n = 1), chronic pain rehabilitation (n = 1) and other general rehabilitation (n = 14). Accelerometers and inertial measurement units (IMU) are the most frequently used technologies (84% of the papers). They are mostly used in multiple sensor configurations to measure upper limb kinematics and/or trunk posture. Sensors are placed mostly on the trunk, upper arm, the forearm, the wrist, and the finger. Typically sensors are attachable rather than embedded in wearable devices and garments; although studies that embed and integrate sensors are increasing in the last 4 years. 16 studies applied knowledge of result (KR) feedback, 14 studies applied knowledge of performance (KP) feedback and 15 studies applied both in various modalities. 16 studies have conducted their evaluation with patients and reported usability tests, while only three of them conducted clinical trials including one randomized clinical trial. This review has shown that wearable systems are used mostly for the monitoring and provision of feedback on posture and upper extremity movements in stroke rehabilitation. The results indicated that accelerometers and IMUs are the most frequently used sensors, in most cases attached to the body through ad hoc contraptions for the purpose of improving range of motion and movement performance during upper body rehabilitation. Systems featuring sensors embedded in wearable appliances or garments are only beginning to emerge. Similarly, clinical evaluations are scarce and are further needed to provide evidence on effectiveness and pave the path towards implementation in clinical settings.
Backonja, Uba; Hediger, Mary L; Chen, Zhen; Lauver, Diane R; Sun, Liping; Peterson, C Matthew; Buck Louis, Germaine M
2017-09-01
Body mass index (BMI) and endometriosis have been inversely associated. To address gaps in this research, we examined associations among body composition, endometriosis, and physical activity. Women from 14 clinical sites in the Salt Lake City, Utah and San Francisco, California areas and scheduled for laparoscopy/laparotomy were recruited during 2007-2009. Participants (N = 473) underwent standardized anthropometric assessments to estimate body composition before surgery. Using a cross-sectional design, odds of an endometriosis diagnosis (adjusted odds ratio [aOR]; 95% confidence interval [CI]) were calculated for anthropometric and body composition measures (weight in kg; height in cm; mid upper arm, waist, hip, and chest circumferences in cm; subscapular, suprailiac, and triceps skinfold thicknesses in mm; arm muscle and fat areas in cm 2 ; centripetal fat, chest-to-waist, chest-to-hip, waist-to-hip, and waist-to-height ratios; arm fat index; and BMI in kg/m 2 ). Physical activity (metabolic equivalent of task-minutes/week) and sedentariness (average minutes sitting on a weekday) were assessed using the International Physical Activity Questionnaire-Short Form. Measures were modeled continuously and in quartiles based on sample estimates. Adjusted models were controlled for age (years, continuous), site (Utah/California), smoking history (never, former, or current smoker), and income (below, within 180%, and above of the poverty line). Findings were standardized by dividing variables by their respective standard deviations. We used adjusted models to examine whether odds of an endometriosis diagnosis were moderated by physical activity or sedentariness. Inverse relationships were observed between endometriosis and standardized: weight (aOR = 0.71, 95% CI 0.57-0.88); subscapular skinfold thickness (aOR = 0.79, 95% CI 0.65-0.98); waist and hip circumferences (aOR = 0.79, 95% CI 0.64-0.98 and aOR = 0.76, 95% CI 0.61-0.94, respectively); total upper arm and upper arm muscle areas (aOR = 0.76, 95% CI 0.61-0.94 and aOR = 0.74, 95% CI 0.59-0.93, respectively); and BMI (aOR = 0.75, 95% CI 0.60-0.93), despite similar heights. Women in the highest versus lowest quartile had lower adjusted odds of an endometriosis diagnosis for: weight; mid-upper arm, hip, and waist circumferences; total upper arm and upper arm muscle areas; BMI; and centripetal fat ratio. There was no evidence of a main effect or moderation of physical activity or sedentariness. In a surgical cohort, endometriosis was inversely associated with anthropometric measures and body composition indicators.
NASA Astrophysics Data System (ADS)
Zheng, Guangtai; Qiu, Yi; Griffin, Michael J.
2011-12-01
During vertical excitation of the seated human body there are vertical and fore-and-aft forces at the seat that are influenced by contact with a backrest, so it is desirable to take into account the effect of a backrest when developing models of the seated human body. Initially, a seven degree-of-freedom multi-body dynamic model was developed for the human body sitting with an upright posture unsupported by a backrest and exposed to vertical vibration. The model was optimized to fit the vertical apparent mass and the fore-and-aft cross-axis apparent mass measured on a seat. The model was then extended by the addition of vertical and fore-and-aft reaction forces to the upper lumbar spine to model the interaction between the human body and a backrest. By minimizing the least square error between experimental data and the analytical solution of the apparent masses on the seat and at the back, the human body model was able to represent both the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and at the back. Parameter sensitivity studies showed that the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat and the backrest were all highly sensitive to the axial stiffness of the tissue beneath the pelvis. Pitch motion of the upper-body contributed to the vertical apparent mass and the fore-and-aft cross-axis apparent mass on the seat. The apparent mass at the back was more sensitive to the stiffness and damping of the lower back than the properties of the upper back.
Tallis, Jason; Yavuz, Harley C M
2018-03-01
Despite the growing quantity of literature exploring the effect of caffeine on muscular strength, there is a dearth of data that directly explores differences in erogenicity between upper and lower body musculature and the dose-response effect. The present study sought to investigate the effects of low and moderate doses of caffeine on the maximal voluntary strength of the elbow flexors and knee extensors. Ten nonspecifically strength-trained, recreationally active participants (aged 21 ± 0.3 years) completed the study. Using a randomised, counterbalanced, and double-blind approach, isokinetic concentric and eccentric strength was measured at 60 and 180°/s following administration of a placebo, 3 mg·kg -1 body mass caffeine, and 6 mg·kg -1 body mass caffeine. There was no effect of caffeine on the maximal voluntary concentric and eccentric strength of the elbow flexors, or the eccentric strength of the knee extensors. Both 3 and 6 mg·kg -1 body mass caffeine caused a significant increase in peak concentric force of the knee extensors at 180°/s. No difference was apparent between the 2 concentrations. Only 6 mg·kg -1 body mass caused an increase in peak concentric force during repeated contractions. The results infer that the effective caffeine concentration to evoke improved muscle performance may be related to muscle mass and contraction type. The present work indicates that a relatively low dose of caffeine treatment may be effective for improving lower body muscular strength, but may have little benefit for the strength of major muscular groups of the upper body.
Decompression sickness during simulated extravehicular activity: ambulation vs. non-ambulation.
Webb, James T; Beckstrand, Devin P; Pilmanis, Andrew A; Balldin, Ulf I
2005-08-01
Extravehicular activity (EVA) is required from the International Space Station on a regular basis. Because of the weightless environment during EVA, physical activity is performed using mostly upper-body movements since the lower body is anchored for stability. The adynamic model (restricted lower-body activity; non-ambulation) was designed to simulate this environment during earthbound studies of decompression sickness (DCS) risk. DCS symptoms during ambulatory (walking) and non-ambulatory high altitude exposure activity were compared. The objective was to determine if symptom incidences during ambulatory and non-ambulatory exposures are comparable and provide analogous estimates of risk under otherwise identical conditions. A retrospective analysis was accomplished on DCS symptoms from 2010 ambulatory and 330 non-ambulatory exposures. There was no significant difference between the overall incidence of DCS or joint-pain DCS in the ambulatory (49% and 40%) vs. the non-ambulatory exposures (53% and 36%; p > 0.1). DCS involving joint pain only in the lower body was higher during ambulatory exposures (28%) than non-ambulatory exposures (18%; p < 0.01). Non-ambulatory exposures terminated more frequently with non-joint-pain DCS (17%) or upper-body-only joint pain (18%) as compared with ambulatory exposures, 9% and 11% (p < 0.01), respectively. These findings show that lower-body, weight-bearing activity shifts the incidence of joint-pain DCS from the upper body to the lower body without altering the total incidence of DCS or joint-pain DCS. Use of data from previous and future subject exposures involving ambulatory activity while decompressed appears to be a valid analogue of non-ambulatory activity in determining DCS risk during simulated EVA studies.
Sandbakk, Øyvind; Solli, Guro Strøm; Holmberg, Hans-Christer
2018-01-01
The current review summarizes scientific knowledge concerning sex differences in world-record performance and the influence of sport discipline and competition duration. In addition, the way that physiological factors relate to sex dimorphism is discussed. While cultural factors played a major role in the rapid improvement of performance of women relative to men up until the 1990s, sex differences between the world's best athletes in most events have remained relatively stable at approximately 8-12%. The exceptions are events in which upper-body power is a major contributor, where this difference is more than 12%, and ultraendurance swimming, where the gap is now less than 5%. The physiological advantages in men include a larger body size with more skeletal-muscle mass, a lower percentage of body fat, and greater maximal delivery of anaerobic and aerobic energy. The greater strength and anaerobic capacity in men normally disappear when normalized for fat-free body mass, whereas the higher hemoglobin concentrations lead to 5-10% greater maximal oxygen uptake in men with such normalization. The higher percentage of muscle mass in the upper body of men results in a particularly large sex difference in power production during upper-body exercise. While the exercise efficiency of men and women is usually similar, women have a better capacity to metabolize fat and demonstrate better hydrodynamics and more even pacing, which may be advantageous, in particular during long-lasting swimming competitions.
Occupant kinematics in low-speed frontal sled tests: Human volunteers, Hybrid III ATD, and PMHS.
Beeman, Stephanie M; Kemper, Andrew R; Madigan, Michael L; Franck, Christopher T; Loftus, Stephen C
2012-07-01
A total of 34 dynamic matched frontal sled tests were performed, 17 low (2.5g, Δv=4.8kph) and 17 medium (5.0g, Δv=9.7kph), with five male human volunteers of approximately 50th percentile height and weight, a Hybrid III 50th percentile male ATD, and three male PMHS. Each volunteer was exposed to two impulses at each severity, one relaxed and one braced prior to the impulse. A total of four tests were performed at each severity with the ATD and one trial was performed at each severity with each PMHS. A Vicon motion analysis system, 12 MX-T20 2 megapixel cameras, was used to quantify subject 3D kinematics (±1mm) (1kHz). Excursions of select anatomical regions were normalized to their respective initial positions and compared by test condition and between subject types. The forward excursions of the select anatomical regions generally increased with increasing severity. The forward excursions of relaxed human volunteers were significantly larger than those of the ATD for nearly every region at both severities. The forward excursions of the upper body regions of the braced volunteers were generally significantly smaller than those of the ATD at both severities. Forward excursions of the relaxed human volunteers and PMHSs were fairly similar except the head CG response at both severities and the right knee and C7 at the medium severity. The forward excursions of the upper body of the PMHS were generally significantly larger than those of the braced volunteers at both severities. Forward excursions of the PMHSs exceeded those of the ATD for all regions at both severities with significant differences within the upper body regions. Overall human volunteers, ATD, and PMHSs do not have identical biomechanical responses in low-speed frontal sled tests but all contribute valuable data that can be used to refine and validate computational models and ATDs used to assess injury risk in automotive collisions. Copyright © 2012 Elsevier Ltd. All rights reserved.
McDonough, Christine M.; Jette, Alan M.; Ni, Pengsheng; Bogusz, Kara; Marfeo, Elizabeth E; Brandt, Diane E; Chan, Leighton; Meterko, Mark; Haley, Stephen M.; Rasch, Elizabeth K.
2014-01-01
Objectives To build a comprehensive item pool representing work-relevant physical functioning and to test the factor structure of the item pool. These developmental steps represent initial outcomes of a broader project to develop instruments for the assessment of function within the context of Social Security Administration (SSA) disability programs. Design Comprehensive literature review; gap analysis; item generation with expert panel input; stakeholder interviews; cognitive interviews; cross-sectional survey administration; and exploratory and confirmatory factor analyses to assess item pool structure. Setting In-person and semi-structured interviews; internet and telephone surveys. Participants A sample of 1,017 SSA claimants, and a normative sample of 999 adults from the US general population. Interventions Not Applicable. Main Outcome Measure Model fit statistics Results The final item pool consisted of 139 items. Within the claimant sample 58.7% were white; 31.8% were black; 46.6% were female; and the mean age was 49.7 years. Initial factor analyses revealed a 4-factor solution which included more items and allowed separate characterization of: 1) Changing and Maintaining Body Position, 2) Whole Body Mobility, 3) Upper Body Function and 4) Upper Extremity Fine Motor. The final 4-factor model included 91 items. Confirmatory factor analyses for the 4-factor models for the claimant and the normative samples demonstrated very good fit. Fit statistics for claimant and normative samples respectively were: Comparative Fit Index = 0.93 and 0.98; Tucker-Lewis Index = 0.92 and 0.98; Root Mean Square Error Approximation = 0.05 and 0.04. Conclusions The factor structure of the Physical Function item pool closely resembled the hypothesized content model. The four scales relevant to work activities offer promise for providing reliable information about claimant physical functioning relevant to work disability. PMID:23542402
Ramadan, Ahmed; Cholewicki, Jacek; Radcliffe, Clark J; Popovich, John M; Reeves, N Peter; Choi, Jongeun
2017-11-07
This study evaluated the within- and between-visit reliability of a seated balance test for quantifying trunk motor control using input-output data. Thirty healthy subjects performed a seated balance test under three conditions: eyes open (EO), eyes closed (EC), and eyes closed with vibration to the lumbar muscles (VIB). Each subject performed three trials of each condition on three different visits. The seated balance test utilized a torque-controlled robotic seat, which together with a sitting subject resulted in a physical human-robot interaction (pHRI) (two degrees-of-freedom with upper and lower body rotations). Subjects balanced the pHRI by controlling trunk rotation in response to pseudorandom torque perturbations applied to the seat in the coronal plane. Performance error was expressed as the root mean square (RMSE) of deviations from the upright position in the time domain and as the mean bandpass signal energy (E mb ) in the frequency domain. Intra-class correlation coefficients (ICC) quantified the between-visit reliability of both RMSE and E mb . The empirical transfer function estimates (ETFE) from the perturbation input to each of the two rotational outputs were calculated. Coefficients of multiple correlation (CMC) quantified the within- and between-visit reliability of the averaged ETFE. ICCs of RMSE and E mb for all conditions were ≥0.84. The mean within- and between-visit CMCs were all ≥0.96 for the lower body rotation and ≥0.89 for the upper body rotation. Therefore, our seated balance test consisting of pHRI to assess coronal plane trunk motor control is reliable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Establishment of a New Zealand rabbit model of spinal tuberculosis.
Geng, Guangqi; Wang, Qian; Shi, Jiandang; Yan, Junfa; Niu, Ningkui; Wang, Zili
2015-04-01
This was an experimental study. To investigate and evaluate the experimental method of establishing a New Zealand rabbit model of spinal tuberculosis. Establishing animal models of tuberculosis is critical to the experimental and clinical study of tuberculosis, especially spinal tuberculosis. However, the rapid spread of Mycobacterium tuberculosis and subsequent high mortality thwarted their effort. Since then, no animal models have been established of spinal tuberculosis. Forty-two New Zealand rabbits were randomly divided into experimental (n=20), control (n=20), and blank groups (n=2). Experimental animals were sensitized by complete Freund's adjuvant. A hole drilled under the upper endplate of the L4 vertebral body was filled with a gelfoam sponge infused with 0.1 mL H37Rv standard M. tuberculosis suspension (in controls, culture medium, and saline). Blank animals received no treatment. Survival 8 weeks after surgery was 89.5%, 94.7%, and 100% in experimental, control, and blank groups, respectively. The model was successfully established in all surviving experimental rabbits. In experimental animals, vertebral body destruction at 4 weeks was 50% by x-ray; 83.3% by computed tomography reconstruction and magnetic resonance imaging; at 8 weeks, 58.8% by x-ray and 100% by computed tomograph reconstruction and magnetic resonance imaging. At 8 weeks, experimental animals developed vertebral destruction, granulation, and necrosis and 17.6% had psoas abscess. Histopathology revealed numerous lymphocytes and epithelioid cells, trabecular bone fracture, and coagulative necrosis in the vertebrae of experimental animals; bacterium culture was 52.9% positive. Control and blank animals showed no such changes. A New Zealand rabbit of spinal tuberculosis model can be successfully established by drilling a hole in the upper endplate of the vertebral body, filling with gelfoam sponge infused with H37Rv standard M. tuberculosis suspension after sensitization by complete Freund's adjuvant.
McDonough, Christine M; Jette, Alan M; Ni, Pengsheng; Bogusz, Kara; Marfeo, Elizabeth E; Brandt, Diane E; Chan, Leighton; Meterko, Mark; Haley, Stephen M; Rasch, Elizabeth K
2013-09-01
To build a comprehensive item pool representing work-relevant physical functioning and to test the factor structure of the item pool. These developmental steps represent initial outcomes of a broader project to develop instruments for the assessment of function within the context of Social Security Administration (SSA) disability programs. Comprehensive literature review; gap analysis; item generation with expert panel input; stakeholder interviews; cognitive interviews; cross-sectional survey administration; and exploratory and confirmatory factor analyses to assess item pool structure. In-person and semistructured interviews and Internet and telephone surveys. Sample of SSA claimants (n=1017) and a normative sample of adults from the U.S. general population (n=999). Not applicable. Model fit statistics. The final item pool consisted of 139 items. Within the claimant sample, 58.7% were white; 31.8% were black; 46.6% were women; and the mean age was 49.7 years. Initial factor analyses revealed a 4-factor solution, which included more items and allowed separate characterization of: (1) changing and maintaining body position, (2) whole body mobility, (3) upper body function, and (4) upper extremity fine motor. The final 4-factor model included 91 items. Confirmatory factor analyses for the 4-factor models for the claimant and the normative samples demonstrated very good fit. Fit statistics for claimant and normative samples, respectively, were: Comparative Fit Index=.93 and .98; Tucker-Lewis Index=.92 and .98; and root mean square error approximation=.05 and .04. The factor structure of the physical function item pool closely resembled the hypothesized content model. The 4 scales relevant to work activities offer promise for providing reliable information about claimant physical functioning relevant to work disability. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Relationships Between Propulsion and Anthropometry in Paralympic Swimmers.
Dingley, Andrew A; Pyne, David B; Burkett, Brendan
2015-11-01
To characterize relationships between propulsion, anthropometry, and performance in Paralympic swimming. A cross-sectional study of swimmers (13 male, 15 female) age 20.5 ± 4.4 y was conducted. Subject locomotor categorizations were no physical disability (n = 8, classes S13-S14) and low-severity (n = 11, classes S9-S10) or midseverity disability (n = 9, classes S6-S8). Full anthropometric profiles estimated muscle mass and body fat, a bilateral swim-bench ergometer quantified upper-body power production, and 100-m time trials quantified swimming performance. Correlations between ergometer mean power and swimming performance increased with degree of physical disability (low-severity male r = .65, ± 0.56, and female r = .68, ± 0.64; midseverity, r = .87, ± 0.41, and r = .79, ± 0.75). The female midseverity group showed nearperfect (positive) relationships for taller swimmers' (with a greater muscle mass and longer arm span) swimming faster, while for female no- and low-severity-disability groups, greater muscle mass was associated with slower velocity (r = .78, ± 0.43, and r = .65, ± 0.66). This was supported with lighter females (with less frontal surface area) in the low-severity group being faster (r = .94, ± 0.24). In a gender contrast, low-severity males with less muscle mass (r = -.64, ± 0.56), high skinfolds (r = .78, ± 0.43), a longer arm span (r = .58, ± 0.60) or smaller frontal surface area (r = -.93, ± 0.19) were detrimental to swimming-velocity production. Low-severity male and midseverity female Paralympic swimmers should be encouraged to develop muscle mass and upper-body power to enhance swimming performance. The generalized anthropometric measures appear to be a secondary consideration for coaches.
Testosterone and growth hormone improve body composition and muscle performance in older men
USDA-ARS?s Scientific Manuscript database
CONTEXT: Impairments in the pituitary-gonadal axis with aging are associated with loss of muscle mass and function and accumulation of upper body fat. OBJECTIVES: We tested the hypothesis that physiological supplementation with testosterone and GH together improves body composition and muscle perfor...
Profiles of muscularity in junior Olympic weight lifters.
Kanehisa, H; Funato, K; Abe, T; Fukunaga, T
2005-03-01
This study aimed to investigate the muscularity of strength-trained junior athletes. Muscle thickness (Mt) values at 10 sites (anterior forearm, anterior upper arm, posterior upper arm, chest, abdomen, back, anterior thigh, posterior thigh, anterior lower leg, and posterior lower leg) were determined in junior Olympic weight lifters (OWL, n=7, 15.1+/-0.3 y, mean+/-SD) and non-athletes (CON, n=13, 15.1+/-0.3 y) using a brightness mode ultrasonography. Skeletal age assessed with the Tanner-Whitehouse II method (20 hand-wrist bones) was similar in OWL (16.4+/-0.7 y) and CON (16.3+/-0.6 y). At the 6 sites (anterior forearm, anterior upper arm, posterior upper arm, chest, back and anterior thigh), OWL showed significantly greater Mt values than CON even in terms of Mt relative to body mass(1/3) Mt x BM(-1/3). On the other hand, there were no significant differences between the 2 groups in the Mt ratios of the anterior to posterior site in the upper arm, thigh and lower leg and those of the back to either the chest or abdomen in the trunk. For OWL only, skeletal age was significantly correlated to Mt x BM(-1/3) at the abdomen (r=0.869, p<0.05) and anterior thigh (r=0.883, p<0.05). The findings here indicate that 1) as compared to adolescent non-athletes, junior Olympic weight lifters show a greater muscularity in the upper body and anterior thigh without predominant development in either of anterior and posterior sites within the same body segment, 2) for junior Olympic weight lifters, the muscularity of abdominal and knee extensor muscles is influenced by the biological maturation.
Singla, Deepika; Hussain, M Ejaz; Moiz, Jamal Ali
2018-01-01
To determine the impact of upper body plyometric training (UBPT) on physical performance parameters such as strength, ball throwing speed, ball throw distance and power in healthy individuals. PubMed, Scopus, ResearchGate and ERIC databases were searched up to August 2017. Selection of articles was done if they described the outcomes of an upper body plyometric exercise intervention; included measures of strength, ball throwing speed, ball throw distance, or power; included healthy individuals; used a randomized control trial; and had full text available in English language. The exclusion criteria were unpublished research work and clubbing of UBPT with some other type(s) of training apart from routine sports training. PEDro scale was used to rate the quality of studies eligible for this review. Initially 264 records were identified and out of them only 11 articles met the eligibility criteria and were selected (PEDro score = 4 to 6). Though large to very small effects observed in improving ball throwing velocity, ball throwing distance, power and strength of upper limb muscles after UBPT, the results should be implemented with caution. Inconclusive results obtained preclude any strong conclusion regarding the efficacy of UBPT on physical performance in healthy individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Upper limb joint forces and moments during underwater cyclical movements.
Lauer, Jessy; Rouard, Annie Hélène; Vilas-Boas, João Paulo
2016-10-03
Sound inverse dynamics modeling is lacking in aquatic locomotion research because of the difficulty in measuring hydrodynamic forces in dynamic conditions. Here we report the successful implementation and validation of an innovative methodology crossing new computational fluid dynamics and inverse dynamics techniques to quantify upper limb joint forces and moments while moving in water. Upper limb kinematics of seven male swimmers sculling while ballasted with 4kg was recorded through underwater motion capture. Together with body scans, segment inertial properties, and hydrodynamic resistances computed from a unique dynamic mesh algorithm capable to handle large body deformations, these data were fed into an inverse dynamics model to solve for joint kinetics. Simulation validity was assessed by comparing the impulse produced by the arms, calculated by integrating vertical forces over a stroke period, to the net theoretical impulse of buoyancy and ballast forces. A resulting gap of 1.2±3.5% provided confidence in the results. Upper limb joint load was within 5% of swimmer׳s body weight, which tends to supports the use of low-load aquatic exercises to reduce joint stress. We expect this significant methodological improvement to pave the way towards deeper insights into the mechanics of aquatic movement and the establishment of practice guidelines in rehabilitation, fitness or swimming performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tang, M. H.; Pearson, G. P. E.
1973-01-01
Control-surface hinge-moment measurements obtained in the X-24A lifting body flight-test program are compared with results from wind-tunnel tests. The effects of variations in angle of attack, angle of sideslip, rudder bias, rudder deflection, upper-flap deflection, lower-flap deflection, Mach number, and rocket-engine operation on the control-surface hinge moments are presented. In-flight motion pictures of tufts attached to the inboard side of the right fin and the rudder and upper-flap surfaces are discussed.
A Hyalinized Trichilemmoma of the Eyelid in a Teenager.
Jakobiec, Frederick A; Stagner, Anna M; Sassoon, Jodi; Goldstein, Scott; Mihm, Martin C
2016-01-01
A 16-year-old African American male, the youngest patient to date, presented with a well-circumscribed upper eyelid lesion. On excision, the dermal nodule was contiguous with the epidermis, displayed trichohyalin-like bodies in an expanded outer root sheath, and was composed chiefly of small cellular clusters separated by a prominent network of periodic acid Schiff -positive hyaline bands of basement membrane material. The tumor cells were positive for high molecular weight cytokeratins (CK) 5/6, CK14, and CK34βE12 and were negative for CK7, carcinoembryonic antigen and epithelial membrane antigen. Negative S100, glial fibrillary acidic protein, and smooth muscle actin immunoreactions ruled out a myoepithelial lesion. The Ki-67 proliferation index was <10%. The diagnosis was a hyalinized trichilemmoma, contrasting with the more common lobular type. As an isolated lesion, trichilemmoma does not portend Cowden syndrome.
Gusarov, A A; Fetisov, V A; Smirenin, S A
2016-01-01
This article is designed to report the results of the comprehensive forensic medical and autotechnical expertise for determining the positions of the driver and the first seat passenger of the GAS-3110 car at the moment of the frontal crash with a KAMAZ-5312 truck. The comparative analysis of the injuries in two subjects one of whom died as a result of the given accident made it possible to conclude that he had occupied the driver's seat in the car. The differential diagnosis was based on the peculiarities of the injuries to the upper extremities with the predominance of the most severe wounds at the right side of the body. Also taken into consideration were the specific conditions of the given frontal collision, design of the GAS-3110 passenger compartment, winter season, night time, and possible neglect of the passive safety means, etc.
Towards a body hair atlas of women of caucasian ethnicity.
Schweiger, D; Hoff, A; Scheede, S; Fischer, F; Tilsner, J; Lüttke, J; Neumann, Y; Hagens, R
2016-08-01
A preliminary study was conducted in 17 female volunteers (mean age 29.8 years) to gain deeper insights into the characteristics of terminal Caucasian female body hair of different body parts. The focus on Caucasian women was driven by the high number of different scalp hair phenotypes in this ethnicity and intended to identify relevant differences between body areas to improve body hair removal approaches. Multiple growth parameters and structural parameters were assessed for hair on the upper arm, forearm, upper leg, lower leg, axilla and intimate area and compared to scalp data. In particular, macroscopic and much less microscopic or hair surface properties differ strikingly in the investigated body areas. Hair density on the body is much lower than on scalp with the highest hair density in the axilla and intimate area. Multihair follicular units are described for scalp but were also found to a smaller proportion in the axilla and the intimate area. Substantial percentages of hair triplets are only found on the scalp and intimate area. Hair diameter is highest in the intimate area, followed by axillary and lower leg hair and correlates with a faster hair growth rate. The angle of emerging hair is smallest in the intimate area, axilla and on the lower leg. Hair shafts on the lower leg and in the axilla have most overlapping cuticle layers, but independent of body region, no significant differences in the mean thickness of cuticle layers were detectable. In addition, no differences were found in the mean distance between cuticle layer edges along the hair shaft and the hair surface roughness. Hair on the scalp, forearm, upper arm and upper leg had an almost round shape, whereas hair of the lower leg, intimate area and axilla had more elliptical shape. Hairs on the arm showed the highest luminance values and no visible medulla. The darkest hairs were in the axilla and intimate area containing the highest level of visible medulla in hair shafts. To our knowledge, this is the first systematic study comparing terminal hair properties in all cosmetically relevant body regions in Caucasian women. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Aedma, Martin; Timpmann, Saima; Lätt, Evelin; Ööpik, Vahur
2015-01-01
Creatine (CR) is considered an effective nutritional supplement having ergogenic effects, which appears more pronounced in upper-body compared to lower-body exercise. Nevertheless, results regarding the impact of CR loading on repeated high-intensity arm-cranking exercise are scarce and in some cases conflicting. Interestingly, few of the conducted studies have structured their research designs to mimic real world sporting events. Therefore, our purpose was to address the hypothesis that CR ingestion would increase anaerobic power output in consecutive upper-body intermittent sprint performance (UBISP) tests designed to simulate wrestling matches on a competition-day. In a double-blind, placebo-controlled, parallel-group study, 20 trained wrestlers were assigned to either placebo or CR supplemented group (0.3 g ∙ kg(-1) of body mass per day). Four 6-min UBISP tests interspersed with 30-min recovery periods were performed before (trial 1) and after 5 days (trial 2) of supplementation. Each test consisted of six 15-s periods of arm-cranking at maximal executable cadence against resistance of 0.04 kg ∙ kg(-1) body mass interspersed with 40-s unloaded easy cranking periods and 5-s acceleration intervals (T1-T4). Mean power (MP), peak power (PP), fatigue index and heart rate parameters were measured during UBISP tests. Also, body weight and hydration status were assessed. Principle measures were statistical analysed with mixed-model ANOVAs. Mean individual CR consumption in the CR group was 24.8 ± 2.5 g ∙ d(-1). No significant (P > 0.05) differences occurred in body mass or hydration status indices between the groups or across trials. MP, PP and fatigue index responses were unaffected by supplementation; although, a significant reduction in MP and PP did occurred from T1 to T4 in both trial 1 and 2 (P < 0.001). Overall heart rate responses in the tests tended to be higher in the CR than PLC group (P < 0.05); but, trends in responses in trials and tests were comparable (P > 0.05). These results suggest that 5-day CR supplementation has no impact on upper-body muscle anaerobic power output in consecutive UBISP anaerobic tests mimicking wrestling matches on a competition day.
Validation of Body Volume Acquisition by Using Elliptical Zone Method.
Chiu, C-Y; Pease, D L; Fawkner, S; Sanders, R H
2016-12-01
The elliptical zone method (E-Zone) can be used to obtain reliable body volume data including total body volume and segmental volumes with inexpensive and portable equipment. The purpose of this research was to assess the accuracy of body volume data obtained from E-Zone by comparing them with those acquired from the 3D photonic scanning method (3DPS). 17 male participants with diverse somatotypes were recruited. Each participant was scanned twice on the same day by a 3D whole-body scanner and photographed twice for the E-Zone analysis. The body volume data acquired from 3DPS was regarded as the reference against which the accuracy of the E-Zone was assessed. The relative technical error of measurement (TEM) of total body volume estimations was around 3% for E-Zone. E-Zone can estimate the segmental volumes of upper torso, lower torso, thigh, shank, upper arm and lower arm accurately (relative TEM<10%) but the accuracy for small segments including the neck, hand and foot were poor. In summary, E-Zone provides a reliable, inexpensive, portable, and simple method to obtain reasonable estimates of total body volume and to indicate segmental volume distribution. © Georg Thieme Verlag KG Stuttgart · New York.
Gupta, Priyanka; Mittal, Nitya; Kulkarni, Abhishek; Meenakshi, J V; Bhatia, Vijayalakshmi
2015-01-01
Children from the upper socioeconomic group in India currently show a modest positive secular trend in height, accompanied by a high prevalence of obesity. We examined the anthropometric pattern among children from the middle socioeconomic group. A cross-sectional study of anthropometry in 3794 schoolchildren from the middle socioeconomic group in the city of Lucknow, Uttar Pradesh, India. A comparison with the data of a 20-year-old study of children from the upper socioeconomic group showed that the height of boys in our study was at par with or higher than that of boys of the same (Lucknow-Allahabad-Varanasi) region or national data, at all centiles. In contrast, girls in our study were shorter than national data at all centiles and shorter than girls of the same region at the 3rd centile. Children from the middle socioeconomic group did not show the large increase in weight centiles seen in the recent data of the upper socioeconomic group. The values of body mass index at the 85th and 95th percentile at 17 or 18 years of age in girls and boys were 23 and 25 kg/m2, respectively. Obesity was prevalent in 1% of children of the middle socioeconomic group and an additional 5.7% were overweight. Children from the middle socioeconomic group in Lucknow have grown taller than their 20-year-old counterparts from the upper socioeconomic group. Boys have fared better than girls. Children from the middle socioeconomic group in Lucknow are at present spared from the epidemic of obesity. Copyright 2015, NMJI.
Biomechanical investigation of head impacts in football
Withnall, C; Shewchenko, N; Gittens, R; Dvorak, J
2005-01-01
Objectives: This study sought to measure the head accelerations induced from upper extremity to head and head to head impact during the game of football and relate this to the risk of mild traumatic brain injury using the Head Impact Power (HIP) index. Furthermore, measurement of upper neck forces and torques will indicate the potential for serious neck injury. More stringent rules or punitive sanctions may be warranted for intentional impact by the upper extremity or head during game play. Methods: Game video of 62 cases of head impact (38% caused by the upper extremity and 30% by the head of the opposing player) was provided by F-MARC. Video analysis revealed the typical impact configurations and representative impact speeds. Upper extremity impacts of elbow strike and lateral hand strike were re-enacted in the laboratory by five volunteer football players striking an instrumented Hybrid III pedestrian model crash test manikin. Head to head impacts were re-enacted using two instrumented test manikins. Results: Elbow to head impacts (1.7–4.6 m/s) and lateral hand strikes (5.2–9.3 m/s) resulted in low risk of concussion (<5%) and severe neck injury (<5%). Head to head impacts (1.5–3.0 m/s) resulted in high concussion risk (up to 67%) but low risk of severe neck injury (<5%). Conclusion: The laboratory simulations suggest little risk of concussion based on head accelerations and maximum HIP. There is no biomechanical justification for harsher penalties in this regard. However, deliberate use of the head to impact another player's head poses a high risk of concussion, and justifies a harsher position by regulatory bodies. In either case the risk of serious neck injury is very low. PMID:16046356
Wong-Chung, Daniel A C F; Schimmel, Janneke J P; de Kleuver, Marinus; Keijsers, Noël L W
2018-02-01
To investigate the effects of posterior spinal fusion (PSF) and curve type on upper body movements in Adolescent Idiopathic Scoliosis (AIS) patients during gait. Twenty-four girls (12-18 years) with AIS underwent PSF. 3D-Gait-analyses were performed preoperatively, at 3 months and 1 year postoperatively. Mean position (0° represents symmetry) and range of motion (ROM) of the trunk (thorax-relative-to-pelvis) in all planes were assessed. Lower body kinematics and spatiotemporal parameters were also evaluated. Mean trunk position improved from 7.0° to 2.9° in transversal plane and from 5.0° to - 0.8° in frontal plane at 3 months postoperative (p < 0.001), and was maintained at 1 year. Trunk ROM in transverse plane decreased from 9.6° to 7.5° (p < 0.001) after surgery. No effects of PSF were observed on the lower body kinematics during the gait cycle. Patients with a double curve had a more axial rotated trunk before and after surgery (p = 0.013). In AIS patients, during gait an evident asymmetrical position of the trunk improved to an almost symmetric situation already 3 months after PSF and was maintained at 1 year. Despite a reduction of trunk ROM, patients were able to maintain the same walking pattern in the lower extremities after surgery. This improvement of symmetry and maintenance of normal gait can explain the rapid recovery and well functioning in daily life of AIS patients, despite undergoing a fusion of large parts of their spine.
Lombard, Wayne P; Durandt, Justin J; Masimla, Herman; Green, Mervin; Lambert, Michael I
2015-04-01
This study compared changes in the body size and physical characteristics of South African under-20 rugby union players over a 13-year period. A total of 453 South African under-20 players (forwards: n = 256 and backs: n = 197) underwent measurements of body mass, stature, muscular strength, endurance, and 10- and 40-m sprint times. A 2-way analysis of variance was used to determine significant differences for the main effects of position (forwards vs. backs) and time (1998-2010). The pooled data showed that forwards were significantly heavier (22%), taller (5%), and stronger (18%) than the backs. However, when 1 repetition maximum strength scores were adjusted for body mass, backs were stronger per kg body mass. Stature did not change over the 13-year period for both groups. There were, however, significant increases in muscular strength (50%), body mass (20%), and muscular endurance (50%). Furthermore, an improvement in sprint times over 40 (4%) and 10 m (7%) was evident over the period of the study. In conclusion, the players became heavier, stronger, taller, and improved their upper-body muscular endurance over the 13 years of the study. Furthermore, sprint times over 10 and 40 m improved over the same time period despite the increase in body mass. It can be speculated that the changes in physical characteristics of the players over time are possibly a consequence of (a) adaptations to the changing demands of the game and (b) advancements in training methods.
Wu, Xiang-Yang; Zhang, Zhe; Wu, Jian; Lü, Jun; Gu, Xiao-Hui
2009-11-01
To investigate the "window" surgical exposure strategy of the upper anterior cervical retropharyngeal approach for the exposure and decompression and instrumentation of the upper cervical spine. From Jan. 2000 to July 2008, 5 patients with upper cervical spinal injuries were treated by surgical operation included 4 males and 1 female with and average age of 35 years old ranging from 16 to 68 years. There were 2 cases of Hangman's fractures (type II ), 2 of C2.3 intervertebral disc displacement and 1 of C2 vertebral body tuberculosis. All patients underwent the upper cervical anterior retropharyngeal approach through the "window" between the hypoglossal nerve and the superior laryngeal nerve and pharynx and carotid artery. Two patients of Hangman's fractures underwent the C2,3 intervertebral disc discectomy, bone graft fusion and internal fixation. Two patients of C2,3 intervertebral disc displacement underwent the C2,3 intervertebral disc discectomy, decompression bone graft fusion and internal fixation. One patient of C2 vertebral body tuberculosis was dissected and resected and the focus and the cavity was filled by bone autografting. C1 anterior arch to C3 anterior vertebral body were successful exposed. Lesion resection or decompression and fusion were successful in all patients. All patients were followed-up for from 5 to 26 months (means 13.5 months). There was no important vascular and nerve injury and no wound infection. Neutral symptoms was improved and all patient got successful fusion. The "window" surgical exposure surgical technique of the upper cervical anterior retropharyngeal approach is a favorable strategy. This approach strategy can be performed with full exposure for C1-C3 anterior anatomical structure, and can get minimally invasive surgery results and few and far between wound complication, that is safe if corresponding experience is achieved.
Baidwan, N K; Naranje, S M
2017-01-01
Fractures in geriatric age group (over 65 years of age) are an important public health issue and frequent causes of emergency room visits. The purpose of this descriptive epidemiological study was to present the epidemiology of geriatric fractures and their trends in the USA using National Electronic Injury Surveillance System (NEISS) database from year 2004-2014. National Electronic Injury Surveillance System (NEISS) Database was queried for all fracture injuries from 2004 to 2014 for ages 65 years and above. The proportions of fractures based on NEISS national estimates were calculated and their trends using linear regression over last 11 years were studied. Lower trunk (pelvis, hip and lower spine) fractures were the most common (34% for year 2014) type of fractures in this age group. Upper trunk (upper spine, clavicle and ribs) fractures were the second most common type of fractures (13% for year 2014). Other body parts commonly fractured involved the upper arm and wrist with an average of 7% fractures in both during the study period. About 5% of geriatric fractures pertained to shoulder and upper leg. Although less common, there was also about 2% increase in fractures to face and neck in 2014 as compared to about 3.2% and 1% respectively in 2004. Fractures to other body parts were less common with no major variations during the study period. Overall, lower trunk (hip, pelvic and lower spine) fractures were the most common geriatric fractures followed by upper trunk (upper spine, clavicle and rib) fractures. We suggest that there were decreasing trends for incidence of lower trunk, wrist and upper body fractures over the last 11 years (2004-2014). Approximately half of the geriatric fractures presenting to Emergency Department needed hospitalizations. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Heke, TOL; Keogh, JWL
2016-01-01
This study examined the effects of two equal-volume resistance-training protocols upon strength, body composition and salivary hormones in male rugby union players. Using a crossover design, 24 male rugby players completed a 4-week full-body (FB) and split-body (SB) training protocol of equal volume during the competitive season. One repetition maximum (1RM) strength, body composition via skinfold measurements and salivary testosterone (T) and cortisol (C) concentrations were assessed pre and post training. The FB and SB protocols improved upper (7.3% and 7.4%) and lower body 1RM strength (7.4% and 5.4%), whilst reducing body fat (-0.9% and -0.4%) and fat mass (-5.7% and -2.1%), respectively (all p ≤ 0.021). The SB protocol elevated T (21%) and C (50%) concentrations with a higher T/C ratio (28%) after FB training (all p ≤ 0.039). The strength changes were similar, but the body composition and hormonal results differed by protocol. Slope testing on the individual responses identified positive associations (p ≤ 0.05) between T and C concentrations and absolute 1RM strength in stronger (squat 1RM = 150.5 kg), but not weaker (squat 1RM = 117.4 kg), men. A short window of training involving FB or SB protocols can improve strength and body composition in rugby players. The similar strength gains highlight training volume as a key adaptive stimulus, although the programme structure (i.e. FB or SB) did influence the body composition and hormonal outcomes. It also appears that 1RM strength is associated with individual hormonal changes and baseline strength. PMID:27274103
Crewther, B T; Heke, Tol; Keogh, Jwl
2016-06-01
This study examined the effects of two equal-volume resistance-training protocols upon strength, body composition and salivary hormones in male rugby union players. Using a crossover design, 24 male rugby players completed a 4-week full-body (FB) and split-body (SB) training protocol of equal volume during the competitive season. One repetition maximum (1RM) strength, body composition via skinfold measurements and salivary testosterone (T) and cortisol (C) concentrations were assessed pre and post training. The FB and SB protocols improved upper (7.3% and 7.4%) and lower body 1RM strength (7.4% and 5.4%), whilst reducing body fat (-0.9% and -0.4%) and fat mass (-5.7% and -2.1%), respectively (all p ≤ 0.021). The SB protocol elevated T (21%) and C (50%) concentrations with a higher T/C ratio (28%) after FB training (all p ≤ 0.039). The strength changes were similar, but the body composition and hormonal results differed by protocol. Slope testing on the individual responses identified positive associations (p ≤ 0.05) between T and C concentrations and absolute 1RM strength in stronger (squat 1RM = 150.5 kg), but not weaker (squat 1RM = 117.4 kg), men. A short window of training involving FB or SB protocols can improve strength and body composition in rugby players. The similar strength gains highlight training volume as a key adaptive stimulus, although the programme structure (i.e. FB or SB) did influence the body composition and hormonal outcomes. It also appears that 1RM strength is associated with individual hormonal changes and baseline strength.
1983-03-01
349A9 3 Figure A-8. Program SOM-LA body segment dimensions. _ t m • •m v m--, • v_ ,• W:•---:x:--:’ ,•-•• •--" ..- • % ’"•Z>L r -L.J :•":’. 7=- 2 J7.ŗZ...offset from the mid-saggital plane, and the anterior offset of the major upper body segment (lower torso, upper torso, and head) center of masses from... body rotation) energy-absorbing scat model. (See figure A-lI for a detailed de- scription of the parameters.) FORMAT AND EXAMPLE: 2 3 4 6 6 7 1 0123 4
Upper intestinal lipids regulate energy and glucose homeostasis.
Cheung, Grace W C; Kokorovic, Andrea; Lam, Tony K T
2009-09-01
Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.
Method and device for controlling plume during laser welding
Fuerschbach, Phillip W.; Jellison, James L.; Keicher, David M.; Oberkampf, William L.
1991-01-01
A method and apparatus for enhancing the weldment of a laser welding system is provided. The laser weld plume control device includes a cylindrical body defining an upside-down cone cavity; the upper surface of the body circumscribes the base of the cone cavity, and the vertex of the cone cavity forms an orifice concentrically located with respect to the laser beam and the plume which forms as a result of the welding operation. According to the method of the invention, gas is directed radially inward through inlets in the upper surface of the body into and through channels in the wall of the body and finally through the orifice of the body, and downward onto the surface of the weldment. The gas flow is then converted by the orifice of the device from radial flow to an axisymmetric gas jet flowing away from the weldment surface in a direction perpendicular to the surface and opposite to that of the laser.
The effects of five weeks of kickboxing training on physical fitness
Ouergui, Ibrahim; Hssin, Nizar; Haddad, Monoem; Padulo, Johnny; Franchini, Emerson; Gmada, Nabil; Bouhlel, Ezzedine
2014-01-01
Summary Aim: the purpose of this study was to examine the effect of kickboxing training on physical fitness. Methods: 30 subjects were randomized into a kickboxing-group (n=15) and control group (n=15). Each group trained approximately 1-hour per day, three-times per a week during five weeks. Muscle-power (upper-body: bench-press-test, medicine-ball-test; lower-body: squat-jump and counter-movement-jump-test), flexibility, speed and agility, aerobic (progressive maximal exercise test), anaerobic fitness (Wingate test) and body composition were assessed before and after the training period. Results: the kickboxing group showed significant improvement (p < 0.05) in upper-body muscle power, aerobic power, anaerobic fitness, flexibility, speed and agility after training whereas body composition, squat jump and counter movement jump (height, power and velocity components) did not change for both groups. Conclusion: kickboxing-practice was effective to change many physical variables. Thus, this activity can be useful for enhancing physical fitness, but complementary activities and/or nutritional interventions should be necessary. PMID:25332919
Augmentation of blood circulation to the fingers by warming distant body areas
NASA Technical Reports Server (NTRS)
Koscheyev, V. S.; Leon, G. R.; Paul, S.; Tranchida, D.; Linder, I. V.
2000-01-01
Future activities in space will require greater periods of time in extreme environments in which the body periphery will be vulnerable to chilling. Maintaining the hands and fingers in comfortable conditions enhances finger flexibility and dexterity, and thus effects better work performance. We have evaluated the efficacy of promoting heat transfer and release by the extremities by increasing the blood flow to the periphery from more distant parts of the body. The experimental garment paradigm developed by the investigators was used to manipulate the temperature of different body areas. Six subjects, two females and four males, were evaluated in a stage-1 baseline condition, with the inlet temperature of the circulating water in the liquid cooling/warming garment (LCWG) at 33 degrees C. At stage 2 the total LCWG water inlet temperature was cooled to 8 degrees C, and at stage 3 the inlet water temperature in specific segments of the LCWG was warmed (according to protocol) to 45 degrees C, while the inlet temperature in the rest of the LCWG was maintained at 8 degrees C. The following four body-area-warming conditions were studied in separate sessions: (1) head, (2) upper torso/arm, (3) upper torso/arm/head, and (4) legs/feet. Skin temperature, heat flux and blood perfusion of the fingers, and subjective perception of thermal sensations and overall physical comfort were assessed. Finger temperature (T(fing)) analyses showed a statistically significant condition x stage interaction. Post-hoc comparisons (T(fing)) indicated that at stage 3, the upper torso/arm/head warming condition was significantly different from the head, upper torso/arm and legs/feet conditions, showing an increase in T(fing). There was a significant increase in blood perfusion in the fingers at stage 3 in all conditions. Subjective perception of hand warmth, and overall physical comfort level significantly increased in the stage 3 upper torso/arm/head condition. The findings indicate that physiological methods to enhance heat transfer by the blood to the periphery within protective clothing provide an additional tool for increasing total and local human comfort in extreme environments.
Predictor variables of performance in recreational male long-distance inline skaters.
Knechtle, Beat; Knechtle, Patrizia; Rüst, Christoph Alexander; Senn, Oliver; Rosemann, Thomas; Lepers, Romuald
2011-06-01
We investigated the associations between selected anthropometric and training characteristics with race time in 84 recreational male long-distance inline skaters at the longest inline marathon in Europe, the 'Inline One-eleven' over 111 km in Switzerland, using bi- and multivariate analysis. The mean (s) race time was 264 (41) min. The bivariate analysis showed that age (r = 0.30), body mass (r = 0.42), body mass index (r = 0.35), circumference of upper arm (r = 0.32), circumference of thigh (r = 0.29), circumference of calf (r = 0.38), skin-fold of thigh (r = 0.22), skin-fold of calf (r = 0.27), the sum of skin-folds (r = 0.43), percent body fat (r = 0.45), duration per training unit in inline skating (r = 0.33), and speed during training (r = -0.46) were significantly and positively correlated to race time. Stepwise multiple regression showed that duration per training unit (P = 0.003), age (P = 0.029) and percent body fat (P = 0.016) were the best correlated with race time. Race time in a long-distance inline race such as the 'Inline One-eleven' over 111 km with a mean race time of ∼260 min might be predicted by the following equation (r(2) = 0.41): Race time (min) = 114.91 + 0:51* (duration per training unit, min) + 0:85* (age, years) +3:78* (body fat, %) for recreational long-distance inline skaters.
[Infectious endocarditis due to Gemella morbillorum found by splenic infarction--a case report].
Hosaka, Yumiko; Kimura, Takuma; Suzuki, Ryo; Chong, Tonghyo; Shoji, Michi; Aoki, Yasuko
2010-09-01
A 64-year-old man with prostate cancer and bone metastasis admitted for nausea, left abdominal pain showed no abnormal, and fever, abdominal ultrasound or chest X-ray findings. Despite antibiotics, left abdominal pain persisted for several days. Abdominal computed tomography (CT), showed splenic infarction. Transesophageal echocardiography suggested infectious endocarditis (IE) as a possible infarction cause, and roth spots were found on the retina. Gemella morbillorum was detected from blood culture. IE commonly causes Fever of Unknown Origin found by infarction. G. morbillorum, an anaerobic gram-positive, viridans group streptococci, is indigenous to the oropharynx, upper respiratory, urogenital, and gastrointestinal tracts, and is thought to have weak toxicity and pathogenicity in the body.
Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.
Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung
2015-07-07
Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.
Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition
Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung
2015-01-01
Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method. PMID:26198231
Villa-González, Emilio; Ruiz, Jonatan R.; Chillón, Palma
2015-01-01
Active commuting (walking or cycling) to school has been positively associated with improved fitness among adolescents. However, current evidence lacks information on whether this association persists in children. The aim of this study was to examine the association of active commuting to school with different fitness parameters in Spanish school-aged children. A total of 494 children (229 girls) from five primary schools in Granada and Jaén (Spain), aged between eight and 11 years, participated in this cross-sectional study. Participants completed the Assessing Levels of Physical Activity (ALPHA) fitness test battery and answered a self-reported questionnaire regarding the weekly travel mode to school. Active commuting to school was significantly associated with higher levels of speed-agility in boys (p = 0.048) and muscle strength of the lower body muscular fitness in girls (p = 0.016). However, there were no significant associations between active commuting to school and cardiorespiratory fitness and upper body muscular fitness. Our findings suggest that active commuting to school was associated with higher levels of both speed-agility and lower body muscular fitness in boys and girls, respectively. Future studies should confirm whether increasing active commuting to school increases speed-agility and muscle strength of the lower body. PMID:26322487
Home-based resistance training improves femoral bone mineral density in women on hormone therapy.
Judge, James Oat; Kleppinger, Alison; Kenny, Anne; Smith, Jo-Anne; Biskup, Brad; Marcella, Glenn
2005-09-01
This study tested whether moderate resistance training would improve femoral bone mineral density (BMD) in long-term users of hormone therapy with low BMD. The study was a 2-year randomized, controlled, trial (RCT) of moderate resistance training of either the lower extremity or the upper extremity. Eighty-five women participated in a 6-month observation period. The setting was center-based and home-based training. The participants were 189 women aged 59-78 years, with total femur T-scores from -0.8 to -2.8 and on hormone therapy (HT) for a minimum of 2 years (mean 11.8 years); 153 completed the trial. Lower extremity training used weight belts (mean 7.8 kg) in step-ups and chair rises; upper extremity training used elastic bands and dumbbells. Measurements were BMD and body composition [dual-energy X-ray absorptiometry (DXA)], bone turnover markers. Total femoral BMD showed a downward trend during the observation period: 0.35%+/-0.18% (P=0.14). The response to training was similar in the upper and lower groups in the primary outcomes. At 2 years, total femoral BMD increased 1.5% (95% CI 0.8%-2.2%) in the lower group and 1.8% (95% CI 1.1%-2.5%) in the upper group. Trochanter BMD increased 2.4% (95% CI 1.3%-3.5%) in the lower group and 2.5% (95% CI 1.4%-3.6%) in the upper group (for both analyses time effect P<0.001). At 1 year, a bone resorption marker (C-telopeptide) decreased 9% (P=0.04). Bone formation markers, bone-specific alkaline phosphatase, decreased 5% (P<0.001), and N-terminal type I procollagen peptide decreased 7% (P=0.01). Body composition (percent lean and percent body fat) was maintained in both groups. We concluded that long-term moderate resistance training reversed bone loss, decreased bone turnover, increased femur BMD, and maintained body composition. The similarity of response in upper and lower groups supports a systemic response rather than a site-specific response to moderate resistance training.
Coke, Lola A; Staffileno, Beth A; Braun, Lynne T; Gulanick, Meg
2008-01-01
The purpose of this study was to examine the impact of moderate-intensity, progressive, upper-body resistance training (RT) on muscle strength and perceived performance of household physical activities (HPA) among women in cardiac rehabilitation. The 10-week, pretest-posttest, experiment randomized women to either usual care (UC) aerobic exercise or RT. Muscle strength for 5 upper-body RT exercises (chest press, shoulder press, biceps curl, lateral row, and triceps extension) was measured using the 1-Repetition Maximum Assessment. The RT group progressively increased weight lifted using 40%, 50%, and 60% of obtained 1-Repetition Maximum Assessment at 3-week intervals. Perceived performance of HPA was measured with the Kimble Household Activities Scale. The RT group (n = 16, mean age 64 +/- 11) significantly increased muscle strength in all 5 exercises in comparison with the UC group (n = 14, mean age 65 +/- 10) (chest press, 18% vs 11%; shoulder press, 24% vs 14%; biceps curl, 21% vs 12%; lateral row, 32% vs 9%; and triceps extension, 28% vs 20%, respectively). By study end, Household Activities Scale scores significantly increased (F = 13.878, P = .001) in the RT group (8.75 +/- 3.19 vs 11.25 +/- 2.14), whereas scores in the UC group decreased (8.60 +/- 3.11 vs 6.86 +/- 4.13). Progressive upper-body RT in women shows promise as an effective tool to increase muscle strength and improve the ability to perform HPA after a cardiac event. Beginning RT early after a cardiac event in a monitored cardiac rehabilitation environment can maximize the strengthening benefit.
Ulrich, Gert; Parstorfer, Mario
2017-07-01
There are limited data on postactivation potentiation's (PAP) effects after plyometric conditioning contractions (CCs), especially in the upper body. This study compared plyometric CCs with concentric-eccentric and eccentric CCs aiming to improve upper-body power performance due to a PAP effect. Sixteen resistance-trained males completed 3 experimental trials in a randomized order that comprised either a plyometric (PLY), a concentric-eccentric (CON), or an eccentric-only (ECC) CC. Maximal muscle performance, as determined by a ballistic bench-press throw, was measured before (baseline) and 1, 4, 8, 12, and 16 min after each CC. Compared with baseline, bench-press power was significantly enhanced only in CON (P = .046, ES = 0.21) after 8 min of recovery. However, the results obtained from the comparisons between baseline power performance and the individual best power performance for each subject after each CC stimulus showed significant increases in PLY (P < .001, ES = 0.31) and CON (P < .001, ES = 0.38). There was no significant improvement in ECC (P = .106, ES = 0.11). The results indicate that only CON CCs generated increases in bench-press power after 8 min of rest. However, considering an individual rest interval, PLY CCs led to an enhanced power performance in the bench-press exercise, and this increase was comparable to that induced by CON CCs. Due to the easy practical application before a competition, PLY CCs might be an interesting part of warm-up strategies aiming to improve upper-body power performance by reason of PAP.
Upper body push and pull strength ratio in recreationally active adults.
Negrete, Rodney J; Hanney, William J; Pabian, Patrick; Kolber, Morey J
2013-04-01
Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18-45 years) performed two tests of upper body strength in random order: 1. Push-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. The push-up to modified pull-up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body "pushing" musculature is approximately 1.5-2.7 times stronger than the musculature involved for pulling. In this study, these recreationally active adults displayed greater strength during the timed push-ups than the modified pull-ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. 2b.
UPPER BODY PUSH AND PULL STRENGTH RATIO IN RECREATIONALLY ACTIVE ADULTS
Hanney, William J.; Pabian, Patrick; Kolber, Morey J.
2013-01-01
Introduction: Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. Methods: One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18‐45 years) performed two tests of upper body strength in random order: 1. Push‐ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull‐ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. Results: The push‐up to modified pull‐up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body “pushing” musculature is approximately 1.5–2.7 times stronger than the musculature involved for pulling. Conclusions: In this study, these recreationally active adults displayed greater strength during the timed push‐ups than the modified pull‐ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. Level of Evidence: 2b PMID:23593552
Acute effects of verbal feedback on upper-body performance in elite athletes.
Argus, Christos K; Gill, Nicholas D; Keogh, Justin Wl; Hopkins, Will G
2011-12-01
Argus, CK, Gill, ND, Keogh, JWL, and Hopkins, WG. Acute effects of verbal feedback on upper-body performance in elite athletes. J Strength Cond Res 25(12): 3282-3287, 2011-Improved training quality has the potential to enhance training adaptations. Previous research suggests that receiving feedback improves single-effort maximal strength and power tasks, but whether quality of a training session with repeated efforts can be improved remains unclear. The purpose of this investigation was to determine the effects of verbal feedback on upper-body performance in a resistance training session consisting of multiple sets and repetitions in well-trained athletes. Nine elite rugby union athletes were assessed using the bench throw exercise on 4 separate occasions each separated by 7 days. Each athlete completed 2 sessions consisting of 3 sets of 4 repetitions of the bench throw with feedback provided after each repetition and 2 identical sessions where no feedback was provided after each repetition. When feedback was received, there was a small increase of 1.8% (90% confidence limits, ±2.7%) and 1.3% (±0.7%) in mean peak power and velocity when averaged over the 3 sets. When individual sets were compared, there was a tendency toward the improvements in mean peak power being greater in the second and third sets. These results indicate that providing verbal feedback produced acute improvements in upper-body power output of well-trained athletes. The benefits of feedback may be greatest in the latter sets of training and could improve training quality and result in greater long-term adaptation.
Aliaga-Del Castillo, Aron; Pérez-Vargas, Luis Fernando; Flores-Mir, Carlos
2016-01-01
Summary Objectives: To determine the influence of maxillary posterior discrepancy on upper molar vertical position and dentofacial vertical dimensions in individuals with or without skeletal open bite (SOB). Materials and methods: Pre-treatment lateral cephalograms of 139 young adults were examined. The sample was divided into eight groups categorized according to their sagittal and vertical skeletal facial growth pattern and maxillary posterior discrepancy (present or absent). Upper molar vertical position, overbite, lower anterior facial height and facial height ratio were measured. Independent t-test was performed to determine differences between the groups considering maxillary posterior discrepancy. Principal component analysis and MANCOVA test were also used. Results: No statistically significant differences were found comparing the molar vertical position according to maxillary posterior discrepancy for the SOB Class I group or the group with adequate overbite. Significant differences were found in SOB Class II and Class III groups. In addition, an increased molar vertical position was found in the group without posterior discrepancy. Limitations: Some variables closely related with the individual’s intrinsic craniofacial development that could influence the evaluated vertical measurements were not considered. Conclusions and implications: Overall maxillary posterior discrepancy does not appear to have a clear impact on upper molar vertical position or facial vertical dimensions. Only the SOB Class III group without posterior discrepancy had a significant increased upper molar vertical position. PMID:26385786
Arriola-Guillén, Luis Ernesto; Aliaga-Del Castillo, Aron; Pérez-Vargas, Luis Fernando; Flores-Mir, Carlos
2016-06-01
To determine the influence of maxillary posterior discrepancy on upper molar vertical position and dentofacial vertical dimensions in individuals with or without skeletal open bite (SOB). Pre-treatment lateral cephalograms of 139 young adults were examined. The sample was divided into eight groups categorized according to their sagittal and vertical skeletal facial growth pattern and maxillary posterior discrepancy (present or absent). Upper molar vertical position, overbite, lower anterior facial height and facial height ratio were measured. Independent t-test was performed to determine differences between the groups considering maxillary posterior discrepancy. Principal component analysis and MANCOVA test were also used. No statistically significant differences were found comparing the molar vertical position according to maxillary posterior discrepancy for the SOB Class I group or the group with adequate overbite. Significant differences were found in SOB Class II and Class III groups. In addition, an increased molar vertical position was found in the group without posterior discrepancy. Some variables closely related with the individual's intrinsic craniofacial development that could influence the evaluated vertical measurements were not considered. Overall maxillary posterior discrepancy does not appear to have a clear impact on upper molar vertical position or facial vertical dimensions. Only the SOB Class III group without posterior discrepancy had a significant increased upper molar vertical position. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kim, Seong Rae; Choi, Kyung-Hyun; Jung, Go-Un; Shin, Doosup; Kim, Kyuwoong; Park, Sang Min
2016-12-01
As little is known about the associations between body composition (fat mass and lean mass) and knee OA, especially regarding body parts (upper body and lower limbs), the purpose of this study was to identify the association between the former and the prevalence of the latter according to body parts. This study was designed as a cross-sectional analysis, with 4194 people (1801 men and 2393 women) from the fifth Korean National Health and Nutrition Examination Survey (KNHANES V, 2010-2011) included. Body composition (fat mass and lean mass) was measured by using dual-energy X-ray absorptiometry, and knee OA was diagnosed based on the level of Kellgren-Lawrence grade. In multivariate logistic regression analysis, upper body composition was not significantly correlated with radiographic knee OA (P > 0.05), while participants with higher lean mass of lower limbs were less likely to have radiographic knee OA (aOR 0.57; 95 % CI 0.32-0.99). In stratified analysis, participants with higher lean mass of lower limbs were less likely to have a radiographic knee OA in 40-54 kg (P for trend = 0.05) and 55-70 kg stratum (P for trend = 0.03), while this trend slightly attenuated in 70-85 kg stratum (P for trend = 0.15). In conclusion, the increase in lean mass of lower limbs is inversely related to the prevalence of knee OA while upper body composition is not. This study suggests that the lean mass of lower limbs might be associated with reduction in the risk of knee OA.
Bilsborough, Johann C; Greenway, Kate G; Opar, David A; Livingstone, Steuart G; Cordy, Justin T; Bird, Stephen R; Coutts, Aaron J
2015-03-01
The aim of this study was to compare the anthropometry, upper-body strength, and lower-body power characteristics in elite junior, sub-elite senior, and elite senior Australian Football (AF) players. Nineteen experienced elite senior (≥4 years Australian Football League [AFL] experience), 27 inexperienced elite senior (<4 years AFL experience), 22 sub-elite senior, and 21 elite junior AF players were assessed for anthropometric profile (fat-free soft tissue mass [FFSTM], fat mass, and bone mineral content) with dual-energy x-ray absorptiometry, upper-body strength (bench press and bench pull), and lower-body power (countermovement jump [CMJ] and squat jump with 20 kg). A 1-way analysis of variance assessed differences between the playing levels in these measures, whereas relationships between anthropometry and performance were assessed with Pearson's correlation. The elite senior and sub-elite senior players were older and heavier than the elite junior players (p ≤ 0.05). Both elite playing groups had greater total FFSTM than both the sub-elite and junior elite players; however, there were only appendicular FFSTM differences between the junior elite and elite senior players (p < 0.001). The elite senior playing groups were stronger and had greater CMJ performance than the lower level players. Both whole-body and regional FFSTM were correlated with bench press (r = 0.43-0.64), bench pull (r = 0.58-0.73), and jump squat performance measures (r = 0.33-0.55). Australian Football players' FFSTM are different between playing levels, which are likely because of training and partly explain the observed differences in performance between playing levels highlighting the importance of optimizing FFSTM in young players.
NASA Astrophysics Data System (ADS)
Nyblade, A.; Lloyd, A. J.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Wilson, T. J.; Shore, P.; Zhao, D.
2011-12-01
As part of the International Polar Year in Antarctica, 37 seismic stations have been installed across West Antarctica as part of the Polar Earth Observing Network (POLENET). 23 stations form a sparse backbone network of which 21 are co-located on rock sites with a network of continuously recording GPS stations. The remaining 14 stations, in conjunction with 2 backbone stations, form a seismic transect extending from the Ellsworth Mountains across the West Antarctic Rift System (WARS) and into Marie Byrd Land. Here we present preliminary P and S wave velocity models of the upper mantle from regional body wave tomography using P and S travel times from teleseismic events recorded by the seismic transect during the first year (2009-2010) of deployment. Preliminary P wave velocity models consisting of ~3,000 ray paths from 266 events indicate that the upper mantle beneath the Whitmore Mountains is seismically faster than the upper mantle beneath Marie Byrd Land and the WARS. Furthermore, we observe two substantial upper mantle low velocity zones located beneath Marie Byrd Land and near the southern boundary of the WARS.
Dinunzio, Christopher; Porter, Nathaniel; Van Scoy, John; Cordice, Derrick; McCulloch, Ryan S
2018-05-16
Recently, addition of a gymnastics glide kip to a standard pull-up (SPU) has resulted in the kipping pull-up (KPU). Changes in muscle activation and kinematics were evaluated with eleven athletes performing sets of 5 SPU and 5 KPU. Surface electromyography of upper body and lower body muscles was recorded along with movement kinematics obtained via markers and motion tracking software. Most kinematic variables were significantly higher in the KPU including (KPU minus SPU deg): Max hip angle (48.8° ± 6.8°, p < 0.001) and max knee angle (56.5° ± 11.3°, p < 0.001). The recruitment of core and lower body muscles was significantly higher in the KPU (% MVIC increase): rectus abdominis (28.7 ± 4.7%, p < 0.001), external oblique (21.8 ± 4.1%, p < 0.001), iliopsoas (26.1 ± 5.5%, p = 0.001) and tensor fasciae latae (13.5 ± 2.3%, p < 0.001). Correspondingly, the biceps brachii had lower activation in the KPU (% MVIC decrease): (26.7 ± 0.6%, p = 0.006). Depending on the athlete's goal, they may elect to perform an SPU for higher upper body muscle activation; or the KPU for more full-body activation with the potential to perform more repetitions through reduced upper body fatigue.
Kim, Min-Hee; Yoo, Won-Gyu
2015-06-05
According to a recent research, manual working with high levels of static contraction, repetitive loads, or extreme working postures involving the neck and shoulder muscles causes an increased risk of neck and shoulder musculoskeletal disorders. We investigated the effects of the forwardly worktable position on head and shoulder angles and shoulder muscle activity in manual material handling tasks. The forward head and shoulder angles and the activity of upper trapezius, levator scapulae, and middle deltoid muscle activities of 15 workers were measured during performing of manual material handling in two tasks that required different forward head and shoulder angles. The second manual material task required a significantly increased forward head and shoulder angle. The upper trapezius and levator scapulae muscle activity in second manual material task was increased significantly compared with first manual material task. The middle deltoid muscle activity in second manual material task was not significantly different compared with first manual material task. Based on this result, the forward head and shoulder angles while performing manual work need to be considered in selection of the forward distance of a worktable form the body. The high level contractions of the neck and shoulder muscles correlated with neck and shoulder pain. Therefore, the forward distance of a worktable can be an important factor in preventing neck and shoulder pain in manual material handling workers.
The Structure of Chariklo’s Rings from Stellar Occultations
NASA Astrophysics Data System (ADS)
Bérard, D.; Sicardy, B.; Camargo, J. I. B.; Desmars, J.; Braga-Ribas, F.; Ortiz, J.-L.; Duffard, R.; Morales, N.; Meza, E.; Leiva, R.; Benedetti-Rossi, G.; Vieira-Martins, R.; Gomes Júnior, A.-R.; Assafin, M.; Colas, F.; Dauvergne, J.-L.; Kervella, P.; Lecacheux, J.; Maquet, L.; Vachier, F.; Renner, S.; Monard, B.; Sickafoose, A. A.; Breytenbach, H.; Genade, A.; Beisker, W.; Bath, K.-L.; Bode, H.-J.; Backes, M.; Ivanov, V. D.; Jehin, E.; Gillon, M.; Manfroid, J.; Pollock, J.; Tancredi, G.; Roland, S.; Salvo, R.; Vanzi, L.; Herald, D.; Gault, D.; Kerr, S.; Pavlov, H.; Hill, K. M.; Bradshaw, J.; Barry, M. A.; Cool, A.; Lade, B.; Cole, A.; Broughton, J.; Newman, J.; Horvat, R.; Maybour, D.; Giles, D.; Davis, L.; Paton, R. A.; Loader, B.; Pennell, A.; Jaquiery, P.-D.; Brillant, S.; Selman, F.; Dumas, C.; Herrera, C.; Carraro, G.; Monaco, L.; Maury, A.; Peyrot, A.; Teng-Chuen-Yu, J.-P.; Richichi, A.; Irawati, P.; De Witt, C.; Schoenau, P.; Prager, R.; Colazo, C.; Melia, R.; Spagnotto, J.; Blain, A.; Alonso, S.; Román, A.; Santos-Sanz, P.; Rizos, J.-L.; Maestre, J.-L.; Dunham, D.
2017-10-01
Two narrow and dense rings (called C1R and C2R) were discovered around the Centaur object (10199) Chariklo during a stellar occultation observed on 2013 June 3. Following this discovery, we planned observations of several occultations by Chariklo’s system in order to better characterize the physical properties of the ring and main body. Here, we use 12 successful occulations by Chariklo observed between 2014 and 2016. They provide ring profiles (physical width, opacity, edge structure) and constraints on the radii and pole position. Our new observations are currently consistent with the circular ring solution and pole position, to within the ±3.3 km formal uncertainty for the ring radii derived by Braga-Ribas et al. The six resolved C1R profiles reveal significant width variations from ˜5 to 7.5 km. The width of the fainter ring C2R is less constrained, and may vary between 0.1 and 1 km. The inner and outer edges of C1R are consistent with infinitely sharp boundaries, with typical upper limits of one kilometer for the transition zone between the ring and empty space. No constraint on the sharpness of C2R’s edges is available. A 1σ upper limit of ˜20 m is derived for the equivalent width of narrow (physical width < 4 km) rings up to distances of 12,000 km, counted in the ring plane.
Diogo, Rui; Molnar, Julia
2016-06-01
Surprisingly the oldest formal discipline in medicine (anatomy) has not yet felt the full impact of evolutionary developmental biology. In medical anatomy courses and textbooks, the human body is still too often described as though it is a "perfect machine." In fact, the study of human anatomy predates evolutionary theory; therefore, many of its conventions continue to be outdated, making it difficult to study, understand, and treat the human body, and to compare it with that of other, nonbipedal animals, including other primates. Moreover, such an erroneous view of our anatomy as "perfect" can be used to fuel nonevolutionary ideologies such as intelligent design. In the section An Evolutionary and Developmental Approach to Human Anatomical Position of this paper, we propose the redefinition of the "human standard anatomical position" used in textbooks to be consistent with human evolutionary and developmental history. This redefined position also simplifies, for students and practitioners of the health professions, the study and learning of embryonic muscle groups (each group including muscles derived from the same/ontogenetically closely related primordium/primordia) and joint movements and highlights the topological correspondence between the upper and lower limbs. Section Evolutionary and Developmental Constraints, "Imperfections" and Sports Pathologies continues the theme by describing examples of apparently "illogical" characteristics of the human body that only make sense when one understands the developmental and evolutionary constraints that have accumulated over millions of years. We focus, in particular, on musculoskeletal functional problems and sports pathologies to emphasize the links with pathology and medicine. These examples demonstrate how incorporating evolutionary theory into anatomy education can be helpful for medical students, teachers, researchers, and physicians, as well as for anatomists, functional morphologists, and evolutionary and developmental biologists. © 2016 Wiley Periodicals, Inc.
Childhood obesity affects postural control and aiming performance during an upper limb movement.
Boucher, François; Handrigan, Grant A; Mackrous, Isabelle; Hue, Olivier
2015-07-01
Obesity reduces the efficiency of postural and movement control mechanisms. However, the effects of obesity on a functional motor task and postural control in standing and seated position have not been closely quantified among children. The aim of this study is to examine the effects of obesity on the execution of aiming tasks performed in standing and seated conditions in children. Twelve healthy weight children and eleven obese children aged between 8 and 11 years pointed to a target in standing and seated position. The difficulty of the aiming task was varied by using 2 target sizes (1.0 cm and 5.0 cm width; pointing to the smaller target size needs a more precise movement and constitutes a more difficult task). Hand movement time (MT) and its phases were measured to quantify the aiming task. Mean speed of the center of pressure displacement (COP speed) was calculated to assess postural stability during the movement. Obese children had significantly higher MTs compared to healthy-weight children in seated and standing conditions explained by greater durations of deceleration phase when aiming. Concerning the COP speed during the movement, obese children showed significantly higher values when standing compared to healthy-weight children. This was also observed in the seated position. In conclusion, obesity adds a postural constraint during an aiming task in both seated and standing conditions and requires obese children to take more time to correct their movements due to a greater postural instability of the body when pointing to a target with the upper-limb. Copyright © 2015 Elsevier B.V. All rights reserved.
Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G
2012-04-01
Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.
Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang
2017-07-01
Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.
Influence of obesity on accurate and rapid arm movement performed from a standing posture.
Berrigan, F; Simoneau, M; Tremblay, A; Hue, O; Teasdale, N
2006-12-01
Obesity yields a decreased postural stability. The potentially negative impact of obesity on the control of upper limb movements, however, has not been documented. This study sought to examine if obesity imposes an additional balance control constraint limiting the speed and accuracy with which an upper limb goal-directed movement performed from an upright standing position can be executed. Eight healthy lean subjects (body mass index (BMI) between 20.9 and 25.0 kg/m(2)) and nine healthy obese subjects (BMI between 30.5 and 48.6 kg/m(2)) pointed to a target located in front of them from an upright standing posture. The task was to aim at the target as fast and as precisely as possible after an auditory signal. The difficulty of the task was varied by using different target sizes (0.5, 1.0, 2.5 and 5.0 cm width). Hand movement time (MT) and velocity profiles were measured to quantify the aiming. Centre of pressure and segmental kinematics were analysed to document postural stability. When aiming, the forward centre of pressure (CP) displacement was greater for the obese group than for the normal BMI group (4.6 and 1.9 cm, respectively). For the obese group, a decrease in the target size was associated with an increase in backward CP displacement and CP peak speed whereas for the normal BMI group backward CP displacements and CP peak speed were about the same across all target sizes. Obese participants aimed at the target moving their whole body forward whereas the normal BMI subjects predominantly made an elbow extension and shoulder flexion. For both groups, MT increased with a decreasing target size. Compare to the normal BMI group, this effect was exacerbated for the obese group. For the two smallest targets, movements were on average 115 and 145 ms slower for the obese than for the normal BMI group suggesting that obesity added a balance constraint and limited the speed with which an accurate movement could be done. Obesity, because of its effects on the control of balance, also imposes constraints on goal-directed movements. From a clinical perspective, obese individuals might be less efficient and more at risk of injuries than normal weight individuals in a large number of work tasks and daily activities requiring upper limb movements performed from an upright standing position.
49 CFR 572.181 - General description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... assembly Drawing number Head Assembly 175-1000 Neck Assembly Test/Cert 175-2000 Neck Bracket Including..., dated February 2008. (c) Weights of body segments (head, neck, upper and lower torso, arms and upper and... the convenience of the user, the added and revised text is set forth as follows: § 572.181 General...
Guide to Understanding Moebius Syndrome
... due to upper body weakness • Strabismus (crossed eyes) • Dry eyes and irritability • Dental problems • High palate • Cleft palate • Hand and feet problems including club foot and missing or fused fingers (syndactyly) • Hearing problems • Poland’s syndrome (chest wall and upper limb anomalies) Although they ...
The anterior visceral branches of the abdominal aorta and their relationship to the renal arteries.
Pennington, Neil; Soames, Roger W
2005-12-01
Variations in the anatomy of the abdominal aorta and its branches are of interest as vessel geometry not only determines flow dynamics, but is also crucial in the pathogenesis of vascular disease. The relationship between the anterior visceral and renal arteries is important when undertaking diagnostic arteriography and endovascular interventions. To examine these relationships, the length of the abdominal aorta was determined and measurements taken of the position of origin of the celiac artery, superior mesenteric artery (SMA), inferior mesenteric artery (IMA) and renal arteries, as well as the three-dimensional projection of each vessel from the aorta. The mean level of bifurcation of the aorta was at the lower third of the body of L4, with the celiac artery, SMA, renal arteries and IMA arising at the level of the T12/L1 intervertebral disc, upper third of the body of L1, lower third of the body of L1 and lower third of the body of L3, respectively. The horizontal projection of the celiac artery, SMA and IMA was to the left of the midline; in the sagittal plane, the celiac artery and SMA projected anteriorly and the IMA posteriorly; in the coronal plane all vessels projected inferiorly, with the SMA to the right and the IMA to the left. The celiac artery, SMA and both renal arteries all arise from the proximal half of the abdominal aorta within 45 mm of each other, with the origins of the renal arteries being remarkably consistent. It is concluded that the celiac artery and SMA are both useful landmarks for determining the position of the renal arteries.
Head fat is a novel method of measuring metabolic disorder in Chinese obese patients
2014-01-01
Background Body adiposity, especially ectopic fat accumulation, has a range of metabolic and cardiovascular effects. The aim of this study was to investigate the association between head fat and metabolic values in Chinese obese patients. Methods Data of this cross-sectional study from 66 obese patients were collected. Fat distribution was measured by dual-energy X-ray absorptiometry, and data of body weight, body mass index (BMI), neck circumference (NC), waist circumference (WC), hip circumference (HC), visceral index, basal metabolism (BM), glucose metabolism, lipid levels, uric acid (UA) had been collected. Results 1) Head fat was significantly associated with BMI, WC, HC, visceral index, BM, total fat and total fat excluding head fat in both males and females (p < 0.05). Head fat was positively correlated with upper limb fat, trunk fat, weight, fasting plasma C peptide, fasting plasma insulin and UA in women(p < 0.05), and the association was not statistically significant in male (p > 0.05). Head fat was positively corrected with NC in males (p < 0.05) but not females (p > 0.05). There was no significant correlation between head fat and fasting plasma glucose, total choleslerolemia, triglyceridemia, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol and free fat acid in either gender (p > 0.05). 2) Receiver operating characteristic analysis showed that a head fat of 1925.6 g and a head fat of 1567.85 g were the best cut-off values to determine subjects with low high-density lipoprotein cholesterol and hyperuricemia respectively. Conclusions Head fat accumulation was closely associated with increased body fat, hyperinsulinemia, hyperuricemia, and impared lipid profile, suggesting it might be used as an indicator for dyslipidemia and hyperuricemia. PMID:25015267
Effect of brachycephaly and body condition score on respiratory thermoregulation of healthy dogs.
Davis, Michael S; Cummings, Sabrina L; Payton, Mark E
2017-11-15
OBJECTIVE To evaluate the effect of brachycephaly and body condition score on respiratory thermoregulation of healthy dogs. DESIGN Prospective study. ANIMALS 52 brachycephalic and 53 nonbrachycephalic dogs. PROCEDURES All dogs were exposed to a cool treatment (temperature, 21.8 ± 1.7°C [71.2 ± 3.1°F]; relative humidity, 62.2 ± 9.7%; and ambient enthalpy, 47.7 ± 6.6 kcal/kg) and then a hot treatment (temperature, 32.9 ± 1.7°C [91.2 ± 3.1°F]; relative humidity, 51.9 ± 9.8%; and ambient enthalpy, 74.8 ± 8.7 kcal/kg; heat stress) at least 1 hour later. For each treatment, dogs were allowed to acclimatize to the environment for 15 minutes and then were placed in a sealed whole-body plethysmograph for continuous measurement of the respiratory pattern for 10 minutes. Treatment was discontinued if a dog developed signs of respiratory distress. Respiratory variables and body temperature were compared between the 2 breed types (brachycephalic and nonbrachycephalic) and between treatments. RESULTS Body condition score was positively associated with body temperature independent of environmental conditions or breed type and negatively associated with tidal volume. Brachycephalic dogs had a greater increase in respiratory rate in response to heat stress than did nonbrachycephalic dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that brachycephalic dogs had decreased capacity for thermoregulation, compared with nonbrachycephalic dogs, but body condition score was a greater determinant of body temperature than breed type. Nevertheless, both upper airway conformation and body condition score should be considered when evaluating whether an individual dog is capable of tolerating heat stress.
[Wernicke-Korsakoff syndrome].
Kotov, S V; Lobakov, A I; Isakova, E V; Stashuk, G A; Volchenkova, T V
To study the diagnosis and treatment of non-alcoholic Wernicke-Korsakoff syndrome (WKS). Eight patients (5 men and 3 women), mean age 38,9±1,4 years, with WKS developed due to acute gastrointestinal tract (GIT) disease (3 patients), the exacerbation of chronic GIT disease with malabsorption (2 patients) and after surgery on the upper GIT (3 patients) were included in the study. The disease manifested with consciousness disturbance, symptoms of ataxia, eye movement disorders and bulbar syndrome that developed after 24-48 h. Treatment resistant tonic-clonic seizures were developed in 1 patient. MRI revealed hyper intensive signals on T2-weighted images in the hypothalamus, mamillar bodies, brain stem, hippocampus as well as contrast accumulation in the mamillar bodies. Treatment with vitamin B complex (neurobion) and thiamine exerted a positive effect. Patients with GIT disease with malabsorption are at risk of WKS. Consciousness disturbance, symptoms of ataxia, eye movement disorders indicate the necessity of treatment with thiamine that allows to prevent the development of stable cognitive deficit.
Eye disorders associated with obstructive sleep apnoea.
West, Sophie D; Turnbull, Chris
2016-11-01
Obstructive sleep apnoea (OSA) is increasing in prevalence due to rising obesity. Public awareness is also growing. Although OSA is a disorder primarily of the upper airway during sleep, its physiological impact on other parts of the body is now well recognized. There is increasing interest in the association of OSA with various eye disorders. Work in this field has been directed predominantly to OSA prevalence and association studies, but some authors have tried to elucidate the effect of OSA therapies on eye diseases, including continuous positive airway pressure, upper airway surgery or bariatric surgery. This review discusses the publications in this area from the past year. The key ocular disorders featured in the studies and meta-analayses include glaucoma, floppy eyelid syndrome, nonarteritic ischaemic optic neuropathy, keratoconus, age-related macular degeneration and diabetic retinopathy. Associations with OSA were found with all these conditions, but aspects of the studies still leave gaps in our knowledge. This review highlights the need for ophthalmologists to consider OSA in their patients and also makes recommendations for future research studies, especially whether therapies for OSA can be effective for ocular disorders also.
A wheelchair with lever propulsion control for climbing up and down stairs.
Sasaki, Kai; Eguchi, Yosuke; Suzuki, Kenji
2016-08-01
This study proposes a novel stair-climbing wheelchair based on lever propulsion control using the human upper body. Wheelchairs are widely used as supporting locomotion devices for people with acquired lower limb disabilities. However, steps and stairs are critical obstacles to locomotion, which restrict their activities when using wheelchairs. Previous research focused on power-assisted, stair-climbing wheelchairs, which were large and heavy due to its large actuators and mechanisms. In the previous research, we proposed a wheelchair with lever propulsion mechanism and presented its feasibility of climbing up the stairs. The developed stair-climbing wheelchair consists of manual wheels with casters for planar locomotion and a rotary-leg mechanism based on lever propulsion that is capable of climbing up stairs. The wheelchair also has a passive mechanism powered by gas springs for posture transition to shift the user's center of gravity between the desired positions for planar locomotion and stair-climbing. In this paper, we present an advanced study on both climbing up and going down using lever propulsion control by the user's upper body motion. For climbing down the stairs, we reassembled one-way clutches used for the rotary-leg mechanism to help a user climb down the stairs through lever operation. We also equipped the wheelchair with sufficient torque dampers. The frontal wheels were fixed while climbing down the stairs to ensure safety. Relevant experiments were then performed to investigate its performance and verify that the wheelchair users can operate the proposed lever propulsion mechanism.
Postural strategies assessed with inertial sensors in healthy and parkinsonian subjects
Baston, Chiara; Mancini, Martina; Schoneburg, Bernadette; Horak, Fay; Rocchi, Laura
2015-01-01
The present study introduces a novel instrumented method to characterize postural movement strategies to maintain balance during stance (ankle and hip strategy), by means of inertial sensors, positioned on the legs and on the trunk. We evaluated postural strategies in subjects with2 types of parkinsonism: idiopathic Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP),and inage-matched control subjects standing under perturbed conditions implementedby the Sensory Organization Test (SOT).Coordination between the upper and lower segments of the body during postural sway was measured using a covariance index over time, by a sliding-window algorithm. Afterwards, a postural strategy index was computed. We also measuredthe amount of postural sway, as adjunctive information to characterize balance, by the root mean square of the horizontal trunk acceleration signal (RMS). Results showed that control subjects were able to change their postural strategy, whilst PSP and PD subjects persisted in use of an ankle strategy in all conditions.PD subjects had RMS values similar to control subjects even without changing postural strategy appropriately, whereas PSP subjects showed much larger RMS values than controls, resulting in several falls during the most challenging SOT conditions (5 and 6). Results are in accordance with the corresponding clinical literature describing postural behavior in the same kind of subjects. The proposed strategy index, based on the use ofinertial sensors on the upper and lower body segments, isa promising and unobtrusive toolto characterize postural strategies performed to attain balance. PMID:24656713
Whole vertebral bone segmentation method with a statistical intensity-shape model based approach
NASA Astrophysics Data System (ADS)
Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer
2011-03-01
An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.
Intuitive wireless control of a robotic arm for people living with an upper body disability.
Fall, C L; Turgeon, P; Campeau-Lecours, A; Maheu, V; Boukadoum, M; Roy, S; Massicotte, D; Gosselin, C; Gosselin, B
2015-08-01
Assistive Technologies (ATs) also called extrinsic enablers are useful tools for people living with various disabilities. The key points when designing such useful devices not only concern their intended goal, but also the most suitable human-machine interface (HMI) that should be provided to users. This paper describes the design of a highly intuitive wireless controller for people living with upper body disabilities with a residual or complete control of their neck and their shoulders. Tested with JACO, a six-degree-of-freedom (6-DOF) assistive robotic arm with 3 flexible fingers on its end-effector, the system described in this article is made of low-cost commercial off-the-shelf components and allows a full emulation of JACO's standard controller, a 3 axis joystick with 7 user buttons. To do so, three nine-degree-of-freedom (9-DOF) inertial measurement units (IMUs) are connected to a microcontroller and help measuring the user's head and shoulders position, using a complementary filter approach. The results are then transmitted to a base-station via a 2.4-GHz low-power wireless transceiver and interpreted by the control algorithm running on a PC host. A dedicated software interface allows the user to quickly calibrate the controller, and translates the information into suitable commands for JACO. The proposed controller is thoroughly described, from the electronic design to implemented algorithms and user interfaces. Its performance and future improvements are discussed as well.
A preliminary investigation on exercise intensities of gardening tasks in older adults.
Park, Sin-Ae; Shoemaker, Candice A; Haub, Mark D
2008-12-01
Heart rate (HR) was measured continuously while men (n=6) and women (n=2) ages 71 to 85 years (M=77.4, SD=4.1) completed nine gardening tasks. HR and VO2 from a submaximal graded exercise test were used to estimate gardening VO2, energy expenditure, % HRmax, and metabolic equivalents (METs). Tasks were low to moderate intensity physical activity (1.6-3.6 METs); those which worked the upper and lower body were moderate intensity physical activity while those that worked primarily the upper body were low intensity physical activity.
2014-01-01
Background When the human body is introduced to a new motion or movement, it learns the placement of different body parts, sequential muscle control, and coordination between muscles to achieve necessary positions, and it hones this new skill over time and repetition. Previous studies have demonstrated definite differences in the smoothness of body movements with different levels of training, i.e., amateurs compared with professionals. Therefore, we tested the hypothesis that skilled golfers swing a driver with a smoother motion than do unskilled golfers. In addition, the relationship between the smoothness of body joints and that of the clubhead was evaluated to provide further insight into the mechanism of smooth golf swing. Methods Two subject groups (skilled and unskilled) participated in the experiment. The skilled group comprised 20 male professional golfers registered with the Korea Professional Golf Association, and the unskilled group comprised 19 amateur golfers who enjoy golf as a hobby. Six infrared cameras (VICON460 system) were used to record the 3D trajectories of markers attached to the clubhead and body segments, and the resulting data was evaluated with kinematic analysis. A physical quantity called jerk was calculated to investigate differences in smoothness during downswing between the two study groups. Results The hypothesis that skilled golfers swing a driver with a smoother motion than do unskilled golfers was supported. The normalized jerk of the clubhead of skilled golfers was lower than that of unskilled golfers in the anterior/posterior, medial/lateral, and proximal/distal directions. Most human joints, especially in the lower body, had statistically significant lower normalized jerk values in the skilled group. In addition, the normalized jerk of the skilled group’s lower body joints had a distinct positive correlation with the normalized jerk of the clubhead with r = 0.657 (p < 0.01). Conclusions The result of this study showed that skilled golfers have smoother swings than unskilled golfers during the downswing and revealed that the smoothness of a clubhead trajectory is related more to the smoothness of the lower body joints than that of the upper body joints. These findings can be used to understand the mechanisms behind smooth golf swings and, eventually, to improve golf performance. PMID:24571569
Choi, Ahnryul; Joo, Su-Bin; Oh, Euichaul; Mun, Joung Hwan
2014-02-26
When the human body is introduced to a new motion or movement, it learns the placement of different body parts, sequential muscle control, and coordination between muscles to achieve necessary positions, and it hones this new skill over time and repetition. Previous studies have demonstrated definite differences in the smoothness of body movements with different levels of training, i.e., amateurs compared with professionals. Therefore, we tested the hypothesis that skilled golfers swing a driver with a smoother motion than do unskilled golfers. In addition, the relationship between the smoothness of body joints and that of the clubhead was evaluated to provide further insight into the mechanism of smooth golf swing. Two subject groups (skilled and unskilled) participated in the experiment. The skilled group comprised 20 male professional golfers registered with the Korea Professional Golf Association, and the unskilled group comprised 19 amateur golfers who enjoy golf as a hobby. Six infrared cameras (VICON460 system) were used to record the 3D trajectories of markers attached to the clubhead and body segments, and the resulting data was evaluated with kinematic analysis. A physical quantity called jerk was calculated to investigate differences in smoothness during downswing between the two study groups. The hypothesis that skilled golfers swing a driver with a smoother motion than do unskilled golfers was supported. The normalized jerk of the clubhead of skilled golfers was lower than that of unskilled golfers in the anterior/posterior, medial/lateral, and proximal/distal directions. Most human joints, especially in the lower body, had statistically significant lower normalized jerk values in the skilled group. In addition, the normalized jerk of the skilled group's lower body joints had a distinct positive correlation with the normalized jerk of the clubhead with r = 0.657 (p < 0.01). The result of this study showed that skilled golfers have smoother swings than unskilled golfers during the downswing and revealed that the smoothness of a clubhead trajectory is related more to the smoothness of the lower body joints than that of the upper body joints. These findings can be used to understand the mechanisms behind smooth golf swings and, eventually, to improve golf performance.
Ostojic, S M; Stojanovic, M D
2010-12-01
The objective of the present study was to determine relationship between aerobic (cardiovascular) fitness and body composition in both non-overweight and overweight 12-year-old school boys. A cross-sectional study was conducted in a random sample of 10 elementary schools. The study participants were a 170 healthy fifth-grade elementary school boys aged 11.9±0.4 years. Anthropometric data (height, body mass, waist circumference, abdominal skinfold thickness) were collected according to standard procedure. Total body fat and muscle mass percentage were assessed by bioimpedance analysis. Body Mass Index (BMI) age-specific cutoff points were used for overweight definition and boys were placed in two groups overweight and non-overweight. Aerobic fitness (VO2max) was assessed with the multistage shuttle-run fitness test. Boys were grouped into high (upper two quintiles) and low (lower two quintiles) aerobic fitness based on age distribution. Waist circumference, abdominal skinfold thickness and total body fat were lower while muscle mass percentage was higher in overweight boys with high aerobic fitness in comparison with boys at the same BMI category with low fitness level (P<0.05). Aerobic fitness was inversely correlated with body fat in the whole group of subjects (r=-0,57, P<0.05), with particularly high correlation between VO2max and muscle mass in overweight boys (r=0.68, P<0.05). Indicators of local and total adiposity were lower in boys with high aerobic fitness. It seems that high aerobic fitness has is positively associated with body composition in overweight boys.
Robinson, B S; Snoswell, A M; Runciman, W B; Upton, R N
1984-01-01
The net uptake and output of plasma unesterified choline, glycerophosphocholine, phosphocholine and lipid choline by organs of the conscious chronically catheterized sheep were measured. There was significant production of plasma unesterified choline by the upper- and lower-body regions and the alimentary tract and uptake by the liver, lungs and kidneys. The upper- and lower-body regions drained by the venae cavae provided the bulk (about 82%) of the total body venous return of plasma unesterified choline. Production of plasma unesterified choline by the alimentary tract was approximately balanced by the plasma unesterified choline taken up by the liver, and was almost equal to the amount of choline secreted in the bile. There was a considerable amount of glycerophosphocholine in the liver and there was production of plasma glycerophosphocholine by the liver and uptake by the lungs and kidneys. Glycerophosphocholine was higher in the plasma of sheep than in that of rats. Plasma phosphocholine was produced by the alimentary tract and kidneys. There was production of plasma lipid choline by the upper- and lower-body regions drained by the venae cavae. The results suggest that the sheep synthesizes substantial amounts of choline in ectrahepatic tissues and has the capacity for extensive retention and recycling of bile choline. These observations, coupled with a slow turnover of the endogenous choline body pool, explain the low requirement of sheep for dietary choline in contrast with non-ruminant species. PMID:6696739
10. DETAILED VIEW OF THE EAST ELEVATION. THE UPPER SET ...
10. DETAILED VIEW OF THE EAST ELEVATION. THE UPPER SET OF WINDOWS PROVIDE LIGHT FOR THE DELIVERY LEVEL. THE LOWER SETS OF WINDOWS PROVIDE LIGHT TO THREE STORY SPACE BENEATH THE DELIVERY LEVEL AND BEHIND THE ORE STORAGE BINS. NOTE THE ORE DELIVER TRESTLE AT THE TIME THE PHOTOGRAPH WAS TAKEN, THE MODERN CEMENT MIXER AND WHEELBARROWS WERE FOR THIS WORK. NOTE THE MORTAR BOXES ON THEIR SIDES. IT IS UNCLEAR IF THESE WERE FROM EARLIER STAMPS AT THIS MILL OR IF THEY WERE BROUGHT TO THE SITE FROM OTHER MILLS IN THE REGION. RISDON IRON WORKS IS CAST INTO THE MORTARS AND THEY ALSO BEAR A PLATE: WHITE, ROGERS AND CO. MILL WRIGHTS. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Eder, H
1995-03-01
Presently examiners using angiographic methods are not accustomed to measure the exposition of parts of the body. This results in a considerable undervaluation of the really received doses (in terms of effective dose). Only a consequent application of dosimetry in parts of the body--demanded by section 35 of the German X-Ray Regulation and also by the corresponding guide-line--demonstrates the real problems i.e. oversteppings of dose limits. The use of practicable installations for permanent shielding will lead to an improvement of the situation and result in a significant decrease of the received doses and--at the same time--a minor physical burden of the examinator. Dosimetry of radiation was performed at the position of the examiner both with and without the application of permanent shielding (acrylic glass (PMMA) containing lead plus shielding of the lower part of the body). It could be demonstrated that a decrease of the received dose can be reached by a rate of 2.5 to 5 concerning the trunk and of 50 concerning the skull, upper arm and hands.
Mărginean, Claudiu; Mărginean, Cristina Oana; Bănescu, Claudia; Meliţ, Lorena; Tripon, Florin; Iancu, Mihaela
2016-01-01
Abstract The present study had 2 objectives, first, to investigate possible relationships between increased gestational weight gain and demographic, clinical, paraclinical, genetic, and bioimpedance (BIA) characteristics of Romanian mothers, and second, to identify the influence of predictors (maternal and newborns characteristics) on our outcome birth weight (BW). We performed a cross-sectional study on 309 mothers and 309 newborns from Romania, divided into 2 groups: Group I—141 mothers with high gestational weight gain (GWG) and Group II—168 mothers with normal GWG, that is, control group. The groups were evaluated regarding demographic, anthropometric (body mass index [BMI], middle upper arm circumference, tricipital skinfold thickness, weight, height [H]), clinical, paraclinical, genetic (interleukin 6 [IL-6]: IL-6 -174G>C and IL-6 -572C>G gene polymorphisms), and BIA parameters. We noticed that fat mass (FM), muscle mass (MM), bone mass (BM), total body water (TBW), basal metabolism rate (BMR) and metabolic age (P < 0.001), anthropometric parameters (middle upper arm circumference, tricipital skinfold thickness; P < 0.001/P = 0.001) and hypertension (odds ratio = 4.65, 95% confidence interval: 1.27–17.03) were higher in mothers with high GWG. BW was positively correlated with mothers’ FM (P < 0.001), TBW (P = 0.001), BMR (P = 0.02), while smoking was negatively correlated with BW (P = 0.04). Variant genotype (GG+GC) of the IL-6 -572C>G polymorphism was higher in the control group (P = 0.042). We observed that high GWG may be an important predictor factor for the afterward BW, being positively correlated with FM, TBW, BMR, metabolic age of the mothers, and negatively with the mother's smoking status. Variant genotype (GG+GC) of the IL-6 -572C>G gene polymorphism is a protector factor against obesity in mothers. All the variables considered explained 14.50% of the outcome variance. PMID:27399105
Mărginean, Claudiu; Mărginean, Cristina Oana; Bănescu, Claudia; Meliţ, Lorena; Tripon, Florin; Iancu, Mihaela
2016-07-01
The present study had 2 objectives, first, to investigate possible relationships between increased gestational weight gain and demographic, clinical, paraclinical, genetic, and bioimpedance (BIA) characteristics of Romanian mothers, and second, to identify the influence of predictors (maternal and newborns characteristics) on our outcome birth weight (BW).We performed a cross-sectional study on 309 mothers and 309 newborns from Romania, divided into 2 groups: Group I-141 mothers with high gestational weight gain (GWG) and Group II-168 mothers with normal GWG, that is, control group.The groups were evaluated regarding demographic, anthropometric (body mass index [BMI], middle upper arm circumference, tricipital skinfold thickness, weight, height [H]), clinical, paraclinical, genetic (interleukin 6 [IL-6]: IL-6 -174G>C and IL-6 -572C>G gene polymorphisms), and BIA parameters.We noticed that fat mass (FM), muscle mass (MM), bone mass (BM), total body water (TBW), basal metabolism rate (BMR) and metabolic age (P < 0.001), anthropometric parameters (middle upper arm circumference, tricipital skinfold thickness; P < 0.001/P = 0.001) and hypertension (odds ratio = 4.65, 95% confidence interval: 1.27-17.03) were higher in mothers with high GWG. BW was positively correlated with mothers' FM (P < 0.001), TBW (P = 0.001), BMR (P = 0.02), while smoking was negatively correlated with BW (P = 0.04). Variant genotype (GG+GC) of the IL-6 -572C>G polymorphism was higher in the control group (P = 0.042).We observed that high GWG may be an important predictor factor for the afterward BW, being positively correlated with FM, TBW, BMR, metabolic age of the mothers, and negatively with the mother's smoking status. Variant genotype (GG+GC) of the IL-6 -572C>G gene polymorphism is a protector factor against obesity in mothers. All the variables considered explained 14.50% of the outcome variance.
Kubota, Satoshi; Endo, Yutaka; Kubota, Mitsue; Shigemasa, Tomohiko
2017-01-01
Background Downward shifts in blood volume with changing position generally cause tachycardic responses. Age-related decreases in vagal nerve activity could contribute to orthostatic hypotension in older individuals. Fowler’s position is a reclined position with the back between 30° and 60°, used to facilitate breathing, eating, and other routine daily activities in frail and elderly patients. Objective This study examined whether stroke volume (SV) was higher and heart rate (HR) lower in Fowler’s position with an upright upper trunk than in Fowler’s position with the whole trunk upright in both older and younger subjects, based on the assumption that lower HR would result from reduced sympathetic activation in older individuals. Methods We assessed hemodynamics and HR variability from electrocardiography, noninvasive arterial pressure and impedance cardiography in 11 younger male subjects (age range, 20–22 years) and 11 older male subjects (age range, 64–79 years), using three positions: supine, or Fowler’s positions with either 30° of lower trunk inclination and 60° of upper trunk inclination (UT60) or 60° of whole trunk inclination (WT60). Comparisons were then made between age groups and between positions. Results Reductions in SV and tachycardic response were smaller with UT60 than with WT60, in both younger and older subjects. In addition, reduced tachycardic response with upright upper trunk appeared attributable to decreased vagal withdrawal in younger subjects and to reduced sympathetic activation in older subjects. Conclusion Our findings indicate that an upright upper trunk during Fowler’s position allowed maintenance of SV and inhibited tachycardic response compared to an upright whole trunk regardless of age, although the autonomic mechanisms underlying tachycardic responses differed between younger and older adults. An upright upper trunk in Fowler’s position might help to reduce orthostatic stress and facilitate routine activities and conversation in frail patients. PMID:28408809
Kubota, Satoshi; Endo, Yutaka; Kubota, Mitsue; Shigemasa, Tomohiko
2017-01-01
Downward shifts in blood volume with changing position generally cause tachycardic responses. Age-related decreases in vagal nerve activity could contribute to orthostatic hypotension in older individuals. Fowler's position is a reclined position with the back between 30° and 60°, used to facilitate breathing, eating, and other routine daily activities in frail and elderly patients. This study examined whether stroke volume (SV) was higher and heart rate (HR) lower in Fowler's position with an upright upper trunk than in Fowler's position with the whole trunk upright in both older and younger subjects, based on the assumption that lower HR would result from reduced sympathetic activation in older individuals. We assessed hemodynamics and HR variability from electrocardiography, noninvasive arterial pressure and impedance cardiography in 11 younger male subjects (age range, 20-22 years) and 11 older male subjects (age range, 64-79 years), using three positions: supine, or Fowler's positions with either 30° of lower trunk inclination and 60° of upper trunk inclination (UT60) or 60° of whole trunk inclination (WT60). Comparisons were then made between age groups and between positions. Reductions in SV and tachycardic response were smaller with UT60 than with WT60, in both younger and older subjects. In addition, reduced tachycardic response with upright upper trunk appeared attributable to decreased vagal withdrawal in younger subjects and to reduced sympathetic activation in older subjects. Our findings indicate that an upright upper trunk during Fowler's position allowed maintenance of SV and inhibited tachycardic response compared to an upright whole trunk regardless of age, although the autonomic mechanisms underlying tachycardic responses differed between younger and older adults. An upright upper trunk in Fowler's position might help to reduce orthostatic stress and facilitate routine activities and conversation in frail patients.
Present state of knowledge of the upper atmosphere: An assessment report
NASA Technical Reports Server (NTRS)
1984-01-01
A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.
Optimizing Positioning for In-Office Otology Procedures.
Govil, Nandini; DeMayo, William M; Hirsch, Barry E; McCall, Andrew A
2017-01-01
Objective Surgeons often report musculoskeletal discomfort in relation to their practice, but few understand optimal ergonomic positioning. This study aims to determine which patient position-sitting versus supine-is ergonomically optimal for performing otologic procedures. Study Design Observational study. Setting Outpatient otolaryngology clinic setting in a tertiary care facility. Subjects and Methods We observed 3 neurotologists performing a standardized simulated cerumen debridement procedure on volunteers in 2 positions: sitting and supine. The Rapid Upper Limb Assessment (RULA)-a validated tool that calculates stress placed on the upper limb during a task-was used to evaluate ergonomic positioning. Scores on this instrument range from 1 to 7, with a score of 1 to 2 indicating negligible risk of developing posture-related injury. The risk of musculoskeletal disorders increases as the RULA score increases. Results In nearly every trial, RULA scores were lower when the simulated patient was placed in the supine position. When examined as a group, the median RULA scores were 5 with the patient sitting and 3 with the patient in the supine position ( P < .0001). When the RULA scores of the 3 neurotologists were examined individually, each had a statistically significant decrease in score with the patient in the supine position. Conclusion This study indicates that patient position may contribute to ergonomic stress placed on the otolaryngologist's upper limb during in-office otologic procedures. Otolaryngologists should consider performing otologic procedures with the patient in the supine position to decrease their own risk of developing upper-limb musculoskeletal disorders.
Green, Dido; Wilson, Peter H
2012-01-01
To evaluate the feasibility and therapeutic effect of engaging children of differing neuromotor and cognitive ability in a virtual reality (VR) tabletop workspace designed to improve upper-limb function. Single-subject experimental design with multiple baselines was employed. Four children with hemiplegia participated in VR-based training between nine and 19, 30-minute sessions, over three-four weeks. Outcomes were assessed from the perspective of the International Classification of Functioning, Disability and Health; considering body function, activity performance and participation. Upper-limb performance was assessed using system-measured variables (speed, trajectory and accuracy) and standardized tests. Trend analyses were employed to determine trends on system variables between baseline phase and treatment phases. Standardised measures were compared between pre- and post-training. Two children made progress across system variables with some translation to daily activities. Performance of the other two children was more variable, however, they engaged positively with the system by the end of the treatment phase. The VR (RE-ACTION) system shows promise as an engaging rehabilitation tool to improve upper-limb function of children with hemiplegia, across ability levels. Trade-offs between kinematic variables should be considered when measuring improvements in movement skill. Larger trials are warranted to evaluate effects of augmented feedback, intensity and duration of training, and interface type to optimise the system's effectiveness.
Expanding the spectrum of frontal fibrosing alopecia: a unifying concept.
Chew, Ai-Lean; Bashir, Saqib J; Wain, E Mary; Fenton, David A; Stefanato, Catherine M
2010-10-01
In frontal fibrosing alopecia (FFA), scalp alopecia dominates the clinical picture. However, eyebrow loss and hair loss in other body sites may also occur; this has been documented clinically, but rarely histopathologically. We describe the clinicopathological findings of 13 cases of FFA, with histopathologic data from the scalp, eyebrow, and body hair. Thirteen patients with a diagnosis of FFA, seen between 2006 and 2008, were included. Scalp biopsies were performed in all patients for histology and direct immunofluorescence (DIF). Biopsy specimens for histology were taken from the eyebrow in 6 patients and from the upper limb in 5 patients. All 13 patients were female, 11 of whom were postmenopausal. The median age at onset of alopecia was 57 years. Clinical examination revealed a band of frontal hairline recession in all patients. Eyebrow loss was present clinically in all patients, with loss of body hair in 10 of 13. Histopathologic examination of the scalp, eyebrow, and upper limb skin biopsy specimens showed similar features, including a marked reduction in the number of hair follicles and a perifollicular lymphoid cell infiltrate with perifollicular fibrosis. Direct immunofluorescence was negative in all cases. Not all patients consented to biopsies of the eyebrows or upper limbs. Eyebrow and peripheral body hair loss is not uncommon in FFA-a finding that is likely underreported. We have demonstrated that alopecia of the upper limbs in FFA is indeed common and, histopathologically, shows features of lichen planopilaris and scarring, similar to findings in the scalp and eyebrows. Consequently, the process of lichen planopilaris with scarring alopecia is generalized rather than localized only to the frontal scalp and eyebrows.
Upper body kinematics in patients with cerebellar ataxia.
Conte, Carmela; Pierelli, Francesco; Casali, Carlo; Ranavolo, Alberto; Draicchio, Francesco; Martino, Giovanni; Harfoush, Mahmoud; Padua, Luca; Coppola, Gianluca; Sandrini, Giorgio; Serrao, Mariano
2014-12-01
Although abnormal oscillations of the trunk are a common clinical feature in patients with cerebellar ataxia, the kinematic behaviour of the upper body in ataxic patients has yet to be investigated in quantitative studies. In this study, an optoelectronic motion analysis system was used to measure the ranges of motion (ROMs) of the head and trunk segments in the sagittal, frontal and yaw planes in 16 patients with degenerative cerebellar ataxia during gait at self-selected speed. The data obtained were compared with those collected in a gender-, age- and gait speed-matched sample of healthy subjects and correlated with gait variables (time-distance means and coefficients of variation) and clinical variables (disease onset, duration and severity). The results showed significantly larger head and/or trunk ROMs in ataxic patients compared with controls in all three spatial planes, and significant correlations between trunk ROMs and disease duration and severity (in sagittal and frontal planes) and time-distance parameters (in the yaw plane), and between both head and trunk ROMs and swing phase duration variability (in the sagittal plane). Furthermore, the ataxic patients showed a flexed posture of both the head and the trunk during walking. In conclusion, our study revealed abnormal motor behaviour of the upper body in ataxic patients, mainly resulting in a flexed posture and larger oscillations of the head and trunk. The results of the correlation analyses suggest that the longer and more severe the disease, the larger the upper body oscillations and that large trunk oscillations may explain some aspects of gait variability. These results suggest the need of specific rehabilitation treatments or the use of elastic orthoses that may be particularly useful to reduce trunk oscillations and improve dynamic stability.
Pickett, Craig W; Nosaka, Kazunori; Zois, James; Hopkins, Will G; J, Anthony; Blazevich
2017-12-27
Current training and monitoring methods in sprint kayaking are based on the premise that upper-body muscular strength and aerobic power are both important for performance, but limited evidence exists to support this premise in high-level athletes. Relationships between measures of strength, maximal oxygen uptake (VO2max) and 200-m race times in kayakers competing at national-to-international levels were examined. Data collected from Australian Canoeing training camps and competitions for 7 elite, 7 national and 8 club level male sprint kayakers were analyzed for relationships between maximal isoinertial strength (3-RM bench press, bench row, chin-up and deadlift), VO2max on a kayak ergometer, and 200-m race time. Correlations between race time and bench press, bench row, chin-up, and VO2max were -0.80, -0.76, -0.73, -0.02 and 0.71, respectively (90% confidence limits ∼±0.17). The multiple correlation coefficient for 200-m race time with bench press and VO2max was 0.84. Errors in prediction of 200-m race time in regression analyses were extremely large (∼4%) in relation to the smallest important change of 0.3%. However, from the slopes of the regressions, the smallest important change could be achieved with a 1.4% (±0.5%) change in bench-press strength and a 0.9% (±0.5%) change in VO2max. Substantial relationships were found between upper-body strength or aerobic power and 200-m performances. These measures may not accurately predict individual performance times, but would be practicable for talent identification purposes. Training aimed at improving upper-body strength or aerobic power in lowerperforming athletes could also enhance the performance in 200-m kayak sprints.
Jones, Margaret T
2014-01-01
Purpose To determine the impact of inclusion of a band or chain compensatory acceleration training (CAT), in a 5-week training phase, on maximal upper body strength during a 14-week off-season strength and conditioning program for collegiate male athletes. Patients and methods Twenty-four National Collegiate Athletic Association (NCAA) collegiate baseball players, who were familiar with the current strength and conditioning program and had a minimum of 1 year of formal collegiate strength and conditioning experience, participated in this off-season training study. None of the men had participated in CAT before. Subjects were matched following a maximal effort (1-repetition maximum [1-RM]) bench press test in week 1, then were randomly assigned into a band-based CAT group or a chain-based CAT group and participated in a 5-week training phase that included bench pressing twice per week. Upper body strength was measured by 1-RM bench press again at week 6. A 2 × 2 mixed factorial (method × time) analysis of variance was calculated to compare differences across groups. The alpha level was set at P<0.05. Results No difference (F1,22=0.04, P=0.84) existed between the band-based CAT and chain-based CAT groups. A significant difference was observed between pre- and posttests of 1-RM bench (F1,22=88.46, P=0.001). Conclusion A 5-week band CAT or chain CAT training program used in conjunction with an off-season strength and conditioning program can increase maximal upper body strength in collegiate baseball athletes. Using band CAT and/or chain CAT as a training modality in the off-season will vary the training stimulus from the traditional and likely help to maintain the athlete’s interest. PMID:25177154
The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.
Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir
2017-07-26
It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.
Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance.
Tobias, Gabriel; Benatti, Fabiana Braga; de Salles Painelli, Vitor; Roschel, Hamilton; Gualano, Bruno; Sale, Craig; Harris, Roger C; Lancha, Antonio Herbert; Artioli, Guilherme Gianinni
2013-08-01
We examined the isolated and combined effects of beta-alanine (BA) and sodium bicarbonate (SB) on high-intensity intermittent upper-body performance in judo and jiu-jitsu competitors. 37 athletes were assigned to one of four groups: (1) placebo (PL)+PL; (2) BA+PL; (3) PL+SB or (4) BA+SB. BA or dextrose (placebo) (6.4 g day⁻¹) was ingested for 4 weeks and 500 mg kg⁻¹ BM of SB or calcium carbonate (placebo) was ingested for 7 days during the 4th week. Before and after 4 weeks of supplementation, the athletes completed four 30-s upper-body Wingate tests, separated by 3 min. Blood lactate was determined at rest, immediately after and 5 min after the 4th exercise bout, with perceived exertion reported immediately after the 4th bout. BA and SB alone increased the total work done in +7 and 8 %, respectively. The co-ingestion resulted in an additive effect (+14 %, p < 0.05 vs. BA and SB alone). BA alone significantly improved mean power in the 2nd and 3rd bouts and tended to improve the 4th bout. SB alone significantly improved mean power in the 4th bout and tended to improve in the 2nd and 3rd bouts. BA+SB enhanced mean power in all four bouts. PL+PL did not elicit any alteration on mean and peak power. Post-exercise blood lactate increased with all treatments except with PL+PL. Only BA+SB resulted in lower ratings of perceived exertion (p = 0.05). Chronic BA and SB supplementation alone equally enhanced high-intensity intermittent upper-body performance in well-trained athletes. Combined BA and SB promoted a clear additive ergogenic effect.
Adeleke, Monsuru Adebayo; Sam-Wobo, Sammy Olufemi; Akinwale, Olaoluwa Pheabian; Olatunde, Ganiyu Olatunji; Mafiana, Chiedu Felix
2012-09-01
The biting preference of Simulium vectors has been known to influence the distribution of Onchocerca nodules and microfilariae in human body. There is, however, variation in biting pattern of Simulium flies in different geographical locations. This study investigates the biting pattern on human parts by Simulium vectors along Osun river system where Simulium soubrense Beffa form has been implicated as the dominant vector and its possible implication on the distribution of Onchocerca nodules on human body along the river. Flies were collected by consented fly capturers on exposed human parts namely head/neck region, arms, upper limb and lower limb in Osun Eleja and Osun Budepo along Osun river in the wet season (August-September) and the dry season (November-December) in 2008. The residents of the communities were also screened for palpable Onchocerca nodules. The results showed that number of flies collected below the ankle region was significantly higher than the number collected on other exposed parts (p <0.05) while the least was collected on head/neck region in both seasons. The lower trunk was the most common site (60%) for nodule location at Osun Eleja followed by upper trunk (40%). Nodules were not found in the head and limb regions. At Osun Budepo, the upper trunk was the most common site of the nodule location (53.8%) followed by the lower trunk (38.5%) and head region (7.7%). Though, most of the flies were caught at the ankle region, the biting of other parts coupled with the presence of nodules at the head and upper trunk regions showed that Simulium vectors could obtain microfilariae from any part of the body, thus increasing the risk of onchocerciasis transmission.
Yan, Xiu-e; Zhou, Li-ya; Lin, San-ren; Wang, Ye; Cheng, Zhi-rong
2013-08-27
To analyze the related factors of complications and treatment efficacy with flexible endoscopy for esophageal foreign body (FB). In a retrospective study with consecutive data, 101 adults including 52 males and 49 females with esophageal FB impaction between January 2005 and December 2012 admitted into Department of Gastroenterology's Endoscopic Unit at Peking University Third Hospital were included, aged (49 ± 21) years. (1) FB impaction in upper and middle esophagus accounted for 87.1% (n = 88) of all esophageal FBs. No significant difference existed in interval time from impaction to removal of FB impacted between upper, middle and lower esophagus (P > 0.05) . (2) Patients with esophageal FB seeking hospital treatment accounted for 82.2% (n = 83) within 24 h and 99.0% (n = 100) within 48 h. Food lump, fish bone, chicken bone and fruit seeds accounted for 76.2% (n = 77). (3) Positive rates were 91.3% (21/23) and 24.1% (7/29) with upper gastrointestinal barium contrast and chest or abdominal plain film. The success rate was 94.1% (n = 95) with flexible endoscopy for removal of FB. (4) Denture was the most difficult FB for removal. Four patients in all 11 patients with denture impacted were not removed successfully with flexible endoscopy. (5) The complication (except for mild scratch) rate was 48.5% (n = 49) and the perforation rate 3.0% (n = 3) . Whether complications took place or not was independent of age, location of impaction, time from impaction to removal and size of FB (all P > 0.05) , but dependent on piercing into esophageal wall, concomitant with esophageal stricture and types of FB (all P < 0.01) . Whether perforation or not was independent of any above factor. Esophageal FB should be removed as soon as possible within 24 h especially for those with sharp edges and piercing into esophageal wall.
Generational changes in the growth of children from Maribor and Slovenia.
Bigec, Martin
2013-05-01
Among the numerous factors which influence a child's growth and development are also factors of changeable socio-economic environment and life style. Our aim was to evaluate these changes and contribute to preventive measures and evaluation of a child's growth in pediatric practice. Therefore, we decided to estimate the state of body growth in two generations of children from Maribor at five and six years of age of both gender, establish secular changes and define standards. On a representative sample (gender and age) of 1461 children from Maribor measured in 1996 and a sample of 608 children from Maribor, measured in 1966, 28 body features were studied and compared in each population unit. Variables were statistically and epidemiologically assessed and results were controlled by a test. The following anthropometric differences were significant: in 5-year old boys the measures in the 1996 generation are statistically higher than in 1966 - foot length, head length, upper arm skinfold, subscapular skinfold, arm length, arm diameter, upper thigh skinfold, stature (length), suprailiac skinfold, and body weight. Decreased measures are: abdomen circumference, knee circumference, sitting height, elbow circumference, biacromial diameter, and face heigth. In 6-year old boys additional features have increased in comparison with the year 1966: sternal height, tight circumference, hip width, chest circumference; following measures have decreased: face height, head circumference. In 5-year old girls: increased measures in comparison with the generation from 1966 are: lower leg length, head length, ankle circumference, upper arm skinfold, body weight, billiac diameter, body height, subscapular skinfold, chest circumference, hip circumference, sternal height, suprailiac skinfold, decreased measures are: head circumference, elbow circumference, face circumference, shoulder with, sitting height. In 6-year old girls additional measures are increased: wrist circumference, arm length and chest circumference. Changing trends show an increased tendency towards decrease or increase of most body measurements. In everyday practice the most commonly used measurements are: body mass, head circumference, body length in babies and body height in pre-school children. Our measurements proved, with a p-value of 0.001, that measurements of children in 1966, also shown in diagrams, are significantly different from measurements in 1996. In the second part of this paper we present a part of the anthropometric measurement study carried out for the standardization of the DENVER II developmental screening test. There were 1596 healthy Slovene children between zero and six and half years of age included into the observation. Children come from Maribor, Koper, Velenje and Ljubljana. We used the Cameron's measurement and statistical method. Diagrams were made for following body measures: body mass, body height, head circumference, upper arm circumference, thigh circumference and body mass index. A comparative analysis with the Euro-Growth study showed that our results correspond with the European standards. Therefore, our results are suggested to be applied in everyday pediatric practice.
Hamano, Saki; Ochi, Eisuke; Tsuchiya, Yosuke; Muramatsu, Erina; Suzukawa, Kazuhiro; Igawa, Shoji
2015-01-01
Objective Canoe sprint is divided into canoe and kayak. The difference between the two competitions is in physical performance. The aim of the present study was to compare and investigate the relationship between physical characteristics and fitness between the two canoe sprint competitors. Methods Subjects were 11 canoe paddlers (C) and 12 kayak paddlers (K). They underwent anthropometric characteristics, body composition and fitness tests, and 120 s all-out tests using a canoe and kayak ergometer. The unpaired t-test was used to test for significant differences between disciplines, while Pearson’s correlation coefficient was used to examine the association between each measurement item and the performance test. Results The age, height, body mass, body mass index, and total body fat were, C: 20.6±0.9 yr, 172.8±5.2 cm, 70.8±7.8 kg, 23.7±1.9, 14.4%±3.5%; and K: 19.7±1.2 yr, 172.8±5.3 cm, 69.5±7.8 kg, 23.2±2.1, 12.1%±3.6%, respectively. No significant differences were seen in any of the items for physical characteristics or fitness between C and K. A correlation analysis of performance tests and each measurement item revealed a positive correlation with low-speed isokinetic knee extension and flexion strength for C only (extension: r=0.761; flexion: r=0.784; P<0.01). In addition, performance tests were positively correlated with the circumference of arm (upper arm: r=0.876; forearm: r=0.820; P<0.01) and lower limb (thigh: r=0.781; calf: r=0.753; P<0.01) in C and with height (r=0.549, P<0.05), arm span (r=0.639, P<0.05), and leg length (r=0.621, P<0.01) in K. Conclusion We suggest that the factors correlating with the performance test differ depending on the competitions. PMID:26150737
Embodying animals: Body-part compatibility in mammalian, reptile and aves classes.
Pacione, Sandra M; Welsh, Timothy N
2015-09-01
The purpose of the present study was to determine how humans code homologous body parts of nonhuman mammal, reptilian, and aves animals with respect to the representation of the human body. To this end, participants completed body-part compatibility tasks in which responses were executed to colored targets that were superimposed over the upper limbs, lower limbs or head of different animals in different postures. In Experiment 1, the images were of meekats and lizards in bipedal and quadrupedal postures. In Experiment 2, the images were of a human, a penguin, and an owl in a bipedal posture with upper limbs stretched out. Overall, the results revealed that the limbs of nonhuman mammals (meerkat and human) were consistently mapped onto the homologous human body parts only when the mammals were in a bipedal posture. Specifically, body-part compatibility effects emerged for the human and the meerkat in a bipedal posture, but not the meerkat in the quadrupedal posture. Further, consistent body-part compatibility effects were not observed for the lizard in the quadrupedal posture or for the lizard, penguin, or owl in a bipedal posture. The pattern of results suggests that the human bipedal body representation may distinguish taxonomical classes and is most highly engaged when viewing homologous body parts of mammalian animals. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Phelps, A. E., III; Letko, W.; Henderson, R. L.
1973-01-01
An investigation of the static longitudinal aerodynamic characteristics of a semispan STOL jet transport wing-body with an upper-surface blown jet flap for lift augmentation was conducted in a low-speed wind tunnel having a 12-ft octagonal test section. The semispan swept wing had an aspect ratio of 3.92 (7.84 for the full span) and had two simulated turbofan engines mounted ahead of and above the wing in a siamese pod equipped with an exhaust deflector. The purpose of the deflector was to spread the engine exhaust into a jet sheet attached to the upper surface of the wing so that it would turn downward over the flap and provide lift augmentation. The wing also had optional boundary-layer control provided by air blowing through a thin slot over a full-span plain trailing-edge flap.
Conformal dual-band textile antenna with metasurface for WBAN application
NASA Astrophysics Data System (ADS)
Giman, Fatin Nabilah; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Abdulmalek, Mohamedfareq; Abdulaziz, Nidhal
2017-01-01
This paper presents the design of a dual-band wearable planar slotted dipole integrated with a metasurface. It operates in the 2.45 GHz (lower) and 5.8 GHz (upper) bands and made fully using textiles to suit wireless body area network applications. The metasurface in the form of an artificial magnetic conductor (AMC) plane is formed using a rectangular patch incorporated with a diamond-shaped slot to generate dual-phase response. This plane is then integrated with the planar slotted dipole antenna prior to its assessment in free space and bent configurations. Simulations and measurements indicated a good agreement, and the antenna featured an impedance bandwidth of 164 and 592 MHz in the lower and upper band, respectively. The presence of the AMC plane also minimized the backward radiation toward the human body and enhanced realized gains by up to 3.01 and 7.04 dB in the lower and upper band.
Intrinsic Magnetic Properties of the Lunar Body
NASA Technical Reports Server (NTRS)
Behannon, Kenneth W.
1968-01-01
Preliminary analysis of magnetic measurements by Explorer 35 in lunar orbit suggested an upper limit of 4 x 10(exp 20) gauss-cm3 for the magnetic moment of the moon. A more detailed analysis of a larger body of Explorer 35 data from measurements in the earth's magnetic tail has subsequently been performed. Reversal of the ambient tail field by 180deg when the moon and spacecraft traverse the neutral sheet permits a separation of permanent and induced field contributions to the total field observed near the moon. When compared to calculated permanent and induced field effects, the results of this analysis lead to new upper limits of 102' gauss-cm3 on the lunar magnetic moment and 4y on the lunar surface field. Limiting the moment induced in the moon by the magnetotail field permits an upper limit of 1.8 to be set on the bulk relative magnetic permeability of the moon.
NASA Technical Reports Server (NTRS)
Lessard, Steven; Pansodtee, Pattawong; Robbins, Ash; Baltaxe-Admony, Leya Breanna; Teodorescu, Mircea; Kurniawan,Sri; Agogino, Adrian; Kurniawan, Sri
2017-01-01
Wearable robots can potentially offer their users enhanced stability and strength. These augmentations are ideally designed to actuate harmoniously with the users movements and provide extra force as needed. The creation of such robots, however, is particularly challenging due to the complexity of the underlying human body. In this paper, we present a compliant, robotic exosuit for upper-extremities called CRUX. This exosuit, inspired by tensegrity models of the human arm, features a lightweight (1.3 kg), flexible design for portability. We also show how CRUX maintains full flexibility of the upper-extremities for its users while providing multi- DoF augmentative strength to the major muscles of the arm, as evident by tracking the heart rate of an individual exercising said arm. Exosuits such as CRUX may be useful in physical therapy and in extreme environments where users are expected to exert their bodies to the fullest extent.
Yue, Fu Leon; Karsten, Bettina; Larumbe-Zabala, Eneko; Seijo, Marcos; Naclerio, Fernando
2018-05-01
The present study compared the effects of 2 weekly-equalized volume and relative load interventions on body composition, strength, and power. Based on individual baseline maximal strength values, 18 recreationally trained men were pair-matched and consequently randomly assigned to one of the following experimental groups: a low volume per session with a high frequency (LV-HF, n = 9) group who trained for 4 days (Mondays, Tuesdays, Thursdays, and Fridays) or a high volume per session and low frequency (HV-LF, n = 9) group who trained for 2 days (Mondays and Thursdays). Both groups performed 2 different routines over 6 weeks. Participants were tested pre- and post- intervention for maximal strength, upper body power, fat-free mass, limb circumferences, and muscle thickness. Compared with baseline values, both groups increased their fat-free mass (HV-LF: +1.19 ± 1.94; LV-HF: +1.36 ± 1.06 kg, p < 0.05) and vastus medialis thickness (HV-LF: +2.18 ± 1.88, p < 0.01; LV-HF: +1.82 ± 2.43 mm, p < 0.05), but only the HV-LF group enhanced arm circumference (1.08 ± 1.47 cm, p < 0.05) and elbow flexors thickness (2.21 ± 2.81 mm, P < 0.01) values and decreased their fat mass (-2.41 ± 1.10, P < 0.01). Both groups improved (p < 0.01) the maximal loads lifted in the bench press (LV-HF: +0.14 ± 0.01; HV-LF: +0.14 ± 0.01 kg·body mass -1 ) and the squat (LV-HF: +0.14 ± 0.06; HV-LF: 0.17 ± 0.01 kg·body mass -1 ) exercises as well as in upper body power (LV-HF: +0.22 ± 0.25; HV-LF: +0.27 ± 0.22 W·body mass -1 ) Although both training strategies improved performance and lower body muscle mass, only the HV-LF protocol increased upper body hypertrophy and improved body composition.
Pollitz, F.F.; Kellogg, L.; Burgmann, R.
2001-01-01
We propose a geodynamic model for stress concentration in the New Madrid seismic zone (NMSZ). The model postulates that a high-density (mafic) body situated in the deep crust directly beneath the most seismically active part of the NMSZ began sinking several thousands of years ago when the lower crust was suddenly weakened. Based on the fact that deformation rates in the NMSZ have accelerated over the past 9 k.y., we envision the source of this perturbation to be related to the last North American deglaciation. Excess mass of the mafic body exerts a downward pull on the elastic upper crust, leading to a cycle of primary thrust faulting with secondary strike-slip faulting, after which continued sinking of the mafic body reloads the upper crust and renews the process. This model is consistent with the youth of activity, the generation of a sequence of earthquakes, and the velocity evolution during interseismic periods, which depend upon the density contrast of the mafic body with respect to the surrounding crust, its volume, and the viscosity of the lower crust.
Body fat distribution of overweight females with a history of weight cycling.
Wallner, S J; Luschnigg, N; Schnedl, W J; Lahousen, T; Sudi, K; Crailsheim, K; Möller, R; Tafeit, E; Horejsi, R
2004-09-01
Weight cycling may cause a redistribution of body fat to the upper body fat compartments. We investigated the distribution of subcutaneous adipose tissue (SAT) in 30 overweight women with a history of weight-cycling and age-matched controls (167 normal weight and 97 overweight subjects). Measurements of SAT were performed using an optical device, the Lipometer. The SAT topography describes the thicknesses of SAT layers at 15 anatomically well-defined body sites from neck to calf. The overweight women with a history of weight cycling had significantly thicker SAT layers on the upper body compared to the overweight controls, but even thinner SAT layers on their legs than the normal weight women. An android fat pattern was attributed to overweight females and, even more pronounced, to the weight cyclers. The majority of normal weight women showed a gynoid fat pattern. Using stepwise discriminant analysis, 89.0% of all weight cyclers and overweight controls could be classified correctly into the two groups. These findings show the importance of normal weight maintenance as a health-promoting factor.
Gao, Fan; Rodriguez, Johanan; Kapp, Susan
2016-06-01
Harness fitting in the body-powered prosthesis remains more art than science due to a lack of consistent and quantitative evaluation. The aim of this study was to develop a mechanical, human-body-shaped apparatus to simulate body-powered upper limb prosthetic usage and evaluate its capability of quantitative examination of harness configuration. The apparatus was built upon a torso of a wooden mannequin and integrated major mechanical joints to simulate terminal device operation. Sensors were used to register cable tension, cable excursion, and grip force simultaneously. The apparatus allowed the scapula to move up to 127 mm laterally and the load cell can measure the cable tension up to 445 N. Our preliminary evaluation highlighted the needs and importance of investigating harness configurations in a systematic and controllable manner. The apparatus allows objective, systematic, and quantitative evaluation of effects of realistic harness configurations and will provide insightful and working knowledge on harness fitting in upper limb amputees using body-powered prosthesis. © The International Society for Prosthetics and Orthotics 2015.
System for producing a uniform rubble bed for in situ processes
Galloway, T.R.
1983-07-05
A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.
NASA Astrophysics Data System (ADS)
Xue, Ying; Ren, Yiping; Meng, Wenrong; Li, Long; Mao, Xia; Han, Dongyan; Ma, Qiuyun
2013-09-01
Cephalopods play key roles in global marine ecosystems as both predators and preys. Regressive estimation of original size and weight of cephalopod from beak measurements is a powerful tool of interrogating the feeding ecology of predators at higher trophic levels. In this study, regressive relationships among beak measurements and body length and weight were determined for an octopus species ( Octopus variabilis), an important endemic cephalopod species in the northwest Pacific Ocean. A total of 193 individuals (63 males and 130 females) were collected at a monthly interval from Jiaozhou Bay, China. Regressive relationships among 6 beak measurements (upper hood length, UHL; upper crest length, UCL; lower hood length, LHL; lower crest length, LCL; and upper and lower beak weights) and mantle length (ML), total length (TL) and body weight (W) were determined. Results showed that the relationships between beak size and TL and beak size and ML were linearly regressive, while those between beak size and W fitted a power function model. LHL and UCL were the most useful measurements for estimating the size and biomass of O. variabilis. The relationships among beak measurements and body length (either ML or TL) were not significantly different between two sexes; while those among several beak measurements (UHL, LHL and LBW) and body weight (W) were sexually different. Since male individuals of this species have a slightly greater body weight distribution than female individuals, the body weight was not an appropriate measurement for estimating size and biomass, especially when the sex of individuals in the stomachs of predators was unknown. These relationships provided essential information for future use in size and biomass estimation of O. variabilis, as well as the estimation of predator/prey size ratios in the diet of top predators.
Abdominal aortic aneurysm neck remodeling after Anaconda stent graft implantation.
Vukovic, Elisabeth; Czerny, Martin; Beyersdorf, Friedhelm; Wolkewitz, Martin; Berezowski, Mikolaj; Siepe, Matthias; Blanke, Philipp; Rylski, Bartosz
2018-05-24
The aim of this study was to define how the proximal landing zone changes geometrically after endovascular abdominal aortic aneurysm repair (EVAR) with the Anaconda (Vascutek, Inchinnan, United Kingdom) stent graft. Among 230 patients who underwent Anaconda stent graft implantation between 2005 and 2014, we included 126 with adequate computed tomography (CT) image quality and follow-up. CT analysis entailed the geometric changes in the main body, proximal rings, and proximal landing zone. The median CT follow-up was 2.0 years (345.8 patients-years). The proximal portion of the main body ring system flattened within the first year after EVAR, resulting in an up to 30° increase in the upper ring's angle in 40% patients and up to 40° increase in 24% patients. One year after EVAR, the upper ring angle increase slowed down. Aortic diameter measured at the level of the upper and lower ring expanded by 2 to 4 mm within 1 year, but remained unchanged afterward. The main body migrated continuously down toward the aortic bifurcation, attaining an average 6-mm increase in the distance between the superior mesenteric artery and main body within 4 years. Freedom from endoleak type IA was 95 ± 2% and 93 ± 3% after 1 and 4 years, respectively. The Anaconda main body ring system in its proximal portion flattens within the first year after EVAR, leading to an increase of 2 to 4 mm in the proximal landing zone's aortic diameter. The main body migrates slowly but continuously down toward the aortic bifurcation. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Hermassi, Souhail; van den Tillaar, Roland; Khlifa, Riadh; Chelly, Mohamed Souhaiel; Chamari, Karim
2015-08-01
The purpose of this study was to compare the effect of a specific resistance training program (throwing movement with a medicine ball) with that of regular training (throwing with regular balls) on ball velocity, anthropometry, maximal upper-body strength, and power. Thirty-four elite male team handball players (age: 18 ± 0.5 years, body mass: 80.6 ± 5.5 kg, height: 1.80 ± 5.1 m, body fat: 13.4 ± 0.6%) were randomly assigned to 1 of the 3 groups: control (n = 10), resistance training group (n = 12), or regular throwing training group (n = 12). Over the 8-week in season, the athletes performed 3 times per week according to an assigned training program alongside their normal team handball training. One repetition maximum (1RM) bench press and 1RM pullover scores assessed maximal arm strength. Anthropometry was assessed by body mass, fat percentage, and muscle volumes of upper body. Handball throwing velocity was measured by a standing throw, a throw with run, and a jump throw. Power was measured by measuring total distance thrown by a 3-kg medicine ball overhead throw. Throwing ball velocity, maximal strength, power, and muscle volume increases for the specific resistance training group after the 8 weeks of training, whereas only maximal strength, muscle volume and power and in the jump throw increases were found for the regular throwing training group. No significant changes for the control group were found. The current findings suggest that elite male handball players can improve ball velocity, anthropometrics, maximal upper-body strength, and power during the competition season by implementing a medicine ball throwing program.
Fluorescent fluid interface position sensor
Weiss, Jonathan D.
2004-02-17
A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.
ERIC Educational Resources Information Center
Yepes, Maryam; Maurer, Jürgen; Stringhini, Silvia; Viswanathan, Barathi; Gedeon, Jude; Bovet, Pascal
2016-01-01
Background: While obesity continues to rise globally, the associations between body size, gender, and socioeconomic status (SES) seem to vary in different populations, and little is known on the contribution of perceived ideal body size in the social disparity of obesity in African countries. Purpose: We examined the gender and socioeconomic…
Wood-Barcalow, Nichole L; Tylka, Tracy L; Augustus-Horvath, Casey L
2010-03-01
Extant body image research has provided a rich understanding of negative body image but a rather underdeveloped depiction of positive body image. Thus, this study used Grounded Theory to analyze interviews from 15 college women classified as having positive body image and five body image experts. Many characteristics of positive body image emerged, including appreciating the unique beauty and functionality of their body, filtering information (e.g., appearance commentary, media ideals) in a body-protective manner, defining beauty broadly, and highlighting their body's assets while minimizing perceived imperfections. A holistic model emerged: when women processed mostly positive and rejected negative source information, their body investment decreased and body evaluation became more positive, illustrating the fluidity of body image. Women reciprocally influenced these sources (e.g., mentoring others to love their bodies, surrounding themselves with others who promote body acceptance, taking care of their health), which, in turn, promoted increased positive source information. Copyright 2010. Published by Elsevier Ltd.
Aerosol Deposition Efficiencies and Upstream Release Positions for Different Inhalation Modes in an Upper Bronchial Airway Model
Zhe Zhang, Clement Kleinstreuer, and Chong S. Kim
Center for Environmental Medicine and Lung Biology, University of North Carolina at Ch...
Associations between Perceived Teaching Behaviours and Affect in Upper Elementary School Students
ERIC Educational Resources Information Center
Barnard, Allison D.; Adelson, Jill L.; Pössel, Patrick
2017-01-01
We explored the associations between student-perceived teaching behaviours and negative affect (NA) and positive affect (PA) in upper elementary age students, both before and after controlling for perceived parenting behaviours. The Teaching Behaviour Questionnaire, the Alabama Parenting Questionnaire, and the Positive and Negative Affect Schedule…
Burkhart, Timothy A; Brydges, Evan; Stefanczyk, Jennifer; Andrews, David M
2017-04-01
The occurrence of distal upper extremity injuries resulting from forward falls (approximately 165,000 per year) has remained relatively constant for over 20years. Previous work has provided valuable insight into fall arrest strategies, but only symmetric falls in body postures that do not represent actual fall scenarios closely have been evaluated. This study quantified the effect of asymmetric loading and body postures on distal upper extremity response to simulated forward falls. Twenty participants were suspended from the Propelled Upper Limb fall ARest Impact System (PULARIS) in different torso and leg postures relative to the ground and to the sagittal plane (0°, 30° and 45°). When released from PULARIS (hands 10cm above surface, velocity 1m/s), participants landed on two force platforms, one for each hand. Right forearm impact response was measured with distal (radial styloid) and proximal (olecranon) tri-axial accelerometers and bipolar EMG from seven muscles. Overall, the relative height of the torso and legs had little effect on the forces, or forearm response variables. Muscle activation patterns consistently increased from the start to the peak activation levels after impact for all muscles, followed by a rapid decline after peak. The impact forces and accelerations suggest that the distal upper extremity is loaded more medial-laterally during asymmetric falls than symmetric falls. Altering the direction of the impact force in this way (volar-dorsal to medial-lateral) may help reduce distal extremity injuries caused when landing occurs symmetrically in the sagittal plane as it has been shown that volar-dorsal forces increase the risk of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Upflow bioreactor with septum and pressure release mechanism
Hansen, Conly L.; Hansen, Carl S.; Pack, Kevin; Milligan, John; Benefiel, Bradley C.; Tolman, C. Wayne; Tolman, Kenneth W.
2010-04-20
An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes means for releasing pressure buildup in the lower chamber. In one configuration, the septum includes a releasable portion having an open position and a closed position. The releasable portion is configured to move to the open position in response to pressure buildup in the lower chamber. In the open position fluid communication between the lower chamber and the upper chamber is increased. Alternatively the lower chamber can include a pressure release line that is selectively actuated by pressure buildup. The pressure release mechanism can prevent the bioreactor from plugging and/or prevent catastrophic damage to the bioreactor caused by high pressures.
Sensor fusion for laparoscopic surgery skill acquisition.
Anderson, Fraser; Birch, Daniel W; Boulanger, Pierre; Bischof, Walter F
2012-01-01
Surgical techniques are becoming more complex and require substantial training to master. The development of automated, objective methods to analyze and evaluate surgical skill is necessary to provide trainees with reliable and accurate feedback during their training programs. We present a system to capture, visualize, and analyze the movements of a laparoscopic surgeon for the purposes of skill evaluation. The system records the upper body movement of the surgeon, the position, and orientation of the instruments, and the force and torque applied to the instruments. An empirical study was conducted using the system to record the performances of a number of surgeons with a wide range of skill. The study validated the usefulness of the system, and demonstrated the accuracy of the measurements.
Pages, Gaël; Ramdani, Nacim; Fraisse, Philippe; Guiraud, David
2009-06-01
This paper presents a contribution for restoring standing in paraplegia while using functional electrical stimulation (FES). Movement generation induced by FES remains mostly open looped and stimulus intensities are tuned empirically. To design an efficient closed-loop control, a preliminary study has been carried out to investigate the relationship between body posture and voluntary upper body movements. A methodology is proposed to estimate body posture in the sagittal plane using force measurements exerted on supporting handles during standing. This is done by setting up constraints related to the geometric equations of a two-dimensional closed chain model and the hand-handle interactions. All measured quantities are subject to an uncertainty assumed unknown but bounded. The set membership estimation problem is solved via interval analysis. Guaranteed uncertainty bounds are computed for the estimated postures. In order to test the feasibility of our methodology, experiments were carried out with complete spinal cord injured patients.
Hayano, Ryugo S; Tsubokura, Masaharu; Miyazaki, Makoto; Satou, Hideo; Sato, Katsumi; Masaki, Shin; Sakuma, Yu
2015-01-01
Comprehensive whole-body counter surveys of Miharu-town school children have been conducted for four consecutive years, in 2011-2014. This represents the only long-term sampling-bias-free study of its type conducted after the Fukushima Dai-ichi accident. For the first time in 2014, a new device called the Babyscan, which has a low (134/137)Cs MDA of <50 Bq/body, was used to screen the children shorter than 130 cm. No child in this group was found to have detectable level of radiocesium. Using the MDAs, upper limits of daily intake of radiocesium were estimated for each child. For those screened with the Babyscan, the upper intake limits were found to be ≲1 Bq/day for (137)Cs. Analysis of a questionnaire filled out by the children's parents regarding their food and water consumption shows that the majority of Miharu children regularly consume local and/or home-grown rice and vegetables. This however does not increase the body burden.
NASA Astrophysics Data System (ADS)
Hayano, Ryugo S.; Tsubokura, Masaharu; Miyazaki, Makoto; Satou, Hideo; Sato, Katsumi; Masaki, Shin; Sakuma, Yu
Comprehensive whole-body counter surveys of Miharu town school children have been conducted for four consecutive years, in 2011-2014. This represents the only long-term sampling-bias-free study of its type conducted after the Fukushima Dai-ichi accident. For the first time in 2014, a new device called the Babyscan, which has a low $^{134/137}$Cs MDA of $< 50$ Bq/body, was used to screen the children shorter than 130 cm. No child in this group was found to have detectable level of radiocesium. Using the MDAs, upper limits of daily intake of radiocesium were estimated for each child. For those screened with the Babyscan, the upper intake limits were found to be <1 Bq/day for $^{137}$Cs. Analysis of a questionnaire filled out by the children's parents regarding their food and water consumption shows that the majority of Miharu children regularly consume local and/or home-grown rice and vegetables. This however does not increase the body burden.
LeBlanc, M
1990-01-01
Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance.
Muscular and Cardiorespiratory Fitness in Homeschool versus Public School Children.
Kabiri, Laura S; Mitchell, Katy; Brewer, Wayne; Ortiz, Alexis
2017-08-01
The growth and unregulated structure of homeschooling creates an unknown population in regard to muscular and cardiorespiratory fitness. The purpose of this research was to compare muscular and cardiorespiratory fitness between elementary school aged homeschool and public school children. Homeschool children ages 8-11 years old (n = 75) completed the curl-up, 90° push-up, and Progressive Aerobic Capacity Endurance Run (PACER) portions of the FitnessGram to assess abdominal and upper body strength and endurance as well as cardiorespiratory fitness. Comparisons to public school children (n = 75) were made using t tests and chi-square tests. Homeschool children showed significantly lower abdominal (t(148) = -11.441, p < .001; χ 2 (1) = 35.503, p < .001) and upper body (t(148) = -3.610, p < .001; χ 2 (1) = 4.881, p = .027) strength and endurance. There were no significant differences in cardiorespiratory fitness by total PACER laps (t(108) = 0.879, p = .381) or estimated VO 2max (t(70) = 1.187, p = .239; χ 2 (1) = 1.444, p = .486). Homeschool children showed significantly lower levels of both abdominal and upper body muscular fitness compared with their age and gender matched public school peers but no difference in cardiorespiratory fitness.
Endo, Arisa; Suzuki, Makoto; Akagi, Atsumi; Chiba, Naoyuki; Ishizaka, Ikuyo; Matsunaga, Atsuhiko; Fukuda, Michinari
2015-03-01
The purpose of this study was to examine the reliability and validity of the Upper-body Dressing Scale (UBDS) for buttoned shirt dressing, which evaluates the learning process of new component actions of upper-body dressing in patients diagnosed with dementia and hemiparesis. This was a preliminary correlational study of concurrent validity and reliability in which 10 vascular dementia patients with hemiparesis were enrolled and assessed repeatedly by six occupational therapists by means of the UBDS and the dressing item of the Functional Independence Measure (FIM). Intraclass correlation coefficient was 0.97 for intra-rater reliability and 0.99 for inter-rater reliability. The level of correlation between UBDS score and FIM dressing item scores was -0.93. UBDS scores for paralytic hand passed into the sleeve and sleeve pulled up beyond the shoulder joint were worse than the scores for the other components of the task. The UBDS has good reliability and validity for vascular dementia patients with hemiparesis. Further research is needed to investigate the relation between UBDS score and the effect of intervention and to clarify sensitivity or responsiveness of the scale to clinical change. Copyright © 2014 John Wiley & Sons, Ltd.
The cat vertebral column: stance configuration and range of motion
NASA Technical Reports Server (NTRS)
Macpherson, J. M.; Ye, Y.; Peterson, B. W. (Principal Investigator)
1998-01-01
This study examined the configuration of the vertebral column of the cat during independent stance and in various flexed positions. The range of motion in the sagittal plane is similar across most thoracic and lumbar joints, with the exception of a lesser range at the transition region from thoracic-type to lumbar-type vertebrae. The upper thoracic column exhibits most of its range in dorsiflexion and the lower thoracic and lumbar in ventroflexion. Lateral flexion is limited to less than 5 degrees at all segments. The range in torsion is almost 180 degrees and occurs primarily in the midthoracic region, T4-T11. Contrary to the depiction in most atlases, the standing cat exhibits several curvatures, including a mild dorsiflexion in the lower lumbar segments, a marked ventroflexion in the lower thoracic and upper lumbar segments, and a profound dorsiflexion in the upper thoracic (above T9) and cervical segments. The curvatures are not significantly changed by altering stance distance but are affected by head posture. During stance, the top of the scapula lies well above the spines of the thoracic vertebrae, and the glenohumeral joint is just below the bodies of vertebrae T3-T5. Using a simple static model of the vertebral column in the sagittal plane, it was estimated that the bending moment due to gravity is bimodal with a dorsiflexion moment in the lower thoracic and lumbar region and a ventroflexion moment in the upper thoracic and cervical region. Given the bending moments and the position of the scapula during stance, it is proposed that two groups of scapular muscles provide the major antigravity support for the head and anterior trunk. Levator scapulae and serratus ventralis form the lateral group, inserting on the lateral processes of cervical vertebrae and on the ribs. The major and minor rhomboids form the medial group, inserting on the spinous tips of vertebrae from C4 to T4. It is also proposed that the hypaxial muscles, psoas major, minor, and quadratus lumborum could support the lumbar trunk during stance.
Guignard, Brice; Rouard, Annie; Chollet, Didier; Ayad, Omar; Bonifazi, Marco; Dalla Vedova, Dario; Seifert, Ludovic
2017-10-01
This study assessed perception-action coupling in expert swimmers by focusing on their upper limb inter-segmental coordination in front crawl. To characterize this coupling, we manipulated the fluid flow and compared trials performed in a swimming pool and a swimming flume, both at a speed of 1.35ms -1 . The temporal structure of the stroke cycle and the spatial coordination and its variability for both hand/lower arm and lower arm/upper arm couplings of the right body side were analyzed as a function of fluid flow using inertial sensors positioned on the corresponding segments. Swimmers' perceptions in both environments were assessed using the Borg rating of perceived exertion scale. Results showed that manipulating the swimming environment impacts low-order (e.g., temporal, position, velocity or acceleration parameters) and high-order (i.e., spatial-temporal coordination) variables. The average stroke cycle duration and the relative duration of the catch and glide phases were reduced in the flume trial, which was perceived as very intense, whereas the pull and push phases were longer. Of the four coordination patterns (in-phase, anti-phase, proximal and distal: when the appropriate segment is leading the coordination of the other), flume swimming demonstrated more in-phase coordination for the catch and glide (between hand and lower arm) and recovery (hand/lower arm and lower arm/upper arm couplings). Conversely, the variability of the spatial coordination was not significantly different between the two environments, implying that expert swimmers maintain consistent and stable coordination despite constraints and whatever the swimming resistances. Investigations over a wider range of velocities are needed to better understand coordination dynamics when the aquatic environment is modified by a swimming flume. Since the design of flumes impacts significantly the hydrodynamics and turbulences of the fluid flow, previous results are mainly related to the characteristics of the flume used in the present study (or a similar one), and generalization is subject to additional investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
Traces across the body: influence of music-dance synchrony on the observation of dance.
Woolhouse, Matthew Harold; Lai, Rosemary
2014-01-01
In previous studies investigating entrainment and person perception, synchronized movements were found to enhance memory for incidental person attributes. Although this effect is robust, including in dance, the process by which it is actuated are less well understood. In this study, two hypotheses are investigated: that enhanced memory for person attributes is the result of (1) increased gaze time between in-tempo dancers; and/or (2) greater attentional focus between in-tempo dancers. To explore these possible mechanisms in the context of observing dance, an eye-tracking study was conducted in which subjects watched videos of pairs of laterally positioned dancers; only one of the dancers was synchronized with the music, the other being asynchronous. The results were consistent with the first hypothesis-music-dance synchrony gives rise to increased visual inspection times. In addition, there was a preference for upper-body fixations over lower-body fixations across both synchronous and asynchronous conditions. A subsequent, single-dancer eye-tracking study investigated fixations across different body regions, including head, torso, legs and feet. Significantly greater dwell times were recorded for head than torso and legs; feet attracted significantly less dwell time than any other body region. Lastly, the study sought to identify dance gestures responsible for torso- and head-directed fixations. Specifically we asked whether there are features in dance that are specially designed to direct an observer's gaze towards the face-the main "communicative portal" with respect to the transmission of intent, affect and empathy.