Falls, W.F.; Baum, J.S.; Prowell, D.C.
1997-01-01
Six geologic units are recognized in the Cretaceous and the Paleocene sediments of eastern Burke and Screven Counties in Georgia on the basis of lithologic, geophysical, and paleontologic data collected from three continuously cored testholes in Georgia and one testhole in South Carolina. The six geologic units are separated by regional unconformities and are designated from oldest to youngest as the Cape Fear Formation, the Middendorf Formation, the Black Creek Group (undivided), and the Steel Creek Formation in the Upper Cretaceous section, and the Ellenton and the Snapp Formations in the Paleocene section. The geologic units provide a spatial and temporal framework for the identification and correlation of a basal confining unit beneath the Midville aquifer system and five aquifers and five confining units in the Dublin and the Midville aquifer systems. The Dublin aquifer system is divided hydrostratigraphically into the Millers Pond, the upper Dublin, and the lower Dublin aquifers. The Midville aquifer system is divided hydrostratigraphically into the upper and the lower Midville aquifers. The fine-grained sediments of the Millers Pond, the lower Dublin, and the lower Midville confining units are nonmarine deposits and are present in the upper part of the Snapp Formation, the Black Creek Group (undivided), and the Middendorf Formation, respectively. Hydrologic data for specific sets of monitoring wells at the Savannah River Site in South Carolina and the Millers Pond site in Georgia confirm that these three units are leaky confining units and locally impede vertical ground-water flow between adjacent aquifers. The fine-grained sediments of the upper Dublin and the upper Midville confining units are marine-deltaic deposits of the Ellenton Formation and the Black Creek Group (undivided), respectively. Hydrologic data confirm that the upper Dublin confining unit regionally impedes vertical ground-water flow on both sides of the Savannah River. The upper Midville confining unit impedes vertical ground-water flow in the middle and downdip parts of the study area and is a leaky confining unit in the updip part of the study area. Recognition of the upper Dublin confining unit as a regional confining unit between the Millers Pond and the upper Dublin aquifers also confirms that the Millers Pond aquifer is a separate hydrologic unit from the rest of the Dublin aquifer system. This multi-aquifer framework increases the vertical hydrostratigraphic resolution of hydraulic properties and gradients in the Dublin and Midville aquifer systems for the investigation of ground-water flow beneath the Savannah River in the vicinity of the U.S. Department of Energy Savannah River Site.
Bell, C.F.
1996-01-01
In October 1993, the U.S. Geological Survey began a study to characterize the hydrogeology of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, which is located on the Potomac River in the Coastal Plain Physiographic Province. The study provides a description of the hydrogeologic units, directions of ground-water flow, and back-ground water quality in the study area to a depth of about 100 feet. Lithologic, geophysical, and hydrologic data were collected from 28 wells drilled for this study, from 3 existing wells, and from outcrops. The shallow aquifer system at the Explosive Experimental Area consists of two fining-upward sequences of Pleistocene fluvial-estuarine deposits that overlie Paleocene-Eocene marine deposits of the Nanjemoy-Marlboro confining unit. The surficial hydrogeologic unit is the Columbia aquifer. Horizontal linear flow of water in this aquifer generally responds to the surface topography, discharging to tidal creeks, marshes, and the Potomac River, and rates of flow in this aquifer range from 0.003 to 0.70 foot per day. The Columbia aquifer unconformably overlies the upper confining unit 12-an organic-rich clay that is 0 to 55 feet thick. The upper confining unit conformably overlies the upper confined aquifer, a 0- to 35-feet thick unit that consists of interbedded fine-grained to medium-grained sands and clay. The upper confined aquifer probably receives most of its recharge from the adjacent and underlying Nanjemoy-Marlboro confining unit. Water in the upper confined aquifer generally flows eastward, northward, and northeastward at about 0.03 foot per day toward the Potomac River and Machodoc Creek. The Nanjemoy-Marlboro confining unit consists of glauconitic, fossiliferous silty fine-grained sands of the Nanjemoy Formation. Where the upper confined system is absent, the Nanjemoy-Marlboro confining unit is directly overlain by the Columbia aquifer. In some parts of the Explosive Experimental Area, horizontal hydraulic conductivities of the Nanjemoy-Marlboro confining unit and the Columbia aquifer are similar (from 10-4 to 10-2 foot per day), and these units effectively combine to form a thick (greater than 50 feet) aquifer. The background water quality of the shallow aquifer system is characteristic of ground waters in the Virginia Coastal Plain Physiographic Province. Water in the Columbia aquifer is a mixed ionic type, has a median pH of 5.9, and a median total dissolved solids of 106 milligrams per liter. Water in the upper confined aquifer and Nanjemoy-Marlboro confining unit is a sodium- calcium-bicarbonate type, and generally has higher pH, dissolved solids, and alkalinity than water in the Columbia aquifer. Water in the upper confined aquifer and some parts of the Columbia aquifer is anoxic, and it has high concentrations of dissolved iron, manganese, and sulfide.
Falls, W. Fred; Ransom, Camille; Landmeyer, James E.; Reuber, Eric J.; Edwards, Lucy E.
2005-01-01
To assess the hydrogeology, water quality, and the potential for saltwater intrusion in the offshore Upper Floridan aquifer, a scientific investigation was conducted near Tybee Island, Georgia, and Hilton Head Island, South Carolina. Four temporary wells were drilled at 7, 8, 10, and 15 miles to the northeast of Tybee Island, and one temporary well was drilled in Calibogue Sound west of Hilton Head Island. The Upper Floridan aquifer at the offshore and Calibogue sites includes the unconsolidated calcareous quartz sand, calcareous quartz sandstone, and sandy limestone of the Oligocene Lazaretto Creek and Tiger Leap Formations, and the limestone of the late Eocene Ocala Limestone and middle Avon Park Formation. At the 7-, 10-, and 15-mile sites, the upper confining unit between the Upper Floridan and surficial aquifers correlates to the Miocene Marks Head Formation. Paleochannel incisions have completely removed the upper confining unit at the Calibogue site and all but a 0.8-foot-thick interval of the confining unit at the 8-mile site, raising concern about the potential for saltwater intrusion through the paleochannel-fill sediments at these two sites. The paleochannel incisions at the Calibogue and 8-mile sites are filled with fine- and coarse-grained sediments, respectively. The hydrogeologic setting and the vertical hydraulic gradients at the 7- and 10-mile sites favored the absence of saltwater intrusion during predevelopment. After decades of onshore water use in Georgia and South Carolina, the 0-foot contour in the regional cone of depression of the Upper Floridan aquifer is estimated to have been at the general location of the 7- and 10-mile sites by the mid-1950s and at or past the 15-mile site by the 1980s. The upward vertical hydraulic gradient reversed, but the presence of more than 17 feet of upper confining unit impeded the downward movement of saltwater from the surficial aquifer to the Upper Floridan aquifer at the 7- and 10-mile sites. At the 10-mile site, the chloride concentration in the Upper Floridan borehole-water sample and the pore-water samples from the Oligocene and Eocene strata support the conclusion of no noticeable modern saltwater intrusion in the Upper Floridan aquifer. The chloride concentration of 370 milligrams per liter in the borehole-water sample at the 7-mile site from the Upper Floridan aquifer at 78 to 135 feet below North American Vertical Datum of 1988 is considerably higher than the chloride concentration of 25 milligrams per liter measured at the 10-mile site. The higher concentration probably is the result of downward leakage of saltwater through the confining unit at the 7-mile site or could reflect downward leakage of saltwater through an even thinner layer of the upper confining unit beneath the paleochannel to the northeast and lateral movement (encroachment) from the paleochannel to the 7-mile site. Carbon-14 concentrations at both sites, however, are low and indicate that most of the water is relict fresh ground water. The hydrogeology at the 15-mile site includes 17 feet of the upper confining unit. The chloride concentration in the Upper Floridan aquifer is 6,800 milligrams per liter. The setting for the Upper Floridan aquifer beneath the 15-mile site is interpreted as a transitional mixing zone between relict freshwater and relict saltwater. At the Calibogue site, 35 feet of fine-grained paleochannel-fill sediments overlies the Oligocene strata of the Upper Floridan aquifer. The vertical hydraulic conductivity of the paleochannel fill at this site is similar to the upper confining unit and effectively replaces the missing upper confining unit. Chloride concentrations and low carbon-14 and tritium concentrations in borehole water from the Upper Floridan aquifer, and low chloride concentrations in pore water from the upper confining unit indicate relict freshwater confined in the Upper Floridan aquifer at the Calibogue site. The coarse-grained paleochannel-f
Effects of model layer simplification using composite hydraulic properties
Sepúlveda, Nicasio; Kuniansky, Eve L.
2010-01-01
The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.
Hydrogeology of the Canal Creek area, Aberdeen Proving Ground, Maryland
Oliveros, J.P.; Vroblesky, D.A.
1989-01-01
Geologic and borehole geophysical logs made at 77 sites show that the hydrogeologic framework of the study area consists of a sequence of unconsolidated sediments typical of the Coastal Plain of Maryland. Three aquifers and two confining units were delineated within the study area. From the surface down, they are: (1) the surficial aquifer; (2) the upper confining unit; (3) the Canal Creek aquifer; (4) the lower confining unit; and (5) the lower confined aquifer. The aquifer materials range from fine sand to coarse sand and gravel. Clay lenses were commonly found interfingered with the sand, isolating parts of the aquifers. All the units are continuous throughout the study area except for the upper confining unit, which crops out within the study area but is absent in updip outcrops. The unit also is absent within a Pleistocene paleochannel, where it has been eroded. The surficial and Canal Creek aquifers are hydraulically connected where the upper confining unit is absent, and a substantial amount of groundwater may flow between the two aquifers. Currently, no pumping stresses are known to affect the aquifers within the study area. Under current conditions, downward vertical hydraulic gradients prevail at topographic highs, and upward gradients typically prevail near surface-water bodies. Regionally, the direction of groundwater flow in the confined aquifers is to the east and southeast. Significant water level fluctuations correspond with seasonal variations in rainfall, and minor daily fluctuations reflect tidal cycles. (USGS)
Miller, James A.
1986-01-01
The Floridan aquifer system of the Southeastern United States is comprised of a thick sequence of carbonate rocks that are mostly of Paleocene to early Miocene age and that are hydraulically connected in varying degrees. The aquifer system consists of a single vertically continuous permeable unit updip and of two major permeable zones (the Upper and Lower Floridan aquifers) separated by one of seven middle confining units downdip. Neither the boundaries of the aquifer system or of its component high- and low-permeability zones necessarily conform to either formation boundaries or time-stratigraphic breaks. The rocks that make up the Floridan aquifer system, its upper and lower confining units, and a surficial aquifer have been separated into several chronostratigraphic units. The external and internal geometry of these stratigraphic units is presented on a series of structure contour and isopach maps and by a series of geohydrologic cross sections and a fence diagram. Paleocene through middle Eocene units consist of an updip clastic facies and a downdip carbonate bank facies, that extends progressively farther north and east in progressively younger units. Upper Eocene and Oligocene strata are predominantly carbonate rocks throughout the study area. Miocene and younger strata are mostly clastic rocks. Subsurface data show that some modifications in current stratigraphic nomenclature are necessary. First, the middle Eocene Lake City Limestone cannot be distinguished lithologically or faunally from the overlying middle Eocene Avon Park 'Limestone.' Accordingly, it is proposed that the term Lake City be abandoned and the term Avon Park Formation be applied to the entire middle Eocene carbonate section of peninsular Florida and southeastern Georgia. A reference well section in Levy County, Fla., is proposed for the expanded Avon Park Formation. The Avon Park is called a 'formation' more properly than a 'limestone' because the unit contains rock types other than limestone. Second, like the Avon Park, the lower Eocene Oldsmar and Paleocene Cedar Keys 'Limestones' of peninsular Florida practically everywhere contain rock types other than limestone. It is therefore proposed that these units be referred to more accurately as Oldsmar Formation and Cedar Keys Formation. The uppermost hydrologic unit in the study area is a surficial aquifer that can be divided into (1) a fluvial sand-and-gravel aquifer in southwestern Alabama and westernmost panhandle Florida, (2) limestone and sandy limestone of the Biscayne aquifer in southeastern peninsular Florida, and (3) a thin blanket of terrace and fluvial sands elsewhere. The surficial aquifer is underlain by a thick sequence of fine clastic rocks and low-permeability carbonate rocks, most of which are part of the middle Miocene Hawthorn Formation and all of which form the upper confining unit of the Floridan aquifer system. In places, the upper confining unit has been removed by erosion or is breached by sinkholes. Water in the Floridan aquifer system thus occurs under unconfined, semiconfined, or fully confined conditions, depending upon the presence, thickness, and integrity of the upper confining unit. Within the Floridan aquifer system, seven low permeability zones of subregional extent split the aquifer system in most places into an Upper and Lower Floridan aquifer. The Upper Floridan aquifer, which consists of all or parts of rocks of Oligocene age, late Eocene age, and the upper half of rocks of middle Eocene age, is highly permeable. The middle confining units that underlie the Upper Floridan are mostly of middle Eocene age but may be as young as Oligocene or as old as early Eocene. Where no middle confining unit exists, the entire aquifer system is comprised of permeable rocks and for hydrologic discussions is treated as the Upper Floridan aquifer. The Lower Floridan aquifer contains a cavernous high-permeability horizon in the lower part of the early Eocene of south
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, F.A. Jr.; Vermeul, V.R.
Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated usingmore » recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.« less
Hydrogeologic framework of the North Fork and surrounding areas, Long Island, New York
Schubert, Christopher E.; Bova, Richard G.; Misut, Paul E.
2004-01-01
Ground water on the North Fork of Long Island is the sole source of drinking water, but the supply is vulnerable to saltwater intrusion and upconing in response to heavy pumping. Information on the area's hydrogeologic framework is needed to analyze the effects of pumping and drought on ground-water levels and the position of the freshwater-saltwater interface. This will enable water-resource managers and water-supply purveyors to evaluate a wide range of water-supply scenarios to safely meet water-use demands. The extent and thickness of hydrogeologic units and position of the freshwater-saltwater interface were interpreted from previous work and from exploratory drilling during this study.The fresh ground-water reservoir on the North Fork consists of four principal freshwater flow systems (referred to as Long Island mainland, Cutchogue, Greenport, and Orient) within a sequence of unconsolidated Pleistocene and Late Cretaceous deposits. A thick glacial-lake-clay unit appears to truncate underlying deposits in three buried valleys beneath the northern shore of the North Fork. Similar glacial-lake deposits beneath eastern and east-central Long Island Sound previously were inferred to be younger than the surficial glacial deposits exposed along the northern shore of Long Island. Close similarities in thickness and upper-surface altitude between the glacial-lake-clay unit on the North Fork and the glacial-lake deposits in Long Island Sound indicate, however, that the two are correlated at least along the North Fork shore.The Matawan Group and Magothy Formation, undifferentiated, is the uppermost Cretaceous unit on the North Fork and constitutes the Magothy aquifer. The upper surface of this unit contains a series of prominent erosional features that can be traced beneath Long Island Sound and the North Fork. Northwest-trending buried ridges extend several miles offshore from areas southeast of Rocky Point and Horton Point. A promontory in the irregular, north-facing cuesta slope extends offshore from an area southwest of Mattituck Creek and James Creek. Buried valleys that trend generally southeastward beneath Long Island Sound extend onshore northeast of Hashamomuck Pond and east of Goldsmith Inlet.An undifferentiated Pleistocene confining layer, the lower confining unit, consists of apparently contiguous units of glacial-lake, marine, and nonmarine clay. This unit is more than 200 feet thick in buried valleys filled with glacial-lake clay along the northern shore, but elsewhere on the North Fork, it is generally less than 50 feet thick and presumably represents an erosional remnant of marine clay. Its upper surface is generally 75 feet or more below sea level where it overlies buried valleys, and is generally 100 feet or less below sea level in areas where marine clay has been identified.A younger unit of glacial-lake deposits, the upper confining unit, is a local confining layer and underlies a sequence of late Pleistocene moraine and outwash deposits. This unit is thickest (more than 45 feet thick) beneath two lowland areas--near Mattituck Creek and James Creek, and near Hashamomuck Pond--but pinches out close to the northern and southern shores and is locally absent in inland areas of the North Fork. Its upper-surface altitude generally rises to near sea level toward the southern shore.Freshwater in the Orient flow system is limited to the upper glacial aquifer above the top of the lower confining unit. The upper confining unit substantially impedes the downward flow of freshwater in inland parts of the Greenport flow system. Deep freshwater within the lower confining unit in the east-central part of the Cutchogue flow system probably is residual from an interval of lower sea level. The upper confining unit is absent or only a few feet thick in the west-central part of the Cutchogue flow system and does not substantially impede the downward flow of freshwater, but the lower confining unit probably impedes the downward flow of freshwater within a southeast-trending buried valley in this area.
Groundwater conditions and studies in the Augusta–Richmond County area, Georgia, 2008–2009
Gonthier, Gerard; Lawrence, Stephen J.; Peck, Michael F.; Holloway, O. Gary
2011-01-01
Groundwater studies and monitoring efforts conducted during 2008–2009, as part of the U.S. Geological Survey (USGS) Cooperative Water Program with the City of Augusta in Richmond County, Georgia, provided data for the effective management of local water resources. During 2008–2009 the USGS completed: (1) installation of three monitoring wells and the collection of lithologic and geophysical logging data to determine the extent of hydrogeologic units, (2) collection of continuous groundwater-level data from wells near Well Fields 2 and 3, (3) collection of synoptic groundwater-level measurements and construction of potentiometric-surface maps in Richmond County to establish flow gradients and groundwater-flow directions in the Dublin and Midville aquifer systems, (4) completion of a 24-hour aquifer test to determine hydraulic characteristics of the lower Dublin aquifer, and upper and lower Midville aquifers in Well Field 2, and (5) collection of groundwater samples from selected wells in Well Field 2 for laboratory analysis of volatile organic compounds and groundwater tracers to assess groundwater quality and estimate the time of groundwater recharge. Potentiometric-surface maps of the Dublin and Midville aquifer systems for 2008–2009 indicate that the general groundwater flow direction within Richmond County is eastward toward the Savannah River, with the exception of the area around Well Field 2, where pumping interrupts the eastward flow of water toward the Savannah River and causes flow lines to bend toward the center of pumping. Results from a 24-hour aquifer test conducted in 2009 within the upper and lower Midville aquifers at Well Field 2 indicated a transmissivity and storativity for the upper and lower Midville aquifers, combined, of 4,000 feet-squared per day and 2x10-4, respectively. The upper and lower Midville aquifers and the middle lower Midville confining unit, which is 85-feet thick in this area, yielded horizontal hydraulic conductivity and specific storage values of about 45 feet per day and 2x10-6 ft-1, respectively. Results from the 24-hour aquifer test also indicate a low horizontal hydraulic conductivity for the lower Dublin aquifer of less than 1 foot per day. Of the 35 volatile organic compounds (VOCs) analyzed in 23 groundwater samples during 2008–2009, only six were detected above laboratory reporting limits in samples from eight wells. No concentration in groundwater samples collected during 2008–2009 exceeded drinking water standards. Trichloroethene had the maximum VOC concentration (1.9 micrograms per liter) collected from a water sample during 2008–2009. Water-quality sampling of several wells near Well Field 2 indicate that, while in operation, the northernmost production well might have diverted groundwater, containing low levels of trichloroethene from at least two other production wells. Analysis of sulfur hexafluoride data indicate the average year of recharge ranges between 1981 and 1984 for water samples from five wells open to the upper and lower Midville aquifers, and 1991 for a water sample from one shallow well open to the lower Dublin aquifer. All of these ages suggest a short flow path and nearby source of contamination. The actual source of low levels of VOCs at Well Field 2 remains unknown. Three newly installed monitoring wells indicate that hydrogeologic units beneath Well Fields 2 and 3 are composed of sand and clay layers. Hydrogeologic units, encountered at Well Field 2, in order of increasing depth are the lower Dublin confining unit, lower Dublin aquifer, upper Midville confining unit, upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer. West of Well Field 3, hydrogeologic units, in order of increasing depth are the Upper Three Runs aquifer, Gordon confining unit, Gordon aquifer, lower Dublin confining unit, lower Dublin aquifer, upper Midville confining unit, upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer.
Geldon, Arthur L.
2003-01-01
The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.
Wicks, C.M.; Herman, J.S.
1994-01-01
In west-central Florida, sections of the Upper Floridan aquifer system range in character from confined to leaky to unconfined. The confining unit is the Hawthorn Formation, a clay-rich sequence. The presence or absence of the Hawthorn Formation affects the geochemical evolution of the ground water in the Upper Floridan aquifer system. Mass-balance and mass-transfer models suggest that, in unconfined areas, the geochemical reactions are dolomite dissolution, ion exchange (Mg for Na, K), sulfate reduction, calcite dissolution, and CO2 exchange. In the areas in which the Hawthorn Formation is leaky, the evolution of the ground water is accounted for by ion exchange, sulfate reduction, calcite dissolution, and CO2 exchange. In the confined areas, no ion exchange and only limited sulfate reduction occur, and the chemical character of the ground water is consistent with dolomite and gypsum dissolution, calcite precipitation, and CO2 ingassing. The Hawthorn Formation acts both as a physical barrier to the transport of CO2 and organic matter and as a source of ion-exchange sites, but the carbonate-mineral reactions are largely unaffected by the extent of confinement of the Upper Floridan aquifer. ?? 1994.
Gonthier, Gerard
2012-01-01
Two test wells were completed in Pooler, Georgia, in 2011 to investigate the potential of using the Lower Floridan aquifer as a source of water for municipal use. One well was completed in the Lower Floridan aquifer at a depth of 1,120 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 486 ft below land surface. At the Pooler test site, the U.S. Geological Survey performed flowmeter surveys, packer-isolated slug tests within the Lower Floridan confining unit, slug tests of the entire Floridan aquifer system, and aquifer tests of the Upper and Lower Floridan aquifers. Drill cuttings, geophysical logs, and borehole flowmeter surveys indicate that the Upper Floridan aquifer extends 333 –515 ft below land surface, the Lower Floridan confining unit extends 515–702 ft below land surface, and the Lower Floridan aquifer extends 702–1,040 ft below land surface. Flowmeter surveys indicate that the Upper Floridan aquifer contains two water-bearing zones at depth intervals of 339 –350 and 375–515 ft; the Lower Floridan confining unit contains one zone at a depth interval of 550–620 ft; and the Lower Floridan aquifer contains five zones at depth intervals of 702–745, 745–925, 925–984, 984–1,015, and 1,015–1,040 ft. Flowmeter testing of the test borehole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 92.4 percent of the total flow rate of 708 gallons per minute; the Lower Floridan confining unit contributed 3.0 percent; and the Lower Floridan aquifer contributed 4.6 percent. Horizontal hydraulic conductivity of the Lower Floridan confining unit derived from slug tests within three packer-isolated intervals ranged from 0.5 to 10 feet per day (ft/d). Aquifer-test analyses yielded values of transmissivity for the Upper Floridan aquifer, Lower Floridan confining unit, and the Lower Floridan aquifer of 46,000, 700, and 4,000 feet squared per day (ft2/d), respectively. Horizontal hydraulic conductivity of 4 ft/d for the Lower Floridan confining unit, derived from aquifer-test analyses, is near the midrange for values derived from packer-isolated slug tests. The transmissivity of the entire Floridan aquifer system derived from aquifer-test analyses totals about 51,000 ft2/d, similar to the value of 58,000 ft2/d derived from open slug tests on the entire Floridan aquifer system. Water-level data for each aquifer test were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small (less than 1 foot) water-level responses to aquifer-test pumping. During the 72-hour aquifer test of pumping the Lower Floridan aquifer, a drawdown response of 51.7 ft was observed in the Lower Floridan pumped well and a drawdown response of 0.9 foot was observed in the Upper Floridan observation well located 85 ft from the pumped well.
Brahana, J.V.; Mesko, T.O.
1988-01-01
On a regional scale, the groundwater system of the northern Mississippi embayment is composed of a series of nonindurated clastic sediments that overlie a thick sequence of Paleozoic carbonate, sandstones, and shales. The units that comprise the geohydrologic framework of this study are the alluvium-lower Wilcox Aquifer the Midway confining unit, the Upper Cretaceous aquifer, the Cretaceous-Paleozoic confining unit, and the Ozark-St. Francois aquifer. The Upper Cretaceous aquifer of Late Cretaceous age is the primary focus of this investigation; the study is part of the Gulf Coast Regional Aquifer-System Analysis. A four layer finite-difference groundwater flow model enabled testing of alternative boundary concepts and provide a refined definition of the hydrologic budget of the deep aquifers. The alluvium-lower Wilcox aquifer, the Upper Cretaceous aquifer, and the Ozark-St. Francois aquifer form layers 2 through 4, respectively. Layer 1 is an inactive layer of constant heads representing shallow water levels, which are a major control on recharge to and discharge from the regional system. A matrix of leakance values simulates each confining unit, allowing vertical interchange of water between different aquifers. The model was calibrated to 1980 conditions by using the assumption that 1980 was near steady-state conditions; it was calibrated to simulate observed heads were found to be most sensitive to pumping, and least sensitive to the leakance. By using all available water quality and water level data, alternative boundary conditions were tested by comparing model simulated heads to observed heads. The results of the early modeling effort also contribute to a better understanding of the regional hydrologic budget, indicating that: upward leakage from the Ozark-St. Francois aquifer to the Upper Cretaceous aquifer is about 43 cu ft/sec; upward recharge of about 68 cu ft/sec occurs to the lower Wilcox-alluvium aquifer from the Upper Cretaceous aquifer; and the Midway is an effective regional confining unit. (Author 's abstract)
Spechler, R.M.
1995-01-01
The lower St. Johns River, a 101-mile long segment of the St. Johns River, begins at the confluence of the Ocklawaha River and ends where the river discharges into the Atlantic Ocean at Mayport. The St. Johns River is affected by tides as far upstream as Lake George, 106 miles from the mouth. Saltwater from the ocean advances inland during each incoming tide and recedes during each outgoing tide. The chemical quality of the lower St. Johns River is highly variable primarily because of the inflow of saltwater from the ocean, and in some areas, from the discharge of mineralized ground water. Three hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The surficial aquifer system overlies the intermediate confining unit and consists of deposits containing sand, clay, shell, and some limestone and dolomite. The intermediate confining unit underlies all of the study area and retards the vertical movement of water between the surficial aquifer system and the Floridan aquifer system. The intermediate confining unit consists of beds of relatively low permeability sediments that vary in thickness and areal extent and can be breached by sinkholes, fractures, and other openings. The Floridan aquifer system primarily consists of limestone and dolomite. The quality of water in the Upper Floridan aquifer varies throughout the study area. Dissolved solids in water range from about 100 to more than 5,000 milligrams per liter. Chloride and sulfate concentrations in water from the Upper Floridan aquifer range from about 4 to 3,700 milligrams per liter and from 1 to 1,300 milligrams per liter, respectively. The rate of leakage through the intermediate confining unit is controlled by the leakance coefficient of the intermediate confining unit and by the head difference between the Upper Floridan aquifer and the surficial aquifer system. The total ground-water discharge from the Upper Floridan aquifer to the St. Johns River within the lower St. Johns River drainage basin, based on the potentiometric surface of the Upper Floridan aquifer in September 1990, was estimated to be 86 cubic feet per second. Total estimated ground-water discharge to the lower St. Johns River in September 1991, when heads in the Upper Floridan aquifer averaged about 4 feet higher than in 1990, was 133 cubic feet per second. The load of dissolved-solids that discharged from the Upper Floridan aquifer into the lower St. Johns River on the basis of September 1990 heads is estimated to be 47,000 tons per year. Estimated chloride and sulfate loads are 18,000 and 9,500 tons per year, respectively. Dissolved-solids, chloride, and sulfate loads discharging into the lower St. Johns River are estimated to be 81,000, 39,000, and 15,000 tons per year, respectively, on the basis of September 1991 heads.
Williams, Lester J.; Gill, Harold E.
2010-01-01
The hydrogeologic framework for the Floridan aquifer system has been revised for eight northern coastal counties in Georgia and five coastal counties in South Carolina by incorporating new borehole geophysical and flowmeter log data collected during previous investigations. Selected well logs were compiled and analyzed to determine the vertical and horizontal continuity of permeable zones that make up the Upper and Lower Floridan aquifers and to define more precisely the thickness of confining beds that separate these aquifers. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual permeable zones that compose these aquifers. The revised boundaries of the Floridan aquifer system were mapped by taking into account results from local studies and regional correlations of geologic and hydrogeologic units. Because the revised framework does not match the previous regional framework along all edges, additional work will be needed to expand the framework into adjacent areas. The Floridan aquifer system in the northern coastal region of Georgia and parts of South Carolina can be divided into the Upper and Lower Floridan aquifers, which are separated by a middle confining unit of relatively lower permeability. The Upper Floridan aquifer includes permeable and hydraulically connected carbonate rocks of Oligocene and upper Eocene age that represent the most transmissive part of the aquifer system. The middle confining unit consists of low permeability carbonate rocks that lie within the lower part of the upper Eocene in Beaufort and Jasper Counties, South Carolina, and within the upper to middle parts of the middle Eocene elsewhere. Locally, the middle confining unit contains thin zones that have moderate to high permeability and can produce water to wells that tap them. The Lower Floridan aquifer includes all permeable strata that lie below the middle confining unit and above the base of the aquifer system. Beneath Hilton Head Island, South Carolina, the middle Floridan aquifer is now included as part of the Lower Floridan aquifer. The base of the Floridan aquifer system generally is located at the top of lower Eocene rocks in Georgia and the top of Paleocene rocks in South Carolina. The Upper and Lower Floridan aquifers are interconnected to varying degrees depending on the thickness and permeability of the middle confining unit that separates these aquifers. In most places, hydraulic head differences between the two aquifers range from a few inches to a few feet or more. Monitoring at several vertically clustered well-point sites where wells were set at different depths in the aquifer revealed variations in the degree of hydraulic separation with depth. In general, the head separation between the Upper and Lower Floridan aquifers increases with depth, which indicates that the deeper zones are more hydraulically separated than the shallower parts of the Lower Floridan aquifer.
Kuniansky, Eve L.; Jones, Sonya A.; Brock, Robert D.; Williams, M.D.
1996-01-01
Ground water in the surficial terrace alluvial aquifer is contaminated at Air Force Plant 4, Fort Worth, Texas, and at the adjacent Naval Air Station. Some of the contaminated water has leaked from the terrace alluvial aquifer to an uppermost interval of the Paluxy Formation (the Paluxy "upper sand") beneath the east parking lot, east of the assembly building, and to the upper and middle zones of the Paluxy aquifer near Bomber Road, west of the assembly building. Citizens are concerned that contaminants from the plant, principally trichloroethylene and chromium might enter nearby municipal and domestic wells that pump water from the middle and lower zones of the Paluxy aquifer. Geologic formations that crop out in the study area, from oldest to youngest, are the Paluxy Formation (aquifer), Walnut Formation (confining unit), and Goodland Limestone (confining unit). Beneath the Paluxy Formation is the Glen Rose Formation (confining unit) and Twin Mountains Formation (aquifer). The terrace alluvial deposits overlie these Cretaceous rocks. The terrace alluvial aquifer, which is not used for municipal water supply, is separated from the Paluxy aquifer by the Goodland-Walnut confining unit. The confining unit restricts the flow of ground water between these aquifers in most places; however, downward leakage to the Paluxy aquifer might occur through the "window," where the confining unit is thin or absent. The Paluxy aquifer is divided into upper, middle, and lower zones. The Paluxy "upper sand" underlying the "window" is an apparently isolated, mostly unsaturated, sandy lens within the uppermost part of the upper zone. The Paluxy aquifer is recharged by leakage from Lake Worth and by precipitation on the outcrop area. Discharge from the aquifer primarily occurs as pumpage from municipal and domestic wells. The Paluxy aquifer is separated from the underlying Twin Mountains aquifer by the Glen Rose confining unit. Water-level maps indicate that (1) ground water in the terrace alluvial aquifer appears to flow outward, away from Air Force Plant 4; (2) a ground-water mound, possibly caused by downward leakage from the terrace alluvial aquifer, is present in the Paluxy "upper sand" beneath the "window;" and (3) lateral ground-water flow in regionally extensive parts of the Paluxy aquifer is from west to east-southeast. Trichloroethylene concentrations at Air Force Plant 4 have ranged from about 10,000 to about 100,000 micrograms per liter in the terrace alluvial aquifer, from 8,000 to 11,000 micrograms per liter in the Paluxy "upper sand," and from 2 to 50 micrograms per liter in the upper and middle zones of the Paluxy aquifer. Chromium concentrations at Air Force Plant 4 have ranged from 0 to 629 micrograms per liter in the terrace alluvial aquifer. The seven municipal wells mostly west and south of Air Force Plant 4 are not along a flowpath for leakage of contaminants from the plant because ground-water flow in the Paluxy aquifer is toward the east-southeast. Furthermore, trichloroethylene was not detected in any of these wells in 1993 when all were sampled for water quality. The results of water-quality sampling at 10 domestic wells northwest of the Air Force Plant 4 during April 1993 and April 1995 indicated that neither trichloroethylene nor chromium had migrated off-site to these wells.
Leake, S.A.; Leahy, P.P.; Navoy, A.S.
1994-01-01
Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.
High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)
Wrege, B.M.; Isely, J.J.
2009-01-01
We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.
Hydrogeology and groundwater quality of Highlands County, Florida
Spechler, Rick M.
2010-01-01
Groundwater is the main source of water supply in Highlands County, Florida. As the demand for water in the county increases, additional information about local groundwater resources is needed to manage and develop the water supply effectively. To address the need for additional data, a study was conducted to evaluate the hydrogeology and groundwater quality of Highlands County. Total groundwater use in Highlands County has increased steadily since 1965. Total groundwater withdrawals increased from about 37 million gallons per day in 1965 to about 107 million gallons per day in 2005. Much of this increase in water use is related to agricultural activities, especially citrus cultivation, which increased more than 300 percent from 1965 to 2005. Highlands County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer, which is underlain by the intermediate aquifer system/intermediate confining unit. The lowermost hydrogeologic unit is the Floridan aquifer system, which consists of the Upper Floridan aquifer, as many as three middle confining units, and the Lower Floridan aquifer. The surficial aquifer consists primarily of fine-to-medium grained quartz sand with varying amounts of clay and silt. The aquifer system is unconfined and underlies the entire county. The thickness of the surficial aquifer is highly variable, ranging from less than 50 to more than 300 feet. Groundwater in the surficial aquifer is recharged primarily by precipitation, but also by septic tanks, irrigation from wells, seepage from lakes and streams, and the lateral groundwater inflow from adjacent areas. The intermediate aquifer system/intermediate confining unit acts as a confining layer (except where breached by sinkholes) that restricts the vertical movement of water between the surficial aquifer and the underlying Upper Floridan aquifer. The sediments have varying degrees of permeability and consist of permeable limestone, dolostone, or sand, or relatively impermeable layers of clay, clayey sand, or clayey carbonates. The thickness of the intermediate aquifer system/ intermediate confining unit ranges from about 200 feet in northwestern Highlands County to more than 600 feet in the southwestern part. Although the intermediate aquifer system is present in the county, it is unclear where the aquifer system grades into a confining unit in the eastern part of the county. Up to two water-bearing units are present in the intermediate aquifer system within the county. The lateral continuity and water-bearing potential of the various aquifers within the intermediate aquifer system are highly variable. The Floridan aquifer system is composed of a thick sequence of limestone and dolostone of Upper Paleocene to Oligocene age. The top of the aquifer system ranges from less than 200 feet below NGVD 29 in extreme northwestern Highlands County to more than 600 feet below NGVD 29 in the southwestern part. The principal source of groundwater supply in the county is the Upper Floridan aquifer. As of 2005, about 89 percent of the groundwater withdrawn from the county was obtained from this aquifer, mostly for agricultural irrigation and public supply. Over most of Highlands County, the Upper Floridan aquifer generally contains freshwater, and the Lower Floridan aquifer contains more mineralized water. The potentiometric surface of the Upper Floridan aquifer is constantly fluctuating, mainly in response to seasonal variations in rainfall and groundwater withdrawals. The potentiometric surface of the Upper Floridan aquifer in May 2007, which represents the hydrologic conditions near the end of the dry season when water levels generally are near their lowest, ranged from about 79 feet above NGVD 29 in northwestern Highlands County to about 40 feet above NGVD 29 in the southeastern part of the county. The potentiometric surface of the Upper Floridan aquifer in September 2007 was about 3 to 10 feet high
Reese, Ronald S.
2014-01-01
The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.
Inter-aquifer Dynamics in and Near a Confining Unit Window in Shelby County, Tennessee, USA
NASA Astrophysics Data System (ADS)
Gentry, R. W.; McKay, L. D.; Larsen, D.; Carmichael, J. K.; Solomon, D. K.; Thonnard, N.; Anderson, J. L.
2003-12-01
An interdisplinary research team is investigating the interaction between the surficial alluvial aquifer and the deeper confined Memphis aquifer in the Memphis area, Shelby County, Tennessee. Previous research has identified a window in the clay-rich, upper Claiborne confining unit that separates the two aquifers near a closed municipal landfill in east-central Shelby County, an area undergoing rapid urbanization. For this investigation, a combination of environmental tracers (tritium/helium-3), major and trace ion geochemistry, hydraulic response testing, measurement of hydraulic gradients, and groundwater flow modeling is being used to quantify recharge of young water from the alluvial aquifer through the window to the Memphis aquifer. The research will provide results to better understand how windows were formed and how they influence recharge and water quality in otherwise confined parts of the Memphis aquifer downdip of its outcrop/subcrop area. Examination of continuous core samples and geophysical logs from wells installed for the study using Rotasonic drilling methods confirmed the existence of a sand-dominated window that may be as much as 1 km in diameter in the upper Claiborne confining unit. The upper Claiborne confining unit is 15 to 20 m thick in most of the study area and is overlain by a 10 to 12 m thick alluvial aquifer. The window is interpreted to have formed as a result of depositional and incisional processes in an Eocene-age deltaic system. Hydraulic gradients of several feet exist vertically between the alluvial and Memphis aquifers within the window, indicating downward flow. Groundwater age-dates from tritium/helium-3 analyses indicate that groundwater in the window at the depth of the base of the surrounding confining unit (approximately 30 m) has an apparent age of 19.8 years, which confirms the occurrence of downward flow. Young groundwater age dates (less than 32 years) also were obtained from wells in the Memphis aquifer at confined sites downgradient of the window, suggesting that a plume of young water is spreading outwards from the window and mixing with the older Memphis aquifer water. Preliminary inverse modeling of the site using a genetic algorithm coupled with a central finite difference flow model indicates a probable steady-state downward flux of about 12,000 m3/d through the window. Collection and analysis of additional groundwater samples are planned to examine geochemical conditions in the confining unit and in the Memphis aquifer upgradient of the window. These analyses will aid in developing a final conceptual model and in subsequent numerical modeling of mixing of the young recharge water with the older Memphis aquifer water.
The hydrogeologic framework for the southeastern Coastal Plain aquifer system of the United States
Renken, R.A.
1984-01-01
Tertiary and Cretaceous age sand aquifers of the southeastern United States Coastal Plain constitute a distinct multistate hydrogeologic regime informally defined as the southeastern sand aquifer. Seven regional hydrogeologic units are defined; four regional aquifer units and three regional confining beds. Sand aquifers of this system consist of quartzose, feldspathic, and coarse to fine sand and sandstone and minor limestone; confining beds are composed of clay, shale, chalk, and marl. Three hydrogeologic units of Cretaceous to Holocene age overlie the sand system: the surficial aquifer, upper confining unit, and Floridan aquifer system. These three units are not part of the southeastern sand aquifer, but are an integral element of the total hydrogeologic system, and some act as a source of recharge to, or discharge from the underlying clastic sediments. Low-permeability strata of Paleozoic to early Mesozoic age form the base off the total system. (USGS)
Westerman, Drew A.; Gillip, Jonathan A.; Richards, Joseph M.; Hays, Phillip D.; Clark, Brian R.
2016-09-29
A hydrogeologic framework was constructed to represent the altitudes and thicknesses of hydrogeologic units within the Ozark Plateaus aquifer system as part of a regional groundwater-flow model supported by the U.S. Geological Survey Water Availability and Use Science Program. The Ozark Plateaus aquifer system study area is nearly 70,000 square miles and includes parts of Arkansas, Kansas, Missouri, and Oklahoma. Nine hydrogeologic units were selected for delineation within the aquifer system and include the Western Interior Plains confining system, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, which was divided into the upper, middle, and lower Ozark aquifers to better capture the spatial variation in the hydrologic properties, the St. Francois confining unit, the St. Francois aquifer, and the basement confining unit. Geophysical and well-cutting logs, along with lithologic descriptions by well drillers, were compiled and interpreted to create hydrologic altitudes for each unit. The final compiled dataset included more than 23,000 individual altitude points (excluding synthetic points) representing the nine hydrogeologic units within the Ozark Plateaus aquifer system.
Lindgren, Richard J.
2001-01-01
The water withdrawn by pumped wells or discharged to Bear Creek is derived predominantly from areal recharge near the edge of the Decorah-Platteville-Glenwood confining unit (0.47 ft3/s), rather than from water that has leaked downward through the Decorah unit (0.03 ft3/s). Model simulated discharge through springs and seeps in the lower part of the upper carbonate aquifer (0.21 ft3/s) represents a potential source of water to the St. Peter-Prairie du Chien-Jordan aquifer.
Hydrogeologic Framework of Onslow County, North Carolina, 2008
Fine, Jason M.
2008-01-01
The unconsolidated sediments that underlie the Onslow County area are composed of interlayered permeable and impermeable beds, which overlie the crystalline basement rocks. The aquifers, composed mostly of sand and limestone, are separated by confining units composed mostly of clay and silt. The aquifers from top to bottom are the surficial, Castle Hayne, Beaufort, Peedee, Black Creek, and Upper and Lower Cape Fear aquifers. For this study, the Castle Hayne aquifer is informally divided into the upper and lower Castle Hayne aquifers. The eight aquifers and seven confining units of the Tertiary and Cretaceous strata beneath Onslow County are presented in seven hydrogeologic sections. The hydrogeologic framework was refined from existing interpretations by using geophysical logs, driller's logs, and other available data from 123 wells and boreholes.
Torak, Lynn J.; Painter, Jaime A.
2006-01-01
The lower Apalachicola-Chattahoochee-Flint (ACF) River Basin contains about 4,600 square miles of karstic and fluvial plains and nearly 100,000 cubic miles of predominantly karst limestone connected hydraulically to the principal rivers and lakes in the Coastal Plain of southwestern Georgia, northwestern Florida, and southwestern Alabama. Sediments of late-middle Eocene to Holocene in hydraulic connection with lakes, streams, and land surface comprise the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower semiconfining unit and contribute to the exchange of ground water and surface water in the stream-lake-aquifer flow system. Karst processes, hydraulic properties, and stratigraphic relations limit ground-water and surface-water interaction to the following hydrologic units of the stream-lake-aquifer flow system: the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Geologic units corresponding to these hydrologic units are, in ascending order: Lisbon Formation; Clinchfield Sand; Ocala, Marianna, Suwannee, and Tampa Limestones; Hawthorn Group; undifferentiated overburden (residuum); and terrace and undifferentiated (surficial) deposits. Similarities in hydraulic properties and direct or indirect interaction with surface water allow grouping sediments within these geologic units into the aforementioned hydrologic units, which transcend time-stratigraphic classifications and define the geohydrologic framework for the lower ACF River Basin. The low water-transmitting properties of the lower confining unit, principally the Lisbon Formation, allow it to act as a nearly impermeable base to the stream-lake-aquifer flow system. Hydraulic connection of the surficial aquifer system with surface water and the Upper Floridan aquifer is direct where sandy deposits overlie the limestone, or indirect where fluvial deposits overlie clayey limestone residuum. The water level in perched zones within the surficial aquifer system fluctuates independently of water-level changes in the underlying aquifer, adjacent streams, or lakes. Where the surficial aquifer system is connected with surface water and the Upper Floridan aquifer, water-table fluctuations parallel those in adjacent streams or the underlying aquifer. More...
Hinaman, Kurt
2005-01-01
The Powder River Basin in Wyoming and Montana is an important source of energy resources for the United States. Coalbed methane gas is contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. This gas is released when water pressure in coalbeds is lowered, usually by pumping ground water. Issues related to disposal and uses of by-product water from coalbed methane production have developed, in part, due to uncertainties in hydrologic properties. One hydrologic property of primary interest is the amount of water contained in Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, conducted a study to describe the hydrogeologic framework and to estimate ground-water volumes in different facies of Tertiary and upper Cretaceous hydrogeologic units in the Powder River Basin in Wyoming. A geographic information system was used to compile and utilize hydrogeologic maps, to describe the hydrogeologic framework, and to estimate the volume of ground water in Tertiary and upper Cretaceous hydrogeologic units in the Powder River structural basin in Wyoming. Maps of the altitudes of potentiometric surfaces, altitudes of the tops and bottoms of hydrogeologic units, thicknesses of hydrogeologic units, percent sand of hydrogeologic units, and outcrop boundaries for the following hydrogeologic units were used: Tongue River-Wasatch aquifer, Lebo confining unit, Tullock aquifer, Upper Hell Creek confining unit, and the Fox Hills-Lower Hell Creek aquifer. Literature porosity values of 30 percent for sand and 35 percent for non-sand facies were used to calculate the volume of total ground water in each hydrogeologic unit. Literature specific yield values of 26 percent for sand and 10 percent for non-sand facies, and literature specific storage values of 0.0001 ft-1 (1/foot) for sand facies and 0.00001 ft-1 for non-sand facies, were used to calculate a second volume of ground water for each hydrogeologic unit. Significant figure considerations limited estimates of ground-water volumes to two significant digits. A total ground-water volume of 2.0x1014 ft3 (cubic feet) was calculated using porosity values, and a total ground-water volume of 3.6x1013 ft3 was calculated using specific yield and specific storage values. These results are consistent with retention properties, which would have some of the total water being retained in the sediments. Sensitivity analysis shows that the estimates of ground-water volume are most sensitive to porosity. The estimates also are sensitive to confined thickness and saturated thickness. Better spatial information for hydrogeologic units could help refine the ground-water volume estimates.
Using Geophysics to Define Hydrostratigraphic Units in the Edwards and Trinity Aquifers, Texas
NASA Astrophysics Data System (ADS)
Smith, B. D.; Blome, C. D.; Clark, A. K.; Kress, W.; Smith, D. V.
2007-05-01
Airborne and ground geophysical surveys conducted in Uvalde, Medina, and northern Bexar counties, Texas, can be used to define and characterize hydrostratigraphic units of the Edwards and Trinity aquifers. Airborne magnetic surveys have defined numerous Cretaceous intrusive stocks and laccoliths, mainly in Uvalde County, that influence local hydrology and perhaps regional ground-water flow paths. Depositional environments in the aquifers can be classified as shallow water platforms (San Marcos Platform, Edwards Group), shoal and reef facies (Devils River Trend, Devils River Formation), and deeper water basins (Maverick Basin, West Nueces, McKnight, and Salmon Peak Formations). Detailed airborne and ground electromagnetic surveys have been conducted over the Edwards aquifer catchment zone (exposed Trinity aquifer rocks), recharge zone (exposed Edwards aquifer rocks), and artesian zone (confined Edwards) in the Seco Creek area (northeast Uvalde and Medina Counties; Devils River Trend). These geophysical survey data have been used to divide the Edwards exposed within the Balcones fault zone into upper and lower hydrostratigraphic units. Although both units are high electrical resistivity, the upper unit has slightly lower resistivity than the lower unit. The Georgetown Formation, at the top of the Edwards Group has a moderate resistivity. The formations that comprise the upper confining units to the Edwards aquifer rocks have varying resistivities. The Eagleford and Del Rio Groups (mainly clays) have very low resistivities and are excellent electrical marker beds in the Seco Creek area. The Buda Limestone is characterized by high resistivities. Moderate resistivities characterize the Austin Group rocks (mainly chalk). The older Trinity aquifer, underlying the Edwards aquifer rocks, is characterized by less limestone (electrically resistive or low conductivity units) and greater quantities of mudstones (electrically conductive or low resistivity units). In the western area (Devils River Trend and Maverick Basin) of the Trinity aquifer system there are well-defined collapse units and features that are marked by moderate resistivities bracketed by resistive limestone and conductive mudstone of the Glen Rose Limestone. In the central part of the aquifer (San Marcos Platform) the Trinity's lithologies are divided into upper and lower units with further subdivisions into hydrostratigraphic units. These hydrostratigraphic units are well mapped by an airborne electromagnetic survey in Bexar County. Electrical properties of the Edwards aquifer also vary across the fresh-saline water interface where ground and borehole electrical surveys have been conducted. The saline- saturated Edwards is predictably more conductive than the fresh-water saturated rocks. Similar fresh-saline water interfaces exist within the upper confining units of the Edwards aquifer (Carrizo-Wilcox aquifer) and the Trinity aquifer rocks.
Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.
2006-01-01
Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples from 900 ft or less below land surface, although mineralized, were fresh, not brackish. Sodium concentrations ranged from 51.3 to 513 mg/L, with the maximum concentration found at 882 ft below land surface in the composite confining unit below the aquifer. Chloride concentrations ranged from 46.4 to 757 mg/L, with the maximum concentration found at 596 ft below land surface in the 'lower' confining unit, and were higher than those in pore water from the same units at Atlantic City, N.J. Concentrations of chloride in the composite confining unit below the aquifer were consistently greater than 250 mg/L, indicating that the confining unit can be a source of chloride at depth. Of the major anions, sulfate was the constituent whose concentration varied most, ranging from 42 to 799 mg/L. The maximum concentration was found at 406 ft below land surface, in the upper part of the confining unit overlying the aquifer and the Rio Grande water-bearing zone (termed the 'upper' confining unit). Sulfide was not detected in any pore-water sample despite the presence of abundant quantities of sulfate and sulfide in the aquifer. The absence of sulfide in the pore waters is consistent with the hypothesis that sulfate is reduced in the aquifer. The presence of arsenic, at concentrations ranging from 0.0062 to 0.0374 mg/L, is consistent with the absence of sulfide and the possible presence of iron in the pore water.
Harlow, G.E.; Bell, C.F.
1996-01-01
Lithologic and geophysical logs of boreholes at 29 sites show that the hydrogeologic framework of the Mainside of the Naval Surface Warfare Center, Dahlgren Site at Dahlgren, Virginia, consists of un-consolidated sedimentary deposits of gravel, sand, silt, and clay. The upper 220 feet of these sediments are divided into five hydrogeologic units, including the (1) Columbia (water-table) aquifer, (2) upper confining unit, (3) upper confined aquifer, (4) Nanjemoy-Marlboro confining unit, and (5) Aquia aquifer. The Columbia aquifer in the study area is a local system that is not affected by regional pumping. Ground-water recharge occurs at topographic highs in the northern part of the Mainside, and ground-water discharge occurs at topographic lows associated with adjacent surface-water bodies. Regionally, the direction of ground-water flow in the upper confined and Aquia aquifers is toward the southwest and southeast, respectively. A downward hydraulic gradient exists between the aquifers in the shallow system, and stresses on the Aquia aquifer are indicated by heads that range between 2 and 12 feet below sea level. The ratio of median horizontal hydraulic conductivity of the Columbia aquifer to median vertical hydraulic con-ductivity of the upper confining unit, however, is approximately 2,600:1; therefore, under natural- flow conditions, most water in the Columbia aquifer probably discharges to adjacent surface- water bodies. The composition and distribution of major ions vary in the Columbia aquifer. In general, water samples from wells located along the inland perimeter roads of the study area have chloride or a combination of chloride and sulfate as the dominant anions, and water samples from wells located in the interior of the study area have bicarbonate or a combination of bicarbonate and sulfate as the dominant anions. Sodium and calcium were the dominant cations in most samples. Dissolved solids and four inorganic constituents are present in water from the Columbia aquifer at concentrations that exceed the secondary maximum contaminant levels (SMCL's) for drinking water established by the U.S. Environmental Protection Agency. Concentration of dissolved solids exceed the SMCL of 500 milligrams per liter in 3 of 29 samples from the Columbia aquifer. An elevated concentration of sodium is present in one water sample, and elevated concentrations of chloride are present in two water samples. Concentrations of dissolved iron and manga-nese exceed the SMCL in 10 and 17 of 29 water samples, respectively, and are the most extensive water-quality problem with regard to inorganic constituents in the Columbia aquifer.
Landon, Matthew K.; Clark, Brian R.; McMahon, Peter B.; McGuire, Virginia L.; Turco, Michael J.
2008-01-01
In 2001, the U.S. Geological Survey, as part of the National Water Quality Assessment (NAWQA) Program, initiated a topical study of Transport of Anthropogenic and Natural Contaminants (TANC) to PSW (public-supply wells). Local-scale and regional-scale TANC study areas were delineated within selected NAWQA study units for intensive study of processes effecting transport of contaminants to PSWs. This report describes results from a local-scale TANC study area at York, Nebraska, within the High Plains aquifer, including the hydrogeology and geochemistry of a 108-square-kilometer study area that contains the zone of contribution to a PSW selected for study (study PSW), and describes factors controlling the transport of selected anthropogenic and natural contaminants to PSWs. Within the local-scale TANC study area, the High Plains aquifer is approximately 75 m (meter) thick, and includes an unconfined aquifer, an upper confining unit, an upper confined aquifer, and a lower confining unit with lower confined sand lenses (units below the upper confining unit are referred to as confined aquifers) in unconsolidated alluvial and glacial deposits overlain by loess and underlain by Cretaceous shale. From northwest to southeast, land use in the local-scale TANC study area changes from predominantly irrigated agricultural land to residential and commercial land in the small community of York (population approximately 8,100). For the purposes of comparing water chemistry, wells were classified by degree of aquifer confinement (unconfined and confined), depth in the unconfined aquifer (shallow and deep), land use (urban and agricultural), and extent of mixing in wells in the confined aquifer with water from the unconfined aquifer (mixed and unmixed). Oxygen (delta 18O) and hydrogen (delta D) stable isotopic values indicated a clear isotopic contrast between shallow wells in the unconfined aquifer (hereinafter, unconfined shallow wells) and most monitoring wells in the confined aquifers (hereinafter, confined unmixed wells). Delta 18O and delta D values for a minority of wells in the confined aquifers were intermediate between those for the unconfined shallow wells and those for the confined unmixed wells. These intermediate values were consistent with mixing of water from unconfined and confined aquifers (hereinafter, confined mixed wells). Oxidation-reduction conditions were primarily oxic in the unconfined aquifer and variably reducing in the confined aquifers. Trace amounts of volatile organic compounds (VOC), particularly tetrachloroethylene (PCE) and trichloroethylene (TCE), were widely detected in unconfined shallow urban wells and indicated the presence of young urban recharge waters in most confined mixed wells. The presence of degradation products of agricultural pesticides (acetochlor and alachlor) in some confined mixed wells suggests that some fraction of the water in these wells also was the result of recharge in agricultural areas. In the unconfined aquifer, age-tracer data (chlorofluorocarbon and sulfur hexafluoride data, and tritium to helium-3 ratios) fit a piston-flow model, with apparent recharge ages ranging from 7 to 48 years and generally increasing with depth. Age-tracer data for the confined aquifers were consistent with mixing of 'old' water, not containing modern tracers recharged in the last 60 years, and exponentially-mixed 'young' water with modern tracers. Confined unmixed wells contained less than (=) 97% of old water. Confined mixed wells contained >30% young water and mean ages ranged from 12 to 14 years. Median concentrations of nitrate (as nitrogen, hereinafter, nitrate-N) were 17.3 and 16.0 mg/L (milligram per liter) in unconfined shallow urban and agricultural wells, respectively, indicating a range of likely nitrate sources. Septic systems are most numerous near the edge of the urban area and appear to be
Robinson, James L.; Carmichael, John K.; Halford, Keith J.; Ladd, David E.
1997-01-01
Naval Support Activity (NSA) Memphis is a Department of the Navy facility located at the City of Millington, Tennessee, about 5 miles north of Memphis. Contaminants have been detected in surface-water, sediment, and ground-water samples collected at the facility. As part of the Installation Restoration Program, the Navy is considering remedial-action options to prevent or lessen the effect of ground-water contamination at the facility and to control the movement and discharge of contaminants. A numerical model of the ground-water-flow system in the area of NSA Memphis was constructed and calibrated so that quantifiable estimates could be made of ground-water-flow rates, direction, and time-of-travel. The sediments beneath NSA Memphis, to a depth of about 200 feet, form a shallow aquifer system. From youngest to oldest, the stratigraphic units that form the shallow aquifer system are alluvium, loess, fluvial deposits, and the Cockfield and Cook Mountain Formations. The shallow aquifer system is organized into five hydrogeologic units: (1) a confining unit composed of the relatively low permeability sediments of the upper alluvium and the loess; (2) the A1 aquifer comprising sand and gravel of the lower alluvium and the fluvial deposits, and sand lenses in the upper part of the preserved section of the Cockfield Formation; (3) a confining unit composed of clay and silt within the upper part of the Cockfield Formation; (4) the Cockfield aquifer comprising sand lenses within the lower part of the preserved section of the Cockfield Formation; and (5) a confining unit formed by low permeability sediments of the Cook Mountain Formation that composes the upper confining unit for the Memphis aquifer. Thicknesses of individual units vary considerably across the facility. Structural and depositional features that affect the occurrence of ground water in the shallow aquifer system include faulting, an erosional scarp, and 'windows' in the confining units. Underlying the shallow aquifer system is the Memphis aquifer, the primary source of water for NSA Memphis and the City of Memphis, Tennessee. Analyses of sediment cores, aquifer and well specific-capacity tests, and numerical modeling were used to estimate the hydraulic characteristics of units of the shallow aquifer system. The vertical hydraulic conductivity of core samples of the alluvium-loess confining unit ranged from about 8.5 x 10-5 to 1.6 x 10-2 feet per day, and the total porosity of the samples ranged from about 35 to 48 percent. The results of the aquifer test were used to estimate a horizontal hydraulic conductivity of about 5 feet per day for the alluvial-fluvial deposits aquifer. The total porosity of core samples of the alluvial-fluvial deposits aquifer ranged from about 22 to 39 percent. The vertical hydraulic conductivity of core samples of the Cockfield confining unit ranged from about 4.5 x 10-5 to 2.5 x 10-3 feet per day, and the total porosity ranged from about 41 to 55 percent. Well specific-capacity tests indicate that the horizontal hydraulic conductivity of sand units that compose the Cockfield aquifer range from about 0.5 to 3 feet per day. The vertical hydraulic conductivity of core samples of the Cook Mountain confining unit ranged from about 5.0 x 10-6 to 9.9 x 10-4 feet per day. Total porosity of core samples of the Cook Mountain confining unit ranged from about 30 to 42 percent. Ground-water flow and time-of-travel in the shallow aquifer system were simulated using the MODFLOW finite-difference model and the -particle-tracking program MODPATH. A three-layer, steady-state model of the shallow aquifer system was constructed and calibrated to the potentiometric surface of the A1 aquifer. Results of numerical modeling support the proposed conceptual hydrogeologic model of the shallow aquifer system. Ground-water time-of-travel in the A1 aquifer was simulated using an assumed effective porosity of 25 percent. Typical ground-water-flow velocities were on the or
Geldon, Arthur L.
2003-01-01
The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer system and the overlying Canyonlands aquifer. Composed of the uppermost Paleozoic rocks, the Canyonlands aquifer consists, in ascending order, of the Cutler-Maroon, Weber-De Chelly, and Park City-State Bridge zones. The Paleozoic rocks are underlain by a basal confining unit consisting of Precambrian sedimentary, igneous, and metamorphic rocks and overlain throughout most of the Upper Colorado River Basin by the Chinle-Moenkopi confining unit, which consists of Triassic formations composed mostly of shale. The largest values of porosity, permeability, hydraulic conductivity, transmissivity, and artesian yield are exhibited by the Redwall-Leadville zone of the Madison aquifer and the Weber-De Chelly zone of the Canyonlands aquifer. The former consists almost entirely of Devonian and Mississippian carbonate rocks: the latter consists mostly of Pennsylvanian and Permian quartz sandstone. Unit-averaged porosity in hydrogeologic units composed of Paleozoic rocks ranges from less than 1 to 28 percent. Permeability ranges from less than 0.0001 to 3,460 millidarcies. Unit-averaged hydraulic conductivity ranges from 0.000005 to 200 feet per day. The composite transmissivity of Paleozoic rocks ranges from 0.0005 to 47,000 feet squared per day. Artesian yields to wells and springs (excluding atypical springflows) from these hydrogeologic units range from less than 1 to 10,000 gallons per minute. The permeability and watersupply capabilities of all hydrogeologic units progressively decrease from uplifted areas to structural basins. Recharge to the Paleozoic rocks is provided by direct infiltration of precipitation, leakage from streams, and ground-water inflows from structurally continuous areas west and north of the Upper Colorado River Basin. The total recharge available flom ground-water systems in the basin from direct precipitation and stream leakage is estimated to be 6,600,000 acre-feet per year. However, little of this recharge directly enters the Paleozoic rocks
Cost and Performance Report of Electrical Resistance Heating (ERH) for Source Treatment. Addendum
2008-09-29
and clay. The Upper Cretaceous Severn, Matawan, and Magothy Formations underlie the Brightseat Formation. The groundwater table at the site is...Table 1, the aquifers include, in descending order, the Aquia, the Monmouth, the Magothy , the Upper and Lower Patapsco and the Patuxent. The... Magothy Magothy Aquifer Sand, light-gray to white, with interbedded thin layers of organic clay. _-300(1) Confining Unit _-360(1) Upper Patapsco
Eimers, J.L.; Daniel, C. C.; Coble, R.W.
1994-01-01
Geophysical and lithologic well-log data from 30 wells and chloride data, and water-level data from oil-test wells, supply wells, and observation wells were evaluated to define the hydrogeologic framework at the U.S. Marine Corps Air Station, Cherry Point, North Carolina. Elements of the hydrogeologic framework important to this study include six aquifers and their respective confining units. In descending order, these aquifers are the surficial, Yorktown, Pungo River, upper and lower Castle Hayne, and Beaufort. The upper and lower Castle Hayne and Beaufort aquifers and related confining units are relatively continuous throughout the study area. The surficial, Yorktown, Pungo River, and upper and lower Castle Hayne aquifers contain freshwater. The upper and lower Castle Hayne aquifers serve as the Air Station?s principal supply of freshwater. However, the lower Castle Hayne aquifer contains brackish water near its base and there is potential for upward movement of this water to supply wells completed in this aquifer. The potential for brackish-water encroachment is greatest if wells are screened too deep in the lower Castle Hayne aquifer or if pumping rates are too high. Lateral movement of brackish water into aquifers incised by estuarine streams is also possible if ground-water flow gradients toward these bodies are reversed by pumping. The potential for the reversed movement of water from the surficial aquifer downward to the water-supply aquifer is greatest in areas where clay confining units are missing. These missing clay units could indicate the presence of a paleochannel of the Neuse River. A quasi three-dimensional finite-difference ground-water flow model was constructed and calibrated to simulate conditions at and in the vicinity of the Air Station for the period of 1987-90. Comparisons of 94 observed and computed heads were made, and the average difference between them is -0.2 feet with a root mean square error of 5.7 feet. An analysis was made to evaluate the sensitivity of the model to the absence of the Yorktown and Pungo River confining units in a 1-square-mile area in the southern part of the Air Station. This analysis resulted in a maximum simulated head increase of 2 feet in one 0.11-square-mile model cell in the Pungo River aquifer.
Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, Georgia
Gonthier, Gerard
2011-01-01
Flowmeter surveys at the study site indicate several permeable zones within the Floridan aquifer system. The Upper Floridan aquifer is composed of two water-bearing zones-the upper zone and the lower zone. The upper zone extends from 520 to 650 feet below land surface, contributes 96 percent of the total flow, and is more permeable than the lower zone, which extends from 650 to 705 feet below land surface and contributes the remaining 4 percent of the flow. The Lower Floridan aquifer consists of three zones at depths of 912-947, 1,090-1,139, and 1,211-1,250 feet below land surface that are inter-layered with three less-permeable zones. The Lower Floridan confining unit includes a permeable zone that extends from 793 to 822 feet below land surface. Horizontal hydraulic conductivity values of the Lower Floridan confining unit derived from slug tests within four packer-isolated intervals were from 2 to 20 feet per day, with a high value of 70 feet per day obtained for one of the intervals. Aquifer testing, using analytical techniques and model simulation, indicated the Upper Floridan aquifer had a transmissivity of about 100,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 7,000 feet squared per day. Flowmeter surveys, slug tests within packer-isolated intervals, and parameter-estimation results indicate that the hydraulic properties of the Lower Floridan confining unit are similar to those of the Lower Floridan aquifer. Water-level data, for each aquifer test, were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small water-level responses to aquifer-test pumping of less than 1 foot. During a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response of 0.3 to 0.4 foot was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.
Deep resistivity structure of Yucca Flat, Nevada Test Site, Nevada
Asch, Theodore H.; Rodriguez, Brian D.; Sampson, Jay A.; Wallin, Erin L.; Williams, Jackie M.
2006-01-01
The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian - Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.
Sprinkle, Craig L.
1982-01-01
INTRODUCTION The tertiary limestone aquifer system of the southeastern United States is a sequence of carbonate rocks referred to as the Floridan aquifer in Florida and the principal artesian aquifer in Georgia, Alabama, and South Carolina. More than 3 billion gallons of water are pumped daily from the limestone aquifer; and the system is the principal source of municipal, industrial, and agricultural water supply in south Georgia and most of Florida. The aquifer system includes units of Paleocene to early Miocene age that combine to form a continuous carbonate sequence that is hydraulically connected in varying degrees. In a small area near Brunswick, Ga., a thin sequence of rocks of Late Cretaceous age is part of the system. In and directly downdip from much of the outcrop area, the system consists of one continuous permeable unit. Further downdip the aquifer system generally consists of two major permeable zones separated by a less-permeable unit of highly variable hydraulic properties (very leaky to virtually nonleaky). Conditions for the system vary from unconfined to confined depending upon whether the argillaceous Miocene and younger rocks that form the upper confining unit have been removed by erosion. This report is one of a series of preliminary products depicting the hydrogeologic framework, water chemistry, and hydrology of the aquifer system. The map shows the distribution of chloride ions in water from the upper permeable zone of the limestone aquifer system. The upper permeable zone consists of several formations, primarily the Tampa, Suwannee, Ocala, and Avon Park Limestones (Miller 1981a, b). Chloride concentrations of water within the upper permeable zone vary from nearly zero in recharge areas to many thousands of milligrams per liter (mg/L) in coastal discharge areas. Where the aquifer system discharges into the sea, the upper permeable zone contains increasing amounts of seawater. In these areas, wells that fully penetrate the upper permeable zone will yield water with chloride concentrations that approach that of seawater, about 19500 mg/L.
Clarke, John S.; Leeth, David C.; Taylor-Harris, DaVette; Painter, Jaime A.; Labowski, James L.
2005-01-01
Hydraulic-property data for the Floridan aquifer system and equivalent clastic sediments in a 67-county area of coastal Georgia and adjacent parts of South Carolina and Florida were evaluated to provide data necessary for development of ground-water flow and solute-transport models. Data include transmissivity at 324 wells, storage coefficient at 115 wells, and vertical hydraulic conductivity of 72 core samples from 27 sites. Hydraulic properties of the Upper Floridan aquifer vary greatly in the study area due to the heterogeneity (and locally to anisotropy) of the aquifer and to variations in the degree of confinement provided by confining units. Prominent structural features in the areathe Southeast Georgia Embayment, the Beaufort Arch, and the Gulf Troughinfluence the thickness and hydraulic properties of the sediments comprising the Floridan aquifer system. Transmissivity of the Upper Floridan aquifer and equivalent updip units was compiled for 239 wells and ranges from 530 feet squared per day (ft2/d) at Beaufort County, South Carolina, to 600,000 ft2/d in Coffee County, Georgia. In carbonate rock settings of the lower Coastal Plain, transmissivity of the Upper Floridan aquifer generally is greater than 20,000 ft2/d, with values exceeding 100,000 ft2/d in the southeastern and southwestern parts of the study area (generally coinciding with the area of greatest aquifer thickness). Transmissivity of the Upper Floridan aquifer generally is less than 10,000 ft2/d in and near the upper Coastal Plain, where the aquifer is thin and consists largely of clastic sediments, and in the vicinity of the Gulf Trough, where the aquifer consists of low permeability rocks and sediments. Large variability in the range of transmissivity in Camden and Glynn Counties, Georgia, and Nassau County, Florida, demonstrates the anisotropic distribution of hydraulic properties that may result from fractures or solution openings in the carbonate rocks. Storage coefficient of the Upper Floridan aquifer was compiled for 106 wells and ranges from about 0.00004 at Beaufort County, South Carolina, to 0.04 in Baker County, Florida. Transmissivity of the Lower Floridan aquifer and equivalent updip clastic units was compiled for 53 wells and ranges from about 170 ft2/d in Barnwell County, South Carolina, to about 43,000 ft2/d in Camden County, Georgia. Transmissivity of the Lower Floridan aquifer is greatest where the aquifer is thickest in southeastern Georgia and northeastern Floridawhere estimates are greater than 10,000 ft2/d; at one well in southeastern Georgia transmissivity was estimated to be as high as 200,000 ft2/d. Storage-coefficient data for the Lower Floridan aquifer are limited to three estimates in Barnwell and Allendale Counties, South Carolina, and to estimates determined from six multi-aquifer tests in Duval County, Florida. In the South Carolina tests, storage coefficient ranges from 0.0003 to 0.0004; this range is indicative of a confined aquifer. The storage coefficient for the combined Upper and Lower Floridan wells in Duval County, Florida, ranges from 0.00002 to 0.02. Vertical hydraulic conductivity was compiled from core samples collected at 27 sites. For the Upper Floridan confining unit, values from 39 core samples at 17 sites range from 0.0002 to 3 feet per day (ft/d). For the Lower Floridan confining unit, values from 10 core samples at 9 sites range from about 0.000004 to 0.16 ft/d. Vertical hydraulic conductivity of the Upper Floridan aquifer was compiled from 16 core samples at five sites, mostly in the Brunswick, Georgia, area and values range from 0.00134 to 160.4 ft/d. Vertical hydraulic conductivity for the semiconfining unit separating the upper and lower water-bearing zones of the Upper Floridan at Brunswick, Georgia, compiled from 6 core samples at three sites ranges from 0.000008 to 0.000134 ft/d. The vertical hydraulic conductivity of the Lower Floridan aquifer in a core sample from a well at Brunswick, G
Banks, W.S.; Smith, B.S.; Donnelly, C.A.
1996-01-01
The U.S. Army disposed chemical agents, laboratory materials, and unexploded ordnance at O-Field in the Edgewood area of Aberdeen Proving Ground, Maryland, from before World War II until at least the 1950's. Soil, ground water, surface water,and wetland sediments in the O-Field area were contaminated from the disposal activity. A ground-water-flow model of the O-Field area was constructed by the U.S. Geological Survey (USGS) in 1989 to simulate flow in the central and southern part of the Gunpowder Neck. The USGS began an additional study of the contamination in the O-Field area in cooperation with the U.S. Army in 1990 to (1) further define the hydrogeologic framework of the O-Field area, (2) characterize the hydraulic properties of the aquifers and confining units, and (3) define ground-water flow paths at O-Field based on the current data and simulations of ground-water flow. A water-table aquifer, an upper confining unit, and an upper confined aquifer comprise the shallow ground-water aquifer system of the O-Field area. A lower confining unit, through which ground-water movement is negligible, is considered a lower boundary to the shallow aquifer system. These units are all part of the Pleistocene Talbot Formation. The model developed in the previous study was redesigned using the data collected during this study and emphasized New O-Field. The current steady-state model was calibrated to water levels of June 1993. The rate of ground-water flow calculated by the model was approximately 0.48 feet per day (ft/d) and the rate determined from chlorofluorocarbon dates was approximately 0.39 ft/d.
Williams, Lester J.
2010-01-01
A 1,168-foot deep test well was completed at Hunter Army Airfield in the summer of 2009 to investigate the potential of using the Lower Floridan aquifer as a source of water supply to satisfy increased needs as a result of base expansion and increased troop levels. The U.S. Geological Survey conducted hydrologic testing at the test site including flowmeter surveys, packer-slug tests, and aquifer tests of the Upper and Lower Floridan aquifers. Flowmeter surveys were completed at different stages of well construction to determine the depth and yield of water-bearing zones and to identify confining beds that separate the main producing aquifers. During a survey when the borehole was open to both the upper and lower aquifers, five water-bearing zones in the Upper Floridan aquifer supplied 83.5 percent of the total pumpage, and five water-bearing zones in the Lower Floridan aquifer supplied the remaining 16.5 percent. An upward gradient was indicated from the ambient flowmeter survey: 7.6 gallons per minute of groundwater was detected entering the borehole between 750 and 1,069 feet below land surface, then moved upward, and exited the borehole into lower-head zones between 333 and 527 feet below land surface. During a survey of the completed Lower Floridan well, six distinct water-producing zones were identified; one 17-foot-thick zone at 768-785 feet below land surface yielded 47.9 percent of the total pumpage while the remaining five zones yielded between 2 and 15 percent each. The thickness and hydrologic properties of the confining unit separating the Upper and Lower Floridan aquifers were determined from packer tests and flowmeter surveys. This confining unit, which is composed of rocks of Middle Eocene age, is approximately 160 feet thick with horizontal hydraulic conductivities determined from four slug tests to range from 0.2 to 3 feet per day. Results of two separate slug tests within the middle confining unit were both 2 feet per day. Aquifer testing indicated the Upper Floridan aquifer had a transmissivity of 40,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 10,000 feet squared per day. An aquifer test conducted on the combined aquifer system, when the test well was open from 333 to 1,112 feet, gave a transmissivity of 50,000 feet squared per day. Additionally, during the 72-hour test of the Lower Floridan aquifer, a drawdown response was observed in the Upper Floridan aquifer wells.
Amphibious Ready Group/Marine Expeditionary Unit Readiness Training Final Environmental Assessment
2003-04-11
above and below by the Pensacola Clay confining bed. This clay layer restricts the downward migration of pollutants and restricts saline water from...separates the Upper and Lower Limestone units. Because it is saline , the Lower Limestone unit is not used as a water source (U.S. Air Force, 1995...and a freshwater species, Ruppia maritima (widgeon grass). Widgeon grass is most common in brackish waters but can tolerate higher salinities
Tectonic signatures on active margins
NASA Astrophysics Data System (ADS)
Hogarth, Leah Jolynn
High-resolution Compressed High-Intensity Radar Pulse (CHIRP) surveys offshore of La Jolla in southern California and the Eel River in northern California provide the opportunity to investigate the role of tectonics in the formation of stratigraphic architecture and margin morphology. Both study sites are characterized by shore-parallel tectonic deformation, which is largely observed in the structure of the prominent angular unconformity interpreted as the transgressive surface. Based on stratal geometry and acoustic character, we identify three sedimentary sequences offshore of La Jolla: an acoustically laminated estuarine unit deposited during early transgression, an infilling or "healing-phase" unit formed during the transgression, and an upper transparent unit. The estuarine unit is confined to the canyon edges in what may have been embayments during the last sea-level rise. The healing-phase unit appears to infill rough areas on the transgressive surface that may be related to relict fault structures. The upper transparent unit is largely controlled by long-wavelength tectonic deformation due to the Rose Canyon Fault. This unit is also characterized by a mid-shelf (˜40 m water depth) thickness high, which is likely a result of hydrodynamic forces and sediment grain size. On the Eel margin, we observe three distinct facies: a seaward-thinning unit truncated by the transgressive surface, a healing-phase unit confined to the edges of a broad structural high, and a highly laminated upper unit. The seaward-thinning wedge of sediment below the transgressive surface is marked by a number of channels that we interpret as distributary channels based on their morphology. Regional divergence of the sequence boundary and transgressive surface with up to ˜8 m of sediment preserved across the interfluves suggests the formation of subaerial accommodation during the lowstand. The healing-phase, much like that in southern California, appears to infill rough areas in the transgressive surface. Reflectors within the laminated upper unit exhibit divergence towards the Eel River Syncline, which suggests that deposition in the syncline is syntectonic. The transgressive surface is offset across the Eureka Anticline indicating deformation has occurred since ˜10 ka. The relief observed along the transgressive surface is consistent with deformation rates measured onshore.
Well characteristics influencing arsenic concentrations in ground water.
Erickson, Melinda L; Barnes, Randal J
2005-10-01
Naturally occurring arsenic contamination is common in ground water in the upper Midwest. Arsenic is most likely to be present in glacial drift and shallow bedrock wells that lie within the footprint of northwest provenance Late Wisconsinan glacial drift. Elevated arsenic is more common in domestic wells and in monitoring wells than it is in public water system wells. Arsenic contamination is also more prevalent in domestic wells with short screens set in proximity to an upper confining unit, such as glacial till. Public water system wells have distinctly different well-construction practices and well characteristics when compared to domestic and monitoring wells. Construction practices such as exploiting a thick, coarse aquifer and installing a long well screen yield good water quantity for public water system wells. Coincidentally, these construction practices also often yield low arsenic water. Coarse aquifer materials have less surface area for adsorbing arsenic, and thus less arsenic available for potential mobilization. Wells with long screens set at a distance from an upper confining unit are at lower risk of exposure to geochemical conditions conducive to arsenic mobilization via reductive mechanisms such as reductive dissolution of metal hydroxides and reductive desorption of arsenic.
Stamm, John F.; McBride, W. Scott
2016-12-21
Discharge from springs in Florida is sourced from aquifers, such as the Upper Floridan aquifer, which is overlain by an upper confining unit that locally can have properties of an aquifer. Water levels in aquifers are affected by several factors, such as precipitation, recharge, and groundwater withdrawals, which in turn can affect discharge from springs. Therefore, identifying groundwater sources and recharge characteristics can be important in assessing how these factors might affect flows and water levels in springs and can be informative in broader applications such as groundwater modeling. Recharge characteristics include the residence time of water at the surface, apparent age of recharge, and recharge water temperature.The groundwater sources and recharge characteristics of three springs that discharge from the banks of the Suwannee River in northern Florida were assessed for this study: Bell Springs, White Springs, and Suwannee Springs. Sources of groundwater were also assessed for a 150-foot-deep well finished within the Upper Floridan aquifer, hereafter referred to as the UFA well. Water samples were collected for geochemical analyses in November 2012 and October 2013 from the three springs and the UFA well. Samples were analyzed for a suite of major ions, dissolved gases, and isotopes of sulfur, strontium, oxygen, and hydrogen. Daily means of water level and specific conductance at White Springs were continuously recorded from October 2012 through December 2013 by the Suwannee River Water Management District. Suwannee River stage at White Springs was computed on the basis of stage at a U.S. Geological Survey streamgage about 2.4 miles upstream. Water levels in two wells, located about 2.5 miles northwest and 13 miles southeast of White Springs, were also used in the analyses.Major ion concentrations were used to differentiate water from the springs and Upper Floridan aquifer into three groups: Bell Springs, UFA well, and White and Suwannee Springs. When considered together, evidence from water-level, specific conductance, major-ion concentration, and isotope data indicated that groundwater at Bell Springs and the UFA well was a mixture of surface water and groundwater from the upper confining unit, and that groundwater at White and Suwannee Springs was a mixture of surface water, groundwater from the upper confining unit, and groundwater from the Upper Floridan aquifer. Higher concentrations of magnesium in groundwater samples at the UFA well than in samples at Bell Springs might indicate less mixing with surface water at the UFA well than at Bell Springs. Characteristics of surface-water recharge, such as residence time at the surface, apparent age, and recharge water temperature, were estimated on the basis of isotopic ratios, and dissolved concentrations of gases such as argon, tritium, and sulfur hexafluoride. Oxygen and deuterium isotopic ratios were consistent with rapid recharge by rainwater for samples collected in 2012, and longer residence time at the surface (ponding) for samples collected in 2013. Apparent ages of groundwater samples, computed on the basis of tritium activity and sulfur hexafluoride concentration, indicated groundwater recharge occurred after the late 1980s; however, the estimated apparent ages likely represent the average of ages of multiple sources. Recharge since the 1980s is consistent with groundwater from shallow sources, such as the upper confining unit and Upper Floridan aquifer. Recharge water temperature computed for the three springs and UFA well averaged 20.1 degrees Celsius, which is similar to the mean annual air temperature of 20.6 degrees Celsius at a nearby weather station for 1960–2014.
Potentiometric surface of the upper Floridan aquifer, west-central Florida, May 2011
Ortiz, Anita G.
2011-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2011. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when groundwater levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 45.74 inches for west-central Florida (from June 2010 through May 2011) was 6.85 inches below the historical cumulative average of 52.59 inches (Southwest Florida Water Management District, 2011). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September from 1975 through 2010. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 23-27, 2011. Supplemental water-level data were collected by other agencies and companies. Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a "snapshot" of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition.
Potentiometric Surface of the Upper Floridan Aquifer, West-central Florida, May 2010
Ortiz, A.G.
2010-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2010. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when groundwater levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 55.21 inches for west-central Florida (from June 2009 through May 2010) was 2.55 inches above the historical cumulative average of 52.66 inches (Southwest Florida Water Management District, 2010). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 17-21, 2010. Supplemental water-level data were collected by other agencies and companies. Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition.
Tenbus, F.J.; Phillips, S.W.
1996-01-01
Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.
Kahle, Sue C.; Taylor, William A.; Lin, Sonja; Sumioka, Steven S.; Olsen, Theresa D.
2010-01-01
A study of the water resources of the unconsolidated groundwater system of the Chamokane Creek basin was conducted to determine the hydrogeologic framework, interactions of shallow and deep parts of the groundwater system with each other and the surface-water system, changes in land use and land cover, and water-use estimates. Chamokane Creek basin is a 179 mi2 area that borders and partially overlaps the Spokane Indian Reservation in southern Stevens County in northeastern Washington State. Aquifers within the Chamokane Creek basin are part of a sequence of glaciofluvial and glaciolacustrine sediment that may reach total thicknesses of about 600 ft. In 1979, most of the water rights in the Chamokane Creek basin were adjudicated by the United States District Court requiring regulation in favor of the Spokane Tribe of Indians' senior water right. The Spokane Tribe, the State of Washington, and the United States are concerned about the effects of additional groundwater development within the basin on Chamokane Creek. Information provided by this study will be used to evaluate the effects of potential increases in groundwater withdrawals on groundwater and surface-water resources within the basin. The hydrogeologic framework consists of six hydrogeologic units: The Upper outwash aquifer, the Landslide Unit, the Valley Confining Unit, the Lower Aquifer, the Basalt Unit, and the Bedrock Unit. The Upper outwash aquifer occurs along the valley floors of the study area and consists of sand, gravel, cobbles, boulders, with minor silt and (or) clay interbeds in places. The Lower aquifer is a confined aquifer consisting of sand and gravel that occurs at depth below the Valley confining unit. Median horizontal hydraulic conductivity values for the Upper outwash aquifer, Valley confining unit, Lower aquifer, and Basalt unit were estimated to be 540, 10, 19, and 3.7 ft/d, respectively. Many low-flow stream discharge measurements at sites on Chamokane Creek and its tributaries were at or near zero flow. The most notable exception is where Chamokane Creek is supported by discharge of large springs from the Upper outwash aquifer in the southern part of the basin. Most high-flow measurements indicated gains in streamflow (groundwater discharging to the stream). Large streamflow losses, however, were recorded near the north end of Walkers Prairie where streamflow directly recharges the Upper outwash aquifer. The similarity in seasonal water-level fluctuations in the Upper outwash aquifer and the Lower aquifer indicate that these systems may be fairly well connected. Land use and land cover change analysis indicates that Chamokane Creek basin has been dominated by forests with some pasture and agricultural lands with sparse residential development from the 1980s to present. Loss in forest cover represents the largest change in land cover in the basin between 1987 and 2009. This appears to be mostly due to forestry activities, especially in the northern part of the basin. Since 1987, more than 18,000 acres of evergreen forest have been logged and are at various stages of regrowth. Estimated average annual total groundwater pumpage in the basin increased from 224 million gallons per year (Mgal/yr) in 1980 to 1,330 Mgal/yr in 2007. The largest withdrawals during 2007 were to supply two fish hatcheries, with a combined total annual pumpage of about 1,150 Mgal. Annual groundwater pumpage values from 1980 through 2007 for the study area ranged from 21.1 to 28.9 Mgal/yr for domestic wells and 0.38 to 23.7 Mgal/yr for public supply. An approximate water budget for a typical year in the Chamokane Creek basin indicates that 19.6 in. of precipitation are balanced by 4.7 in. of streamflow discharge from the basin, and 14.9 in. of evapotranspiration.
Kahle, Sue C.; Olsen, Theresa D.; Fasser, Elisabeth T.
2013-01-01
A study of the hydrogeologic framework of the Little Spokane River Basin was conducted to identify and describe the principal hydrogeologic units in the study area, their hydraulic characteristics, and general directions of groundwater movement. The Little Spokane River Basin includes an area of 679 square miles in northeastern Washington State covering parts of Spokane, Stevens, and Pend Oreille Counties. The groundwater system consists of unconsolidated sedimentary deposits and isolated, remnant basalt layers overlying crystalline bedrock. In 1976, a water resources program for the Little Spokane River was adopted into rule by the State of Washington, setting instream flows for the river and closing its tributaries to further uses. Spokane County representatives are concerned about the effects that additional groundwater development within the basin might have on the Little Spokane River and on existing groundwater resources. Information provided by this study will be used in future investigations to evaluate the effects of potential increases in groundwater withdrawals on groundwater and surface-water resources in the basin. The hydrogeologic framework consists of eight hydrogeologic units: the Upper aquifer, Upper confining unit, Lower aquifers, Lower confining unit, Wanapum basalt unit, Latah unit, Grande Ronde basalt unit, and Bedrock. The Upper aquifer is composed mostly of sand and gravel and varies in thickness from 4 to 360 ft, with an average thickness of 70 ft. The aquifer is generally finer grained in areas farther from main outwash channels. The estimated horizontal hydraulic conductivity ranges from 4.4 to 410,000 feet per day (ft/d), with a median hydraulic conductivity of 900 ft/d. The Upper confining unit is a low-permeability unit consisting mostly of silt and clay, and varies in thickness from 5 to 400 ft, with an average thickness of 100 ft. The estimated horizontal hydraulic conductivity ranges from 0.5 to 5,600 ft/d, with a median hydraulic conductivity of 8.2 ft/d. The Lower aquifers unit consists of localized confined aquifers or lenses consisting mostly of sand that occur at depth in various places in the basin; thickness of the unit ranges from 8 to 150 ft, with an average thickness of 50 ft. The Lower confining unit is a low-permeability unit consisting mostly of silt and clay; thickness of the unit ranges from 35 to 310 ft, with an average thickness of 130 ft. The Wanapum basalt unit includes the Wanapum Basalt of the Columbia River Basalt Group, thin sedimentary interbeds, and, in some places, overlying loess. The unit occurs as isolated remnants on the basalt bluffs in the study area and ranges in thickness from 7 to 140 ft, with an average thickness of 60 ft. The Latah unit is a mostly low-permeability unit consisting of silt, clay, and sand that underlies and is interbedded with the basalt units. The Latah unit ranges in thickness from 10 to 700 ft, with an average thickness of 250 ft. The estimated horizontal hydraulic conductivity ranges from 0.19 to 15 ft/d, with a median hydraulic conductivity of 0.56 ft/d. The Grande Ronde unit includes the Grande Ronde Basalt of the Columbia River Basalt Group and sedimentary interbeds. Unit thickness ranges from 30 to 260 ft, with an average thickness of 140 ft. The estimated horizontal hydraulic conductivity ranges from 0.03 to 13 ft/d, with a median hydraulic conductivity of 2.9 ft/d. The Bedrock unit is the only available source of groundwater where overlying sediments are absent or insufficiently saturated. The estimated horizontal hydraulic conductivity ranges from 0.01 to 5,000 ft/d, with a median hydraulic conductivity of 1.4 ft/d. The altitude of the buried bedrock surface ranges from about 2,200 ft to about 1,200 ft. Groundwater movement in the Little Spokane River Basin mimics the surface-water drainage pattern of the basin, moving from the topographically high tributary-basin areas toward the topographically lower valley floors. Water-level altitudes range from more than 2,700 ft to about 1,500 ft near the basin’s outlet.
NASA Astrophysics Data System (ADS)
Dausman, A.; Langevin, C.; Sukop, M.; Walsh, V.
2006-12-01
The South District Wastewater Treatment Plant (SDWWTP), located in southeastern Miami-Dade County about 1 mi west of the Biscayne Bay coastline, is the largest capacity deep-well injection plant in the United States. Currently, about 100 Mgal/d of partially treated, essentially fresh (less than 1000 mg/L total dissolved solids) effluent is injected through 17 wells (each approximately 2500 ft below land surface) into the highly transmissive, lower-temperature, saline Boulder Zone composed of highly fractured dolomite. A thin confining unit called the Delray Dolomite, which is 8-16 ft thick, overlies the intended injection zone at the site. Although the Delray Dolomite has a vertical hydraulic conductivity estimated between 0.001 and 0.00001 ft/d, well casings for 10 of the 17 wells do not extend beneath the unit. A 700-ft-thick middle confining unit, with estimated vertical hydraulic conductivities between 0.1 and 28 ft/d, overlies the Delray Dolomite and separates it from the Upper Floridan aquifer. Protected by the Safe Drinking Water Act (SDWA), the Upper Floridan aquifer contains water that is less than 10,000 mg/L total dissolved solids. In southern Florida, this aquifer is used for reverse osmosis, blending with other waters, and as a reservoir for aquifer storage and recovery. At the SDWWTP, ammonia concentrations that exceed background conditions have been observed in monitoring wells open in and above the middle confining unit, indicating upward vertical migration of effluent, possibly toward the Upper Floridan aquifer. The U.S. Geological Survey currently is developing a variable-density groundwater flow and solute transport model for the Floridan aquifer system in Miami-Dade County. This model includes the injection of treated wastewater at the SDWWTP. The developed numerical model uses SEAWAT, a code that calculates variable- density flow as a function of salinity, to capture the buoyancy effects at the site and along the coast. Simulation efforts have been designed to determine likely mechanisms for vertical fluid migration as well as predict future movement of the effluent. Two alternative mechanisms for upward fluid migration are being tested with the model: (1) site-wide, diffuse upward movement through the Delray Dolomite and middle confining unit with all 17 injection wells; and (2) localized upward movement from the shallow casing depths at 10 of the 17 wells. The parameter estimation program, PEST, has estimated two different hydraulic conductivity configurations for the Delray Dolomite, middle confining unit, and other layers under these two possible conditions. The different parameter sets have yielded two satisfactory model calibrations. Results of these calibrations indicate that vertical effluent migration potentially is occurring either from (1) the 10 wells open above the Delray Dolomite, with virtually no effluent migration through the Delray Dolomite; or (2) all 17 wells open above and below the Delray Dolomite, with effluent migration through the Delray Dolomite.
Surficial aquifer system in eastern Lee County, Florida
Boggess, D.H.; Watkins, F.A.
1986-01-01
The surficial aquifer system in eastern Lee County consists of an upper water bearing unit, which is generally unconfined, and a lower water bearing unit, which is confined and is the major source tapped by most wells. The top of the lower unit, which is of primary interest in this report, ranges in depth from 40 to 60 ft below land surface in the east-central part of the county to more than 120 ft in the southern part. In the extreme southern part of the county, a middle water bearing unit also contains water under artesian pressure. Recharge to the lower unit occurs primarily by leakage from the overlying saturated section through the confining beds. Water levels in the lower unit fluctuate similarly to those in the upper (unconfined) unit. Groundwater in the lower unit moves from areas of highest water level in the south part of Lehigh acres, northward toward the Caloosahatchee River, and toward the coast. The lower unit contains freshwater throughout much of its extent and is the source of public water supply at Lehigh Acres and Green Meadows where an average of about 3 mil gal/day was withdrawn in 1980. In several areas, the concentrations of chlorides and dissolved solids exceed drinking water standards. Yields of wells that tap the lower unit range from 10 to 1,100 gal/min. Transmissivities ranging from about 17,700 to 7,750 sq ft/day were determined for different areas of the unit. Storage coefficients range from 0.0001 to 0.0003. (Author 's abstract)
Hydrogeologic framework and ground-water resources at Seymour Johnson Air Force Base, North Carolina
Cardinell, A.P.; Howe, S.S.
1997-01-01
A preliminary hydrogeologic framework of the Seymour Johnson Air Force Base was constructed from published data, available well data, and reports from Air Base files, City of Goldsboro and Wayne County records, and North Carolina Geological Survey files. Borehole geophysical logs were run in selected wells; and the surficial, Black Creek, and upper Cape Fear aquifers were mapped. Results indicate that the surficial aquifer appears to have the greatest lateral variability of clay units and aquifer material of the three aquifers. A surficial aquifer water-level surface map, constructed from selected monitoring wells screened exclusively in the surficial aquifer, indicates the general direction of ground-water movement in this mostly unconfined aquifer is toward the Neuse River and Stoney Creek. However, water-level gradient data from a few sites in the surficial aquifer did not reflect this trend, and there are insufficient hydrologic and hydrogeologic data to determine the cause of these few anamalous measurements. The Black Creek aquifer underlies the surficial aquifer and is believed to underlie most of Wayne County, including the Air Base where the aquifer and overlying confining unit are estimated from well log data to be as much as 100 feet thick. The Black Creek confining unit ranges in thickness from less than 8 feet to more than 20 feet. There are currently no accessible wells screened exclusively in the Black Creek aquifer from which to measure water levels. The upper Cape Fear aquifer and confining unit are generally found at depths greater than 80 feet below land surface at the Air Base, and are estimated to be as much as 70 feet thick. Hydrologic and hydrogeologic data are insufficient to determine localized surficial aquifer hydrogeology, ground-water movement at several sites, or hydraulic head differences between the three aquifers.
The Virginia Coastal Plain Hydrogeologic Framework
McFarland, Randolph E.; Scott, Bruce T.
2006-01-01
A refined descriptive hydrogeologic framework of the Coastal Plain of eastern Virginia provides a new perspective on the regional ground-water system by incorporating recent understanding gained by discovery of the Chesapeake Bay impact crater and determination of other geological relations. The seaward-thickening wedge of extensive, eastward-dipping strata of largely unconsolidated sediments is classified into a series of 19 hydrogeologic units, based on interpretations of geophysical logs and allied descriptions and analyses from a regional network of 403 boreholes. Potomac aquifer sediments of Early Cretaceous age form the primary ground-water supply resource. The Potomac aquifer is designated as a single aquifer because the fine-grained interbeds, which are spatially highly variable and inherently discontinuous, are not sufficiently dense across a continuous expanse to act as regional barriers to ground-water flow. Part of the Potomac aquifer in the outer part of the Chesapeake Bay impact crater consists of megablock beds, which are relatively undeformed internally but are bounded by widely separated faults. The Potomac aquifer is entirely truncated across the inner part of the crater. The Potomac confining zone approximates a transition from the Potomac aquifer to overlying hydrogeologic units. New or revised designations of sediments of Late Cretaceous age that are present only south of the James River include the upper Cenomanian confining unit, the Virginia Beach aquifer and confining zone, and the Peedee aquifer and confining zone. The Virginia Beach aquifer is a locally important ground-water supply resource. Sediments of late Paleocene to early Eocene age that compose the Aquia aquifer and overlying Nanjemoy-Marlboro confining unit are truncated along the margin of the Chesapeake Bay impact crater. Sediments of late Eocene age compose three newly designated confining units within the crater, which are from bottom to top, the impact-generated Exmore clast and Exmore matrix confining units, and the Chickahominy confining unit. Piney Point aquifer sediments of early Eocene to middle Miocene age overlie most of the Chesapeake Bay impact crater and beyond, but are a locally significant ground-water supply resource only outside of the crater across the middle reaches of the Northern Neck, Middle, and York-James Peninsulas. Sediments of middle Miocene to late Miocene age that compose the Calvert confining unit and overlying Saint Marys confining unit effectively separate the underlying Piney Point aquifer and deeper aquifers from overlying shallow aquifers. Saint Marys aquifer sediments of late Miocene age separate the Calvert and Saint Marys confining units across two limited areas only. Sediments of the Yorktown-Eastover aquifer of late Miocene to late Pliocene age form the second most heavily used ground-water supply resource. The Yorktown confining zone approximates a transition to the overlying late Pliocene to Holocene sediments of the surficial aquifer, which extends across the entire land surface in the Virginia Coastal Plain and is a moderately used supply. The Yorktown-Eastover aquifer and the eastern part of the surficial aquifer are closely associated across complex and extensive hydraulic connections and jointly compose a shallow, generally semiconfined ground-water system that is hydraulically separated from the deeper system. Vertical faults extend from the basement upward through most of the hydrogeologic units but may be more widespread and ubiquitous than recognized herein, because areas of sparse boreholes do not provide adequate spatial control. Hydraulic conductivity probably is decreased locally by disruption of depositional intergranular structure by fault movement in the generally incompetent sediments. Localized fluid flow in open fractures may be unique in the Chickahominy confining unit. Some hydrogeologic units are partly to wholly truncated where displacements are large rela
Hydrogeology of the surficial and intermediate aquifers of central Sarasota County, Florida
Duerr, A.D.; Wolansky, R.M.
1986-01-01
The geohydrologic units underlying a 300 sq mi area in central Sarasota County, Florida, consist of the surficial aquifer, intermediate aquifers (Tamiami-upper Hawthorn and lower Hawthorn-upper Tampa aquifers) and confining units, the Floridan aquifer system, and the sub-Floridan confining unit. The saturated thickness of the surficial aquifer ranges from about 40 to 75 ft and the water table is generally within 5 ft of land surface. The Tamiami-upper Hawthorn is the uppermost intermediate aquifer. The top of the aquifer ranges from about 50 ft to about 75 below sea level and has an average thickness of about 100 ft. The lower Hawthorne-upper Tampa aquifer is the lowermost intermediate aquifer. The top of the aquifer ranges from about 190 to about 220 ft below sea level and its thickness ranges from about 200 to 250 ft. The quality of water in the surficial and the two intermediate aquifers is acceptable for potable use except near the coast. Water from the Floridan aquifer system is used primarily for agricultural purposes because it is too mineralized for most other uses; therefore, the surficial and intermediate aquifers are developed for water supply. The artesian pressure of the various aquifers generally increases with depth. A more detailed geohydrologic description is presented for the Ringling-MacArthur Reserve, a 51 sq mi area in the central part of the county that may be used by Sarasota County as a future water supply. Average annual rainfall is 56 inches and evapotranspiration is about 42 in at the Reserve. The area has a high water table, many sloughs and swamps, and undeveloped land, making it an attractive site as a potential source of water. (Author 's abstract)
Sprinkle, Craig L.
1989-01-01
The chemical quality of the ground water in the Floridan aquifer system is determined primarily by mineral-water interaction. However, some changes in water quality have been imposed by development, particularly near coastal pumping centers. A total of 601 chemical analyses, all from different wells, most completed in the upper part of the aquifer system, were used to describe the variations in water chemistry and to study the processes responsible for observed changes. The Floridan aquifer system is a vertically continuous sequence of Tertiary carbonate rocks that are of generally high permeability and are hydraulically connected in varying degrees. The rocks are principally limestone and dolomite, but they grade into limy sands and clays near the aquifer system's updip limits. Major minerals in the aquifer system are calcite, dolomite, and, locally, gypsum or quartz; minor minerals include apatite, glauconite, and clay minerals such as kaolinite and montmorillonite. Trace amounts of metallic oxides or sulfides are present in some areas. The aquifer system consists of the Upper and Lower Floridan aquifers, separated in most places by a less permeable confining unit that has highly variable hydraulic properties. Only the Upper Floridan aquifer is present throughout the study area. Freshwater enters the aquifer system in outcrop areas located primarily in central Georgia and north-central Florida. Discharge occurs chiefly to streams and springs and, to a lesser extent, directly into the sea. Most of the flow into and out of the system takes place where it is unconfined or where the upper confining unit is thin. Secondary permeability developed by dissolution of aquifer material is most prominent in these areas of dynamic flow. Dissolved-solids concentrations in water from the Upper Floridan aquifer generally range from less than 25 milligrams per liter near outcrops to more than 25,000 milligrams per liter along the coasts. The dominant cations in the ground water are Ca2+, Mg2+, and Na+; the dominant anions are HCO3-, Cl-, and SO42-, The concentration of Ca2+ is controlled primarily by calcite saturation. Concentrations of Mg2+, NA+, and Cl- are highest where mixing of freshwater and saltwater occurs. Concentrations of HCO3- reflect the control of calcite solubility. The concentration of SO42- is highest where gypsiferous rock units are present in the aquifer system. The major geochemical processes that occur in the Upper Floridan aquifer, based on water-quality maps and computations using a geochemical model, are (1) dissolution of aquifer minerals toward equilibrium, (2) mixing of ground water with recharge, leakage, or seawater, (3) sulfate reduction, and (4) cation exchange between water and aquifer minerals. Similar processes apparently control minor dissolved constituents, although quantification is difficult with the available data. Statistical tests of available nutrient data indicate that concentrations of N (nitrogen) species in unconfined recharge areas may be increasing over time; more detailed studies of all N species are needed to test this hypothesis, however. Data on trace metals, radionuclides, and man-made organic contaminants are limited. Available data indicate that most freshwater within the Upper Floridan is potable, but detection of pesticides in a few samples indicates that the system is susceptible to contamination from the land surface in some areas, particularly where its upper confining unit is thin or absent. Geochemical models were used to examine changes in major chemical elements along selected ground-water paths within the Upper Floridan aquifer. Water in the Upper Floridan aquifer can be categorized into four hydrochemical facies, whose exact distribution is determined by confined or unconfined conditions of the aquifer and by chloride concentrations. The reaction models are considered plausible based on available chemical, isotopic, and hydrologic information, and they
Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2006
Ortiz, A.G.
2007-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2006. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 46.06 inches for west-central Florida (from October 2005 through September 2006) was 6.91 inches below the historical cumulative average of 52.97 inches (Southwest Florida Water Management District, 2006). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during September 18-22, 2006. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman, 2007). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.
Potentiometric surface of the Upper Floridan aquifer, west-central Florida, September 2005
Ortiz, A.G.
2006-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public-supply, domestic use, irrigation, and brackish-water desalination in coastal communities (Southwest Florida Water Management District, 2000).This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2005. The potentiometric surface is an imaginary surface, connecting points of equal altitude to which water will rise in tightly cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 55.19 inches for west-central Florida (from October 2004 through September 2005) was 2.00 inches above the historical cumulative average of 53.19 inches (Southwest Florida Water Management District, 2005). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District.This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period September 19-23, 2005. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Altamonte Springs, Florida (Kinnaman, 2006). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a "snapshot" of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.
Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2007
Ortiz, A.G.
2008-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2007. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 39.50 inches for west-central Florida (from October 2006 through September 2007) was 13.42 inches below the historical cumulative average of 52.92 inches (Southwest Florida Water Management District, 2007). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period September 17-21, 2007. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2008). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.
Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2008
Ortiz, Anita G.
2009-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2008. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 50.63 inches for west-central Florida (from October 2007 through September 2008) was 2.26 inches below the historical cumulative average of 52.89 inches (Southwest Florida Water Management District, 2008). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period September 15-19, 2008. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2009). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.
Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2008
Ortiz, A.G.
2008-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2008. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 46.95 inches for west-central Florida (from June 2007 through May 2008) was 5.83 inches below the historical cumulative average of 52.78 inches (Southwest Florida Water Management District, 2008). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 19-23, 2008. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2008). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition.
Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2007
Ortiz, A.G.
2008-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2007. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 41.21 inches for west-central Florida (from June 2006 through May 2007) was 11.63 inches below the historical cumulative average of 52.84 inches (Southwest Florida Water Management District, 2007). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 21-25, 2007. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2007). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition.
Geologic framework and hydrogeologic characteristics of the Edwards aquifer, Uvalde County, Texas
Clark, Allan K.
2003-01-01
The Edwards aquifer in Uvalde County is composed of Lower Cretaceous carbonate (mostly dolomitic limestone) strata of the Devils River Formation in the Devils River trend and of the West Nueces, McKnight, and Salmon Peak Formations in the Maverick basin. Rocks in the Devils River trend are divided at the bottom of the Devils River Formation into the (informal) basal nodular unit. Maverick basin rocks are divided (informally) into the basal nodular unit of the West Nueces Formation; into lower, middle, and upper units of the McKnight Formation; and into lower and upper units of the Salmon Peak Formation. The Edwards aquifer overlies the (Lower Cretaceous) Glen Rose Limestone, which composes the lower confining unit of the Edwards aquifer. The Edwards aquifer is overlain by the (Upper Cretaceous) Del Rio Clay, the basal formation of the upper confining unit. Upper Cretaceous and (or) Lower Tertiary igneous rocks intrude all stratigraphic units that compose the Edwards aquifer, particularly in the southern part of the study area.The Balcones fault zone and the Uvalde salient are the principal structural features in the study area. The fault zone comprises mostly en echelon, high-angle, and down-to-the-southeast normal faults that trend mostly from southwest to northeast. The Uvalde salient—resulting apparently from a combination of crustal uplift, diverse faulting, and igneous activity—elevates the Edwards aquifer to the surface across the central part of Uvalde County. Downfaulted blocks associated with six primary faults—Cooks, Black Mountain, Blue Mountain, Uvalde, Agape, and Connor—juxtapose the Salmon Peak Formation (Lower Cretaceous) in central parts of the study area against Upper Cretaceous strata in the southeastern part.The carbonate rocks of the Devils River trend and the Maverick basin are products of assorted tectonic and depositional conditions that affected the depth and circulation of the Cretaceous seas. The Devils River Formation formed in a fringing carbonate bank—the Devils River trend— in mostly open shallow marine environments of relatively high wave and current energy. The West Nueces, McKnight, and Salmon Peak Formations resulted mostly from partly restricted to open marine, tidal-flat, and restricted deep-basinal environments in the Maverick basin.The porosity of the Edwards aquifer results from depositional and diagenetic effects along specific lithostratigraphic horizons (fabric selective) and from structural and solutional features that can occur in any lithostratigraphic horizon (non-fabric selective). In addition to porosity depending upon the effects of fracturing and the dissolution of chemically unstable (soluble) minerals and fossils, the resultant permeability depends on the size, shape, and distribution of the porosity as well as the interconnection among the pores. Upper parts of the Devils River Formation and the upper unit of the Salmon Peak Formation compose some of the most porous and permeable rocks in Uvalde County.
Katz, B.G.; Bullen, T.D.
1996-01-01
The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 ??g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [??13C = -1.6 permil (???)] is also indicated by an enriched ??13CDIC (-8.8 to - 11.4???) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (??13CDIC < - 16???). Groundwater downgradient from Lake Barco was enriched in 18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2+ from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the 87Sr/86Sr ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three distinct hydrogeologic units displays considerable variability in Sr concentration and isotopic composition, the dominant processes associated with the mixing of lakewater leakage with groundwater, as well as the effects of mineral-water interaction, can be ascertained by integrating the use of stable and radiogenic isotopic measurements of groundwater, lakewater, and aquifer minerals.
Watts, K.R.
1995-01-01
Anticipated increases in pumping from the bedrock aquifers in El Paso County potentially could affect the direction and rate of flow between the alluvial and bedrock aquifers and lower water levels in the overlying alluvial aquifer. The alluvial aquifer underlies about 90 square miles in the upper Black Squirrel Creek Basin of eastern El Paso County. The alluvial aquifer consists of unconsolidated alluvial deposits that unconformably overlie siltstones, sandstones, and conglomerate (bedrock aquifers) and claystone, shale, and coal (bedrock confining units) of the Denver Basin. The bedrock aquifers (Dawson, Denver, Arapahoe, and Laramie-Fox Hills aquifers) are separated by confining units (upper and lower Denver and the Laramie confining units) and overlie a relatively thick and impermeable Pierre confining unit. The Pierre confining unit is assumed to be a no-flow boundary at the base of the alluvial/ bedrock aquifer system. During 1949-90, substantial water-level declines, as large as 50 feet, in the alluvial aquifer resulted from withdrawals from the alluvial aquifer for irrigation and municipal supplies. Average recharge to the alluvial aquifer from infiltration of precipitation and surface water was an estimated 11.97 cubic feet per second and from the underlying bedrock aquifers was an estimated 0.87 cubic foot per second. Water-level data from eight bedrock observation wells and eight nearby alluvial wells indicate that, locally, the alluvial and bedrock aquifers probably are hydraulically connected and that the alluvial aquifer in the upper Black Squirrel Creek Basin receives recharge from the Denver and Arapahoe aquifers but-locally recharges the Laramie-Fox Hills aquifer. Subsurface-temperature profiles were evaluated as a means of estimating specific discharge across the bedrock surface (the base of the alluvial aquifer). However, assumptions of the analytical method were not met by field conditions and, thus, analyses of subsurface-temperature profiles did not reliably estimate specific discharge across the bedrock surface. The vertical hydraulic diffusivity of a siltstone and sandstone in the lower Denver confining unit was estimated, by an aquifer test, to be about 8 x 10'4 square foot per day. Physical and chemical characteristics of water from the bedrock aquifers in the study area generally differ from the physical and chemical characteristics of water from the alluvial aquifer, except for the physical and chemical characteristics of water from one bedrock well, which is completed in the Laramie-Fox Hills aquifer. In the southern part of the study area, physical and chemical characteristics of ground water indicate downward flow of water from the alluvial aquifer to the Laramie-Fox Hills aquifer. A three-dimensional numerical model was used to evaluate flow of water between the alluvial aquifer and underlying bedrock. Simulation of steady-state conditions indicates that flow from the bedrock aquifers to the alluvial aquifer was about 7 percent of recharge to the alluvial aquifer, about 0.87 cubic foot per second. The potential effects of withdrawal from the alluvial and bedrock aquifers at estimated (October 1989 to September 1990) rates and from the bedrock aquifers at two larger hypothetical rates were simulated for a 50-year projection period. The model simulations indicate that water levels in the alluvial aquifer will decline an average of 8.6 feet after 50 years of pumping at estimated October 1989 to September 1990 rates. Increases in withdrawals from the bedrock aquifers in El Paso County were simulated to: (1) Capture flow that currently discharges from the bedrock aquifers to springs and streams in upland areas and to the alluvial aquifer, (2) induce flow downward from the alluvial aquifer, and (3) accelerate the rate of waterlevel decline in the alluvial aquifer.
Potentiometric surface of the intermediate aquifer system, west- central Florida, May 1987
Lewelling, B.R.
1988-01-01
The intermediate aquifer system within the Southwest Florida Water Management District underlies a 5,000 sq mi area of De Soto, Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, and Polk Counties. The intermediate aquifer system occurs between the overlying surficial aquifer system and the underlying Floridan aquifer system, and consists of layers of sand, shell, clay, marl, limestone, and dolom of the Tamiami, Hawthorn, and Tampa Formations of late Tertiary age. The intermediate aquifer system contains one or more water-bearing units separated by discontinuous confining units. This aquifer system is the principal source of potable water in the southwestern part of the study area and is widely used as a source of water in other parts where wells are open to the intermediate aquifer system or to both the intermediate and Floridan aquifer systems. Yields of individual wells open to the intermediate aquifer system range from a few gallons to several hundred gallons per minute. The volume of water withdrawn from the intermediate aquifer system is considerably less than that withdrawn from the Floridan aquifer system in the study area. The surface was mapped by determining the altitude of water levels in a network of wells and is represented on maps by contours that connect points of equal altitude. The compos potentiometric surface of all water-bearing units within the intermediate aquifer system is shown. In areas where multiple aquifers exist, wells open to all aquifers were selected for water level measurements whenever possible. In the southwestern and lower coastal region of the study area, two aquifers and confining units are described for the intermediate aquifer system: the Tamiami-upper Hawthorn aquifer and the underlying lower Hawthorn-upper Tampa aquifer. The potentiometric surface of the Tamiami-upper Hawthorn aquifer is also shown. Water levels are from wells drilled and open exclusively to that aquifer. The exact boundary for the Tamiami-upper Hawthorn aquifer is undetermined because of limd geohydrologic data available from wells. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Tal, A.; Weinstein, Y.; Yechieli, Y.; Borisover, M.
2017-08-01
This study focuses on the impact of surface reservoirs (fish ponds) on a multi aquifer coastal system, and the relation between the aquifer and the sea. The study was conducted in an Israeli Mediterranean coastal aquifer, which includes a sandy phreatic unit and two confined calcareous sandstone units. The geological description is based on 52 wells, from which 33 samples were collected for stable isotope analysis and 25 samples for organic and inorganic parameters. Hydraulic head and chemical measurements suggest that there is an hydraulic connection between the fish ponds above the aquifer and the phreatic unit, whereas the connection with the confined units is very limited. The phreatic unit is characterized by a low concentration of oxygen and high concentrations of ammonium and phosphate, while the confined units are characterized by higher oxygen and much lower ammonium and phosphate concentrations. Organic matter fluorescence was found to be a tool to distinguish the contribution of the pond waters, whereby a pond water signature (characterized by proteinaceous (tryptophan-like) and typical humic-matter fluorescence) was found in the phreatic aquifer. The phreatic unit is also isotopically enriched, similar to pond waters, with δ18O of -1‰ and δD of -4.6‰, indicating enhanced evaporation of the pond water before infiltration, whereas there is a depleted isotopic composition in the confined units (δ18O = -4.3‰, δD = -20.4‰), which are also OM-poor. The Phreeqc model was used for quantitative calculation of the effect of pond losses on the different units. The Dissolved Inorganic Nitrogen (DIN) in the upper unit increases downstream from the ponds toward the sea, probably due to organic matter degradation, suggesting contribution of DIN from shallow groundwater flow to the sea. 87Sr/86Sr and Mg/Ca in the brackish and saline groundwater of the lower confined units increase toward seawater value, suggesting that the salinization process in the region is connected to seawater intrusion and not to old brine from the underlying Cretaceous aquitard.
Jones, Joseph L.; Johnson, Kenneth H.
2013-01-01
A steady-state groundwater-flow model described in Scientific Investigations Report 2013-5160, ”Numerical Simulation of the Groundwater-Flow System in Chimacum Creek Basin and Vicinity, Jefferson County, Washington” was developed to evaluate potential future impacts of growth and of water-management strategies on water resources in the Chimacum Creek Basin. This supplement to that report describes the unsuccessful attempt to perform a calibration to transient conditions on the model. The modeled area is about 64 square miles on the Olympic Peninsula in northeastern Jefferson County, Washington. The geologic setting for the model area is that of unconsolidated deposits of glacial and interglacial origin typical of the Puget Sound Lowlands. The hydrogeologic units representing aquifers are Upper Aquifer (UA, roughly corresponding to recessional outwash) and Lower Aquifer (LA, roughly corresponding to advance outwash). Recharge from precipitation is the dominant source of water to the aquifer system; discharge is primarily to marine waters below sea level and to Chimacum Creek and its tributaries. The model is comprised of a grid of 245 columns and 313 rows; cells are a uniform 200 feet per side. There are six model layers, each representing one hydrogeologic unit: (1) Upper Confining unit (UC); (2) Upper Aquifer unit (UA); (3) Middle Confining unit (MC); (4) Lower Aquifer unit (LA); (5) Lower Confining unit (LC); and (6) Bedrock unit (OE). The transient simulation period (October 1994–September 2009) was divided into 180 monthly stress periods to represent temporal variations in recharge, discharge, and storage. An attempt to calibrate the model to transient conditions was unsuccessful due to instabilities stemming from oscillations in groundwater discharge to and recharge from streamflow in Chimacum Creek. The model as calibrated to transient conditions has mean residuals and standard errors of 0.06 ft ±0.45 feet for groundwater levels and 0.48 ± 0.06 cubic feet per second for flows. Although the expected seasonal trends were observed in model results, the typical observed annual variation of groundwater levels of about 2 feet was not. Streamflow at the most downstream observation point was about three times larger than simulated streamflow. Because the transient version of the model proved inherently unstable, it was not used to simulate forecast conditions for alternate hydrologic or anthropogenic changes. Adaptation of alternate stream simulation packages, such as RIV, or newer versions of MODFLOW, such as MODFLOW-NWT, could possibly assist with achieving calibration to transient conditions.
The Sunny Point Formation: a new Upper Cretaceous subsurface unit in the Carolina Coastal Plain
Balson, Audra E.; Self-Trail, Jean; Terry, Dennis O.
2013-01-01
This paper formally defines the Sunny Point Formation, a new Upper Cretaceous subsurface unit confined to the outer Atlantic Coastal Plain of North and South Carolina. Its type section is established in corehole NH-C-1-2001 (Kure Beach) from New Hanover County, North Carolina. The Sunny Point Formation consists of light-olive-gray to greenish-gray, fine to coarse micaceous sands and light-olive-brown and grayish-red silty, sandy clays. The clay-rich sections typically include ironstone, lignitized wood, root traces, hematite concretions, goethite, limonite, and sphaerosiderites. The Sunny Point Formation is also documented in cores from Bladen County, North Carolina, and from Dorchester and Horry Counties, South Carolina. Previously, strata of the Sunny Point Formation had been incorrectly assigned to the Cape Fear and Middendorf Formations. The Sunny Point occupies a stratigraphic position above the Cenomanian marine Clubhouse Formation and below an upper Turonian unnamed marine unit. Contacts between these units are sharp and unconformable. Calcareous nannofossil and palynomorph analyses indicate that the Sunny Point Formation is Turonian.
Williams, Lester J.; Kuniansky, Eve L.
2015-04-08
The hydrogeologic framework for the Floridan aquifer system has been revised throughout its extent in Florida and parts of Georgia, Alabama, and South Carolina. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s, except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual higher and contrasting lower permeability zones within these aquifers. The system behaves as one aquifer over much of its extent; although subdivided vertically into two aquifer units, the Upper and Lower Floridan aquifers. In the previous framework, discontinuous numbered middle confining units (MCUI–VII) were used to subdivide the system. In areas where less-permeable rocks do not occur within the middle part of the system, the system was previously considered one aquifer and named the Upper Floridan aquifer. In intervening years, more detailed data have been collected in local areas, resulting in some of the same lithostratigraphic units in the Floridan aquifer system being assigned to the Upper or Lower Floridan aquifer in different parts of the State of Florida. Additionally, some of the numbered middle confining units are found to have hydraulic properties within the same order of magnitude as the aquifers. A new term “composite unit” is introduced for lithostratigraphic units that cannot be defined as either a confining or aquifer unit over their entire extent. This naming convention is a departure from the previous framework, in that stratigraphy is used to consistently subdivide the aquifer system into upper and lower aquifers across the State of Florida. This lithostratigraphic mapping approach does not change the concept of flow within the system. The revised boundaries of the Floridan aquifer system were mapped by considering results from local studies and regional correlations of lithostratigraphic and hydrogeologic units or zones. Additional zones within the aquifers have been incorporated into the framework to allow finer delineation of permeability variations within the aquifer system. These additional zones can be used to progressively divide the system for assessing groundwater and surface-water interaction, saltwater intrusion, and offshore movement of groundwater at greater detail if necessary. The lateral extent of the updip boundary of the Floridan aquifer system is modified from previous work based on newer data and inclusion of parts of the updip clastic facies. The carbonate and clastic facies form a gradational sequence, generally characterized by limestone of successively younger units that extend progressively farther updip. Because of the gradational nature of the carbonate-clastic sequence, some of the updip clastic aquifers have been included in the Floridan aquifer system, the Southeastern Coastal Plain aquifer system, or both. Thus, the revised updip limit includes some of these clastic facies. Additionally, the updip limit of the most productive part of the Floridan aquifer system was revised and indicates the approximate updip limit of the carbonate facies. The extent and altitude of the freshwater-saltwater interface in the aquifer system has been mapped to define the freshwater part of the flow system.
Hydrology of Polk County, Florida
Spechler, Rick M.; Kroening, Sharon E.
2007-01-01
Local water managers usually rely on information produced at the State and regional scale to make water-resource management decisions. Current assessments of hydrologic and water-quality conditions in Polk County, Florida, commonly end at the boundaries of two water management districts (South Florida Water Management District and the Southwest Florida Water Management District), which makes it difficult for managers to determine conditions throughout the county. The last comprehensive water-resources assessment of Polk County was published almost 40 years ago. To address the need for current countywide information, the U.S. Geological Survey began a 3?-year study in 2002 to update information about hydrologic and water-quality conditions in Polk County and identify changes that have occurred. Ground-water use in Polk County has decreased substantially since 1965. In 1965, total ground-water withdrawals in the county were about 350 million gallons per day. In 2002, withdrawals totaled about 285 million gallons per day, of which nearly 95 percent was from the Floridan aquifer system. Water-conservation practices mainly related to the phosphate-mining industry as well as the decrease in the number of mines in operation in Polk County have reduced total water use by about 65 million gallons per day since 1965. Polk County is underlain by three principal hydrogeologic units. The uppermost water-bearing unit is the surficial aquifer system, which is unconfined and composed primarily of clastic deposits. The surficial aquifer system is underlain by the intermediate confining unit, which grades into the intermediate aquifer system and consists of up to two water-bearing zones composed of interbedded clastic and carbonate rocks. The lowermost hydrogeologic unit is the Floridan aquifer system. The Floridan aquifer system, a thick sequence of permeable limestone and dolostone, consists of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer. The Upper Floridan aquifer provides most of the water required to meet demand in Polk County. Data from about 300 geophysical and geologic logs were used to construct hydrogeologic maps showing the tops and thicknesses of the aquifers and confining units within Polk County. Thickness of the surficial aquifer system ranges from several feet thick or less in the extreme northwestern part of the county and along parts of the Peace River south of Bartow to more than 200 feet along the southern part of the Lake Wales Ridge in eastern Polk County. Thickness of the intermediate aquifer system/intermediate confining unit is highly variable throughout the county because of past erosional processes and sinkhole formation. Thickness of the unit ranges from less than 25 feet in the extreme northwestern part of the county to more than 300 feet in southwestern Polk County. The altitude of the top of the Upper Floridan aquifer in the county ranges from about 50 feet above National Geodetic Vertical Datum of 1929 (NGVD 29) in the northwestern part to more than 250 feet below NGVD 29 in the southern part. Water levels in the Upper Floridan aquifer fluctuate seasonally, increasing during the wet season (June through September) and decreasing during the rest of the year. Water levels in the Upper Floridan aquifer also can change from year to year, depending on such factors as pumpage and climatic variations. In the southwestern part of the county, fluctuations in water use related to phosphate mining have had a major impact on ground-water levels. Hydrographs of selected wells in southwestern Polk County show a general decline in water levels that ended in the mid-1970s. This water-level decline coincides with an increase in water use associated with phosphate mining. A substantial increase in water levels that began in the mid-1970s coincides with a period of decreasing water use in the county. Despite reductions in water use since 1970, howev
Clark, Allan K.; Golab, James A.; Morris, Robert R.
2016-11-28
During 2014–16, the U.S. Geological Survey, in cooperation with the Edwards Aquifer Authority, documented the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Texas. The Edwards and Trinity aquifers are major sources of water for agriculture, industry, and urban and rural communities in south-central Texas. Both the Edwards and Trinity are classified as major aquifers by the State of Texas.The purpose of this report is to present the geologic framework and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Tex. The report includes a detailed 1:24,000-scale hydrostratigraphic map, names, and descriptions of the geology and hydrostratigraphic units (HSUs) in the study area.The scope of the report is focused on geologic framework and hydrostratigraphy of the outcrops and hydrostratigraphy of the Edwards and Trinity aquifers within northern Bexar and Comal Counties, Tex. In addition, parts of the adjacent upper confining unit to the Edwards aquifer are included.The study area, approximately 866 square miles, is within the outcrops of the Edwards and Trinity aquifers and overlying confining units (Washita, Eagle Ford, Austin, and Taylor Groups) in northern Bexar and Comal Counties, Tex. The rocks within the study area are sedimentary and range in age from Early to Late Cretaceous. The Miocene-age Balcones fault zone is the primary structural feature within the study area. The fault zone is an extensional system of faults that generally trends southwest to northeast in south-central Texas. The faults have normal throw, are en echelon, and are mostly downthrown to the southeast.The Early Cretaceous Edwards Group rocks were deposited in an open marine to supratidal flats environment during two marine transgressions. The Edwards Group is composed of the Kainer and Person Formations. Following tectonic uplift, subaerial exposure, and erosion near the end of Early Cretaceous time, the area of present-day south-central Texas was again submerged during the Late Cretaceous by a marine transgression resulting in deposition of the Georgetown Formation of the Washita Group.The Early Cretaceous Edwards Group, which overlies the Trinity Group, is composed of mudstone to boundstone, dolomitic limestone, argillaceous limestone, evaporite, shale, and chert. The Kainer Formation is subdivided into (bottom to top) the basal nodular, dolomitic, Kirschberg Evaporite, and grainstone members. The Person Formation is subdivided into (bottom to top) the regional dense, leached and collapsed (undivided), and cyclic and marine (undivided) members.Hydrostratigraphically the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. The Pecan Gap Formation (Taylor Group), Austin Group, Eagle Ford Group, Buda Limestone, and Del Rio Clay are generally considered to be the upper confining unit to the Edwards aquifer.The Edwards aquifer was subdivided into HSUs I to VIII. The Georgetown Formation of the Washita Group contains HSU I. The Person Formation of the Edwards Group contains HSUs II (cyclic and marine members [Kpcm], undivided), III (leached and collapsed members [Kplc,] undivided), and IV (regional dense member [Kprd]), and the Kainer Formation of the Edwards Group contains HSUs V (grainstone member [Kkg]), VI (Kirschberg Evaporite Member [Kkke]), VII (dolomitic member [Kkd]), and VIII (basal nodular member [Kkbn]).The Trinity aquifer is separated into upper, middle, and lower aquifer units (hereinafter referred to as “zones”). The upper zone of the Trinity aquifer is in the upper member of the Glen Rose Limestone. The middle zone of the Trinity aquifer is formed in the lower member of the Glen Rose Limestone, Hensell Sand, and Cow Creek Limestone. The regionally extensive Hammett Shale forms a confining unit between the middle and lower zones of the Trinity aquifer. The lower zone of the Trinity aquifer consists of the Sligo and Hosston Formations, which do not crop out in the study area.The upper zone of the Trinity aquifer is subdivided into five informal HSUs (top to bottom): cavernous, Camp Bullis, upper evaporite, fossiliferous, and lower evaporite. The middle zone of the Trinity aquifer is composed of the (top to bottom) Bulverde, Little Blanco, Twin Sisters, Doeppenschmidt, Rust, Honey Creek, Hensell, and Cow Creek HSUs. The underlying Hammett HSU is a regional confining unit between the middle and lower zones of the Trinity aquifer. The lower zone of the Trinity aquifer is not exposed in the study area.Groundwater recharge and flow paths in the study area are influenced not only by the hydrostratigraphic characteristics of the individual HSUs but also by faults and fractures and geologic structure. Faulting associated with the Balcones fault zone (1) might affect groundwater flow paths by forming a barrier to flow that results in water moving parallel to the fault plane, (2) might affect groundwater flow paths by increasing flow across the fault because of fracturing and juxtaposing porous and permeable units, or (3) might have no effect on the groundwater flow paths.The hydrologic connection between the Edwards and Trinity aquifers and the various HSUs is complex. The complexity of the aquifer system is a combination of the original depositional history, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas that have allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that are highly permeable and transmissive. The juxtaposition resulting from faulting has resulted in areas of interconnectedness between the Edwards and Trinity aquifers and the various HSUs that form the aquifers.
Steady-State Groundwater Flow Model for Great Neck, Long Island, New York
NASA Astrophysics Data System (ADS)
Chowdhury, S. H.; Klinger, D.; Sallemi, B. M.
2001-12-01
This paper describes a comprehensive groundwater flow model for the Great Neck section of Long Island, New York. The hydrogeology of this section of Long Island is dominated by a buried erosional valley consisting of sediments comparable to the North Shore Confining Unit. This formation cross-cuts, thus is in direct hydraulic connection with the Upper Glacial, North Shore Confining Unit, Raritan Clay, and Lloyd aquifers. The Magothy aquifer is present only in remote southern sections of the model area. In addition, various lenses of coarser material from the overlying Upper Glacial aquifer are dispersed throughout the area. Data collection consisted of gathering various parameter values from existing USGS reports. Hydraulic conductivity, porosity, estimated recharge values, evapotranspiration, well locations, and water level data have all been gathered from the USGS Office located in Coram, New York. Appropriate modeling protocol was followed throughout the modeling process. The computer code utilized for solving this numerical model is Visual MODFLOW as manufactured by Waterloo Hydrogeologic. Calibration and a complete sensitivity analysis were conducted. Modeled results indicate that the groundwater flow direction is consistent with what is viewed onsite. In addition, the model is consistent in returning favorable parameter results to historical data.
Pedraza, Diana E.; Shah, Sachin D.
2010-01-01
The U.S. Geological Survey, in cooperation with the San Antonio Water System, developed a geodatabase of geologic and hydrogeologic information for selected wells penetrating the Austin Group in central Bexar County, Texas. The Austin Group functions as an upper confining unit to the Edwards aquifer and is the thickest and most permeable of the Edwards aquifer confining units. The geologic and hydrogeologic information pertains to a 377-square-mile study area that encompasses central Bexar County. Data were compiled primarily from drillers' and borehole geophysical logs from federal, State, and local agencies and published reports. Austin Group characteristics compiled for 523 unique wells are documented (if known), including year drilled, well depth, altitude of top and base of the Austin Group, and thickness of the Austin Group.
Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia
Smith, Barry S.; Harlow, George E.
2002-01-01
The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations. Concentrations of manganese and chloride were higher than the Secondary Drinking Water Regulations in samples from some wells.In the humid climate of Virginia Beach, the periodic recharge of freshwater through the sand units of the shallow aquifer system occurs often enough to create a dynamic equilibrium whereby freshwater flows continually down and away from the center of the ridges to mix with and sweep brackish water and saltwater back toward the tidal rivers, bays, salt marshes, and the Atlantic Ocean.The aquifers and confining units of the shallow aquifer system at Virginia Beach are heterogeneous, discontinuous, and without exact marker beds, which makes correlations in the study area difficult. Investigations using well cuttings, spot cores, or split-spoon samples with geophysical logs are not as definitive as continuous cores for determining or correlating hydrogeologic units. Future investigations of the shallow aquifer system would benefit by collecting continuous cores.
NASA Astrophysics Data System (ADS)
Katz, Brian G.; Bullen, Thomas D.
1996-12-01
The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The 87Sr/86Sr ratio along with the stable isotopes, D, 18O, and 13C were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the 87Sr/86Sr ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2+ generally increase with depth, and higher concentrations of Sr2+ in water from the Upper Floridan aquifer (20-35 μg/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [δ13C= -1.6permil(‰)] is also indicated by an enriched δ13CDIC(-8.8 to -11.4 ‰) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (δ13CDIC< -16‰). Groundwater downgradient from Lake Barco was enriched in18O and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the 87Sr/86Sr ratio of groundwater and aquifer material become less radiogenic and the Sr2+ concentrations generally increase with depth. However, Sr2+ concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2+ concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2+ from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the 87Sr/86Sr ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three distinct hydrogeologic units displays considerable variability in Sr concentration and isotopic composition, the dominant processes associated with the mixing of lakewater leakage with groundwater, as well as the effects of mineral-water interaction, can be ascertained by integrating the use of stable and radiogenic isotopic measurements of groundwater, lakewater, and aquifer minerals.
Hydrologic framework of Long Island, New York
Smolensky, Douglas A.; Buxton, Herbert T.; Shernoff, Peter K.
1990-01-01
Long Island, N.Y., is underlain by a mass of unconsolidated geologic deposits of clay, silt, sand, and gravel that overlie southward-sloping consolidated bedrock. These deposits are thinnest in northern Queens County (northwestern Long Island), where bedrock crops out, and increase to a maximum thickness of 2,000 ft in southeastern Long Island. This sequence of unconsolidated deposits consists of several distinct geologic units ranging in age from late Cretaceous through Pleistocene, with some recent deposits near shores and streams. These units are differentiated by age, depositional environment, and lithology in table 1. Investigations of ground-water availability and flow patterns may require information on the internal geometry of the hydrologic system that geologic correlations and interpretation alone cannot provide; hydrologic interpretations in which deposits are differentiated on the basis of water-transmitting properties are generally needed also. This set of maps and vertical sections depicts the hydrogeologic framework of the unconsolidated deposits that form Long Island's ground-water system. These deposits can be classified into eight major hydrogeologic units (table 1). The hydrogeologic interpretations presented herein are not everywhere consistent with strict geologic interpretation owing to facies changes and local variations in the water-transmitting properties within geologic units. These maps depict the upper-surface altitude of seven of the eight hydrogeologic units, which, in ascending order, are: consolidated bedrock, Lloyd aquifer, Raritan confining unit, Magothy aquifer, Monmouth greensand, Jameco aquifer, and Gardiners Clay. The upper glacial aquifer—the uppermost unit—is at land surface over most of Long Island and is, therefore, not included. The nine north-south hydrogeologic sections shown below depict the entire sequence of unconsolidated deposits and, together with the maps, provide a detailed three-dimensional interpretation of Long Island's hydrogeologic framework. The structure-contour map that shows the upper-surface altitude of the Cretaceous deposits is included to illustrate the erosional unconformity between the Cretaceous and overlying Pleistocene deposits. Pleistocene erosion played a major role in determining the shape and extent of the Lloyd aquifer, the Raritan confining unit, and the Magothy aquifer, and thus partly determined their hydrogeologic relation with subsequent (post-Cretaceous) deposits.
Anna, Lawrence O.
2011-01-01
Parts of the northern Great Plains in eastern Montana and western North Dakota and southeastern Alberta and southwestern Saskatchewan, Canada, were studied as part of an assessment of shallow biogenic gas in Upper Cretaceous rocks.Parts of the northern Great Plains in eastern Montana and western North Dakota and southeastern Alberta and southwestern Saskatchewan, Canada, were studied as part of an assessment of shallow biogenic gas in Upper Cretaceous rocks. Large quantities of shallow biogenic gas are produced from low-permeability, Upper Cretaceous reservoirs in southeastern Alberta and southwestern Saskatchewan, Canada. Rocks of similar types and age produce sparingly in the United States except on large structures, such as Bowdoin dome and Cedar Creek anticline. Significant production also occurs in the Tiger Ridge area, where uplift of the Bearpaw Mountains created stratigraphic traps. The resource in Canada is thought to be a continuous, biogenic-gas-type accumulation with economic production in a variety of subtle structures and stratigraphic settings. The United States northern Great Plains area has similar conditions but only broad structural closures or stratigraphic traps associated with local structure have produced economically to date. Numerical flow modeling was used to help determine that biogenic gas in low-permeability reservoirs is held in place by high hydraulic head that overrides buoyancy forces of the gas. Modeling also showed where hydraulic head is greater under Tertiary capped topographic remnants rather than near adjacent topographic lows. The high head can override the capillary pressure of the rock and force gas to migrate to low head in topographically low areas. Most current biogenic gas production is confined to areas between mapped lineaments in the northern Great Plains. The lineaments may reflect structural zones in the Upper Cretaceous that help compartmentalize reservoirs and confine gas accumulations.
Plummer, Niel; Sprinkle, C.L.
2001-01-01
Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in ??18O of approximately 2.0%o.
NASA Astrophysics Data System (ADS)
Reese, R. S.
2008-05-01
The mostly carbonate Floridan aquifer system (FAS) of central and southern Florida is a widely used resource with a complex hydrostratigraphic framework that is managed primarily in a subregional context according to water management jurisdictional boundaries. As use of the FAS increases, a consistent regional hydrostratigraphic framework is needed for effective management across these boundaries. Stratigraphic marker horizons within and near the top of FAS were delineated and mapped to develop a preliminary, correlative stratigraphic framework. This framework was used to identify and determine aquifers, subaquifers, and confining units and map their spatial distribution. These horizons are based on lithologic changes and geophysical log signatures identified in previous studies, and they were extended throughout the study area primarily by correlation of natural gamma-ray logs. The FAS consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer. A regional, productive zone is delineated and informally referred to as the Avon Park permeable zone. This zone is present over most of the study area and is characterized by thick units of dolostone with interbedded limestone and high fracture permeability. The zone has been identified in different regions in previous studies, either as the upper part of the Lower Floridan aquifer or as the lower part of the Upper Floridan aquifer. In this study it is generally considered to be within the middle confining unit. Transmissivity of the Avon Park permeable zone, a major source of water supply, generally ranges from less than 1x104 up to 1.6x106 ft2/day, and is greatest in central Florida where dolomite is developed as a major component of the zone. A large area of low transmissivity (less than 105 ft2/day) in southern Florida coincides with an area where limestone is the predominant lithology within the zone. Major uses of the FAS now include withdrawal for public and agricultural supply, including treatment with reverse osmosis, aquifer storage and recovery, and disposal of treated wastewater. Water-level and water-quality conflicts could arise between these competing uses, and delineating the extent and hydraulic connectivity of the Avon Park permeable zone within the FAS may help managers and others predict and minimize such conflicts.
Geohydrology and simulated ground-water flow in northwestern Elkhart County, Indiana
Arihood, L.D.; Cohen, D.A.
1998-01-01
In 1994, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency and the City of Elkhart, developed a ground-water model of the Elkhart, Indiana, area to determine the avail-ability and source of water at potential new well fields. The modeled area covered 190 square miles of northwestern Elkhart County and a small part of southern Michigan. Three Superfund sites and several other sites in this area are undergoing environmental cleanup. The model would be used to guide the location of well fields so that Superfund sites and environmental cleanup areas would not be within recharge areas for the well fields. The City of Elkhart obtains its water supply from two aquifers separated by a generally continuous confining unit. The upper aquifer is composed primarily of sand and gravel of glacial origin. Thickness of the upper aquifer ranges from 0 to 116 feet and averages 47 feet. The lower aquifer is composed of sand and gravel with interbedded lenses of silt and clay. Thickness of the lower aquifer ranges from 1 to 335 feet and averages 35 feet. The intervening confining unit is composed of silt and clay with interbedded sand and gravel; the confining unit ranges from 0 to 177 feet, with an average thickness of 27 feet. Flow through the aquifers is generally horizontal vertically downward from the upper aquifer, through the confining unit, and into the lower aquifer, except where flow is vertically upward at the St. Joseph River and other large streams. The hydraulic characteristics of the aquifers and confining unit were estimated by analyzing aquifer-test data from well drillers? logs and by calibration of the model. The horizontal hydraulic conductivity of the upper aquifer is 170 feet per day within about 1 mile of the St. Joseph and Elkhart Rivers and 370 feet per day at distances greater than about 1 mile. The horizontal hydraulic conductivity of the lower aquifer is 370 feet per day throughout the modeled area, with the exception of an area near the center of the modeled area where the horizontal hydraulic conductivity is 170 feet per day. Transmissivity of the lower aquifer increases generally from southwest to northeast; transmissivity values range from near 0 where the lower aquifer is absent to 57,000 square feet per day and average about 8,100 square feet per day. The vertical hydraulic conductivity of the confining unit is 0.07 feet per day; the vertical conductivity of the streambeds commonly is 1.0 foot per day and ranges from 0.05 foot per day to 50 feet per day. The areal recharge rate to the outwash deposits was determined by a base-flow separation technique to be 16 inches per year, and the areal recharge rate to the till was assumed to be 4 inches per year. A two-layer digital model was used to simulate flow in the ground-water system. The model was calibrated on the basis of historical water-use data, water-level records, and gain/loss data for streams during May and June 1979. The model was recalibrated with water-use data and water-level records from 1988. For 1979 data, 49 percent of the inflow to the model area is from precipitation and 46 percent is ground-water inflow across the model boundaries. Most of the ground-water inflow across the model boundary is from the north and east, which corresponds to high values of transmissivity?as high as 57,000 feet squared per day?in the model layers in the northern and eastern areas. Eighty-two percent of the ground-water discharge is to the streams; 5 percent of the ground-water discharge is to wells. Source areas and flow paths to the City of Elkhart public well fields are affected by the location of streams and the geology in the area. Flow to the North Well Field originates north-west of the well field, forms relatively straight flow paths, and moves southeast toward the well field and the St. Joseph River. Flow to the South Well Field begins mostly in the out-wash along Yellow Creek south of the well field, moves northward, and t
Long, Andrew J.; Putnam, Larry D.
2002-01-01
The conceptual model of the Madison and Minnelusa aquifers in the Rapid City area synthesizes the physical geography, hydraulic properties, and ground-water flow components of these important aquifers. The Madison hydrogeologic unit includes the karstic Madison aquifer, which is defined as the upper, more permeable 100 to 200 ft of the Madison Limestone, and the Madison confining unit, which consists of the lower, less permeable part of the Madison Limestone and the Englewood Formation. Overlying the Madison hydrogeologic unit is the Minnelusa hydrogeologic unit, which includes the Minnelusa aquifer in the upper, more permeable 200 to 300 ft and the Minnelusa confining unit in the lower, less permeable part. The Madison and Minnelusa hydrogeologic units outcrop in the study area on the eastern flank of the Black Hills where recharge occurs from streamflow losses and areal recharge. The conceptual model describes streamflow recharge, areal recharge, ground-water flow, storage in aquifers and confining units, unsaturated areas, leakage between aquifers, discharge from artesian springs, and regional outflow. Effective transmissivities estimated for the Madison aquifer range from 500 to 20,000 ft2/d and for the Minnelusa aquifer from 500 to 10,000 ft2/d. Localized anisotropic transmissivity in the Madison aquifer has tensor ratios as high as 45:1. Vertical hydraulic conductivities for the Minnelusa confining unit determined from aquifer tests range from 1.3x10-3 to 3.0x10-1 ft/d. The confined storage coefficient of the Madison and Minnelusa hydrogeologic units was estimated as 3x10-4 ft/d. Specific yield was estimated as 0.09 for the Madison and Minnelusa aquifers and 0.03 for the Madison and Minnelusa confining units. Potentiometric surfaces for the Madison and Minnelusa aquifers have a general easterly gradient of about 70 ft/mi with local variations. Temporal change in hydraulic head in the Madison and Minnelusa aquifers ranged from about 5 to 95 ft in water years 1988-97. The unconfined areas were estimated at about 53 and 36 mi2 for the Madison and Minnelusa hydrogeologic units, respectively, in contrast to an aquifer analysis area of 629 mi2. Dye-tracer tests, stable isotopes, and hydrogeologic features were analyzed conjunctively to estimate generalized ground-water flowpaths in the Madison aquifer and their influences on the Minnelusa aquifer. The western Rapid City area between Boxelder Creek and Spring Creek was characterized as having undergone extensive tectonic activity, greater brecciation in the Minnelusa Formation, large transmissivities, generally upward hydraulic gradients from the Madison aquifer to the Minnelusa aquifer, many karst springs, and converging flowpaths. Water-budget analysis included: (1) a dry-period budget for declining water levels; October 1, 1987, to March 31, 1993; (2) a wet-period budget for rising water levels, April 1, 1993, to September 30, 1997; and (3) a full 10-year period budget for water years 1988-97. By simultaneously balancing these water budgets, initial estimates of recharge, discharge, change in storage, and hydraulic properties were refined. Inflow rates for the 10-year budget included streamflow recharge of about 45 ft3/s or 61 percent of the total budget and areal recharge of 22 ft3/s or 30 percent. Streamflow recharge to the Madison hydrogeologic unit was about 86 percent of the total streamflow recharge. Outflow for the 10-year budget included springflow of 31 ft3/s or 42 percent of the total budget, water use of about 10 ft3/s or 14 percent, and regional outflow of 22 ft3/s or 30 percent. Ground-water storage increased 9 ft3/s during the 10-year period, and net ground-water movement from the Madison to Minnelusa hydrogeologic unit was about 8 ft3/s.
Vertical movement of ground water under the Merrill Field landfill, Anchorage, Alaska
Nelson, Gordon L.; Dearborn, L.L.
1982-01-01
Shallow groundwater under the Merrill Field sanitary landfill at Anchorage is polluted by leachate. Wells, including three Municipal-supply wells, obtain water from two confined aquifers 100-300 feet beneath the landfill area. Aquifer-test data and information on subsurface geology, ground-water levels, and properties of materials were used to estimate vertical gradients and vertical permeabilities under the landfill. The authors ' best estimates ' of vertical permeabilities of two confining units are 1 x 10 super -2 foot per day and 2 x 10 super -4 foot per day. Theoretical travel-time calculations indicate that minor amounts of pollutants may reach the upper confined aquifer after many tens of years, but that water of the composition of the leachate probably would not reach the aquifer for more than three centuries. The range of error in the theoretical travel-time calculations is likely to be plus or minus a factor of two or three. (USGS)
Hydrogeology of a hazardous-waste disposal site near Brentwood, Williamson County, Tennessee
Tucci, Patrick; Hanchar, D.W.; Lee, R.W.
1990-01-01
Approximately 44,000 gal of industrial solvent wastes were disposed in pits on a farm near Brentwood, Tennessee, in 1978, and contaminants were reported in the soil and shallow groundwater on the site in 1985. In order for the State to evaluate possible remedial-action alternatives, an 18-month study was conducted to define the hydrogeologic setting of the site and surrounding area. The area is underlain by four hydrogeologic units: (1) an upper aquifer consisting of saturated regolith, Bigby-Cannon Limestone, and weathered Hermitage Formation; (2) the Hermitage confining unit; (3) a lower aquifer consisting of the Carters Limestone; and (4) the Lebanon confining unit. Wells generally are low yielding less than 1 gal/min ), although locally the aquifers may yield as much as 80 gal/minute. This lower aquifer is anisotropic, and transmissivity of this aquifer is greatest in a northwest-southeast direction. Recharge to the groundwater system is primarily from precipitation, and estimates of average annual recharge rates range from 6 to 15 inches/year. Discharge from the groundwater system is primarily to the Little Harpeth River and its tributaries. Groundwater flow at the disposal site is mainly to a small topographic depression that drains the site. Geochemical data indicate four distinct water types. These types represent (1) shallow, rapidly circulating groundwater; (2) deeper (> than 100 ft), rapidly circulating groundwater; (3) shallow, slow moving groundwater; and (4) deeper, slow moving groundwater. Results of the numerical model indicate that most flow is in the upper aquifer. (USGS)
Hansen, Cristi V.; Spinazola, Joseph M.; Underwood, E.J.; Wolf, R.J.
1992-01-01
The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifers and confining systems in Kansas. Chapter D presents maps that show the areal extent, altitude and configuration of the top, and thickness of Mississippian rocks that compose the upper aquifer unit of the Western Interior Plains aquifer system in Kansas, The chapter is limited to the presentation of the physical framework of the upper aquifer unit. The interpretation of the physical framework of the upper aquifer unit is based on selected geophysical and lithologic logs and published maps of stratigraphically equivalent units. Maps indicating the thickness and the altitude and configuration of the top of the upper aquifer unit in the Western Interior Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian basement through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic unit are consistent with the maps of underlying and overlying units. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.
Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2009
Ortiz, Anita G.
2009-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2009. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 48.53 inches for west-central Florida (from June 2008 through May 2009) was 4.12 inches below the historical cumulative average of 52.65 inches (Southwest Florida Water Management District, 2009). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 18-22, 2009. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2009). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition. The potentiometric contours are generalized to synoptically portray the head in a dynamic hydrologic system, taking due account of the variations in hydrogeologic conditions, such as differing depths of wells, nonsimultaneous measurements of water levels, variable effects of pumping, and changing climatic influence. The potentiometric contours may not conform exactly with the individual measurements of water levels.
Hydrogeologic reconnaissance of the San Miguel River basin, southwestern Colorado
Ackerman, D.J.; Rush, F.E.
1984-01-01
The San Miguel River Basin encompasses 4,130 square kilometers of which about two-thirds is in the southeastern part of the Paradox Basin. The Paradox Basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Evaporite beds of mostly salt are both overlain and underlain by confining beds. Aquifers are present above and below the confining-bed sequence. The principal element of ground-water outflow from the upper aquifer is flow to the San Miguel River and its tributaries; this averages about 90 million cubic meters per year. A water budget for the lower aquifer has only two equal, unestimated elements, subsurface outflow and recharge from precipitation. The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. No brines have been sampled and no brine discharges have been identified in the basin. Salt water has been reported for petroleum-exploration wells, but no active salt solution has been identified. (USGS)
Ryals, G.N.
1984-01-01
Regional geohydrologic maps show the altitude of the base and the thickness of the aquifers of Tertiary age and related confining layers in the northern Louisiana salt-dome basin. The limit of freshwater in aquifers is also shown. The basin has an area of about 3,000 square miles, and four geologic units of Tertiary age contain regional aquifers. From oldest (deepest) to youngest, the aquifers are in the Wilcox Group, Carrizo Sand, Sparta Sand, and Cockfield Formation. As the Wilcox is hydraulically interconnected with the overlying Carrizo, they are treated as one hydrologic unit, the Wilcox-Carrizo aquifer. The aquifers are separated by confining layers that retard water movement. In the northwestern part of the area, the Wilcox-Carrizo aquifer is separated from the underlying sand facies of the Nacatoch Sand (Cretaceous age) by a confining layer composed of the Midway Group (Tertiary age) and the underlying Arkadelphia Marl and an upper clay and marl facies of the Nacatoch Sand (both of Cretaceous age). In the remainder of the area, the Wilcox-Carrizo aquifer is separated from an underlying Cretaceous aquifer comprised of the Tokio Formation and Brownstown Marl by the Midway Group and several underlying Cretaceous units which in order of increasing age are the Arkadelphia Maril, Nacatoch Sand, Saratoga Chalk, Marlbrook Marl , and Annona Chalk. The Wilcox-Carrizo aquifer is separated from the Sparta aquifer by the overyling Cane River Formation. The Sparta aquifer is separated from the Cockfield aquifer by the overlying Cook Mountain Formation. (USGS)
Regional hydrology of the Green River-Moab area, northwestern Paradox Basin, Utah
Rush, F.E.; Whitfield, M.S.; Hart, I.M.
1984-01-01
The Green River-Moab area encompasses about 7,800 square kilometers or about 25 percent of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and over- lying and underlying thick sequences of rocks with minimal permeability; above and below these confining beds are aquifers. The upper Mesozoic sand- stone aquifer, probably is the most permeable hydrogeologic unit of the area and is the subject of this investigation. The principal component of ground- water outflow from this aquifer probably is subsurface flow to regional streams (the Green and Colorado Rivers) and is about 100 million cubic meters per year. All other components of outflow are relatively small. The average annual recharge to the aquifer is about 130 million cubic meters, of which about 20 million cubic meters is from local precipitation. For the lower aquifer, all recharge and discharge probably is by subsurface flow and was not estimated.The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. Brines are present in the confining beds, but solution of beds o£ salt probably is very slow in most parts of the area. No brine discharges' have been identified.
Reese, R.S.; Memberg, S.J.
2000-01-01
The virtually untapped Floridan aquifer system is considered to be a supplemental source of water for public use in the highly populated coastal area of Palm Beach County. A recent study was conducted to delineate the distribution of salinity in relation to the local hydrogeology and assess the potential processes that might control (or have affected) the distribution of salinity in the Floridan aquifer system. The Floridan aquifer system in the study area consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer and ranges in age from Paleocene to Oligocene. Included at its top is part of a lowermost Hawthorn Group unit referred to as the basal Hawthorn unit. The thickness of this basal unit is variable, ranging from about 30 to 355 feet; areas where this unit is thick were paleotopographic lows during deposition of the unit. The uppermost permeable zones in the Upper Floridan aquifer occur in close association with an unconformity at the base of the Hawthorn Group; however, the highest of these zones can be up in the basal unit. A dolomite unit of Eocene age generally marks the top of the Lower Floridan aquifer, but the top of this dolomite unit has a considerable altitude range: from about 1,200 to 2,300 feet below sea level. Additionally, where the dolomite unit is thick, its top is high and the middle confining unit of the Floridan aquifer system, as normally defined, probably is not present. An upper zone of brackish water and a lower zone of water with salinity similar to that of seawater (saline-water zone) are present in the Floridan aquifer system. The brackish-water and saline-water zones are separated by a transition zone (typically 100 to 200 feet thick) in which salinity rapidly increases with depth. The transition zone was defined by using a salinity of 10,000 mg/L (milligrams per liter) of dissolved-solids concentration (about 5,240 mg/L of chloride concentration) at its top and 35,000 mg/L of dissolved-solids concentration (about 18,900 mg/L of chloride concentration) at its base. The base of the brackish-water zone and the top of the saline-water zone were approximately determined mostly by means of resistivity geophysical logs. The base of the brackish-water zone in the study area ranges from about 1,600 feet below sea level near the coast to almost 2,200 feet below sea level in extreme southwestern Palm Beach County. In an area that is peripheral to Lake Okeechobee, the boundary unexpectedly rises to perhaps as shallow as 1,800 feet below sea level. In an upper interval of the brackish-water zone within the Upper Floridan aquifer, chloride concentration of water ranges from 490 to 8,000 mg/L. Chloride concentration correlates with the altitude of the basal contact of the Hawthorn Group, with concentration increasing as the altitude of this contact decreases. Several areas of anomalous salinity where chloride concentration in this upper interval is greater than 3,000 mg/L occur near the coast. In most of these areas, salinity was found to decrease with depth from the upper interval to a lower interval within the brackish-water zone: a reversal of the normal salinity trend within the zone. These areas are also characterized by an anomalously low altitude of the base of the brackish-water zone, and a much greater thickness of the transition zone than normal. These anomalies could be the result of seawater preferentially invading zones of higher permeability in the Upper Floridan aquifer during Pleistocene high stands of sea level and incomplete flushing of this high salinity water by the present-day flow system.
Kinnaman, Sandra L.; Dixon, Joann F.
2011-01-01
The Floridan aquifer system covers nearly 100,000 square miles in the southeastern United States throughout Florida and in parts of Georgia, South Carolina, and Alabama, and is one of the most productive aquifers in the world (Miller, 1990). This sequence of carbonate rocks is hydraulically connected and is over 300 feet thick in south Florida and thins toward the north. Typically, this sequence is subdivided into the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. The majority of freshwater is contained in the Upper Floridan aquifer and is used for water supply (Miller, 1986). The Lower Floridan aquifer contains fresh to brackish water in northeastern Florida and Georgia, while in south Florida it is saline. The potentiometric surface of the Upper Floridan aquifer in May–June 2010 shown on this map was constructed as part of the U.S. Geological Survey Floridan Aquifer System Groundwater Availability Study (U.S. Geological Survey database, 2011). Previous synoptic measurements and regional potentiometric maps of the Upper Floridan aquifer were prepared for May 1980 (Johnston and others, 1981) and May 1985 (Bush and others, 1986) as part of the Floridan Regional Aquifer System Analysis.
Barr, G.L.
1996-01-01
From 1991 to 1995, the hydrogeology of the surficial aquifer system and the major permeable zones and confining units of the intermediate aquifer system in southwest Florida was studied. The study area is a 1,400-square-mile area that includes Sarasota County and parts of Manatee, De Soto, Charlotte, and Lee Counties. Lithologic, geophysical, hydraulic property, and water-level data were used to correlate the hydrogeology and map the extent of the aquifer systems. Water chemistry was evaluated in southwest Sarasota County to determine salinity of the surficial and intermediate aquifer systems. The surficial aquifer is an unconfined aquifer system that overlies the intermediate aquifer system and ranges from a few feet to over 60 feet in thickness in the study area. Hydraulic properties of the surficial aquifer system determined from aquifer and laboratory tests, and model simulations vary considerably across the study area. The intermediate aquifer system, a confined aquifer system that lies between the surficial and the Upper Floridan aquifers, is composed of alternating confining units and permeable zones. The intermediate aquifer system has three major permeable zones that exhibit a wide range of hydraulic properties. Horizontal flow in the intermediate aquifer system is northeast to southwest. Most of the study area is in a discharge area of the intermediate aquifer system. Water ranges naturally from fresh in the surficial aquifer system and upper permeable zones of the intermediate aquifer system to moderately saline in the lower permeable zone. Water-quality data collected in coastal southwest Sarasota County indicate that ground-water withdrawals from major pumping centers have resulted in lateral seawater intrusion and upconing into the surficial and intermediate aquifer systems.
Hydrogeology and predevelopment flow in the Texas Gulf Coast aquifer systems
Ryder, Paul D.
1988-01-01
Total simulated recharge in the outcrop areas is 269 million cubic feet per day, which is offset by an equal amount of discharge in the outcrop areas. The smallest rates of leakage are across the Vicksburg-Jackson confining unit, with downward and upward rates of less than one million cubic feet per day. The greatest rate of leakage is 47 million cubic feet per day upward into the Holocene-upper Pleistocene permeable zone.
Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.
2015-01-01
The regional hydrogeologic framework indicates that the site is underlain by Coastal Plain sediments of the Columbia, Merchantville, and Potomac Formations. Two primary aquifers underlying the site, the Columbia and the upper Potomac, are separated by the Merchantville Formation confining unit. Local groundwater flow in the surficial (Columbia) aquifer is controlled by topography and generally flows northward and discharges to nearby surface water. Regional flow within the Potomac aquifer is towards the southeast, and is strongly influenced by major water withdrawals locally. Previous investigations at the site indicated that contaminants, primarily benzene and chlorinated benzene compounds, were present in the Columbia aquifer in most locations; however, there were only limited detections in the upper Potomac aquifer as of 2004. From 2005 through 2012, the USGS designed a monitoring network, assisted with exploratory drilling, collected data at monitoring wells, conducted geophysical surveys, evaluated water-level responses in wells during pumping of a production well, and evaluated major aquifer withdrawals. Data collected through these efforts were used to refine the local conceptual flow system. The refined conceptual flow system for the site includes: (a) identification of gaps in confining units in the study area, (b) identification and correlation of multiple water-bearing sand intervals within the upper Potomac Formation, (c) connections between groundwater and surface water, (d) connections between shallow and deeper groundwater, (e) new water-level (or potentiometric surface) maps and inferred flow directions, and (f) identification of major local pumping well influences. The implications of the revised conceptual flow system on the occurrence and movement of site contaminants are that the resulting detection of contaminants in the upper Potomac aquifer at specific well locations can be attributed primarily to either advective lateral transport, direct vertical contaminant transport, or a combination of vertical and lateral movement resulting from changes in water withdrawal rates over time.
Peter, Kathy D.; Kyllonen, David P.; Mills, K.R.
1987-01-01
Beginning in 1981, a 3-yr project was conducted to determine the availability and quality of groundwater in the sedimentary bedrock aquifers in the Black Hills of South Dakota and Wyoming. The project was limited to three bedrock units in order of increasing age: the Cretaceous Inyan kara Group, Permian and Pennsylvanian Minnelusa Formation, and Mississippian Madison (or Pahasapa) Limestone. This map shows the altitude of the top of the Minnelusa Formation in the northern Black Hills, and shows the configuration of the structural features in the northern part of the Black Hills and the eastern part of the Bear Lodge Mountains. In general, the Minnelusa Formation dips away from the Black Hills uplift, either to the northeast and the Williston Basin or, south of the Bear Lodge Mountains, to the southwest and the Powder River basin, which is outside the map area. In the map area, the upper beds of the Minnelusa Formation are an aquifer and the lower beds are a confining or semi-confining unit. The upper part of the Minnelusa Formation has a greater percentage of coarse-grained sandstone beds than the lower part. Furthermore, solution and removal of anhydrite, brecciation, and solution of cement binding the sandstone grains may have increased the permeability of the upper part of the Minnelusa Formation in the Black Hills. Wells completed in the upper part of the Minnelusa have yields that exceed 100 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min. Flowing wells have been completed in the Minnelusa aquifer in most of the study area in South Dakota and in about the northern one-half of Crook County, Wyoming. (Lantz-PTT)
Hydrogeologic Framework of the New Jersey Coastal Plain
Zapecza, Otto S.
1989-01-01
This report presents the results of a water-resources, oriented subsurface mapping program within the Coastal Plain of New Jersey. The occurrence and configuration of 15 regional hydrogeologic units have been defined, primarily on the basis of an interpretation of borehole geophysical data. The nine aquifers and six confining beds are composed of unconsolidated clay, silt, sand, and gravel and range in age from Cretaceous to Quaternary. Electric and gamma-ray logs from more than 1,000 Coastal Plain wells were examined. Of these, interpretive data for 302 sites were selected, on the basis of logged depth, quality of data, and data distribution, to prepare structure contour and thickness maps for each aquifer and a thickness map for each confining bed. These maps, together with 14 hydrogeologic sections, show the geometry, lateral extent, and vertical and horizontal relationships among the 15 hydrogeologic units. The hydrogeologic maps and sections show that distinct lower, middle, and upper aquifers are present within the Potomac, Raritan-Magothy aquifer system near the Delaware River from Burlington County to Salem County. Although the lower aquifer is recognized only in this area, the middle aquifer extends into the northeastern Coastal Plain of New Jersey, where it is stratigraphically equivalent to the Farrington aquifer. The upper aquifer extends throughout most of the New Jersey Coastal Plain and is stratigraphically equivalent to the Old Bridge aquifer in the northeastern Coastal Plain. The overlying Merchantville-Woodbury confining bed is the most regionally extensive confining bed within the New Jersey Coastal Plain. Its thickness ranges from less than 100 feet near the outcrop to more than 450 feet along the coast. The Englishtown aquifer system acts as a single aquifer throughout most of its subsurface extent, but it contains two water-bearing sands in pars of Monmouth and Ocean Counties. The overlying Marshalltown-Wenonah confining bed is a thin, leaky unit ranging in thickness from approximately 20 to 80 feet. The Wenonah-Mount Laurel aquifer is identified in the subsurface throughout the New Jersey Coastal Plain southeast of its outcrop area. Sediments that overlie the Wenonah-Mount Lauren aquifer and that are subjacent to the major aquifers within the Kirkwood Formation and the Cohansey Sand are described hydrologically as a composite confining bed. These include the Navesink Formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, and Piney Point Formation and the basal clay of the Kirkwood Formation.. The Vincentown Formation functions as n aquifer within 3 to 10 miles downdip of its outcrop area. In areas farther downdip the Vincentown Formation functions as a confining bed. The Piney Point aquifer is laterally persistent from the southern New Jersey Coastal Plain northward into parts of Burlington and Ocean Counties. The Atlantic City 800-foot sand of the Kirkwood Formation can be recognized in the subsurface along coastal areas of Cape May, Atlantic, and southern Ocean Counties, but inland only as far west as the extent of the overlying confining bed. In areas west of the extent of the overlying confining bed, the Kirkwood Formation is in hydraulic connection with the overlying Cohansey Sand and younger surficial deposits and functions as an unconfined aquifer.
Sacks, Laura A.; Tihansky, Ann B.
1996-01-01
In southwest Florida, sulfate concentrations in water from the Upper Floridan aquifer and overlying intermediate aquifer system are commonly above 250 milligrams per liter (the drinking water standard), particularly in coastal areas. Possible sources of sulfate include dissolution of gypsum from the deeper part of the Upper Floridan aquifer or the middle confining unit, saltwater in the aquifer, and saline waters from the middle confining unit and Lower Floridan aquifer. The sources of sulfate and geochemical processes controlling ground-water composition were evaluated for the Peace and Myakka River Basins and adjacent coastal areas of southwest Florida. Samples were collected from 63 wells and a saline spring, including wells finished at different depth intervals of the Upper Floridan aquifer and intermediate aquifer system at about 25 locations. Sampling focused along three ground-water flow paths (selected based on a predevelopment potentiometric-surface map). Ground water was analyzed for major ions, selected trace constituents, dissolved organic carbon, and stable isotopes (delta deuterium, oxygen-18, carbon-13 of inorganic carbon, and sulfur-34 of sulfate and sulfide); the ratio of strontium-87 to strontium-86 was analyzed for waters along one of the flow paths. Chemical and isotopic data indicate that dedolomitization reactions (gypsum and dolomite dissolution and calcite precipitation) control the chemical composition of water in the Upper Floridan aquifer in inland areas. This is confirmed by mass-balance modeling between wells in the shallowest interval in the aquifer along the flow paths. However, gypsum occurs deeper in the aquifer than these wells. Upwelling of sulfate-rich water that previously dissolved gypsum in deeper parts of the aquifer is a more likely source of sulfate than gypsum dissolution in shallow parts of the aquifer. This deep ground water moves to shallower zones in the aquifer discharge area. Saltwater from the Upper Floridan aquifer has not dissolved significant amounts of gypsum compared to fresher water in the aquifer. This is consistent with a shallow seawater source for the saltwater, rather than a deeper source from the underlying middle confining unit or Lower Floridan aquifer, which would have elevated sulfate concentrations. Ion exchange and dolomitization may be important reactions for saltwater in the aquifer. According to geochemical modeling, the freshwater end member for water in the saltwater mixing zone in the southwestern part of the study area is not upgradient water from the Upper Floridan aquifer that dissolved gypsum. Instead, this water appears to be isolated from the regional freshwater flow system and may be part of a more localized flow system. The chemical and isotopic composition of water in the intermediate aquifer system is controlled by differences in extent of reactions with aquifer minerals, upward leakage from the Upper Floridan aquifer, and saltwater mixing. In inland areas, water generally is characterized by relatively low sulfate concentrations (less than 250 milligrams per liter) and differences in extent of carbonate mineral dissolution. Some inland waters have elevated chloride concentrations, which may be related to evaporation prior to recharge. In coastal Sarasota County and in isolated inland areas, water from the intermediate aquifer system has high sulfate concentrations characteristic of dedolomitization waters from the Upper Floridan aquifer. The chemical and isotopic composition of these waters is controlled by upward leakage from the Upper Floridan aquifer, which naturally occurs in the discharge area but may be locally enhanced by pumping or interconnection of wells open to both aquifer systems. In western Charlotte County, the waters are dominated by sodium and chloride, and their compositions are consistent with mixing between saltwater and inland intermediate aquifer system water that has not been influenced by discharge from the
NASA Astrophysics Data System (ADS)
Odling, N. E.; Serrano, R. P.; Hussein, M.; Guadagnini, A.; Riva, M.
2013-12-01
In confined and semi-confined aquifers, borehole water levels respond to fluctuations in barometric pressure and this response can be used to estimate the properties of aquifer confining layers. We use this response as indicator of groundwater vulnerability for the semi-confined Chalk aquifer in East Yorkshire, UK. Time series data of borehole water levels are corrected for Earth tides and recharge, and barometric response functions (BRFs) estimated using cross-spectral deconvolution-averaging techniques. The resulting BRFs are fitted using a theoretical model of the BRF gain and phase for a semi-confined aquifer (Rojstaczer, 1988) to obtain confining layer properties. For all of the boreholes, non-zero hydraulic diffusivities for the confining layer were found indicating that the aquifer is semi-confined. A ';characteristic time scale' based on the hydraulic and pneumatic diffusivities of the confining layer is introduced as a measure of the degree of aquifer confinement and therefore groundwater vulnerability. The analytical model assumes that the confining layer and aquifer are homogeneous. However, in nature, confining layers are heterogeneous and groundwater vulnerability dominated by the presence of high diffusivity, high flow pathways through the confining layer to the aquifer. A transient numerical model (MODFLOW) was constructed to test the impact of such heterogeneities on the BRF. In the model, an observed barometric pressure time series is used as a boundary condition applied to the upper surface of the top unit of the model (representing the confining layer) and BRFs determined from the time series of model heads in the bottom unit (representing the aquifer). The results from a numerical model with a homogeneous confining layer were found to accurately reproduce the BRFs from a modified version of the analytical model. The introduction of a localized, high diffusive block in the confining layer was found to modify the BRF, reducing the gain amplitude while having limited impact on the phase. It was found that the BRF reflects the presence of a fully penetrating, high diffusivity heterogeneity up to several hundred meters distant from the observation borehole, and shows little sensitivity to the heterogeneity's horizontal dimension. Heterogeneities that are 50% partially penetrating do not significantly impact on the BRF and 90% penetrating heterogeneities can only be detected when large and close to the observation borehole. These results show that BRF gain may be particularly useful in detecting the presence of fully penetrating heterogeneities of high diffusivity within confining layers that potentially enhance groundwater vulnerability. This research has been funded in part through the EU ITN ';IMVUL' (PITN-GA-2008-212298). Reference: Rojstaczer, S. (1988) Determination of fluid-flow properties from the response of water levels in wells to atmospheric loading, Water Resources Research, 24(11), 1927-1938.
Determination of hydraulic properties in the vicinity of a landfill near Antioch, Illinois
Kay, Robert T.; Earle, John D.
1990-01-01
A hydrogeologic investigation was conducted in and around a landfill near Antioch, Illinois, in December 1987. The investigation consisted, in part, of an aquifer test that was designed to determine the hydraulic connection between the hydrogeologic units in the area. The hydrogeologic units consist of a shallow, unconfined, sand and gravel aquifer of variable thickness that overlies an intermediate confining unit of variable thickness composed predominantly of till. Underlying the till is a deep, confined, sand and gravel aquifer that serves as the water supply for the village of Antioch. The aquifer test was conducted in the confined aquifer. Aquifer-test data were analyzed using the Hantush and Jacob method for a leaky confined aquifer with no storage in the confining unit. Calculated transmissivity of the confined aquifer ranged from 1.96x10^4 to 2.52x10^4 foot squared per day and storativity ranged from 2.10x10^-4 to 8.71x10^-4. Leakage through the confining unit ranged from 1.29x10^-4 to 7.84x10^-4 foot per day per foot, and hydraulic conductivity of the confining unit ranged from 3.22x10^-3 to 1.96x10^-2 foot per day. The Hantush method for analysis of a leaky confined aquifer with storage in the confining unit also was used to estimate aquifer and confining-unit properties. Transmissivity and storativity values calculated using the Hantush method are in good agreement with the values calculated from the Hantush and Jacob method. Properties of the confining unit were estimated using the ratio method of Neuman and Witherspoon. The estimated diffusivity of the confining unit ranged from 50.36 to 68.13 feet squared per day, A value for the vertical hydraulic conductivity of the confining unit calculated from data obtained using both the Hantush and the Neuman and Witherspoon methods was within the range of values calculated by the Hantush and Jacob method. The aquifer-test data clearly showed that the confining unit is hydraulically connected to the confined aquifer. The aquifer-test data also indicated that the unconfined aquifer becomes hydraulically connected to the deep sand and gravel aquifer within 24 hours after the start of pumping in the confined aquifer.
Reese, Ronald S.; Richardson, Emily
2008-01-01
The carbonate Floridan aquifer system of central and southern Florida (south of a latitude of about 29 degrees north) is an invaluable resource with a complex framework that has previously been mapped and managed primarily in a subregional context according to geopolitical boundaries. As interest and use of the Floridan aquifer system in this area increase, a consistent regional hydrogeologic framework is needed for effective management across these boundaries. This study synthesizes previous studies on the Floridan aquifer system and introduces a new regional hydrogeologic conceptual framework, linking physical relations between central and southern Florida and between the west and east coastal areas. The differences in hydrogeologic nomenclature and interpretation across the study area from previous studies were identified and resolved. The Floridan aquifer system consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer. This study introduces and delineates a new major, regional productive zone or subaquifer, referred to as the Avon Park permeable zone. This zone is contained within the middle confining unit and synthesizes an extensive zone that has been referred to differently in different parts of the study area in previous studies. The name of this zone derives from the description of this zone as the ?Avon Park highly permeable zone? in west-central Florida in a previous study. Additionally, this zone has been identified previously in southeastern Florida as the ?middle Floridan aquifer.? An approximately correlative or approximate time-stratigraphic framework was developed and was used to provide guidance in the identification and determination of aquifers, subaquifers, and confining units within the Floridan aquifer system and to determine their structural relations. Two stratigraphic marker horizons within the Floridan aquifer system and a marker unit near the top of the aquifer system were delineated or mapped. The marker horizons are correlative points in the stratigraphic section rather than a unit with upper and lower boundaries. The two marker horizons and the marker unit originated from previous studies, wherein they were based on lithology and correlation of geophysical log signatures observed in boreholes. The depths of these marker horizons and the marker unit were extended throughout the study area by correlation of natural gamma-ray logs between wells. The Floridan aquifer system includes, in ascending order, the upper part of the Cedar Keys Formation, Oldsmar Formation, Avon Park Formation, Ocala Limestone, Suwannee Limestone, and in some areas the lower part of the Hawthorn Group. The first marker horizon is in the lower part of the aquifer system near the top of the Oldsmar Formation and is associated with the top of distinctive glauconitic limestone beds that are present in some regions; the second marker horizon is near the middle of the aquifer system in the middle part of the Avon Park Formation. The marker unit lies at the top of a basal unit in the Hawthorn Group and provides a stratigraphic constraint for the top of the Floridan aquifer system. The marker horizons do not have distinguishing lithologic characteristics or a characteristic gamma-ray log pattern in all areas but are still thought to be valid because of correlation of the entire section and correlation of all sufficiently deep wells with gamma-ray logs. The Avon Park permeable zone is contained entirely within the Avon Park Formation; its position within the section is either near the middle Avon Park marker horizon or within a thick part of the section that extends several hundred feet above the marker horizon. This subaquifer is present over most of the study area and characteristically consists of thick units of dolostone and interbedded limestone, and limestone in its upper part. Permeability is primarily associated with fracturing. This subaquifer is well developed in west-cen
Gardner, Philip M.; Kirby, Stefan
2011-01-01
The water resources of Rush Valley were assessed during 2008–2010 with an emphasis on refining the understanding of the groundwater-flow system and updating the groundwater budget. Surface-water resources within Rush Valley are limited and are generally used for agriculture. Groundwater is the principal water source for most other uses including supplementing irrigation. Most groundwater withdrawal in Rush Valley is from the unconsolidated basin-fill aquifer where conditions are generally unconfined near the mountain front and confined at lower altitudes near the valley center. Productive aquifers also occur in fractured bedrock along the valley margins and beneath the basin-fill deposits in some areas.Drillers’ logs and geophysical gravity data were compiled and used to delineate seven hydrogeologic units important to basin-wide groundwater movement. The principal basin-fill aquifer includes the unconsolidated Quaternary-age alluvial and lacustrine deposits of (1) the upper basin-fill aquifer unit (UBFAU) and the consolidated and semiconsolidated Tertiary-age lacustrine and alluvial deposits of (2) the lower basin-fill aquifer unit (LBFAU). Bedrock hydrogeologic units include (3) the Tertiary-age volcanic unit (VU), (4) the Pennsylvanian- to Permian-age upper carbonate aquifer unit (UCAU), (5) the upper Mississippian- to lower Pennsylvanian-age upper siliciclastic confining unit (USCU), (6) the Middle Cambrian- to Mississippian-age lower carbonate aquifer unit (LCAU), and (7) the Precambrian- to Lower Cambrian-age noncarbonate confining unit (NCCU). Most productive bedrock wells in the Rush Valley groundwater basin are in the UCAU.Average annual recharge to the Rush Valley groundwater basin is estimated to be about 39,000 acre-feet. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall within the mountains with smaller amounts occurring as infiltration of streamflow and unconsumed irrigation water at or near the mountain front. Groundwater generally flows from the higher altitude recharge areas toward two distinct valley-bottom discharge areas: one in the vicinity of Rush Lake in northern Rush Valley and the other located west and north of Vernon. Average annual discharge from the Rush Valley groundwater basin is estimated to be about 43,000 acre-feet. Most discharge occurs as evapotranspiration in the valley lowlands, as discharge to springs and streams, and as withdrawal from wells. Subsurface discharge outflow to Tooele and Cedar Valleys makes up only a small fraction of natural discharge.Groundwater samples were collected from 25 sites (24 wells and one spring) for geochemical analysis. Dissolved-solids concentrations in water from these sites ranged from 181 to 1,590 milligrams per liter. Samples from seven wells contained arsenic concentrations that exceed the Environmental Protection Agency Maximum Contaminant Level of 10 micrograms per liter. The highest arsenic levels are found north of Vernon and in southeastern Rush Valley. Stable-isotope ratios of oxygen and deuterium, along with dissolved-gas recharge temperatures, indicate that nearly all modern groundwater is meteoric and derived from the infiltration of high altitude precipitation in the mountains. These data are consistent with recharge estimates made using a Basin Characterization Model of net infiltration that shows nearly all recharge occurring as infiltration of precipitation and snowmelt within the mountains surrounding Rush Valley. Tritium concentrations between 0.4 and 10 tritium units indicate the presence of modern (less than 60 years old) groundwater at 7 of the 25 sample sites. Apparent 3H/3He ages, calculated for six of these sites, range from 3 to 35 years. Adjusted minimum radiocarbon ages of premodern water samples range from about 1,600 to 42,000 years with samples from 11 of 13 sites being more than 11,000 years. These data help to identify areas where modern groundwater is circulating through the hydrologic system on time scales of decades or less and indicate that large parts of the principal basin-fill and the bedrock aquifers are much less active and receive little to no modern recharge.
Clark, Allan K.; Morris, Robert R.
2017-11-16
The Edwards and Trinity aquifers are major sources of water in south-central Texas and are both classified as major aquifers by the State of Texas. The population in Hays and Comal Counties is rapidly growing, increasing demands on the area’s water resources. To help effectively manage the water resources in the area, refined maps and descriptions of the geologic structures and hydrostratigraphic units of the aquifers are needed. This report presents the detailed 1:24,000-scale bedrock hydrostratigraphic map as well as names and descriptions of the geologic and hydrostratigraphic units of the Driftwood and Wimberley 7.5-minute quadrangles in Hays and Comal Counties, Tex.Hydrostratigraphically, the rocks exposed in the study area represent a section of the upper confining unit to the Edwards aquifer, the Edwards aquifer, the upper zone of the Trinity aquifer, and the middle zone of the Trinity aquifer. In the study area, the Edwards aquifer is composed of the Georgetown Formation and the rocks forming the Edwards Group. The Trinity aquifer is composed of the rocks forming the Trinity Group. The Edwards and Trinity aquifers are karstic with high secondary porosity along bedding and fractures. The Del Rio Clay is a confining unit above the Edwards aquifer and does not supply appreciable amounts of water to wells in the study area.The hydrologic connection between the Edwards and Trinity aquifers and the various hydrostratigraphic units is complex because the aquifer system is a combination of the original Cretaceous depositional environment, bioturbation, primary and secondary porosity, diagenesis, and fracturing of the area from Miocene faulting. All of these factors have resulted in development of modified porosity, permeability, and transmissivity within and between the aquifers. Faulting produced highly fractured areas which allowed for rapid infiltration of water and subsequently formed solutionally enhanced fractures, bedding planes, channels, and caves that are highly permeable and transmissive. Because of faulting the juxtaposition of the aquifers and hydrostratigraphic units has resulted in areas of interconnectedness between the Edwards and Trinity aquifers and the various hydrostratigraphic units that form the aquifers.
Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.
2014-01-01
Regionally, water in the lower Tertiary and Upper Cretaceous aquifer systems flows in a northerly or northeasterly direction from the Powder River structural basin to the Williston structural basin. Groundwater flow in the Williston structural basin generally is easterly or northeasterly. Flow in the uppermost hydrogeologic units generally is more local and controlled by topography where unglaciated in the Williston structural basin than is flow in the glaciated part and in underlying aquifers. Groundwater flow in the Powder River structural basin generally is northerly with local variations greatest in the uppermost aquifers. Groundwater is confined, and flow is regional in the underlying aquifers.
Westjohn, David B.; Weaver, Thomas L.
1996-01-01
Late Mississippian and Pennsylvanian sedimentary rocks form part of a regional system of aquifers and confining units in the central Lower Peninsula of Michigan. The upper part of the Pennsylvanian rock sequence constitutes the Saginaw aquifer, which consists primarily of sandstone. This sandstone aquifer overlies the Saginaw confining unit, which consists primarily of shale. The Saginaw confining unit separates the Saginaw aquifer from the Parma-Bayport aquifer, which consists primarily of permeable sandstones and carbonates; these permeable units are interpreted to be hydraulically connected and stratigraphically continuous at the scale of the regional aquifer system. The Saginaw aquifer ranges in thickness from 100 to 370 feet along a 30- to 45-milewide south-trending corridor through the approximate center of the aquifer system. The Saginaw aquifer typically contains freshwater along this corridor of thick sandstone. Most municipalities that use water from the Saginaw aquifer are located along this corridor. On either side of this corridor, the Saginaw aquifer generally is less than 100-feet thick, and typically contains saline water. Altitude of the surface of the Saginaw aquifer ranges from 800 to 900 feet in the northern part of the aquifer system, and from 500 to 600 feet in the southern part. Altitude of the top of the Saginaw aquifer is lower in the western and eastern parts of the aquifer system (typically 400 to 500 feet). The Saginaw confining unit is thickest in the northwestern part of the aquifer system (100 to 240 feet thick); however, thickness decreases to 50 feet in the southeast. Thickness of the Parma-Bayport aquifer generally ranges from 100 to 150 feet. The surface configuration of this aquifer is similar in shape to the Saginaw aquifer; altitudes are highest in the southern and northern parts of the aquifer system (900 and 500 feet, respectively). Lowest altitude (approximately -100 feet) of the Parma-Bayport aquifer is in the east-central part of the basin. The Parma-Bayport aquifer contains freshwater in subcrop areas where it is in direct-hydraulic connection to permeable glacial deposits; however, this aquifer contains saline water or brine down dip from subcrop areas.
Kenny, J.F.; Wolf, R.J.; Hansen, Cristi V.
1993-01-01
The purpose of the investigation is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown of the envelope cover,This Hydrologic Investigations Atlas, which consists of a series of chapters, presents a description of the physical framework and geohydrology of principal aquifers and confining systems in Kansas. Chapter H presents the geohydrology of the upper aquifer unit in the Western Interior Plains aquifer system. The physical framework of the aquifer system in relation to other systems is described by maps and sections showing areal extent and the thickness of rocks that compose the unit. The physical framework of the upper aquifer unit is described in detail in chapter D of the atlas (Hansen and others, in press). The hydrology of the system in relation to that of other systems is described in this chapter by maps showing the altitude of fluid levels and the direction of water movement within the unit. The chemical composition of water in the system is described by maps that show the distribution of dissolved-solids concentrations and the differences in water types on the basis of principal chemical constituents. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.
Potentiometric surface of the Upper Floridan aquifer, west-central Florida, May 2005
Ortiz, A.G.; Blanchard, R.A.
2006-01-01
The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is a highly productive aquifer and supplies more than 10 times the amount of water pumped from either the surficial aquifer system or the intermediate aquifer system in most of the study area (Duerr and others, 1988). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2005. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in a tightly cased well that taps a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 67.27 inches for west-central Florida (from June 2004 through May 2005) was 14.20 inches above the historical cumulative average of 53.07 inches (Southwest Florida Water Management District (SWFWMD), 2005). The above average precipitation is attributed to the active hurrican season for Florida in 2004. Historical cumulative averages are calculated from regional rainfall summary reports (1915 to the most recent completed calendar year) and are updated monthly by the SWFWMD. This report, prepared by the U.S. Geological Survey (USGS) in cooperation with the SWFWMD, is part of a semiannual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the USGS during May 23-27, 2005. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the SWFWMD boundary by the USGS office in Altamonte Springs, Florida (Kinnaman, 2006). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition. Water levels in about 19 percent of the wells measured in May 2005 were lower than the May 2004 water levels (Blanchard and others, 2004). Data from 409 wells indicate that the May 2005 water levels ranged from about 5 feet below to about 18 feet above the May 2004 water levels (fig. 1). The largest water-level declines occurred in southwestern Hernando County, northeastern Hillsborough County, and parts of Hillsborough, Sumter, and Sarasota Counties. The largest water-level rises occurred in southeastern Hillsborough County, eastern Manatee County, and western Hardee County (fig. 1). Water levels in about 95 percent of the wells measured in May 2005 were lower than the September 2004 water levels (Blanchard and Seidenfeld, 2005). Data from 405 wells indicate that the May 2005 water levels ranged from about 22 feet below to 14 feet above the September 2004 water levels. The largest water-level decline was in east-central Manatee County and the largest water-level rise was in central Sarasota County.
Hopkins, Candice B.; McIntosh, Jennifer C.; Eastoe, Chris; Dickinson, Jesse; Meixner, Thomas
2014-01-01
As groundwater becomes an increasingly important water resource worldwide, it is essential to understand how local geology affects groundwater quality, flowpaths and residence times. This study utilized multiple tracers to improve conceptual and numerical models of groundwater flow in the Middle San Pedro Basin in southeastern Arizona (USA) by determining recharge areas, compartmentalization of water sources, flowpaths and residence times. Ninety-five groundwater and surface-water samples were analyzed for major ion chemistry (water type and Ca/Sr ratios) and stable (18O, 2H, 13C) and radiogenic (3H, 14C) isotopes, and resulting data were used in conjunction with hydrogeologic information (e.g. hydraulic head and hydrostratigraphy). Results show that recent recharge (<60 years) has occurred within mountain systems along the basin margins and in shallow floodplain aquifers adjacent to the San Pedro River. Groundwater in the lower basin fill aquifer (semi confined) was recharged at high elevation in the fractured bedrock and has been extensively modified by water-rock reactions (increasing F and Sr, decreasing 14C) over long timescales (up to 35,000 years BP). Distinct solute and isotope geochemistries between the lower and upper basin fill aquifers show the importance of a clay confining unit on groundwater flow in the basin, which minimizes vertical groundwater movement.
Stumm, Frederick
2001-01-01
Great Neck, a peninsula, in the northwestern part of Nassau County, N.Y., is underlain by unconsolidated deposits that form a sequence of aquifers and confining units. Seven public-supply wells have been affected by the intrusion of saltwater from the surrounding embayments (Little Neck Bay, Long Island Sound, Manhasset Bay). Fifteen observation wells were drilled in 1991–96 for the collection of hydrogeologic, geochemical, and geophysical data to delineate the subsurface geology and extent of saltwater intrusion within the peninsula. Continuous high-resolution seismic-reflection surveys in the embayments surrounding the Great Neck peninsula and the Manhasset Neck peninsula to the east were completed in 1993 and 1994.Two hydrogeologic units are newly proposed herein.the North Shore aquifer and the North Shore confining unit. The new drill-core data collected in 1991–96 indicate that the Lloyd aquifer, the Raritan confining unit, and the Magothy aquifer have been completely removed from the northern part of the peninsula by extensive glacial erosion.Water levels at selected observation wells were measured quarterly throughout the study. The results from two studies of the effects of tides on ground-water levels in 1992 and 1993 indicate that water levels at wells screened within the North Shore and Lloyd aquifers respond to tides and pumping effects, but those in the overlying upper glacial aquifer (where the water table is located) do not. Data from quarterly water-level measurements and the tidal-effect studies indicate the North Shore and Lloyd aquifers to be hydraulically connected.Offshore seismic-reflection surveys in the surrounding embayments indicate at least two glacially eroded buried valleys with subhorizontal, parallel reflectors indicative of draped bedding that is interpreted as infilling by silt and clay. The buried valleys (1) truncate the surrounding coarse-grained deposits, (2) are asymmetrical and steep sided, (3) trend northwest-southeast, (4) are 2-4 miles long and about 1 mile wide, and (5) extend to more than 200 feet below sea level.Water from six public-supply wells screened in the Magothy and upper glacial aquifers contained volatile organic compounds in concentrations above the New York State Department of Health Drinking Water Maximum Contaminant Levels, as did water from one public-supply well screened in the Lloyd aquifer, and from three observation wells screened in the upper glacial and Magothy aquifers.Four distinct wedge-shaped areas of saltwater intrusion have been delineated within the aquifers in Great Neck; three areas extend into the Lloyd and North Shore aquifers, and the fourth area extends into the upper glacial aquifer. Three other areas of saltwater intrusion also have been detected. Borehole-geophysical-logging data indicate that four of these saltwater wedges range from 20 to 125 feet in thickness and have sharp freshwater-saltwater interfaces, and that maximum chloride concentrations in 1996 ranged from 141 to 13,750 milligrams per liter. Seven public-supply wells have either been shut down or are currently being affected by saltwater intrusion.
NASA Astrophysics Data System (ADS)
Gavrieli, Ittai; Burg, Avi; Guttman, Joseph
2002-08-01
An increase in salinity and change from oxic to anoxic conditions are observed in the Upper subaquifer of the Judea Group in the Kefar Uriyya pumping field at the western foothills of the Judea Mountains, Israel. Hydrogeological data indicate that the change, which occurs over a distance of only a few kilometers, coincides with a transition from confined to phreatic conditions in the aquifer. The deterioration in the water quality is explained as a result of seepage of more saline, organic-rich water from above, into the phreatic "roofed" part of the aquifer. The latter is derived from the bituminous chalky rocks of the Mount Scopus Group, which confine the aquifer in its southeastern part. In this confined part, water in perched horizons within the Mount Scopus Group cannot leak down and flow westward while leaching organic matter and accumulating salts. However, upon reaching the transition area from confined to phreatic conditions, seepage to the Judea Upper subaquifer is possible, thereby allowing it to be defined as a leaky aquifer. The incoming organic matter consumes the dissolved oxygen and allows bacterial sulfate reduction. The latter accounts for the H2S in the aquifer, as indicated by sulfur isotopic analyses of coexisting sulfate and sulfide. Thus, from an aquifer management point of view, in order to maintain the high quality of the water in the confined southeastern part of the Kefar Uriyya field, care should be taken not to draw the confined-roofed transition area further east by over pumping.
Pope, Daryll A.; Gordon, Alison D.
1999-01-01
The confined aquifers of the New Jersey Coastal Plain are sands that range in thickness from 50 to 600 feet and are separated by confining units. The confining units are composed of silts and clays that range in thickness from 500 to 1,000 feet. The aquifers are recharged by precipitation on their outcrop areas. This water then flows laterally downdip and vertically to the deeper confined aquifers. The confined aquifers ultimately discharge to the Raritan and Delaware Bays and to the Atlantic Ocean. In 1988, ground-water withdrawals from confined and unconfined New Jersey Coastal Plain aquifers were approximately 345 million gallons per day, more than 75 percent of which was pumped from the confined aquifers. These withdrawals have created large cones of depression in several Coastal Plain aquifers near populated areas, particularly in Camden and Monmouth Counties. The continued decline of water levels in confined aquifers can cause saltwater intrusion, reduce stream discharge near the outcrop areas, and threaten the quality of the ground-water supply. SHARP, a quasi-three-dimensional finite-difference computer model that can simulate freshwater and saltwater flow, was used to simulate the ground-water flow system in the New Jersey Coastal Plain, including the location and movement of the freshwater-saltwater interface in nine aquifers and eight intervening confining units. The freshwater-saltwater interface is defined as the hypothetical line seaward of which the chloride concentration is equal to or greater than 10,000 milligrams per liter. Model simulations were used to estimate the location and movement of the freshwater-saltwater interface resulting from (1) eustatic sea-level changes over the past 84,000 years, (2) ground-water withdrawals from 1896 through 1988, (3) and future ground-water withdrawals from 1988 to 2040 from Coastal Plain aquifers. Simultion results showed that the location and movement of the freshwater-saltwater interface are more dependent on the historical sea level than on the stresses imposed on the flow system by ground-water withdrawals from the Coastal Plain aquifers from 1896 to 1988. Results of a predictive simulation in which pumpage from existing wells was increased by 30 percent indicate that additional withdrawals from each of the eight confined aquifers in the Coastal Plain would broaden and deepen the existing cones of depression and result in significant drawdowns from the 1988 potentiometric surfaces. Drawdowns of 30 feet were simulated at the center of the cone of depression in the Upper, Middle, and Lower Potomac-Raritan-Magothy aquifers in Camden and Ocean Counties. Simulated drawdowns exceeded 80 feet at the center of the cone of depression in the Wenonah-Mount Laurel and Englishtown aquifers in Monmouth County. Drawdowns of 30 feet were simulated in the lower Kirkwood-Cohansey and confined Kirkwood aquifers in Cape May County. Simulation results showed that the increase in ground-water withdrawals would result in only minimal movement of the freshwater-saltwater interface by 2040, despite large drawdowns.
Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.
2001-01-01
The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is the thinnest and generally, the least productive zone in the intermediate aquifer system. The Upper Arcadia zone (PZ2) is the middle zone and productivity is generally higher than the overlying permeable zone. The Lower Arcadia zone (PZ3) is the lowermost permeable zone and is the most productive zone in the intermediate aquifer system. The intermediate aquifer system is underlain by the Upper Floridan aquifer, which consists of a thick, stratified sequence of limestone and dolomite. The Upper Floridan aquifer is the most productive aquifer in the study area; however, its use is generally restricted because of poor water quality. Interbedded clays and fine-grained clastics separate the aquifer systems and permeable zones. The hydraulic properties of the three aquifer systems are spatially variable. Estimated trans-missivity and horizontal hydraulic conductivity varies from 752 to 32,900 feet squared per day and from 33 to 1,490 feet per day, respectively, for the surficial aquifer system; from 47 to 5,420 feet squared per day and from 2 to 102 feet per day, respectively, for the Tamiami/Peace River zone (PZ1); from 258 to 24,633 feet squared per day and from 2 to 14 feet per day, respectively, for the Upper Arcadia zone (PZ2); from 766 to 44,900 feet squared per day and from 10 to 201 feet per day, respectively, for the Lower Arcadia zone (PZ3); and from 2,350 to 7,640 feet squared per day and from 10 to 41 feet per day, respectively, for the Upper Floridan aquifer. Confining units separating the aquifer systems have leakance coefficients estimated to range from 2.3 x 10-5 to 5.6 x 10-3 feet per day per foot. Strata composing the confining unit separating the Upper Floridan aquifer from the intermediate aquifer system are substantially more permeable than confining units separating the permeable zones in the intermediate aquifer system or separating the surficial aquifer and intermediate aquifer systems. In Charlotte, Sarasota, and western De Soto Counties, hydraulic
Thickness of the Mississippi River Valley confining unit, eastern Arkansas
Gonthier, Gerard; Mahon, Gary L.
1993-01-01
Concern arose in the late 1980s over the vulnerability of the Mississippi Valley alluvial aquifer to contamination from potential surface sources related to pesticide or fertilizer use, industrial activity, landfills, or livestock operations. In 1990 a study was begun to locate areas in Arkansas where the groundwater flow system is susceptible to contamination by surface contaminants. As a part of that effort, the thickness of the clay confining unit overlying the alluvial aquifer in eastern Arkansas was mapped. The study area included all or parts of 27 counties in eastern Arkansas that are underlain by the alluvial aquifer and its overlying confining unit. A database of well attributes was compiled based on data from driller's logs and from published data and stored in computer files. A confining-unit thickness map was created from the driller's-log database using geographic information systems technology. A computer program was then used to contour the data. Where the confining unit is present, it ranges in thickness from 0 feet in many locations in the study area to 140 feet in northeastern Greene County and can vary substantially over short distances. Although general trends in the thickness of the confining unit are apparent, the thickness has great spatial variability. An apparent relation exists between thickness of the confining unit and spatial variability in thickness. In areas where the thickness of the confining unit is 40 feet or less, such as in Clay, eastern Craighead, northwestern Mississippi, and Woodruff Counties, thickness of the unit tends robe more uniform than in areas where the thickness of the unit generally exceeds 40 feet, such as in Arkansas, Lonoke, and Prairie Counties. At some sites the confining unit is very thick compared to its thickness in the immediate surrounding area. Locations of abandoned Mississippi River meander channels generally coincide with location of locally thick confining unit. Deposition of the confining unit onto the coarser alluvial aquifer deposits has reduced the relief of the land surface. Hence, the altitude of the top of the alluvial aquifer varies more than the altitude of the land surface and is indicative of a depositional setting.
Gonthier, Gerard
2012-01-01
An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.
Smith, Barry S.
2003-01-01
Population and tourism continues to grow in Virginia Beach, Virginia, but the supply of freshwater is limited. A pipeline from Lake Gaston supplies water for northern Virginia Beach, but ground water is widely used to water lawns in the north, and most southern areas of the city rely solely on ground water. Water from depths greater than 60 meters generally is too saline to drink. Concentrations of chloride, iron, and manganese exceed drinking-water standards in some areas. The U.S. Geological Survey, in cooperation with the city of Virginia Beach, Department of Public Utilities, investigated the shallow aquifer system of the southern watersheds to determine the distribution of fresh ground water, its potential uses, and its susceptibility to contamination. Aquifers and confining units of the southern watersheds were delineated and chloride concentrations in the aquifers and confining units were contoured. A ground-water-flow and solute-transport model of the shallow aquifer system reached steady state with regard to measured chloride concentrations after 31,550 years of freshwater recharge. Model simulations indicate that if freshwater is found in permeable sediments of the Yorktown-Eastover aquifer, such a well field could supply freshwater, possibly for decades, but eventually the water would become more saline. The rate of saline-water intrusion toward the well field would depend on the rate of pumping, aquifer properties, and on the proximity of the well field to saline water sources. The steady-state, ground-water-flow model also was used to simulate drawdowns around two hypothetical well fields and drawdowns around two hypothetical open-pit mines. The chloride concentrations simulated in the model did not approximate the measured concentrations for some wells, indicating sites where local hydrogeologic units or unit properties do not conform to the simple hydrogeology of the model. The Columbia aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer compose the hydrogeologic units of the shallow aquifer system of Virginia Beach. The Columbia and Yorktown-Eastover aquifers are poorly confined throughout most of the southern watersheds of Virginia Beach. The freshwater-to-saline-water distribution probably is in a dynamic equilibrium throughout most of the shallow aquifer system. Freshwater flows continually down and away from the center of the higher altitudes to mix with saline water from the tidal rivers, bays, salt marshes, and the Atlantic Ocean. Fresh ground water from the Columbia aquifer also leaks down through the Yorktown confining unit into the upper half of the Yorktown-Eastover aquifer and flows within the Yorktown-Eastover above saline water in the lower half of the aquifer. Ground-water recharge is minimal in much of the southern watersheds because the land surface generally is low and flat.
Cunningham, Kevin J.; Robinson, Edward
2017-07-18
Rock core and sediment from U.S. Geological Survey test corehole G–2984 completed in 2011 in Broward County, Florida, provide an opportunity to improve the understanding of the lithostratigraphic, sequence stratigraphic, and hydrogeologic framework of the intermediate confining unit and Floridan aquifer system in southeastern Florida. A multidisciplinary approach including characterization of sequence stratigraphy, lithofacies, ichnology, foraminiferal paleontology, depositional environments, porosity, and permeability was used to describe the geologic samples from this test corehole. This information has produced a detailed characterization of the lithofacies and sequence stratigraphy of the upper part of the middle Eocene Avon Park Formation and Oligocene to middle Miocene Arcadia Formation. This enhancement of the knowledge of the sequence stratigraphic framework is especially important, because subaerial karst unconformities at the upper boundary of depositional cycles at various hierarchical scales are commonly associated with secondary porosity and enhanced permeability in the Floridan aquifer system.
Hansen, C.V.; Wolf, R.J.; Spinazola, J.M.
1992-01-01
The purpose of this Hydrologic Investigations Atlas is to provide a description of the geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.
Hydrogeology of the Croton-Ossining area, Westchester County, New York
Reynolds, Richard J.
1988-01-01
The hydrogeology of a 29-sq-mi area surrounding the village of Croton-on-Hudson, New York, is summarized on 6 sheets at 1:12 ,000 scale that show locations of wells and test holes, surficial geology, geologic sections, bedrock geology, land use, and soil permeability. The primary stratified-drift aquifer in this area is the Croton River aquifer, which consists of outwash sand and gravel that partly fills the Croton River valley from the New Croton Dam to the Hudson River--a distance of approximately 3 miles. The valley is narrow and ranges in width from 100 to 1,900 ft, and its v-notch bedrock floor ranges from 30 to 50 ft below sea level. Detailed hydrogeologic studies during 1936-38 showed the stratigraphy to consist of an upper water-table aquifer with a saturated thickness of about 35 ft, underlain by a silt and clay confining unit 8 to o0 ft in thickness that in turn is underlain by a lower confined outwash aquifer up to 40 ft thick. Aquifer-test data and laboratory permeability tests show that the average hydraulic conductivity of the upper outwash aquifer is 475 ft/d, and that of the lower confined aquifer is about 300 ft/d. The aquifer is recharged through direct precipitation, runoff from adjacent hillsides, and leakage under the new Croton Dam. Previous studies estimate the average leakage under the dam to be 0.65 Mgal/d and the total average daily recharge to the aquifer between New Croton Dam and Quaker Bridge to be 1.73 Mgal/d. (USGS)
Johnston, Richard H.; Bush, Peter W.
1988-01-01
The Floridan aquifer system is one of the major sources of ground-water supplies in the United States. This highly productive aquifer system underlies all of Florida, southern Georgia, and small parts of adjoining Alabama and South Carolina, for a total area of about 100,000 square miles. About 3 billion gallons of water per day is withdrawn from the aquifer for all uses, and, in many areas, the Floridan is the sole source of freshwater. The aquifer system is a sequence of hydraulically connected carbonate rocks (principally limestone and some dolomite) that generally range in age from Late Paleocene to Early Miocene. The rocks vary in thickness from a featheredge where they crop out to more than 3,500 ft where the aquifer is deeply buried. The aquifer system generally consists of an upper aquifer and a lower aquifer, separated by a less permeable confining unit of highly variable properties. In parts of north Florida and southwest Georgia, there is little permeability contrast within the aquifer system. Thus in these areas the Floridan is effectively one continuous aquifer. The upper and lower aquifers are defined on the basis of permeability, and their boundaries locally do not coincide with those for either time-stratigraphic or rock-stratigraphic units. Low-permeability clastic rocks overlie much of the Floridan aquifer system. The lithology, thickness, and integrity of these low-permeability rocks have a controlling effect on the development of permeability and ground-water flow in the Floridan locally. The Floridan aquifer system derives its permeability from openings that vary from fossil hashes and networks of many solution-widened joints to large cavernous openings in karst areas. Diffuse flow pre-dominates where the small openings occur, whereas conduit flow may occur where there are large cavernous openings. For the Upper Floridan aquifer, transmissivities are highest (greater than 1,000,000 ft squared per day) in the unconfined karst areas of central and northern Florida. Lowest transmissivities (less than 50,000 ft squared per day) occur in the Florida panhandle and southernmost Florida, where the Upper Floridan aquifer is confined by thick clay sections. The hydraulic properties of the Lower Floridan aquifer are not well known; however, this unit also contains intervals of very high transmissivity that have been attributed to paleokarst development. The dominant feature of the Floridan flow system, both before and after ground-water development, is Upper Floridan aquifer springs, nearly all of which occur in unconfined and semiconfined parts of the aquifer in Florida. Before ground-water development, spring flow and point discharge to surface-water bodies was about 88 percent of the estimated 21,500 cubic ft per second total discharge. Current discharge (early 1980's) is about 24,100 cubic ft per second, 75 percent of which is spring flow and discharge to surface-water bodies, 17 percent is withdrawal from wells, and 8 percent is diffuse upward leakage. Pumpage has been and continues to be supplied primarily by the diversion of natural outflow from the aquifer system and by induced recharge rather than by loss of water from aquifer storage. The approximately 3 billion gallons per day pumped from the Floridan aquifer system has resulted in long-term regional water-level declines of more than 10 ft in three broad areas of the flow system: (1) coastal Georgia and adjacent South Carolina and northeast Florida, (2) west-central Florida, and (3) the Florida panhandle. Saltwater has encroached as a result of pumping in a few coastal areas. In general, the water chemistry in the Upper Floridan is related to flow and proximity to the freshwater-saltwater interface. In the unconfined or semiconfined areas where flow is vigorous, dissolved-solids concentrations are low (less than 250 milligrams per liter). Where the system is more tightly confined, flow is more sluggish and concentrations are higher (grea
Ground-water hydrology of the Willamette basin, Oregon
Conlon, Terrence D.; Wozniak, Karl C.; Woodcock, Douglas; Herrera, Nora B.; Fisher, Bruce J.; Morgan, David S.; Lee, Karl K.; Hinkle, Stephen R.
2005-01-01
The Willamette Basin encompasses a drainage of 12,000 square miles and is home to approximately 70 percent of Oregon's population. Agriculture and population are concentrated in the lowland, a broad, relatively flat area between the Coast and Cascade Ranges. Annual rainfall is high, with about 80 percent of precipitation falling from October through March and less than 5 percent falling in July and August, the peak growing season. Population growth and an increase in cultivation of crops needing irrigation have produced a growing seasonal demand for water. Because many streams are administratively closed to new appropriations in summer, ground water is the most likely source for meeting future water demand. This report describes the current understanding of the regional ground-water flow system, and addresses the effects of ground-water development. This study defines seven regional hydrogeologic units in the Willamette Basin. The highly permeable High Cascade unit consists of young volcanic material found at the surface along the crest of the Cascade Range. Four sedimentary hydrogeologic units fill the lowland between the Cascade and Coast Ranges. Young, highly permeable coarse-grained sediments of the upper sedimentary unit have a limited extent in the floodplains of the major streams and in part of the Portland Basin. Extending over much of the lowland where the upper sedimentary unit does not occur, silts and clays of the Willamette silt unit act as a confining unit. The middle sedimentary unit, consisting of permeable coarse-grained material, occurs beneath the Willamette silt and upper sedimentary units and at the surface as terraces in the lowland. Beneath these units is the lower sedimentary unit, which consists of predominantly fine-grained sediments. In the northern part of the basin, lavas of the Columbia River basalt unit occur at the surface in uplands and beneath the basin-fill sedimentary units. The Columbia River basalt unit contains multiple productive water-bearing zones. A basement confining unit of older marine and volcanic rocks of low permeability underlies the basin and occurs at land surface in the Coast Range and western part of the Cascade Range. Most recharge in the basin is from infiltration of precipitation, and the spatial distribution of recharge mimics the distribution of precipitation, which increases with elevation. Basinwide annual mean recharge is estimated to be 22 inches. Rain and snowmelt easily recharge into the permeable High Cascade unit and discharge within the High Cascade area. Most recharge in the Coast Range and western part of the Cascade Range follows short flowpaths through the upper part of the low permeability material and discharges to streams within the mountains. Consequently, recharge in the Coast and Ranges is not available as lateral ground-water flow into the lowland, where most ground-water use occurs. Within the lowland, annual mean recharge is 16 inches and most recharge occurs from November to April, when rainfall is large and evapotranspiration is small. From May to October recharge is negligible because precipitation is small and evapotranspiration is large. Discharge of ground water is mainly to streams. Ground-water discharge is a relatively large component of flow in streams that drain the High Cascade unit and parts of the Portland Basin where permeable units are at the surface. In streams that do not head in the High Cascade area, streamflow is generally dominated by runoff of precipitation. Ground-water in the permeable units in the lowland discharges to the major streams where there is a good hydraulic connection between aquifers and streams. Ground-water discharge to smaller streams, which flow on the less permeable Willamette silt unit, is small and mostly from the Willamette silt unit. Most ground-water withdrawals occur within the lowland. Irrigation is the largest use of ground water, accounting for 240,000 acre feet of withdrawals, or 81 p
,; Prowell, D.C.; Christopher, R.A.
2004-01-01
This paper formally defines two new Upper Cretaceous subsurface units in the southern Atlantic Coastal Plain of North Carolina, South Carolina and Georgia: the Collins Creek Formation and the Pleasant Creek Formation. These units are confined to the subsurface of the outer Coastal Plain, and their type sections are established in corehole CHN-820 from Charleston County, S.C. The Collins Creek Formation consists of greenish-gray lignitic sand and dark-greenish-gray sandy clay and is documented in cores from Allendale, Beaufort, Berkeley, Dorchester, Jasper and Marion Counties, South Carolina, and from Screven County, Georgia. Previously, Collins Creek strata had been incorrectly assigned to the Middendorf Formation. These sediments occupy a stratigraphic position between the Turonian/Coniacian Cape Fear Formation (?) below and the proposed upper Coniacian to middle Santonian Pleasant Creek Formation above. The Collins Creek Formation is middle and late Coniacian in age on the basis of calcareous nannofossil and palynomorph analyses. The Pleasant Creek Formation consists of olive-gray sand and dark-greenish-gray silty to sandy clay and is documented in cores from New Hanover County, North Carolina, and Berkeley, Charleston, Dorchester, Horry and Marion Counties, South Carolina. The strata of this unit previously were assigned incorrectly to the Middendorf Formation and (or) the Cape Fear Formation. These sediments occupy a stratigraphic position between the proposed Collins Creek Formation below and the Shepherd Grove Formation above. The Pleasant Creek Formation is late Coniacian and middle Santonian in age, on the basis of its calcareous nannofossil and palynomorph assemblages.
Hydrogeology of the gray limestone aquifer in southern Florida
Reese, Ronald S.; Cunningham, Kevin J.
2000-01-01
Results from 35 new test coreholes and aquifer-test, water-level, and water-quality data were combined with existing hydrogeologic data to define the extent, thickness, hydraulic properties, and degree of confinement of the gray limestone aquifer in southern Florida. This aquifer, previously known to be present only in southeastern Florida (Miami-Dade, Broward, and Palm Beach Counties) below, and to the west of, the Biscayne aquifer, extends over most of central-south Florida, including eastern and central Collier County and southern Hendry County; it is the same as the lower Tamiami aquifer to the north, and it becomes the water-table aquifer and the upper limestone part of the lower Tamiami aquifer to the west. The aquifer generally is composed of gray, shelly, lightly to moderately cemented limestone with abundant shell fragments or carbonate sand, abundant skeletal moldic porosity, and minor quartz sand. The gray limestone aquifer comprises the Ochopee Limestone of the Tamiami Formation, and, in some areas, the uppermost permeable part of an unnamed formation principally composed of quartz sand. Underlying the unnamed formation is the Peace River Formation of the upper Hawthorn Group, the top of which is the base of the surficial aquifer system. Overlying the aquifer and providing confinement in much of the area is the Pinecrest Sand Member of the Tamiami Formation. The thickness of the aquifer is comparatively uniform, generally ranging from 30 to 100 feet. The unnamed formation part of the aquifer is up to 20 feet thick. The Ochopee Limestone accumulated in a carbonate ramp depositional system and contains a heterozoan carbonate-particle association. The principal rock types of the aquifer are pelecypod lime rudstones and floatstones and permeable quartz sands and sandstones. The pore types are mainly intergrain and separate vug (skeletal-moldic) pore spaces. The rock fabric and associated primary and secondary pore spaces combine to form a dual diffuse-carbonate and conduit flow system capable of producing high values of hydraulic conductivity. Transmissivity values of the aquifer are commonly greater than 50,000 feet squared per day to the west of Miami-Dade and Broward Counties. Hydraulic conductivity ranges from about 200 to 12,000 feet per day and generally increases from east to west; an east-to-west shallowing of the depositional profile of the Ochopee Limestone carbonate ramp contributes to this spatial trend. The aquifer contains two areas of high transmissivity, both of which trend northwest-southeast. One area extends through southern Hendry County. The other area extends through eastern Collier County, with a transmissivity as high as 300,000 feet squared per day; in this area, the aquifer is structurally high, the top of the aquifer is close to land surface, and it is unconfined to semiconfined. The confinement of the aquifer is good to the north and east in parts of southern Hendry, Palm Beach, Collier, Broward, and Miami-Dade Counties. In these areas, the upper confining unit approaches or is greater than 50 feet thick, and vertical leakance is less than 1.0 x 10-3 l/day. In most of the study area, the specific conductance in water from the gray limestone aquifer is 1,500 microsiemens per centimeter or less (chloride concentration of about 250 milligrams per liter or less). Areas where specific conductance is greater than 3,000 microsiemens per centimeter are found where there is a low horizontal-head gradient and the upper confining unit is greater than 50 feet thick. An area with specific conductance less than 1,500 microsiemens per centimeter extends from southern Hendry County to the southeast into western Broward County and coincides with an area of high transmissivity. However, much of this area has good confinement. The potentiometric gradient also is to the southeast in much of the area, and this area of low specific conductance is probably caused by a relatively rapid downgradient movement of fres
Stratigraphic and hydrogeologic framework of the Alabama Coastal Plain
Davis, M.E.
1988-01-01
Tertiary and Cretaceous sand aquifers of the Southeastern United States Coastal Plain comprise a major multlstate aquifer system informally defined as the Southeastern Coastal Plain aquifer system, which is being studied as part of the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) program. The major objectives of each RASA study are to identify, delineate, and map the distribution of permeable clastlc rock, to examine the pattern of ground-water flow within the regional aquifers, and to develop digital computer simulations to understand the flow system. The Coastal Plain aquifers in Alabama are being studied as a part of this system. This report describes the stratlgraphlc framework of the Cretaceous, Tertiary, and Quaternary Systems in Alabama to aid in delineating aquifers and confining units within the thick sequence of sediments that comprises the Southeastern Coastal Plain aquifer system in the State. Stratigraphlc units of Cretaceous and Tertiary age that make up most of the aquifer system in the Coastal Plain of Alabama consist of clastlc deposits of Early Cretaceous age; the Coker and Gordo Formations of the Tuscaloosa Group, Eutaw Formation, and Selma Group of Late Cretaceous age; and the Midway, Wilcox, and Clalborne Groups of Tertiary age. However, stratigraphlc units of late Eocene to Holocene age partially overlie and are hydraulically connected to clastic deposits in southern Alabama. These upper carbonate and clastlc stratlgraphic units also are part of the adjoining Florldan and Gulf Coastal Lowlands aquifer systems. The Coastal Plain aquifer system is underlain by pre-Cretaceous rocks consisting of low-permeabillty sedimentary rocks of Paleozolc, Triassic, and Jurassic age, and a complex of metamorphic and igneous rocks of Precambrian and Paleozolc age similar to those found near the surface in the Piedmont physiographic province. Twelve hydrogeologlc units in the Alabama Coastal Plain are defined--slx aquifers and six confining units. Aquifers of the Coastal Plain aquifer system are composed of fine to coarse sand, gravel, and limestone; confining beds are composed of clay, shale, chalk, marl, and metamorphic and igneous rocks.
Reese, Ronald S.
2004-01-01
The Floridan aquifer system is considered to be a valuable source for agricultural and municipal water supply in Martin and St. Lucie Counties, despite its brackish water. Increased withdrawals, however, could increase salinity and threaten the quality of withdrawn water. The Floridan aquifer system consists of limestone, dolomitic limestone, and dolomite and is divided into three hydrogeologic units: the Upper Floridan aquifer, a middle confining unit, and the Lower Floridan aquifer. An informal geologic unit at the top of the Upper Floridan aquifer, referred to as the basal Hawthorn/Suwannee unit, is bound above by a marker unit in the Hawthorn Group and at its base by the Ocala Limestone; a map of this unit shows an area where substantial eastward thickening begins near the coast. This change in thickness is used to divide the study area into inland and coastal areas. In the Upper Floridan aquifer, an area of elevated chloride concentration greater than 1,000 milligrams per liter and water temperature greater than 28 degrees Celsius exists in the inland area and trends northwest through north-central Martin County and western St. Lucie County. A structural feature coincides with this area of greater salinity and water temperature; this feature is marked by a previously mapped northwest-trending basement fault and, based on detailed mapping in this study of the structure at the top of the basal Hawthorn/Suwannee unit, an apparent southeast-trending trough. Higher hydraulic head also has been mapped in this northwest-trending area. Another area of high chloride concentration in the Upper Floridan aquifer occurs in the southern part of the coastal area (in eastern Martin County and northeastern Palm Beach County); chloride concentration in this area is more than 2,000 milligrams per liter and is as great as 8,000 milligrams per liter. A dissolved-solids concentration of less than 10,000 milligrams per liter defines the brackish-water zone in the Floridan aquifer system; the top and base of this zone are present at the top of the aquifer system and within the Lower Floridan aquifer, respectively. The base of the brackish-water zone, which can approximate a brackish-water/saltwater interface, was determined in 13 wells, mostly using resistivity geophysical logs. The depth to the saltwater interface was calculated using the Ghyben-Herzberg approximation and estimated predevelopment hydraulic heads in the Upper Floridan aquifer. In five of six inland area wells, the depth to the base of the brackish-water zone was substantially shallower than the estimated predevelopment interface (260 feet or greater), whereas in five of seven coastal area wells, the difference was not large (less than about 140 feet). Confining units in the inland area, such as dense dolomite, may prevent an interface from forming at its equilibrium position. Because of head decline, the calculated interface using recent (May 2001) water levels is as much as 640 ft above the base of the brackish water zone (in the northern part of the coastal area). Isotopic data collected during this study, including deuterium and oxygen-18 (18O/16O), the ratio of strontium-87 to strontium-86, and carbon-13 (13C/12C) and carbon-14, provide evidence for differences in the Floridan aquifer system ground-water geochemistry and its evolution between inland and coastal areas. Ground water from the inland area tends to be older than water from the coastal area, particularly where inland area water temperature is elevated. Isotopic data together with an anomalous vertical distribution of salinity in the coastal area indicate that the coastal area was invaded with seawater in relatively recent geologic time, and this water has not been completely flushed out by the modern-day flow system. Upward leakage from the Lower to Upper Floridan aquifer of high salinity water occurs through structural deformities, such as faults or fracture zones or associated dissolution features
Hotchkiss, W.R.; Levings, J.F.
1986-01-01
The Powder River, Bull Mountains, and Williston basins of Montana and Wyoming were investigated to understand the geohydrology and subsurface water flow. Rocks were separated into: Fox Hills-lower Hell Creek aquifer (layer 1), upper Hell Creek confining layer (layer 2), Tullock aquifer (layer 3), Lebo confining layer (layer 4), and Tongue River aquifer (layer 5). Aquifer transmissivities were estimated from ratios of sand and shale and adjusted for kinematic viscosity and compaction. Vertical hydraulic conductance per unit area between layers was estimated. Potentiometric surface maps were drawn from limited data. A three-dimensional finite-difference model was used for simulation. Five stages of simulation decreased and standard error of estimate for hydraulic head from 135 to 110 feet for 739 observation nodes. The resulting mean transmissivities for layers 1-5 were 443, 191, 374, 217, and 721 sq ft/d. The corresponding mean vertical hydraulic conductances per unit area between the layers were simulated; they ranged from 0.000140 to 0.0000150. Mean annual recharge across the study area was about 0.26 percent of average annual precipitation. Large volumes of interlayer flow indicate the vertical flow may be significant. (USGS)
Estimated drawdowns in the Floridan aquifer due to increased withdrawals, Duval County, Florida
Franks, Bernard J.; Phelps, G.G.
1979-01-01
Hydrologic investigations of the Floridan aquifer in Duval County, Florida, have shown that an appropriate simplified model of the aquifer system consists of a series of sub aquifers separated by semipermeable beds. Data from more than 20 aquifer tests were reanalyzed by the Hantush modified method, which takes into account leakance from all confining units. Transmissivity values range from 20,000 to 240,000 square feet per day. Leakance was estimated to be 2.5x10 to the minus 6th power and 3.3x10 to the minus 5th power per day for the upper and lower confining units, respectively. Families of steady-state distance-drawdown curves were constructed for three representative transmissivity values based on hypothetical withdrawals from a point source ranging from 5 to 50 million gallons per day. Transient effects were not considered because the system reaches steady-state conditions within the time ranges considered. Drawdown at any point can be estimated by summing the effects of any hypothetical configuration of pumping centers. The accuracy of the parameters was checked by comparing calculated drawdowns in selected observation wells to measured water-level declines. (Woodard-USGS)
Scarps Confined to Crater Floors
2000-01-15
This image, from NASA Mariner 10 spacecraft which launched in 1974, shows several scarps, which appear to be confined to crater floors. The scarp in the crater at the upper left of the image has been diverted by the central peaks.
Gregg, Dean O.; Zimmerman, Everett Alfred
1974-01-01
Water from a brackish-water zone (1,050-1,350 ft) has concentrations as high as 2,150 milligrams per liter chloride, and concentrations are suspected to be higher than 3,000 milligrams per liter chloride. This brackish water has been identified as the source of the water that contaminates the upper and lower fresh-water-bearing zones of the principal artesian aquifer. The confining unit separating the fresh and brackish water seems to contain breaks that act as vertical conduits for the movement of brackish water into the fresh-water zones of the aquifer. Faults are suspected to be responsible for the breaks in the confining unit. The rate of upward movement of brackish water seems to be a function of the rate of water-level decline in the aquifer. There are two main areas of brackish-water intrusion. One area is near Bay and Prince Streets, and the other area is near Reynolds and Q Streets. Successive maps showing chloride ion concentration trace the movement of the chloride front northward in the Bay Street area at the rate of about 350 feet per year toward the center of pumping. An average of about 400 gallons per minute of water containing 2,000 milligrams per liter chloride invaded the upper water-bearing zone between December 1962 and December 1966. A like amount may have entered the lower water-bearing zone. Maximum chloride concentration in the upper water-bearing zone is 1,540 milligrams per liter in the Bay Street area and 640 milligrams per liter in the Reynolds Street area. In a few areas, where individual wells have been drilled deep enough to penetrate the confining unit over the brackish-water zone, the well furnishes a conduit for brackish water to recharge the fresh-water aquifer. Plugging the lower part of these wells usually reduces the chloride concentration of the water. The chloride concentration of water in the principal artesian aquifer can probably be reduced by use of interceptor wells, relief wells, or well-field spacing. Interceptor wells would prevent laterally moving brackish water from contaminating a well field. A relief well would tap and withdraw poor quality water from only the brackish-water zone to lower the head in that zone and decrease the rate of leakage into the fresh-water aquifer. Wider spacing of wells would prevent the development of a deep cone of depression and the steeper hydraulic gradients that accompany it. The brackish water pumped by the interceptor or relief wells could be used for industry, aquaculture, recreation, or for other processes in which the chloride content is not critical.
Stewart, Lisa M.; Hicks, David W.
1996-01-01
This report is part of an interdisciplinary effort to identify and describe processes that control movement and fate of selected fertilizers and pesticides in the surface and subsurface environments in the Fall Line Hills district of the Georgia Coastal Plain physiographic province. This report describes the hydrogeology of the interstream area between Ty Ty Creek and it's tributary near Plains, Sumter County, Georgia. Geologic units of interest to this study are, in ascending order, (1) the Tuscahoma Formation, a bluish gray, silty clay; (2) the Tallahatta Formation, a fine-to-coarse, poorly sorted quartz sand that is divided into an upper and lower unit; and (3) the undifferentiated overburden, which consists of fine to medium poorly sorted sand, silt and clay. Continuous-core samples indicate that the unsaturated zone includes the undifferentiated overburden and the upper unit of the Tallahatta Formation, and attains a maximum thickness of about 52 feet (ft) in the southern part of the study area. The Claiborne aquifer in the study area consists of the lower unit of the Tallahatta Formation and ranges in thickness from 3 ft near Ty Ty Creek tributary to about 20 ft in the upland divide area. It is confined below by the clayey sediments of the Tuscahoma Formation. The Claiborne aquifer in the study area generally is confined above by an extensive clay layer that is the base if the upper unit of the Tallahatta Formation. Fluctuations in the amount of vertical recharge to the aquifer result in areal and temporal changes in aquifer conditions from confined to unconfined in parts of the study area. Hydraulic conductivity of the aquifer ranges from 3.5 to 7 feet per day. The transmissivity of the aquifer is approximately 50 feet squared per day. Water-level data indicate the potentiometric surface slopes to the south, southeast, and southwest with a gradient of about 87 to 167 feet per mile. The shape of the potentiometric surface and the direction of groundwater flow remains relatively unchanged during high and low water-level periods. Water levels in the Claiborne aquifer fluctuated by a maximum of 6 ft during the period from January to December 1991. Recharge to the Claiborne aquifer consists of a local and regional flow component. Lateral ground-water flow (regional flow) into the study area is dependent on regional hydraulic controls (pumpage, stream discharge, and rainfall). The rate of lateral movement of ground water is dependent on the hydraulic conductivity of the saturated zone, the hydraulic gradient, and other hydraulic factors, and is considered to be relatively constant. Local recharge enters the ground-water system as rainfall that percolates down to the water table. Annual water-level fluctuations in the Claiborne aquifer indicate that the majority of regional and local recharge occurs in the interstream area with recharge decreasing downslope to the streams. Ground water discharges to Ty Ty Creek and it's tributary throughout the year during low and high water-level periods.
Brahana, J.V.; Broshears, R.E.
2001-01-01
On the basis of known hydrogeology of the Memphis and Fort Pillow aquifers in the Memphis area, a three-layer, finite-difference numerical model was constructed and calibrated as the primary tool to refine understanding of flow in the aquifers. The model was calibrated and tested for accuracy in simulating measured heads for nine periods of transient flow from 1886-1985. Testing and sensitivity analyses indicated that the model accurately simulated observed heads areally as well as through time. The study indicates that the flow system is currently dominated by the distribution of pumping in relation to the distribution of areally variable confining units. Current withdrawal of about 200 million gallons per day has altered the prepumping flow paths, and effectively captured most of the water flowing through the aquifers. Ground-water flow is controlled by the altitude and location of sources of recharge and discharge, and by the hydraulic characteristics of the hydrogeologic units. Leakage between the Fort Pillow aquifer and Memphis aquifer, and between the Memphis aquifer and the water-table aquifers (alluvium and fluvial deposits) is a major component of the hydrologic budget. The study indicates that more than 50 percent of the water withdrawn from the Memphis aquifer in 1980 is derived from vertical leakage across confining units, and the leakage from the shallow aquifer (potential source of contamination) is not uniformly distributed. Simulated leakage was concentrated along the upper reaches of the Wolf and Loosahatchie Rivers, along the upper reaches of Nonconnah Creek, and the surficial aquifer of the Mississippi River alluvial plain. These simulations are supported by the geologic and geophysical evidence suggesting relatively thin or sandy confining units in these general locations. Because water from surficial aquifers is inferior in quality and more susceptible to contamination than water in the deeper aquifers, high rates of leakage to the Memphis aquifer may be cause for concern. A significant component of flow (12 percent) discharging from the Fort Pillow aquifer was calculated as upward leakage to the Memphis aquifer. This upward leakage was generally limited to areas near major pumping centers in the Memphis aquifer, where heads in the Memphis aquifer have been drawn significantly below heads in the Fort Pillow aquifer. Although the Fort Pillow aquifer is not capable of producing as much water as the Memphis aquifer for similar conditions, it is nonetheless a valuable resource throughout the area.
Pope, Jason P.; Andreasen, David C.; Mcfarland, E. Randolph; Watt, Martha K.
2016-08-31
Digital geospatial datasets of the extents and top elevations of the regional hydrogeologic units of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina were developed to provide an updated hydrogeologic framework to support analysis of groundwater resources. The 19 regional hydrogeologic units were delineated by elevation grids and extent polygons for 20 layers: the land and bathymetric surface at the top of the unconfined surficial aquifer, the upper surfaces of 9 confined aquifers and 9 confining units, and the bedrock surface that defines the base of all Northern Atlantic Coastal Plain sediments. The delineation of the regional hydrogeologic units relied on the interpretive work from source reports for New York, New Jersey, Delaware and Maryland, Virginia, and North Carolina rather than from re-analysis of fundamental hydrogeologic data. This model of regional hydrogeologic unit geometries represents interpolation, extrapolation, and generalization of the earlier interpretive work. Regional units were constructed from available digital data layers from the source studies in order to extend units consistently across political boundaries and approximate units in offshore areas.Though many of the Northern Atlantic Coastal Plain hydrogeologic units may extend eastward as far as the edge of the Atlantic Continental Shelf, the modeled boundaries of all regional hydrogeologic units in this study were clipped to an area approximately defined by the furthest offshore extent of fresh to brackish water in any part of the aquifer system, as indicated by chloride concentrations of 10,000 milligrams per liter. Elevations and extents of units that do not exist onshore in Long Island, New York, were not included north of New Jersey. Hydrogeologic units in North Carolina were included primarily to provide continuity across the Virginia-North Carolina State boundary, which was important for defining the southern edge of the Northern Atlantic Coastal Plain study area.
Saltwater intrusion in the Floridan aquifer system near downtown Brunswick, Georgia, 1957–2015
Cherry, Gregory S.; Peck, Michael
2017-02-16
IntroductionThe Floridan aquifer system (FAS) consists of the Upper Floridan aquifer (UFA), an intervening confining unit of highly variable properties, and the Lower Floridan aquifer (LFA). The UFA and LFA are primarily composed of Paleocene- to Oligocene-age carbonate rocks that include, locally, Upper Cretaceous rocks. The FAS extends from coastal areas in southeastern South Carolina and continues southward and westward across the coastal plain of Georgia and Alabama, and underlies all of Florida. The thickness of the FAS varies from less than 100 feet (ft) in aquifer outcrop areas of South Carolina to about 1,700 ft near the city of Brunswick, Georgia.Locally, in southeastern Georgia and the Brunswick– Glynn County area, the UFA consists of an upper water-bearing zone (UWBZ) and a lower water-bearing zone (LWBZ), as identified by Wait and Gregg (1973), with aquifer test data indicating the upper zone has higher productivity than the lower zone. Near the city of Brunswick, the LFA is composed of two permeable zones: an early middle Eocene-age upper permeable zone (UPZ) and a highly permeable lower zone of limestone (LPZ) of Paleocene and Late Cretaceous age that includes a deeply buried, cavernous, saline water-bearing unit known as the Fernandina permeable zone. Maslia and Prowell (1990) inferred the presence of major northeast–southwest trending faults through the downtown Brunswick area based on structural analysis of geophysical data, northeastward elongation of the potentiometric surface of the UFA, and breaches in the local confining unit that influence the area of chloride contamination. Pronounced horizontal and vertical hydraulic head gradients, caused by pumping in the UFA, allow saline water from the FPZ to migrate upward into the UFA through this system of faults and conduits.Saltwater was first detected in the FAS in wells completed in the UFA near the southern part of the city of Brunswick in late 1957. By the 1970s, a plume of groundwater with high chloride concentrations had migrated northward toward two major industrial pumping centers, and since 1965, chloride concentrations have steadily increased in the northern part of the city. In 1978, data obtained from a 2,720-ft-deep test well (33H188) drilled south of the city showed water with a chloride concentration of 33,000 milligrams per liter (mg/L), suggesting the saltwater source was located below the UFA in the Fernandina permeable zone (FPZ) of the LFA.All U.S. Geological Survey (USGS) data collected for this study, including groundwater levels in wells and water-chemistry data, are available in the USGS National Water Information System.
Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, North Central Yucca Flat, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for north central Yucca Flat, Profile 7, as shown in Figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T. H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, Across Quartzite Ridge, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT soundings across Quartzite Ridge, Profiles 5, 6a, and 6b, as shown in Figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, Southern Yucca Flat, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Southern Yucca Flat, Profile 4, as shown in Figure 1. No interpretation of the data is included here.« less
Magnetotelluric Data, Northern Yucca Flat, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Williams; B.D. Rodriguez, and T.H. Asch
2005-11-23
Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about themore » hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Profile 2, (fig. 1), located in the northern Yucca Flat area. No interpretation of the data is included here.« less
Counts, H.B.; Donsky, Ellis
1964-01-01
The Savannah area consists of about 2,300 square miles of the Coastal Plain along the coast of eastern Georgia and southeastern South Carolina. Savannah is near the center of the area. Most of the large ground-water developments are in or near Savannah. About 98 percent of the approximately 60 mgd of ground water used is pumped from the principal artesian aquifer, which is composed of about 600 feet of limestone of middle Eocene, Oligocene, and early Miocene ages. Industrial and other wells of large diameter yield as much as 4,200 gpm from the principal artesian aquifer. Pumping tests and flow-net analyses show that the coefficient of transmissibility averages about 200,000 gpd per ft in the immediate Savannah area. The specific capacity of wells in the principal artesian aquifer generally is about 50 gpm per ft of drawdown. The coefficient of storage of the principal artesian aquifer is about 0.0003 in the Savannah area. Underlying the Savannah area are a series of unconsolidated and semiconsolidated sediments ranging in age from Late Cretaceous to Recent. The Upper Cretaceous, Paleocene, and lower Eocene sediments supply readily available and usable water in other parts of the Coastal Plain, but although the character and physical properties of these formations are similar in the Savannah area to the same properties in other areas, the hydraulic and structural conditions appear to be different. Deep test wells are needed to evaluate the ground-water potential of these rocks. The lower part of the sediments of middle Eocene age acts as a confining layer to the vertical movement of water into or out of the principal artesian aquifer. Depending on the location and depth, the principal artesian aquifer consists of from one to five geologic units. The lower boundary of the aquifer is determined by a reduction in permeability and an increase in salt-water content. Although the entire limestone section is considered water bearing, most of the ground water used in the area comes from the upper part of the Ocala limestone of late Eocene age and the limestones of Oligocene age. The greatest volume of water comes from the upper part of the Ocala limestone, but the greatest number of wells are supplied from the rocks of Oligocene age. The Tampa limestone and Hawthorn formation of early Miocene age are generally water bearing; the amount and quality of the water depends on the location. The water from some wells in the Tampa and most of the water from the Hawthorn is high in hydrogen sulfide. In the northeastern part of the area the principal artesian aquifer is close to the land surface. Here the confining layer is thin and in some of the estauaries it may be completely cut through by the scouring action of the streams during tidal fluctuations. In this part of the area artesian groundwater at one time discharged from the aquifer as submarine springs. Now a reverse effect may be occurring; ocean and river water may be entering the aquifer. The silts, clays, and very fine sands of the upper Miocene and Pliocene ( ?) series generally have low permeabilities and form the upper confining layer for the principal artesian aquifer. Although all the sediments overlying the principal artesian aquifer are considered to be part of the confining layer, locally some of the upper units are water bearing. The uppermost geologic units in the Savannah area are sediments of Pliocene ( ?) to Recent age and consist of sands, silts, and clays with shell and gravel beds which are a source of water for shallow wells. The first large ground-water supply from the principal artesian aquifer was developed in 1886 by the city of Savannah. Additional municipal and industrial supplies have been developed since that time. Pumpage progressively increased to a peak of 62 mgd in 1957. Outside of the city and industrial area the 1957 pumpage was about 9 mgd. In 1958 the total pumpage in the Savannah area was about 68 mgd or about 3 mgd less th
Clark, Allan K.; Small, Ted A.
1997-01-01
The stratigraphic units of the Edwards aquifer in south-central Uvalde County generally are porous and permeable. The stratigraphic units that compose the Edwards aquifer in south-central Uvalde County are the Devils River Formation in the Devils River trend; and the West Nueces, McKnight, and Salmon Peak Formations in the Maverick Basin. The Balcones fault zone is the principal structural feature in Uvalde County; however, the displacement along the fault zone is less in Uvalde County than in adjacent Medina and Bexar Counties to the east. The Uvalde Salient is a structural high in south-central Uvalde County, and consists of several closely connected crustal uplifts that bring Edwards aquifer strata to the surface generally forming prominent hills. The crustal uplifts forming this structural high are the remnants of intrusive and extrusive magnatic activity. Six primary faults—Cooks, Black Mountain, Blue Mountain, Uvalde, Agape, and Connor—cross the length of the study area from the southwest to the northeast juxtaposing the Lower Cretaceous Salmon Peak Formation at the surface in the northwestern part of the study area against Upper Cretaceous formations in the central part of the study area. In the study area, the porosity of the rocks in the Edwards aquifer is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, distribution of pores, and fissuring and dissolution. The middle 185 feet of the lower part of the Devils River Formation, the upper part of the Devils River Formation, and the upper unit of the Salmon Peak Formation probably are the most porous and permeable stratigraphic zones of the Edwards aquifer in south-central Uvalde County.
The Laughlin liquid in an external potential
NASA Astrophysics Data System (ADS)
Rougerie, Nicolas; Yngvason, Jakob
2018-04-01
We study natural perturbations of the Laughlin state arising from the effects of trapping and disorder. These are N-particle wave functions that have the form of a product of Laughlin states and analytic functions of the N variables. We derive an upper bound to the ground state energy in a confining external potential, matching exactly a recently derived lower bound in the large N limit. Irrespective of the shape of the confining potential, this sharp upper bound can be achieved through a modification of the Laughlin function by suitably arranged quasi-holes.
Miller, Todd S.
2009-01-01
In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks, a school, and several farms and small businesses. Most groundwater that is withdrawn from pumped wells is returned to the groundwater system via septic systems. Groundwater in the upper and basal confined aquifers in the upper Sixmile Creek valley is under artesian conditions everywhere except where the water discharges to springs along bluffs in the western end of the Sixmile Creek valley. Principal sources of recharge to the confined aquifers are (1) the sides of the valley where the confined aquifers may extend up along the flank of the bedrock valley wall and crop out at land surface or are overlain and in contact with surficial coarse-grained deltaic and fluvial sediments that provide a pathway through which direct precipitation and seepage losses from tributary streams can reach the buried aquifers, or (2) where the buried aquifers are isolated and receive recharge only from adjacent fine-grained sediment and bedrock. The base-flow and runoff components of total streamflow at two streamgages, Sixmile Creek at Brooktondale and Sixmile Creek at Bethel Grove, were calculated using hydrograph-separation techniques from 2003 to 2007 discharge records. Base flow constituted 64 and 56 percent of the total annual flow at the Brooktondale and Bethel Grove streamgages, respectively. Water-quality samples were collected from 2003 to 2005, with 10 surface-water samples collected seasonally during base-flow conditions at the Sixmile Creek at Brooktondale streamgage, and 12 samples were collected during base-flow conditions at several selected tributaries from 2004 to 2005. The predominant cation detected in the surface-water samples was calcium, but moderate amounts of magnesium, silica, and sodium were also detected; the major anions were bicarbonate, chloride, and sulfate. Sodium and chloride concentrations were relatively low in all samples but increased downstream from the Sixmile Creek sampling site at Six Hundred Road near Slaterville Springs, NY, to B
Predictive Management of Asian Carps in the Upper Mississippi River System
Vondracek, Bruce C.; Carlson, Andrew K.
2014-01-01
Prolific non-native organisms pose serious threats to ecosystems and economies worldwide. Nonnative bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), collectively referred to as Asian carps, continue to colonize aquatic ecosystems throughout the central United States. These species are r-selected, exhibiting iteroparous spawning, rapid growth, broad environmental tolerance, high density, and long-distance movement. Hydrological, thermal, and physicochemical conditions are favorable for establishment beyond the current range, rendering containment and control imperative. Ecological approaches to confine Asian carp populations and prevent colonization characterize contemporary management in the United States. Foraging and reproduction of Asian carps govern habitat selection and movement, providing valuable insight for predictive control. Current management approaches are progressive and often anticipatory but deficient in human dimensions. We define predictive management of Asian carps as synthesis of ecology and human dimensions at regional and local scales to develop strategies for containment and control. We illustrate predictive management in the Upper Mississippi River System and suggest resource managers integrate predictive models, containment paradigms, and human dimensions to design effective, socially acceptable management strategies. Through continued research, university-agency collaboration, and public engagement, predictive management of Asian carps is an auspicious paradigm for preventing and alleviating consequences of colonization in the United States.
O'Reilly, Andrew M.
1998-01-01
Wastewater reclamation and reuse has become increasingly popular as water agencies search for alternative water-supply and wastewater-disposal options. Several governmental agencies in central Florida currently use the land-based application of reclaimed water (wastewater that has been treated beyond secondary treatment) as a management alternative to surface-water disposal of wastewater. Water Conserv II, a water reuse project developed jointly by Orange County and the City of Orlando, began operation in December 1986. In 1995, the Water Conserv II facility distributed approximately 28 Mgal/d of reclaimed water for discharge to rapid-infiltration basins (RIBs) and for use as agricultural irrigation. The Reedy Creek Improvement District (RCID) began operation of RIBs in September 1990, and in 1995 these RIBs received approximately 6.7 Mgal/d of reclaimed water. Analyses of existing data and data collected during the course of this study were combined with ground-water flow modeling and particle-tracking analyses to develop a process-oriented evaluation of the regional effects of reclaimed water applied by Water Conserv II and the RCID RIBs on the hydrology of west Orange and southeast Lake Counties. The ground-water flow system beneath the study area is a multi-aquifer system that consists of a thick sequence of highly permeable carbonate rocks overlain by unconsolidated sediments. The hydrogeologic units are the unconfined surficial aquifer system, the intermediate confining unit, and the confined Floridan aquifer system, which consists of two major permeable zones, the Upper and Lower Floridan aquifers, separated by the less permeable middle semiconfining unit. Flow in the surficial aquifer system is dominated regionally by diffuse downward leakage to the Floridan aquifer system and is affected locally by lateral flow systems produced by streams, lakes, and spatial variations in recharge. Ground water generally flows laterally through the Upper Floridan aquifer aquifer to the north and east. Many of the lakes in the study area are landlocked because the mantled karst environment precludes a well developed network of surface-water drainage. The USGS three-dimensional ground-water flow model MODFLOW was used to simulate ground-water flow in the surficial and Floridan aquifer systems. A steady-state calibration to average 1995 conditions was performed by using a parameter estimation program to vary values of surficial aquifer system hydraulic conductivity, intermediate confining unit leakance, and Upper Floridan aquifer transmissivity. The calibrated model generally produced simulated water levels in close agreement with measured water levels and was used to simulate the hydrologic effects of reclaimed-water application under current (1995) and proposed future conditions. In 1995, increases of up to about 40 ft in the water table and less than 5 ft in the Upper Floridan aquifer potentiometric surface had occurred as a result of reclaimed-water application. The largest increases were under RIB sites. An average traveltime of 10 years at Water Conserv II and 7 years at the RCID RIBs was required for reclaimed water to move from the water table to the top of the Upper Floridan aquifer. Approximately 67 percent of the reclaimed water applied at the RCID RIB site recharged the Floridan aquifer system, whereas 33 percent discharged from the surficial aquifer system to surface-water features; 99 percent of the reclaimed water applied at Water Conserv II recharged the Floridan aquifer system, whereas only 1 percent discharged from the surficial aquifer system to surface-water features. The majority of reclaimed water applied at both facilities probably will ultimately discharge from the Floridan aquifer system outside the model boundaries. Proposed future conditions were assumed to consist of an additional 11.7 Mgal/d of reclaimed water distributed by the Water Conserv II and RCID facilities. Increases of up to about 20 ft in the water
Torak, L.J.; Davis, G.S.; Strain, G.A.; Herndon, J.G.
1993-01-01
In the Albany area of southwestern Georgia, the Upper Floridan aquifer lies entirely within the Dougherty Plain district of the Coastal Plain physiographic province, and consists of the Ocala Limestone of late Eocene age. The aquifer is divided throughout most of the study area into an upper and a lower lithologic unit, which creates an upper and a lower water-bearing zone. The lower waterbearing zone consists of alternating layers of sandy limestone and medium-brown, recrystallized dolomitic limestone, and ranges in thickness from about 50 ft to 100 ft. It is highly fractured and exhibits well-developed permeability by solution features that are responsible for transmitting most of the ground water in the aquifer. Transmissivity of the lower water-bearing zone ranges from about 90,000 to 178,000 ft2/d. The upper water-bearing zone is a finely crystallized-to-oolitic, locally dolomitic limestone having an average thickness of about 60 ft. Transmissivities are considerably less in the upper water-bearing zone than in the lower water-bearing zone. The Upper Floridan aquifer is overlain by about 20-120 ft of undifferentiated overburden consisting of fine-to-coarse quartz sand and noncalcareous clay. A clay zone about 10-30 ft thick may be continuous throughout the southwestern part of the Albany area and, where present, causes confinement of the Upper Floridan aquifer and creates perched ground water after periods of heavy rainfall. The Upper Floridan aquifer is confined below by the Lisbon Formation, a mostly dolomitic limestone that contains trace amounts of glauconite. The Lisbon Formation is at least 50 ft thick in the study area and acts as an impermeable base to the Upper Floridan aquifer. The quality of ground water in the Upper Floridan aquifer is suitable for most uses; wells generally yield water of the hard, calcium-bicarbonate type that meets the U.S. Environmental Protection Agency's Primary or Secondary Drinking-Water Regulations. The water-resource potential of the Upper Floridan aquifer was evaluated by compiling results of drilling and aquifer testing in the study area, and by conducting computer simulations of the ground-water flow system under the seasonally low conditions of November 1985, and under conditions of pumping within a 12-mi 2 area located southwest of Albany. Results of test drilling, aquifer testing, and water-quality analyses indicate that, in the area southwest of Albany, geohydrologic conditions in the Upper Floridan aquifer, undifferentiated overburden, and Lisbon Formation were favorable for the aquifer to provide a large quantity of water without having adverse effects on the groundwater system. The confinement of the Upper Floridan aquifer by the undifferentiated overburden and the rural setting of the area of potential development decrease the likelihood that chemical constituents will enter the aquifer during development of the ground-water resources. Computer simulations of ground-water flow in the Upper Floridan aquifer, incorporating conditions for regional flow across model boundaries, leakage from rivers and other surface-water features, and vertical leakage from the undifferentiated overburden, were conducted by using a finite-element model for ground-water flow in two dimensions. Comparison of computed and measured water levels in the Upper Floridan aquifer for November 1985 at 74 locations indicated that computed water levels generally were within 5 ft of the measured values, which is the accuracy to which measured water levels were known. Water-level altitudes ranged from about 260 ft to 130 ft above sea level in the study area during calibration. Aquifer discharge to the Flint River downstream from the Lake Worth dam was computed by the calibrated model to be about 1 billion gallons per day; about 300 million gallons per day (Mgal/d) greater than was measured for similar lowflow conditions. The excess computed discharge was attributed partially to stream withdrawals for
NASA Astrophysics Data System (ADS)
Pucci, Amleto A.; Pope, Daryll A.
1995-05-01
Stream flow in the Coastal Plain of New Jersey is primarily controlled by ground-water discharge. Ground-water flow in a 400 square mile area (1035 km 2) of the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey was simulated to examine development effects on water resources. Simulations showed that historical development caused significant capture of regional ground-water discharge to streams and wetlands. The Cretaceous PRMA primarily is composed of fine to coarse sand, clays and silts which form the Upper and Middle aquifers and their confining units. The aquifer outcrops are the principal areas of recharge and discharge for the regional flow system and have many traversing streams and surface-water bodies. A quasi-three-dimensional numerical model that incorporated ground-water/surface-water interactions and boundary flows from a larger regional model was used to represent the PRMA. To evaluate the influence of ground-water development on interactions in different areas, hydrogeologically similar and contiguous model stream cells were aggregated as 'stream zones'. The model representation of surface-water and ground-water interaction was limited in the areas of confining unit outcrops and because of this, simulated ground-water discharge could not be directly compared with base flow. Significant differences in simulated ground-water and surface-water interactions between the predevelopment and developed system, include; (1) redistribution of recharge and discharge areas; (2) reduced ground-water discharge to streams. In predevelopment, the primary discharge for the Upper and Middle aquifers is to low-lying streams and wetlands; in the developed system, the primary discharge is to ground-water withdrawals. Development reduces simulated ground-water discharge to streams in the Upper Aquifer from 61.4 to 10% of the Upper Aquifer hydrologic budget (28.9%, if impounded stream flow is included). Ground-water discharge to streams in the Middle Aquifer decreases from 80.0 to 22% of the Middle Aquifer hydrologic budget. The utility of assessing ground-water/surface-water interaction in a regional hydrogeologic system by simulation responses to development is demonstrated and which can compensate for lack of long-term stream-gaging data in determining management decisions.
Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, May 2006
Ortiz, A.G.
2007-01-01
Introduction Hydrologic Conditions in West-Central Florida The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in May 2006. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the dry season, when ground-water levels usually are at an annual low and withdrawals for agricultural use typically are high. The cumulative average rainfall of 50.23 inches for west-central Florida (from June 2005 through May 2006) was 2.82 inches below the historical cumulative average of 53.05 inches (Southwest Florida Water Management District, 2006). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period May 15-19, 2006. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Altamonte Springs, Florida (Kinnaman, 2006). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition. Water-Level Changes Water levels in about 95 percent of the wells measured in May 2006 were lower than the May 2005 water levels (Ortiz and Blanchard, 2006). May 2006 water levels in 403 wells ranged from about 26 feet below to about 6 feet above May 2005 water levels (fig. 1). Significant water level declines occurred in eastern Manatee County, southwestern Polk County, southeastern Hillsborough County, and in all of Hardee County. The largest water level declines occurred in southwestern Hardee County. The largest water level rises occurred in south-central Pasco County, northeastern Levy County, northwestern Marion County, and along the gulf coast from Pasco County to Citrus County (fig. 1). Water levels in about 96 percent of the wells measured in May 2006 were lower than the September 2005 water levels (Ortiz, 2006). May 2006 water levels in 397 wells ranged from about 31 feet below to 3 feet above the September 2005 water levels. The largest water level decline was in west-central Hardee County and the largest rise in water levels was in south-central Pasco County.
Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada
Williams, Jackie M.; Wallin, Erin L.; Rodriguez, Brian D.; Lindsey, Charles R.; Sampson, Jay A.
2007-01-01
Introduction The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research. In early 2005 we extended that research with 26 additional MT data stations, located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations. No interpretation of the data is included here.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.
2017-06-01
This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.
Hydrogeologic framework of the North Carolina Coastal Plain aquifer system
Winner, M.D.; Coble, R.W.
1989-01-01
The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of ten aquifers separated by nine confining units. From top to bottom the aquifers are: the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and the Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand with lesser amounts of gravel and limestone. Confining units between aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. The stratigraphic continuity is determined from correlations of 161 geophysical logs along with data from drillers' and geologists' logs. Aquifers were defined by means of these logs plus water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the Coastal Plain.
Source of water to Lithia Springs in Hillsborough County, Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickey, J.J.; Coates, M.J.
1993-03-01
The source of water to Lithia Springs adjacent to the Alafia River in Hillsborough County, Florida has traditionally been hypothesized to be from the Upper Floridan aquifer. As a result, potential impacts from an adjacent public supply well field has been of interest since the well field began production in July, 1988. The discharge from Lithia Springs since March, 1984 has averaged about 3,600,000 cubic feet per day. Pumpage from the adjacent well field since July, 1988 has averaged about 2,500,000 cubic feet per day. A comparison between mean daily pumpage from the well field and mean daily discharge frommore » the springs showed no apparent association indicating that the Floridan aquifer may not be the source for the springs. Lithologic data suggested that the Upper Floridan aquifer was confined with no direct connection to the springs. This confining unit hypothesis was tested and accepted by pumping two wells close to the springs. The test consisted of pumping both wells for about 13 days at a combined rate that was about 40% of the average daily well field pumpage. No discernable test caused effects were observed on the springs or in an adjacent 115-foot deep well open to carbonate rock. Because of this, it was concluded that the Upper Floridan aquifer was not the source of water to Lithia Springs. Interpretation of available data suggested that the source of water to Lithia Springs was from the intermediate aquifer system located within solution riddled Early Miocene carbonate rocks of the lower Hawthorn Formation with maybe an important aquifer contribution from the Alafia River.« less
NASA Astrophysics Data System (ADS)
Cummings, M. L.; Large, A.; Mowbray, A.; Weatherford, J.; Webb, B.
2013-12-01
Fens and seasonal wetlands in the headwaters of the Klamath and Deschutes river basins in south-central Oregon are present in an area blanketed by 2 to 3 m of pumice during the Holocene eruption of Mount Mazama. The lower pumice unit, moderately sorted coarse pumice lapilli to blocks (0.3 to 0.7 cm), phenocrysts, and lithics is 1.5 to 2 m thick; the upper pumice unit, poorly sorted lapilli to blocks (0.2 to 6 cm), minor phenocrysts, and lithics is 1 m thick. Pumice is a perched, unconfined aquifer over low permeability bedrock or pre-eruption fine-grained sediment. Early landscape response included partial erosion of pumice from pre-eruption valleys followed by partial filling by alluvium: phenocryst- and lithic-rich sand grading upward to glassy silt with rounded pumice pebbles. Groundwater-fed wetlands, fens, associated with the unconfined pumice aquifer occur as areas of diffuse groundwater discharge through gently sloping, convex surfaces underlain by up to 1.4 m of peat. Locally, focused discharge through the confining peat layer feeds low discharge streams. Carnivorous plants (sundews and pitcher plants) may be present. The sharp contact between peat and underlying pumice is an erosion surface that cuts progressively deeper into the upper and lower pumice units downslope. At the base of the slope peat with fen discharge feeding surface flow, alluvium with no surface flow, or a subtle berm separating the slope underlain by peat from the valley bottom underlain by alluvium may be present. Distinct vegetation changes take place at this transition. The erosion surface that underlies the peat layer in the fen is at the surface on the opposing valley wall and progressively rises up through the lower and upper pumice units: iron staining and cementation of pumice is locally prominent. Up to 1.5 m difference in water table occurs between the fen and opposing valley wall. Water table in piezometers screened in peat is at the surface. Locally, water table screened in pumice below the peat confining layer is up to 24 cm above the surface. Electrical conductivity in groundwater from the unconfined pumice aquifer ranged between 20 and 45 μS/cm. Rarely, electrical conductivity greater than 250 μS/cm is measured. Hydrochemistry indicates these waters are distinctly different (Ca-bicarbonate, [Fe] up to 22 mg/l) from water commonly encountered in the unconfined pumice aquifer (Na-bicarbonate, [Fe] less than 0.07 mg/l). Seasonally elevated water tables are present where pre-eruption topography allows snowmelt to accumulate in the unconfined pumice aquifer in valley bottoms and upland surfaces. Differential hardness of volcanic bedrock units control distribution in valley bottoms; emplacement processes and weathering of flow tops control distribution in upland settings. In both settings the lower pumice unit is saturated, but the upper pumice unit may be absent or thin. Alluvium commonly overlies pumice in valley bottoms. The water table may fluctuate up to 1.5 m from the spring snowmelt to late summer. Electrical conductivity in the pumice aquifer ranges between 19 and 250 μS/cm and commonly increases at single sites as the dry season progresses.
Effect of faults on fluid flow and chloride contamination in a carbonate aquifer system
Maslia, M.L.; Prowell, D.C.
1990-01-01
A unified, multidiscipline hypothesis is proposed to explain the anomalous pattern by which chloride has been found in water of the Upper Floridan aquifer in Brunswick, Glynn County, Georgia. Analyses of geophysical, hydraulic, water chemistry, and aquifer test data using the equivalent porous medium (EPM) approach are used to support the hypothesis and to improve further the understanding of the fracture-flow system in this area. Using the data presented herein we show that: (1) four major northeast-southwest trending faults, capable of affecting the flow system of the Upper Floridan aquifer, can be inferred from structural analysis of geophysical data and from regional fault patterns; (2) the proposed faults account for the anomalous northeastward elongation of the potentiometric surface of the Upper Floridan aquifer; (3) the faults breach the nearly impermeable units that confine the Upper Floridan aquifer from below, allowing substantial quantities of water to leak vertically upward; as a result, aquifer transmissivity need not be excessively large (as previously reported) to sustain the heavy, long-term pumpage at Brunswick without developing a steep cone of depression in the potentiometric surface; (4) increased fracturing at the intersection of the faults enhances the development of conduits that allow the upward migration of high-chloride water in response to pumping from the Upper Floridan aquifer; and (5) the anomalous movement of the chloride plume is almost entirely controlled by the faults. ?? 1990.
Code of Federal Regulations, 2010 CFR
2010-07-01
... interchangeably in fire science literature. Section 1915.11(b)Definition of “Upper explosive limit.” The terms upper flammable limit (UFL) and upper explosive limit (UEL) are used interchangeably in fire science... life and is adequate for entry. However, any oxygen level greater than 20.8 percent by volume should...
Code of Federal Regulations, 2011 CFR
2011-07-01
... interchangeably in fire science literature. Section 1915.11(b)Definition of “Upper explosive limit.” The terms upper flammable limit (UFL) and upper explosive limit (UEL) are used interchangeably in fire science... life and is adequate for entry. However, any oxygen level greater than 20.8 percent by volume should...
Hydrogeology and extent of saltwater intrusion on Manhasset Neck, Nassau County, New York
Stumm, Frederick; Lange, Andrew D.; Candela, J.L.
2002-01-01
Manhasset Neck, a peninsula on the northern shore of Long Island, N.Y., is underlain by unconsolidated deposits that form a sequence of aquifers and confning units. Ground water at several public-supply wells has been affected by the intrusion of saltwater from the surrounding embayments (Manhasset Bay, Long Island Sound, Hempstead Harbor). Twenty-two boreholes were drilled during 1992-96 for the collection of hydrogeologic, geochemical, and geophysical data to delineate the subsurface geology and the extent of saltwater intrusion within the peninsula. A series of continuous high-resolution seismic- reflection surveys was completed in 1993 and 1994 to delineate the character and extent of the hydrogeologic deposits beneath the embayments surrounding Manhasset Neck.The new drill-core data indicate two hydrogeologic units--the North Shore aquifer and the North Shore confining unit--where the Lloyd aquifer, Raritan confining unit, and the Magothy aquifer have been completely removed by glacial erosion.Water levels at selected observation wells were measured quarterly throughout the study. These data, and continuous water-level records, indicate that (1) the upper glacial (water-table) and Magothy aquifers are hydraulically connected and that their water levels do not respond to tidal fluctuations, and (2) the Lloyd and North Shore aquifers also are hydraulically connected, but their water levels do respond to pumping and tidal fluctuations.Offshore seismic-reflection surveys in the surrounding embayments, and drill-core samples, indicate at least four glacially eroded buried valleys with subhorizontal, parallel reflectors indicative of draped bedding that is interpreted as infilling by silt and clay. The buried valleys (1) truncate the surrounding coarse-grained deposits, (2) are asymmetrical and steep sided, (3) trend northwest-southeast, (4) are 2 to 4 miles long and about 1 mile wide, and (5) extend to more than 400 feet below sea level.Water from 12 public-supply wells screened in the Magothy and upper glacial aquifers contained volatile organic compounds in concentrations above the New York State Department of Health Drinking Water maximum contaminant levels, as did water from one public- supply well screened in the Lloyd aquifer and from two observation wells screened in the upper glacial aquifer.Five distinct areas of saltwater intrusion have been delineated in Manhasset Neck; three extend into the Lloyd and North Shore aquifers, and two extend into the upper glacial and Magothy aquifers. Borehole-geophysical-logging data indicate that several of these saltwater wedges range from a few feet to more than 125 feet in thickness and have sharp freshwater-saltwater interfaces, and that chloride concentrations within these wedges in 1997 ranged from 102 to 9,750 milligrams per liter. Several public-supply wells have either been shut down or are currently being affected by these saltwater wedges. Data show active saltwater intrusion in at least two of the wedges.
NASA Astrophysics Data System (ADS)
Thieme, D. M.; Denizman, C.
2011-12-01
Buried karst features in sedimentary rocks of the south Georgia Coastal Plain present a challenge for hydrogeological models of recharge and confined flow within the underlying Upper Floridan aquifer. The Withlacoochee River, the trunk stream for the area, frequently disappears into subsurface caverns as it makes its way south to join the Suwannee River in northern Florida. The Withlacoochee also receives inputs from small ponds and bays which in turn receive spring and seep groundwater inputs. We have mapped karst topography at the "top of rock" using ground-penetrating radar (GPR). Up to seven meters of relief is indicated for the paleotopography on Miocene to Pliocene rocks, contrasting with the more subdued relief of the modern landscape. Current stratigraphic and hydrogeological reconstructions do not incorporate this amount of relief or lateral variation in the confining beds. One "pipe" which is approximately four meters in diameter is being mapped in detail. We have field evidence at this location for rapid movement of surficial pond and river water with a meteoric signature through several separate strata of sedimentary rock into an aquifer in the Hawthorn formation. We use our geophysical and hydrological field evidence to constrain quantitative hydrogeological models for the flow rates into and out of both this upper aquifer and the underlying Upper Floridan aquifer, which is generally considered to be confined by the clays of the Hawthorn.
1984-12-01
shales and hard aquiferic car- bonates. Therefore, small confined and perched aquifers can occur in a number of localities. The basement complex...the region that extends from Saudia Arabia all the way into Algeria, Morocco, and Tunisia is from older to younger strata. The major aquifer in the... aquifers all the way down the stratigraphic section--a phreatic one at the top, then semi- confined and confined aquifers until we get to upper
Flowmetering of drainage wells in Kuwait City, Kuwait
Paillet, Frederick L.; Senay, Y.; Mukhopadhyay, A.; Szekely, F.
2000-01-01
A heat-pulse flowmeter was used in six drainage wells in Kuwait City for flow profiling under both ambient and pumping conditions. The data collected were used in: (a) estimating the cross-flow among the screened intervals under ambient conditions; (b) estimating the relative transmissivity adjacent to the individual screen zones; and (c) determination of the hydraulic heads at the far boundaries of the large-scale aquifer zones. These inferences were cross-checked against known hydrogeology of the aquifer-aquitard system in the study area, and the calibration results of numerical flow modeling. The major conclusions derived from the flow measurements were: (a) the presence of natural downward cross-flow under ambient condition supported the hypothesis that the upper part of the Kuwait Group aquifer in the study area was divided into a series of permeable units (aquifers), separated by confining or semi-confining beds (aquitards); (b) the head differences between the different screened zones, derived through modeling of the flowmeter data of the wells, provided additional confirmation for the division of the upper part of the Kuwait Group aquifer into compartments in the study area; (c) flowmeter data indicated that the second and third aquifers were contributing most of the water to the well bores, compared with the uppermost (first) and the lowermost (fourth) aquifers; and (d) inflow to the wells during pumping was associated with discrete sub-intervals in the screened zones, controlled by local aquifer heterogeneity, and possibly clogging of screens and gravel pack.
Reaching High Bookshelves From a Wheelchair
NASA Technical Reports Server (NTRS)
Walch, A. J.
1982-01-01
"Book retriever" allows people confined to wheelchairs to remove or replace books from upper shelves of library stacks. Retriever is mechanical device composed of aluminum tube approximately 5 feet long with two jaws at upper end. Jaws securely clamp selected book; they are thin enough to be inserted between adjacent books.
Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York
Heisig, Paul M.
2015-10-19
Water-resource potential is greatest within saturated sand and gravel in the Chemung River valley (nearly 1 mile wide), especially where induced infiltration of additional water from the Chemung River is possible. The second most favorable area is the Newtown Creek valley at the confluence of Newtown Creek with North Branch Newtown Creek east of Horseheads, N.Y. Extensive sand and gravel deposits within the Breesport, N.Y., area are largely unsaturated but may have greater saturation along the east side of Jackson Creek immediately north of Breesport. Till deposits confine sand and gravel along Newtown Creek at Erin, N.Y., and along much of the upper reach of North Branch Newtown Creek; this confining unit may limit recharge and potential well yield. The north-south oriented valleys of Baldwin and Wynkoop Creeks end at notched divides that imply input of glacial meltwater and limited sediment from outside of the present watersheds. These two valleys are relatively narrow but contain variably sorted sand and gravel, which, in places, may be capable of supplying modest-size community water systems.
Torak, Lynn J.; Painter, Jaime A.; Peck, Michael F.
2010-01-01
Major streams and tributaries located in the Aucilla-Suwannee-Ochlockonee (ASO) River Basin of south-central Georgia and adjacent parts of Florida drain about 8,000 square miles of a layered sequence of clastic and carbonate sediments and carbonate Coastal Plain sediments consisting of the surficial aquifer system, upper semiconfining unit, Upper Floridan aquifer, and lower confining unit. Streams either flow directly on late-middle Eocene to Oligocene karst limestone or carve a dendritic drainage pattern into overlying Miocene to Holocene sand, silt, and clay, facilitating water exchange and hydraulic connection with geohydrologic units. Geologic structures operating in the ASO River Basin through time control sedimentation and influence geohydrology and water exchange between geohydrologic units and surface water. More than 300 feet (ft) of clastic sediments overlie the Upper Floridan aquifer in the Gulf Trough-Apalachicola Embayment, a broad area extending from the southwest to the northeast through the center of the basin. These clastic sediments limit hydraulic connection and water exchange between the Upper Floridan aquifer, the surficial aquifer system, and surface water. Accumulation of more than 350 ft of low-permeability sediments in the Southeast Georgia Embayment and Suwannee Strait hydraulically isolates the Upper Floridan aquifer from land-surface hydrologic processes in the Okefenokee Basin physiographic district. Burial of limestone beneath thick clastic overburden in these areas virtually eliminates karst processes, resulting in low aquifer hydraulic conductivity and storage coefficient despite an aquifer thickness of more than 900 ft. Conversely, uplift and faulting associated with regional tectonics and the northern extension of the Peninsular Arch caused thinning and erosion of clastic sediments overlying the Upper Floridan aquifer southeast of the Gulf Trough-Apalachicola Embayment near the Florida-Georgia State line. Limestone dissolution in Brooks and Lowndes Counties, Ga., create karst features that enhance water-transmitting and storage properties of the Upper Floridan aquifer, promoting groundwater recharge and water exchange between the aquifer, land surface, and surface water. Structural control of groundwater flow and hydraulic properties combine with climatic effects and increased hydrologic stress from agricultural pumpage to yield unprecedented groundwater-level decline in the northwestern and central parts of the ASO River Basin. Hydrographs from continuous-record observation wells in these regions document declining groundwater levels, indicating diminished water-resource potential of the Upper Floridan aquifer through time. More than 24 ft of groundwater-level decline occurred along the basin's northwestern boundary with the lower Apalachicola-Chattahoochee-Flint River Basin, lowering hydraulic gradients that provide the potential for groundwater flow into the ASO River Basin and southeastward across the Gulf Trough-Apalachicola Embayment region. Slow-moving groundwater across the trough-embayment region coupled with downward-vertical flow from upper to lower limestone units composing the Upper Floridan aquifer resulted in 40-50 ft of groundwater-level decline since 1969 in southeastern Colquitt County. Multi-year episodes of dry climatic conditions during the 1980s through the early 2000s contributed to seasonal and long-term groundwater-level decline by reducing recharge to the Upper Floridan aquifer and increasing hydrologic stress by agricultural pumpage. Unprecedented and continued groundwater-level decline since 1969 caused 40-50 ft of aquifer dewatering in southeastern Colquitt County that reduced aquifer transmissivity and the ability to supply groundwater to wells, resulting in depletion of the groundwater resource.
Knowles, Leel; O'Reilly, Andrew M.; Adamski, James C.
2002-01-01
The hydrogeology of Lake County and the Ocala National Forest in north-central Florida was evaluated (1995-2000), and a ground-water flow model was developed and calibrated to simulate the effects of both present day and future ground-water withdrawals in these areas and the surrounding vicinity. A predictive model simulation was performed to determine the effects of projected 2020 ground-water withdrawals on the water levels and flows in the surficial and Floridan aquifer systems. The principal water-bearing units in Lake County and the Ocala National Forest are the surficial and Floridan aquifer systems. The two aquifer systems generally are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Florida aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which generally are separated by one or two less-permeable confining units. The Floridan aquifer system is the major source of ground water in the study area. In 1998, ground-water withdrawals totaled about 115 million gallons per day in Lake County and 5.7 million gallons per day in the Ocala National Forest. Of the total ground water pumped in Lake County in 1998, nearly 50 percent was used for agricultural purposes, more than 40 percent for municipal, domestic, and recreation supplies, and less than 10 percent for commercial and industrial purposes. Fluctuations of lake stages, surficial and Floridan aquifer system water levels, and Upper Floridan aquifer springflows in the study area are highly related to cycles and distribution of rainfall. Long-term hydrographs for 9 lakes, 8 surficial aquifer system and Upper Floridan aquifer wells, and 23 Upper Floridan aquifer springs show the most significant increases in water levels and springflows following consecutive years with above-average rainfall, and significant decreases following consecutive years with below-average rainfall. Long-term (1940-2000) hydrographs of lake and ground-water levels and springflow show a slight downward trend; however, after the early 1960's, this downward trend generally is more pronounced, which corresponds with accumulating rainfall deficits and increased development. The U.S. Geological Survey three-dimensional ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the surficial and Floridan aquifer systems in Lake County, the Ocala National Forest, and adjacent areas. A steady-state calibration to average 1998 conditions was facilitated by using the inverse modeling capabilities of MODFLOW-2000. Values of hydrologic properties from the calibrated model were in reasonably close agreement with independently estimated values and results from previous modeling studies. The calibrated model generally produced simulated water levels and flows in reasonably close agreement with measured values and was used to simulate the hydrologic effects of projected 2020 conditions. Ground-water withdrawals in the model area have been projected to increase from 470 million gallons per day in 1998 to 704 million gallons per day in 2020. Significant drawdowns were simulated in Lake County from average 1998 to projected 2020 conditions: the average and maximum drawdowns, respectively, were 0.5 and 5.7 feet in the surficial aquifer system, 1.1 and 7.6 feet in the Upper Floridan aquifer, and 1.4 and 4.3 feet in the Lower Floridan aquifer. The largest drawdowns in Lake County were simulated in the southeastern corner of the County and in the vicinities of Clermont and Mount Dora. Closed-basin lakes and wetlands are more likely to be affected by future pumping in these large drawdown areas, as opposed to other areas of Lake County. However, within the Ocala National Forest, drawdowns were relatively small: the average and maximum drawdowns, respectively, were 0.1 and 1.0 feet in the surficial aquifer system, 0.2 and
Hydrogeologic framework of the North Carolina coastal plain
Winner, M.D.; Coble, R.W.
1996-01-01
The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of 10 aquifers separated by 9 confining units. From top to bottom, the aquifers are the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer, and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand, with lesser amounts of gravel and limestone. The confining units between the aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. Stratigraphic continuity was determined from correlations of 161 geophysical logs along with data from drillers? and geologists? logs. Aquifers were defined by means of these logs as well as water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the North Carolina Coastal Plain.
NASA Astrophysics Data System (ADS)
Vibhava, F.; Graham, W. D.; De Rooij, R.; Maxwell, R. M.; Martin, J. B.; Cohen, M. J.
2011-12-01
The Santa Fe River Basin (SFRB) consists of three linked hydrologic units: the upper confined region (UCR), semi-confined transitional region (Cody Escarpment, CE) and lower unconfined region (LUR). Contrasting geological characteristics among these units affect streamflow generation processes. In the UCR, surface runoff and surficial stores dominate whereas in the LCR minimal surface runoff occurs and flow is dominated by groundwater sources and sinks. In the CE region the Santa Fe River (SFR) is captured entirely by a sinkhole into the Floridan aquifer, emerging as a first magnitude spring 6 km to the south. In light of these contrasting hydrological settings, developing a predictive, basin scale, physically-based hydrologic simulation model remains a research challenge. This ongoing study aims to assess the ability of a fully-coupled, physically-based three-dimensional hydrologic model (PARFLOW-CLM), to predict hydrologic conditions in the SFRB. The assessment will include testing the model's ability to adequately represent surface and subsurface flow sources, flow paths, and travel times within the basin as well as the surface-groundwater exchanges throughout the basin. In addition to simulating water fluxes, we also are collecting high resolution specific conductivity data at 10 locations throughout the river. Our objective is to exploit hypothesized strong end-member separation between riverine source water geochemistry to further refine the PARFLOW-CLM representation of riverine mixing and delivery dynamics.
Planert, Michael
2007-01-01
The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over-lying surficial and underlying Upper Floridan aquifers. The Upper Floridan aquifer is present throughout the study area and is extremely permeable and typically capable of transmitting large volumes of water. This high permeability largely is due to the widening of fractures and formation of conduits within the aquifer through dissolu-tion of the limestone by infiltrating water. This process has also produced numerous karst features such as springs, sinking streams, and sinkholes. A model of the Upper Floridan aquifer was created to better understand the ground-water system and to provide resource managers a tool to evaluate ground-water and surface-water interactions in the Suwannee River Basin. The model was developed to simulate a single Upper Floridan aquifer layer. Recharge datasets were developed to represent a net flux of water to the top of the aquifer or the water table during a period when the system was assumed to be under steady-state conditions (September 1990). A potentiometric-surface map representing water levels during September 1990 was prepared for the Suwannee River Water Management District (SRWMD), and the heads from those wells were used for calibration of the model. Additionally, flows at gaging sites for the Suwannee, Alapaha, Withlacoochee, Santa Fe, Fenholloway, Aucilla, Ecofina, and Steinhatchee Rivers were used during the calibration process to compare to model computed flows. Flows at seven first-magnitude springs selected by the SRWMD also were used to calibrate the model. Calibration criterion for matching potentiometric heads was to attain an absolute residual mean error of 5 percent or less of the head gradient of the system which would be about 5 feet. An absolute residual mean error of 4.79 feet was attained for final calibration. Calibration criterion for matching streamflow was based on the quality of measurements made in the field. All measurements used were rated ?good,? so the desire was for simulated values to be wi
Hetcher-Aguila, Kari K.; Miller, Todd S.
2005-01-01
The confined aquifer is widely used by people living and working in the Chenango River valley. The confined aquifer consists of ice-contact sand and gravel, typically overlies bedrock, and underlies a confining unit consisting of lacustrine fine sand, silt, and clay. The confining unit is typically more than 100 feet thick in the central parts of the valley between Greene Landing Field and along the northern edge of the Chenango Valley State Park. The thickness of the confined aquifer is more than 40 feet near the Greene Landing Field.
NASA Astrophysics Data System (ADS)
Kuri, Subrata Kumar; Rakibuzzaman, S. M.; Sabah, Arefiny; Ahmed, Jannat; Hasan, Mohammad Nasim
2017-12-01
Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in nanoscale confinement having nanostructured boundary. Nanoscale confinement under consideration consists of hot and cold parallel platinum plates at the bottom and top end of a model cuboid inside which the fluid domain comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the confinement. Three different confinement configurations have been considered here: (i) Both platinum plates are flat, (ii) Upper plate consisting of transverse slots and (iii) Both plates consisting of transverse slots. The height of the slots is 1.5 nm. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). Various system characteristics such as atomic distribution, wall heat flux, evaporative mass flux etc. have been obtained and discussed to have a clear understanding of the effect of nanotextured surface on phase change phenomena.
NASA Astrophysics Data System (ADS)
van Gelder, Inge; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd
2017-04-01
A series of physical analogue experiments were performed to simulate intra-continental subduction contemporaneous with lateral extrusion of the upper plate to study the interferences between these two processes at crustal levels and in the lithospheric mantle. The lithospheric-scale models are specifically designed to represent the collision of the Adriatic microplate with the Eastern Alps, simulated by an intra-continental weak zone to initiate subduction and a weak confined margin perpendicular to the direction of convergence in order to allow for extrusion of the lithosphere. The weak confined margin is the analog for the opening of the Pannonian back-arc basin adjacent to the Eastern Alps with the direction of extension perpendicular to the strike of the orogen. The models show that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes. The obtained deformation structures within the extruding region are similar compared to the classical setup where lateral extrusion is provoked by lithosphere-scale indentation. In the models a strong coupling across the subduction boundary allows for the transfer of abundant stresses to the upper plate, leading to laterally varying strain regimes that are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. During ongoing convergence the strain regimes propagate laterally, thereby creating an area of overlap characterized by transpression. In models with oblique subduction, with respect to the convergence direction, less deformation of the upper plate is observed and as a consequence the amount of lateral extrusion decreases. Additionally, strain is partitioned along the oblique plate boundary leading to less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps, where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results highlight that both indentation and subduction of Adria are valid collisional mechanisms to provoke lateral extrusion-type deformation within the Eastern Alps lithosphere, i.e. the upper plate. Moreover, the insights suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps is best described by phases of oblique and subsequent orthogonal subduction which is in line with Miocene rotations of the Adriatic plate. Furthermore, oblique subduction of the Adriatic plate provides a viable mechanism to explain the rapid decrease in slab length beneath the Eastern Alps towards the Pannonian Basin, also implying that the Adriatic slab can behave and form independently with regards to the adjacent subduction of Adria beneath the Dinarides.
Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez
2007-08-15
The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006).more » During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations shown in figure 1. No interpretation of the data is included here.« less
Edwards, L.E.; Weedman, S.D.; Simmons, R.; Scott, T.M.; Brewster-Wingard, G. L.; Ishman, S.E.; Carlin, N.M.
1998-01-01
In 1996, seven cores were recovered in western Collier County, southwestern Florida, to acquire subsurface geologic and hydrologic data to support ground-water modeling efforts. This report presents the lithostratigraphy, X-ray diffraction analyses, petrography, biostratigraphy, and strontium-isotope stratigraphy of these cores. The oldest unit encountered in the study cores is an unnamed formation that is late Miocene. At least four depositional sequences are present within this formation. Calculated age of the formation, based on strontium-isotope stratigraphy, ranges from 9.5 to 5.7 Ma (million years ago). An unconformity within this formation that represents a hiatus of at least 2 million years is indicated in the Old Pump Road core. In two cores, Collier-Seminole and Old Pump Road, the uppermost sediments of the unnamed formation are not dated by strontium isotopes, and, based on the fossils present, these sediments could be as young as Pliocene. In another core (Fakahatchee Strand-Ranger Station), the upper part of the unnamed formation is dated by mollusks as Pliocene. The Tamiami Formation overlies the unnamed formation throughout the study area and is represented by the Ochopee Limestone Member. The unit is Pliocene and probably includes the interval of time near the early/late Pliocene boundary. Strontium-isotope analysis indicates an early Pliocene age (calculated ages range from 5.1 to 3.5 Ma), but the margin of error includes the latest Miocene and the late Pliocene. The dinocyst assemblages in the Ochopee typically are not age-diagnostic, but, near the base of the unit in the Collier-Seminole, Jones Grade, and Fakahatchee Strand State Forest cores, they indicate an age of late Miocene or Pliocene. The molluscan assemblages indicate a Pliocene age for the Ochopee, and a distinctive assemblage of Carditimera arata and Chione cortinaria in several of the cores specifically indicates an age near the early/late Pliocene boundary. Undifferentiated sands overlie the Pliocene limestones in two cores in the southern part of the study area. Artificial fill occurs at the top of most of the cores. The hydrologic confining units penetrated by these cores are different in different parts of the study area. To the west, a hard tightly cemented dolostone forms the first major confining unit below the water table. In the eastern part of the study area, confinement is more difficult to determine. A tightly cemented sandstone, much younger than the dolostones to the west and probably not laterally connected to them, forms a slight confining unit in one core. Thick zones of poorly sorted muddy unconsolidated sands form a slight confining unit in other cores; these probably are not correlative to either the sandstone or the dolostones to the west. The age and sedimentologic observations suggest a complex compartmentalization of the surficial aquifer system in southwestern Florida. The calibrations of dinocyst and molluscan occurrences with strontium-isotope stratigraphy allows us to expand and document the reported ranges of many taxa. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
Groundwater quality in the Santa Clara River Valley, California
Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth
2011-01-01
The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of Ventura, Oxnard, Camarillo, Simi Valley, Newhall, and Santa Clarita. Currently, groundwater pumping for agricultural use accounts for the greatest amount of discharge from the aquifer system in the SCRV study unit, followed by municipal use. Recharge to the groundwater system is through stream-channel infiltration from the three main river systems and by direct infiltration of precipitation and irrigation. Recharge facilities in the Oxnard forebay play an important role in recharging the local aquifer systems.
Aucott, Walter R.
1996-01-01
Transmissivity values used in the flow simulation range from less than 1,000 feet squared per day near the updip limit of most aquifers to about 30,000 feet squared per day in the Middendorf aquifer in the Savannah River Plant area. Vertical hydraulic conductivity values used in simulation of confining units range from about 6x10-7 feet per day for the confining unit between the Middendorf and Black Creek aquifers in coastal areas to 3x10-2 feet per day for most of the confining units near their updip limits. Storage coefficients used in transient simulations were 0.15 where unconfined conditions exist and 0.0005 where confined conditions exist.
Bartos, Timothy T.; Diehl, Sharon F.; Hallberg, Laura L.; Webster, Daniel M.
2014-01-01
The geologic and hydrogeologic characteristics of Tertiary lithostratigraphic units (Ogallala Formation and White River Group) that typically compose or underlie the High Plains aquifer system in southeastern Wyoming were described physically and chemically, and evaluated at a location on the Belvoir Ranch in Laramie County, Wyoming. On the basis of this characterization and evaluation, three Tertiary lithostratigraphic units were identified using physical and chemical characteristics determined during this study and previous studies, and these three units were determined to be correlative with three identified hydrogeologic units composing the groundwater system at the study site—a high-yielding aquifer composed of the entire saturated thickness of the heterogeneous and coarse-grained fluvial sediments assigned to the Ogallala Formation (Ogallala aquifer); an underlying confining unit composed primarily of very fine-grained volcaniclastic sediments and mudrocks assigned to the Brule Formation of the White River Group and some additional underlying sediments that belong to either the Brule or Chadron Formation, or both (Brule confining unit); and an underlying low-yielding aquifer composed primarily of poorly sorted fluvial sediments assigned to the Chadron Formation of the White River Group (Chadron aquifer). Despite widely varying sediment heterogeneity and consolidation, some limited hydraulic connection throughout the full vertical extent of the Ogallala aquifer was indicated but not conclusively proven by interpretation of similar chemical and isotopic characteristics, modern apparent groundwater ages, and similar hydraulic-head responses measured continuously in two Ogallala aquifer monitoring wells installed for this study at two different widely separated (83 feet) depth intervals. Additional work beyond the scope of this study, such as aquifer tests, would be required to conclusively determine hydraulic connection within the Ogallala aquifer. Groundwater levels (hydraulic heads) measured continuously using water-level recorders in both monitoring wells completed in the Ogallala aquifer showed a consistent strong upward vertical gradient in the Ogallala aquifer, indicating the potential for water to move from deeper to shallower parts of the aquifer, regardless of the time of year and the presumed effects of pumping of public-supply and industrial wells in the area. Continuous measurement of groundwater levels in the shallowest monitoring well, installed near the water table, and examination of subsequently constructed water-level hydrographs indicated substantial groundwater recharge is likely during the spring of 2009 and 2010 from the ephemeral stream (Lone Tree Creek) located adjacent to the study site that flows primarily in response to spring snowmelt from the adjacent Laramie Mountains and surface runoff from precipitation events. Using the water-table fluctuation method, groundwater recharge was estimated to be about 13 inches for the period beginning in early October 2009 and ending in late June 2010, and about 4 inches for the period beginning in March 2011 and ending in early July 2011. Comparison of previously measured groundwater levels (hydraulic heads) and groundwater-quality characteristics in nearby monitoring wells completed in the Chadron aquifer with those measured in the two monitoring wells installed for this study in the Ogallala aquifer, combined with detailed lithologic characterization, strongly indicated the Brule confining unit hydraulically confines and isolates the Chadron aquifer from the overlying Ogallala aquifer, thus likely limiting hydraulic connection between the two units. Consequently, because of the impermeable nature of the Brule confining unit and resulting hydraulic separation of the Ogallala and Chadron aquifers, and compared with local and regional hydrostratigraphic definitions of the High Plains aquifer system, the groundwater system in Tertiary lithostratigraphic units overlying the Upper Cretaceous Lance Formation at the location studied on the Belvoir Ranch was defined as being composed of, from shallowest to deepest, the High Plains aquifer system (high-yielding Ogallala aquifer only, composed of the saturated Ogallala Formation); the Brule confining unit composed of the Brule Formation of the White River Group and an underlying fine-grained depth interval with sediments that belong to either the Brule or Chadron Formation, or both; and the low-yielding Chadron aquifer (composed of poorly sorted coarse-grained sediments with substantial fine-grained matrix material assigned to the Chadron Formation of the White River Group).
Pool, D.R.; Dickinson, Jesse
2007-01-01
A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.
Rivers, Glen A.; Baker, Ernest T.; Coplin, L.S.
1996-01-01
The terrace alluvial aquifer underlying Air Force Plant 4 and the adjacent Naval Air Station (formerly Carswell Air Force Base) in the Fort Worth area, Texas, is contaminated locally with organic and metal compounds. Residents south and west of Air Force Plant 4 and the Naval Air Station are concerned that contaminants might enter the underlying Paluxy aquifer, which provides water to the city of White Settlement, south of Air Force Plant 4, and to residents west of Air Force Plant 4. The U.S. Environmental Protection Agency has qualified Air Force Plant 4 for Superfund cleanup. The pertinent geologic units include -A~rom oldest to youngest the Glen Rose, Paluxy, and Walnut Formations, Goodland Limestone, and terrace alluvial deposits. Except for the Glen Rose Formation, all units crop out at or near Air Force Plant 4 and the Naval Air Station. The terrace alluvial deposits, which nearly everywhere form the land surface, range from 0 to about 60 feet thick. These deposits comprise a mostly unconsolidated mixture of gravel, sand, silt, and clay. Mudstone and sandstone of the Paluxy Formation crop out north, west, and southwest of Lake Worth and total between about 130 and about 175 feet thick. The terrace alluvial deposits and the Paluxy Formation comprise the terrace alluvial aquifer and the Paluxy aquifer, respectively. These aquifers are separated by the Goodland-Walnut confining unit, composed of the Goodland Limestone and (or) Walnut Formation. Below the Paluxy aquifer, the Glen Rose Formation forms the Glen Rose confining unit. Water-level measurements during May 1993 and February 1994 from wells in the terrace alluvial aquifer indicate that, regionally, ground water flows toward the east-southeast beneath Air Force Plant 4 and the Naval Air Station. Locally, water appears to flow outward from ground-water mounds maintained by the localized infiltration of precipitation and reportedly by leaking water pipes and sanitary and (or) storm sewer lines beneath the assembly building at Air Force Plant 4. North of Farmers Branch, the terrace alluvial aquifer discharges into Lake Worth, Meandering Road Creek, Farmers Branch, and the West Fork Trinity River. South of Farmers Branch, ground water appears to flow mostly north-northeastward. Greater precipitation prior to the May 1993 measurements caused water levels to average approximately 5 ft higher in May 1993 than in February 1994. Regional ground-water gradients indicate west to east-southeastward flow in the Paluxy aquifer, with a dominant southeastward component beneath Air Force Plant 4. Water-level maps for the Paluxy "upper sand" reveal an elongated groundwater mound beneath southeastern parts of Air Force Plant 4, which indicates a localized, vertical conduit through which contaminated water from the terrace alluvial aquifer might enter upper parts of the Paluxy aquifer. The Paluxy "upper sand" apparently is mostly unsaturated and hydraulically separated from the deeper, regionally extensive parts of the Paluxy aquifer, most of which are fully saturated. While water levels in the "upper sand" were as much as 10 ft higher in May 1993 than in February 1994, water levels in most deeper parts of the Paluxy aquifer were slightly higher in February 1994 than they were in May 1993.
Geohydrologic systems in Kansas physical framework of the western interior plains confining system
Wolf, R.J.; McGovern, Harold E.; Spinazola, Joseph M.
1992-01-01
The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in the Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for assessing, developing, and managing water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981) as shown on the envelope cover.
Geochemistry of Permian rocks from the margins of the Phosphoria Basin
Perkins, Robert B.; McIntyre, Brandie; Hein, James R.; Piper, David Z.
2003-01-01
The Permian Phosphoria Formation and interbedded units of the Park City Formation and Shedhorn Sandstone in western Wyoming represent deposition along a carbonate ramp at the eastern margin of the Phosphoria Basin, with portions of the Phosphoria units reflecting periods of upwelling and widespread phosphogenesis. Thickness-weighted slab-samples of these units were collected at a maximum interval of 3 m along an 80+ m-length of unweathered core and analyzed for major-, minor-, and trace-element contents. Interpretations of geochemistry were made within the confines of a previously recognized sequence stratigraphy framework. Major shifts in element ratios characteristic of terrigenous debris that occur at sequence boundaries at the base of the Meade Peak and Retort Members of the Phosphoria Formation are attributed to changing sediment sources. Inter-element relationships in the marine fraction indicate that bottom waters of the Phosphoria Basin were predominantly denitrifying during deposition of the Ervay, Grandeur, and Phosphoria sediments, although sulfate-reducing conditions may have existed during deposition of the lower Meade Peak sediments. Oxic conditions were prevalent during deposition of a large part of the Franson Member, which represents sedimentation in a shallow, inner- to back-ramp setting. Variations in sediment facies and organic matter and trace element contents largely reflect changes in Permian sea level. Changes in sea level in basin-margin areas, such as represented by the study section, may have affected the oxidation of settling organic matter, the foci of intersection of upwelling bottom waters with the photic zone, the rate of terrigenous sedimentation, and, ultimately, the overall environment of deposition. Our study suggests that phosphogenesis can occur under lowstand, transgressive, and highstand conditions in marginal areas, assuming water depths sufficient for upwelling to occur. Formation of phosphorite layers under upwelling conditions appears to have been most dependent on a lack of dilution by terrigenous sedimentation and carbonate shoaling. Differences in the geochemistry between two similar environments represented by the upper and lower Phosphoria units are largely attributed to higher rates of diluting terrigenous sediment during deposition of the upper unit. This is consistent with prior interpretations of a more shoreward setting for the upper Phosphoria.
Nonlocal response in plasmonic waveguiding with extreme light confinement
NASA Astrophysics Data System (ADS)
Toscano, Giuseppe; Raza, Søren; Yan, Wei; Jeppesen, Claus; Xiao, Sanshui; Wubs, Martijn; Jauho, Antti-Pekka; Bozhevolnyi, Sergey I.; Mortensen, N. Asger
2013-07-01
We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allowing us to study waveguides with subnanometer cross-sections exhibiting extreme light confinement. We show that groove and wedge waveguides have a fundamental lower limit in their mode confinement, only captured by the nonlocal theory. The limitation translates into an upper limit for the corresponding Purcell factors, and thus has important implications for quantum plasmonics.
Berndt, Marian P.; Crandall, Christy A.; Deacon, Michael; Embry, Teresa L.; Howard, Rhonda S.
2009-01-01
The Floridan aquifer system is a highly productive carbonate aquifer that provides drinking water to about 10 million people in Florida, Georgia, and South Carolina. Approximately 1.6 million people rely on domestic wells (privately owned household wells) for drinking water. Withdrawals of water from the Floridan aquifer system have increased by more than 500 percent from 630 million gallons per day (2.38 cubic meters per day) in 1950 to 4,020 million gallons per day (15.2 cubic meters per day) in 2000, largely due to increases in population, tourism, and agriculture production. Water samples were collected from 148 domestic wells in the Upper Floridan aquifer in Florida, Georgia, South Carolina, and Alabama during 1998-2005 as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment Program. The wells were located in different hydrogeologic settings based on confinement of the Upper Floridan aquifer. Five networks of wells were sampled con-sisting of 28 to 30 wells each: two networks were in unconfined areas, two networks were in semiconfined areas, and one network was in the confined area. Physical properties and concentrations of major ions, trace elements, nutrients, radon, and organic compounds (volatile organic compounds and pesticides) were measured in water samples. Concentrations were compared to water-quality benchmarks for human health, either U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for public water supplies or USGS Health-Based Screening Levels (HBSLs). The MCL for fluoride of 4 milligrams per liter (mg/L) was exceeded for two samples (about 1 percent of samples). A proposed MCL for radon of 300 picocuries per liter was exceeded in about 40 percent of samples. Nitrate concentrations in the Upper Floridan aquifer ranged from less than the laboratory reporting level of 0.06 to 8 mg/L, with a median nitrate concentration less than 0.06 mg/L (as nitrogen). Nitrate concentrations did not exceed the MCL of 10 mg/L. Statistical comparisons indicated that median nitrate concentrations were significantly different by degree of confinement where the highest median nitrate concentration was 1.46 mg/L for 58 samples from unconfined areas, and by network, where the highest median nitrate concentration was 2.43 mg/L in 28 samples from unconfined areas in southwestern Georgia. Nitrate concentrations in unconfined areas were positively correlated to: (1) the percentage of agricultural land use around the well, (2) the amount of nitrogen fertilizer applied, and (3) the dissolved oxygen concentrations in groundwater. Volatile organic compounds (VOCs) were detected in about 63 percent of all samples. Chloroform, carbon disulfide, and 1,2-dichloropropane were the most frequently detected VOCs. Chloroform, a byproduct of water chlorination, was most frequently detected in unconfined urban areas. Carbon disulfide, a solvent, was most frequently detected in confined areas in southeastern Georgia. Pesticides were detected in about 21 percent of all samples, but were detected in about 69 percent of the 28 samples from unconfined areas in southwestern Georgia. The herbicides atrazine, deethylatrazine, and metolachlor were the most frequently detected pesticides.
Influence of the confining pressure on precursory and rupture processes of Westerly granite.
NASA Astrophysics Data System (ADS)
Passelegue, Francois; Nicolas, Aurelien; Madonna, Claudio; Schubnel, Alexandre
2016-04-01
In the shallow crust, brittle deformation mechanisms lead to damage and rupture of rocks. These mechanisms are generally described by non-linear stress relations and decrease of the elastic moduli due to microcrak opening and sliding. However, failure mode depends on confining pressure and ranges from axial splitting to shear localization. Here we report experiments on Westerly granite samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial loading (σ1>σ2=σ3) at confining pressures (σ3) ranging from 2 to 50 MPa (similar to upper crustal stress conditions) and at constant axial strain rate 10-5/s. Usual a dual gain system, a high frequency acoustic monitoring array recorded particles acceleration during macroscopic rupture of the intact specimen and premonitory background microseismicity. Secondly, acoustic sensors were used in an active way to measure the evolution of elastic wave velocities. In addition, we used an amplified strain gage to record the dynamic stress change during the dynamic rupture. Our preliminary results show that increasing confining pressure leads to the transition between axial cracks opening to shear localization. This result is supported by the moment tensor solutions of acoustic emissions and CT scan imaging of the post mortem sample. In addition, we systematically observe an exponential increase of the premonitory activity up to the shear failure of the sample. While the intensity of this precursory activity increase with the confining pressure in term of energy, the crack density leading to the failure of the sample is independent of the confinement. We show that the dynamic rupture occurs in only few microseconds, suggesting a rupture speed close to the shear wave velocity. In addition, the ratio between the stress drop and the peak of stress increases with the confinement. This result suggest that the weakening of faulting increases with the confinement. Finally, using both dynamic stress drop and axial displacement measurement, we show that the fracture energy increases with both confining pressure and seismic slip.
NASA Astrophysics Data System (ADS)
Thompson, Chris; Croke, Jacky
2013-09-01
Flooding is a persistent natural hazard, and even modest changes in future climate are believed to lead to large increases in flood magnitude. Previous studies of extreme floods have reported a range of geomorphic responses from negligible change to catastrophic channel change. This paper provides an assessment of the geomorphic effects of a rare, high magnitude event that occurred in the Lockyer valley, southeast Queensland in January 2011. The average return interval of the resulting flood was ~ 2000 years in the upper catchment and decreased to ~ 30 years downstream. A multitemporal LiDAR-derived DEM of Difference (DoD) is used to quantify morphological change in two study reaches with contrasting valley settings (confined and unconfined). Differences in geomorphic response between reaches are examined in the context of changes in flood power, channel competence and degree of valley confinement using a combination of one-dimensional (1-D) and two-dimensional (2-D) hydraulic modelling. Flood power peaked at 9800 W m- 2 along the confined reach and was 2-3 times lower along the unconfined reach. Results from the DoD confirm that the confined reach was net erosional, exporting ~ 287,000 m3 of sediment whilst the unconfined reach was net depositional gaining ~ 209,000 m3 of sediment, 70% of the amount exported from the upstream, confined reach. The major sources of eroded sediment in the confined reach were within channel benches and macrochannel banks resulting in a significant increase of channel width. In the unconfined reach, the benches and floodplains were the major loci for deposition, whilst the inner channel exhibited minor width increases. The presence of high stream power values, and resultant high erosion rates, within the confined reach is a function of the higher energy gradient of the steeper channel that is associated with knickpoint development. Dramatic differences in geomorphic responses were observed between the two adjacent reaches of contrasting valley configuration. The confined reach experienced large-scale erosion and reorganisation of the channel morphology that resulted in significantly different areal representations of the five geomorphic features classified in this study.
Perlmutter, N.M.; Geraghty, J.J.
1963-01-01
Test drilling, electrical logging, and water sampling of 'outpost' and other wells have revealed the existence of a deep confined body of salt water in the Magothy(?) formation beneath southwestern Nassau and southeastern Queens Counties, Long Island, N.Y. In connection with a test-drilling program, cooperatively sponsored by the U.S. Geological Survey, the Nassau County Department of Public Works, and the New York State Water Resources Commission (formerly Water Power and Control Commission), 13 wells ranging in depth from about 130 to 800 feet were drilled during 1952 and 1953 and screened at various depths in the Magothy(?) formation and Jameco gravel. On the basis of the preliminary geologic, hydrologic, and chemical data from these wells, a detailed investigation of ground-water conditions from the water table to the bedrock was begun in a 200-square-mile area in southern Nassau and southeastern Queens Counties. The Inain purposes of the investigation were to delineate the bodies of fresh and salty ground water in the project area, to relate their occurrence and movement to geologic and hydrologic conditions, to estimate the rate of encroachment, if any, of the salty water, and to evaluate the effectiveness of the existing network of outpost wells as detectors of salt-water encroachment. About a million people in the report area, residing mainly in southern Nassau County, are completely dependent on ground water as a source of supply. Fortunately, precipitation averages about 44 inches per year, of which approximately half is estimated to percolate into the ground-water reservoir. The ground water is contained in and moves through eight differentiated geologic units composed of unconsolidated gravel, sand, and clay, of Late Cretaceous, Pleistocene, and Recent age, having a maximum total thickness of about 1,700 feet. The underlying metamorphic and igneous crystalline basement rocks are of Precambrian age and are not water bearing. The water-yielding units from the surface down are (1) the upper Pleistocene deposits, (2) the principal artesian aquifer, composed of the Jameco gravel and Magothy(?) formation, and (3) the Lloyd sand member of the Raritar formation. The confining units are the '20-foot' clay, the Gardiners clay, and the clay member of the Raritan formation. The upper Pleistocene deposits contain an extensive unconfined body of fresh water. Fresh water under artesian conditions is contained in the principal artesian aquifer and the Lloyd sand member. The piezometric surface of the principal artesian aquifer is similar in shape to the south-ward-sloping water table; it ranges in altitude from about sea level to 55 feet above. The chemical quality of the fresh ground water in most of the area in all aquifers is good to excellent, and concentrations of dissolved solids and of chloride generally are below 100 ppm (parts per million) and 10 ppm, respectively. Analyses of water samples from selected wells show no progressive increase in concentration of chloride in most of the area. The data on quality of water have been used to delineate one major and several minor bodies of salty ground water. The wedgeshaped main confined salt-water body, in which the concentration of chloride reaches about 17,000 ppm, is in the Magothy(?) formation and Jameco gravel in extreme southwestern Nassau County and southeastern Queens County. The base of the salt-water wedge is about at the top of the clay member of the Raritan formation. Beneath the barrier beach in south-central and southeastern Nassau County a shallow extension of the main confined salt-water body contains as much as 4,000 ppm of chloride and is separated from the lower main salt-water body by fresh ground water. Shallow, thin bodies of unconfined salty ground water are common in the upper Pleistocene and Recent deposits adjacent to salty surface water in tidal creeks, bays, and the Atlantic
Fluorescent fluid interface position sensor
Weiss, Jonathan D.
2004-02-17
A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, S.M.; Smolensky, D.A.; Masterson, J.P.
A plume of contaminated ground water has been delineated within an 11.4-square-mile area in east-central Nassau County, where residential neighborhoods surround an area zoned for industrial use. The industrial zone contains several firms that, in the past, have discharged effluent containing volatile organic compounds into the upper glacial aquifer through onsite recharge basins. The upper glacial aquifer is in direct hydraulic connection with the underlying Magothy aquifer; the first continuous formation that impedes downward movement of ground water is the Raritan confining unit, which is more than 500 feet below sea level. The report documents the chemical quality of groundmore » water in and around the industrial area, identifies which VOCs have entered the ground-water system beneath the area of investigation, and includes maps that delineate the vertical and horizontal extent of the contaminant plumes. It also examines the effect of local stresses, such as pumping and recharge, on the distribution of contaminants and describes the various sources of contamination and the fate of the contaminants as they migrate offsite. Analyses of groundwater samples are presented in the appendixes.« less
Geologic aspects of the surficial aquifer in the upper East Coast planning area, Southeast Florida
Miller, Wesley L.
1980-01-01
The Upper East Coast Planning Area, as designated by the South Florida Water Management District, consists of St. Lucie County, Martin County, and eastern Okeechobee County. The surficial aquifer is the main source of freshwater for agricultural and urban uses in the area. The geologic framework of the aquifer is displayed by contour mapping and lithologic cross sections to provide water managers with a better understanding of the natural restraints that may be imposed on future development. The surficial aquifer is primarily sand, limestone, shell, silt, and clay deposited during the Pleistocene and Pliocene Epochs. The aquifer is unconfined and under water-table conditions in most of the area, but locally, artesian conditions exits where discontinuous clay layers act as confining units. Impermeable and semipermeable clays and marls of the Tamiami (lower Pliocene) and Hawthorn Formations (Miocene) unconformably underlie the surficial aquifer and form its base. Contour lines showing the altitude of the base of the aquifer indicate extensive erosion of the Miocene sediments prior to deposition of the aquifer materials. (USGS)
Stumm, Frederick; Lange, Andrew D.; Candela, Jennifer L.
2004-01-01
The Oyster Bay study area, in the northern part of Nassau County, N.Y., is underlain by unconsolidated deposits that form a sequence of aquifers and confining units. At least one production well has been affected by the intrusion of saltwater from Hempstead Harbor, Long Island Sound, and Cold Spring Harbor. Nineteen boreholes were drilled during 1995-98 for the collection of hydrogeologic, geochemical, and geophysical data to delineate the subsurface geology and the extent of saltwater intrusion. Continuous high-resolution marine-seismic-reflection surveys in the surrounding embayments of the Oyster Bay study area were conducted in 1996.New drill-core data indicate two hydrogeologic units—the North Shore aquifer and the North Shore confining unit—where the Lloyd aquifer, the Raritan confining unit, and the Magothy aquifer have been completely removed by glacial erosion.Water levels at 95 observation wells were measured quarterly during 1995–98. These data and continuous water-level records indicated that (1) the upper glacial (water-table) and Magothy aquifers are hydraulically connected and that their water levels did not respond to tidal fluctuations, and (2) the Lloyd and North Shore aquifers are hydraulically connected and their water levels responded to pumping and to tidal fluctuations.Marine seismic-reflection surveys in the surrounding embayments indicate at least four glacially eroded buried valleys with subhorizontal, parallel reflectors indicative of draped bedding that is interpreted as infilling by silt and clay. The buried valleys (1) truncate the surrounding coarse-grained deposits, (2) are asymmetrical and steep sided, (3) trend northwest-southeast, (4) are several miles long and about 1 mile wide, and (5) extend to more than 500 feet below sea level.Water samples taken during 1995–98 from three production wells and six observation wells screened in the upper glacial and Magothy aquifers contained volatile organic compounds in concentrations that exceeded the New York State Department of Health Drinking Water Maximum Contaminant Levels. High iron or nitrate concentrations were detected in water samples taken in 1997–98 from 39 observation wells. Previous high concentrations resulted in the shutdown of two production wells.Four distinct areas of saltwater intrusion in the Oyster Bay study area were delineated—three were in the upper glacial aquifer, and the fourth was in the Lloyd aquifer. Borehole-geophysical-logging data indicated that three of these saltwater "wedges" ranged from a few feet thick to more than 100 feet thick and had sharp freshwater-saltwater interfaces. Chloride concentrations in water from eight observation wells within these wedges in 1997 ranged from 125 to 13,750 milligrams per liter. One production well in Bayville has been shut down as of 1996 and others in the area may be affected by these saltwater wedges.
Brown, David P.
1982-01-01
The average annual rainfall in the Manasota Basin is 53.7 inches , and annual evapotranspiration is about 39 inches. Annual runoff from gaged parts of the Basin ranges from about 13 to 17 inches per year. Streamflow in the upland areas diminishes rapidly following the end of the rainy season and approaches zero during extended dry periods. Generally, surface water is of good quality except in tidally affected, coastal areas. Its quality varies seasonally, generally becoming more mineralized during the dry season. The principal hydrogeologic units are the surficial aquifer, the upper confining beds and minor artesian aquifers, the Floridan acquifer, and the lower confining bed. The quality of ground water is generally good except in the western and southern parts where saltwater intrusion or incomplete flushing of residual seawater has occurred. Land-use changes and stream impoundments and diversions require reassessment of the type and use of data collected by the surface-water network. Such changes may require modification of existing sites and establishment of new ones. Development and completion of the monitoring plan could provide most of the data necessary to define the groundwater system. (USGS)
NASA Astrophysics Data System (ADS)
Macy, J. P.; Kennedy, J.
2017-12-01
Water users and managers who rely on the Verde River system and its aquifers for water supplies have an intrinsic interest in developing the best possible tools for assessing the effects of groundwater withdrawals. Past, present, and future groundwater withdrawals from the Big Chino sub-basin will affect groundwater levels in the Big Chino area and groundwater discharge at the headwaters of the Verde River, specifically at the Upper Verde Springs, which is believed to be a major discharge zone of groundwater from the sub-basin. The amount and timing of reduced discharge as base flow is a function of connections between hydrogeologic (aquifer) units, aquifer storage properties and transmissivity, and proximity of withdrawal locations to discharge areas. To better define the aquifer units and aquifer storage properties, the United States Geological Survey, Cities of Prescott and Prescott Valley, and Salt River Project have initiated an ongoing geophysical study using controlled-source audio-frequency magnetotellurics (CSAMT) and repeat microgravity methods. CSAMT, a high-energy electromagnetic method sensitive to lithologic variations between rock and sediment types, is useful for defining aquifers at depths of up to 600 meters. Visual display of CSAMT profiles using Google Earth is useful for understanding and visualizing the relation between geophysics and Big Chino Sub-basin hydrogeology. Initial results from repeat microgravity surveys, which measure changes in subsurface mass (and therefore aquifer storage) over time, reveal spatial variation in the relation between aquifer storage changes and groundwater level changes. This variation reflects different confining conditions and multiple aquifer systems in different parts of the aquifer. Information about confining conditions and multiple aquifers could improve numerical groundwater models and predictions of future groundwater-level and base-flow depletion.
Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.
2017-12-08
Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight sequence stratigraphic cycles that compose the Eocene to Miocene Oldsmar, Avon Park, and Arcadia Formations. The mapping of these seismic-reflection and well data has produced a refined Cenozoic sequence stratigraphic, seismic stratigraphic, and hydrogeologic framework of southeastern Florida. The upward transition from the Oldsmar Formation to the Avon Park Formation and the Arcadia Formation embodies the evolution from (1) a tropical to subtropical, shallow-marine, carbonate platform, represented by the Oldsmar and Avon Park Formations, to (2) a broad, temperate, mixed carbonate-siliciclastic shallow marine shelf, represented by the lower part of the Arcadia Formation, and to (3) a temperate, distally steepened carbonate ramp represented by the upper part of the Arcadia Formation.In the study area, the depositional sequences and seismic sequences have a direct correlation with hydrogeologic units. The approximate upper boundary of four principal permeable units of the Floridan aquifer system (Upper Floridan aquifer, Avon Park permeable zone, uppermost major permeable zone of the Lower Floridan aquifer, and Boulder Zone) have sequence stratigraphic and seismic-reflection signatures that were identified on cross sections, mapped, or both, and therefore the sequence stratigraphy and seismic stratigraphy were used to guide the development of a refined spatial representation of these hydrogeologic units. In all cases, the permeability of the four permeable units is related to stratiform megaporosity generated by ancient dissolution of carbonate rock associated with subaerial exposure and unconformities at the upper surfaces of carbonate depositional cycles of several hierarchical scales ranging from high-frequency cycles to depositional sequences. Additionally, interparticle porosity also contributes substantially to the stratiform permeability in much of the Upper Floridan aquifer. Information from seismic stratigraphy allowed 3D geomodeling of hydrogeologic units—an approach never before applied to this area. Notably, the 3D geomodeling provided 3D visualizations and geocellular models of the depositional sequences, hydrostratigraphy, and structural features. The geocellular data could be used to update the hydrogeologic structure inherent to groundwater flow simulations that are designed to address the sustainability of the water resources of the Floridan aquifer system.Two kinds of pathways that could enable upward cross-formational flow of injected treated wastewater from the Boulder Zone have been identified in the 80 miles of high-resolution seismic data collected for this study: a near-vertical reverse fault and karst collapse structures. The single reverse fault, inferred to be of tectonic origin, is in extreme northeastern Broward County and has an offset of about 19 feet at the level of the Arcadia Formation. Most of the 17 karst collapse structures identified manifest as columniform, vertically stacked sagging seismic reflections that span early Eocene to Miocene age rocks equivalent to much of the Floridan aquifer system and the lower part of the overlying intermediate confining unit. In some cases, the seismic-sag structures extend upward into strata of Pliocene age. The seismic-sag structures are interpreted to have a semicircular shape in plan view on the basis of comparison to (1) other seismic-sag structures in southeastern Florida mapped with two 2D seismic cross lines or 3D data, (2) comparison to these structures located in other carbonate provinces, and (3) plausible extensional ring faults detected with multi-attribute analysis. The seismic-sag structures in the study area have heights as great as 2,500 vertical feet, though importantly, one spans about 7,800 feet. Both multi-attribute analysis and visual detection of offset of seismic reflections within the seismic-sag structures indicate faults and fractures are associated with many of the structures. Multi-attribute analysis highlighting chimney fluid pathways also indicates that the seismic-sag structures have a high probability for potential vertical cross-formational fluid flow along the faulted and fractured structures. A collapse of the seismic-sag structures within a deep burial setting evokes an origin related to hypogenic karst processes by ascending flow of subsurface fluids. In addition, paleo-epigenic karst related to major regional subaerial unconformities within the Florida Platform generated collapse structures (paleo-sinkholes) that are much smaller in scale than the cross-formational seismic-sag structures.
Spechler, Rick M.; Halford, Keith J.
2001-01-01
The hydrogeology and ground-water quality of Seminole County in east-central Florida was evaluated. A ground-water flow model was developed to simulate the effects of both present day (September 1996 through August 1997) and projected 2020 ground-water withdrawals on the water levels in the surficial aquifer system and the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County and vicinity. The Floridan aquifer system is the major source of ground water in the study area. In 1965, ground-water withdrawals from the Floridan aquifer system in Seminole County were about 11 million gallons per day. In 1995, withdrawals totaled about 69 million gallons per day. Of the total ground water used in 1995, 74 percent was for public supply, 12 percent for domestic self-supplied, 10 percent for agriculture self-supplied, and 4 percent for recreational irrigation. The principal water-bearing units in Seminole County are the surficial aquifer system and the Floridan aquifer system. The two aquifer systems are separated by the intermediate confining unit, which contains beds of lower permeability sediments that confine the water in the Floridan aquifer system. The Floridan aquifer system has two major water-bearing zones (the Upper Floridan aquifer and the Lower Floridan aquifer), which are separated by a less-permeable semiconfining unit. Upper Floridan aquifer water levels and spring flows have been affected by ground-water development. Long-term hydrographs of four wells tapping the Upper Floridan aquifer show a general downward trend from the early 1950's until 1990. The declines in water levels are caused predominantly by increased pumpage and below average annual rainfall. From 1991 to 1998, water levels rose slightly, a trend that can be explained by an increase in average annual rainfall. Long-term declines in the potentiometric surface varied throughout the area, ranging from about 3 to 12 feet. Decreases in spring discharge also have been observed in a few springs with long-term record. Chloride concentrations in water from the Upper Floridan aquifer in Seminole County range areally from 6.2 to 5,300 milligrams per liter. Chloride concentrations are lowest in the recharge areas of the Floridan aquifer system in the western part of Seminole County and near Geneva. The most highly mineralized water occurs adjacent to the Wekiva River in northwestern Seminole County, around the eastern part of Lake Jesup, and along the St. Johns River in eastern Seminole County. Analysis of limited long-term water-quality data indicates that the chloride concentrations in water for most wells in the Floridan aquifer system in Seminole County have not changed significantly in the 20-year period from 1976 to 1996, and probably not since the mid 1950's. Analysis of water samples collected from some Upper Floridan aquifer springs, however, indicates that the water has become more mineralized during recent years. Increases in specific conductance and concentrations of major cations and anions were observed at several of the springs within the study area where long-term water-quality data were available. Associated with these increases in the mineralization of spring water has been an increase in total nitrate-plus- nitrite as nitrogen concentration. A three-dimensional model was developed to simulate ground-water flow in the surficial and Floridan aquifer systems. The steady-state ground-water flow model was calibrated to water-level data that was averaged over a 1-year period from September 1996 through August 1997. The calibrated flow model generally produced simulated water levels in reasonably close agreement with measured water levels. As a result, the calibrated model was used to simulate the effects of expected increases in ground-water withdrawals on the water levels in the surficial aquifer system and on the potentiometric surface of the Upper and Lower Floridan aquifers in Seminole County. The ca
Meyer, Frederick W.
1989-01-01
The Floridan aquifer system of southern Florida is composed chiefly of carbonate rocks that range in age from early Miocene to Paleocene. The top of the aquifer system in southern Florida generally is at depths ranging from 500 to 1,000 feet, and the average thickness is about 3,000 feet. It is divided into three general hydrogeologic units: (1) the Upper Floridan aquifer, (2) the middle confining unit, and (3) the Lower Floridan aquifer. The Upper Floridan aquifer contains brackish ground water, and the Lower Floridan aquifer contains salty ground water that compares chemically to modern seawater. Zones of high permeability are present in the Upper and Lower Floridan aquifers. A thick, cavernous dolostone in the Lower Floridan aquifer, called the Boulder Zone, is one of the most permeable carbonate units in the world (transmissivity of about 2.5 x 107 feet squared per day). Ground-water movement in the Upper Floridan aquifer is generally southward from the area of highest head in central Florida, eastward to the Straits of Florida, and westward to the Gulf of Mexico. Distributions of natural isotopes of carbon and uranium generally confirm hydraulic gradients in the Lower Floridan aquifer. Groundwater movement in the Lower Floridan aquifer is inland from the Straits of Florida. The concentration gradients of the carbon and uranium isotopes indicate that the source of cold saltwater in the Lower Floridan aquifer is seawater that has entered through the karat features on the submarine Miami Terrace near Fort Lauderdale. The relative ages of the saltwater suggest that the rate of inland movement is related in part to rising sea level during the Holocene transgression. Isotope, temperature, and salinity anomalies in waters from the Upper Floridan aquifer of southern Florida suggest upwelling of saltwater from the Lower Floridan aquifer. The results of the study support the hypothesis of circulating relatively modern seawater and cast doubt on the theory that the saltwater in the Floridan aquifer system probably is connate or unflushed seawater from high stands of sea level. The principal use of the Floridan aquifer system in southern Florida is for subsurface storage of liquid waste. The Boulder Zone of the Lower Floridan aquifer is extensively used as a receptacle for injected treated municipal wastewater, oil field brine, and, to a lesser extent, industrial wastewater. Pilot studies indicate a potential for cyclic storage of freshwater in the Upper Floridan aquifer in southern Florida.
Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia
Smith, Barry S.
2001-01-01
The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from the water table to the Yorktown confining unit and, where the confining unit is absent, to the Yorktown-Eastover aquifer. The velocities of advective-driven contaminants would decrease considerably when entering the Yorktown confining unit because the hydraulic conductivity of the confining unit is small compared to that of the aquifers. Any contaminants that moved with advective ground-water flow near the groundwater divide of the Lackey Plain would move relatively slowly because the hydraulic gradients are small there. The direction in which the contaminants would move, however, would be determined by precisely where the contaminants entered the water table. The model was not designed to accurately simulate ground-water flow paths through local karst features. Beneath Croaker Flat, ground water flows downward through the Columbia aquifer and the Yorktown confining unit into the Yorktown-Eastover aquifer. Analyses of the movement of simulated particles from two adjacent sites at Croaker Flat indicated that ground-water flow paths were similar at first but diverged and discharged to different tributaries of Indian Field Creek or to the York River. These simulations indicate that complex and possibly divergent flow paths and traveltimes are possible at the Station. Although the Station-area model is not detailed enough to simulate ground-water flow at the scales commonly used to track and remediate contaminants at specific sites, general concepts about possible contaminant migration at the Station can be inferred from the simulations.
Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina
Giese, G.I.; Eimers, J.L.; Coble, R.W.
1997-01-01
A three-dimensional finite-difference digital model was used to simulate ground-water flow in the 25,000-square-mile aquifer system of the North Carolina Coastal Plain. The model was developed from a hydrogeologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which make up a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in the State of North Carolina. The model was calibrated by comparing observed and simulated water levels. The model calibration was achieved by adjusting model parameters, primarily leakance of confining units and transmissivity of aquifers, until differences between observed and simulated water levels were within acceptable limits, generally within 15 feet. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 feet squared per day in a part of the Castle Hayne aquifer, which consists predominantly of limestone. The maximum value for simulated vertical hydraulic conductivity in a confining unit was 2.5 feet per day, in a part of the confining unit overlying the upper Cape Fear aquifer. The minimum value was 4.1x10-6 feet per day, in part of the confining unit overlying the lower Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakance near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 inches per year in areas having clay at the surface to about 20 inches per year in areas having sand at the surface. Most of this recharge moves laterally to streams, and only about 1 inch per year moves downward to the confined parts of the aquifer system. Under predevelopment conditions, the confined aquifers were generally recharged in updip interstream areas and discharged through streambeds and in downdip coastward areas. Hydrologic analysis of the flow system using the calibrated model indicated that, because of ground-water withdrawals, areas of ground-water recharge have expanded and encroached upon some major stream valleys and into coastal area. Simulations of pumping conditions indicate that by 1980 large parts of the former coastal discharge areas had become areas of potential or actual recharge. Declines of ground-water level, which are the result of water taken from storage, are extensive in some areas and minimal in others. Hydraulic head declines of more than 135 feet have occurred in the northern Coastal Plain since 1940 primarily due to withdrawals in the Franklin area in Virginia. Declines of ground-water levels greater than 110 feet have occurred in aquifers in the central Coastal Plain due to combined effects of pumpage for public and industrial water supplies. Water-level declines exceeding 100 feet have occurred in the Beaufort County area because of withdrawals for a mining operation and water supplies for a chemical plant. Head declines have been less than 10 feet in the shallow surficial and Yorktown aquifers and in the updip parts of the major confined aquifers distant from areas of major withdrawals. In 1980, contribution from aquifer storage was 14 cubic feet per second, which is about 4.8 percent of pumpage and about 0.05 percent of ground-water recharge. A water-budget analysis using the model simulations indicates that much of the water removed from the ground-water system by pumping ultimately is made up by a reduction in water leaving the aquifer system, which discharges to streams as base flow. The reduction in stream base flow was 294 cubic feet per second in 1980 and represents about 1.1 percent of the ground-water recharge. The net reduction to streamflow is not large, however, because most pumped ground water is eventually discharged to streams. In places, such as at rock quarries in Onslow and Craven Counties, water is lost from st
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; GUPPY,J.G.
1998-09-01
This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install andmore » make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.« less
NASA Astrophysics Data System (ADS)
Peng, Peng; Feng, Lianjun; Sun, Fengbo; Yang, Shuyan; Su, Xiangdong; Zhang, Zhiyue; Wang, Chong
2017-05-01
There are several sedimentary units in North China that are proposed to be associated with the Paleoproterozoic Great Oxidation Event (GOE) and/or subsequent events; however, few of them have been precisely dated. In this study, deposition age of the greenschist facies Gaofan and Hutuo Groups is determined. Zircon grains liberated from a tuff layer (metamorphosed to sericite-quartz schist) in the upper part of the Mohe Formation (the second of the three formations of the Gaofan Group) yield a weighted average 207Pb/206Pb age of 2186 ± 8 Ma (n = 7, MSWD = 1.3), representing time of deposition. This age and the detrital zircon U-Pb ages of the basal feldspar quartzite (meta-siltstone), as well as the initial deposition age of the unconformably overlying Hutuo Group, confine the deposition age of the Gaofan Group to 2350-2150 Ma. This result negates the Gaofan Group as one subgroup of the 2560-2510 Ma Wutai greenstone belt. Zircons from the Banlaoyao mafic sill (meta-diabase) that intruded the Dongye Subgroup of the Hutuo Group yield an upper intercept U-Pb age of 2057 ± 25 Ma (n = 14, MSWD = 1.3), representing time of crystallization. Considering the age of the basalt in the first formation of the Doucun Subgroup and the tuff in the first formation of the Dongye Subgroup, the deposition age of the Doucun and Dongye Subgroups of the Hutuo Group is confined to 2150-2090 Ma and 2090-2060 Ma, respectively. These age brackets, as well as the available carbon and nitrogen isotope data indicate that the Zhangxianbu Formation of the Gaofan Group possibly recorded the GOE; whereas the Mohe-Yaokouqian Formations of the Gaofan Group and the Doucun-Dongye Subgroups of the Hutuo Group recorded the subsequent Lomagundi-Jatuli Event (LJE). However, the Lomagundi-Jatuli carbon excursions are hardly distinguishable from the Gaofan Group and the Doucun Subgroup (Hutuo Group) as both units consist of little inorganic carbon but terrestrial clastic turbidites.
Swancar, Amy; Lee, T.M.; O'Hare, T. M.
2000-01-01
Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects of wet and dry seasons, and provided evidence for ground-water inflow generated from the upper basin. Annual water budgets showed how differences in timing of rainfall and pumping stresses affected lake stage and lake ground-water interactions. Lake evaporation measurements made during the study suggest that, on average, annual lake evaporation exceeds annual precipitation in the basin. Rainfall was close to the long-term average of 51.99 inches per year for the 2 years of the study (50.68 and 54.04 inches, respectively). Lake evaporation was 57.08 and 55.88 inches per year for the same 2 years, making net precipitation (rainfall minus evaporation) negative during both years. If net precipitation to seepage lakes in this area is negative over the long-term, then the ability to generate net ground-water inflow from the surrounding basin plays an important role in sustaining lake levels. Evaporation exceeded rainfall by a similar amount for both years of the study, but net ground-water flow differed substantially between the 2 years. The basin contributed net ground-water inflow to the lake in both years, however, net ground-water inflow was not sufficient to make up for the negative net precipitation during the first year, and the lake fell 4.9 inches. During the second year, net ground-water inflow exceeded the difference between evaporation and rainfall and the lake rose by 12.7 inches. The additional net ground-water inflow in the second year was due to both an increase in the amount of gross ground-water inflow and a decrease in lake leakage (ground-water outflow). Ground-water inflow was greater during the second year because more rain fell during the winter, when evaporative losses were low, resulting in greater ground-water recharge. However, decreased lake leakage during this year was probably at least as important as increased ground-water inflow in explaining the difference in net ground-water flow to the lake between the 2 years. Estimates of lake leakage
Preliminary report on the ground-water resources of the Klamath River basin, Oregon
Newcomb, Reuben Clair; Hart, D.H.
1958-01-01
The Klamath River basin, including the adjacent Lost River basin, includes about 5,500 square miles of plateaus, mountain-slopes and valley plains in south-central Oregon. The valley plains range in altitude from about 4,100 feet in the south to more than 4,500 feet at the northern end; the mountain and plateau lands rise to an average altitude of 6,000 feet at the drainage divide, some peaks rising above 9,000 feet. The western quarter of the basin is on the eastern slope of the Cascade Range and the remainder consists of plateaus, mountains, and valleys of the basin-and-range type. The rocks of the Klamath River basin range in age from Recent to Mesozoic. At the southwest side of the basin in Oregon, pre-Tertiary metamorphic, igneous, and sedimentary rocks, which form extensive areas farther west, are overlain by sedimentary rocks of Eocene age and volcanic rocks of Eocene and Oligocene age. These early Tertiary rocks dip east toward the central part of the Klamath River basin. The complex volcanic rocks of high Cascades include three units: the lowest unit consists of a sequence of basaltic lava flows about 800 feet thick; the medial unit is composed of volcanic-sedimentary and sedimentary rocksthe Yonna formation200 to 2,000 feet thick; the uppermost unit is a sequence of basaltic lava flows commonly about 200 feet thick. These rocks dip east from the Cascade Range and are the main bedrock formations beneath most of the basin. Extensive pumice deposits, which emanated from ancestral Mount Mazama, cover large areas in the northwestern part of the basin. The basin has an overall synclinal structure open to the south at the California boundary where it continues as the Klamath Lake basin in California. The older rocks dip into the basin in monoclinal fashion from the adjoining drainage basins. The rocks are broken along rudely rectangular nets of closely spaced normal faults, the most prominent set of which trends northwest. The network of fault displacements includes two main grabens, the Klamath and the Langell, which were downthrown approximately 50 and 1,000 feet, respectively. The average annual precipitation varies with the altitude, the higher parts of the Cascade Range getting more than 60 inches, and the semiarid valley plains receive as little as 13 inches in some places. Most precipitation occurs in the winter. The principal tributaries, Williamson and Sprague Rivers, rise near the higher parts of the eastern rim of the basin, flow through narrow valley plains to the western part, and discharge into Upper Klamath Lake. Wood River and associated creeks also empty into Upper Klamath Lake after draining southward along along the eastern foot of the Cascade Range. The Klamath River receives the outflow from Upper Klamath Lake, via Link River and Lake Ewauna, and flows southwestward through Keno Gap and hance through a youthful canyon, to its lower valley in California. The ground water occurs largely in an unconfined, or water-table, condition, though areas of local confinement are present. The regional water table is graded to a base level about equal to that of the major drainage on the valley plains. The slop of the water table, where water is confined, or the piezometric surface is downstream at about the same grade as that of the surface drainage in each of the larger valleys, and ground-water divides occur between the upper parts of adjacent major valleys. The principal water-bearing units are the lower lava rocks and upper lava rocks of the volcanic rocks of high Cascades, the pumice of Quaternary age, and the alluvium. In places layers of coarse fragmental material in the Yonna formation (Newcomb, 1958) also transmit water. The water-bearing units, especially the breccia layers of the lava rocks and the pumice, yield large amounts of water to wells and provide natural discharge outlets for the ground water. The spring outflows to the Williamson and Wood Rivers-Crooked Creek drainage, mea
McBride, W. Scott; Metz, Patricia A.; Ryan, Patrick J.; Fulkerson, Mark; Downing, Harry C.
2017-12-18
Tsala Apopka Lake is a complex system of lakes and wetlands, with intervening uplands, located in Citrus County in west-central Florida. It is located within the 2,100 square mile watershed of the Withlacoochee River, which drains north and northwest towards the Gulf of Mexico. The lake system is managed by the Southwest Florida Water Management District as three distinct “pools,” which from upstream to downstream are referred to as the Floral City Pool, Inverness Pool, and Hernando Pool. Each pool contains a mixture of deep-water lakes that remain wet year round, ephemeral (seasonal) ponds and wetlands, and dry uplands. Many of the major deep-water lakes are interconnected by canals. Flow from the Withlacoochee River, when conditions allow, can be diverted into the lake system. Flow thorough the canals can be used to control the distribution of water between the three pools. Flow in the canals is controlled using structures, such as gates and weirs.Hydrogeologic units in the study area include a surficial aquifer consisting of Quaternary-age sediments, a discontinuous intermediate confining unit consisting of Miocene- and Pliocene-age sediments, and the underlying Upper Floridan aquifer, which consists of Eocene- and Oligocene-age carbonates. The fine-grained quartz sands that constitute the surficial aquifer are generally thin, typically less than 25 feet thick, within the vicinity of Tsala Apopka Lake. A thin, discontinuous, sandy clay layer forms the intermediate confining unit. The Upper Floridan aquifer is generally unconfined in the vicinity of Tsala Apopka Lake because the intermediate confining unit is discontinuous and breached by numerous karst features. In the study area, the Upper Floridan aquifer includes the upper Avon Park Formation and Ocala Limestone. The Ocala Limestone is the primary source of drinking water and spring flow in the area.The objectives of this study are to document the interaction of Tsala Apopka Lake, the surficial aquifer, and the Upper Floridan aquifer; and to estimate an annual water budget for each pool and for the entire lake system for 2004–12. The hydrologic interactions were evaluated using hydraulic head and geochemical data. Geochemical data, including major ion, isotope, and age-tracer data, were used to evaluate sources of water and to distinguish flow paths. Hydrologic connection of the surficial environment (lakes, ponds, wetlands, and the surficial aquifer) was quantified on the basis of a conceptualized annual water-budget model. The model included the change in surface water and groundwater storage, precipitation, evapotranspiration, surface-water inflow and outflow, and net groundwater exchange with the underlying Upper Floridan aquifer. The control volume for each pool extended to the base of the surficial aquifer and covered an area defined to exceed the maximum inundated area for each pool during 2004–12 by 0.5 foot. Net groundwater flow was computed as a lumped value and was either positive or negative, with a negative value indicating downward or lateral leakage from the control volume and a positive value indicating upward leakage to the control volume.The annual water budget for Tsala Apopka Lake was calculated using a combination of field observations and remotely sensed data for each of three pools and for the composite three pool area. A digital elevation model at a 5-foot grid spacing and bathymetric survey data were used to define the land-surface elevation and volume of each pool and to calculate the changes in inundated area with change in lake stage. Continuous lake-stage and groundwater-level data were used to define the change in storage for each pool. The rainfall data used in the water-budget calculations were based on daily radar reflectance data and measured rainfall from weather stations. Evapotranspiration was computed as a function of reference evapotranspiration, adjusted to actual evapotranspiration using a monthly land-cover coefficient (based on evapotranspiration measurements at stations located in representative landscapes). Surface-water inflows and outflows were determined using stage data collected at a series of streamgages installed primarily at the water-control structures. Discharge was measured under varying flow regimes and ratings were developed for the water-control structures. The discharge data collected during the study period were used to calibrate a surface-water flow model for 2004–12. Flows predicted by the model were used in the water-budget analysis. Net groundwater flow was determined as the residual term in the water-budget equation.The results of the water-budget analysis indicate that rainfall was the largest input of water to Tsala Apopka Lake, whereas evapotranspiration was the largest output. For the 2004–12 analysis period, surface-water inflow accounted for 11 percent of the inputs, net groundwater inflow accounted for 1 percent of inputs (annual periods with positive net groundwater flow were included as inputs, while annual periods with negative net groundwater flow were counted as outputs), and rainfall accounted for the remaining 88 percent. For the same period, the outputs consisted of 2 percent surface-water outflow, 12 percent net groundwater outflow, and 86 percent evapotranspiration. Net groundwater inflows and surface-water/groundwater storage were negligible during the water-budget period but could be important components of the budget in individual years.The net groundwater flow was negative (downward) for 8 out of the 9 years modeled (2004–12), indicating that the Tsala Apopka Lake study area was primarily a recharge area for the underlying Upper Floridan aquifer during this time period. Groundwater-level elevation in paired wells (adjacent wells completed in the surficial aquifer and Upper Floridan aquifer) typically was higher in the surficial aquifer than the Upper Floridan aquifer. However, hydraulic head data indicate that the surficial aquifer often has discharge potential to the surface-water system, especially in the low lying areas near the major lakes. Surficial-aquifer water levels were often higher than lake stages, especially during wet periods, which is likely an indication of aquifer-to-lake seepage in these areas. East of the major lakes, hydraulic head data were nearly equal in the surficial aquifer and Upper Floridan aquifer, which is an indication that the Upper Floridan aquifer is unconfined. Based on deuterium and oxygen stable isotope data collected in December 2011 and December 2012, there was no evidence of recharge to the Upper Floridan aquifer from the wetlands east of the major lakes; aquifer isotopic ratios did not indicate an enriched source, which is typical of lake and wetland sources. West of the major lakes, there was evidence of enriched isotopic ratios in water samples from the Upper Floridan aquifer. Differences in hydraulic head at paired wells in the surficial aquifer and Upper Floridan aquifer indicated that the surficial aquifer has the potential to recharge the Upper Floridan aquifer in the western part of the pools and west of the major lakes.
Hofmann, Gustav; Schöny, Werner; Donabauer, Rita; Rachbnauer, Christian
2005-06-01
Psychiatric reforms in Upper Austria have considerably improved the quality of life of psychiatric patients. Modernizing the status of acute psychiatric departments based on a bio- psycho-, social concept implemented multidimensional approach in diagnostics and therapeutic methods applied by multiprofessional teams. Prophylactic procedures and rehabilitation programs have minimized chronification of psychiatric diseases. By "late rehabilitation programs" increased autonomy, more individualized planning of life processes could be achieved even with "chronic" patients. We do not see any need to confine "chronic" psychiatric patients in psychiatric hospitals. These patients are cared for, socially integrated by special rehabilitation measures and professional rehabilitation in community-based services and units of Pro Mente Upper Austria--a non-profit organization. Problems decreased the duration of stay in psychiatric hospitals, and increased admission rates when the number of beds in psychiatric departments was considerably decreased in the course of psychiatric reforms in Austria. In our province--Upper Austria--these problems are of lesser importance because private non-profit organizations like Pro Mente Upper Austria have provided a variety of community-based services (mental health centres, day clinics, housing facilities and special services for drug addicts and geriatric patients) in ever increasing numbers. Still there is the need for further development of community-based services provided by specially trained professionals. These services are financed mainly by the state, the provincial government, the labour market services and to a small degree by funds of the European Union. In these days of reduced social budgets of the state and social departments of provincial governments it is not easy to keep our standards and meet the increased needs of our clients.
Public Health and Solitary Confinement in the United States.
Cloud, David H; Drucker, Ernest; Browne, Angela; Parsons, Jim
2015-01-01
The history of solitary confinement in the United States stretches from the silent prisons of 200 years ago to today's supermax prisons, mechanized panopticons that isolate tens of thousands, sometimes for decades. We examined the living conditions and characteristics of the populations in solitary confinement. As part of the growing movement for reform, public health agencies have an ethical obligation to help address the excessive use of solitary confinement in jails and prisons in accordance with established public health functions (e.g., violence prevention, health equity, surveillance, and minimizing of occupational and psychological hazards for correctional staff). Public health professionals should lead efforts to replace reliance on this overly punitive correctional policy with models based on rehabilitation and restorative justice.
Public Health and Solitary Confinement in the United States
Drucker, Ernest; Browne, Angela; Parsons, Jim
2015-01-01
The history of solitary confinement in the United States stretches from the silent prisons of 200 years ago to today’s supermax prisons, mechanized panopticons that isolate tens of thousands, sometimes for decades. We examined the living conditions and characteristics of the populations in solitary confinement. As part of the growing movement for reform, public health agencies have an ethical obligation to help address the excessive use of solitary confinement in jails and prisons in accordance with established public health functions (e.g., violence prevention, health equity, surveillance, and minimizing of occupational and psychological hazards for correctional staff). Public health professionals should lead efforts to replace reliance on this overly punitive correctional policy with models based on rehabilitation and restorative justice. PMID:25393185
Bounds on quantum confinement effects in metal nanoparticles
NASA Astrophysics Data System (ADS)
Blackman, G. Neal; Genov, Dentcho A.
2018-03-01
Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.
NASA Astrophysics Data System (ADS)
Koç Taşgın, Calibe; Orhan, Hükmü; Türkmen, İbrahim; Aksoy, Ercan
2011-04-01
The Şelmo Formation was deposited in the basins associated with the Southeastern Anatolian Thrust Belt and East Anatolian Fault Zone in SE Turkey. These structures developed as a result of compressional stresses created by the movement of the Arabian plate to the north and the Eurasian plate to the west from early Miocene to late Pliocene. The outcrops of the Şelmo Formation in the Adýyaman area (SE Turkey) comprise braided river deposits (lower alluvial unit) at the base, lacustrine and deltaic deposits in the middle (lacustrine unit) and low sinuousity river and alluvial deposits at the top (upper alluvial unit). Soft-sediment deformation structures were developed in sandstone, siltstone and marl of the deltaic and lacustrine unit of the Şelmo Formation. These are slumps, recumbent folds, load casts, ball-and-pillow structures, flame structures, neptunian dykes, chaotically associated structures and synsedimentary faults. The tectonic setting of the basin, the lateral extent of the soft-sediment deformation structures over tens of kilometers, their similarities to deformation structures interpreted as being induced seismically in other regions worldwide or in a laboratory setting, and being confined by undeformed layers suggest that the main trigger system was related to seismic activity in the area.
Hydrogeology and Ground-Water Quality of Brunswick County, North Carolina
Harden, Stephen L.; Fine, Jason M.; Spruill, Timothy B.
2003-01-01
Brunswick County is the southernmost coastal county in North Carolina and lies in the southeastern part of the Coastal Plain physiographic province. In this report, geologic, hydrologic, and chemical data were used to investigate and delineate the hydrogeologic framework and ground-water quality of Brunswick County. The major aquifers and their associated confining units delineated in the Brunswick County study area include, from youngest to oldest, the surficial, Castle Hayne, Peedee, Black Creek, upper Cape Fear, and lower Cape Fear aquifers.All of these aquifers, with the exception of the Castle Hayne aquifer, are located throughout Brunswick County. The Castle Hayne aquifer extends across only the southeastern part of the county. Based on available data, the Castle Hayne and Peedee confining units are missing in some areas of Brunswick County, which allows direct hydraulic contact between the surficial aquifer and underlying Castle Hayne or Peedee aquifers. The confining units for the Black Creek, upper Cape Fear, and lower Cape Fear aquifers appear to be continuous throughout Brunswick County.In examining the conceptual hydrologic system for Brunswick County, a generalized water budget was developed to better understand the natural processes, including precipitation, evapotranspiration, and stream runoff, that influence ground-water recharge to the shallow aquifer system in the county. In the generalized water budget, an estimated 11 inches per year of the average annual precipitation of 55 inches per year in Brunswick County is estimated to infiltrate and recharge the shallow aquifer system. Of the 11 inches per year that recharges the shallow system, about 1 inch per year is estimated to recharge the deeper aquifer system.The surficial aquifer in Brunswick County is an important source of water for domestic supply and irrigation. The Castle Hayne aquifer is the most productive aquifer and serves as the principal ground-water source of municipal supply for the county. The upper part of the Peedee aquifer is an important source of ground-water supply for domestic and commercial use. Ground water in the lower part of the Peedee aquifer and the underlying aquifers is brackish and is not known to be used as a source of supply in Brunswick County. Most of the precipitation that recharges the surficial aquifer is discharged to local streams that drain into the Waccamaw River, Cape Fear River, and Atlantic Ocean. Recharge to the Castle Hayne aquifer occurs primarily from the surficial aquifer. Recharge to the Peedee aquifer occurs primarily from the surficial and Castle Hayne aquifers, with some upward leakage of water also occurring from the underlying Black Creek aquifer. Discharge from the Castle Hayne and Peedee aquifers occurs to local streams, the Cape Fear River, and the Atlantic Ocean.Evaluation of water-level data for the period January 1970 through May 2002 indicated no apparent long-term temporal trends in water levels in the surficial and Castle Hayne aquifers and in the upper part of the Peedee aquifer. The most significant water-level trends were noted for wells tapping the lower part of the Peedee aquifer and tapping the Black Creek aquifer where water levels have declined as much as 41 and 37 feet, respectively. These ground-water-level declines are attributed to regional ground-water pumping in areas outside of Brunswick County. Water-level data for Brunswick County wells tapping the upper Cape Fear and lower Cape Fear aquifers tend to fluctuate within a fairly uniform range with no apparent temporal trend noted. Analysis of vertical hydraulic gradients during this same period primarily indicate downward flow of ground water within and among the surficial, Castle Hayne, and Peedee aquifers. The vertical flow of ground water in the Black Creek aquifer is upward into the overlying Peedee aquifer. Upward flow also is noted for the upper and lower Cape Fear aquifers.Historic and recent analytic data were evaluated to better understand the sources of water contained in Brunswick County aquifers and the suitability of the water for consumption. Based on analytical results obtained for recent samples collected during this study, ground water from the surficial aquifer, Castle Hayne aquifer, and upper part of the Peedee aquifer appears to be generally suitable for drinking water. Although concentrations of iron and manganese commonly exceeded the drinking-water standards, the concern generally associated with the occurrence of these analytes in a water supply is one of aesthetics. In all samples, nitrate, nitrite, and sulfate were detected at concentrations less than drinkingwater standards.Based on historic analytical data, the brackish water in the lower part of the Peedee aquifer and in the Black Creek, upper Cape Fear, and lower Cape Fear aquifers is classified as a sodium-chloride type water. The presence of brackish water in these deeper systems combined with upward vertical gradients presents the potential for upward migration of brackish water into overlying aquifers, or upconing beneath areas of pumping. The current (2001) location of the boundary between freshwater and brackish water in Brunswick County aquifers is unknown.
Potential effects of regional pumpage on groundwater age distribution
Zinn, Brendan A.; Konikow, Leonard F.
2007-01-01
Groundwater ages estimated from environmental tracers can help calibrate groundwater flow models. Groundwater age represents a mixture of traveltimes, with the distribution of ages determined by the detailed structure of the flow field, which can be prone to significant transient variability. Effects of pumping on age distribution were assessed using direct age simulation in a hypothetical layered aquifer system. A steady state predevelopment age distribution was computed first. A well field was then introduced, and pumpage caused leakage into the confined aquifer of older water from an overlying confining unit. Large changes in simulated groundwater ages occurred in both the aquifer and the confining unit at high pumping rates, and the effects propagated a substantial distance downgradient from the wells. The range and variance of ages contributing to the well increased substantially during pumping. The results suggest that the groundwater age distribution in developed aquifers may be affected by transient leakage from low‐permeability material, such as confining units, under certain hydrogeologic conditions.
NASA Astrophysics Data System (ADS)
Paldor, A.; Aharonov, E.; Katz, O.
2017-12-01
Deep Submarine Groundwater Discharge (DSGD) is a ubiquitous and highly significant phenomenon, yet it remains poorly understood. Here we use numerical modeling (FEFLOW) to investigate a case study of DSGD offshore northern Israel, aiming to unravel the main features and mechanics of steady-state DSGD: the hydrology that enables its formation, the controls on rates and salinity of seepage, and the residence time of fluid underground. In addition, we investigate the geometry of the fresh-salt water interface within the seeping offshore aquifer. The first part of this work constructs a large scale (70 km) geologic cross-section of our case-study region. The mapping suggests outcropping of confined aquifer strata (Upper Cenomanian Judea Group) on the continental shelf break, 5-15 km offshore. The second part consists of hydrological simulations of DSGD from a confined aquifer similar to the case-study aquifer. The main findings are thus: steady-state DSGD from a confined aquifer occurs far offshore even under moderate heads. It is accompanied by a circulation cell that forms around an intrinsic freshwater-seawater interface. Circulation consists of seawater entering the confined aquifer at the exposed section offshore, mixing with terrestrial groundwater within the aquifer, and seeping saline water out the upper part of the exposed section. In addition, the simulated confined aquifer displays a very flat fresh-salt water interface extending far offshore, as observed in natural offshore aquifers. Preliminary results of a hydrographic survey in the area of study suggest a low-salinity anomaly close to the seafloor, implying seepage of brines in that area, as expected from the model. These new insights have potentially important implications for coastal hydrology, seawater chemistry, biogeochemistry, and submarine slope instability.
Metz, Patricia A.; Sacks, Laura A.
2002-01-01
The hydrologic effects associated with augmenting a lake with ground water from the Upper Floridan aquifer were examined in northwest Hillsborough County, Florida, from June 1996 through May 1999. The hydrogeology, ground-water flow patterns, water budgets, and water-quality characteristics were compared between a lake that has been augmented for more than 30 years (Round Lake) and two nearby nonaugmented lakes (Dosson Lake and Halfmoon Lake). Compared to the other study lakes, Round Lake is in a more leakage-dominated hydrogeologic setting. The intermediate confining unit is thin or highly breached, which increases the potential for vertical ground-water flow. Round Lake has the least amount of soft, organic lake-bottom sediments and the lake bottom has been dredged deeper and more extensively than the other study lakes, which could allow more leakage from the lake bottom. The area around Round Lake has experienced more sinkhole activity than the other study lakes. During this study, three sinkholes developed around the perimeter of the lake, which may have further disrupted the intermediate confining unit.Ground-water flow patterns around Round Lake were considerably different than the nonaugmented lakes. For most of the study, groundwater augmentation artificially raised the level of Round Lake to about 2 to 3 feet higher than the adjacent water table. As a result, lake water recharged the surficial aquifer around the entire lake perimeter, except during very wet periods when ground-water inflow occurred around part of the lake perimeter. The non-augmented lakes typically had areas of ground-water inflow and areas of lake leakage around their perimeter, and during wet periods, ground-water inflow occurred around the entire lake perimeter. Therefore, the area potentially contributing ground water to the non-augmented lakes is much larger than for augmented Round Lake. Vertical head loss within the surficial aquifer was greater at Round Lake than the other study lakes, which is additional evidence of the limited confinement at Round Lake. A comparison of the water quality and lake-bottom sediments at the three lakes indicate that Round Lake is strongly influenced by the addition of large quantities of calcium-bicarbonate enriched augmentation water. Round Lake had higher alkalinity, pH, calcium and dissolved oxygen concentrations, specific conductance, and water clarity than the two non-augmented lakes. Round Lake was generally saturated to supersaturated with respect to calcite, but was undersaturated when augmentation was low and after high rainfall periods. Calcium carbonate has accumulated in the lake sediments from calcite precipitation, from macrophytes such as Nitella sp., and from the deposition of carbonate-rich mollusk shells, such as Planerbella sp., both of which thrive in the high alkalinity lake water. Lake-bottom sediments and aquatic biota at Round Lake had some of the highest radium-226 activity levels measured in a Florida lake. The high radium-226 levels (27 disintegrations per minute per dry mass) can be atrributed to augmenting the lake with ground water from the Upper Floridan aquifer. Although the ground water has relatively low levels of radium-226 (5.8 disintegrations per minute per liter), the large volumes of ground water added to the lake for more than 30 years have caused radium-226 to accumulate in the sediments and lake biota.The Round Lake basin had higher calcium and bicarbonate concentrations in the surficial aquifer than at the non-augmented lakes, which indicates the lateral leakage of calcium-bicarbonate enriched lake water into the surficial aquifer. Deuterium and oxygen-18 data indicated that water in well nests near the lake consists of as much as 100 percent lake leakage, and water from the augmentation well had a high percentage of recirculated lake water (between 59 and 73 percent lake leakage). The ground water surrounding Round Lake was undersaturated with respect to calcite, indicating that the water is capable of dissolving calcite in the underlying limestone aquifer. Annual and monthly ground-water outflow (lake leakage) was significantly higher at Round Lake than at the non-augmented lakes for the 3-year study period. Minimum estimates of the total annual ground-water inflow and outflow were made from monthly net ground-water flow values. Based on these estimates, total annual groundwater outflow from Round Lake was more than 10 times higher than for the non-augmented lakes. Local ground-water pumping, augmentation, and hydrogeologic factors are responsible for the high net ground-water outflow at Round Lake. Localized ground-water pumping causes the head difference between the lake and the Upper Floridan aquifer to increase, which increases lake leakage and results in lower lake levels. Augmenting the lake further increases the head difference between the lake, the water table, and the Upper Floridan aquifer, which results in an increase in lateral and vertical lake leakage. The lack of confinement or breaches in the intermediate confining unit facilitates the downward movement of this augmented lake water back into the Upper Floridan aquifer. The increase in ground-water circulation in the leakage-dominated hydrogeologic setting at Round Lake has made the basin more susceptible to karst activity (limestone dissolution, subsidence, and sinkhole formation)
Hydrogeology and quality of ground water in Orange County, Florida
Adamski, James C.; German, Edward R.
2004-01-01
Ground water is the main source of water supply in central Florida and is critical for aquatic habitats and human consumption. To provide a better understanding for the conservation, development, and management of the water resources of Orange County, Florida, a study of the hydrogeologic framework, water budget, and ground-water quality characteristics was conducted from 1998 through 2002. The study also included extensive analyses of the surface-water resources, published as a separate report. An increase in population from about 264,000 in 1960 to 896,000 in 2000 and subsequent urban growth throughout this region has been accompanied by a substantial increase in water use. Total ground-water use in Orange County increased from about 82 million gallons per day in 1965 to about 287 million gallons per day in 2000. The hydrogeology of Orange County consists of three major hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. Data were compiled from 634 sites to construct hydrogeologic maps and sections of Orange County. Water-level elevations measured in 23 wells tapping the surficial aquifer system ranged from about 10.6 feet in eastern Orange County to 123.8 feet above NGVD 29 in northwestern Orange County from March 2000 through September 2001. Water levels also were measured in 14 wells tapping the Upper Floridan aquifer. Water levels fluctuate over time from seasonal and annual variations in rainfall; however, water levels in a number of wells tapping the Upper Floridan aquifer have declined over time. Withdrawal of ground water from the aquifers by pumping probably is causing the declines because the average annual precipitation rate has not changed substantially in central Florida since the 1930s, although yearly rates can vary. A generalized water budget was computed for Orange County from 1991 to 2000. Average rates for the 10-year period for the following budget components were computed based on reported measurements or estimates: precipitation was 53 inches per year (in/yr), runoff was 11 in/yr, spring discharge was 2 in/yr, and net lateral subsurface outflow and exported water was 1 in/yr. Evapotranspiration was 39 in/yr, which was calculated as the residual of the water-budget analysis, assuming changes in storage were negligible. Water-quality samples were collected from April 1999 through May 2001 from a total of 26 wells tapping the surficial aquifer system, 1 well tapping the intermediate confining unit, 24 wells tapping the Upper Floridan aquifer, 2 springs issuing from the Upper Floridan aquifer, and 8 wells tapping the Lower Floridan aquifer. These data were supplemented with existing water-quality data collected by the U.S. Geological Survey and St. Johns River Water Management District. Concentrations of total dissolved solids, sulfate, and chloride in samples from the surficial aquifer system generally were low. Concentrations of nitrate were higher in samples from the surficial aquifer system than in samples from the Upper Floridan or Lower Floridan aquifers, probably as a result of agricultural and residential land use. Water type throughout most of the Upper Floridan and Lower Floridan aquifers was calcium or calcium-magnesium bicarbonate, probably as a result of dissolution of the carbonate rocks. Water type in both the surficial and Floridan aquifer systems in eastern Orange County is sodium chloride. Concentrations of total dissolved solids, sulfate, and chloride in the aquifers increase toward eastern Orange County. Data from 16 of 24 wells in eastern Orange County with long-term water-quality records indicated distinct increases in concentrations of chloride over time. The increases probably are related to withdrawal of ground water at the Cocoa well field, causing an upwelling of deeper, more saline water. The most commonly detected trace elements were aluminum, barium, boron, iron, manganese, and strontium. In addition, arse
Katz, Brian G.; Crandall, Christy A.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.
2007-01-01
In 2001, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey began a series of studies on the transport of anthropogenic and natural contaminants (TANC) to public-supply wells. The main goal of the TANC program was to better understand the source, transport, and receptor factors that control contaminant movement to public-supply wells in representative aquifers of the United States. Studies were first conducted at regional scales at four of the eight TANC study areas during 2002-03 and at small (local) scales during 2003-05 in California, Nebraska, Connecticut, and Florida. In the Temple Terrace study area near Tampa, Florida, multiple chemical indicators and geochemical and ground-water flow modeling techniques were used to assess the vulnerability of a public-supply well in the karstic Upper Floridan aquifer to contamination from anthropogenic and naturally occurring contaminants. During 2003-05, water samples were collected from the public-supply well and 13 surrounding monitoring wells that all tap the Upper Floridan aquifer, and from 15 monitoring wells in the overlying surficial aquifer system and the intermediate confining unit that are located within the modeled ground-water contributing recharge area of the public-supply well. Six volatile organic compounds and four pesticides were detected in trace concentrations (well below drinking-water standards) in water from the public-supply well, which had an open interval from 36 to 53 meters below land surface. These contaminants were detected more frequently in water samples from monitoring wells in the overlying clastic surficial aquifer system than in water from monitoring wells in the Upper Floridan aquifer in the study area. Likewise, nitrate-N concentrations in the public-supply well (0.72-1.4 milligrams per liter) were more similar to median concentrations in the oxic surficial aquifer system (2.1 milligrams per liter) than to median nitrate-N concentrations in the anoxic Upper Floridan aquifer (0.06 milligram per liter) under sulfate-reducing conditions. High concentrations of radon-222 and uranium in the public-supply well compared to those in monitoring wells in the Upper Floridan aquifer appear to originate from water moving downward through sands and discontinuous clay lenses that overlie the aquifer. Water samples also were collected from three overlapping depth intervals (38-53, 43-53, and 49-53 meters below land surface) in the public-supply well. The 49- to 53-meter interval was identified as a high-flow zone during geophysical logging of the wellbore. Water samples were collected from these depth intervals at a low pumping rate by placing a low-capacity submersible pump (less than 0.02 cubic meter per minute) at the top of each interval. To represent higher pumping conditions, a large-capacity portable submersible pump (1.6 cubic meters per minute) was placed near the top of the open interval; water-chemistry samples were collected using the low-capacity submersible pump. The 49- to 53-meter depth interval had distinctly different chemistry than the other two sampled intervals. Higher concentrations of nitrate-N, atrazine, radon, trichloromethane (chloroform), and arsenic (and high arsenic (V)/arsenic (III) ratios); lower concentrations of dissolved solids, strontium, iron, manganese, and lower nitrogen and sulfur isotope ratios were found in this highly transmissive zone in the limestone than in water from the two other depth intervals. Movement of water likely occurs from the overlying sands and clays of the oxic surficial aquifer system and intermediate confining unit (that contains high radon-222 and nitrate-N concentrations) into the anoxic Upper Floridan aquifer (that contains low radon-222 and nitrate-N concentrations). Differences in arsenic concentrations in water from the various depth intervals in the public-supply well (3.2-19.0 micrograms per liter) were related to pumping conditions. The high arsenic
[Die entwicklung der psychiatrie in oberosterreich 1960 - 2000.].
Hofmann, Gustav; Schöny, Werner
2004-09-01
Psychiatric reforms in Upper Austria have considerably improved the quality of life of psychiatric patients. Modernizing the status of acute psychiatric departments based on a bio- psycho-, social concept implemented multidimensional approach in diagnostics and therapeutic methods applied by multiprofessional teams. Prophylactic procedures and rehabilitation programs have minimized chronification of psychiatric diseases. By "late rehabilitation programs" increased autonomy, more individualized planning of life processes could be achieved even with "chronic" patients. We do not see any need to confine "chronic" psychiatric patients in psychiatric hospitals. These patients are cared for, socially integrated by special rehabilitation measures and professional rehabilitation in community - based services and units of Pro Mente Upper Austria - a non-profit organization. Problems are decreased duration of stay in psychiatric hospitals, increased admission rates when the number of beds in psychiatric departments was considerably decreased in the course of psychiatric reforms in Austria. In our province - Upper Austria - these problems are of lesser importance because private non-profit organizations like Pro Mente Upper Austria have provided a variety of community-based services (mental health centres, day clinics, housing facilities and special services for drug addicts and geriatric patients ) in ever increasing numbers. Still there is need of further development of community-based services provided by specially trained professionals. These services are financed mainly by the state, the provincial government, the labour market services and to a small degree by funds of the European Union. In these days of reduced social budgets of the state and social departments of provincial governments it is not easy to keep our standards and meet the increased needs of our clients.
Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.
1977-01-01
A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.
Well sealing via thermite reactions
Lowry, William Edward; Dunn, Sandra Dalvit
2016-11-15
A platform is formed in a well below a target plug zone by lowering a thermite reaction charge into the well and igniting it, whereby the products of the reaction are allowed to cool and expand to form a platform or support in the well. A main thermite reaction charge is placed above the platform and ignited to form a main sealing plug for the well. In some embodiments an upper plug is formed by igniting an upper thermite reaction charge above the main thermite reaction charge. The upper plug confines the products of ignition of the main thermite reaction charge.
Sepúlveda, Nicasio
2002-01-01
A numerical model of the intermediate and Floridan aquifer systems in peninsular Florida was used to (1) test and refine the conceptual understanding of the regional ground-water flow system; (2) develop a data base to support subregional ground-water flow modeling; and (3) evaluate effects of projected 2020 ground-water withdrawals on ground-water levels. The four-layer model was based on the computer code MODFLOW-96, developed by the U.S. Geological Survey. The top layer consists of specified-head cells simulating the surficial aquifer system as a source-sink layer. The second layer simulates the intermediate aquifer system in southwest Florida and the intermediate confining unit where it is present. The third and fourth layers simulate the Upper and Lower Floridan aquifers, respectively. Steady-state ground-water flow conditions were approximated for time-averaged hydrologic conditions from August 1993 through July 1994 (1993-94). This period was selected based on data from Upper Floridan a quifer wells equipped with continuous water-level recorders. The grid used for the ground-water flow model was uniform and composed of square 5,000-foot cells, with 210 columns and 300 rows.
Southern Dobrogea coastal potable water sources and Upper Quaternary Black Sea level changes
NASA Astrophysics Data System (ADS)
Caraivan, Glicherie; Stefanescu, Diana
2013-04-01
Southern Dobrogea is a typical geologic platform unit, placed in the south-eastern part of Romania, with a Pre-Cambrian crystalline basement and a Paleozoic - Quaternary sedimentary cover. It is bordered to the north by the Capidava - Ovidiu fault and by the Black Sea to the east. A regional WNW - ESE and NNE - SSW fault system divides the Southern Dobrogea structure in several tectonic blocks. Four drinking water sources have been identified: surface water, phreatic water, medium depth Sarmatian aquifer, and deep Upper Jurassic - Lower Cretaceous aquifer. Surface water sources are represented by several springs emerged from the base of the loess cliff, and a few small rivers, barred by coastal beaches. The phreatic aquifer develops at the base of the loess deposits, on the impervious red clay, overlapping the Sarmatian limestones. The medium depth aquifer is located in the altered and karstified Sarmatian limestones, and discharges into the Black Sea. The Sarmatian aquifer is unconfined where covered by silty loess deposits, and locally confined, where capped by clayey loess deposits. The aquifer is supplied from the Pre-Balkan Plateau. The Deep Upper Jurassic - Lower Cretaceous aquifer, located in the limestone and dolomite deposits, is generally confined and affected by the regional WNW - ESE and NNE - SSW fault system. In the south-eastern Dobrogea, the deep aquifer complex is separated from the Sarmatian aquifer by a Senonian aquitard (chalk and marls). The natural boundary of the Upper Jurassic - Lower Cretaceous aquifer is the Capidava - Ovidiu Fault. The piezometric heads show that the Upper Jurassic - Lower Cretaceous aquifer is supplied from the Bulgarian territory, where the Upper Jurassic deposits crop out. The aquifer discharges into the Black Sea to the east and into Lake Siutghiol to the northeast. The cyclic Upper Quaternary climate changes induced drastic remodeling of the Black Sea level and the corresponding shorelines. During the Last Glacial Maximum (MIS 2), the shoreline retreats eastwards, reaching the 100-120 m isobaths. In these conditions, the surface drainage base level was very low. Phreatic nape closely followed the river valleys dynamics. Mean depth aquifer discharged on the inner shelf , where Sarmatian limestones outcrop. The deep aquifer discharge was restricted by the Capidava- Ovidiu Fault to the north-east and by a presumed seawards longitudinal Fault. This process enabled the migration of the prehistoric human communities, from Asia to Europe, who established settlements on the newly created alluvial plain on the western Black Sea shelf. The Holocene Transgression (MIS 1) determined a sea level rise up to the modern one, and probably higher. Under the pressure of these environmental changes, the Neolithic settlements slowly retreated upstream. During the Greek colonization, the rising sea level caused the salinisation of the previous drinking water phreatic sources. In these conditions, in the Roman Age, a new hydraulic infrastructure had to be developed, using aqueducts for available inland water delivery.
Kleeschulte, Michael J.; Seeger, Cheryl M.
2003-01-01
The confining ability of the St. Francois confining unit (Derby-Doerun Dolomite and Davis Formation) was evaluated in ten townships (T. 31?35 N. and R. 01?02 W.) along the Viburnum Trend of southeastern Missouri. Vertical hydraulic conductivity data were compared to similar data collected during two previous studies 20 miles south of the Viburnum Trend, in two lead-zinc exploration areas that may be a southern extension of the Viburnum Trend. The surficial Ozark aquifer is the primary source of water for domestic and public-water supplies and major springs in southern Missouri. The St. Francois confining unit lies beneath the Ozark aquifer and impedes the movement of water between the Ozark aquifer and the underlying St. Francois aquifer (composed of the Bonneterre Formation and Lamotte Sandstone). The Bonneterre Formation is the primary host formation for lead-zinc ore deposits of the Viburnum Trend and potential host formation in the exploration areas. For most of the more than 40 years the mines have been in operation along the Viburnum Trend, about 27 million gallons per day were being pumped from the St. Francois aquifer for mine dewatering. Previous studies conducted along the Viburnum Trend have concluded that no large cones of depression have developed in the potentiometric surface of the Ozark aquifer as a result of mining activity. Because of similar geology, stratigraphy, and depositional environment between the Viburnum Trend and the exploration areas, the Viburnum Trend may be used as a pertinent, full-scale model to study and assess how mining may affect the exploration areas. Along the Viburnum Trend, the St. Francois confining unit is a complex series of dolostones, limestones, and shales that generally is 230 to 280 feet thick with a net shale thickness ranging from less than 25 to greater than 100 feet with the thickness increasing toward the west. Vertical hydraulic conductivity values determined from laboratory permeability tests were used to represent the St. Francois confining unit along the Viburnum Trend. The Derby-Doerun Dolomite and Davis Formation are statistically similar, but the Davis Formation would be the more hydraulically restrictive medium. The shale and carbonate values were statistically different. The median vertical hydraulic conductivity value for the shale samples was 62 times less than the carbonate samples. Consequently, the net shale thickness of the confining unit along the Viburnum Trend significantly affects the effective vertical hydraulic conductivity. As the percent of shale increases in a given horizon, the vertical hydraulic conductivity decreases. The range of effective vertical hydraulic conductivity for the confining unit in the Viburnum Trend was estimated to be a minimum of 2 x 10-13 ft/s (foot per second) and a maximum of 3 x 10-12 ft/s. These vertical hydraulic conductivity values are considered small and verify conclusions of previous studies that the confining unit effectively impedes the flow of ground water between the Ozark aquifer and the St. Francois aquifer along the Viburnum Trend. Previously-collected vertical hydraulic conductivity data for the two exploration areas from two earlier studies were combined with the data collected along the Viburnum Trend. The nonparametric Kruskal-Wallis statistical test shows the vertical hydraulic conductivity of the St. Francois confining unit along the Viburnum Trend, and west and east exploration areas are statistically different. The vertical hydraulic conductivity values generally are the largest in the Viburnum Trend and are smallest in the west exploration area. The statistical differences in these values do not appear to be attributed strictly to either the Derby-Doerun Dolomite or Davis Formation, but instead they are caused by the differences in the carbonate vertical hydraulic conductivity values at the three locations. The calculated effective vertical hydraulic conductivity range for the St. Franc
Mora, Maximilian; Mahnert, Alexander; Koskinen, Kaisa; Pausan, Manuela R.; Oberauner-Wappis, Lisa; Krause, Robert; Perras, Alexandra K.; Gorkiewicz, Gregor; Berg, Gabriele; Moissl-Eichinger, Christine
2016-01-01
Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 – and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments – and the need to reassess the current hygiene standards. PMID:27790191
Mora, Maximilian; Mahnert, Alexander; Koskinen, Kaisa; Pausan, Manuela R; Oberauner-Wappis, Lisa; Krause, Robert; Perras, Alexandra K; Gorkiewicz, Gregor; Berg, Gabriele; Moissl-Eichinger, Christine
2016-01-01
Indoor environments, where people spend most of their time, are characterized by a specific microbial community, the indoor microbiome. Most indoor environments are connected to the natural environment by high ventilation, but some habitats are more confined: intensive care units, operating rooms, cleanrooms and the international space station (ISS) are extraordinary living and working areas for humans, with a limited exchange with the environment. The purposes for confinement are different: a patient has to be protected from infections (intensive care unit, operating room), product quality has to be assured (cleanrooms), or confinement is necessary due to extreme, health-threatening outer conditions, as on the ISS. The ISS represents the most secluded man-made habitat, constantly inhabited by humans since November 2000 - and, inevitably, also by microorganisms. All of these man-made confined habitats need to be microbiologically monitored and controlled, by e.g., microbial cleaning and disinfection. However, these measures apply constant selective pressures, which support microbes with resistance capacities against antibiotics or chemical and physical stresses and thus facilitate the rise of survival specialists and multi-resistant strains. In this article, we summarize the available data on the microbiome of aforementioned confined habitats. By comparing the different operating, maintenance and monitoring procedures as well as microbial communities therein, we emphasize the importance to properly understand the effects of confinement on the microbial diversity, the possible risks represented by some of these microorganisms and by the evolution of (antibiotic) resistances in such environments - and the need to reassess the current hygiene standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geotechnical Sciences Group Bechtel Nevada
2006-01-01
A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive wasmore » emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.« less
Hydrogeology and soil gas at J-Field, Aberdeen Proving Ground, Maryland
Hughes, W.B.
1993-01-01
Disposal of chemical warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has contaminated soil, groundwater and surface water. Seven exploratory borings and 38 observation wells were drilled to define the hydrogeologic framework at J-Field and to determine the type, extent, and movement of contaminants. The geologic units beneath J-Field consist of Coastal Plain sediments of the Cretaceous Patapsco Formation and Pleistocene Talbot Formation. The Patapsco Formation contains several laterally discontinuous aquifers and confining units. The Pleistocene deposits were divided into 3 hydrogeologic units--a surficial aquifer, a confining unit, and a confined aquifer. Water in the surficial aquifer flows laterally from topographically high areas to discharge areas in marshes and streams, and vertically to the underlying confined aquifer. In offshore areas, water flows from the deeper confined aquifers upward toward discharge areas in the Gunpowder River and Chesapeake Bay. Analyses of soil-gas samples showed high relative-flux values of chlorinated solvents, phthalates, and hydrocarbons at the toxic-materials disposal area, white-phosphorus disposal area, and riot-control-agent disposal area. The highest flux values were located downgradient of the toxic materials and white phosphorus disposal areas, indicating that groundwater contaminants are moving from source areas beneath the disposal pits toward discharge points in the marshes and estuaries. Elevated relative-flux values were measured upgradient and downgradient of the riot-control agent disposal area, and possibly result from soil and (or) groundwater contamination.
NASA Astrophysics Data System (ADS)
van Gelder, I. E.; Willingshofer, E.; Sokoutis, D.; Cloetingh, S. A. P. L.
2017-08-01
A series of analogue experiments simulating intra-continental subduction contemporaneous with lateral extrusion of the upper plate are performed to study the interference between these two processes at crustal levels and in the lithospheric mantle. The models demonstrate that intra-continental subduction and coeval lateral extrusion of the upper plate are compatible processes leading to similar deformation structures within the extruding region as compared to the classical setup, lithosphere-scale indentation. Strong coupling across the subduction boundary allows for the transfer of stresses to the upper plate, where strain regimes are characterized by crustal thickening near a confined margin and dominated by lateral displacement of material near a weak lateral confinement. The strain regimes propagate laterally during ongoing convergence creating an area of overlap characterized by transpression. When subduction is oblique to the convergence direction, the upper plate is less deformed and as a consequence the amount of lateral extrusion decreases. In addition, strain is partitioned along the oblique plate boundary resulting in less subduction in expense of right lateral displacement close to the weak lateral confinement. Both oblique and orthogonal subduction models have a strong resemblance to lateral extrusion tectonics of the Eastern Alps (Europe), where subduction of the adjacent Adriatic plate beneath the Eastern Alps is debated. Our results imply that subduction of Adria is a valid mechanisms to induce extrusion-type deformation within the Eastern Alps lithosphere. Furthermore, our findings suggest that the Oligocene to Late Miocene structural evolution of the Eastern Alps reflects a phase of oblique subduction followed by a later stage of orthogonal subduction conform a Miocene shift in the plate motion of Adria. Oblique subduction also provides a viable mechanism to explain the rapid decrease in slab length of the Adriatic plate beneath the Eastern Alps towards the Pannonian Basin.
Implementation and thickness optimization of perpetual pavements in Ohio : [executive summary].
DOT National Transportation Integrated Search
2015-06-01
Perpetual asphalt pavements are designed to confine distresses to the upper layer of the structure, by eliminating : or reducing the potential for fatigue cracking by maintaining the horizontal strains at the bottom of the pavement : below a critical...
Late Pleistocene-Holocene alluvial stratigraphy of southern Baja California, Mexico
NASA Astrophysics Data System (ADS)
Antinao, José Luis; McDonald, Eric; Rhodes, Edward J.; Brown, Nathan; Barrera, Wendy; Gosse, John C.; Zimmermann, Susan
2016-08-01
A late Pleistocene to Holocene alluvial stratigraphy has been established for the basins of La Paz and San José del Cabo, in the southern tip of the Baja California peninsula, Mexico. Six discrete alluvial units (Qt1 through Qt6) were differentiated across the region using a combination of geomorphologic mapping, sedimentological analysis, and soil development. These criteria were supported using radiocarbon, optically stimulated luminescence and cosmogenic depth-profile geochronology. Major aggradation started shortly after ∼70 ka (Qt2), and buildup of the main depositional units ended at ∼10 ka (Qt4). After deposition of Qt4, increasing regional incision of older units and the progressive development of a channelized alluvial landscape coincide with deposition of Qt5 and Qt6 units in a second, incisional phase. All units consist of multiple 1-3 m thick alluvial packages deposited as upper-flow stage beds that represent individual storms. Main aggradational units (Qt2-Qt4) occurred across broad (>2 km) channels in the form of sheetflood deposition while incisional stage deposits are confined to channels of ∼0.5-2 km width. Continuous deposition inside the thicker (>10 m) pre-Qt5 units is demonstrated by closely spaced dates in vertical profiles. In a few places, disconformities between these major units are nevertheless evident and indicated by partly eroded buried soils. The described units feature sedimentological traits similar to historical deposits formed by large tropical cyclone events, but also include characteristics of upper-regime flow sedimentation not shown by historical sediments, like long (>10 m) wavelength antidunes and transverse ribs. We interpret the whole sequence as indicating discrete periods during the late Pleistocene and Holocene when climatic conditions allowed larger and more frequent tropical cyclone events than those observed historically. These discrete periods are associated with times when insolation at the tropics was higher than the present-day conditions, determined by precessional cycles, and modulated by the presence of El Niño-like conditions along the tropical and northeastern Pacific. The southern Baja California alluvial record is the first to document a precession-driven alluvial chronology for the region, and it constitutes a strong benchmark for discrimination of direct tropical influence on any other alluvial record in southwestern North America.
Hydrostratigraphy characterization of the Floridan aquifer system using ambient seismic noise
NASA Astrophysics Data System (ADS)
James, Stephanie R.; Screaton, Elizabeth J.; Russo, Raymond M.; Panning, Mark P.; Bremner, Paul M.; Stanciu, A. Christian; Torpey, Megan E.; Hongsresawat, Sutatcha; Farrell, Matthew E.
2017-05-01
We investigated a new technique for aquifer characterization that uses cross-correlation of ambient seismic noise to determine seismic velocity structure of the Floridan aquifer system (FAS). Accurate characterization of aquifer systems is vital to hydrogeological research and groundwater management but is difficult due to limited subsurface data and heterogeneity. Previous research on the carbonate FAS found that confining units and high permeability flow zones have distinct seismic velocities. We deployed an array of 9 short period seismometers from 11/2013 to 3/2014 in Indian Lake State Forest near Ocala, Florida, to image the hydrostratigraphy of the aquifer system using ambient seismic noise. We find that interstation distance strongly influences the upper and lower frequency limits of the data set. Seismic waves propagating within 1.5 and 7 wavelengths between stations were optimal for reliable group velocity measurements and both an upper and lower wavelength threshold was used. A minimum of 100-250 hr of signal was needed to maximize signal-to-noise ratio and to allow cross-correlation convergence. We averaged measurements of group velocity between station pairs at each frequency band to create a network average dispersion curve. A family of 1-D shear-wave velocity profiles that best represents the network average dispersion was then generated using a Markov Chain Monte Carlo (MCMC) algorithm. The MCMC algorithm was implemented with either a fixed number of layers, or as transdimensional in which the number of layers was a free parameter. Results from both algorithms require a prominent velocity increase at ∼200 m depth. A shallower velocity increase at ∼60 m depth was also observed, but only in model ensembles created by collecting models with the lowest overall misfit to the observed data. A final round of modelling with additional prior constraints based on initial results and well logs produced a mean shear-wave velocity profile taken as the preferred solution for the study site. The velocity increases at ∼200 and ∼60 m depth are consistent with the top surfaces of two semi-confining units of the study area and the depths of high-resistivity dolomite units seen in geophysical logs and cores from the study site. Our results suggest that correlation of ambient seismic noise holds promise for hydrogeological investigations. However, complexities in the cross-correlations at high frequencies and short traveltimes at low frequencies added uncertainty to the data set.
Putnam, Larry D.; Long, Andrew J.
2009-01-01
The city of Rapid City and other water users in the Rapid City area obtain water supplies from the Minnelusa and Madison aquifers, which are contained in the Minnelusa and Madison hydrogeologic units. A numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units in the Rapid City area was developed to synthesize estimates of water-budget components and hydraulic properties, and to provide a tool to analyze the effect of additional stress on water-level altitudes within the aquifers and on discharge to springs. This report, prepared in cooperation with the city of Rapid City, documents a numerical groundwater-flow model of the Minnelusa and Madison hydrogeologic units for the 1,000-square-mile study area that includes Rapid City and the surrounding area. Water-table conditions generally exist in outcrop areas of the Minnelusa and Madison hydrogeologic units, which form generally concentric rings that surround the Precambrian core of the uplifted Black Hills. Confined conditions exist east of the water-table areas in the study area. The Minnelusa hydrogeologic unit is 375 to 800 feet (ft) thick in the study area with the more permeable upper part containing predominantly sandstone and the less permeable lower part containing more shale and limestone than the upper part. Shale units in the lower part generally impede flow between the Minnelusa hydrogeologic unit and the underlying Madison hydrogeologic unit; however, fracturing and weathering may result in hydraulic connections in some areas. The Madison hydrogeologic unit is composed of limestone and dolomite that is about 250 to 610 ft thick in the study area, and the upper part contains substantial secondary permeability from solution openings and fractures. Recharge to the Minnelusa and Madison hydrogeologic units is from streamflow loss where streams cross the outcrop and from infiltration of precipitation on the outcrops (areal recharge). MODFLOW-2000, a finite-difference groundwater-flow model, was used to simulate flow in the Minnelusa and Madison hydrogeologic units with five layers. Layer 1 represented the fractured sandstone layers in the upper 250 ft of the Minnelusa hydrogeologic unit, and layer 2 represented the lower part of the Minnelusa hydrogeologic unit. Layer 3 represented the upper 150 ft of the Madison hydrogeologic unit, and layer 4 represented the less permeable lower part. Layer 5 represented an approximation of the underlying Deadwood aquifer to simulate upward flow to the Madison hydrogeologic unit. The finite-difference grid, oriented 23 degrees counterclockwise, included 221 rows and 169 columns with a square cell size of 492.1 ft in the detailed study area that surrounded Rapid City. The northern and southern boundaries for layers 1-4 were represented as no-flow boundaries, and the boundary on the east was represented with head-dependent flow cells. Streamflow recharge was represented with specified-flow cells, and areal recharge to layers 1-4 was represented with a specified-flux boundary. Calibration of the model was accomplished by two simulations: (1) steady-state simulation of average conditions for water years 1988-97 and (2) transient simulations of water years 1988-97 divided into twenty 6-month stress periods. Flow-system components represented in the model include recharge, discharge, and hydraulic properties. The steady-state streamflow recharge rate was 42.2 cubic feet per second (ft3/s), and transient streamflow recharge rates ranged from 14.1 to 102.2 ft3/s. The steady-state areal recharge rate was 20.9 ft3/s, and transient areal recharge rates ranged from 1.1 to 98.4 ft3/s. The upward flow rate from the Deadwood aquifer to the Madison hydrogeologic unit was 6.3 ft3/s. Discharge included springflow, water use, flow to overlying units, and regional outflow. The estimated steady-state springflow of 32.8 ft3/s from seven springs was similar to the simulated springflow of 31.6 ft3/s, which included 20.5 ft3
Wong, Joyce Y P; Chin, David; Fung, Henry; Li, Ann; Wong, Marcus M S; Kwok, Henry K H
2014-01-01
Upper limb musculoskeletal complaints are common among certain health professionals. We report two cases, both involving technicians working in a diagnostic tuberculosis laboratory in Hong Kong. A work process evaluation suggest that the need to repeatedly open and close small bottles, as well as to work for prolonged periods of time in confined areas, could be related to the workers' clinical presentation. The cases are also compatible with the diagnosis of repetitive strain injury (RSI) of the upper limb, but this term is not commonly used nowadays because of various definitional issues. A review of the various diagnostic issues in RSI is presented.
Confinement of the solar tachocline by a cyclic dynamo magnetic field
NASA Astrophysics Data System (ADS)
Barnabé, Roxane; Strugarek, Antoine; Charbonneau, Paul; Brun, Allan Sacha; Zahn, Jean-Paul
2017-05-01
Context. The surprising thinness of the solar tachocline is still not understood with certainty today. Among the numerous possible scenarios suggested to explain its radial confinement, one hypothesis is based on Maxwell stresses that are exerted by the cyclic dynamo magnetic field of the Sun penetrating over a skin depth below the turbulent convection zone. Aims: Our goal is to assess under which conditions (turbulence level in the tachocline, strength of the dynamo-generated field, spreading mechanism) this scenario can be realized in the solar tachocline. Methods: We develop a simplified 1D model of the upper tachocline under the influence of an oscillating magnetic field imposed from above. The turbulent transport is parametrized with enhanced turbulent diffusion (or anti-diffusion) coefficients. Two main processes that thicken the tachocline are considered; either turbulent viscous spreading or radiative spreading. An extensive parameter study is carried out to establish the physical parameter regimes under which magnetic confinement of the tachocline that is due to a surface dynamo field can be realized. Results: We have explored a large range of magnetic field amplitudes, viscosities, ohmic diffusivities and thermal diffusivities. We find that, for large but still realistic magnetic field strengths, the differential rotation can be suppressed in the upper radiative zone (and hence the tachocline confined) if weak turbulence is present (with an enhanced ohmic diffusivity of η> 107-8 cm2/ s), even in the presence of radiative spreading. Conclusions: Our results show that a dynamo magnetic field can, in the presence of weak turbulence, prevent the inward burrowing of a tachocline subject to viscous diffusion or radiative spreading.
Misut, Paul E.; Busciolano, Ronald J.
2010-01-01
Horizontal and vertical hydraulic conductivity, transmissivity, and storativity of the aquifer system at Centereach, New York, were estimated using analytical multiple-well aquifer test models and compared with results of numerical regional flow modeling and hydrogeologic framework studies. During the initial operation of production well S125632 in May 2008, continuous water-level and temperature data were collected at a cluster of five partially penetrating observation wells, located about 100 feet (ft) from S125632, and at observation well S33380, located about 10,000 ft from S125632. Data collection intervals ranged from 30 seconds to 30 minutes and analytical model calibration was conducted using visual trial-and-error techniques with time series parsed to 30-minute intervals. The following assumptions were applied to analytical models: (1) infinite aerial extent, (2) homogeneity, (3) uniform 600-ft aquifer thickness, (4) unsteady flow, (5) instantaneous release from storage with the decline in head, (6) no storage within pumped wells, (7) a constant-head plane adjacent to bounding confining units, and (8) no horizontal component of flow through confining units. Preliminary estimates of horizontal and vertical hydraulic conductivity of 50 ft per day horizontal and 0.5 ft per day vertical were extrapolated from previous flow modeling and hydrogeologic framework studies of the Magothy aquifer. Two applications were then developed from the Hantush analytical model. Model A included only the pumping stress of S125632, whereas model B included the concurrent pumping stresses from two other production well fields (wells S66496 and S32551). Model A provided a sufficient match to the observed water-level responses from pumping, whereas model B more accurately reproduced water levels similar to those observed during non-pumping of S125632, as well as some effects of interference from the concurrent pumping nearby. In both models, storativity was estimated to be 0.003 (dimensionless) and the Hantush leakage parameter '1/B' was estimated to be 0.00083 ft-1. Representation of leakage across the overlying confining layer was likely complicated by: (1) irregularities in surface altitude and (2) groundwater recharge due to rainfall during the aquifer test.
Aquifer Response to Record Low Barometric Pressures in the Southeastern United States
Landmeyer, J.E.
1996-01-01
A late-winter cyclone classified as one of the most intense of the 20th century moved across the Southeastern states of Georgia and South Carolina and onto the Northeast during March 12-14, 1993. Record low barometric pressures were recorded in Augusta, Georgia (28.93 inches of mercury) and Columbia, South Carolina (28.63 inches of mercury) on March 13,1993, and pressures returned to normal values (near 3D inches of mercury) within one day following these record lows. This relatively unusual event provided an opportunity to examine the attendant water-level response in continuously monitored ground-water wells in regional Atlantic Coastal Plain, Piedmont, and Blue Ridge aquifers in the Southeast. Water levels in all wells examined responded inversely to the short duration, extreme drop in barometric pressure. Barometric efficiencies (??ground-water level/??barometric-pressure level) calculated were dependent on depth to screened- or open-interval midpoint (highest correlation coefficient, r2 = 0.89) and, to a lesser extent, total thickness of confining material above the aquifer tapped (highest r2 = 0.65). Wells in crystalline-rock aquifers had a correlation with depth to open-interval midpoint (r2 = 0.89) similar to the sedimentary aquifers examined. The magnitude of barometric efficiency was also strongly related to a well's increased distance from aquifer outcrop areas in the Cretaceous aquifers in South Carolina (r2 = 0.95) and the upper Brunswick aquifer in Georgia (r2 = 0.90), because these aquifers are more deeply buried toward the coast. This relation between barometric efficiency, well depth, and extent of confinement suggests that barometric efficiency determinations can provide useful information to hydrologists concerned with examining an aquifer's degree of confinement and corresponding isolation from land surface, particularly when the aquifer is used as a source for public supply.
Provost, Alden M.; Payne, Dorothy F.; Voss, Clifford I.
2006-01-01
A digital model was developed to simulate ground-water flow and solute transport for the Upper Floridan aquifer in the Savannah, Georgia-Hilton Head Island, South Carolina, area. The model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004), (2) project these trends from the present day into the future, and (3) evaluate the relative influence of different assumptions regarding initial and boundary conditions and physical properties. The model is based on a regional, single-density ground-water flow model of coastal Georgia and adjacent parts of South Carolina and Florida. Variable-density ground-water flow and solute transport were simulated using the U.S. Geological Survey finite-element, variable-density solute-transport simulator SUTRA, 1885-2004. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. The model was calibrated to September 1998 water levels, for single-density freshwater conditions, then refined using variable density and chloride concentration to give a reasonable match to the trend in the chloride distribution in the Upper Floridan aquifer inferred from field measurements of specific conductance made during 2000, 2002, 2003, and 2004. The model was modified to simulate solute transport by allowing saltwater to enter the system through localized areas near the northern end of Hilton Head Island, at Pinckney Island, and near the Colleton River, and was calibrated to match chloride concentrations inferred from field measurements of specific conductance. This simulation is called the 'Base Case.'
Water resources of Lincoln and Union counties, South Dakota
Niehus, C.A.
1994-01-01
Water resources of Lincoln and Union Counties occur as surface water in streams and lakes and ground water in ten major glacial and one major bedrock aquifers. The major surface-water sources are the Missouri and Big Sioux Rivers. Glacial aquifers contain about 4 million acre-feet of water in storage; 1.5 million acre-feet are contained in the Missouri aquifer. The Wall Lake, Shindler, and Upper Vemillion-Missouri aquifers are deeply buried, confined aquifers with average thicknesses ranging from 31 to 41 feet. The Harrisburg and Big Sioux aquifers are shallow, water-table aquifers with average thicknesses of 26 and 28 feet, respectively. The Parker-Centerville, Newton Hills, and Brule Creek aquifers are buried, confined aquifers with average thicknesses ranging from 33 to 36 feet. The Lower Vermillion-Missouri aquifer is a buried, confined aquifer with an average thickness of 99 feet. The Missouri aquifer is confined in the northeastern portion of the aquifer and is a shallow, water-table aquifer elsewhere with average cumulative thickness of 84 feet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pucci, A.A. Jr.
Hydrogeologic maps are typical products of ground-water investigations. The features on these maps can be used by planning commissions to optimize land use. Planners could use confining-unit outcrop maps for siting landfills and hazardous material handling facilities. This paper examines ground-water chemistry from 53 wells, field measurements, hydrogeologic conditions from a quasi-3-D flow model for predevelopment (before 1900), and 1984 flow conditions, and evaluates relationships between them. Several recent reports have examined water quality in the area. The wells for this paper were screened in the Potomac-Raritan-Magothy aquifer system (PRMA) in the northern Coastal Plain of New Jersey in amore » 184 square mile area which is undergoing rapid growth. Hydrogeologic conditions considered include aquifer sampled, well location relative to flow-path distance from the outcrop, confining-unit thickness, and confining-unit vertical hydraulic conductivity (Kv). Visual, graphical and principal component analyses were used to evaluate the relationships.« less
McSwain, Kristen Bukowski
1999-01-01
In 1995, the U.S. Navy requested that the U.S. Geological Survey conduct an investigation to describe the hydrogeology of the Upper Floridan aquifer in the vicinity of the Marine Corps Logistics Base, southeast and adjacent to Albany, Georgia. The study area encompasses about 90 square miles in the Dougherty Plain District of the Coastal Plain physiographic province, in Dougherty and Worth Counties-the Marine Corps Logistics Base encompasses about 3,600 acres in the central part of the study area. The Upper Floridan aquifer is the shallowest, most widely used source of drinking water for domestic use in the Albany area. The hydrogeologic framework of this aquifer was delineated by description of the geologic and hydrogeologic units that compose the aquifer; evaluation of the lithologic and hydrologic heterogeneity of the aquifer; comparison of the geologic and hydrogeologic setting beneath the base with those of the surrounding area; and determination of ground-water-flow directions, and vertical hydraulic conductivities and gradients in the aquifer. The Upper Floridan aquifer is composed of the Suwannee Limestone and Ocala Limestone and is divided into an upper and lower water-bearing zone. The aquifer is confined below by the Lisbon Formation and is semi-confined above by a low-permeability clay layer in the undifferentiated overburden. The thickness of the aquifer ranges from about 165 feet in the northeastern part of the study area, to about 325 feet in the southeastern part of the study area. Based on slug tests conducted by a U.S. Navy contractor, the upper water-bearing zone has low horizontal hydraulic conductivity (0.0224 to 2.07 feet per day) and a low vertical hydraulic conductivity (0.0000227 to 0.510 feet per day); the lower water-bearing zone has a horizontal hydraulic conductivity that ranges from 0.0134 to 2.95 feet per day. Water-level hydrographs of continuously monitored wells on the Marine Corps Logistics Base show excellent correlation between ground-water level and stage of the Flint River. Ground-water-flow direction in the southwestern part of the base generally is southeast to northwest; whereas, in the northeastern part of the base, flow directions generally are east to west, as well as from west to east, thus creating a ground-water low. Ground-water flow in the larger study area generally is east to west towards the Flint River, with a major ground-water-flow path existing from the Pelham Escarpment to the Flint River and a seasonal cone of depression the size of which is dependent upon the magnitude of irrigation pumping during the summer months. Calculated vertical hydraulic gradients (based upon data from 11 well-cluster sites on the Marine Corps Logistics Base) range from 0.0016 to 0.1770 foot per foot, and generally are highest in the central and eastern parts of the base. The vertical gradient is downward at all well-cluster sites.
Mealtime Manual for the Aged and Handicapped.
ERIC Educational Resources Information Center
Klinger, Judith Lannefeld; And Others
Specific techniques to alleviate difficulties encountered in routine kitchen tasks are described for the elderly and the handicapped, particularly those persons with upper extremity weakness or amputees, arthritis, incoordination, wheelchair confinement, loss of sensation, and limited vision. Helpful information is provided in areas of kitchen…
The New Dislocated Worker. Trends and Issues Alerts.
ERIC Educational Resources Information Center
Imel, Susan
In the past, worker displacement resulting from structural changes in the economy remained confined to industrial occupations such as manufacturing. The recent trends toward corporate restructuring, global competition, and military downsizing have created new groups of dislocated workers, including upper and middle management and military…
ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
Maingi, R.; Hu, J. S.; Sun, Z.; ...
2018-01-05
Here, we report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3–5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previousmore » ELM elimination results via Li injection into the lower carbon divertor in EAST. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs, highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.« less
ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
NASA Astrophysics Data System (ADS)
Maingi, R.; Hu, J. S.; Sun, Z.; Tritz, K.; Zuo, G. Z.; Xu, W.; Huang, M.; Meng, X. C.; Canik, J. M.; Diallo, A.; Lunsford, R.; Mansfield, D. K.; Osborne, T. H.; Gong, X. Z.; Wang, Y. F.; Li, Y. Y.; EAST Team
2018-02-01
We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST (Hu et al 2015 Phys. Rev. Lett. 114 055001). These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs (Lang et al 2017 Nucl. Fusion 57 016030), highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.
ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maingi, R.; Hu, J. S.; Sun, Z.
Here, we report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3–5 s in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D α baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previousmore » ELM elimination results via Li injection into the lower carbon divertor in EAST. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs, highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.« less
Water levels and artesian pressures in the Chad Basin of northeastern Nigeria, 1963-68
Carmalt, S.W.; Tibbitts, G.C.
1969-01-01
This report presents records of water levels and artesian pressures collected during 1963-68 on an observational network of 116 dug wells and boreholes (drilled wells) in the Chad Basin of northeastern Nigeria. The Chad Basin is underlain by the Chad Formation, a series of fluvio-lacustrine sediments which attain a thickness of 1,500 feet or more in Nigeria. Three water-bearing zones, designated Upper, Middle and Lower, have been identified in the Chad Formation of Nigeria. The Upper Zone aquifer, which contains water under both unconfined and confined conditions, provides the principal source of water to dug wells for domestic and village water supply. The Middle Zone aquifer is tapped by numerous deep boreholes (drilled wells) which provide water by artesian flow in more than 13,000 square miles of Nigeria north and east of Maiduguri. The Lower Zone, which is also confined has only been identified thus far (1969) in the vicinity of Maiduguri.
Method for isolating two aquifers in a single borehole
Burklund, P.W.
1984-01-20
A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.
Method for isolating two aquifers in a single borehole
Burklund, Patrick W.
1985-10-22
A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.
Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Catuneanu, Octavian
2001-08-01
The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.
Katz, B.G.; Berndt, M.P.; Crandall, C.A.
2014-01-01
Differences in the degree of confinement, redox conditions, and dissolved organic carbon (DOC) are the main factors that control the persistence of nitrate and pesticides in the Upper Floridan aquifer (UFA) and overlying surficial aquifer beneath two agricultural areas in the southeastern US. Groundwater samples were collected multiple times from 66 wells during 1993–2007 in a study area in southwestern Georgia (ACFB) and from 48 wells in 1997–98 and 2007–08 in a study area in South Carolina (SANT) as part of the US Geological Survey National Water-Quality Assessment Program. In the ACFB study area, where karst features are prevalent, elevated nitrate-N concentrations in the oxic unconfined UFA (median 2.5 mg/L) were significantly (p = 0.03) higher than those in the overlying oxic surficial aquifer (median 1.5 mg/L). Concentrations of atrazine and deethylatrazine (DEA; the most frequently detected pesticide and degradate) were higher in more recent groundwater samples from the ACFB study area than in samples collected prior to 2000. Conversely, in the SANT study area, nitrate-N concentrations in the UFA were mostly <0.06 mg/L, resulting from anoxic conditions and elevated DOC concentrations that favored denitrification. Although most parts of the partially confined UFA in the SANT study area were anoxic or had mixed redox conditions, water from 28 % of the sampled wells was oxic and had low DOC concentrations. Based on the groundwater age information, nitrate concentrations reflect historic fertilizer N usage in both the study areas, but with a lag time of about 15–20 years. Simulated responses to future management scenarios of fertilizer N inputs indicated that elevated nitrate-N concentrations would likely persist in oxic parts of the surficial aquifer and UFA for decades even with substantial decreases in fertilizer N inputs over the next 40 years.
Ground-water flow in the New Jersey Coastal Plain
Martin, Mary
1998-01-01
Ground-water flow in 10 aquifers and 9 intervening confining units of the New Jersey Coastal Plain was simulated as part of the Regional Aquifer System Analysis. Data on aquifer and confining unit characteristics and on pumpage and water levels from 1918 through 1980 were incorporated into a multilayer finite-difference model. The report describes the conceptual hydrogeologic model of the unstressed flow systems, the methods and approach used in simulating flow, and the results of the simulations.
Observed stratospheric downward reflection, and its relation to upward pulses of wave activity
NASA Astrophysics Data System (ADS)
Harnik, N.
2009-04-01
We examine the differences between observed stratospheric vertical wave reflection and wave absorption events, which differ in that the wave induced deceleration remains confined to upper levels in the former. The two types of events signify two types of stratospheric winter dynamics, associated with different downward coupling to the troposphere (Perlwitz and Harnik, 2004). Using time lag composites, we find that the main factor influencing which event will occur is the duration, in time, of the upward pulse of wave activity entering the stratosphere from the troposphere. Short pulses accelerate the flow at their trailing edge in the lower stratosphere while they decelerate it at upper levels, resulting in a vertical shear reversal, and corresponding downward reflection, while long pulses continue decelerating the vortex at progressively lower levels. The confinement of deceleration to upper levels for short wave forcing pulses is also found in an idealized model of an interaction between a planetary wave and the stratospheric vortex, though some aspects of the wave geometry evolution, and thus vertical reflection, are not captured realistically in the model. The results suggest the stratospheric influence on the type of wave interaction, in reality, is indirect - through a possible effect on the duration of upward wave fluxes through the tropopause.
41 CFR 102-80.145 - What is meant by “flashover”?
Code of Federal Regulations, 2010 CFR
2010-07-01
...”? Flashover means fire conditions in a confined area where the upper gas layer temperature reaches 600 °C (1100 °F) and the heat flux at floor level exceeds 20 kW/m2 (1.8 Btu/ft2/sec). Reasonable Worst Case...
41 CFR 102-80.145 - What is meant by “flashover”?
Code of Federal Regulations, 2011 CFR
2011-01-01
...”? Flashover means fire conditions in a confined area where the upper gas layer temperature reaches 600 °C (1100 °F) and the heat flux at floor level exceeds 20 kW/m2 (1.8 Btu/ft2/sec). Reasonable Worst Case...
Yeh, Hsin-Chih; Jan, Hau-Chern; Wu, Wen-Jeng; Li, Ching-Chia; Li, Wei-Ming; Ke, Hung-Lung; Huang, Shu-Pin; Liu, Chia-Chu; Lee, Yung-Chin; Yang, Sheau-Fang; Liang, Peir-In; Huang, Chun-Nung
2015-01-01
To investigate the impact of preoperative hydronephrosis and flank pain on prognosis of patients with upper tract urothelial carcinoma. In total, 472 patients with upper tract urothelial carcinoma managed by radical nephroureterectomy were included from Kaohsiung Medical University Hospital Healthcare System. Clinicopathological data were collected retrospectively for analysis. The significance of hydronephrosis, especially when combined with flank pain, and other relevant factors on overall and cancer-specific survival were evaluated. Of the 472 patients, 292 (62%) had preoperative hydronephrosis and 121 (26%) presented with flank pain. Preoperative hydronephrosis was significantly associated with age, hematuria, flank pain, tumor location, and pathological tumor stage. Concurrent presence of hydronephrosis and flank pain was a significant predictor of non-organ-confined disease (multivariate-adjusted hazard ratio = 2.10, P = 0.025). Kaplan-Meier analysis showed significantly poorer overall and cancer-specific survival in patients with preoperative hydronephrosis (P = 0.005 and P = 0.026, respectively) and in patients with flank pain (P < 0.001 and P = 0.001, respectively) than those without. However, only simultaneous hydronephrosis and flank pain independently predicted adverse outcome (hazard ratio = 1.98, P = 0.016 for overall survival and hazard ratio = 1.87, P = 0.036 for and cancer-specific survival, respectively) in multivariate Cox proportional hazards models. In addition, concurrent presence of hydronephrosis and flank pain was also significantly predictive of worse survival in patient with high grade or muscle-invasive disease. Notably, there was no difference in survival between patients with hydronephrosis but devoid of flank pain and those without hydronephrosis. Concurrent preoperative presence of hydronephrosis and flank pain predicted non-organ-confined status of upper tract urothelial carcinoma. When accompanied with flank pain, hydronephrosis represented an independent predictor for worse outcome in patients with upper tract urothelial carcinoma.
A 1.3-μm four-channel directly modulated laser array fabricated by SAG-Upper-SCH technology
NASA Astrophysics Data System (ADS)
Guo, Fei; Lu, Dan; Zhang, Ruikang; Liu, Songtao; Sun, Mengdie; Kan, Qiang; Ji, Chen
2017-01-01
A monolithically integrated four-channel directly modulated laser (DML) array working at the 1.3-μm band is demonstrated. The laser was manufactured by using the techniques of selective area growth (SAG) of the upper separate confinement heterostructure (Upper-SCH) and modified butt-joint method. The fabricated device showed stable single mode operation with the side mode suppression ratio (SMSR) >35 dB, and high wavelength accuracy with the deviations from the linear fitted values <±0.03 nm for all channels. Furthermore, small signal modulation bandwidth >7 GHz was obtained, which may be suitable for 40 GbE applications in the 1.3-μm band.
Confined space emergency response: assessing employer and fire department practices.
Wilson, Michael P; Madison, Heather N; Healy, Stephen B
2012-01-01
An emergency response plan for industrial permit-required confined space entry is essential for employee safety and is legally required. Maintaining a trained confined space rescue team, however, is costly and technically challenging. Some employers turn to public fire departments to meet their emergency response requirements. The confined space emergency response practices of employers and fire departments have not been previously assessed. We present (1) federal data on the U.S. occurrence between 1992 and 2005 of confined space fatal incidents involving toxic and/or oxygen-deficient atmospheres; (2) survey data from 21 large companies on permit-required confined space emergency response practices; (3) data on fire department arrival times; and (4) estimates by 10 senior fire officers of fire department rescue times for confined space incidents. Between 1992 and 2005, 431 confined space incidents that met the case definition claimed 530 lives, or about 0.63% of the 84,446 all-cause U.S. occupational fatal injuries that occurred during this period. Eighty-seven (20%) incidents resulted in multiple fatalities. Twelve (57%) of 21 surveyed companies reported that they relied on the fire department for permit-required confined space emergency response. Median fire department arrival times were about 5 min for engines and 7 min for technical rescue units. Fire department confined space rescue time estimates ranged from 48 to 123 min and increased to 70 and 173 min when hazardous materials were present. The study illustrates that (1) confined space incidents represent a small but continuing source of fatal occupational injuries in the United States; (2) a sizeable portion of employers may be relying on public fire departments for permit-required confined space emergency response; and (3) in the event of a life-threatening emergency, fire departments usually are not able to effect a confined space rescue in a timely manner. We propose that the appropriate role for the fire department is to support a properly trained and equipped on-site rescue team and to provide advanced life support intervention following extrication and during ambulance transportation.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig
1986-02-04
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig
1986-01-01
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
A unique approach to estimating lateral anisotropy in complex geohydrologic environments
Halford, K.J.; Campbell, B.
2004-01-01
Aquifers in fractured rock or karstic settings are likely to have anisotropic transmissivity distributions. Aquifer tests that are performed in these settings also we frequently affected by leakage from adjacent confining units. Finite-difference models such as MODFLOW are convenient tools for estimating the hydraulic characteristics of the stressed aquifer and adjacent confining units but are poor tools for the estimation of lateral anisotropy. This limitation of finite-difference methods can be overcome by application of the spin method, a technique whereby the positions of the observation wells are rotated about the production well to estimate anisotropy and orientation. Formal parameter estimation is necessary to analyze aquifer tests because of the number of parameters that we estimated. As a test, transmissivity, anisotropy, and orientation were successfully estimated for a simple hypothetical problem with known properties. The technique also was applied to estimate hydraulic properties of the Santee Limestone/Black Mingo (SL/BM) aquifer and a leaky confining unit beneath Charleston, South Carolina. A 9-day aquifer test with an average discharge of 644 1/min was analyzed numerically. Drawdowns in the SL/BM aquifer and confining unit were simulated with a 12-layer MODFLOW model that was discretized into 81 rows of 81 columns. Simulated drawdowns at seven observation wells that ranged from 23 to 2700 m from the production well were matched to measured drawdowns. Transmissivity estimated along the minor axis ranged from 10 to 15 m2/day and along the major axis ranged from 80 to 100 m2/day. The major axis of transmissivity was oriented along compass heading 116?? (degrees clockwise from north), which agrees with geologic interpretations. Vertical hydraulic conductivity and specific storage estimates for the overlying confining unit were 4 ?? 10-5m/day and 2 ?? 10-4 1/m, respectively. ?? 2004 International Association of Hydraulic Engineering and Research.
Miller, Todd S.; Bugliosi, Edward F.
2013-01-01
In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the stratified-drift aquifers at the Valley Heads Moraine, which consists of heterogeneous sediments including coarse-grained outwash and kame sediments, as well as zones containing till with a fine-grained matrix. In the southern part of the study area, the confining units are thin and likely to be discontinuous in some places, resulting in windows of permeable sediment, which can more readily transmit recharge from precipitation and from tributaries that lose water as they flow over the valley floor. In contrast, in the northern part of the study area, the confining units are thick, continuous, and comprise homogeneous fine-grained sediments that more effectively confine the aquifers than in the southern part of the study area. Most groundwater in the northern part of the study area discharges to the Village of Dryden municipal production wells, to the outlet to Dryden Lake, to Virgil Creek, and as groundwater underflow that exits the northern boundary of the study area. Most northward-flowing groundwater in the southern part of the study area discharges to Dryden Lake, to the inlet to Dryden Lake, and to homeowner, nonmunicipal community (a mobile home community and several apartments), and commercial wells. Most of this pumped water is returned to the groundwater system via septic systems. Most southward-flowing groundwater in the southern part of the study area discharges to the headwaters of Owego Creek and to agricultural wells; some flow also exits the southern boundary of the study area as groundwater underflow. The largest user of groundwater in the study area is the Village of Dryden. Water use in the village has approximately tripled between the early 1970s when withdrawals ranged between 18 and 30 million gallons per year (Mgal/yr) and from 2000 through 2008 when withdrawals ranged between 75 and 85 Mgal/yr. The estimated groundwater use by homeowners, nonmunicipal communities, and small commercial facilities outside the area supplied by the Village of Dryden municipal wells is estimated to be about 18.4 Mgal/yr. Most of this pumped water is returned to the groundwater system via septic systems. For this investigation, an aquifer test was conducted at the Village of Dryden production well TM 981 (finished in the middle confined aquifer at a well depth of 72 ft) at the Jay Street pumping station during June 19–21, 2007. The aquifer test consisted of pumping production well TM 981 at 104 gallons per minute over a 24-hour period. The drawdown in well TM 981 at the end of 24 hours of pumping was 19.2 ft. Results of the aquifer-test analysis for a partially penetrating well in a confined aquifer indicated that the transmissivity was 1,560 feet squared per day, and the horizontal hydraulic conductivity was 87 feet per day, based on a saturated thickness of 18 ft. During 2003–5, 14 surface-water samples were collected at 8 sites, including Virgil Creek, Dryden Lake outlet, and several tributaries. During 2003 through 2009, eight groundwater samples were collected from eight wells, including three municipal production wells, two test wells, and three domestic wells. Calcium dominates the cation composition, and bicarbonate dominates the anion composition in most groundwater and surface-water samples. None of the common inorganic constituents collected exceeded any Federal or State water-quality standards. Results from a three-dimensional, finite-difference groundwater-flow model were used to compute a water budget and to estimate the areal extent of the zone of groundwater contribution to the Village of Dryden municipal production wells. The model-computed water budget indicated that the sources of recharge to the confined aquifer system are precipitation that falls directly on the valley-fill sediments (40 percent of total recharge), stream leakage (35.5 percent), seepage from wetlands and ponds (12 percent), unchanneled runoff and groundwater inflow from the uplands (8.5 percent), and groundwater underflow into the eastern end of the model area (4 percent). Most groundwater discharges to surface-water bodies, including Dryden Lake (33 percent), streams (33 percent), and wetlands and ponds (10 percent of the total). In addition, some groundwater discharges as underflow out of the southern and northern ends of the model area (15 percent), to simulated pumping wells (4.5 percent), and to drains that represent seepage from the bluffs exposed in the gorge in the vicinity of the Virgil Creek Dam (4.5 percent). The areal extents of the zones of groundwater contribution for Village of Dryden municipal production wells TM 202 (Lake Road pump station, finished in the upper confined aquifer) and TM 981 (Jay Street pump station, finished in the middle confined aquifer) are 0.5 square mile (mi2) and 0.9 mi2, respectively. The areal extent of the zone of contribution to production well TM 202 extends 2.2 miles (mi) southeast into the Virgil Creek Valley, whereas production well TM 981 extends 3.8 mi south in the Dryden Lake Valley. The areal extent of the zone of contribution to production well TM1046 (South Street pump station) is 1.4 mi2 and extends 2.4 mi into Dryden Lake Valley and 0.5 mi into Virgil Creek Valley.
Geology and water resources of Owens Valley, California
Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.
1991-01-01
Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben that is structurally separated into the Bishop Basin to the north and the Owens Lake Basin to the south. These two structural basins are separated by (1) a bedrock high that is the upper bedrock block of an east-west normal fault, (2) a horst block of bedrock (the Poverty Hills), and (3) Quaternary basalt flows and cinder cones that intercalate and intrude the sedimentary deposits of the valley fill. The resulting structural separation of the basins allowed separate development of fluvial and lacustrine depositional systems in each basin. Nearly all the ground water in Owens Valley flows through and is stored in the saturated valley fill. The bedrock, which surrounds and underlies the valley fill, is virtually impermeable. Three hydrogeologic units compose the valley-fill aquifer system, a defined subdivision of the ground-water system, and a fourth represents the valley fill below the aquifer system and above the bedrock. The aquifer system is divided into horizontal hydrogeologic units on the basis of either (1) uniform hydrologic characteristics of a specific lithologic layer or (2) distribution of the vertical hydraulic head. Hydrogeologic unit 1 is the upper unit and represents the unconfined part of the system, hydrogeologic unit 2 represents the confining unit (or units), and hydrogeologic unit 3 represents the confined part of the aquifer system. Hydrogeologic unit 4 represents the deep part of the ground-water system and lies below the aquifer system. Hydrogeologic unit 4 transmits or stores much less water than hydrogeologic unit 3 and represents either a moderately consolidated valley fill or a geologic unit in the valley fill defined on the basis of geophysical data. Nearly all the recharge to the aquifer system is from infiltration of runoff from snowmelt and rainfall on the Sierra Nevada. In contrast, little recharge occurs to the system by runoff from the White and Inyo Mountains or from direct precipitation on the valley floor. Ground wat
Kahle, Sue C.; Longpre, Claire I.; Smith, Raymond R.; Sumioka, Steve S.; Watkins, Anni M.; Kresch, David L.
2003-01-01
A study of the water resources of the ground-water system in the unconsolidated deposits of the Colville River Watershed provided the Colville River Watershed Planning Team with an assessment of the hydrogeologic framework, preliminary determinations of how the shallow and deeper parts of the ground-water system interact with each other and the surface-water system, descriptions of water-quantity characteristics including water-use estimates and an estimated water budget for the watershed, and an assessment of further data needs. The 1,007-square-mile watershed, located in Stevens County in northeastern Washington, is closed to further surface-water appropriations throughout most of the basin during most seasons. The information provided by this study will assist local watershed planners in assessing the status of water resources within the Colville River Watershed (Water Resources Inventory Area 59). The hydrogeologic framework consists of glacial and alluvial deposits that overlie bedrock and are more than 700 feet thick in places. Twenty-six hydrogeologic sections were constructed, using a map of the surficial geology and drillers' logs for more than 350 wells. Seven hydrogeologic units were delineated: the Upper outwash aquifer, the Till confining unit, the Older outwash aquifer, the Colville Valley confining unit, the Lower aquifer, the Lower confining unit, and Bedrock. Synoptic stream discharge measurements made in September 2001 identified gaining and losing reaches over the unconsolidated valley deposits. During the September measurement period, the Colville River gained flow from the shallow ground-water system near its headwaters to the town of Valley and lost flow to the shallow ground-water system from Valley to Chewelah. Downstream from Chewelah, the river generally lost flow, but the amounts lost were small and within measurement error. Ground-water levels indicate that the Lower aquifer and the shallow ground-water system may act as fairly independent systems. The presence of flowing wells completed in the Lower aquifer indicates upward head gradients along much of the Colville Valley floor. Total surface- and ground-water withdrawals during 2001 were estimated to be 9,340 million gallons. Water use for 2001, as a percentage of the total, was 75.3 percent for irrigation, 16.3 percent for public supply, 6.5 percent for private wells, and about 1 percent each for industrial and livestock use. An approximate water budget for a typical year in the Colville River Watershed shows that 27 inches of precipitation are balanced by 4.2 inches of streamflow discharge from the basin, 0.3 inch of ground-water discharge from the basin, and 22.5 inches of evapotranspiration.
Murray, L.C.; Keoughan, K.M.
1990-01-01
Unlined hazardous-waste disposal sites at the U.S. Marine Corps Air Station, Cherry Point, North Carolina, are located near drinking-water supply wells that tap the Castle Hayne aquifer. Hydrogeologic and water-quality data were collected near 2 of these sites from 12 monitoring wells installed in May through June 1987. Near the northernmost landfill site, differences in hydraulic head between the surficial, intermediate Yorktown, and Castle Hayne aquifers indicate a potential for migration of contaminants downward into the intermediate Yorktown and Castle Hayne aquifers. Movement would be impeded, however, by two confining units of silty sand to sandy clay that separate these aquifers. Geophysical and lithologic data show the upper confining unit to be approximately 26 feet thick near this landfill. Near the southernmost landfill, these confining units are thin and discontinuous in an area that coincides with the location of a buried paleochannel. Static water-level data collected in this area indicate that both the Castle Hayne and Yorktown aquifers discharge into the surficial aquifer, minimizing the potential for downward contaminant movement. Ground water in the surficial aquifer at both landfills moves laterally away from nearby drinking-water supply wells and toward Slocum Creek, a tributary of the Neuse River. Concentrations of organic compounds and trace inorganic constituents included on the U.S. Environmental Protection Agency?s list of priority pollutants were determined for water samples from the surficial and Yorktown aquifers. High concentrations of two purgeable organic compounds, trichloroethylene and 1,2-dichloroethene (4,600 and 4,800 micrograms per liter, respectively), were detected in water samples collected from the surficial aquifer near the southernmost landfill; much smaller concentrations of trichloroethylene and 1,2-dichloroethene were detected in samples from wells in the Yorktown aquifer (up to 16 and 12 micrograms per liter, respectively). These compounds may have migrated into the Yorktown aquifer from the surficial aquifer during periods of pumping from nearby drinking-water supply wells if the pumping were sufficient to reverse the hydraulic head between these aquifers. Only trace amounts of organic compounds were detected in the surficial and Yorktown aquifers near the northernmost landfill. Trace metals were detected in most of the wells sampled near both landfills, but none exceeded U.S. Environmental Protection Agency drinking-water standards except for iron and manganese. Highest concentrations of priority pollutant metals detected were for zinc (60 micrograms per liter) and chromium (36 micrograms per liter).
High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.
Blasi, Pasquale; Amato, Elena; D'Angelo, Marta
2015-09-18
The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E
28 CFR 541.49 - Review of control unit placement.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Once every 30 days, the control unit team, comprised of the control unit manager and other members... required to attend the team meeting in order to be eligible for the previous month's stay in the control unit to be credited towards the projected duration of confinement in that unit. The unit team shall...
NASA Astrophysics Data System (ADS)
Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.
2013-12-01
In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.
Geohydrology and simulated ground-water flow in an irrigated area of northwestern Indiana
Arihood, L.D.; Basch, M.E.
1994-01-01
Water for irrigation in parts of Newton and Jasper Counties and adjacent areas of northwestern Indiana is pumped mostly from the carbonate- bedrock aquifer that underlies glacial drift. To help in managing the ground-water resources of the area, a three-dimensional ground-water model was developed and tested with hydrologic data collected during 1986 and 1988. Two major aquifers and a confining unit were identified. The surficial unconfined outwash aquifer consists of sand and some gravel. Saturated thickness averages about 30 feet. Estimated values of horizontal hydraulic conductivity and storage coefficient are 350 feet per day and 0.07, respectively. The generally continuous confining unit beneath the outwash aquifer is composed predominantly of till and lacustrine silt and clay and is 0 to 125 feet thick. The carbonate-bedrock aquifer is composed of Silurian and Devonian dolomitic limestone; dolomite and has a median transmissivity of 2,000 feet squared per day. A nine-layer digital model was developed to simulate flow in the ground-water system. The mean absolute errors for simulated water levels in the bedrock aquifer ranged from 5 to 7 feet for two recent periods of irrigation. The component of the flow system that most affects water-level drawdowns in the bedrock aquifer is the confining unit which controls the rate of leakage to the bedrock aquifer. The model is most accurate in areas for which data for confining-unit thickness and bedrock water levels are available.
Basabilvazo, G.T.; Nickerson, E.L.; Myers, R.G.
1994-01-01
The Yesum-HoHoman and Gypsum land (hummocky) soils at the High Energy Laser System Test Facility (HELSTF) represent wind deposits from recently desiccated lacustrine deposits and deposits from the ancestral Lake Otero. The upper 15-20 feet of the subsurface consists of varved gypsiferous clay and silt. Below these surfidai deposits the lithology consists of interbedded clay units, silty-clay units, and fine- to medium-grained quartz arenite units in continuous and discontinuous horizons. Clay horizons can cause perched water above the water table. Analyses of selected clay samples indicate that clay units are composed chiefly of kaolinire and mixed-layer illite/ smectite. The main aquifer is representative of a leaky-confined aquifer. Estimated aquifer properties are: transmissivity (T) = 780 feet squared per day, storage coefficient (S) = 3.1 x 10-3, and hydraulic conductivity (K) = 6.0 feet per day. Ground water flows south and southwest; the estimated hydraulic gradient is 5.3 feet per mile. Analyses of water samples indicate that ground water at the HELSTF site is brackish to slightly saline at the top of the main aquifer. Dissolved-solids concentration near the top of the main aquifer ranges from 5,940 to 11,800 milligrams per liter. Predominant ions are sodium and sulfate. At 815 feet below land surface, the largest dissolved-solids concentration measured is 111,000 milligrams per liter, which indicates increasing salinity with depth. Predominant ions are sodium and chloride.
NASA Astrophysics Data System (ADS)
Cunningham, K. J.; Walker, C.; Westcott, R. L.
2011-12-01
Continuous improvements in shallow-focused, high-resolution, marine seismic-reflection technology has provided the opportunity to evaluate geologic structures that breach confining units of the Floridan aquifer system within the southeastern Florida Platform. The Floridan aquifer system is comprised mostly of Tertiary platform carbonates. In southeastern Florida, hydrogeologic confinement is important to sustainable use of the Floridan aquifer system, where the saline lower part is used for injection of wastewater and the brackish upper part is an alternative source of drinking water. Between 2007 and 2011, approximately 275 km of 24- and 48-channel seismic-reflection profiles were acquired in canals of peninsular southeastern Florida, Biscayne Bay, present-day Florida shelf margin, and the deeply submerged Miami Terrace. Vertical to steeply dipping offsets in seismic reflections indicate faults, which range from Eocene to possible early Pliocene age. Most faults are associated with karst collapse structures; however, a few tectonic faults of early Miocene to early Pliocene age are present. The faults may serve as a pathway for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability in the Floridan aquifer system. The faults may collectively produce a regional confinement bypass system. In early 2011, twenty seismic-reflection profiles were acquired near the Key Biscayne submarine sinkhole located on the seafloor of the Miami Terrace. Here the water depth is about 365 m. A steeply dipping (eastward) zone of mostly deteriorated quality of seismic-reflection data underlies the sinkhole. Correlation of coherent seismic reflections within and adjacent to the disturbed zone indicates a series of faults occur within the zone. It is hypothesized that upward movement of groundwater within the zone contributed to development of a hypogenic karst system and the resultant overlying sinkhole. Study of this modern seafloor sinkhole may provide clues to the genesis of the more deeply buried Tertiary karst collapse structures. Three-dimensional geomodeling of the seismic-reflection data from the Key Biscayne sinkhole further aids visualization of the seismic stratigraphy and structural system that underlies the sinkhole.
Greene, Karen E.
1997-01-01
A study of the ambient ground-water quality in the vicinity of Naval Submarine Base (SUBASE) Bangor was conducted to provide the U.S. Navywith background levels of selected constituents.The Navy needs this information to plan and manage cleanup activities on the base. DuringMarch and April 1995, 136 water-supply wells were sampled for common ions, trace elements, and organic compounds; not all wells were sampled for all constituents. Man-made organic compounds were detected in only two of fifty wells, and the sources of these organic compounds were attributed to activities in the immediate vicinities of these off- base wells. Drinking water standards for trichloroethylene, iron, and manganese were exceeded in one of these wells, which was probablycontaminated by an old local (off-base) dump. Ground water from wells open to the following hydrogeologic units (in order from shallow to deep) was investigated: the Vashon till confining unit (Qvt, three wells); the Vashon aquifer (Qva, 54 wells); the Upper confining unit (QC1, 16 wells); the Permeable interbeds within QC1 (QC1pi, 34 wells); and the Sea-level aquifer (QA1, 29 wells).The 50th and 90th percentile ambient background levels of 35 inorganic constituents were determined for each hydrogeologic unit. At least tenmeasurements were required for a constituent in each hydro- geologic unit for determination of ambient background levels, and data for three wellsdetermined to be affected by localized activities were excluded from these analyses. The only drinking water standards exceeded by ambient background levels were secondary maximum contaminant levels for iron (300 micrograms per liter), in QC1 and QC1pi, and manganese (50 micrograms per liter), in all of the units. The 90th percentile values for arsenic in QC1pi, QA1, and for the entire study area are above 5 micrograms per liter, the Model Toxics Control Act Method A value for protecting drinking water, but well below the maximum contaminant level of 50 micrograms per liter for arsenic. The manganese standard was exceeded in 38 wells and the standard for iron was exceeded in 12 wells.Most of these wells were in QC1 or QC1pi and had dissolved oxygen concentrations of less than 1 milligram per liter and dissolved organic carbon concentrations greater than 1\\x11milligram per liter.The dissolved oxygen concentration is generally lower in the deeper units, while pH increases; the recommended pH range of 6.5-8.5 standard units was exceeded in 9 wells. The common-ion chemistry was similar for all of the units.
NASA Astrophysics Data System (ADS)
Arango-Galvan, C.; Ramos-Leal, J. A.; Yáñez-Rodríguez, M. A.; Corbo-Camargo, F.
2017-12-01
The Cerritos and Río Verde aquifers in San Luis Potosí (central México) make up a very complex aquifer system that is seriously affected by the overexploitation and the high concentration of sulphates. Currently, it is partially closed for extraction causing a substantial decrease in per capita drinking water availability affecting to more than 50,000 inhabitants in the region. Therefore, a very comprehensive study has been proposed in order to evaluate not only the groundwater contamination distribution but also to better know the aquifer configuration and its main hydrogeological characteristics as well. These studies include a detailed geological reconnaissance, hydrogeochemical analyses and a geoelectrical characterization. The main goal is to assess the aquifer geometry and to identify the gypsum horizons causing the presence of higher concentrations of sulphates in drinking water. A total of 26 audiomagnetotelluric soundings were measured and modelled along profiles following a perpendicular direction to the NW regional trending. Two-dimensional resistivity models suggest the presence of a shallow conductive layer (C1) with resistivity values ranging from 10 to 20 Ohm.m. It is related to the upper aquifer with a very low exploitation potential. A less conductive horizon (C2; 50 Ohm.m) underlying the shallow aquifer could be related to a very fractured limestone horizon forming a confined aquifer in the middle of the valley. A very resistive layer (R1) is observed underlying C1 and C2 units. This strata shows higher resistivity values (>100 Ohm.m) and could be associated with a reefal limestone identified as El Abra Formation. Finally, a conductive layer (<100 Ohm.m) observed beneath this horizon could be related to the oldest stratigraphic unit outcropping on the region, the Guaxcamá Formation, a gypsum-enriched unit, that contributes to the presence of sulphates in the upper aquifers by dissolution processes.
Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho
Bartolino, James R.; Adkins, Candice B.
2012-01-01
The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and metamorphosed to some degree, thus rock types and their relationships vary over distance. Quaternary-age sediment and basalt compose the primary source of groundwater in the Wood River Valley aquifer system. These Quaternary deposits can be divided into three units: a coarse-grained sand and gravel unit, a fine-grained silt and clay unit, and a single basalt unit. The fine- and coarse-grained units were primarily deposited as alluvium derived from glaciation in the surrounding mountains and upper reaches of tributary canyons. The basalt unit is found in the southeastern Bellevue fan area and is composed of two flows of different ages. Most of the groundwater produced from the Wood River Valley aquifer system is from the coarse-grained deposits. The altitude of the pre-Quaternary bedrock surface in the Wood River Valley was compiled from about 1,000 well-driller reports for boreholes drilled to bedrock and about 70 Horizontal-to-Vertical Spectral Ratio (HVSR) ambient-noise measurements. The bedrock surface generally mimics the land surface by decreasing down tributary canyons and the main valley from north to south; it ranges from more than 6,700 feet in Baker Creek to less than 4,600 feet in the central Bellevue fan. Most of the south-central portion of the Bellevue fan is underlain by an apparent topographically closed area on the bedrock surface that appears to drain to the southwest towards Stanton Crossing. Quaternary sediment thickness ranges from less than a foot on main and tributary valley margins to about 350 feet in the central Bellevue fan. Hydraulic conductivity for 81 wells in the study area was estimated from well-performance tests reported on well-driller reports. Estimated hydraulic conductivity for 79 wells completed in alluvium ranges from 1,900 feet per day (ft/d) along Warm Springs Creek to less than 1 ft/d in upper Croy Canyon. A well completed in bedrock had an estimated hydraulic conductivity value of 10 ft/d, one well completed in basalt had a value of 50 ft/d, and three wells completed in the confined system had values ranging from 32 to 52 ft/d. Subsurface outflow of groundwater from the Wood River Valley aquifer system into the eastern Snake River Plain aquifer was estimated to be 4,000 acre-feet per year. Groundwater outflow beneath Stanton Crossing to the Camas Prairie was estimated to be 300 acre-feet per year.
Bear-inflicted injuries - a report from Nepal.
Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Acharya, Jenash
2016-06-01
Upper Mustang in the Northern Himalayan range of Nepal is the home of brown bears (Ursusarctos). Low-plant biomass as a result of scanty rainfall in Upper Mustang is a reason for habitat overlap of humans and wild animals. Humans who enter into the wild to collect firewood and graze cattle are liable to wild animal attacks. Such attacks, especially by brown bears, are readily identified by the type of injuries. These are more commonly confined to head and neck regions. Cutting, gnawing and tearing by sharp teeth and claws produces specific pattern of injuries, which are devastating but seldom fatal. This article reports a rare case of brown bear injury inflicted upon a man from the Upper Mustang region in Nepal. © The Author(s) 2016.
Geohydrology and ground-water resources of Philadelphia, Pennsylvania
Paulachok, Gary N.
1991-01-01
The aquifers underlying the 134.6-square-mile city of Philadelphia are divided by the Fall Line into the unconsolidated aquifers (chiefly sand and gravel) of the Coastal Plain and the consolidated-rock aquifers (chiefly schist of the Wissahickon Formation) of the Piedmont. Ground water is present under confined and unconfined conditions. The principal units of the confined-aquifer system are the lower and middle sands of the Potomac-Raritan-Magothy aquifer system. The lower sand unit is the most productive aquifer in Philadelphia. The median yield of wells screened in the lower sand unit is 275 gal/min (gallons per minute), and yields of some wells are as high as 1,350 gal/min. The median specific capacity is 16 (gal/min)/ft (gallons per minute per foot of drawdown). The principal units of the unconsolidated unconfined-aquifer system are the upper sand unit of the Potomac-Raritan-Magothy aquifer system and the informally named Trenton gravel. The median yield of wells tapping these two undifferentiated units is 90 gal/min, and yields of some wells are as high as 1,370 gal/min. The median specific capacity is 12 (gal/min)/ft. The consolidated unconfined-aquifer system consists mainly of the Wissahickon Formation. The median yield of nondomestic wells that tap the Wissahickon Formation is 45 gal/min, and yields are as high as 350 gal/min. The median specific capacity is 0.5 (gal/min)/ft. Urbanization has considerably modified the hydrologic cycle in Philadelphia. Impervious surfaces have reduced recharge areas and evapotranspiration and have increased direct runoff. Leakage from the water-distribution system, which is supplied from the Delaware and Schuylkill Rivers, was about 60 to 72 Mgal/d (million gallons per day) in 1980. Groundwater infiltration to sewers is estimated to be as much as 135 Mgal/d when the water table is high. The potentiometric surface of the lower sand unit has been lowered substantially by pumping. By 1954, cones of depression were more than 50 ft (feet) below sea level at the U.S. Naval Base and more than 70 ft below sea level along the Delaware River northeast of the naval base. As a result of withdrawals, declining heads in the lower sand unit caused water to flow downward from the overlying unconsolidated deposits and the water table to decline below sea level along the Delaware River. Beginning in the mid1960's, ground-water withdrawals from the lower sand unit decreased, and, by 1979, water levels had risen 25 ft at the U.S. Naval Base and 45 ft farther north along the Delaware River. As of 1985, water levels in the lower sand unit were controlled largely by pumping in nearby parts of New Jersey. Urbanization also has caused substantial degradation of the quality of ground water in Philadelphia. By 1945, the quality of water in the unconfined aquifer system began to deteriorate as contaminants present at the land surface migrated down- ward. Withdrawal of water from the deeper confined aquifers caused a head decline that resulted in downward movement of contaminated water from the overlying unconfined aquifer system. Consequently, water in the confined aquifers deteriorated progressively in chemical quality so it resembles water in the unconfined aquifer system. The concentration of dissolved solids in water samples collected during 1979-80 ranged from 90 to 4,480 mg/L (milligrams per liter). The average concentration of 778 mg/L was 45 percent higher than that of samples collected during 1945-58. Water from the unconfined unconsolidated aquifers generally had the highest dissolved-solids concentration. The concentration of dissolved iron in water samples collected during 197980 ranged from 0 to 220 mg/L and exceeded 0.30 mg/L in 71 percent of the samples. The average concentration of 17 mg/L was nearly 30 percent higher than that of samples collected during 1945-58. Many wells have been abandoned because of elevated iron concentrations. The concentration of dissolved manganese in water
Miller, Todd S.; Karig, Daniel E.
2010-01-01
In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and retreats of the ice in the study area resulted in several sequences of various types of glacial deposits. A large moraine (Valley Heads Moraine) dominates the southern part of the study area, a large delta dominates the central part, and ground moraine (mostly till) dominates the northern part. Glacial sediments in the center of the lower Sixmile Creek and Willseyville Creek trough typically range from 150 to 200 ft but can be greater than 300 ft in some places. Where the sediments are composed of sand and gravel they form aquifers. In most parts of the lower Sixmile Creek and Willseyville Creek trough, there is an upper and a basal confined aquifer. However, underlying the central parts of the Brooktondale delta, there are as many as four confined aquifers, whereas in the northern part of the study area, only one extensive confined aquifer is present. The major sources of recharge to these confined aquifers are (1) direct infiltration of precipitation where confined aquifers crop out at land surface (mostly along the western trough wall in the southern and central parts of the study area and, to a lesser degree, along the eastern trough wall); (2) unchanneled surface and subsurface runoff from adjacent upland areas that seeps into the aquifer along the western trough walls; (3) subsurface flow from underlying till or bedrock at the lateral contacts at trough walls; (4) adjacent fine-grained stratified drift, especially when the aquifer is pumped; and (5) discharge from bedrock at the bottom and sides of the trough. In the central part of the study area, the surficial coarse-grained sediments (sand and gravel) comprise a delta near Brooktondale and form a small unconfined aquifer (0.3 square mile). Although much of the upper part of the delta has been removed by several aggregate mining operations, sufficient amounts of sand and gravel remain in most places to form a thin unconfined aquifer. The major sources of recharge to the unconfined aquifer are (1)
28 CFR 541.41 - Institutional referral.
Code of Federal Regulations, 2010 CFR
2010-07-01
... INMATE DISCIPLINE AND SPECIAL HOUSING UNITS Control Unit Programs § 541.41 Institutional referral. (a) The Warden shall submit a recommendation for referral of an inmate for placement in a control unit to... following factors in a recommendation for control unit placement. (1) Any incident during confinement in...
Kay, Robert T.; Buszka, Paul M.
2016-03-02
The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit sampled by this study. That result indicated that nearly all groundwater sampled from well G53S entered the aquifer as recharge before 1953. Tritium was detected in a trace concentration in one sample from a second monitoring well open to the upper part of the Radnor Till Member (well G07S; 0.11 ± 0.09 tritium units), and not detected in samples collected from two monitoring wells open to a sand deposit in the lower part of the Radnor Till Member, from two samples collected from two monitoring wells open to the Organic Soil unit, and in two samples collected from a production well screened in the middle of the Mahomet aquifer (a groundwater sample and a sequential replicate sample). The lack of tritium in five of the six groundwater samples collected from the shallow permeable units beneath CLU#3 site and the two samples from the one Mahomet aquifer well indicates an absence of post-1952 recharge. Groundwater-flow paths that could contribute post-1952 recharge to the lower part of the Radnor Till Member, the Organic Soil unit, or the Mahomet aquifer at the CLU#3 are not indicated by these data.Hypothetical two-part mixtures of tritium-dead, pre-1953 recharge water and decay-corrected tritium concentrations in post-1952 recharge were computed and compared with tritium analyses in groundwater sampled from monitoring wells at the CLU#3 site to evaluate whether tritium concentrations in groundwater could be represented by mixtures involving some post-1952 recharge. Results from the hypothetical two-part mixtures indicate that groundwater from monitoring well (G53S) was predominantly composed of pre-1953 recharge and that if present, younger, post-1955 recharge, contributed less than 2.5 percent to that sample. The hypothetical two-part mixing results also indicated that very small amounts of post-1952 recharge composing less than about 2.5 percent of the sample volume could not be distinguished in groundwater samples with tritium concentrations less than about 0.15 TU.The piston-flow based age of recharge determined from the tritium concentration in the groundwater sample from monitoring well G53S yielded an estimated maximum vertical velocity from the land surface to the upper part of the Radnor Till Member of 0.85 feet per year or less. This velocity, ifassumed to apply to the remaining glacial till deposits above the Mahomet aquifer, indicates that recharge flows through the 170 feet of glacial deposits between the base of the proposed chemical waste unit and the top of the Mahomet aquifer in a minimum of 200 years or longer. Analysis of hydraulic data from the site, constrained by a tritium-age based maximum groundwater velocity estimate, computed minimum estimates of effective porosity that range from about 0.021 to 0.024 for the predominantly till deposits above the Mahomet aquifer.Estimated rates of transport of recharge from land surface to the Mahomet aquifer for the CLU#3 site computed using the Darcy velocity equation with site-specific data were about 260 years or longer. The Darcy velocity-based estimates were computed using values that were based on tritium data, estimates of vertical velocity and effective porosity and available site-specific data. Solution of the Darcy velocity equation indicated that maximum vertical groundwater velocities through the deposits above the aquifer were 0.41 or 0.61 feet per year, depending on the site-specific values of vertical hydraulic conductivity (laboratory triaxial test values) and effective porosity used for the computation. The resulting calculated minimum travel times for groundwater to flow from the top of the Berry Clay Member (at the base of the proposed chemical waste unit) to the top of the Mahomet aquifer ranged from about 260 to 370 years, depending on the velocity value used in the calculation. In comparison, plausible travel times calculated using vertical hydraulic conductivity values from a previously published regional groundwater flow model were either slightly less than or longer than those calculated using site data and ranged from 230 to 580 years.Tritium data from 1996 to 2011 USGS regional sampling of groundwater from domestic wells in the confined part of the Mahomet aquifer—which are 2.5 to about 40 miles from the Clinton site—were compared with site-specific data from a production well at the Clinton site. Tritium-based groundwater-age estimates indicated predominantly pre- 1953 recharge dates for USGS and other prior regional samples of groundwater from domestic wells in the Mahomet aquifer. These results agreed with the tritium-based, pre-1953 recharge age estimated for a groundwater sample and a sequential replicate sample from a production well in the confined part of the Mahomet aquifer beneath the Clinton site.The regional tritium-based groundwater age estimates also were compared with pesticide detections in samples from distal domestic wells in the USGS regional network that are about 2.5 to 40 miles from the Clinton site to identify whether very small amounts of post-1952 recharge have in places reached confined parts of the Mahomet aquifer at locations other than the Clinton site in an approximately 2,000 square mile area of the Mahomet aquifer. Very small amounts of post-1952 recharge were defined in this analysis as less than about 2.5 percent of the total recharge contributing to a groundwater sample, based on results from the two-part mixing analysis of tritium data from the Clinton site. Pesticide-based groundwater-age estimates based on 22 detections of pesticides (13 of these detections were estimated concentrations), including atrazine, deethylatrazine (2-Chloro-4-isopropylamino-6-amino- s-triazine), cyanazine, diazinon, metolachlor, molinate, prometon, and trifluralin in groundwater samples from 10 domestic wells 2.5 to about 40 miles distant from the Clinton site indicate that very small amounts of post-1956 to post-1992 recharge can in places reach the confined part of the Mahomet aquifer in other parts of central Illinois. The relative lack of tritium in these samples indicate that the amounts of post-1956 to post-1992 recharge contributing to the 10 domestic wells were a very small part of the overall older groundwater sampled from those wells.The flow process by which very small amounts of pesticide-bearing groundwater reached the screened intervals of the 10 domestic wells could not be distinguished between well-integrity related infiltration and natural hydrogeologic features. Potential explanations include: (1) infiltration through man-made avenues in or along the well, (2) flow of very small amounts of post-1956 to post-1992 recharge through sparsely distributed natural permeable aspects of the glacial till and diluted by mixing with older groundwater, or (3) a combination of both processes.Presuming the domestic wells sampled by the USGS in 1996–2011 in the regional study of the confined part of the Mahomet aquifer are adequately sealed and produce groundwater that is representative of aquifer conditions, the regional tritium and pesticide-based groundwater-age results indicate substantial heterogeneity in the glacial stratigraphy above the Mahomet aquifer. The pesticide-based groundwater-age estimates from the domestic wells distant from the Clinton site also indicate that parts of the Mahomet aquifer with the pesticide detections can be susceptible to contaminant sources at the land surface. The regional pesticide and tritium results from the domestic wells further indicate that a potential exists for possible contaminants from land surface to be transported through the glacial drift deposits that confine the Mahomet aquifer in other parts of central Illinois at faster rates than those computed for recharge at the Clinton site, including CLU#3. This analysis indicates the potential value of sub-microgram-per-liter level concentrations of land-use derived indicators of modern recharge to indicate the presence of very small amounts of modern, post-1952 age recharge in overall older, pre-1953 age groundwater.
Terahertz quantum cascade lasers based on resonant phonon scattering for depopulation.
Hu, Qing; Williams, Benjamin S; Kumar, Sushil; Callebaut, Hans; Reno, John L
2004-02-15
We report our development of terahertz (THz) quantum cascade lasers (QCLs), in which the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO) phonon scattering. This depopulation mechanism, similar to that implemented in all the QCLs operating at mid-infrared frequencies, is robust at high temperatures and high injection levels. The unique feature of resonant LO-phonon scattering in our THz QCL structures allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintaining a relatively long upper level lifetime (more than 5 ps) that is due to upper-to-ground-state scattering. The first QCL based on this mechanism achieved lasing at 3.4 THz (lambda approximately 87 microm) up to 87 K for pulsed operations, with peak power levels exceeding 10 mW at ca. 40 K. Using a novel double-sided metal waveguide for mode confinement, which yields a unity mode confinement factor and therefore a low total cavity loss at THz frequencies, we have also achieved lasing at wavelengths longer than 100 microm.
Folded fabric tunes rock deformation and failure mode in the upper crust.
Agliardi, F; Dobbs, M R; Zanchetta, S; Vinciguerra, S
2017-11-10
The micro-mechanisms of brittle failure affect the bulk mechanical behaviour and permeability of crustal rocks. In low-porosity crystalline rocks, these mechanisms are related to mineralogy and fabric anisotropy, while confining pressure, temperature and strain rates regulate the transition from brittle to ductile behaviour. However, the effects of folded anisotropic fabrics, widespread in orogenic settings, on the mechanical behaviour of crustal rocks are largely unknown. Here we explore the deformation and failure behaviour of a representative folded gneiss, by combining the results of triaxial deformation experiments carried out while monitoring microseismicity with microstructural and damage proxies analyses. We show that folded crystalline rocks in upper crustal conditions exhibit dramatic strength heterogeneity and contrasting failure modes at identical confining pressure and room temperature, depending on the geometrical relationships between stress and two different anisotropies associated to the folded rock fabric. These anisotropies modulate the competition among quartz- and mica-dominated microscopic damage processes, resulting in transitional brittle to semi-brittle modes under P and T much lower than expected. This has significant implications on scales relevant to seismicity, energy resources, engineering applications and geohazards.
Mantle transition zone structure beneath the Canadian Shield
NASA Astrophysics Data System (ADS)
Thompson, D. A.; Helffrich, G. R.; Bastow, I. D.; Kendall, J. M.; Wookey, J.; Eaton, D. W.; Snyder, D. B.
2010-12-01
The Canadian Shield is underlain by one of the deepest and most laterally extensive continental roots on the planet. Seismological constraints on the mantle structure beneath the region are presently lacking due to the paucity of stations in this remote area. Presented here is a receiver function study on transition zone structure using data from recently deployed seismic networks from the Hudson Bay region. High resolution images based on high signal-to-noise ratio data show clear arrivals from the 410 km and 660 km discontinuities, revealing remarkably little variation in transition zone structure. Transition zone thickness is close to the global average (averaging 245 km across the study area), and any deviations in Pds arrival time from reference Earth models can be readily explained by upper-mantle velocity structure. The 520 km discontinuity is not a ubiquitous feature, and is only weakly observed in localised areas. These results imply that the Laurentian root is likely confined to the upper-mantle and if any mantle downwelling exists, possibly explaining the existence of Hudson Bay, it is also confined to the upper 400 km. Any thermal perturbations at transition zone depths associated with the existence of the root, whether they be cold downwellings or elevated temperatures due to the insulating effect of the root, are thus either non-existent or below the resolution of the study.
NASA Astrophysics Data System (ADS)
Colombi, Carina E.; Limarino, Carlos O.; Alcober, Oscar A.
2017-12-01
The Upper Triassic Ischigualasto Formation in NW Argentina was deposited in a fluvial system during the synrift filling of the extensional Ischigualasto-Villa Unión Basin. The expansive exposures of the fluvial architecture and paleosols provide a framework to reconstruct the paleoenvironmental evolution of this basin during the Upper Triassic using continental sequence stratigraphy. The Ischigualasto Formation deposition can be divided into seven sequential sedimentary stages: the 1) Bypass stage; 2) Confined low-accommodation stage; 3) Confined high accommodation stage; 4) Unstable-accommodation stage; 5) Unconfined high-accommodation stage; 6) Unconfined low-accommodation stage; and finally, 7) Unconfined high-accommodation stage. The sedimentary evolution of the Ischigualasto Formation was driven by different allogenic controls such as rises and falls in lake levels, local tectonism, subsidence, volcanism, and climate, which also produced modifications of the equilibrium profile of the fluvial systems. All of these factors result in different accommodations in central and flank areas of the basin, which led to different architectural configurations of channels and floodplains. Allogenic processes affected not only the sequence stratigraphy of the basin but also the vertebrate and plant taphocenosis. Therefore, the sequence stratigraphy can be used not only as a predictive tool related to fossil occurrence but also to understand the taphonomic history of the basin at each temporal interval.
Surface-Water and Groundwater Interactions along the Withlacoochee River, West-Central Florida
Trommer, J.T.; Yobbi, D.K.; McBride, W.S.
2009-01-01
A study of the Withlacoochee River watershed in west-central Florida was conducted from October 2003 to March 2007 to gain a better understanding of the hydrology and surface-water and groundwater interactions along the river. The Withlacoochee River originates in the Green Swamp area in north-central Polk County and flows northerly through seven counties, emptying into the Gulf of Mexico. This study includes only the part of the watershed located between the headwaters in the Green Swamp and the U.S. Geological Survey gaging station near Holder, Florida. The Withlacoochee River within the study area is about 108 miles long and drains about 1,820 square miles. The Withlacoochee River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the degree of confinement between the Upper Florida aquifer and the surficial aquifer is highly variable throughout the watershed. The potential for movement of water from the surface or shallow deposits to deeper deposits, or from deeper deposits to the shallow deposits, exists throughout the Withlacoochee River watershed. Water levels were higher in deeper Upper Floridan aquifer wells than in shallow Upper Floridan aquifer wells or surficial aquifer wells at 11 of 19 paired or nested well sites, indicating potential for discharge to the surface-water system. Water levels were higher in shallow Upper Floridan aquifer or surficial aquifer wells than in deeper Upper Floridan aquifer wells at five other sites, indicating potential for recharge to the deeper Upper Floridan aquifer. Water levels in the surficial aquifer and Upper Floridan aquifer wells at the remaining three sites were virtually the same, indicating little or no confinement at the sites. Potentiometric-surface maps of the Upper Floridan aquifer indicate the pattern of groundwater flow in the aquifer did not vary greatly from season to season during the study. Potentiometric contours indicate groundwater discharge to the river in the vicinity of Dade City and Lake Panasoffkee. During dry periods, groundwater from the underlying Upper Floridan aquifer contributed to the flow in the river. During wet periods, streamflow had additional contributions from runoff and input from tributaries. Groundwater has a greater effect on streamflow downstream from the Dade City station than upstream from the Dade City station because confinement between surficial deposits and the Upper Floridan aquifer is greater in the Green Swamp area than in downstream areas. Estimates of streamflow gains and losses were made along the Withlacoochee River during base-flow conditions in May 2004, April 2005, and April 2006. Base flow was higher in April 2005 than in May 2004 and April 2006. Consistent net seepage gains were identified in 16 of 20 subreaches analyzed during all seepage runs. The direction of exchange was variable in the remaining four subreaches. Low specific conductance, pH, and calcium concentrations in water from the Withlacoochee River near the headwater area indicated a surface-water system not directly connected to the Upper Floridan aquifer. Downstream from the Dade City station, higher specific conductance, pH, and calcium concentrations in the river water indicated an increasing influence of groundwater, and were similar to groundwater during low-flow conditions. Strontium isotope ratios indicate groundwater originates from shallow parts of the Upper Floridan aquifer in the upper reaches of the river, and from increasingly deeper parts of the aquifer in the downstream direction. Mean annual base-flow estimates also indicate increasing groundwater discharge to the river in the downstream direction. Mean annual base flow estimated using standard hydrograph separation method assumptions ranged from about 4.7 to 5.1 inches per year
Kingsbury, James A.; Barlow, Jeannie R.; Jurgens, Bryant; McMahon, Peter B.; Carmichael, John K.
2017-01-01
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.
NASA Astrophysics Data System (ADS)
Kingsbury, James A.; Barlow, Jeannie R. B.; Jurgens, Bryant C.; McMahon, Peter B.; Carmichael, John K.
2017-09-01
Wells along two regional flow paths were sampled to characterize changes in water quality and the vulnerability to contamination of the Memphis aquifer across a range of hydrologic and land-use conditions in the southeastern United States. The flow paths begin in the aquifer outcrop area and end at public supply wells in the confined parts of the aquifer at Memphis, Tennessee. Age-date tracer (e.g. SF6, 3H, 14C) data indicate that a component of young water is present in the aquifer at most locations along both flow paths, which is consistent with previous studies at Memphis that documented leakage of shallow water into the Memphis aquifer locally where the overlying confining unit is thin or absent. Mixtures of young and old water were most prevalent where long-term pumping for public supply has lowered groundwater levels and induced downward movement of young water. The occurrence of nitrate, chloride and synthetic organic compounds was correlated to the fraction of young water along the flow paths. Oxic conditions persisted for 10 km or more down dip of the confining unit, and the presence of young water in confined parts of the aquifer suggest that contaminants such as nitrate-N have the potential for transport. Long-term monitoring data for one of the flow-path wells screened in the confined part of the aquifer suggest that the vulnerability of the aquifer as indicated by the fraction of young water is increasing over time.
Ultra-high-Q three-dimensional photonic crystal nano-resonators.
Tang, Lingling; Yoshie, Tomoyuki
2007-12-10
Two nano-resonator modes are designed in a woodpile three-dimensional photonic crystal by the modulation of unit cell size along a low-loss optical waveguide. One is a dipole mode with 2.88 cubic half-wavelengths mode volume. The other is a quadrupole mode with 8.3 cubic half-wavelengths mode volume. Light is three-dimensionally confined by a complete photonic band gap so that, in the analyzed range, the quality factor exponentially increases as the increase in the number of unit cells used for confinement of light.
Miller, Nathaniel; Lizarralde, Daniel
2016-01-01
Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.
Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system
Miller, J.A.; Renken, R.A.
1988-01-01
Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)
Circulation in the Chesapeake Bay entrance region: Estuary-shelf interaction
NASA Technical Reports Server (NTRS)
Boicourt, W. C.
1981-01-01
Current meters and temperature-salinity recorders confirm the assumption that the upper layers of the continental shelf waters off Chesapeake Bay can be banded in summer, such that the coastal boundary layer (consisting of the Bay outflow) and the outer shelf flow southward while the inner shelf flows to the north, driven by the prevailing southerly winds. These measurements show that the estuary itself may also be banded in its lower reaches such that the inflow is confined primarily to the deep channel, while the upper layer outflow is split into two flow maxima on either side of this channel.
Geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin
NASA Astrophysics Data System (ADS)
Vibhava, F.; Graham, W. D.; Maxwell, R. M.
2012-12-01
Streamflow at any given location and time is representative of surface and subsurface contributions from various sources. The ability to fully identify the factors controlling these contributions is key to successfully understanding the transport of contaminants through the system. In this study we developed a fully integrated 3D surface water-groundwater-land surface model, PARFLOW, to evaluate geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin in North Central Florida. In addition to traditional model evaluation criterion, such as comparing field observations to model simulated streamflow and groundwater elevations, we quantitatively evaluated the model's predictions of surface-groundwater interactions over space and time using a suite of binary end-member mixing models that were developed using observed specific conductivity differences among surface and groundwater sources throughout the domain. Analysis of model predictions showed that geologic heterogeneity exerts a strong control on both streamflow generation processes and land atmospheric fluxes in this watershed. In the upper basin, where the karst aquifer is overlain by a thick confining layer, approximately 92% of streamflow is "young" event flow, produced by near stream rainfall. Throughout the upper basin the confining layer produces a persistent high surficial water table which results in high evapotranspiration, low groundwater recharge and thus negligible "inter-event" streamflow. In the lower basin, where the karst aquifer is unconfined, deeper water tables result in less evapotranspiration. Thus, over 80% of the streamflow is "old" subsurface flow produced by diffuse infiltration through the epikarst throughout the lower basin, and all surface contributions to streamflow originate in the upper confined basin. Climatic variability provides a secondary control on surface-subsurface and land-atmosphere fluxes, producing significant seasonal and interannual variability in these processes. Spatial and temporal patterns of evapotranspiration, groundwater recharge and streamflow generation processes reveal potential hot spots and hot moments for surface and groundwater contamination in this basin.
Long, Andrew J.; Aurand, Katherine R.; Bednar, Jennifer M.; Davis, Kyle W.; McKaskey, Jonathan D.R.G.; Thamke, Joanna N.
2014-01-01
The three uppermost principal aquifer systems of the Northern Great Plains—the glacial, lower Tertiary, and Upper Cretaceous aquifer systems—are described in this report and provide water for irrigation, mining, public and domestic supply, livestock, and industrial uses. These aquifer systems primarily are present in two nationally important fossil-fuelproducing areas: the Williston and Powder River structural basins in the United States and Canada. The glacial aquifer system is contained within glacial deposits that overlie the lower Tertiary and Upper Cretaceous aquifer systems in the northeastern part of the Williston structural basin. Productive sand and gravel aquifers exist within this aquifer system. The Upper Cretaceous aquifer system is contained within bedrock lithostratigraphic units as deep as 2,850 and 8,500 feet below land surface in the Williston and Powder River structural basins, respectively. Petroleum extraction from much deeper formations, such as the Bakken Formation, is rapidly increasing because of recently improved hydraulic fracturing methods that require large volumes of relatively freshwater from shallow aquifers or surface water. Extraction of coalbed natural gas from within the lower Tertiary aquifer system requires removal of large volumes of groundwater to allow degasification. Recognizing the importance of understanding water resources in these energy-rich basins, the U.S. Geological Survey (USGS) Groundwater Resources Program (http://water.usgs.gov/ogw/gwrp/) began a groundwater study of the Williston and Powder River structural basins in 2011 to quantify this groundwater resource, the results of which are described in this report. The overall objective of this study was to characterize, quantify, and provide an improved conceptual understanding of the three uppermost and principal aquifer systems in energy-resource areas of the Northern Great Plains to assist in groundwater-resource management for multiple uses. The study area includes parts of Montana, North Dakota, South Dakota, and Wyoming in the United States and Manitoba and Saskatchewan in Canada. The glacial aquifer system is contained within glacial drift consisting primarily of till, with smaller amounts of glacial outwash sand and gravel deposits. The lower Tertiary and Upper Cretaceous aquifer systems are contained within several formations of the Tertiary and Cretaceous geologic systems, which are hydraulically separated from underlying aquifers by a basal confining unit. The lower Tertiary and Upper Cretaceous aquifer systems each were divided into three hydrogeologic units that correspond to one or more lithostratigraphic units. The period prior to 1960 is defined as the predevelopment period when little groundwater was extracted. From 1960 through 1990, numerous flowing wells were installed near the Yellowstone, Little Missouri and Knife Rivers, resulting in local groundwater declines. Recently developed technologies for the extraction of petroleum resources, which largely have been applied in the study area since about 2005, require millions of gallons of water for construction of each well, with additional water needed for long-term operation; therefore, the potential for an increase in groundwater extraction is high. In this study, groundwater recharge and discharge components were estimated for the period 1981–2005. Groundwater recharge primarily occurs from infiltration of rainfall and snowmelt (precipitation recharge) and infiltration of streams into the ground (stream infiltration). Total estimated recharge to the Williston and Powder River control volumes is 4,560 and 1,500 cubic feet per second, respectively. Estimated precipitation recharge is 26 and 15 percent of total recharge for the Williston and Powder River control volumes, respectively. Estimated stream infiltration is 71 and 80 percent of total recharge for the Williston and Powder River control volumes, respectively. Groundwater discharge primarily is to streams and springs and is estimated to be about 97 and 92 percent of total discharge for the Williston and Powder River control volumes, respectively. Most of the remaining discharge results from pumped and flowing wells. Groundwater flow in the Williston structural basin generally is from the west and southwest toward the east, where discharge to streams occurs. Locally, in the uppermost hydrogeologic units, groundwater generally is unconfined and flows from topographically high to low areas, where discharge to streams occurs. Groundwater flow in the Powder River structural basin generally is toward the north, with local variations, particularly in the upper Fort Union aquifer, where flow is toward streams.
Aquifer-nomenclature guidelines
Laney, R.L.; Davidson, C.B.
1986-01-01
Guidelines and recommendations for naming aquifers are presented to assist authors of geohydrological reports in the United States Geological Survey, Water Resources Division. The hierarchy of terms that is used for water- yielding rocks from largest to smallest is aquifer system, aquifer, and zone. If aquifers are named, the names should be derived from lithologic terms, rock-stratigraphic units, or geographic names. The following items are not recommended as sources of aquifer names: time-stratigraphic names, relative position, alphanumeric designations, depositional environment, depth of occurrence, acronyms, and hydrologic conditions. Confining units should not be named unless doing so clearly promotes understanding of a particular aquifer system. Sources of names for confining units are similar to those for aquifer names, i.e. lithologic terms, rock-stratigraphic units or geographic names. Examples of comparison charts and tables that are used to define the geohydrologic framework are included. Aquifers are defined in 11 hypothetical examples that characterize geohydrologic settings throughout the country. (Author 's abstract)
Murray, L.C.; Halford, K.J.
1996-01-01
A finite-difference ground-water flow model was used to simulate the effects of both modern-day (1988) and projected 2010 ground-water withdrawals on the Floridan aquifer system in the greater Orlando metropolitan area. This area covers about 2,500 square miles and includes all of Orange and Seminole Counties and parts of Lake, Volusia, Brevard, Osceola, and Polk Counties. The hydrogeology of the area is characterized by a thin surficial aquifer underlain by the thick, highly productive rocks of the Floridan aquifer system. Water in the Upper Floridan aquifer is brackish (chloride concentrations greater than 1,000 milligrams per liter) in discharge areas beneath and near the St. Johns and Wekiva Rivers and is freshest (chloride concentrations less than 100 milligrams per liter) inrecharge areas. A slight trend toward increasing concentrations of dissolved solids, chloride, and sulfate has been observed at Upper Floridan aquifer springs. Chloride concentrations in the Upper Floridan aquifer measured between 1966 and 1993 at the Cocoa well field have increased from 50 milligrams per liter to 120 milligrams per liter; concentrations measured in the Lower Floridan aquifer between 1966 and 1993 have increasedfrom 600 milligrams per liter to 3,000 milligrams per liter. The flow model was calibrated by comparing (a) simulated and estimated Upper Floridan aquifer predevelopment (unstressed) potentiometric surfaces, (b) simulated and measured heads at 142 Upper Floridan aquifer monitoring wells in 1988 (averageabsolute error of 1.8 feet), (c) simulated and measured discharge rates at 15 Upper Floridan aquifer springs in 1988 (306 cubic feet per second), and (d) simulated and measured drawdowns at 134 Upper Floridan aquifer monitoring wells between 1988 and May 1990 (58 and 95 percent of simulated drawdowns were within plus or minus 25and 50 percent of measured drawdowns, respectively). Relative to predevelopment conditions, model simulations indicate that about half of the 305 million gallons per day of water pumped from the Floridan aquifer system in 1988 was accounted for by increased recharge from the surficial aquifer system. About 23 cubic feet persecond was derived from increased lateral inflow. A storage coefficient of 1x10-3 provided the best comparisons of measured-to-simulated data during the transient simulation from January to May 1990. This storativity probably is greater than the true storativity of the Upper Floridan aquifer because storage contributions from the intermediateconfining unit were not accounted for during model design and development. Calibrated transmissivity ranged from 10,000 to greater than 400,000 feet squared per day in the Upper Floridan aquifer, and from 5,000 to 600,000 feet squared per day in the Lower Floridan aquifer. Calibrated intermediate confining unit leakance ranged from 1x10-5 to 4x10-3 per day and was highest in areas where the unit is thin or has been breached by numerous sinkholes. In general,calibrated transmissivity and leakance values were higher than associated aquifer-test values. Simulated recharge rates to the Upper Floridan aquifer from the surficial aquifer system ranged from less than 3 to 21 inches per year. Recharge rates of greater than 10 inches per year were simulated in areas of west Seminole, west Orange, east Lake, and southwest Volusia Counties. Recharge rates of less than 3 inches per year were simulated in east Orange and northeast Osceola Counties. The calibrated model was used to simulate the effects of increased Floridan aquifer withdrawals in the year 2010 (542 million gallons per day) on water levels and spring flow. Projected effects were simulated for both "wet" conditions (using 1988 fixed-head arrays) and for "dry" conditions (using May 1990 fixed-head arrays), thus bracketing a potential range of effects. Relative to simulated 1988 conditions, simulated 2010 spring flow decreased by 43 cubic f
Use of aluminum sulfate (alum) to decrease ammonia emissions from beef cattle bedded manure packs
USDA-ARS?s Scientific Manuscript database
Confined cattle facilities are an increasingly common housing system in the Northern Great Plains of the United States. Ammonia volatilization from the surface of the floor and bedding in these confined facilities depends on several variables including pH, temperature, and moisture content. When pH ...
Enhanced Preliminary Assessment Report: Old Bridge Army Housing Units, Old Bridge, New Jersey
1989-11-01
overlain by the Old Bridge (or Magothy ) aquifer. The basement rock in Middlesex County consists of basalt, sandstone, and shale of Triassic age. The...Woodbury Clay and Merchantville formations form a confining layer above the Magothy aquifer; the thickness of this confining layer is less than 100 feet
Snyder, G.L.
1995-01-01
Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.
Saltwater movement in the upper Floridan aquifer beneath Port Royal Sound, South Carolina
Smith, Barry S.
1994-01-01
Freshwater for Hilton Head Island, South Carolina, is supplied by withdrawals from the Upper Floridan aquifer. Freshwater for the nearby city of Savannah, Georgia, and for the industry that has grown adjacent to the city, has also been supplied, in part, by withdrawal from the Upper Floridan aquifer since 1885. The withdrawal of ground water has caused water levels in the Upper Floridan aquifer to decline over a broad area, forming a cone of depression in the potentiometric surface of the aquifer centered near Savannah. In 1984, the cone of depression extended beneath Hilton Head Island as far as Port Royal Sound. Flow in the aquifer, which had previously been toward Port Royal Sound, has been reversed, and, as a result, saltwater in the aquifer beneath Port Royal Sound has begun to move toward Hilton Head Island. The Saturated-Unsaturated Transport (SUTRA) model of the U.S. Geological Survey was used for the simulation of density-dependent ground-water flow and solute transport for a vertical section of the Upper Floridan aquifer and upper confining unit beneath Hilton Head Island and Port Royal Sound. The model simulated a dynamic equilibrium between the flow of seawater and freshwater in the aquifer near the Gyben-Herzberg position estimated for the period before withdrawals began in 1885; it simulated reasonable movements of brackish water and saltwater from that position to the position determined by chemical analyses of samples withdrawn from the aquifer in 1984, and it approximated hydraulic heads measured in the aquifer in 1976 and 1984. The solute-transport simulations indicate that the transition zone would continue to move toward Hilton Head Island even if pumping ceased on the island. Increases in existing withdrawals or additional withdrawals on or near Hilton Head Island would accelerate movement of the transition zone toward the island, but reduction in withdrawals or the injection of freshwater would slow movement toward the island, according to the simulations. Future movements of the transition zone toward Hilton Head Island will depend on hydraulic gradients in the aquifer beneath the island and the sound. Hydraulic gradients in the Upper Floridan aquifer beneath Hilton Head Island and Port Royal Sound are strongly influenced by withdrawals on the island and near Savannah. Since 1984, withdrawals on Hilton Head Island have increased.
Berndt, M.P.
1996-01-01
The U.S. Geological Survey is conducting an assessment of water quality in the Georgia-Florida Coastal Plain study unit as part of the National Water-Quality Assessment Program. An initial activity of the program is to compile and analyze existing water-quality data for nutrients in each study unit. Ground-water quality data were compiled from three data sources, the U.S. Geological Survey, Florida Department of Environmental Protection, and Georgia Geologic Survey. A total of 2,246 samples of ground water nutrient data for nitrogen and phosphorus species were compiled from these three data sources. Estimates of 1990 nitrogen and phosphorus inputs by county in the study area were calculated from livestock manure, fertilizers, septic tanks, and rainfall. Data for nitrate nitrogen concentrations in ground water were available from the greatest number of wells; samples from 1,233 wells were available in the U.S. Geological Survey, 820 wells from the Florida Department of Environmental Protection, and 680 wells from the Georgia Geologic Survey. The maximum contaminant level for nitrate nitrogen in drinking water of 10 milligrams per liter was exceeded in a higher percentage of samples from the U.S. Geological Survey, mostly because this data contained numerous samples near known contamination areas. The maximum contaminant level for nitrate nitrogen was exceeded in 3 percent of samples from Upper Floridan aquifer and 12 percent of samples from surficial aquifer system in U.S. Geological Survey data and less than 1 percent and 2 percent of samples from the Upper Floridan aquifer and surficial aquifer system, respectively, in Florida Department of Environmental Protection data. In Georgia Geologic Survey data, 1 percent of samples had concentrations of nitrate nitrogen exceeding 10 milligrams per liter. Nutrient concentration data were grouped into categories based on land use, hydrogeology (aquifer and confinement of the Upper Floridan aquifer), and land resource provinces (Central Florida Ridge, Coastal Flatwoods and Southern Coastal Plain) for the surficial aquifer system. The highest median nitrate nitrogen concentrations in the U.S. Geological Survey data were 0.4 milligrams per liter in ground-water samples from the unconfined Upper Floridan aquifer in agricultural areas and 9.0 milligrams per liter in samples from the surficial aquifer system in agricultural areas in the Central Florida Ridge. In Florida Department of Environmental Protection data, the highest median nitrate nitrogen concentrations were much lower and did not exceed 0.2 milligrams per liter in either the Upper Floridan aquifer or the surficial aquifer system. In Georgia Geologic Survey data the highest median nitrate nitrogen concentration was 1.4 milligrams per liter in agricultural areas in the Coastal Flatwoods. Highest median concentrations of total nitrogen of 10 milligrams per liter (includes nitrate, ammonia, and organic nitrogen) were in U.S. Geological Survey data in the surficial aquifer system in agricultural areas in the Central Florida Ridge. Median concentrations of ammonia nitrogen, orthophosphate phosphorus, and total phosphorus did not exceed 0.5 milligrams per liter in all categories from the Upper Floridan aquifer or the surficial aquifer system.
Estimating hydraulic properties using a moving-model approach and multiple aquifer tests
Halford, K.J.; Yobbi, D.
2006-01-01
A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously. Copyright ?? 2005 National Ground Water Association.
Estimating hydraulic properties using a moving-model approach and multiple aquifer tests.
Halford, Keith J; Yobbi, Dann
2006-01-01
A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously.
Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez
2006-11-03
The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas ofmore » the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards Shoshone Mountain, to Buckboard Mesa in the south, and onto Rainier Mesa in the north. Subsequent interpretation will include a three-dimensional (3-D) character analysis and a two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for the twenty-six stations shown in figure 1. No interpretation of the data is included here.« less
USDA-ARS?s Scientific Manuscript database
Perennial nutsedges are difficult to control in organic crop production systems. Tubers are generally confined to the upper portions of the soil profile and vulnerable to desiccation when on the soil surface. A peanut digger is a common implement found in the coastal plain region of the southeaste...
The American species of Orthophragmina and Lepidocyclina
Cushman, J.A.
1920-01-01
Orbitoid Foraminifera, on account of their short stratigraphic range, have proved to be excellent horizon markers, and, because of their wide geographic distribution, they are valuable in correlation. The genus Orbitoides, as now restricted, is found exclusively in deposits of Cretaceous age, Orthophragmina appears to be confined to the Eocene; but Lepidocyclina ranges through the upper Eocene and Oligocene.
Thomas M. Floyd; Kevin R. Russell; Christopher E. Moorman; David H. van Lear; David C. Guynn; J. Drew Lanham
2002-01-01
Despite a large body of knowledge concerning the use of prescribed burning for wildlife management, amphibians and reptiles (collectively, herpetofauna) have received relatively little attention regarding their responses to fire. With few exceptions, previous studies of herpetofauna and prescribed burning have been confined to fire-maintained, pine-dominated...
Geology, hydrology, and water quality of the Tracy-Dos Palos area, San Joaquin Valley, California
Hotchkiss, W.R.; Balding, G.O.
1971-01-01
The Tracy-Dos Palos area includes about 1,800 square miles on the northwest side of the San Joaquin Valley. The Tulare Formation of Pliocene and Pleistocene age, terrace deposits of Pleistocene age, and alluvium and flood-basin deposits of Pleistocene and Holocene age constitute the fresh ground-water reservoir Pre-Tertiary and Tertiary sedimentary and crystalline rocks, undifferentiated, underlie the valley and yield saline water. Hydrologically most important, the Tulare Formation is divided into a lower water-bearing zone confined by the Corcoran Clay Member and an upper zone that is confined, semiconfined, and unconfined in different parts of the area. Alluvium and flood-basin deposits are included in the upper zone. Surficial alluvium and flood-basin deposits contain a shallow water-bearing zone. Lower zone wells were flowing in 1908, but subsequent irrigation development caused head declines and land subsidence. Overdraft in both zones ended in 1951 with import of surface water. Bicarbonate water flows into the area from the Sierra Nevada and Diablo Range. Diablo Range water is higher in sulfate, chloride, and dissolved solids. Upper zone water averages between 400 and 1,200 mg/l (milligrams per liter) dissolved solids and water hardness generally exceeds 180 mg/l as calcium carbonate. Nitrate, fluoride, iron, and boron occur in excessive concentrations in water from some wells. Dissolved constituents in lower zone water generally are sodium chloride and sodium sulfate with higher dissolved solids concentration than water from the upper zone. The foothills of the Diablo Range provide favorable conditions for artificial recharge, but shallow water problems plague about 50 percent of the area and artificial recharge is undesirable at this time.
Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin
2017-10-30
The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.
Yeh, Hsin-Chih; Jan, Hau-Chern; Wu, Wen-Jeng; Li, Ching-Chia; Li, Wei-Ming; Ke, Hung-Lung; Huang, Shu-Pin; Liu, Chia-Chu; Lee, Yung-Chin; Yang, Sheau-Fang; Liang, Peir-In; Huang, Chun-Nung
2015-01-01
Objectives To investigate the impact of preoperative hydronephrosis and flank pain on prognosis of patients with upper tract urothelial carcinoma. Methods In total, 472 patients with upper tract urothelial carcinoma managed by radical nephroureterectomy were included from Kaohsiung Medical University Hospital Healthcare System. Clinicopathological data were collected retrospectively for analysis. The significance of hydronephrosis, especially when combined with flank pain, and other relevant factors on overall and cancer-specific survival were evaluated. Results Of the 472 patients, 292 (62%) had preoperative hydronephrosis and 121 (26%) presented with flank pain. Preoperative hydronephrosis was significantly associated with age, hematuria, flank pain, tumor location, and pathological tumor stage. Concurrent presence of hydronephrosis and flank pain was a significant predictor of non-organ-confined disease (multivariate-adjusted hazard ratio = 2.10, P = 0.025). Kaplan-Meier analysis showed significantly poorer overall and cancer-specific survival in patients with preoperative hydronephrosis (P = 0.005 and P = 0.026, respectively) and in patients with flank pain (P < 0.001 and P = 0.001, respectively) than those without. However, only simultaneous hydronephrosis and flank pain independently predicted adverse outcome (hazard ratio = 1.98, P = 0.016 for overall survival and hazard ratio = 1.87, P = 0.036 for and cancer-specific survival, respectively) in multivariate Cox proportional hazards models. In addition, concurrent presence of hydronephrosis and flank pain was also significantly predictive of worse survival in patient with high grade or muscle-invasive disease. Notably, there was no difference in survival between patients with hydronephrosis but devoid of flank pain and those without hydronephrosis. Conclusion Concurrent preoperative presence of hydronephrosis and flank pain predicted non-organ-confined status of upper tract urothelial carcinoma. When accompanied with flank pain, hydronephrosis represented an independent predictor for worse outcome in patients with upper tract urothelial carcinoma. PMID:26469704
Brown, Craig J.; Colabufo, Steven; Coates, John D.
2002-01-01
Geochemistry, microbiology, and water quality of the Magothy aquifer at a new supply well in Holbrook were studied to help identify factors that contribute to iron-related biofouling of public-supply wells. The organic carbon content of borehole sediments from the screen zone, and the dominant terminal electron-accepting processes (TEAPs), varied by depth. TEAP assays of core sediments indicated that iron reduction, sulfate reduction, and undetermined (possibly oxic) reactions and microbial activity are correlated with organic carbon (lignite) content. The quality of water from this well, therefore, reflects the wide range of aquifer microenvironments at this site.High concentrations of dissolved iron (3.6 to 6.4 micromoles per liter) in water samples from this well indicate that some water is derived from Fe(III)-reducing sediments within the aquifer, but traces of dissolved oxygen indicate inflow of shallow, oxygenated water from shallow units that overlie the local confining units. Water-quality monitoring before and during a 2-day pumping test indicates that continuous pumping from the Magothy aquifer at this site can induce downward flow of shallow, oxygenated water despite the locally confined conditions. Average concentrations of dissolved oxygen are high (5.2 milligrams per liter, or mg/L) in the overlying upper glacial aquifer and at the top of the Magothy aquifer (4.3 mg/L), and low ( < 0.1 mg/L) in the deeper, anaerobic part of the Magothy; average concentrations of phosphate are high (0.4 mg/L) in the upper glacial aquifer and lower (0.008 mg/L) at the top of the Magothy aquifer and in the deeper part of the Magothy (0.013 mg/L). Concentrations of both constituents increased during the 2 days of pumping. The δ34S of sulfate in shallow ground water from observation wells (3.8 to 6.4 per mil) was much heavier than that in the supplywell water (-0.1 per mil) and was used to help identify sources of water entering the supply well. The δ34S of sulfate in a deep observation well adjacent to the supply well increased from 2.4 per mil before pumping to 3.3 per mil after pumping; this confirms that the pumping induced downward migration of water. The lighter δ34S value in the pumped water than in the adjacent observation well probably indicates FeS2 oxidation (which releases light δ34S in adjacent sediments) by the downward flow of oxygenated water.
Simulation of dispersion in layered coastal aquifer systems
Reilly, T.E.
1990-01-01
A density-dependent solute-transport formulation is used to examine ground-water flow in layered coastal aquifers. The numerical experiments indicate that although the transition zone may be thought of as an impermeable 'sharp' interface with freshwater flow parallel to the transition zone in homogeneous aquifers, this is not the case for layered systems. Freshwater can discharge through the transition zone in the confining units. Further, for the best simulation of layered coastal aquifer systems, either a flow-direction-dependent dispersion formulation is required, or the dispersivities must change spatially to reflect the tight thin confining unit. ?? 1990.
Jones, Sonya A.; Paillet, Frederick L.
1997-01-01
The results of borehole geophysical log analysis indicate that two of the production wells could have vertically connected intervals where cement bonding in the well annulus is poor. The other production wells have overall good bonding. Temperature logs do not indicate flow behind casing except in the screened interval of one well. Geophysical logs show the Eagle Ford Shale ranges from 147 to 185 feet thick at the site. The Eagle Ford Shale has low permeability and a high plasticity index. These physical characteristics make the Eagle Ford Shale an excellent confining unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordienko, V.A.; Dubinov, A.E.; Zhuravlev, S.S.
A new type of magnetic confinement system--a Galathea with a myxine in the shape of a convex polyhedron--is proposed. The system was modeled experimentally by passing an RF current through the myxine. On the one hand, the myxine acts as an inductor whose electric field ionizes the gas and, on the other, it acts as an RF magnetic confinement system. A steady-state plasma produced and confined in this system is almost spherical in shape. The electron density and specific (per unit volume) glow intensity of the plasma produced are found to be higher than those in conventional helical inductors.
Buono, Anthony; Spechler, R.M.; Barr, G.L.; Wolansky, R.M.
1979-01-01
This map presents the thickness of the confining bed overlying the Floridan aquifer in the Southwest Florida Water Management District and adjacent areas. The bed separates the surficial aquifer from the underlying Floridan aquifer. Lithologic logs and information from quarries were used in conjunction with an unpublished map to compile this map at 1:250,000 scale. Units included in the confining bed are: clay, sandy clay and marl, undifferentiated with respect to age, the Hawthorn Formation, and the unconsolidated sections of the Tampa Limestone. (Kosco-USGS)
Clarke, John S.; West, Christopher T.
1998-01-01
Ground-water levels, predevelopment ground-water flow, and stream-aquifer relations in the vicinity of the U.S. Department of Energy Savannah River Site, Georgia and South Carolina, were evaluated as part of a cooperative study between the U.S. Geological Survey, U.S. Department of Energy, and Georgia Department of Natural Resources. As part of this evaluation: (1) ground-water-level fluctuations and trends in three aquifer systems in sediment of Cretaceous and Tertiary age were described and related to patterns of ground-water use and precipitations; (2) a conceptual model ofthe stream-aquifer flow system was developed; (3) the predevelopment ground-water flow system, configuration of potentiometric surfaces, trans-river flow, and recharge-discharge relations were described; and (4) stream-aquifer relations and the influence of river incision on ground-water flow and stream-aquifer relations were described. The 5,147-square mile study area is located in the northern part of the Coastal Plain physiographic province of Georgia and South Carolina. Coastal Plain sediments comprise three aquifer systems consisting of seven aquifers that are separated hydraulically by confining units. The aquifer systems are, in descending order: (1) the Floridan aquifer system?consisting of the Upper Three Runs and Gordon aquifers in sediments of Eocene age; (2) the Dublin aquifer system?consisting of the Millers Pond, upper Dublin, and lower Dublin aquifers in sediments of Paleocene-Late Cretaceous age; and (3) the Midville aquifer system?consisting of the upper Midville and lower Midville aquifers in sediments of Late Cretaceous age. The Upper Three Runs aquifer is the shallowest aquifer and is unconfined to semi-confined throughout most of the study area. Ground-water levels in the Upper Three Runs aquifer respond to a local flow system and are affected mostly by topography and climate. Ground-water flow in the deeper, Gordon aquifer and Dublin and Midville aquifer systems is characterized by local flow near outcrop areas to the north, changing to intermediate flow and then regional flow downdip (southeastward) as the aquifers become more deeply buried. Water levels in these deeper aquifers show a pronounced response to topography and climate in the vicinity of outcrops, and diminish southeastward where the aquifer is more deeply buried. Stream stage and pumpage affect ground-water levels in these deeper aquifers to varying degrees throughout the study area. The geologic characteristics of the Savannah River alluvial valley substantially control the configuration of potentiometric surfaces, ground-water-flow directions, and stream-aquifer relations. Data from 18 shallow borings indicate incision into each aquifer by the paleo Savannah River channel and subsequent infill of permeable alluvium, allowing for direct hydraulic connection between aquifers and the Savannah River along parts of its reach. This hydraulic connection may be the cause of large ground-water discharge to the river near Jackson, S.C., where the Gordon aquifer is in contact with Savannah River alluvium, and also the cause of lows or depressions formed in the potentiometric surfaces of confined aquifers that are in contact with the alluvium. Ground water in these aquifers flows toward the depressions. The influence of the river is diminished downstream where the aquifers are deeply buried, and upstream and downstream ground-water flow is possibly separated by a water divide or 'saddle'. Water-level data indicate that saddle features probably exist in the Gordon aquifer and Dublin aquifer system, and also might be present in the Midville aquifer system. Ground-water levels respond seasonally or in long term to changes in precipitation, evapotranspiration, pumpage, and river stage. Continuous water-level data and water-levels measured in a network of 271 wells during the Spring (May) and Fall (October) in 1992, indicate that seasonal water-level changes generally are
77 FR 8875 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
.... Changes to the data collection related to the confinement of dogs upon arrival to the United States are also requested. The CDC form 75.37, ``Notice of Importers of Dogs'' will now be identified as CDC form 75.37 ``NOTICE TO OWNERS AND IMPORTERS OF DOGS: Requirement for Dog Confinement.'' The form has been...
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that single changes have a small mitigating effect on GHG emissions (<5%), except for strategies used to control emissions from manure storage in the Confinement system (14% to 24%). However, when several management strategies were combined, GHG emissions per unit of product could be reduced significantly (15% to 30%). The LCA method was identified as the preferred approach to assess the effect of management changes on GHG emissions, but the analysis indicated that further standardisation of the approach is needed given the sensitivity of the approach to allocation decisions regarding milk and meat.
Aquifer test results, Green Swamp area, Florida
Tibbals, C.H.; Grubb, Hayes F.
1982-01-01
An aquifer test conducted in the Green Swamp area December 15-16 , 1975 was designed to stress the uppermost part of the Floridan aquifer so that the leakage characteristics of the overlying confining bed could be determined. A well tapping the upper part of the Floridan aquifer was pumped at a rate of about 1,040 gallons per minute for 35 hours; drawdown was measured in the Floridan aquifer and in two horizons in the confining bed. Analysis of the data indicates that the transmissivity of the uppper 160 feet of the Floridan is 13,000 square feet per day, the storage coefficient is about 0.0002.5, and the overlying confining bed leakance coefficient is about 0.02 to 0.025 per day. The vertical hydraulic diffusivity of the confining bed ranged from 610 square feet per day to 16,000 square feet per day. Results of the test indicate that, in the area of the test site, a Floridan aquifer well field would induce additional recharge to the Floridan. As a result of that increased recharge , water levels in the surficial aquifer would tend to stand lower, runoff from the area would tend to be less, and, perhaps, evapotranspiration would be less than normal.(USGS)
Bachman, L.J.; Krantz, D.E.; Böhlke, John Karl
2002-01-01
Hydrostratigraphic and geochemical data collected in two adjacent watersheds on the Delmarva Peninsula, in Kent County, Maryland, indicate that shallow subsurface stratigraphy is an important factor that affects the concentrations of nitrogen in ground water discharging as stream base flow. The flux of nitrogen from shallow aquifers can contribute substantially to theeutrophication of streams and estuaries, degrading water quality and aquatic habitats. The information presented in this report includes a hydrostratigraphic framework for the Locust Grove study area, analyses and interpretation of ground-water chemistry, and an analysis of nutrient yields from stream base flow. An understanding of the processes by which ground-waternitrogen discharges to streams is important for optimal management of nutrients in watersheds in which ground-water discharge is an appreciable percentage of total streamflow. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency (USEPA), collected and analyzed hydrostratigraphic and geochemical data in support ofground-water flow modeling by the USEPA.The adjacent watersheds of Morgan Creek and Chesterville Branch have similar topography and land use; however, reported nitrogen concentrations are generally 6 to 10 milligrams per liter in Chesterville Branch but only 2 to 4 milligrams per liter in Morgan Creek. Ground water in the surficial aquifer in the recharge areas of both streams has high concentrations of nitrate(greater than 10 milligrams per liter as N) and dissolved oxygen. One component of the ground water discharging to Morgan Creek typically is anoxic and contains virtually no dissolved nitrate; most of the ground water discharging to Chesterville Branch is oxygenated and contains moderately high concentrations of nitrate.The surficial aquifer in the study area is composed of the deeply weathered sands and gravels of the Pensauken Formation (the Columbia aquifer) and the underlying glauconitic sands of the upper Aquia Formation (the Aquia aquifer). The lower 6 to 9 meters of the Aquia Formation is a low-permeability silt-clay with abundant glauconite. The Aquia confining layer underliesthe Columbia-Aquia surficial aquifer throughout the study area. The sediment redox transition, identified in cores, that occurs in the upper 0.5 to 1 meter of the Aquia confining layer is thought to be a site for subsurface denitrification of ground water. The first confined aquifer is composed of the glauconitic sands in the upper 9 to 11 meters of the Hornerstown Formation. TheHornerstown aquifer is underlain by 10 to 15 meters of glauconitic silt-clay at the base of the Hornerstown Formation (the Hornerstown confining layer), and 5 meters of low-permeability clay in the underlying Severn Formation.The Aquia and Hornerstown Formations dip and thicken to the southeast, and the Aquia confining layer subcrops shallowly (within 5 meters of the land surface) in a band that strikes southwest to northeast across the northern edge of the study area. The surficial aquifer is very thin (generally less than 5 meters) north of Morgan Creek, and the alluvial valley of Morgan Creek has incised into the top of the Aquia confining layer. In contrast, the Aquia confining layer lies 22 meters below Chesterville Branch, and the surficial aquifer approaches 30 meters in thickness (away from the creek).Chemically reduced iron sulfides and glauconite in the Aquia confining layer are likely substrates for denitrification of nitrate in ground water. Evidence from the dissolved concentrations of nitrate, sulfate, iron, argon, and nitrogen gas, and stable nitrogen isotopes support the interpretation that ground water flowing near the top of the Aquia confining layer, or through the confined Hornerstown aquifer, has undergone denitrification. This process appears to have the greatest effect on ground-water chemistry north of Morgan Creek, where the surficial aquifer is thin and a greater percentage of the ground water contacts the Aquia confining layer.The base-flow discharges of total nitrogen from the two watersheds are of similar magnitude, although Chesterville Branch has somewhat higher loads (29,000 kilograms of nitrogen per year) than Morgan Creek (20,000 kilograms of nitrogen per year), although Morgan Creek has a larger drainage area and a greater discharge of water. The base-flow yield of nitrogen (load per unit area) in Chesterville Branch (median of 0.058 grams per second per square kilometer at the outlet) is more than twice that of Morgan Creek (median of 0.022 grams per second per square kilometer at the outlet), reflecting the higher concentration of nitrate in ground water discharging to Chesterville Branch. Total nitrogen concentrations tend to decrease downstream inChesterville Branch and increase downstream in Morgan Creek. The downstream trend in Chesterville Branch may be affected by instream nitrogen uptake and denitrification, and an increasing proportion of older, denitrified ground water in downstream discharge. The downstream trends in Morgan Creek may be affected by inflow from tributaries, downstream changes in the source of discharge water, and downstream changes in the riparian zone, which could affect the processes and degree of denitrification.Although these two watersheds appear to have landscape features (such as topography, land use, and soils) that would produce similar nitrogen discharges, a more detailed examination of landscape features indicates that Chesterville Branch has soils that are slightly better drained, tributary stream outlets at higher altitudes, and a slightly higher percentage of agricultural land. All of these factors have been related to higher nitrogen yields. Nonetheless, most of the data support the interpretation that hydrostratigraphy has the greatest effect in producing the difference in nitrogen yields between the two watersheds.
Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.
2015-12-01
Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.
Seismic evidence for widespread western-US deep-crustal deformation caused by extension
Moschetti, M.P.; Ritzwoller, M.H.; Lin, F.; Yang, Y.
2010-01-01
Laboratory experiments have established that many of the materials comprising the Earth are strongly anisotropic in terms of seismic-wave speeds. Observations of azimuthal and radial anisotropy in the upper mantle are attributed to the lattice-preferred orientation of olivine caused by the shear strains associated with deformation, and provide some of the most direct evidence for deformation and flow within the Earths interior. Although observations of crustal radial anisotropy would improve our understanding of crustal deformation and flow patterns resulting from tectonic processes, large-scale observations have been limited to regions of particularly thick crust. Here we show that observations from ambient noise tomography in the western United States reveal strong deep (middle to lower)-crustal radial anisotropy that is confined mainly to the geological provinces that have undergone significant extension during the Cenozoic Era (since 65 Myr ago). The coincidence of crustal radial anisotropy with the extensional provinces of the western United States suggests that the radial anisotropy results from the lattice-preferred orientation of anisotropic crustal minerals caused by extensional deformation. These observations also provide support for the hypothesis that the deep crust within these regions has undergone widespread and relatively uniform strain in response to crustal thinning and extension. ?? 2010 Macmillan Publishers Limited. All rights reserved.
Leeth, David C.
1999-01-01
Neogene and Quaternary sediments constitute the surficial aquifer beneath the study area; in descending order from youngest to oldest these include-the Quaternary undifferentiated surficial sand and Satilla Formation; the Pliocene(?) Cypresshead Formation; and the middle Miocene Coosawhatchie Formation. Beneath the surficial aquifer, the upper Brunswick aquifer consists of part of the lower Miocene Marks Head Formation. The surficial aquifer is divided into three water-bearing zones on the basis of lithologic and geophysical properties of sediments, hydraulic-head differences between zones, and differences in ground-water chemistry. The shallowest zone-the water-table zone-consists of medium to fine sand and clayey sand and is present from land surface to a depth of about 77 feet. Below the water-table zone, the confined upper water-bearing zone consists of medium to very coarse sand and is present from a depth of about 110 to 132 feet. Beneath the upper water-bearing zone, the confined lower water-bearing zone consists of coarse sand and very fine gravel and is present from a depth of about 195 to 237 feet. Hydraulic separation is suggested by differences in water chemistry between the water-table zone and upper water-bearing zone. The sodium chloride type water in the water-table zone differs from the calcium bicarbonate type water in the upper water-bearing zone. Hydraulic separation also is indicated by hydraulic head differences of more than 6.5 feet between the water-table zone and the upper water-bearing zone. Continuous and synoptic water-level measurements in the water-table zone, from October 1995 to April 1997, indicate the presence of a water-table high beneath and adjacent to the former landfill-the surface of which varies about 5 feet with time because of recharge and discharge. Water-level data from clustered wells also suggest that restriction of vertical ground-water flow begins to occur at an altitude of about 5 to 10 feet below sea level (35 to 40 feet below land surface) in the water-table zone because of the increasing clay content of the Cypresshead Formation.
How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings (1) highlight the large variability of MAR potential across the landscape, wherein the recharge capacity in select areas far exceeds recharge potential over most of the landscape, and (2) elucidate important physical processes that control MAR potential in alluvial aquifer systems.
Runkel, Anthony C.; Tipping, R.G.; Alexander, E.C.; Alexander, S.C.
2006-01-01
The Upper Cambrian interval of strata in the cratonic interior of North America has a long history of inconsistent hydrogeologic classification and a reputation for marked and unpredictable variability in hydraulic properties. We employed a hydrostratigraphic approach that requires hydraulic data to be interpreted within the context of a detailed characterization of the distribution of porosity and permeability to arrive at a better understanding of these rocks. As a first step, we constructed a framework of hydrostratigraphic attributes that is a depiction of the spatial distribution of both rock matrix and secondary porosity, independent of hydraulic data such as pumping-test results. The locations of hundreds of borehole geophysical logs and laboratory measurements of rock sample matrix porosity and permeability were mapped on detailed (mostly 1:100,000 or greater), conventional, lithostratigraphic maps. Stratigraphic cross-sections, based on hundreds of natural gamma logs and thousands of water-well records, have provided a markedly improved depiction of the regional distribution of rock matrix hydrostratigraphic components. Borehole, core and outcrop observations of secondary porosity were also tied to detailed stratigraphic sections and interpolated regionally. As a second step, we compiled and conducted a large number of hydraulic tests (e.g., packer tests and borehole flowmeter logs) and analyzed thousands of specific capacity tests (converted to hydraulic conductivity). Interpretation of these data within the context of the hydrostratigraphic attributes allowed us to produce a new hydrogeologic characterization for this stratigraphic interval and gain important insights into geologic controls on hydraulic variability. There are a number of assumptions in herent in most previous hydrogeologic investigations of these strata, such as equivalency of lithostratigraphic and hydrogeologic units and the dominance of intergranular flow in sandstone, that are not consistent with our results. A particularly important outcome of our study is recognition of regionally extensive bedding-plane fracture clusters. Such exceptionally high hydraulic conductivity features dominate the hydraulics of aquifers and confining units in these siliciclastic-dominated strata, including within intervals consisting largely of friable sandstone with high intergranular conductivity. Furthermore, our results provide some measure of fracture predictability, by correlating their abundance and hydraulic importance to specific stratigraphic positions and particular depths of burial beneath younger bedrock. A discrete, consistent stratigraphic interval of fine-grained siliciclastic beds also is apparently resistant to the development of vertically interconnected fractures, making the location of this regionally extensive confining unit predictable. Our more rigorous approach of interpreting typical hydraulic tests as well as relatively new techniques of borehole flowmeter logging, within the context of a hydrostratigraphic framework, results in improved definition of individual aquifers and confining units. It also enables quantification of their hydraulic properties, which leads to improved prediction of groundwater flow paths and time-of-travel. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahin, Mehmet
2018-05-01
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p–n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy () of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same . The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same , become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Human enteric viruses in groundwater from a confined bedrock aquifer
Borchardt, M. A.; Bradbury, K.R.; Gotkowitz, M.B.; Cherry, J.A.; Parker, B.L.
2007-01-01
Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the past few decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed. ?? 2007 American Chemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ting, Valeska P.; Ramirez-Cuesta, Anibal J.; Bimbo, Nuno
Here in this paper we report direct physical evidence that confinement of molecular hydrogen (H 2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H 2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H 2. This extreme densification is attributed to confinement of 112 molecules in the optimally sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H 2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorptionmore » isotherms. The demonstration of the existence of solid-like H 2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H 2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.« less
Ting, Valeska P.; Ramirez-Cuesta, Anibal J.; Bimbo, Nuno; ...
2015-07-14
Here in this paper we report direct physical evidence that confinement of molecular hydrogen (H 2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H 2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H 2. This extreme densification is attributed to confinement of 112 molecules in the optimally sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H 2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorptionmore » isotherms. The demonstration of the existence of solid-like H 2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H 2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.« less
Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.
2014-01-01
Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface‑water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals accounted for about 80 percent of that total. The upper 180 feet of productive aquifers in the Central Willamette and Southern Willamette subbasins produced about 70 percent of the total pumped volume. In this study, the USGS constructed a three-dimensional numerical finite-difference groundwater-flow model of the Willamette Basin representing the six hydrogeologic units, defined in previous investigations, as six model layers. From youngest to oldest, and [generally] uppermost to lowermost they are the: upper sedimentary unit, Willamette silt unit, middle sedimentary unit, lower sedimentary unit, Columbia River basalt unit, and basement confining unit. The high Cascade unit is not included in the groundwater-flow model because it is not present within the model boundaries. Geographic boundaries are simulated as no-flow (no water flowing in or out of the model), except where the Columbia River is simulated as a constant hydraulic head boundary. Streams are designated as head-dependent-flux boundaries, in which the flux depends on the elevation of the stream surface. Groundwater recharge from precipitation was estimated using the Precipitation-Runoff Modeling System (PRMS), a watershed model that accounts for evapotranspiration from the unsaturated zone. Evapotranspiration from the saturated zone was not considered an important component of groundwater discharge. Well pumping was simulated as specified flux and included public supply, irrigation, and industrial pumping. Hydraulic conductivity values were estimated from previous studies through aquifer slug and permeameter tests, specific capacity data, core analysis, and modeling. Upper, middle and lower sedimentary unit horizontal hydraulic conductivity values were differentiated between the Portland subbasin and the Tualatin, Central Willamette, and Southern Willamette subbasins based on preliminary model results.
MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
GREENE,G.A.; GUPPY,J.G.
1998-08-01
This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors andmore » hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.« less
Hydrologic effects of stress-relief fracturing in an Appalachian Valley
Wyrick, Granville G.; Borchers, James W.
1981-01-01
A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as being formed from stress relief. As stress-relief fractures have been described in other valleys of the Appalachian Plateaus, the same aquifer conditions may exist in those valleys.
Respiratory Health Effects of Large Animal Farming Environments
May, Sara; Romberger, Debra J.; Poole, Jill A.
2014-01-01
With increases in large animal-feeding operations to meet consumer demand, adverse upper and lower respiratory health effects in exposed agriculture workers is a concern. The aim of this study was to review large animal confinement feeding operational exposures associated with respiratory disease with focus on recent advances in the knowledge of causative factors and cellular and immunological mechanisms. A PubMed search was conducted with the following keywords: airway, farm, swine, dairy, horse, cattle inflammation, organic dust, endotoxin, and peptidoglycan that were published between 1980 and current. Articles were selected based on their relevance to environmental exposure and reference to airway diseases. Airway diseases included rhinitis, sinusitis, mucus membrane inflammation syndrome, asthma, chronic bronchitis, chronic obstructive pulmonary disease, hypersensitivity pneumonitis, and organic dust toxic syndrome. There is lower prevalence of IgE-mediated asthma and atopy in farmers and their children, but organic dust worsens existing asthma. Multiple etiologic factors are linked to disease including allergens, organic dusts, endotoxins, peptidoglycans and gases. Large animal confinement feeding operations contain a wide-diversity of microbes with increasing focus on Gram-positive bacteria and archeabacteria as opposed to Gram-negative bacteria in mediating disease. Toll-like receptors (TLR) and nucleotide oligomerization domain (NOD)-like innate immune pathways respond to these exposures. Finally, a chronic inflammatory adaptation, tolerance-like response in chronically exposed workers occurs. Large animal confinement farming exposures produces a wide spectrum of upper and lower respiratory tract diseases due to the complex diversity of organic dust, particulates, microbial cell wall components and gases and resultant activation of various innate immune receptor signaling pathways. PMID:23199220
[Risk for the development of upper gastrointestinal bleeding in children in an intensive care unit].
Gutiérrez-Gutiérrez, Glenda Karina; Villasís-Keever, Miguel Angel; González-Ortiz, Beatriz; Troconis-Trens, Germán; Tapia-Monge, Dora María; Flores-Calderón, Judith
2014-01-01
Although gastrointestinal tract bleeding can occur at any age, most studies trying to establish causes or risk factors for its development have been conducted in adults. The aim of this study was to determine risk factors in children admitted in a pediatric intensive care unit. A retrospective case-control study was conducted. Children who developed upper gastrointestinal bleeding children during their stay at the intensive care unit were considered the cases. Variables were obtained from medical records including age, sex, nutritional status, mechanical ventilation, use of nasogastric tube, development of complications, presence of coagulopathy, use of prophylaxis for upper gastrointestinal tract bleeding, fasting and use of steroids. Using a multivariate analysis, risk factors were identified, with odds ratios (OR) and 95 % confidence intervals (95 % CI) calculations. Out of 165 patients, 58 had upper gastrointestinal bleeding (35 %). Risk factors identified were prolonged clotting times (OR = 3.35), thrombocytopenia (OR = 2.39), development of sepsis (OR = 6.74) or pneumonia (OR = 4.37). Prophylaxis for upper gastrointestinal bleeding was not a protective factor. Upper gastrointestinal bleeding frequency in children hospitalized in an intensive care unit was high. Identifying risk factors should help to reduce upper gastrointestinal bleeding frequency.
;Consequences of Confinement for Alkene Epoxidation with Hydrogen Peroxide on Highly Dispersed Group 4 and 5 Size in the center and has one clockwise arc arrow moving from left to right connecting 5.4 nm M-SiO2 oxide and cyclohexane diol (using one H2O2 molecule), which is shown in the upper right and labeled
Seismic properties of Leg 195 serpentinites and their geophysical implications
Courtier, Anna M.; Hart, David J.; Christensen, Nikolas I.; Shinohara, Masanao; Salisbury, Matthew H.; Richter, Carl
2006-01-01
Knowledge of seismic velocities is necessary to constrain the lithologies encountered in seismic studies. We measured the seismic velocities, both compressional and shear wave, of clasts recovered during Ocean Drilling Program Leg 195 from a serpentine mud volcano, the South Chamorro Seamount. The compressional wave velocities of these clasts vary from a lower value of 5.5 km/s to an upper value of 6.1 km/s at a confining stress of 200 MPa. The shear wave velocities vary from a lower value of 2.8 km/s to an upper value of 3.3 km/s at a confining stress of 200 MPa. The densities of the samples vary from 2548 to 2701 kg/m3. These velocities and densities are representative of the highly serpentinized harzburgite and dunite mineralogy of the clasts. Velocities from a seismic study of the Izu-Bonin forearc wedge were used to calculate the degree of serpentinization in the forearc wedge. The seismic velocities of the forearc wedge are higher than the velocities of the clasts recovered from the South Chamorro Seamount, suggesting that the clasts are more serpentinized than the forearc wedge.
NASA Astrophysics Data System (ADS)
Mundra, Manish K.
2005-03-01
It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.
NASA Astrophysics Data System (ADS)
Li, Qinghua; Zhang, Yanpeng; Chen, Wen; Yu, Shaowen
2018-03-01
Salinization in coastal aquifers is usually related to both seawater intrusion and water-rock interaction. The results of chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai, southern China. The concentrations of the major ions that dominate in seawater (Cl-, Na+, Ca2+, Mg2+ and SO4 2- ), as well as the isotopic content and ratios (2H, 18O, 87Sr/86Sr and 13C), suggest that the salinization occurring in the aquifer of the coastal plain is related to seawater and that the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization has occurred in an area that is significantly influenced by land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds are identified in the shallowest confined aquifer (I) in the middle of the area (site BBW2). Leakage from this polluted confined aquifer causes the salinization of groundwater in the underlying confined aquifer (II). At the coastal monitoring site (BBW3), confined aquifer I and lower confined aquifer II are heavily contaminated by seawater intrusion. The weak connectivity between the upper aquifers, and the seaward movement of freshwater, prevents saltwater from encroaching the deepest confined aquifer (III). A conceptual model is presented. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for the planning and sustainable management of groundwater resources in this region.
Tailoring graphene layer-to-layer growth
NASA Astrophysics Data System (ADS)
Li, Yongtao; Wu, Bin; Guo, Wei; Wang, Lifeng; Li, Jingbo; Liu, Yunqi
2017-06-01
A layered material grown between a substrate and the upper layer involves complex interactions and a confined reaction space, representing an unusual growth mode. Here, we show multi-layer graphene domains grown on liquid or solid Cu by the chemical vapor deposition method via this ‘double-substrate’ mode. We demonstrate the interlayer-induced coupling effect on the twist angle in bi- and multi-layer graphene. We discover dramatic growth disunity for different graphene layers, which is explained by the ideas of a chemical ‘gate’ and a material transport process within a confined space. These key results lead to a consistent framework for understanding the dynamic evolution of multi-layered graphene flakes and tailoring the layer-to-layer growth for practical applications.
Nonvolatile semiconductor memory having three dimension charge confinement
Dawson, L. Ralph; Osbourn, Gordon C.; Peercy, Paul S.; Weaver, Harry T.; Zipperian, Thomas E.
1991-01-01
A layered semiconductor device with a nonvolatile three dimensional memory comprises a storage channel which stores charge carriers. Charge carriers flow laterally through the storage channel from a source to a drain. Isolation material, either a Schottky barrier or a heterojunction, located in a trench of an upper layer controllably retains the charge within the a storage portion determined by the confining means. The charge is retained for a time determined by the isolation materials' nonvolatile characteristics or until a change of voltage on the isolation material and the source and drain permit a read operation. Flow of charge through an underlying sense channel is affected by the presence of charge within the storage channel, thus the presences of charge in the memory can be easily detected.
Kinematic evolution of southern Hellenides (western Crete, Greece)
NASA Astrophysics Data System (ADS)
Chatzaras, V.; Xypolias, P.; Kokkalas, S.; Koukouvelas, I. K.
2010-05-01
Combined kinematic, structural and paleostress analyses were performed to reevaluate the tectonic evolution of the southern Hellenides in western Crete. Our work shows that the structural architecture of the study area was mainly established by two contractional deformation phases. SSW-directed thrusting from Oligocene to lower Miocene times (D1 phase) lead to brittle stacking of the upper thrust sheets and concomitant ductile exhumation-related imbrication of the lower HP tectonic units (Phyllite-Quartzite (PQ), Tripali and Plattenkalk units). Kinematic analysis in the PQ unit reveals a main southward ductile transport followed by late bulk coaxial deformation. The PQ unit rocks comprise the body of a crustal scale shear zone confined at its base by a major ductile thrust and in accordance with the proposed models we suggest that the exhumation process of the PQ unit involved S-directed ductile extrusion. Structural trends of ductile D1 thrusts define a salient bounded to the east by a NE-trending transverse zone situated in the western margin of the Lefka Ori window. At the eastern limb of the salient, the trajectories of L1 stretching lineation formed on a gently dipping S1 foliation in the PQ unit, show a clockwise rotation with proximity to the transverse zone. This suggests that the latter acted as an oblique buttress against the southward extruding PQ unit rocks causing their lateral escape. D2 phase was governed by regional NNW to NNE compression and involved significant folding and out-of-sequence with respect to D1 thrusting. The early D2a phase is related to the brittle-stage of exhumation of the HP-units and spans from middle to upper Miocene. D2a deformation involved thrust-related folding, tectonic imbrication and the formation of a middle Miocene thrust-top basin. The F2a folds are characterized by a predominant S(SE)-vergence and show a pronounced curvature of their hinge orientations from a regional E-W to a local NE-SW trend, the latter only present at the eastern limb of the salient. In the transverse zone, combined forward-directed imbricate thrusting and backthrusting lead to the development of a major pop-up structure and a triangle zone. Moreover, the trend of compression axes at the salient's eastern limb are deflected from the regional NNE to NNW orientation to a local NW orientation perpendicular to the transverse zone. These findings suggest that the transverse zone should have served as an oblique ramp to the southward transport of HP-rocks, while the steep dip of the ramp may has impeded displacement of the PQ unit rocks up the ramp acting as a buttress to their foreland propagation. The late D2b phase lasted from upper Miocene to Pleistocene and involved SW-directed thrust-related folding with synchronous sinistral strike-slip faulting and NE-striking normal faulting causing extension parallel to F2b fold hinges. The D2b-related paleostress field is characterized by local NE compression and NW extension orientations defining a transpressive to pure extensive regime. Where these coexist, the normal faults related to tension cut all previous structures suggesting that the extension postdates compression. This could possibly be attributed to a relaxation of the NE compression, which progressively evolved to the NW extension. The described kinematic evolution of southern Hellenides in western Crete reveals that the NE-trending transverse zone, which is possibly aligned with an inherited rift-related Mesozoic fault system, exerted significant control on the deformation pattern at progressively shallower structural levels within the crust.
Kim, Young Jin; Koh, Dong Hee; Park, Se Woo; Park, Sun Man; Choi, Min Ho; Jang, Hyun Joo; Kae, Sea Hyub; Lee, Jin; Byun, Hyun Woo
2014-01-01
To determine the risk factors, causes, and outcome of clinically important upper gastrointestinal bleeding that occurs in severely burned patients. The charts of all patients admitted to the burn intensive care unit were analyzed retrospectively over a 4-year period (from January 2006 to December 2009). Cases consisted of burned patients who developed upper gastrointestinal bleeding more than 24 hours after admission to the burn intensive care unit. Controls were a set of patients, in the burn intensive care unit, without upper gastrointestinal bleeding matched with cases for age and gender. Cases and controls were compared with respect to the risk factors of upper gastrointestinal bleeding and outcomes. During the study period, clinically important upper gastrointestinal bleeding occurred in 20 patients out of all 964 patients. The most common cause of upper gastrointestinal bleeding was duodenal ulcer (11 of 20 cases, 55%). In the multivariate analysis, mechanical ventilation (p = 0.044) and coagulopathy (p = 0.035) were found to be the independent predictors of upper gastrointestinal bleeding in severely burned patients. Upper gastrointestinal hemorrhage tends to occur more frequently after having prolonged mechanical ventilation and coagulopathy.
Deep seated carbonates and their vulnerability - are they isolated or hydrodynamically interacted?
NASA Astrophysics Data System (ADS)
Mádl-Szőnyi, Judit; Czauner, Brigitta; Iván, Veronika; Tóth, Ádám; Simon, Szilvia; Erőss, Anita; Havril, Tímea; Bodor, Petra
2017-04-01
The vulnerability of carbonate systems is basically determined by their confinement (Mádl-Szőnyi and Füle 1998). Confined carbonate units are traditionally considered to be aquifer systems hydrodynamically independent of their siliciclastic cover and unconfined parts. This is due to the widely accepted view, that confining layers are generally impermeable relative to the underlying carbonate aquifers. The nature of how deep confined carbonate units are linked to unconfined gravity-driven regional groundwater flow (GDRGF) is poorly understood. The very first study of Mádl-Szőnyi and Tóth (2015) examined the flow systems for unconfined and for marginal areas of confined carbonate settings and adapted the Tóthian-flow pattern for unconfined and adjoining confined cases. The modified GDRGF pattern with considering further driving forces (such as buoyancy) was used as a working hypothesis for the numerical understanding of evolution of hydrodynamics of marginal areas of unconfined and confined carbonate aquifer systems by Havril et al. (2016). In the recent study the main aim is the application of the GDRGF concepts to confined deep carbonates. Here the focal point is the handling of the karstified carbonate rock matrix and its siliciclastic cover as a whole. If we simplify the problem we can focus on to reveal the hydrodinamically interacted or insulated nature of confined carbonate systems. Beside hydrodynamic character of an area the salinity pattern can also reflect the potential connections. The interpretation of salinity in the context of GDRGF hydrodynamics therefore can assist in the determination of replenishment of formation waters with meteoric infiltration and can help to understand the flow pattern of the system. These hydrodynamic interactions also determine the vulnerability of carbonate systems not only in conventional sense but in relation to geothermal and hydrocarbon production. The study area is located in the Hungarian Paleogene Basin of the Pannonian Basin (Báldi and Báldi-Beke 1985), in which the Pre-Cenozoic aquifers are mostly covered by Paleogene and Neogene formations. The study displays the flow pattern for the region; reveals the interrelationships between siliciclastic confining layers and carbonate aquifer system and shows the salinity character of fluids. The regional fluid pattern reveals the efficient interaction of unconfined and confined carbonates, the boundaries of the communication; in addition to demonstrate the protection role of confining layers which are important to understand the vulnerability. However, the interaction between confining layers and underlying aquifers were also recognized. It reflects the geological and tectonic pattern of the area. These research are significant for the understanding of vulnerability not only for surface human activity but also for geothermal and hydrocarbon intervention. The research was supported by the Hungarian OTKA Research Fund (NK 101356).
Hydrogeology and water quality in the Graces Quarters area of Aberdeen Proving Ground, Maryland
Tenbus, Frederick J.; Blomquist, Joel D.
1995-01-01
Graces Quarters was used for open-air testing of chemical-warfare agents from the late 1940's until 1971. Testing and disposal activities have resulted in the contamination of ground water and surface water. The hydrogeology and water quality were examined at three test areas, four disposal sites, a bunker, and a service area on Graces Quarters. Methods of investigation included surface and borehole geophysics, water-quality sampling, water- level measurement, and hydrologic testing. The hydrogeologic framework is complex and consists of a discontinuous surficial aquifer, one or more upper confining units, and a confined aquifer system. Directions of ground-water flow vary spatially and temporally, and results of site investigations show that ground-water flow is controlled by the geology of the area. The ground water and surface water at Graces Quarters generally are unmineralized; the ground water is mildly acidic (median pH is 5.38) and poorly buffered. Inorganic constituents in excess of certain Federal drinking-water regulations and ambient water-quality criteria were detected at some sites, but they probably were present naturally. Volatile and semivolatile organic com- pounds were detected in the ground water and surface water at seven of the nine sites that were investi- gated. Concentrations of organic compounds at two of the nine sites exceeded Federal drinking-water regulations. Volatile compounds in concentrations as high as 6,000 m/L (micrograms per liter) were detected in the ground water at the site known as the primary test area. Concentrations of volatile compounds detected in the other areas ranged from 0.57 to 17 m/L.
A Hybrid Sport Education-Games for Understanding Striking/Fielding Unit for Upper Elementary Pupils
ERIC Educational Resources Information Center
Curtner-Smith, Matthew
2004-01-01
This article describes a hybrid Sport Education-Games for Understanding unit through which upper elementary pupils can learn to play basic striking/fielding games. The unit is written for a class of 30 pupils. The twenty-five lesson unit is described in detail within 10 stages: (1) Getting started and early skill, strategy, rule, and role work…
Relativistic Confinement Resonances
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2017-04-01
Photoionization of confined atoms in a C60 fullerene have been under intense investigation in the recent years, in particular the confinement induced resonances, termed confinement resonances. The effects of the C60 potential are modeled by a static spherical well, with (in atomic units) inner radius r0 = 5.8, width Δ = 1.9, and depth U0 = -0.302, which is reasonable in the energy region well above the C60 plasmons. At very high Z, relativistic interactions become important contributors to even the qualitative nature of atomic properties; this is true for confined atomic properties as well. To explore the extent of these interactions, a theoretical study of several heavy atoms has been performed using the relativistic random phase approximation (RRPA) methodology. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. The existence of the second subshell of the spin-orbit-split doublets can induce new confinement resonances in the total cross section, which is the sum of the spin-orbit-split doublets, due to the shift in the doublet's threshold. Several examples for confined high-Z atoms are presented. Work supported by DOE and NSF.
Unique and massive Chernobyl cranes for deconstruction activities in the new safe confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parameswaran, N. A. Vijay; Chornyy, Igor; Owen, Rob
2013-07-01
On 26 April 1986, the worst nuclear power plant accident in history occurred at the Chernobyl plant in Ukraine (then part of the Soviet Union). The destruction of Unit 4 sent highly radioactive fallout over Belarus, Russia, Ukraine, and Europe. The object shelter-a containment sarcophagus-was built in November 1986 to limit exposure to radiation. However, it has only a planned 25-year lifespan and would probably not survive even a moderate seismic event in a region that has more than its share of such events. It was time to take action. One of the largest tasks that are in progress ismore » the design and construction of the New Safe Confinement (NSC). The NSC is an engineered enclosure for the entire object shelter that includes a suite of process equipment. The process equipment will be used for the dismantling of the destroyed Chernobyl Nuclear Power Plant Unit. One of the major mechanical handling systems to be installed in the new safe confinement is the Main Cranes System. The planned decontamination and decommissioning or dismantling activities will require the handling of heavily shielded waste disposal casks containing nuclear fuel as well as lifting and transporting extremely large structural elements. These activities, to be performed within the new safe confinement, will require large and sophisticated cranes. The article will focus on the current progress of the new safe confinement and of the main cranes system for the decommissioning or dismantling activities. (authors)« less
Kirkhorn, S R; Garry, V F
2000-01-01
Agriculture is considered one of the most hazardous occupations. Organic dusts and toxic gases constitute some of the most common and potentially disabling occupational and environmental hazards. The changing patterns of agriculture have paradoxically contributed to both improved working conditions and increased exposure to respiratory hazards. Animal confinement operations with increasing animal density, particularly swine confinement, have contributed significantly to increased intensity and duration of exposure to indoor air toxins. Ongoing research has implicated bacterial endotoxins, fungal spores, and the inherent toxicity of grain dusts as causes of upper and lower airway inflammation and as immunologic agents in both grain and animal production. Animal confinement gases, particularly ammonia and hydrogen sulfide, have been implicated as additional sources of respiratory irritants. It has become evident that a significant percentage of agricultural workers have clinical symptoms associated with long-term exposure to organic dusts and animal confinement gases. Respiratory diseases and syndromes, including hypersensitivity pneumonitis, organic dust toxic syndrome, chronic bronchitis, mucous membrane inflammation syndrome, and asthmalike syndrome, result from ongoing acute and chronic exposures. In this review we focus upon the emerging respiratory health issues in a changing agricultural economic and technologic environment. Environmental and occupational hazards and exposures will be emphasized rather than clinical diagnosis and treatment. Methods of prevention, from both engineering controls and personal respiratory perspectives, are also addressed. PMID:10931789
Sahin, Mehmet
2018-05-23
In this study, the effects of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal (QDNC) solar cells have been investigated in detail. For this purpose, the conventional, i.e. original, detailed balance model, developed by Shockley and Queisser to calculate an upper limit for the conversion efficiency of silicon p-n junction solar cells, is modified in a simple and effective way to calculate the conversion efficiency of core/shell QDNC solar cells. Since the existing model relies on the gap energy ([Formula: see text]) of the solar cell, it does not make an estimation about the effect of QDNC materials on the efficiency of the solar cells, and gives the same efficiency values for several QDNC solar cells with the same [Formula: see text]. The proposed modification, however, estimates a conversion efficiency in relation to the material properties and also the confinement type of the QDNCs. The results of the modified model show that, in contrast to the original one, the conversion efficiencies of different QDNC solar cells, even if they have the same [Formula: see text], become different depending upon the confinement type and shell material of the core/shell QDNCs, and this is crucial in the design and fabrication of the new generation solar cells to predict the confinement type and also appropriate QDNC materials for better efficiency.
Cap-shaped gastropods from Upper Jurassic and Lower Cretaceous deposits of northern East Siberia
NASA Astrophysics Data System (ADS)
Guzhov, A. V.; Zakharov, V. A.
2015-09-01
Cap-shaped gastropods are first identified in Upper Jurassic and Lower Cretaceous sections of northern East Siberia. They belong to three new genera of the subclass Pectinibranchia ( Boreioconus gen. nov., Nixepileolus gen. nov., and Taimyroconus gen. nov.), which are identified at the species level ( B. bojarkensis sp. nov., N. depressus sp. nov., T. zakharovi sp. nov.), and several species with the open nomenclature. The genus Taimyroconus attributed to the family Calyptraeidae is considered as an ancestral form of the genus Crepidula. The stratigraphic position of each taxon is determined for several sections. The facies confinement, habitat conditions, and ethology of defined genera are considered with the analysis of their geographic distribution.
NASA Astrophysics Data System (ADS)
Ge, J.; Magnani, M.; Waldron, B. A.
2006-12-01
We present the results of two seismic reflection experiments conducted in the Great Memphis area in April and July 2006. The two experiments consisted in a walk-away test and in the acquisition of a 1 km seismic reflection profile. The acquisition of the seismic data is part of a larger effort aimed at imaging the lateral continuity of the Upper Claiborne confining clay that separates the Memphis aquifer, the region's primary drinking water source, from the upper unconfined aquifer and protects the drinking aquifer from exposure to potential contamination. During the walk-away test, four P-wave sources, a 7.5 kg sledge hammer, a 20 kg weight drop, a 12-gauge Buffalo gun, and a Minivibe source were tested at two sites with the goal of selecting the best P-wave seismic source and acquisition parameters for shallow reflection surveys. Boreholes nearby both sites encountered the Upper Claiborne unit at a depth ranging from 10 m to 40 m. One site is located within a 100-meter length of road median that can be considered an urban environment. The second site is located at Shelby Farms within the City of Memphis yet reflects a rural setting with minimal noise and no subsurface infrastructure. Performing identical walk-away tests at both sites, the results indicate that the energy source selection is site dependent. At the urban site, the energy generated by the weight drop source is more coherent and can be interpreted with more confidence on the recorded data. However the Shelby Farms site the 12-gauge shotgun produced the strongest recorded energy, the highest dominant frequency and the broadest frequency band (6- 110 Hz). Strong attenuations are observed at both sites with a much higher attenuation in the urban road median site, where the near surface materials consisted of gravels, sands, clays, and pebbles. For both sites, surface waves and refractions dominate the seismic recordings. Filtering and gain of the data revealed the presence of shallow reflections related to the targeted clay layer. Based on the results of the walk-away test and on additional supporting data such as water table measurements, neotectonic structural mapping and borehole data, the location for a 1 km long, north-south trending seismic reflection profile was chosen at Shelby Farms extending south to the Wolf River. Based on the walk-away testing the 12-gauge Buffalo gun was selected as the energy source, used to detonate a single 200 g black powder shell in a 0.6 m deep water filled hole with a 1 m source interval and a 0.25 m geophone interval. Preliminary analysis of the data indicates dominating surface waves and refractions. Upon filtering, consistent reflections can be observed. Correlation of reflections at the start of the seismic line to nearby boreholes evidenced the signature of the Upper Claiborne confining clay at a depth of 18 m.
Organic matter dynamics in a karstic watershed: Example from Santa Fe River, Florida, USA
NASA Astrophysics Data System (ADS)
Jin, J.; Khadka, M. B.; Martin, J. B.; Zimmerman, A. R.
2011-12-01
Organic matter (OM) dynamics in karstic watersheds can involve a range of interactions between organic and inorganic phases of carbon. These interactions include OM remineralization, which will changes its lability, increase dissolved inorganic carbon (DIC) concentrations, reduce pH, and enhance carbonate mineral dissolution. Dissolved organic carbon (DOC) concentrations are elevated in black-water rivers of northern Florida from both allochthonous and autochthonous sources and these rivers flow into and interact with the karstic Floridan Aquifer. One such river, the Santa Fe River, is split into upper confined and lower unconfined watersheds by the Cody Scarp, which represent the erosional edge of a regional confining unit. Water samples were collected from 8 sites across the entire Santa Fe River watershed (SFRW) during 9 sampling trips from December 2009 to May 2011 at flow conditions that ranged from 27 to 39 m3/s, with the highest flow about 45% higher than baseflow. At sites above the Cody Scarp, the river has elevated DOC concentrations, which decrease downstream, while dissolved inorganic carbon (DIC) and δ13C-DIC show opposite trends. At high flow, DOC concentrations progressively decrease downstream from dilution by low-DOC water discharging from the Floridan Aquifer. At low flow, the water chemistry varies little from upstream to downstream, largely because the composition of upstream water becomes similar to that of downstream water. DOC is inversely and linearly correlated with DIC and δ13C-DIC, but the slope of the correlations vary with discharge, with low flow having more negative slopes than high flow. The OM becomes more labile with distance downstream as assessed using two fluorescence indices, biological/autochthonous index (BIX) and humification index (HIX). This increase in lability suggests that DOC is produced in the river, and this production is reflected in a downstream increase in DOC flux regardless of dilution by the influx of low-DOC groundwater. Primary production was 5 to 25 times higher during high and low flow, respectively, in the lower than in the upper SFRW. No decrease in DOC with a concomitant increase in DIC was observed, however, suggesting observations of microbial consumption of OM is masked by primary production and gain of DIC-rich and DOC-poor groundwater. The upper SFRW has lower saturation index (SI; -2.9 and -0.7 for high and low flow, respectively) than the lower SFRW (0.0 and 0.3 for high and low flow, respectively). The downstream shift in SI reflects dissolution of the carbonate minerals and gain of water from the Floridan Aquifer that had equilibrated with carbonate minerals. OM dynamics in the SFRW are closely linked to the allochthonous OM derived from the upper SFRW, as well as primary production in the lower watershed. Both allochthonous and autochthonous OM can be important in abiotic processes such as carbonate mineral dissolution, but flow conditions mediate the magnitudes of the reactions.
POSITION AND MOTION, A SCIENCE UNIT FOR THE UPPER ELEMENTARY GRADES, STUDENT MANUAL.
ERIC Educational Resources Information Center
BERGER, CARL; MONTGOMERY, MARSHALL
THIS MANUAL IS DESIGNED FOR STUDENTS IN UPPER ELEMENTARY GRADES STUDYING THE SCIENCE CURRICULUM IMPROVEMENT STUDY (SCIS) UNIT "POSITION AND MOTION". THE OVERALL STRUCTURE OF THE UNIT FOLLOWS A CYCLE OF PRELIMINARY EXPLORATION, INVENTION OF SPECIFIC CONCEPTS RELATED TO REFERENCE FRAMES, AND DISCOVERY OF THE USEFULNESS OF THE CONCEPT.…
Gravity and magnetic data in the vicinity of Virgin Valley, southern Nevada
Morin, Robert L.
2006-01-01
This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional ground-water flow systems, Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical ground-water model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting ground water from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards.
The QCD mass gap and quark deconfinement scales as mass bounds in strong gravity
NASA Astrophysics Data System (ADS)
Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.
2017-11-01
Though not a part of mainstream physics, Salam's theory of strong gravity remains a viable effective model for the description of strong interactions in the gauge singlet sector of QCD, capable of producing particle confinement and asymptotic freedom, but not of reproducing interactions involving SU(3) color charge. It may therefore be used to explore the stability and confinement of gauge singlet hadrons, though not to describe scattering processes that require color interactions. It is a two-tensor theory of both strong interactions and gravity, in which the strong tensor field is governed by equations formally identical to the Einstein equations, apart from the coupling parameter, which is of order 1 {GeV}^{-1}. We revisit the strong gravity theory and investigate the strong gravity field equations in the presence of a mixing term which induces an effective strong cosmological constant, Λ f. This introduces a strong de Sitter radius for strongly interacting fermions, producing a confining bubble, which allows us to identify Λ f with the `bag constant' of the MIT bag model, B ˜eq 2 × 10^{14} {g} {cm}^{-3}. Assuming a static, spherically symmetric geometry, we derive the strong gravity TOV equation, which describes the equilibrium properties of compact hadronic objects. From this, we determine the generalized Buchdahl inequalities for a strong gravity `particle', giving rise to upper and lower bounds on the mass/radius ratio of stable, compact, strongly interacting objects. We show, explicitly, that the existence of the lower mass bound is induced by the presence of Λ _f, producing a mass gap, and that the upper bound corresponds to a deconfinement phase transition. The physical implications of our results for holographic duality in the context of the AdS/QCD and dS/QCD correspondences are also discussed.
Structure and Dynamics of Polymers in Cylindrical Nanoconfinement: A Molecular Dynamics Study
NASA Astrophysics Data System (ADS)
Pressly, James; Riggleman, Robert; Winey, Karen
The structure and dynamics of polymers under nanoconfinement is critical for understanding how polymers behave in applications from hydraulic fracking to fabricating integrated circuits. We previously used simulations to explore the effect of the diameter of cylindrical pores (d = 10-40 σ, where σ is the unit length in reduced units) on polymer end-to-end distance (Ree,perp, Ree,par) , entanglement density, melt diffusion coefficient (D), and local relaxation time (τperp, τpar) at fixed polymer chain length (N = 350). These studies found D, Ree,par, and τperp increased with increasing confinement while entanglement density, Ree,perp, and τpar decreased. Experiments also found that D increased but to a lesser extent. Here, we examine the molecular weight dependence of these properties using N = 25, 50, 100, 200, 350, and 500 confined to pores of diameter 14 σ to examine a range of confinements. Our preliminary results show that as N increases D and Ree,par, increase as well, relative to the unconfined state, while entanglement density and Ree,perp decrease, consistent with our previous work. Interestingly, τ is shown to be independent of chain length indicating the impact of confinement imposed by reducing pore diameter is distinct from that imposed by increasing chain length.
NASA Astrophysics Data System (ADS)
Macorps, Elodie; Charbonnier, Sylvain J.; Varley, Nick R.; Capra, Lucia; Atlas, Zachary; Cabré, Josep
2018-01-01
The July 2015 block-and-ash flow (BAF) events represent the first documented series of large-volume and long-runout BAFs generated from sustained dome collapses at Volcán de Colima. This eruption is particularly exceptional at this volcano due to (1) the large volume of BAF material emplaced (0.0077 ± 0.001 km3), (2) the long runout reached by the associated BAFs (max. 10 km), and (3) the short period ( 18 h) over which two main long-sustained dome collapse events occurred (on 10 and 11 July, respectively). Stratigraphy and sedimentology of the 2015 BAF deposits exposed in the southern flank of the volcano based on lithofacies description, grain size measurements and clast componentry allowed the recognition of three main deposit facies (i.e., valley-confined, overbank and ash-cloud surge deposits). Correlations and lithofacies variations inside three main flow units from both the valley-confined and overbank deposits left from the emplacement of the second series of BAFs on 11 July provide detailed information about: (1) the distribution, volumes and sedimentological characteristics of the different units; (2) flow parameters (i.e., velocity and dynamic pressure) and mobility metrics as inferred from associated deposits; and (3) changes in the dynamics of the different flows and their material during emplacement. These data were coupled with geomorphic analyses to assess the role of the topography in controlling the behaviour and impacts of the successive BAF pulses on the volcano flanks. Finally, these findings are used to propose a conceptual model for transport and deposition mechanisms of the July 2015 BAFs at Volcán de Colima. In this model, deposition occurs by rapid stepwise aggradation of successive BAF pulses. Flow confinement in a narrow and sinuous channel enhance the mobility and runout of individual channelized BAF pulses. When these conditions occur, the progressive valley infilling from successive sustained dome-collapse events promote the overspill and lateral spreading of the upper and marginal regions of the main flow body, generating highly mobile overbank flows that travel outside of the main valley. Volume- and distance-dependent critical channel capacities for the generation of overbank flows are used to better estimate the inundation area of these hazardous unconfined pyroclastic flows. These results highlight the importance of including and correctly assessing the hazards posed by large volume and long runout BAFs associated with frequent, small VEI, sustained dome-collapse eruptions.
Overview of long pulse H-mode operation on EAST
NASA Astrophysics Data System (ADS)
Gong, X.; Garofalo, A. M.; Wan, B.; Li, J.; Qian, J.; Li, E.; Liu, F.; Zhao, Y.; Wang, M.; Xu, H.; EAST Team
2017-10-01
The EAST research program aims to demonstrate steady-state long-pulse high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. In the recent experimental campaign, a long pulse fully non-inductive H-mode discharge lasting over 100 seconds using the upper ITER-like tungsten divertor has been achieved in EAST. This scenario used only RF heating and current drive, but also benefitted from an integrated control of the wall conditioning, plasma configuration, divertor heat flux, particle exhaust, impurity management and superconducting coils safety. Maintaining effective coupling of multiple RF heating and current drive sources on EAST is a critical ingredient. This long pulse discharge had good energy confinement, H98,y2 1.1-1.2, and all of the plasma parameters reach a true steady-state. Power balance indicates that the confinement improvement is due partly to a significantly reduced core electron transport inside minor radius rho<0.4. This work was supported by the National Magnetic Confinement Fusion Program of China Contract No. 2015GB10200 and the US Department of Energy Contract No. DE-SC0010685.
Hot-water aquifer storage: A field test
NASA Astrophysics Data System (ADS)
Parr, A. D.; Molz, F. J.; Andersen, P. F.
1980-03-01
The basic water injection cycle used in a large-scale field study of heat storage in a confined aquifer near Mobile, Alabama is described. Water was pumped from an upper semi-confined aquifer, passed through a boiler where it was heated to a temperature of about 55 C, and injected into a medium sand confined aquifer. The injection well has a 6-inch (15-cm) partially-penetrating steel screen. The top of the storage formation is about 40 meters below the surface and the formation thickness is about 21 meters. In the first cycle, after a storage period of 51 days, the injection well was pumped until the temperature of the recovered water dropped to 33 c. At that point 55,300 cubic meters of water had been withdrawn and 66 percent of the injected energy had been recovered. The recovery period for the second cycle continued until the water temperature was 27.5 C and 100,100 cubic meters of water was recovered. At the end of the cycle about 90 percent of the energy injected during the cycle had been recovered.
Phelps, G.G.; Schiffer, D.M.
1996-01-01
The Floridan aquifer system, an approximately 2,000-foot thick sequence of Eocene-age limestone and dolomite, is the main source of water supply in central Florida. Hydraulic conductivity is different in strata of different lithology and is the basis for separating the aquifer system into the Upper Floridan aquifer, a middle semi- confining unit, and the Lower Floridan aquifer. The coastal city of Cocoa withdraws about 26 million gallons of water per day from the Upper Floridan aquifer from a well field in east Orange County, about 25 miles inland. About 60 million gallons per day are withdrawn from the Upper Floridan aquifer and 56 million gallons per day from the Lower Floridan aquifer in the Orlando area, about 15 miles west of the Cocoa well field. Wells drilled in the Cocoa well field from 1955-61 yielded water with chloride concentrations ranging from 25-55 milligrams per liter. Soon after the wells were put in service, chloride concentrations increased; therefore, new wells were drilled further inland. Chloride concen- trations in water from many of the new wells also have increased. Possible sources of saline water are lateral movement of relict seawater in the Upper Floridan aquifer from the east, regional upconing of saline water from the Lower Floridan aquifer or underlying older rocks, or localized upward movement of saline water through fractures. Several test wells were drilled to provide information about chloride concentration changes with depth and to monitor changes with time, including a multi-zone well drilled in 1965 (well C) and two wells drilled in the 1990's (wells R and S). Chloride concentrations have increased in the zone pumped by the supply wells (the upper 500 feet of the aquifer) and in the 1,351-1,357-foot deep zone of well C, but not in the two intervening zones. This indicates that the source of saline water is located laterally, rather than vertically, from the pumped zone in the area of well C. The potential for upward movement of saline water depends on the direction of the vertical hydraulic gradient and on the vertical hydraulic conductivity of the aquifer. A series of aquifer tests was run in 1993-94 and existing water-level and water-quality data were analyzed to evaluate the potential for upward movement of saline water in the well field. The transmissivity of the upper 500 feet of the aquifer is about 100,000 feet squared per day (the horizontal hydraulic conductivity is about 200 feet per day) and the storage coefficient is about 2x10 -4. Horizontal hydraulic conductivities determined from slug tests of the three deepest zones of well C ranged from 20-50 feet per day. Vertical hydraulic conductivities probably do not exceed 0.05 feet per day. The vertical hydraulic gradient is determined by comparing water levels in the various zones, but because of density differences, unadjusted water levels in the deepest zone investigated cannot be directly compared to water levels in the overlying freshwater zones. The difference between environmental-water heads (adjusted for density differences) in the saline-water zone of well C and the overlying freshwater zone were calculated from measured water levels for the period 1966 to 1994. During most of this time period, the gradient was downward, indicating that saline water did not move upward. Upconing of saline water probably is not taking place in the center and western part of the well field, based on the low vertical hydraulic conductivity values estimated for the middle semi-confining unit, the generally downward vertical hydraulic gradient, and the constant chloride concentrations in the intermediate zones of well C. However, there is no information about the extent of the zone of low vertical hydraulic conductivity gradient in the eastern part of the well field. Thus, increased chloride concentrations in supply wells in the eastern part of the well field could be caused either by lateral movement of saline water from the east, or by upwar
Dideriksen, Jakob L; Holobar, Ales; Falla, Deborah
2016-08-01
Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. Copyright © 2016 the American Physiological Society.
Dideriksen, Jakob L.; Holobar, Ales
2016-01-01
Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. PMID:27226455
NASA Astrophysics Data System (ADS)
Pool, D.; Gray, F.; Callegary, J. B.
2005-05-01
Data on geology and geophysics in the San Pedro River Basin in Sonora, Mexico were combined to develop a three-dimensional conceptual model of the alluvial-fill aquifer in the basin that is being used to construct a regional ground-water-flow model. In Mexico, the headwater region of the river encompasses approximately 1,800 square kilometers of an ungaged catchment system. This feeds a 58 kilometer-long series of intermittent and perennial stream reaches in the United States that extend from just north of the international border to the town of St. David, Arizona. The river forms part of a north-south riparian corridor that provides habitat for more than 100 resident and 250 migratory bird species. Ground water in the basin is used extensively on both sides of the border and information on basin structure and composition will help to address questions regarding ground- and surface-water sustainability and planning. Interpretations of bedrock and alluvial-fill geometry indicate that a significant portion of the catchment area in Mexico is underlain by bedrock composed of highly indurated (compacted) Cretaceous sedimentary, volcanic, volcano-sedimentary, and granitic intrusive rocks. Aeromagnetic surveys were used to estimate depth to bedrock underlying alluvial sediments. Satellite photographs, older geologic maps, and recent field observations were used to delineate the boundaries between bedrock and alluvium. About 655 square kilometers, or 36 percent, of the Mexican portion of the river basin is underlain by alluvial fill. In the southern part of the study area, detailed information on thickness and composition of subsurface layers to depths of 500 meters was derived from drill logs. An extensive network of vertical electrical soundings covering much of the central part of the basin allowed for estimates of the location and thickness of clay layers that are confining units within the aquifer system. Across much of the area, the thickness of the silt and confining units was difficult to determine because of problems in distinguishing between these layers and underlying, electrically-conductive Cretaceous siltstone and mudstone. In general, two hydraulically connected sub-basins were identified: one in the southern part of the study area and one in the northern part.
Potentiometric surface of the Minnekahta Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Minnekahta aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Minnekahta aquifer.
Potentiometric surface of the Inyan Kara Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Inyan Kara aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Inyan Kara aquifer.
Potentiometric surface of the Deadwood Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Deadwood aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Deadwood aquifer.
Potentiometric surface of the Minnelusa Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory J.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Minnelusa aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Minnelusa aquifer.
Potentiometric surface of the Madison Aquifer in the Black Hills area, South Dakota
Strobel, Michael L.; Galloway, Joel M.; Hamade, Ghaith R.; Jarrell, Gregory L.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and springs that originate from the confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the potentiometric surface of the Madison aquifer within the study area. The map provides a tool for evaluating ground-water flow directions and hydraulic gradients in the Madison aquifer.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.
2009-06-01
Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.
Genomic Biomarkers for the Prediction of Stage and Prognosis of Upper Tract Urothelial Carcinoma.
Bagrodia, Aditya; Cha, Eugene K; Sfakianos, John P; Zabor, Emily C; Bochner, Bernard H; Al-Ahmadie, Hikmat A; Solit, David B; Coleman, Jonathan A; Iyer, Gopa; Scott, Sasinya N; Shah, Ronak; Ostrovnaya, Irina; Lee, Byron; Desai, Neil B; Ren, Qinghu; Rosenberg, Jonathan E; Dalbagni, Guido; Bajorin, Dean F; Reuter, Victor E; Berger, Michael F
2016-06-01
Genomic characterization of radical nephroureterectomy specimens in patients with upper tract urothelial carcinoma may allow for thoughtful integration of systemic and targeted therapies. We sought to determine whether genomic alterations in upper tract urothelial carcinoma are associated with adverse pathological and clinical outcomes. Next generation exon capture sequencing of 300 cancer associated genes was performed in 83 patients with upper tract urothelial carcinoma. Genomic alterations were assessed individually and also grouped into core signal transduction pathways or canonical cell functions for association with clinicopathological outcomes. Binary outcomes, including grade (high vs low), T stage (pTa/T1/T2 vs pT3/T4) and organ confined status (pT2 or less and N0/Nx vs greater than pT2 or N+) were assessed with the Kruskal-Wallis and Fisher exact tests as appropriate. Associations between alterations and survival were estimated using the Kaplan-Meier method and Cox regression. Of the 24 most commonly altered genes in 9 pathways TP53/MDM2 alterations and FGFR3 mutations were the only 2 alterations uniformly associated with high grade, advanced stage, nonorgan confined disease, and recurrence-free and cancer specific survival. TP53/MDM2 alterations were associated with adverse clinicopathological outcomes whereas FGFR3 mutations were associated with favorable outcomes. We created a risk score using TP53/MDM2 and FGFR3 status that was able to discriminate between adverse pathological and clinical outcomes, including in the subset of patients with high grade disease. The study is limited by small numbers and lack of validation. Our data indicate that specific genomic alterations in radical nephroureterectomy specimens correlate with tumor grade, stage and cancer specific survival outcomes. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Life threatening angioedema in a patient on ACE inhibitor (ACEI) confined to the upper airway
Tharayil, Abdulgafoor Muslim; Chanda, Arshad Hussain; Shiekh, Hakim Ahmad; Elkhatib, Mohamed Saad; Nayeemuddin, Mohammed; Alshamandy, Abdelhafiz Ali Ahmed
2014-01-01
Introduction: ACE inhibitors accounts for 8% of all cases of angioneurotic edema and the overall incidence is 0.1 to 0.7% of patients on ACE inhibitors. It is a leading cause (20-40%) of emergency room visits in the US with angioedema. We report a case of angioedema caused by ACE inhibitors confined to the upper airway after four years on treatment with Lisinopril which persisted for three weeks and required endotracheal intubation and subsequent tracheostomy due to delayed resolution. This case is one of the rare cases presented as upper airway edema which persisted for a long time. Presentation: A 60-year-old Sudanese male patient with osteoarthritis in both knees underwent bilateral total knee replacement under single-shot epidural anesthesia. He had significant past medical history of type II diabetes, bipolar affective disorder and hypertension managed with Lisinopril for the past four years. Postoperatively after 10 hours the patient desaturated and developed airway obstruction requiring intubation. Laryngoscopy revealed an edematous tongue and upper airway and vocal cords were not visualized. In view of this clinical picture a provisional diagnosis of angioedema secondary to Lisinopril was made and it was discontinued. CT scan of the neck and soft tissues revealed severe airway edema with snugly fitting endotracheal tube with no peritubal air. A repeat CT neck on the tenth postoperative day showed no signs of resolution and an elective tracheostomy was performed on the eleventh postoperative day. C1 inhibitor protein and C4 levels were assayed to exclude hereditary angioedema and were found to be within normal range. Decannulation of tracheostomy was done after airway edema resolved on the twenty-fourth postoperative day as confirmed by CT scan. Subsequently he was transferred to the ward and discharged home. Conclusion: ACEI induced angioedema is a well-recognized condition. Early diagnosis based on a high index of suspicion, immediate withdrawal of the offending drug followed by supportive therapy is the cornerstone of management. PMID:25745598
An outbreak of Burkholderia cepacia complex in the paediatric unit of a tertiary care hospital.
Mali, Swapna; Dash, Lona; Gautam, Vikas; Shastri, Jayanthi; Kumar, Sunil
2017-01-01
Burkholderia cepacia complex (Bcc) has emerged as a serious nosocomial pathogen worldwide especially in patients with indwelling catheters and cystic fibrosis. Bcc is a common contaminant of pharmaceutical products. We describe an outbreak of Bcc bacteraemia amongst children admitted in Paediatric Intensive Care Unit (PICU) and paediatric ward at a tertiary care hospital, Mumbai, in Western India. Blood culture samples from paediatric patients yielded growth of non-fermenting, oxidase positive, motile, Gram negative bacilli (NFGNB) (76/909) over a period of 8 months. Based on conventional biochemical tests and antimicrobial susceptibility testing, these isolates were provisionally identified as Bcc. The increased, repeated and continued isolation of Bcc alerted the possibility of an outbreak confined to PICU and paediatric ward. Active surveillance was undertaken to trace the source and contain the outbreak. Isolates were subjected to recA polymerase chain reaction (PCR) and Expanded multilocus sequence typing (EMLST). Surveillance revealed the presence of Bcc on the upper surface of rubber stopper of sealed multidose amikacin vials. Isolates from blood culture and rubber stoppers were confirmed as Bcc by recA PCR. EMLST revealed that these isolates shared an identical novel sequence type 824 proving clonality. Timely interventions instituted led to control of the outbreak. This study highlights the importance of identification and molecular characterization of Bcc to establish its role in infection and outbreak.
Simulation of Groundwater-Level and Salinity Changes in the Eastern Shore, Virginia
Sanford, Ward E.; Pope, Jason P.; Nelms, David L.
2009-01-01
Groundwater-level and salinity changes have been simulated with a groundwater model developed and calibrated for the Eastern Shore of Virginia. The Eastern Shore is the southern part of the Delmarva Peninsula that is occupied by Accomack and Northampton Counties in Virginia. Groundwater is the sole source of freshwater to the Eastern Shore, and demands for water have been increasing from domestic, industrial, agricultural, and public-supply sectors of the economy. Thus, it is important that the groundwater supply be protected from overextraction and seawater intrusion. The best way for water managers to use all of the information available is usually to compile this information into a numerical model that can simulate the response of the system to current and future stresses. A detailed description of the geology, hydrogeology, and historical groundwater extractions was compiled and entered into the numerical model. The hydrogeologic framework is composed of a surficial aquifer under unconfined conditions, a set of three aquifers and associated overlying confining units under confined conditions (the upper, middle, and lower Yorktown-Eastover Formation), and an underlying confining unit (the St. Marys Formation). An estimate of the location and depths of two major paleochannels was also included in the framework of the model. Total withdrawals from industrial, commercial, public-supply, and some agricultural wells were compiled from the period 1900 through 2003. Reported pumpage from these sources increased dramatically during the 1960s and 70s, up to currently about 4 million gallons per day. Domestic withdrawals were estimated on the basis of population census districts and were assigned spatially to the model on the assumption that domestic users are located close to roads. A numerical model was created using the U.S. Geological Survey (USGS) code SEAWAT to simulate both water levels and concentrations of chloride (representing salinity). The model was calibrated using 605 predevelopment and transient water-level observations that are associated predominantly with 20 observation nests of wells sited across the study area. Sampling for groundwater chemistry at these sites revealed that chloride has not increased significantly in the last 20 years. Environmental tracers in the samples also indicated that the water in the surficial aquifer is typically years to decades old, whereas water in the confined aquifers is typically centuries to millennia old. The calibration procedure yielded distributions of hydraulic conductivity and storage coefficients of the aquifers and confining units that are based on 21 pilot points, but vary smoothly across the study area. The estimated values are consistent with other measurements of these properties measured previously on cores and during hydraulic tests at various well fields. Simulations performed with the model demonstrated that the calibrated model can reproduce the observed historical water levels fairly well (R2 = 0.93). The chloride concentrations were also simulated, but a match with chloride concentrations was more difficult to achieve (R2 = 0.16) because of the lack of sufficient data and the unknown exact behavior of the entire transition zone in the millennia leading up to the present day. Future pumping scenarios were simulated through 2050, with pumping set to either 2003 rates or total permitted withdrawal rates. Water levels in 2050 are predicted to be lower than current levels by a few feet where stresses are currently heaviest but potentially by tens of feet if total permitted withdrawals are extracted at current low-stressed sites. Simulations of chloride concentrations through 2050 revealed some potential for seawater intrusion in the areas of Cape Charles, Chincoteague, east of the town of Exmore, and east of the town of Accomac, but precise estimates of concentration increases are highly uncertain. Simulation results were also used to estimate that the down
Red River of the North, Reconnaissance Report: Main Stem Subbasin.
1980-12-01
total subbasin land area. The bottomland hardwood forests which survived agricultural land clearing operations are confined today to corridors along...impair many of its uses such as recreation, 16 stock watering, and fish and wildife propagation (North Dakota Public Health Service, 1978; Upper... corridor for animals moving north and south along the Red River. Forests afford breeding and nesting areas for birds and rank second only 2to wetlands
Nimrod Lake, An Archeological Survey of a Reservoir Drawdown.
1978-01-01
nomadic bands hunted late Pleistocene megafauna (e.g., mammoths, mastodons, bison and smaller game) and also gathered wild plant foods. The most...primary exploitation of Pleistocene megafauna , in particular the bison, to subsistence strategies exercising more variation in faunal and floral...a- the upper end of the reservoir where the reservoir is confined to the river channel and the gradient is much steeper, other factors in addition to
Tree shaking machine aids cone collection in a Douglas-fir seed orchard.
Donald L. Copes; William K. Randall
1983-01-01
A boom-type tree shaker was used in a Douglas-fir seed orchard to remove cones from 7- to 9-meter tall grafted Douglas-fir trees. An average of 55 percent of the cones were removed by shaking, while damage inflicted to the upper crown was confined primarily to branch and leader breakage in the top three internodes. Damage to the lower bole, where the shaker head...
Yobbi, Dann K.
2002-01-01
Tampa Bay depends on ground water for most of the water supply. Numerous wetlands and lakes in Pasco County have been impacted by the high demand for ground water. Central Pasco County, particularly the area within the Cypress Creek well field, has been greatly affected. Probable causes for the decline in surface-water levels are well-field pumpage and a decade-long drought. Efforts are underway to increase surface-water levels by developing alternative sources of water supply, thus reducing the quantity of well-field pumpage. Numerical ground-water flow simulations coupled with an optimization routine were used in a series of simulations to test the sensitivity of optimal pumpage to desired increases in surficial aquifer system heads in the Cypress Creek well field. The ground-water system was simulated using the central northern Tampa Bay ground-water flow model. Pumping solutions for 1987 equilibrium conditions and for a transient 6-month timeframe were determined for five test cases, each reflecting a range of desired target recovery heads at different head control sites in the surficial aquifer system. Results are presented in the form of curves relating average head recovery to total optimal pumpage. Pumping solutions are sensitive to the location of head control sites formulated in the optimization problem and as expected, total optimal pumpage decreased when desired target head increased. The distribution of optimal pumpage for individual production wells also was significantly affected by the location of head control sites. A pumping advantage was gained for test-case formulations where hydraulic heads were maximized in cells near the production wells, in cells within the steady-state pumping center cone of depression, and in cells within the area of the well field where confining-unit leakance is the highest. More water was pumped and the ratio of head recovery per unit decrease in optimal pumpage was more than double for test cases where hydraulic heads are maximized in cells located at or near the production wells. Additionally, the ratio of head recovery per unit decrease in pumpage was about three times more for the area where confining-unit leakance is the highest than for other leakance zone areas of the well field. For many head control sites, optimal heads corresponding to optimal pumpage deviated from the desired target recovery heads. Overall, pumping solutions were constrained by the limiting recovery values, initial head conditions, and by upper boundary conditions of the ground-water flow model.
Hydrogeology of the Sarasota-Port Charlotte area, Florida
Wolansky, R.M.
1983-01-01
The surficial and intermediate aquifers are the major source of public water supplies in the Sarasota-Port Charlotte, Florida, area because of the relatively poor quality of Floridan aquifer water. The hydrogeologic framework consists of the surficial aquifer, intermediate aquifers (Tamiami-upper Hawthorn and lower Hawthorn-upper Tampa aquifers) and confining beds, Floridan aquifer, and lower confining bed (or base of the Floridan aquifer). The quality of ground water in the surficial and intermediate aquifers is generally good, except in the western (coastal) and southern parts where saltwater intrusion or incomplete flushing of connate water has occurred. The mineral content of ground water generally increases with depth and areally from the northeast towards the west and south. A water budget for the study area shows that an average annual rainfall of 51.0 inches minus an evapotranspiration of 38.0 inches per year and streamflow of 12.5 inches per year leaves 0.5 inch per year of recharge to the surficial aquifer. Combined pumpage from the aquifers is 1.06 inches per year. A preliminary quasi-time dimensional model has been applied to the study area to check the reasonableness of the hydrogeologic framework defined and of aquifer parameters. The model was considered calibrated when the final head matrix was within plus or minus 5 feet of the starting head. (USGS)
Deep Resistivity Structure of Mid Valley, Nevada Test Site, Nevada
Wallin, Erin L.; Rodriguez, Brian D.; Williams, Jackie M.
2009-01-01
The U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas (DOE UGTA, 2003). Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near, or within, the water table. This underground testing was limited to specific areas of the Nevada Test Site including Pahute Mesa, Rainier Mesa/Shoshone Mountain (RM-SM), Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain (RM-SM) Corrective Action Unit (CAU) (National Security Technologies, 2007). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, and 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006) located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat, further refining what is known about the pre-Tertiary confining units. In particular, a major goal was to define the extent of the upper clastic confining unit (UCCU). The UCCU is composed of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale (National Security Technologies, 2007). The UCCU underlies the Yucca Flat area and extends southwestward toward Shoshone Mountain, westward toward Buckboard Mesa, and northwestward toward Rainier Mesa. Late in 2005 we collected data at an additional 14 MT stations in Mid Valley, CP Hills, and northern Yucca Flat. That work was done to better determine the extent and thickness of the UCCU near the boundary between the southeastern RM-SM CAU and the southwestern YF CAU, and also in the northern YF CAU. The MT data have been released in a separate U.S. Geological Survey report (Williams and others, 2007). The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2-D) resistivity modeling for each profile and inferences on the three-dimensional (3-D) character of the geology within the region.
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
"Doing School": A New Unit of Analysis for Schools Serving Marginalized Students
ERIC Educational Resources Information Center
Atkinson, Helen
2009-01-01
This study asserts a new unit of analysis for school reform that goes beyond the mental representations of individuals, beyond the isolated lesson, and beyond the confines of a school building. I argue that the special case of expanding time and space as a method of engagement for marginalized students requires that the unit of analysis change to…
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
28 CFR 505.4 - Calculation of assessment by unit staff.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to or less than the poverty level, as established by the United States Department of Health and Human... above the poverty level, Unit Team staff are to impose a fee equal to the inmate's assets above the poverty level up to the average cost to the Bureau of Prisons of confining an inmate for one year. (c) If...
28 CFR 505.4 - Calculation of assessment by unit staff.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to or less than the poverty level, as established by the United States Department of Health and Human... above the poverty level, Unit Team staff are to impose a fee equal to the inmate's assets above the poverty level up to the average cost to the Bureau of Prisons of confining an inmate for one year. (c) If...
Computational Nanotribology of Nanometer Confined Liquid Films
2012-02-29
Nanotribology of Nanometer Confined Liquid Films 5b. GRANT NUMBER FA9550-08-1-0214 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...NUMBER Yongsheng Leng & Peter T. Cummings 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES...NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) Joycelyn Harrison AFOSR/RSA 875 North Randolph Street 11. SPONSOR/MONITOR’S REPORT
NASA Astrophysics Data System (ADS)
Swartz, Christopher H.; Blute, Nicole Keon; Badruzzman, Borhan; Ali, Ashraf; Brabander, Daniel; Jay, Jenny; Besancon, James; Islam, Shafiqul; Hemond, Harold F.; Harvey, Charles F.
2004-11-01
Aquifer geochemistry was characterized at a field site in the Munshiganj district of Bangladesh where the groundwater is severely contaminated by As. Vertical profiles of aqueous and solid phase parameters were measured in a sandy deep aquifer (depth >150 m) below a thick confining clay (119 to 150 m), a sandy upper aquifer (3.5 to 119 m) above this confining layer, and a surficial clay layer (<3.5 m). In the deep aquifer and near the top of the upper aquifer, aqueous As levels are low (<10 μg/L), but aqueous As approaches a maximum of 640 μg/L at a depth of 30 to 40 m and falls to 58 μg/L near the base (107 m) of the upper aquifer. In contrast, solid phase As concentrations are uniformly low, rarely exceeding 2 μg/g in the two sandy aquifers and never exceeding 10 μg/g in the clay layers. Solid phase As is also similarly distributed among a variety of reservoirs in the deep and upper aquifer, including adsorbed As, As coprecipitated in solids leachable by mild acids and reductants, and As incorporated in silicates and other more recalcitrant phases. One notable difference among depths is that sorbed As loads, considered with respect to solid phase Fe extractable with 1 N HCl, 0.2 M oxalic acid, and a 0.5 M Ti(III)-citrate-EDTA solution, appear to be at capacity at depths where aqueous As is highest; this suggests that sorption limitations may, in part, explain the aqueous As depth profile at this site. Competition for sorption sites by silicate, phosphate, and carbonate oxyanions appear to sustain elevated aqueous As levels in the upper aquifer. Furthermore, geochemical profiles are consistent with the hypothesis that past or ongoing reductive dissolution of Fe(III) oxyhydroxides acts synergistically with competitive sorption to maintain elevated dissolved As levels in the upper aquifer. Microprobe data indicate substantial spatial comapping between As and Fe in both the upper and deep aquifer sediments, and microscopic observations reveal ubiquitous Fe coatings on most solid phases, including quartz, feldspars, and aluminosilicates. Extraction results and XRD analysis of density/magnetic separates suggest that these coatings may comprise predominantly Fe(II) and mixed valence Fe solids, although the presence of Fe(III) oxyhydroxides can not be ruled out. These data suggest As release may continue to be linked to dissolution processes targeting Fe, or Fe-rich, phases in these aquifers.
Hermetically sealed electrical feedthrough for high temperature secondary cells
Knoedler, R.; Nelson, P.A.; Shimotake, H.; Battles, J.E.
1983-07-26
A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.
Hermetically sealed electrical feedthrough for high temperature secondary cells
Knoedler, Reinhard; Nelson, Paul A.; Shimotake, Hiroshi; Battles, James E.
1985-01-01
A passthrough seal is disclosed for electrically isolating the terminal in a lithium/metal sulfide cell from the structural cell housing. The seal has spaced upper and lower insulator rings fitted snuggly between the terminal and an annularly disposed upstanding wall, and outwardly of a powdered insulator also confined between the upstanding wall and terminal. The adjacent surfaces of the upper insulator ring and the respective upstanding wall and terminal are conically tapered, diverging in the axial direction away from the cell interior, and a sealing ring is located between each pair of the adjacent surfaces. The components are sized so that upon appropriate movement of the upper insulator ring toward the lower insulator ring the powdered insulator and sealing rings are each compressed to a high degree. This compacts the powdered insulator thereby rendering the same highly impervious and moreover fuses the sealing rings to and between the adjacent surfaces. The upper and lower insulator rings might be formed of beryllium oxide and/or alumina, the powdered insulator might be formed of boron nitride, and the sealing rings might be formed of aluminum.
Effect of the 1997 El Niño on the distribution of upper tropospheric cirrus
NASA Astrophysics Data System (ADS)
Massie, Steven; Lowe, Paul; Tie, Xuexi; Hervig, Mark; Thomas, Gary; Russell, James
2000-09-01
Geographical distributions of Halogen Occultation Experiment (HALOE) aerosol extinction data for 1993-1998 are analyzed in the troposphere and stratosphere at pressures between 121 and 46 hPa. The El Niño conditions of 1997 increased upper tropospheric cirrus over the mid-Pacific and decreased cirrus over Indonesia. Longitudinal centroids of cirrus in the Pacific and over Indonesia shifted eastward by 25° in the troposphere in 1997. Longitudinal centroids of aerosol in the lower stratosphere do not exhibit longitudinal shifts in 1997, indicating that the effects of El Niño upon equatorial particle distributions are confined to the troposphere. The correlation of the longitudinal centroids of outgoing longwave radiation and HALOE extinction confirms the spatial relationship between deep convective clouds and upper tropospheric cirrus. The number of cirrus events observed each year in 1993-1998 in the upper troposphere are quite similar for the region from the Indian Ocean to the mid-Pacific (30°S to 30°N, 50° to 240°E).
Landmeyer, J.E.; Belval, D.L.
1996-01-01
Withdrawal of water from the Upper Floridan aquifer south of Port Royal Sound in Beaufort and Jasper Counties, South Carolina, has lowered water levels and reversed the hydraulic gradient beneath Hilton Head Island, South Carolina. Ground water that had previously discharged at the Sound is now being deflected southwest, toward withdrawals located near the city of Savannah, Georgia, and the island of Hilton Head. The reversal of this hydraulic gradient and the decline of water levels have caused saltwater in the Upper Floridan aquifer north of Port Royal Sound to begin moving southwest, toward water-supply wells for the town of Hilton Head and toward industries pumping ground water near Savannah. Analytical results from ground-water samples collected from wells in the Upper Floridan aquifer beneath and adjacent to Port Royal Sound show two plumes in the aquifer with chloride concentrations above the drinking- water standard. One plume of high chloride concentration extends slightly south of the theoretical predevelopment location of the steady- state freshwater-saltwater interface as indicated by numerical modeling. The other plume is present beneath the town of Port Royal, where the upper confining unit above the Upper Floridan aquifer is thin or absent. In these areas, the decline in water levels caused by ground-water withdrawals may have made it possible for water from tidal creeks to enter the Upper Floridan aquifer. Many wells completed in the upper permeable zone of the Upper Floridan aquifer show a distinct specific- conductance profile. One non-producing, monitoring well on Hilton Head Island (BFT-1810) was selected to depict a worst-case scenario to examine the short- and long-term water-chemistry and chloride fluctuations in the aquifer. Specific conductance was monitored at depths of 170, 190, and 200 feet below the top of the well casing. The specific conductance measured in 1987 ranged from approximately 450 microsiemens per centimeter near the top of the Upper Floridan aquifer to 1,500 microsiemens per centimeter near the lower, less permeable zone. Short-term fluctuations in conductance were measured at each probe and were found to be related to water-level fluctuations in the well caused by tidal cycles. The conductance varied regularly up to 100 microsiemens per centimeter, with an increasing time lag between high and low tides and low and high specific conductance for progressively shallower depths. Well BFT-1810 was monitored for specific conductance and water levels from October 1987 through September 1993. Specific conductance at the 170-foot probe showed little long-term change, while the 190- and the 200-foot probes showed long-term increases to approximately 4,000 and 10,000 microsiemens per centimeter, respectively. This well is located closest to one of the two plumes of saltwater delineated in the Upper Floridan aquifer, and the long-term chloride increases are a result of the movement of saltwater in the Upper Floridan aquifer toward Hilton Head Island under the influence of regional ground-water withdrawals.
AQUIFER TESTING AND REBOUND STUDY IN SUPPORT OF THE 100-H DEEP CHROMIUM INVESTIGATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
SMOOT JL
2010-11-05
The 100-HR-3 Groundwater Operable Unit (OU) second Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 5-year review (DOEIRL-2006-20, The Second CERCLA Five-Year Review Report for the Hanford Site) set a milestone to conduct an investigation of deep hexavalent chromium contamination in the sediments of the Ringold upper mud (RUM) unit, which underlies the unconfined aquifer in the 100-H Area. The 5-year review noted that groundwater samples from one deep well extending below the aquitard (i.e., RUM) exceeded both the groundwater standard of 48 parts per billion (ppb) (Ecology Publication 94-06, Model Toxics Control Act Cleanup Statute and Regulation)more » and the federal drinking water standard of 100 {mu}g/L for hexavalent chromium. The extent of hexavalent chromium contamination in this zone is not well understood. Action 12-1 from the 5-year review is to perform additional characterization of the aquifer below the initial aquitard. Field characterization and aquifer testing were performed in the Hanford Site's 100-H Area to address this milestone. The aquifer tests were conducted to gather data to answer several fundamental questions regarding the presence of the hexavalent chromium in the deep sediments of the RUM and to determine the extent and magnitude of deeper contamination. The pumping tests were performed in accordance with the Description of Work for Aquifer Testing in Support of the 100-H Deep Chromium Investigation (SGW-41302). The specific objectives for the series of tests were as follows: (1) Evaluate the sustainable production of the subject wells using step-drawdown and constant-rate pumping tests. (2) Collect water-level data to evaluate the degree of hydraulic connection between the RUM and the unconfined (upper) aquifer (natural or induced along the well casing). (3) Evaluate the hydraulic properties of a confined permeable layer within the RUM.; (4) Collect time-series groundwater samples during testing to evaluate the extent and persistence of hexavalent chromium in the deeper zones. Use data collected to refine the current conceptual model for the 100-H Area unconfined aquifer and the RUM in this area. (5) Evaluate the concentration 'rebound' in the unconfined aquifer of hexavalent chromium and the contaminants of concern during shutdown of the extraction wells. Measure co-contaminants at the beginning, middle, and end of each pumping test. The RUM is generally considered an aquitard in the 100-HR-3 OU; however, several water-bearing sand layers are present that are confined within the RUM. The current hydrogeologic model for the 100-H Area aquifer system portrays the RUM as an aquitard layer that underlies the unconfined aquifer, which may contain permeable zones, stringers, or layers. These permeable zones may provide pathways for chromium to migrate deeper into the RUM under certain hydrogeologic conditions. One condition may be the discharge of large volumes of cooling water that occurred near the former H Reactor, which caused a mound of groundwater to form 4.9 to 10.1 m (16 to 33 ft) above the natural water table. The cooling water reportedly contained 1 to 2 mglL of hexavalent chromium for corrosion prevention. Three alternate hypotheses for the introduction of hexavalent chromium into the RUM are as follows: (1) Local groundwater with higher concentrations of hexavalent chromium originating from reactor operations at H Reactor was driven by high heads from groundwater mounding in the unconfined aquifer into the RUM via permeable pathways in the upper surface of the RUM. (2) Local groundwater with hexavalent chromium was introduced from the unconfined aquifer via well boreholes, either during drilling or as a result of poor well construction, allowing hydraulic communication between the unconfined aquifer and the RUM. (3) Hexavalent chromium migrated across the Hom area within the more permeable zones of the RUM. The three wells used for the aquifer pumping tests (199-H3-2C, 199-H4-12C, and 199-H4-15CS) exhibit hexavalent chromium contamination in confined aquifer groundwater that may be the result of one of the mechanisms described above. The purpose of the aquifer testing was to gather data to help refine the conceptual model for the source of deep contamination, examine the potential hydraulic connection between the RUM and the unconfined aquifer, evaluate the hydraulic properties of a confined layer within the RUM, and indicate the extent of hexavalent chromium contamination in the RUM. The results of this study, in conjunction with the recent Hom area investigation (DOE/RL-2008-42, Hydrogeological Summary Report for 600 Area Between 100-D and 100-H for the 100-HR-3 Groundwater Operable Unit), suggest that the first hypothesis is the most reasonable explanation. The results indicate persistent chromium concentrations over the duration of the tests, suggesting a large-scale emplacement of chromium.« less
McCloy, C.; Ingle, J.C.; Barron, J.A.
1988-01-01
Foraminifera and diatoms have been analyzed from an upper Miocene through Pleistocene(?) sequence of marine sediments exposed on Maria Madre Island, largest of the Tre??s Marias Islands off the Pacific coast of Mexico. The Neogene stratigraphic sequence exposed on Maria Madre Island includes a mid-Miocene(?) non-marine and/or shallow marine sandstone unconformably overlain by a lower upper Miocene to uppermost Miocene upper to middle bathyal laminated and massive diatomite, mudstone, and siltstone unit. This unit is unconformably overlain by lower Pliocene middle to lower bathyal sandstones and siltstones which, in turn, are unconformably overlain by upper Pliocene through Pleistocene(?) upper bathyal to upper middle bathyal foraminiferal limestones and siltstones. These beds are unconformably capped by Pleistocene terrace deposits. Basement rocks on the island include Cretaceous granite and granodiorite, and Tertiary(?) andesites and rhyolites. The upper Miocene diatomaceous unit contains a low diversity foraminiferal fauna dominated by species of Bolivina indicating low oxygen conditions in the proto-Gulf Maria Madre basin. The diatomaceous unit grades into a mudstone that contains a latest Miocene upper to middle bathyal biofacies characterized by Baggina californica and Uvigerina hootsi along with displaced neritic taxa. An angular unconformity separates the upper Miocene middle bathyal sediments from overlying lower Pliocene siltstones and mudstones that contain a middle to lower bathyal biofacies and abundant planktonic species including Neogloboquadrina acostaensis and Pulleniatina primalis indicating an early Pliocene age. Significantly, this Pliocene unit contains common occurrences of benthic species restricted to Miocene sediments in California including Bulimina uvigerinaformis. Pliocene to Pleistocene(?) foraminiferal limestones and siltstones characterize submarine bank accumulations formed during uplift of the Tre??s Marias Island area, and include abundant planktonic foraminifera such as Pulleniatina obliquiloculata and Neogloboquadrina duterteri. Common benthic foraminifera in this unit are indicative of upper bathyal water depths. The Neogene depositional history recorded on Maria Madre Island involves an early late Miocene subsidence event marking formation of the Tre??s Marias Basin with relatively undiluted diatomaceous sediment deposited in a low oxygen setting. Subsidence and deepening of the basin continued into the early Pliocene along with rapid deposition of terrigenous clastics. Uplift of the basinal sequence began in late Pliocene time accompanied by deposition of upper Pliocene-Pleistocene foraminiferal limestones on a rising submarine bank. Continued episodic uplift of the Neogene deposits brought the island above sea level by late Pleistocene time. ?? 1988.
The Multi-Stage History of Mt. Sharp
NASA Technical Reports Server (NTRS)
Allen, C.; Dapremont, A.
2013-01-01
The Curiosity rover is exploring Gale crater and Mt. Sharp, Gale's 5-km high central mound. We are investigating the history of alteration and erosion of Mt. Sharp using orbital imagery, spectroscopy and rover observations. Our results suggest a significant time gap between emplacement of the upper and lower sections of the mound. Crater counts show that the lower mound was formed soon after Gale itself, and that it contains distinct units ranging in altitude from approximately -4,500 to -1,800 m. Spectral data suggest that many units contain phyllosilicates. We found that these clay-bearing rocks occur in distinct layers concentrated below -2,900 m. Parts of the lower mound exhibit a transition from clays to sulfates with increasing altitude. The lower mound shows evidence of flowing water, including canyons and inverted channels. Wind erosion produced km-scale yardangs and scalloped cliffs. Our mapping shows that many yardangs in the lower mound are clay-bearing, with a predominant orientation of around N-S. Curiosity's ground-level images show myriad fine-scale, mainly horizontal layers in the lower mound. The rover has found stream beds and conglomerates, indicating that water once flowed on the crater floor. Drilling near the deepest point in Gale produced abundant clay, providing additional evidence of aqueous alteration. Upper mound units range in altitude from -2,100 m to +500 m, and mantle the lower mound above an angular unconformity. Most upper mound units are composed of layers. The formation age of the upper mound is unknown, since few craters are preserved. Clay-bearing layers are detectable in several locations, mainly at altitudes near -2,000 m. There is no evidence of water flow, but wind erosion has scalloped the surfaces and edges of layers, and fine-scale yardangs are common. Correlations between yardangs and clay spectra are apparent only in the lowermost units of the upper mound. Yardang orientations vary, and include N-S, NW-SE, and NE-SW. Upper mound units resemble the planet-wide Medusae Fossae formation, dated as Hesperian and argued to be composed of ignimbrites. Medusae Fossae layers are easily eroded by wind, and our mapping demonstrates their resemblance to upper mound fine-scale yardangs. The history of Mt. Sharp started with deposition and lithification of sediments shortly after crater formation. Some lower mound layers were partially altered to clays and sulfates, and water formed streams and canyons. Wind erosion of the lower mound produced large-scale yardangs, particularly in clay-rich layers, oriented generally N-S. Upper mound units were emplaced following a considerable period of wind erosion. The absence of water flow on the upper mound suggests that these units were emplaced after atmospheric loss rendered water unstable at the surface. The shift in dominant wind direction, as indicated by yardang orientations, also argues for a time gap between erosion of the lower and upper mound. These observations are consistent with upper mound units being related to the Hesperian Medusae Fossae formation. During 2014 Curiosity is expected to reach the foot of Mt. Sharp and ascend through the clay-rich layers, into the sulfate-rich layers, and possibly past the interface with the upper mound. This will be a unique opportunity to field check geologic models on the surface of Mars.
Effects of model layer simplification using composite hydraulic properties
Kuniansky, Eve L.; Sepúlveda, Nicasio; Elango, Lakshmanan
2011-01-01
Groundwater provides much of the fresh drinking water to more than 1.5 billion people in the world (Clarke et al., 1996) and in the United States more that 50 percent of citizens rely on groundwater for drinking water (Solley et al., 1998). As aquifer systems are developed for water supply, the hydrologic system is changed. Water pumped from the aquifer system initially can come from some combination of inducing more recharge, water permanently removed from storage, and decreased groundwater discharge. Once a new equilibrium is achieved, all of the pumpage must come from induced recharge and decreased discharge (Alley et al., 1999). Further development of groundwater resources may result in reductions of surface water runoff and base flows. Competing demands for groundwater resources require good management. Adequate data to characterize the aquifers and confining units of the system, like hydrologic boundaries, groundwater levels, streamflow, and groundwater pumping and climatic data for recharge estimation are to be collected in order to quantify the effects of groundwater withdrawals on wetlands, streams, and lakes. Once collected, three-dimensional (3D) groundwater flow models can be developed and calibrated and used as a tool for groundwater management. The main hydraulic parameters that comprise a regional or subregional model of an aquifer system are the hydraulic conductivity and storage properties of the aquifers and confining units (hydrogeologic units) that confine the system. Many 3D groundwater flow models used to help assess groundwater/surface-water interactions require calculating ?effective? or composite hydraulic properties of multilayered lithologic units within a hydrogeologic unit. The calculation of composite hydraulic properties stems from the need to characterize groundwater flow using coarse model layering in order to reduce simulation times while still representing the flow through the system accurately. The accuracy of flow models with simplified layering and hydraulic properties will depend on the effectiveness of the methods used to determine composite hydraulic properties from a number of lithologic units.
Flexible drive allows blind machining and welding in hard-to-reach areas
NASA Technical Reports Server (NTRS)
Harvey, D. E.; Rohrberg, R. G.
1966-01-01
Flexible power and control unit performs welding and machining operations in confined areas. A machine/weld head is connected to the unit by a flexible transmission shaft, and a locking- indexing collar is incorporated onto the head to allow it to be placed and held in position.
NASA Astrophysics Data System (ADS)
Li, Q.; Zhan, Y., , Dr; Chen, W. Ms; Yu, S., , Dr
2017-12-01
Salinization in coastal aquifers usually is the results of contamination related to both seawater intrusion and water-rock interaction. The chemical and isotopic methods were combined to identify the origin and processes of groundwater salinization in Daguansha area of Beihai. The concentrations of the major ions that dominate in sea water (Cl-, Na+, Ca2+, Mg2+ and SO2- 4), as well as the isotopic ratios (2H, 18O, 87Sr/86Sr and 13C) suggest that the salinization occurring in the aquifer water of the coastal plain is related to seawater and the prevailing hydrochemical processes are evaporation, mixing, dissolution and ion exchange. For the unconfined aquifer, groundwater salinization occurred in parts of the area, which is significantly influenced by the land-based sea farming. The integrated impacts of seawater intrusion from the Beibuwan Gulf and infiltration of seawater from the culture ponds is identified in the confined aquifer I at site BBW2. In consequence, the leakage from this polluted aquifer causes the salinization of groundwater in the confined aquifer II. At site BBW3, the confined aquifer I and lower confined aquifer II are remarkably contaminated by seawater intrusion. The weak connectivity with upper aquifers and seaward movement of freshwater prevents saltwater from encroaching the confined aquifer III. Above all, understanding of the origin and processes of groundwater salinization will provide essential information for sustainable planning and management of groundwater resources in this region.
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Jiang, Yalong; Wu, Zhijun; Xu, Xiangyu; Liu, Qi
2018-04-01
In this study, a two-dimensional Voronoi element-based numerical manifold method (VE-NMM) is developed to analyze the granite fragmentation process by a single tunnel boring machine (TBM) cutter under different confining stresses. A Voronoi tessellation technique is adopted to generate the polygonal grain assemblage to approximate the microstructure of granite sample from the Gubei colliery of Huainan mining area in China. A modified interface contact model with cohesion and tensile strength is embedded into the numerical manifold method (NMM) to interpret the interactions between the rock grains. Numerical uniaxial compression and Brazilian splitting tests are first conducted to calibrate and validate the VE-NMM models based on the laboratory experiment results using a trial-and-error method. On this basis, numerical simulations of rock fragmentation by a single TBM cutter are conducted. The simulated crack initiation and propagation process as well as the indentation load-penetration depth behaviors in the numerical models accurately predict the laboratory indentation test results. The influence of confining stress on rock fragmentation is also investigated. Simulation results show that radial tensile cracks are more likely to be generated under a low confining stress, eventually coalescing into a major fracture along the loading axis. However, with the increase in confining stress, more side cracks initiate and coalesce, resulting in the formation of rock chips at the upper surface of the model. In addition, the peak indentation load also increases with the increasing confining stress, indicating that a higher thrust force is usually needed during the TBM boring process in deep tunnels.
Lorah, M.M.; Vroblesky, D.A.
1989-01-01
Groundwater chemical data were collected from November 1986 through April 1987 in the first phase of a 5-year study to assess the possibility of groundwater contamination in the Canal Creek area of Aberdeen Proving Ground, Maryland. Water samples were collected from 87 observation wells screened in Coastal Plain sediments; 59 samples were collected from the Canal Creek aquifer, 18 from the overlying surficial aquifer, and 10 from the lower confined aquifer. Dissolved solids, chloride, iron, manganese, fluoride, mercury, and chromium are present in concentrations that exceed the Federal maximum contaminant levels for drinking water. Elevated chloride and dissolved-solids concentrations appear to be related from contaminant plumes but also could result from brackish-water intrusion. Excessive concentrations of iron and manganese were the most extensive water quality problems found among the inorganic constituents and are derived from natural dissolution of minerals and oxide coatings in the aquifer sediments. Volatile organic compounds are present in the Canal Creek and surficial aquifers, but samples from the lower confined aquifer do not show any evidence of contamination by inorganic or organic chemicals. The volatile organic contaminants detected in the groundwater and their maximum concentrations (in micrograms/L) include 1,1,2,2- tetrachloroethane (9,000); carbon tetrachloride (480); chloroform (460); 1,1,2-trichloroethane (80); 1,2-dichloroethane (990); 1,1-dichloroethane (3.1); tetrachloroethylene (100); trichloroethylene (1,800); 1,2-trans- dichloroethylene (1,200); 1,1-dichloroethylene (4.4); vinyl chloride (140); benzene (70); and chlorobenzene (39). On the basis of information on past activities in the study area, some sources of the volatile organic compounds include: (1) decontaminants and degreasers; (2) clothing-impregnating operations; (3) the manufacture of impregnite material; (4) the manufacture of tear gas; and (5) fuels used in garages and at the air-field. The high density of most of the detected organic compounds in free-product form would have aided their movement into the aquifers by vertical sinking. The outcrop area of the upper confining unit and an area cut by a paleochannel are most susceptible to contamination because a near-surface impermeable layer is not present. (USGS)
Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team
2017-10-01
In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.
Rotational and constitutional dynamics of caged supramolecules
Kühne, Dirk; Klappenberger, Florian; Krenner, Wolfgang; Klyatskaya, Svetlana; Ruben, Mario; Barth, Johannes V.
2010-01-01
The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers. Each caged chiral supramolecule performs concerted, chirality-preserving rotary motions within the template honeycomb pore, which are visualized and quantitatively analyzed using temperature-controlled scanning tunneling microscopy. Furthermore, with higher thermal energies, a constitutional system dynamics appears, which is revealed by monitoring repetitive switching events of the confined supramolecules’ chirality signature, reflecting decay and reassembly of the caged units. PMID:21098303
Ullmann-like reactions for the synthesis of complex two-dimensional materials
NASA Astrophysics Data System (ADS)
Quardokus, Rebecca C.; Tewary, V. K.; DelRio, Frank W.
2016-11-01
Engineering two-dimensional materials through surface-confined synthetic techniques is a promising avenue for designing new materials with tailored properties. Developing and understanding reaction mechanisms for surface-confined synthesis of two-dimensional materials requires atomic-level characterization and chemical analysis. Beggan et al (2015 Nanotechnology 26 365602) used scanning tunneling microscopy and x-ray photoelectron spectroscopy to elucidate the formation mechanism of surface-confined Ullmann-like coupling of thiophene substituted porphyrins on Ag(111). Upon surface deposition, bromine is dissociated and the porphyrins couple with surface adatoms to create linear strands and hexagonally packed molecules. Annealing the sample results in covalently-bonded networks of thienylporphyrin derivatives. A deeper understanding of surface-confined Ullmann-like coupling has the potential to lead to precision-engineered nano-structures through synthetic techniques. Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States of America.
Ground-state energy of an exciton-(LO) phonon system in a parabolic quantum well
NASA Astrophysics Data System (ADS)
Gerlach, B.; Wüsthoff, J.; Smondyrev, M. A.
1999-12-01
This paper presents a variational study of the ground-state energy of an exciton-(LO) phonon system, which is spatially confined to a quantum well. The exciton-phonon interaction is of Fröhlich type, the confinement potentials are assumed to be parabolic functions of the coordinates. Making use of functional integral techniques, the phonon part of the problem can be eliminated exactly, leading us to an effective two-particle system, which has the same spectral properties as the original one. Subsequently, Jensen's inequality is applied to obtain an upper bound on the ground-state energy. The main intention of this paper is to analyze the influence of the quantum-well-induced localization of the exciton on its ground-state energy (or its binding energy, respectively). To do so, we neglect any mismatch of the masses or the dielectric constants, but admit an arbitrary strength of the confinement potentials. Our approach allows for a smooth interpolation of the ultimate limits of vanishing and infinite confinement, corresponding to the cases of a free three-dimensional and a free two-dimensional exciton-phonon system. The interpolation formula for the ground-state energy bound corresponds to similar formulas for the free polaron or the free exciton-phonon system. These bounds in turn are known to compare favorably with all previous ones, which we are aware of.
Hydrogeology and water-quality characteristics of the Lower Floridan aquifer in east-central Florida
O'Reilly, Andrew M.; Spechler, Rick M.; McGurk, Brian E.
2002-01-01
The hydrogeology and water-quality characteristics of the Lower Floridan aquifer and the relation of the Lower Floridan aquifer to the framework of the Floridan aquifer system were evaluated during a 6-year (1995-2001) study. The study area, a 7,500 square-mile area of east-central Florida, is underlain by three principal hydrogeologic units: the surficial aquifer system, the intermediate confining unit, and the Floridan aquifer system. The Floridan aquifer system, a carbonate-rock aquifer system composed of the Upper Floridan aquifer, a middle semiconfining unit, a middle confining unit, and the Lower Floridan aquifer, is the major source of water supply to east-central Florida. The Upper Floridan aquifer provides much of the water required to meet the current (2002) demand; however, the Lower Floridan aquifer is being used increasingly as a source of freshwater, particularly for municipal needs. For this reason, a better understanding of the aquifer is needed. The Lower Floridan aquifer is present throughout east-central Florida. The aquifer is composed of alternating beds of limestone and dolomite, and is characterized by abundant fractured dolomite zones and solution cavities. The altitude of the top of the Lower Floridan aquifer ranges from less than 600 feet below sea level in the northern part of the study area to more than 1,600 feet below sea level in the southwestern part. Thickness of the unit ranges from about 910 to 1,180 feet. The top of the Lower Floridan aquifer generally is marked by an increase in formation resistivity and by an increase in the occurrence of fractures and solution cavities within the carbonates. Also, a noticeable increase in borehole flow often marks the top of the unit. The bottom of the Lower Floridan aquifer is based on the first occurrence of evaporites. Ground-water in the Lower Floridan aquifer generally moves in a southwest-to-northeast direction across the study area. In September 1998, the altitude of the potentiometric surface of the Lower Floridan aquifer ranged from about 16 to 113 feet above sea level, and altitudes in May 1999 were about 2 to 7 feet lower than those measured in September 1998. The potentiometric surface of the Floridan aquifer system is constantly fluctuating, mainly in response to seasonal variations in rainfall and ground-water withdrawals. Seasonal fluctuations in the Lower Floridan aquifer typically range from about 2 to 10 feet. Water samples from 50 Lower Floridan aquifer wells were collected during this study. Most samples were analyzed in the field for temperature, pH, and specific conductance, and in the laboratory for major cations and anions. Specific conductance ranged from 147 to 6,710 microsiemens per centimeter. Chloride concentrations ranged from 3.0 to 2,188 milligrams per liter; sulfate concentrations ranged from 0.2 to 750 milli-grams per liter; and hardness ranged from 69 to 940 milligrams per liter. Water was least mineralized in the recharge areas of the Lower Floridan aquifer in the western part of the study area. The most mineralized water in the Lower Floridan aquifer occurred along parts of the Wekiva and St. Johns Rivers and in much of the eastern and southern parts of the study area. The altitude of the base of freshwater in the Floridan aquifer system (where chloride concentrations are equal to 250 milligrams per liter) is variable throughout the study area. The estimated position of the 250 milligram per liter isochlor surface is less than 200 feet below sea level in much of the eastern part of the study area, including the areas along the St. Johns River in Lake, Seminole, and Volusia Counties and near the Wekiva River in western Seminole County. The altitude of the 250 milligram per liter isochlor exceeds 3,000 feet below sea level in the extreme southwestern part of the study area.
Katz, Brian G.; Lee, Terrie M.; Plummer, Niel; Busenberg, Eurybiades
1995-01-01
Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11–67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.
NASA Astrophysics Data System (ADS)
Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades
1995-06-01
Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.
Staley, Andrew W.; Andreasen, David C.; Curtin, Stephen E.
2014-01-01
The potentiometric surface maps show water levels ranging from 165 feet above sea level to 199 feet below sea level. Water levels have declined by as much as 113 feet in the Aquia aquifer since 1982, 81 feet in the Magothy aquifer since 1975, and 61 and 95 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990.
Collins, Donley S.
1983-01-01
A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, B.G.; Plummer, L.N.; Busenberg, E.
1993-03-01
The pathways of shallow ground-water flow in poorly confined aquifer systems of northern FL are influenced by inflow to and outflow from numerous sinkhole lakes that are characteristic of the Sand Hills karst region. Ground-water samples were collected immediately upgradient and downgradient from Lake Barco at depths of 1.6--29 m below the water table from observation wells completed in the surficial aquifer system, the intermediate confining unit (icu), and the Upper Floridan aquifer. Samples were also collected of rainfall, lake water, and ground water at a depth of 4.1 m beneath the lake bottom. The environmental tracers tritium and chlorofluorocarbonsmore » were used to estimate mean residence times of water and rates of chemical mass transfer along flow paths. Water samples collected from wells upgradient of the lake were oxic and had CFC-model recharge dates between 1971 and 1986. The content of delta H-2 and delta O-18 of water from the two aquifer systems and the icu was nearly identical to the isotopic composition of rainfall. Changes in the chemical composition of the ground water with depth were simulated by reacting rainfall with minerals and dissolved gases that exist in the hydrogeologic units. Ground-water samples collected from sites beneath and downgradient of the lake were anoxic, with measured concentrations of hydrogen sulfide and methane ranging from 0.02--0.58 mg/l and 0.30--6.1 mg/l, respectively. CFC-model recharge dates ranged from 1956 to 1983. The data indicated that ground water downgradient of the lake is being recharged by leakage of lake water. The chemical composition of ground water is influenced by the movement of lake water through reducing, organic-rich sediments accumulated at the bottom. Along the downgradient flow paths, the water chemistry evolves from the composition of lake water and is modified by subsequent reactions including reduction of sulfate and ferric iron, methanogenesis, and dissolution and precipitation of minerals.« less
Estimating formation properties from early-time oscillatory water levels in a pumped well
Shapiro, A.M.; Oki, D.S.
2000-01-01
Hydrologists often attempt to estimate formation properties from aquifer tests for which only the hydraulic responses in a pumped well are available. Borehole storage, turbulent head losses, and borehole skin, however, can mask the hydraulic behavior of the formation inferred from the water level in the pumped well. Also, in highly permeable formations or in formations at significant depth below land surface, where there is a long column of water in the well casing, oscillatory water levels may arise during the onset of pumping to further mask formation responses in the pumped well. Usually borehole phenomena are confined to the early stages of pumping or recovery, and late-time hydraulic data can be used to estimate formation properties. In many instances, however, early-time hydraulic data provide valuable information about the formation, especially if there are interferences in the late-time data. A mathematical model and its Laplace transform solution that account for inertial influences and turbulent head losses during pumping is developed for the coupled response between the pumped borehole and the formation. The formation is assumed to be homogeneous, isotropic, of infinite areal extent, and uniform thickness, with leakage from an overlying aquifer, and the screened or open interval of the pumped well is assumed to fully penetrate the pumped aquifer. Other mathematical models of aquifer flow can also be coupled with the equations describing turbulent head losses and the inertial effects on the water column in the pumped well. The mathematical model developed in this paper is sufficiently general to consider both underdamped conditions for which oscillations arise, and overdamped conditions for which there are no oscillations. Through numerical inversion of the Laplace transform solution, type curves from the mathematical model are developed to estimate formation properties through comparison with the measured hydraulic response in the pumped well. The mathematical model is applied to estimate formation properties from a singlewell test conducted near Waialua, Oahu, Hawaii. At this site, both the drawdown and recovery showed oscillatory water levels in the pumped well, and a step-drawdown test showed that approximately 86% of the drawdown is attributed to turbulent head losses. Analyses at this site using late-time drawdown data were confounded by the noise present in the measured water levels due primarily to nearby irrigation wells and ocean tides. By analyzing the early-time oscillatory recovery data at the Waialua site, upper and lower bounds were placed on the transmissivity, T, storage coefficient, S, and the leakance of the confining unit, K′/B′. The upper and lower bounds on T differ by a factor of 2. Upper and lower bounds on S and K′/B′ are much larger, because drawdown stabilized relatively quickly after the onset of pumping.
Theodore, T.G.; Berger, V.I.; Singer, D.A.; Harris, A.G.; Stevens, C.H.
2004-01-01
The middle Upper Pennsylvanian and middle Lower Permian Strathearn Formation belongs to the overlap assemblage of the Antler orogen in Nevada. At Beaver Peak, near the Carlin Trend of gold deposits, it contains synorogenic conglomerate deposits associated with emplacement of a regionally extensive, 1-km-thick tectonic wedge that is floored by the Coyote thrust. Normal marine conodont biofacies throughout the Strathearn Formation suggest middle shelf or deeper, depositional environments. The allochthon floored by the Coyote thrust has been thrust above a middle Upper Pennsylvanian, lower conglomerate unit of the Strathearn Formation. A middle Lower Permian upper conglomerate unit, the highest unit recognized in the Strathearn Formation, as well as similarly aged dolomitic siltstone, onlap directly onto Ordovician quartzarenite of the Vinini Formation that makes up most of the Coyote allochthon. Quartz grains and quartzarenite fragments of variable roundness and shape in the conglomerate units were derived from the presently adjoining tectonic lobe of mostly quartzarenite that advanced southeast (present geographic coordinates) during the late Paleozoic into the developing Strathearn basin. Chert fragments in the conglomerates probably were derived mostly from Devonian Slaven Chert, including a widespread thick me??lange unit of the Slaven Chert in the footwall of the Coyote thrust.Lithologic and shape ratio data from approximately 4200 clasts at 17 sites of the two major conglomerate units in the Strathearn Formation at Beaver Peak are roughly similar in that they contain only chert and quartzarenite clasts, and chert clasts predominate in both units. They differ in the relative proportion of the two lithologies whereby quartzarenite clasts increase sixfold in the upper unit (middle Lower Permian) versus its content in the lower conglomerate unit. Relations at the unconformity between the upper conglomerate unit and its underlying quartzarenite shows quartzarenite fragments actually breaking away from an immediately subjacent source. Ordovocian quartzarenite, which forms a tectonically uplifted wedge with the Coyote thrust at its base, became a source region for much of the quartzarenite detritus deposited preferentially in the upper parts of the Strathearn Formation. The conglomerate units of the Strathearn Formation temporally bracket emplacement of the Coyote thrust. Thrusting related to contractional reactivation of the Robert Mountains thrust system largely was completed by middle Early Permian. ?? 2004 Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Eltom, Hassan A.; Gonzalez, Luis A.; Hasiotis, Stephen T.; Rankey, Eugene C.; Cantrell, Dave L.
2018-02-01
Carbon isotope data (δ13C) can provide an essential means for refining paleogeographic and paleo-oceanographic reconstructions, and interpreting stratigraphic architecture within complex carbonate strata. Although the primary controls on global δ13C signatures of marine carbonates are well understood, understanding their latitudinal and regional variability is poor. To better constrain the nature and applications of δ13C stratigraphy, this study: 1) presents a new high-resolution δ13C stratigraphic curve from Middle to Upper Jurassic carbonates in the upper Tuwaiq Mountain, Hanifa, and lower Jubaila formations in central Saudi Arabia; 2) explores their latitudinal and regional variability; and 3) discusses their implications for stratigraphic correlations. Analysis of δ13C data identified six mappable units with distinct δ13C signatures (units 1-6) between up-dip and down-dip sections, and one unit (unit 7) that occurs only in the down-dip section of the study succession. δ13C data from the upper Tuwaiq Mountain Formation and the lower Hanifa Formation (units 1, 2), which represent Upper Callovian to Middle Oxfordian strata, and record two broad positive δ13C excursions. In the upper part of the Hanifa Formation (units 3-6, Early Oxfordian-Late Kimmeridgian), δ13C values decreased upward to unit 7, which showed a broad positive δ13C excursion. Isotopic data suggest similar δ13C trends between the southern margin of the Tethys Ocean (Arabian Plate; low latitude, represented by the study succession) and northern Tethys oceans (high latitude), despite variations in paleoclimatic, paleogeographic, and paleoceanographic conditions. Variations in the δ13C signal in this succession can be attributed to the burial of organic matter and marine circulation at the time of deposition. Our study uses δ13C signatures to provide independent data for chronostratigraphic constraints which help in stratigraphic correlations within heterogeneous carbonate successions.
Gordon, Debbie W.; Gonthier, Gerard
2017-04-24
The U.S. Geological Survey conducted a study, in cooperation with the Georgia Environmental Protection Division, to define the hydrologic properties of the Claiborne aquifer and evaluate its connection with the Upper Floridan aquifer in southwest Georgia. The effort involved collecting and compiling hydrologic data from the aquifer in subarea 4 of southwestern Georgia. Data collected for this study include borehole geophysical logs in 7 wells, and two 72-hour aquifer tests to determine aquifer properties.The top of the Claiborne aquifer extends from an altitude of about 200 feet above the North American Vertical Datum of 1988 (NAVD 88) in Terrell County to 402 feet below NAVD 88 in Decatur County, Georgia. The base of the aquifer extends from an altitude of about 60 feet above NAVD 88 in eastern Sumter County to about 750 feet below NAVD 88 in Decatur County. Aquifer thickness ranges from about 70 feet in eastern Early County to 400 feet in Decatur County.The transmissivity of the Claiborne aquifer, determined from two 72-hour aquifer tests, was estimated to be 1,500 and 700 feet squared per day in Mitchell and Early Counties, respectively. The storage coefficient was estimated to be 0.0006 and 0.0004 for the same sites, respectively. Aquifer test data from Mitchell County indicate a small amount of leakage occurred during the test. Groundwater-flow models suggest that the source of the leakage was the underlying Clayton aquifer, which produced about 2.5 feet of drawdown in response to pumping in the Claiborne aquifer. The vertical hydraulic conductivity of the confining unit between the Claiborne and Clayton aquifers was simulated to be about 0.02 foot per day.Results from the 72-hour aquifer tests run for this study indicated no interconnection between the Claiborne and overlying Upper Floridan aquifers at the two test sites. Additional data are needed to monitor the effects that increased withdrawals from the Claiborne aquifer may have on future water resources.
Surface wave tomography applied to the North American upper mantle
NASA Astrophysics Data System (ADS)
van der Lee, Suzan; Frederiksen, Andrew
Tomographic techniques that invert seismic surface waves for 3-D Earth structure differ in their definitions of data and the forward problem as well as in the parameterization of the tomographic model. However, all such techniques have in common that the tomographic inverse problem involves solving a large and mixed-determined set of linear equations. Consequently these inverse problems have multiple solutions and inherently undefinable accuracy. Smoother and rougher tomographic models are found with rougher (confined to great circle path) and smoother (finite-width) sensitivity kernels, respectively. A powerful, well-tested method of surface wave tomography (Partitioned Waveform Inversion) is based on inverting the waveforms of wave trains comprising regional S and surface waves from at least hundreds of seismograms for 3-D variations in S wave velocity. We apply this method to nearly 1400 seismograms recorded by digital broadband seismic stations in North America. The new 3-D S-velocity model, NA04, is consistent with previous findings that are based on separate, overlapping data sets. The merging of US and Canadian data sets, adding Canadian recordings of Mexican earthquakes, and combining fundamental-mode with higher-mode waveforms provides superior resolution, in particular in the US-Canada border region and the deep upper mantle. NA04 shows that 1) the Atlantic upper mantle is seismically faster than the Pacific upper mantle, 2) the uppermost mantle beneath Precambrian North America could be one and a half times as rigid as the upper mantle beneath Meso- and Cenozoic North America, with the upper mantle beneath Paleozoic North America being intermediate in seismic rigidity, 3) upper-mantle structure varies laterally within these geologic-age domains, and 4) the distribution of high-velocity anomalies in the deep upper mantle aligns with lower mantle images of the subducted Farallon and Kula plates and indicate that trailing fragments of these subducted oceanic plates still reside in the transition zone. The thickness of the high-velocity layer beneath Precambrian North America is estimated to be 250±70 km thick. On a smaller scale NA04 shows 1) high-velocities associated with subduction of the Pacific plate beneath the Aleutian arc, 2) the absence of expected high velocities in the upper mantle beneath the Wyoming craton, 3) a V-shaped dent below 150 km in the high-velocity cratonic lithosphere beneath New England, 4) the cratonic lithosphere beneath Precambrian North America being confined southwest of Baffin Bay, west of the Appalachians, north of the Ouachitas, east of the Rocky Mountains, and south of the Arctic Ocean, 5) the cratonic lithosphere beneath the Canadian shield having higher S-velocities than that beneath Precambrian basement that is covered with Phanerozoic sediments, 6) the lowest S velocities are concentrated beneath the Gulf of California, northern Mexico, and the Basin and Range Province.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, A.; McDowell, R.; Matchen, D.
1992-01-01
The Granny Creek field (approximately 6 sq. miles in area), located in Clay and Roane counties, West Virginia, produces oil from the Big Injun sandstone (Lower Mississippian). Analysis of 15 cores, 22 core analyses, and approximately 400 wireline logs (gamma ray and bulk density) show that the Big Injun (approximately 12 to 55 feet thick) can be separated into an upper, coarse-grained sandstone and a lower, fine-grained sandstone. The Big Injun is truncated by an erosional unconformity of Early to Middle Mississippian age which removes the coarse-grain upper unit in the northwest portion of the field. The cores show nodulesmore » and zones (1 inch to 6 feet thick) of calcite and siderite cement. Where the cements occur as zones, porosity and permeability are reduced. Thin shales (1 inch to 1 foot thick) are found in the coarse-grained member of the Big Injun, whereas the bottom of the fine-grained, lower member contains intertongues of dark shale which cause pinchouts in porosity at the bottom of the reservoir. Calcite and siderite cement are recognized on wireline logs as high bulk density zones that form horizontal, inclined, and irregular pods of impermeable sandstone. At a 400 foot well spacing, pods may be confined to a single well or encompass as many as 30 wells creating linear and irregular barriers to flow. These pods increase the length of the fluid flow path and may divide the reservoir into discrete compartments. The combination of sedimentologic and diagenetic features contribute to the heterogeneity observed in the field.« less
NASA Astrophysics Data System (ADS)
Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha
2016-09-01
In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.
"The Role of the Unit in Physics and Psychometrics": Rejoinder
ERIC Educational Resources Information Center
Humphry, Stephen M.
2011-01-01
This article presents Stephen Humphry's response to the commentaries for his article "The Role of the Unit in Physics and Psychometrics." The commentaries covered a range of important considerations and implications. Given that the author fully agrees with the majority of the content, attention will be confined mainly to points that call…
Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.
2009-01-01
Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick. ?? US Government 2008.
Hydrology of the Texas Gulf Coast aquifer systems
Ryder, Paul D.; Ardis, Ann F.
1991-01-01
A complex, multilayered ground-water flow system exists in the Coastal Plain sediments of Texas. The Tertiary and Quaternary clastic deposits have an areal extent of 114,000 square miles onshore and in the Gulf of Mexico. Two distinct aquifer systems are recognized within the sediments, which range in thickness from a few feet to more than 12,000 feet The older system--the Texas coastal uplands aquifer system-consists of four aquifers and two confining units in the Claiborne and Wilcox Groups. It is underlain by the practically impermeable Midway confining unit or by the top of the geopressured zone. It is overlain by the nearly impermeable Vicksburg-Jackson confining unit, which separates it from the younger coastal lowlands aquifer system. The coastal lowlands aquifer system consists of five permeable zones and two confining units that range in age from Oligocene to Holocene. The hydrogeologic units of both systems are exposed in bands that parallel the coastline. The units dip and thicken toward the Gulf. Quality of water in the aquifer systems is highly variable, with dissolved solids ranging from less than 500 to 150,000 milligrams per liter.Substantial withdrawal from the aquifer systems began in the early 1900's and increased nearly continuously into the 1970's. The increase in withdrawal was relatively rapid from about 1940 to 1970. Adverse hydrologic effects, such as saltwater encroachment in coastal areas, land-surface subsidence in the Houston-Galveston area, and long-term dewatering in the Whiter Garden area, were among some of the factors that caused pumping increases to slow or to cease in the 1970's and 1980's.Ground-water withdrawals in the study area in 1980 were about 1.7 billion gallons per day. Nearly all of the withdrawal was from four units: Permeable zones A, B, and C of Miocene age and younger, and the lower Claiborae-upper Wilcox aquifer. Ground-water levels have declined hundreds of feet in the intensively pumped areas of Houston-Galveston, Kingsville, Winter Garden, and Lufkin-Nacogdoches. Water-level declines have caused inelastic compaction of clays which, in turn, has resulted in land-surface subsidence of more than one foot in an area of about 2,000 square miles. Maximum subsidence of nearly 10 feet occurs in the Pasadena area east of Houston.A three-dimensional, variable-density digital model was developed to simulate predevelopment and transient flow in the aquifer systems. The modeled area is larger than the study area, and includes adjacent parts of Louisiana and Mexico. The transient model calibration period was from 1910 (predevelopment) to 1982. Model-generated head distributions, water-level hydrographs, and land-surface subsidence were matched to measured data in selected, intensively pumped areas.For the study area, mean horizontal hydraulic conductivity in the calibrated model ranges from 10 feet per day for the middle Wilcox aquifer to 25 feet per day for permeable zone A. Mean transmissivity ranges from about 4,600 feet squared per day for the middle Claiborne aquifer to about 10,400 feet squared per day for permeable zone D. Mean vertical hydraulic conductivity ranges from 1.1x10-5 feet per day for the Vicksburg-Jackson confining unit, to 3.8x10-3 feet per day for permeable zone A. Mean values of calibrated storage coefficient range from 52x10-4 for the middle Claiborne aquifer to 1.7x10-3 for the middle Wilcox aquifer and permeable zone C. Calibrated inelastic specific storage values for clay beds in permeable zones A, B, and C in the Houston-Galveston area are 8.5x10-5, 8.0x10-5, and 8.0x10-6 feet-1, respectively. These values are 85, 80, and 8 times greater than the estimated elastic specific storage value for the clays in permeable zones A, B, and C, respectively.Recharge rates were mapped for predevelopment conditions as determined from a steady-state model calibration. A maximum rate of 3 inches per year was simulated in small areas, and the average rate for the study area was 034 inch per year. Total simulated recharge was 85 million cubic feet per day in the outcrop area. Recharge was equal to discharge in outcrop areas (79 million cubic feet per day) plus net lateral flow out of the study area (6 million cubic feet per day).Rates of inflow and outflow to the ground-water system have nearly tripled from predevelopment to 1982 (85 to 276 million cubic feet per day) based on model simulation. Withdrawal of 231 million cubic feet per day was supplied principally by an increase in outcrop recharge and, to a lesser extent, from a decrease in natural discharge and release of water from storage in aquifers and compacting clay beds. The average simulated 1982 recharge rate for the study area was 0.52 inch per year, with a maximum simulated rate of 6 inches per year in Jackson and Wharton Counties.Because withdrawal has caused problems such as saltwater intrusion, land-surface subsidence, and aquifer dewatering, the Texas Department of Water Resources has projected that ground-water use will decline substantially in most of the study area by the year 2030. Some areas remain favorable for development of additional ground-water supplies. Pumping from older units that are farther inland and in areas where potential recharge is greater will minimize adverse hydrologic effects.
Timber resource of Michigan's Western Upper Peninsula Unit, 1980.
John S. Jr. Spencer
1982-01-01
The fourth inventory of the timber resource of Michigan's Western Upper Peninsula Survey Unit shows an 8% decline in commercial forest area and a 22% gain in growing-stock volume between 1966 and 1980. Presented are highlights and statistics on area, volume, growth, motility, removals, utilization, and biomass.
Team Teaching at Upper Arlington School.
ERIC Educational Resources Information Center
Jackson, Annette R.
1968-01-01
Team teaching has been used for 4 years in the 10th-grade English classes at Upper Arlington High School near Columbus, Ohio. Units are prepared, presented, and evaluated by teachers working together voluntarily. A 6-day American literature unit introducing Romanticism has been particularly successful. The contrasts between Neoclassicism and…
Alfalfa stand length and subsequent crop patterns in the upper Midwestern United States
USDA-ARS?s Scientific Manuscript database
To gain perspective on alfalfa (Medicago sativa L.), annual crop rotations in the upper midwestern United States, USDA-National Agricultural Statistics Service (NASS) cropland data layers (CDLs) and USDA-NRCS soil survey layers were combined for six states (North Dakota, South Dakota, Nebraska, Minn...
Forest statistics for Michigan's Western Upper Peninsula Unit, 1993.
Earl C. Leatherberry
1994-01-01
The fifth inventory of Michigan's Western Upper Peninsula Unit reports 12,329.1 million acres of land, of which 4,836.5 million acres are forested. This bulletin presents statistical highlights and contains detailed tables of forest area, as well as timber volume, growth, removals, mortality, and ownership.
Yager, Richard M.; Metz, P.A.
2004-01-01
Pumpage from the Upper Floridan aquifer in northwest Hillsborough County near Tampa, Florida, has induced downward leakage from the overlying surficial aquifer and lowered the water table in many areas. Leakage is highest where the confining layer separating the aquifers is breached, which is common beneath many of the lakes in the study area. Leakage of water to the Upper Floridan aquifer has lowered the water level in many lakes and drained many wetlands. Ground water from the Upper Floridan aquifer has been added (augmented) to some lakes in an effort to maintain lake levels, but the resulting lake-water chemistry and lake leakage patterns are substantially different from those of natural lakes. Changes in lake-water chemistry can cause changes in lake flora, fauna, and lake sediment composition, and large volumes of lake leakage are suspected to enhance the formation of sinkholes near the shoreline of augmented lakes. The leakage rate of lake water through the surficial aquifer to the Upper Floridan aquifer was estimated in this study using ground-water-flow models developed for an augmented lake (Round Lake) and non-augmented lake (Halfmoon Lake). Flow models developed with MODFLOW were calibrated through nonlinear regression with UCODE to measured water levels and monthly net ground-water-flow rates from the lakes estimated from lake-water budgets. Monthly estimates of ground-water recharge were computed using an unsaturated flow model (LEACHM) that simulated daily changes in storage of water in the soil profile, thus estimating recharge as drainage to the water table. Aquifer properties in the Round Lake model were estimated through transient-state simulations using two sets of monthly recharge rates computed during July 1996 to February 1999, which spanned both average conditions (July 1996 through October 1997), and an El Ni?o event (November 1997 through September 1998) when the recharge rate doubled. Aquifer properties in the Halfmoon Lake model were estimated through steady-state simulations of average conditions in July 1996. Simulated hydrographs computed by the Round and Halfmoon Lake models closely matched measured water-level fluctuations, except during El Ni?o, when the Halfmoon Lake model was unable to accurately reproduce water levels. Possibly, potential recharge during El Ni?o was diverted through ground-water-flow outlets that were not represented in the Halfmoon Lake model, or a large part of the rainfall was diverted into runoff before it could become recharge. Solute transport simulations with MT3D indicate that leakage of lake water extended 250 to 400 feet into the surficial aquifer around Round Lake, and from 75 to 150 feet around Halfmoon Lake before flowing to the underlying Upper Floridan aquifer. These results are in agreement with concentrations of stable isotopes of oxygen-18 (d18O) and deuterium (dD) in the surficial aquifer. Schedules of monthly augmentation rates to maintain constant stages in Round and Halfmoon Lakes were computed using an equation that accounted for changes in the Upper Floridan aquifer head and the deviation from the mean recharge rate. Resulting lake stages were nearly constant during the first half of the study, but increased above target lake stages during El Ni?o; modifying the computation of augmentation rates to account for the higher recharge rate during El Ni?o resulted in lake stages that were closer to the target lake stage. Substantially more lake leakage flows to the Upper Floridan aquifer from Round Lake than from Halfmoon Lake, because the estimated vertical hydraulic conductivities of lake and confining layer sediments and breaches in the confining layer beneath Round Lake are much greater. Augmentation rates required to maintain the low guidance stages in Round Lake (53 feet) and Halfmoon Lake (42 feet) under average Upper Floridan aquifer heads are estimated as 33,850 cubic feet per day and 1,330 to 10,000 cubic feet per day, respectively. T
Perturbation of seafloor bacterial community structure by drilling waste discharge.
Nguyen, Tan T; Cochrane, Sabine K J; Landfald, Bjarne
2018-04-01
Offshore drilling operations result in the generation of drill cuttings and localized smothering of the benthic habitats. This study explores bacterial community changes in the in the upper layers of the seafloor resulting from an exploratory drilling operation at 1400m water depth on the Barents Sea continental slope. Significant restructurings of the sediment microbiota were restricted to the sampling sites notably affected by the drilling waste discharge, i.e. at 30m and 50m distances from the drilling location, and to the upper 2cm of the seafloor. Three bacterial groups, the orders Clostridiales and Desulfuromonadales and the class Mollicutes, were almost exclusively confined to the upper two centimeters at 30m distance, thereby corroborating an observed increase in anaerobicity inflicted by the drilling waste deposition. The potential of these phylogenetic groups as microbial bioindicators of the spatial extent and persistence of drilling waste discharge should be further explored. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Evaluation of the Bouwer and Rice Method of Slug Test Analysis
NASA Astrophysics Data System (ADS)
Brown, David L.; Narasimhan, T. N.; Demir, Z.
1995-05-01
The method of Bouwer and Rice (1976) for analyzing slug test data is widely used to estimate hydraulic conductivity (K). Based on steady state flow assumptions, this method is specifically intended to be applicable to unconfined aquifers. Therefore it is of practical value to investigate the limits of accuracy of the K estimates obtained with this method. Accordingly, using a numerical model for transient flow, we evaluate the method from two perspectives. First, we apply the method to synthetic slug test data and study the error in estimated values of K. Second, we analyze the logical basis of the method. Parametric studies helped assess the role of the effective radius parameter, specific storage, screen length, and well radius on the estimated values of K. The difference between unconfined and confined systems was studied via conditions on the upper boundary of the flow domain. For the cases studied, the Bouwer and Rice analysis was found to give good estimates of K, with errors ranging from 10% to 100%. We found that the estimates of K were consistently superior to those obtained with Hvorslev's (1951) basic time lag method. In general, the Bouwer and Rice method tends to underestimate K, the greatest errors occurring in the presence of a damaged zone around the well or when the top of the screen is close to the water table. When the top of the screen is far removed from the upper boundary of the system, no difference is manifest between confined and unconfined conditions. It is reasonable to infer from the simulated results that when the screen is close to the upper boundary, the results of the Bouwer and Rice method agree more closely with a "confined" idealization than an "unconfined" idealization. In effect, this method treats the aquifer system as an equivalent radial flow permeameter with an effective radius, Re, which is a function of the flow geometry. Our transient simulations suggest that Re varies with time and specific storage. Thus the effective radius may be reasonably viewed as a time-averaged mean value. The fact that the method provides reasonable estimates of hydraulic conductivity suggests that the empirical, electric analog experiments of Bouwer and Rice have yielded shape factors that are better than the shape factors implicit in the Hvorslev method.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.
2017-06-01
Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of condensation when nanostructures are there: (i) increased surface area and (ii) the nanostructure height. The variation of temperature and evaporation number with respect to time was monitored for all cases. An estimation of heat fluxes normal to top and bottom walls also was made to focus the effectiveness of heat transfer in hydrophilic confinement.
1997-09-15
United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). Here, a technician is monitoring the Confined Helium Experiment, or CHeX, that will use microgravity to study one of the basic influences on the behavior and properties of materials by using liquid helium confined between silicon disks. CHeX and several other experiments are scheduled for launch aboard STS-87 on Nov. 19 from KSC
Surani, Arif Anwar; Ali, Salman; Surani, Asif; Zahid, Sohaib; Shoukat, Akber; Varon, Joseph; Surani, Salim
2015-07-01
To evaluate patterns of external injury resulting from bomb blasts in Karachi, and compare the injury profile resulting from explosions in open versus semi-confined blast environments. The retrospective, cross-sectional study was conducted in Karachi and comprised relevant data from January 2000 to October 2007. Casualty medical records and medico-legal certificates of the victims presented to three large public-sector hospitals were evaluated using a self-designed proforma. SPSS 17 was used for statistical analysis. Of the 1146 victims, data of 481(42%) represented the final study sample. Of these, 306(63.6%) were injured in open spaces and 175(36.4%) in semi-confined spaces. Of the 896 recorded injuries, lacerations were encountered as external injury in 427(47.7%) cases, followed by penetrating wounds in 137(15.3%). Lower and upper extremities were injured in 348(38.8%) and 170(19%) victims respectively. Open and semi-confined blast environments produced specific injury pattern and profile (p<0.001). External injuries sustained during bomb blast attacks in Karachi demonstrated specific injury patterns and profiles. Further studies are required to account for internal injuries and classification of injuries based on standardised scoring systems.
Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A
2014-10-10
Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.
Ma, Y G; Lan, L; Zhong, S M; Ong, C K
2011-10-24
In optical frequency, surface plasmons of metal provide us a prominent way to build compact photonic devices or circuits with non-diffraction limit. It is attributed by their extraordinary electromagnetic confining effect. But in the counterpart of lower frequencies, plasmonics behavior of metal is screened by eddy current induced in a certain skin depth. To amend this, spoof plasmons engineered by artificial structures have been introduced to mimic surface plasmons in these frequencies. But it is less useful for practical application due to their weak field confinement as manifested by large field decaying length in the upper dielectric space. Recently, a new type of engineered plasmons, domino plasmon was theoretically proposed to produce unusual field confinement and waveguiding capabilities that make them very attractive for ultra-compact device applications [Opt. Exp. 18, 754-764 (2010)]. In this work, we implemented these ideas and built three waveguiding devices based on domino plasmons. Their strong capabilities to produce versatile and ultra-compact devices with multiple electromagnetic functions have been experimentally verified in microwaves. And that can be extended to THz regime to pave the way for a new class of integrated wave circuits. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.
2009-04-01
Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.
Bondarkov, Mikhail D; Zheltonozhsky, Viktor A; Zheltonozhskaya, Maryna V; Kulich, Nadezhda V; Maksimenko, Andrey M; Farfán, Eduardo B; Jannik, G Timothy; Marra, James C
2011-10-01
Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified, and the fuel burn-up in these samples was determined. A systematic deviation in the burn-up values based on the cesium isotopes in comparison with other radionuclides was observed. The studies conducted were the first ever performed to demonstrate the presence of significant quantities of 242Cm and 243Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from 241Am (and going higher) in comparison with the theoretical calculations.
Fenelon, Joseph M.; Sweetkind, Donald S.; Elliott, Peggy E.; Laczniak, Randell J.
2012-01-01
Contaminants introduced into the subsurface of Yucca Flat, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a set of contour maps developed to represent the hydraulic-head distribution within the two major aquifer systems underlying the area. Aquifers and confining units within these systems were identified and their extents delineated by merging and analyzing hydrostratigraphic framework models developed by other investigators from existing geologic information. Maps of the hydraulic-head distributions in the major aquifer systems were developed from a detailed evaluation and assessment of available water-level measurements. The maps, in conjunction with regional and detailed hydrogeologic cross sections, were used to conceptualize flow within and between aquifer systems. Aquifers and confining units are mapped and discussed in general terms as being one of two aquifer systems: alluvial-volcanic or carbonate. The carbonate aquifers are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater flow directions, approximated from potentiometric contours, are indicated on the maps and sections and discussed for the alluvial-volcanic and regional carbonate aquifers. Flow in the alluvial-volcanic aquifer generally is constrained by the bounding volcanic confining unit, whereas flow in the regional carbonate aquifer is constrained by the siliceous confining unit. Hydraulic heads in the alluvial-volcanic aquifer typically range from 2,400 to 2,530 feet and commonly are elevated about 20-100 feet above heads in the underlying regional carbonate aquifer. Flow directions in the alluvial-volcanic aquifer are variable and are controlled by localized areas where small amounts of water can drain into the regional carbonate aquifer. These areas commonly are controlled by geologic structures, such as Yucca fault. Flow in the regional carbonate aquifer generally drains to the center of the basin; from there flow is to the south-southeast out of the study area toward downgradient discharge areas. Southward flow in the regional carbonate aquifer occurs in a prominent potentiometric trough that results from a faulted zone of enhanced permeability centered about Yucca fault. Vertical hydraulic gradients between the aquifer systems are downward throughout the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer is believed to be minor because of the intervening confining unit. Transient water levels were identified and analyzed to understand hydraulic responses to stresses in Yucca Flat. Transient responses have only a minimal influence on the general predevelopment flow directions in the aquifers. The two primary anthropogenic stresses on the groundwater system since about 1950 are nuclear testing and pumping. Most of the potentiometric response in the aquifers to pumping or past nuclear testing is interim and localized. Persistent, long-lasting changes in hydraulic head caused by nuclear testing occur only in confining units where groundwater fluxes are negligible. A third stress on the groundwater system is natural recharge, which can cause minor, short- and long-term changes in water levels. Long-term hydrographs affected by natural recharge, grouped by similar trend, cluster in distinct areas of Yucca Flat and are controlled primarily by spatial differences in local recharge patterns.
Crandall, Christy A.; Kauffman, Leon J.; Katz, Brian G.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.
2009-01-01
Shallow ground water in the north-central Tampa Bay region, Florida, is affected by elevated nitrate concentrations, the presence of volatile organic compounds, and pesticides as a result of groundwater development and intensive urban land use. The region relies primarily on groundwater for drinking-water supplies. Sustainability of groundwater quality for public supply requires monitoring and understanding of the mechanisms controlling the vulnerability of public-supply wells to contamination. A single public-supply well was selected for intensive study based on the need to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Upper Floridan aquifer in the City of Temple Terrace near Tampa, Florida, and the presence of a variety of chemical constituents in water from the well. A network of 29 monitoring wells was installed, and water and sediment samples were collected within the area contributing recharge to the selected public-supply well to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state groundwater flow model was developed to evaluate the age of groundwater reaching the well and to test hypotheses on the vulnerability of the well to nonpoint source input of nitrate. Particle tracking data were used to calculate environmental tracer concentrations of tritium and sulfur hexafluoride and to calibrate traveltimes and compute flow paths and advective travel times in the model area. The traveltime of particles reaching the selected public-supply well ranged from less than 1 day to 127.0 years, with a median of 13.1 years; nearly 45 percent of the simulated particle ages were less than about 10 years. Nitrate concentrations, derived primarily from residential/commercial fertilizer use and atmospheric deposition, were highest (2.4 and 6.11 milligrams per liter as nitrogen, median and maximum, respectively) in shallow groundwater from the surficial aquifer system and lowest (less than the detection level of 0.06 milligram per liter) in the deeper Upper Floridan aquifer. Denitrification occurred near the interface of the surficial aquifer system and the underlying intermediate confining unit, within the intermediate confining unit, and within the Upper Floridan aquifer because of reducing conditions in this part of the flow system. However, simulations indicate that the rapid movement of water from the surficial aquifer system to the selected public-supply well through karst features (sinkholes) and conduit layers that bypass the denitrifying zones (short-circuits), coupled with high pumping rates, allow nitrate to reach the selected public-supply well in concentrations that resemble those of the overlying surficial aquifer system. Water from the surficial aquifer system with elevated concentrations of nitrate and low concentrations of some volatile organic compounds and pesticides is expected to continue moving into the selected public-supply well, because calculated flux-weighted concentrations indicate the proportion of young affected water contributing to the well is likely to remain relatively stable over time. The calculated nitrate concentration in the selected public-supply well indicates a lag of 1 to 10 years between peak concentrations of nonpoint source contaminants in recharge and appearance in the well.
Biological Responses in Rats Exposed to Cigarette Smoke and Middle East Sand (Dust)
2012-01-01
surface dust (upper 10 mm of soil) was collected in an area no larger than 15.24 m × 15.24 m, and sampling was confined to local soil containing no fill...2004). Airway histopathology One day after the last sand exposure, necropsy was performed. Rats were anesthetized with sodium Iraqi sand toxicity 113...olfactory epithelial necrosis . During the light microscope examination, histopatho- logic diagnoses for tissues of each animal were recorded
Effect of Short-Circuit Pathways on Water Quality in Selected Confined Aquifers (Invited)
NASA Astrophysics Data System (ADS)
McMahon, P. B.
2010-12-01
Confined aquifers in the United States generally contain fewer anthropogenic contaminants than unconfined aquifers because confined aquifers often contain water recharged prior to substantial human development and redox conditions are more reducing, which favors degradation of common contaminants like nitrate and chlorinated solvents. Groundwater in a confined part of the High Plains aquifer near York, Nebraska had an adjusted radiocarbon age of about 2,000 years, and groundwater in a confined part of the Floridan aquifer near Tampa, Florida had apparent ages greater than 60 years on the basis of tritium measurements. Yet compounds introduced more recently into the environment (anthropogenic nitrate and volatile organic compounds) were detected in selected public-supply wells completed in both aquifers. Depth-dependent measurements of flow and chemistry in the pumping supply wells, groundwater age dating, numerical modeling of groundwater flow, and other monitoring data indicated that the confined aquifers sampled by the supply wells were connected to contaminated unconfined aquifers by short-circuit pathways. In the High Plains aquifer, the primary pathways appeared to be inactive irrigation wells screened in both the unconfined and confined aquifers. In the Floridan aquifer, the primary pathways were karst sinkholes and conduits. Heavy pumping in both confined systems exacerbated the problem by reducing the potentiometric surface and increasing groundwater velocities, thus enhancing downward gradients and reducing reaction times for processes like denitrification. From a broader perspective, several confined aquifers in the U.S. have experienced large declines in their potentiometric surfaces because of groundwater pumping and this could increase the potential for contamination in those aquifers, particularly where short-circuit pathways connect them to shallower, contaminated sources of water, such as was observed in York and Tampa.
Resonant-phonon-assisted THz quantum cascade lasers with metal-metal waveguides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callebaut, Hans; Kohen, Stephen; Kumar, Sushil
2004-06-01
We report our development of terahertz (THz) quantum-cascade lasers (QCLs) based on two novel features. First, the depopulation of the lower radiative level is achieved through resonant longitudinal optical (LO-)phonon scattering. This depopulation mechanism is robust at high temperatures and high injection levels. In contrast to infrared QCLs that also use LO-phonon scattering for depopulation, in our THz lasers the selectivity of the depopulation scattering is achieved through a combination of resonant tunneling and LO-phonon scattering, hence the term resonant phonon. This resonant-phonon scheme allows a highly selective depopulation of the lower radiative level with a sub-picosecond lifetime, while maintainingmore » a relatively long upper level lifetime (>5 ps) that is due to upper-to-ground-state scattering. The second feature of our lasers is that mode confinement is achieved by using a novel double-sided metal-metal waveguide, which yields an essentially unity mode confinement factor and therefore a low total cavity loss at THz frequencies. Based on these two unique features, we have achieved some record performance, including, but not limited to, the highest pulsed operating temperature of 137 K, the highest continuous-wave operating temperature of 97 K, and the longest wavelength of 141 {micro}m (corresponding to 2.1 THz) without the assistance of a magnetic field.« less
Wolf, R.J.; Hansen, C.V.; McGovern, H.E.; Spinazola, J.M.
1990-01-01
This Hydrologic Investigations Atlas, which consists of a series of chapters, presents a description of (1) the physical frameworks and (2) the geohydrology of the principal aquifers and confining systems in Kansas. The report is the result of an investigation that has been made as part of the Central Midwest Regional Aquifer System Analysis (CMRASA), one of several major investigations by the U.S. Geological Survey to define regional aquifer systems. These regional analyses are designed to increase knowledge of major flow regimes and provide data for assessing, developing, and managing water supplies. The CMRASA is an investigation of water in Upper Cambrian through Lower Cretaceous rocks in parts of 10 Central Midwestern States, as shown by the map on the envelope cover.
Urban informality as a signifier: Performing urban reordering in suburban Rio de Janeiro
Müller, Frank I
2017-01-01
Urban informality is typically ascribed to the urban poor in cities of the Global South. Drawing on Judith Butler’s concept of performativity and taking the case of Rio de Janeiro in the context of the 2016 Olympic Games, this article conceptualizes informality as a signifier and a procedural, relational category. Specifically, it shows how different class actors have employed the signifier informality (1) to legitimize the confinement of marginalized populations; (2) to justify the organized efforts of the upper middle class to protect their ‘self-enclosed’ gated communities; and (3) to warrant the formation of opposition and alliances between inhabitants, activists, and researchers on the edges of the urban order. This article offers new perspectives to better understand the relationship between informality and confinement by examining the active role that inhabitants of marginalized settlements assume in the Olympic City. PMID:28781405
Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho
Fleck, R.J.; Criss, R.E.
1985-01-01
Regional variations in initial 87Sr/86Sr ratios (ri) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The ri values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with ri of 0.7035. Rb/Sr varies linearly with ri, producing "pseudoisochrons" with apparent "ages" close to the age of the wall rocks. Measured ??18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock ??18O was reduced significantly by exchange with circulating fluids. Metasedimentary rocks of the Belt Supergroup are similarly affected near the batholith, documenting a systematic depletion in 18O as much as 50 km from the margin of the batholith. Plutons of the Bitterroot lobe of the Idaho batholith are remote from the accreted terranes and represent mixtures of Precambrian wall-rocks with melts dominated by continental lower crust (ri>0.708) rather than mantle. "Pseudoisochrons" resulting from these data are actually mixing lines that yield apparent "ages" less than the true age of the wall rocks and meaningless "ri". Assimilation/ fractional-crystallization models permit only insignificant amounts of crystal fractionation during anatexis and mixing for the majority of plutons of the region. ?? 1985 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drellack, S.L.; Prothro, L.B.; Townsend, M.J.
2011-02-01
The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristicsmore » of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).« less
Graham, Jay P; Nachman, Keeve E
2010-12-01
Confined food-animal operations in the United States produce more than 40 times the amount of waste than human biosolids generated from US wastewater treatment plants. Unlike biosolids, which must meet regulatory standards for pathogen levels, vector attraction reduction and metal content, no treatment is required of waste from animal agriculture. This omission is of concern based on dramatic changes in livestock production over the past 50 years, which have resulted in large increases in animal waste and a high degree of geographic concentration of waste associated with the regional growth of industrial food-animal production. Regulatory measures have not kept pace with these changes. The purpose of this paper is to: 1) review trends that affect food-animal waste production in the United States, 2) assess risks associated with food-animal wastes, 3) contrast food-animal waste management practices to management practices for biosolids and 4) make recommendations based on existing and potential policy options to improve management of food-animal waste.
Moore, Thomas E.
2014-01-01
Data from two studies are included in this report. The first study, by Dumoulin and others (2013), reported the detrital zircon U-Pb age analysis of a single sample from the Upper Mississippian Ikalukrok unit of the Kuna Formation (table 1). The second study is that of Moore and others (in press), which focuses on the Upper Jurassic and Lower Cretaceous part of the Brookian sequence in the western Brooks Range (17 samples; table 2). For the latter study, samples were analyzed from the following units (1) the Upper Jurassic unit, Jw, of Curtis and others (1984), (2) the Lower Cretaceous Igrarok Hills unit of Moore and others (2002), (3) the Upper Jurassic and Lower Cretaceous Okpikruak Formation, (4) the Lower Cretaceous lower Brookian shale of Mull (1995), (5) the Lower Cretaceous Mount Kelly Graywacke Tongue of the Fortress Mountain Formation, (6) and the upper Lower Cretaceous Nanushuk Formation as redefined by Mull and others (2003). The results for each study are reported in separate Excel files, with individual samples in each study being shown as separate sheets within the files. The analyses of individual zircons are listed separately on the sheet according to the filtering schemes of the study and by the type of mass spectrometer used.
Pyroclastic Activity at Home Plate in Gusev Crater, Mars
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Aharonson, O.; Clark, B. S.; Cohen, B.; Crumpler, L.; deSouza, P. A.; Farrand, W. H.; Gellert, R.; Grant, J.; Grotzinger, J. P.;
2007-01-01
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
Pyroclastic activity at home plate in Gusev crater, Mars
Squyres, S. W.; Aharonson, O.; Clark, B. C.; Cohen, B. A.; Crumpler, L.; de Souza, P.A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Grotzinger, J.P.; Haldemann, A.F.C.; Johnson, J. R.; Klingelhofer, G.; Lewis, K.W.; Li, R.; McCoy, T.; McEwen, A.S.; McSween, H.Y.; Ming, D. W.; Moore, Johnnie N.; Morris, R.V.; Parker, T.J.; Rice, J. W.; Ruff, S.; Schmidt, M.; Schroder, C.; Soderblom, L.A.; Yen, A.
2007-01-01
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.
NASA Astrophysics Data System (ADS)
Bonev, N.; Stampfli, G.
2003-04-01
In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity. Immobile trace element discrimination of both rock types constrains the volcanic (oceanic)-arc origin. They generally show low total REE concentrations (LREE>HREE) with enrichment of LIL elements relative to the HFS elements, and also very low Nb and relatively high Ce content consistent with an island-arc tectonic setting. We consider that the Meliata-Maliac ocean northern passive margin could be the source provenance for the Upper Permian clastics and Middle-Upper Triassic limestone blocks within the olistostromic melange-like unit, whereas turbidites and magmatic blocks may originate in an island arc-accretionary complex that relates to the southward subduction of the Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. These new structural and petrologic data allow to precise the tectonic setting of the Mesozoic units and their geodynamic context in the frame of the Early Jurassic to Late Cretaceous evolution of the Vardar ocean.
Herrera, Nora B.; Ely, Kate; Mehta, Smita; Stonewall, Adam J.; Risley, John C.; Hinkle, Stephen R.; Conlon, Terrence D.
2017-05-31
Executive SummaryThis report presents a summary of the hydrogeology of the upper Umatilla River Basin, Oregon, based on characterization of the hydrogeologic framework, horizontal and vertical directions of groundwater flow, trends in groundwater levels, and components of the groundwater budget. The conceptual model of the groundwater flow system integrates available data and information on the groundwater resources of the upper Umatilla River Basin and provides insights regarding key hydrologic processes, such as the interaction between the groundwater and surface water systems and the hydrologic budget.The conceptual groundwater model developed for the study area divides the groundwater flow system into five hydrogeologic units: a sedimentary unit, three Columbia River basalt units, and a basement rock unit. The sedimentary unit, which is not widely used as a source of groundwater in the upper basin, is present primarily in the lowlands and consists of conglomerate, loess, silt and sand deposits, and recent alluvium. The Columbia River Basalt Group is a series of Miocene flood basalts that are present throughout the study area. The basalt is uplifted in the southeastern half of the study area, and either underlies the sedimentary unit, or is exposed at the surface. The interflow zones of the flood basalts are the primary aquifers in the study area. Beneath the flood basalts are basement rocks composed of Paleogene to Pre-Tertiary sedimentary, volcanic, igneous, and metamorphic rocks that are not used as a source of groundwater in the upper Umatilla River Basin.The major components of the groundwater budget in the upper Umatilla River Basin are (1) groundwater recharge, (2) groundwater discharge to surface water and wells, (3) subsurface flow into and out of the basin, and (4) changes in groundwater storage.Recharge from precipitation occurs primarily in the upland areas of the Blue Mountains. Mean annual recharge from infiltration of precipitation for the upper Umatilla River Basin during 1951–2010 is about 9.6 inches per year (in/yr). Annual recharge from precipitation for water year 2010 ranged from 3 in. in the lowland area to about 30 in. in the Blue Mountains. Using Kahle and others (2011) data and methods from the Columbia Plateau regional model, average annual recharge from irrigation is estimated to be about 2.2 in/yr for the 13 square miles of irrigated land in the upper Umatilla River Basin.Groundwater discharges to streams throughout the year and is a large component of annual streamflow in the upper Umatilla River Basin. Upward vertical hydraulic gradients near the Umatilla River indicate the potential for groundwater discharge. Groundwater discharge to the Umatilla River generally occurs in the upper part of the basin, upstream from the main stem.Groundwater development in the upper Umatilla River Basin began sometime after 1950 (Davies-Smith and others, 1988; Gonthier and Bolke, 1991). By water year 2010, groundwater use in the upper Umatilla River Basin was approximately 11,214 acre-feet (acre-ft). Total groundwater withdrawals for the study area were estimated at 7,575 acre-ft for irrigation, 3,173 acre-ft for municipal use, and 466 acre-ft for domestic use.Total groundwater flow into or from the study area depends locally on geology and hydraulic head distribution. Estimates of subsurface flow were calculated using the U.S. Geological Survey Columbia Plateau regional groundwater flow model. Net flux values range from 25,000 to 27,700 acre-ft per year and indicate that groundwater is moving out of the upper Umatilla River Basin into the lower Umatilla River Basin.Water level changes depend on storage changes within an aquifer, and storage changes depend on the storage properties of the aquifer, as well as recharge to or discharge from the aquifer. Groundwater level data in the upper Umatilla River Basin are mostly available from wells in Columbia River basalt units, which indicate areas of long-term water level declines in the Grande Ronde basalt unit near Pendleton and Athena, Oregon. Groundwater levels in the Wanapum basalt unit do not show long-term declines in the upper Umatilla River Basin. Because of pumping, some areas in the upper Umatilla River Basin have shown a decrease, or reversal, in the upward vertical head gradient.Key data needs are improvement of the spatial and temporal distribution of water-level data collection and continued monitoring of streamflow gaging sites. Additionally, refinement of recharge estimates would enhance understanding of the processes that provide the groundwater resources in the upper Umatilla River Basin.
Low, Dennis J.; Dugas, Diana L.
1999-01-01
Rapid population growth in Adams County has increased the demand for ground water and led Adams County planning officials to undertake an effort to evaluate the capabilities of existing community water systems to meet future, projected growth and to begin wellhead-protection programs for public-supply wells. As part of this effort, this report summarizes ground-water data on a countywide scale and provides hydrogeologic information needed to delineate wellheadprotection areas in three hydrogeologic units (Gettysburg Lowland, Blue Ridge, and Piedmont Lowland).Reported yields, specific capacities, well depths, and reported overburden thickness can vary by hydrogeologic unit, geologic formation, water use (domestic and nondomestic), and topographic setting. The reported yields of domestic wells drilled in the Gettysburg Lowland (median reported yield of 10 gallons per minute) are significantly greater than the reported yields from the Blue Ridge, Piedmont Lowland, and Piedmont Upland (median reported yields of 7.0, 8.0, and 7.0 gallons per minute, respectively). Reported yields of domestic wells completed in the diabase and the New Oxford Formation of the Gettysburg Lowland, and in the metarhyolite and metabasalt of the Blue Ridge, are significantly lower than reported yields of wells completed in the Gettysburg Formation. For nondomestic wells, reported yields from the Conestoga Formation of the Piedmont Lowland are significantly greater than in the diabase. Reported yields of nondomestic wells drilled in the Gettysburg, New Oxford, and Conestoga Formations, and the metarhyolite are significantly greater than those for domestic wells drilled in the respective geologic formations. Specific capacities of nondomestic wells in the Conestoga and Gettysburg Formations are significantly greater than their domestic counterparts. Specific capacities of nondomestic wells in the Conestoga Formation are significantly greater than the specific capacities of nondomestic wells in the metarhyolite, diabase, and Gettysburg and New Oxford Formations.Well depths do not vary considerably by hydrogeologic unit; instead, the greatest variability is by water use. Nondomestic wells drilled in the metarhyolite, Kinzers, Conestoga, Gettysburg, and New Oxford Formations are completed at significantly greater depths than their domestic counterparts. The reported thickness of overburden varies significantly by geologic formation and water use, but not by topographic setting. The median overburden thickness of the Blue Ridge (35 feet) is greater than in any other hydrologic unit.Except where adversely affected by human activities, ground water in Adams County is suitable for most purposes. Calcium and magnesium are the dominant cations, and bicarbonate is the dominant anion. In general, the pH and hardness of ground water is lower in areas that are underlain by crystalline rocks (Blue Ridge and Piedmont Upland) than in areas underlain by sedimentary rocks, especially where limestone or dolomite is dominant (Piedmont Lowland). Dissolved nitrate (as N) and dissolved nitrite (as N) concentrations in the water from 9 of 69 wells and 3 of 80 wells sampled exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant levels (MCL) of 10 and 1.0 mg/L (milligrams per liter), respectively. Sulfate concentrations greater than the proposed USEPA MCL of 500 mg/L were reported from the water in 3 of 110 wells sampled. Iron concentrations in the water from 13 of 67 wells sampled and manganese in the water from 9 of 64 wells sampled exceeded the USEPA secondary maximum contaminant level (SMCL) of 300 and 50 mg/L (micrograms per liter), respectively. Aluminum concentrations in the water from 16 of 22 wells sampled exceeded the lower USEPA SMCL threshold of 50 µg/L. Pesticides were detected in the water from seven wells but at concentrations that did not exceed USEPA MCL's. Most volatile organic compounds detected in the ground water were confined to USEPA Superfund sites or the immediate area around the sites.The hydrogeologic framework in the vicinity of four public-supply well fields (Gettysburg, Abbottstown, Fairfield, and Littlestown) consists of two zones—an upper zone and a lower zone. In general, the upper zone is thin (5 to 60 feet or more) and dominated by saturated regolith and deeply weathered bedrock. The upper zone is bounded at the top by the water table and below by bedrock in which secondary porosity and permeability are considerably lower. Ground water is generally unconfined, and recharge rates are rapid. Ground-water flow is influenced more strongly by the topography of the ground surface and bedrock surface than by geologic structure. The lower zone is relatively thick (400 to 1,000 feet) and consists of slightly weathered to highly competent bedrock. Ground-water flow paths in the lower zone are generally greater and recharge rates are longer than in the upper zone; confined conditions are common, especially at depth.
Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood
NASA Astrophysics Data System (ADS)
Yochum, Steven E.; Sholtes, Joel S.; Scott, Julian A.; Bledsoe, Brian P.
2017-09-01
The Colorado Front Range flood of September 2013 induced a diverse range of geomorphic changes along numerous stream corridors, providing an opportunity to assess responses to a large flood in a semiarid landscape. We defined six classes of geomorphic change related to peak unit stream power and valley confinement for 531 stream reaches over 226 km, spanning a gradient of channel scales and slope. Geomorphic change was generally driven by erosion of channel margins in confined reaches and by a combination of deposition and erosion in unconfined reaches. The magnitude of geomorphic change typically increased with unit stream power (ω), with greater responses observed in unconfined channels. Cumulative logit modeling indicated that total stream power or unit stream power, unit stream power gradient, and valley confinement are significant predictors of geomorphic response for this flood event. Based on this dataset, thresholds for geomorphic adjustment were defined. For channel slopes < 3%, we noted a credible potential for substantial channel widening with ω > 230 W/m2 (16 lb/ft-s; at least 10% of the investigated sites experienced substantial channel widening) and a credible potential for avulsions, braiding, and loss of adjacent road embankments associated with ω > 480 W/m2 (33 lb/ft-s; at least 10% of the investigated sites experienced such geomorphic change). Infrequent to numerous eroded banks were very likely with ω > 700 W/m2 (48 lb/ft-s), with substantial channel widening or major geomorphic change shifting from credible to likely. Importantly, in reaches where there were large reductions in ω as the valley form shifted from confined to relatively unconfined, large amounts of deposition-induced, reach-scale geomorphic change occurred in some locations at relatively low ω. Additionally, alluvial channels with slopes > 3% had greater resistance to geomorphic change, likely caused by armoring by larger bed material and increased flow resistance from enhanced bedforms. Finally, we describe how these results can potentially be used by practitioners for assessing the risk of geomorphic change when evaluating current or planned conditions.
Yucatán subsurface stratigraphy: Implications and constraints for the Chicxulub impact
NASA Astrophysics Data System (ADS)
Ward, W. C.; Keller, G.; Stinnesbeck, W.; Adatte, T.
1995-10-01
Much of the discussion about the effects of an end-of-Cretaceous impact by a large extraterrestrial body in northwestern Yucatán has been done in the context of limited and partly erroneous published data on the Mesozoic stratigraphy of that area. Reexamination of cores and geophysical logs taken in several Pemex wells has produced improved lithologic and biostratigraphic correlation of the Jurassic to Maastrichtian section across the northern Yucatán peninsula. These data suggest that major disturbance of strata by an impact would have been confined to within about 100 km of the proposed impact center near Chicxulub. The only unusual lithologic unit is polymict breccia, which apparently was penetrated at or near the top of the Cretaceous section in all the deep wells of northern Yucatán. This breccia in Pemex wells Yucatán 1, 2, 4, 5A, and 6 is composed predominantly of detrital dolomite, limestone, and anhydrite clasts set in dolomitized carbonate mud matrix, which contains upper Maastrichtian foraminifers. These constituents, mixed with fragments of altered glass or melt rock, shocked quartz and feldspar, and basement rock, suggest an impact as the most likely origin for the breccia. The timing of brecciation is poorly constrained by biostratigraphic data. There is some evidence, however, that the breccia unit is overlain by about 18 m of uppermost Maastrichtian marls, suggesting an impact before the Cretaceous-Tertiary boundary. In addition, there may have been more than one episode of breccia deposition.
Small, Ted A.; Clark, Allan K.
2000-01-01
The hydrogeologic subdivisions of the Edwards aquifer outcrop in Medina County generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The most porous and permeable rocks of the Devils River Formation in Medina County appear to be in the top layer. The upper member of the Glen Rose Limestone, the lower confining unit, has much less porosity and permeability than that observed in the Edwards aquifer.The Edwards aquifer has relatively large porosity and permeability resulting, in part, from the development or redistribution of secondary porosity. Lithology, stratigraphy, diagenesis, and karstification account for the effective porosity and permeability in the Edwards aquifer outcrop. Karst features that can greatly enhance effective porosity and permeability in the Edwards aquifer outcrop include sinkholes, dolines, and caves. The Edwards aquifer rocks in Medina County change from the eight-member Edwards Group to the essentially indivisible Devils River Formation. The facies change occurs along a line extending northwestward from just south of Medina Lake.
Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device.
Katzschmann, Robert K; Araki, Brandon; Rus, Daniela
2018-03-01
This paper presents ALVU (Array of Lidars and Vibrotactile Units), a contactless, intuitive, hands-free, and discreet wearable device that allows visually impaired users to detect low- and high-hanging obstacles, as well as physical boundaries in their immediate environment. The solution allows for safe local navigation in both confined and open spaces by enabling the user to distinguish free space from obstacles. The device presented is composed of two parts: a sensor belt and a haptic strap. The sensor belt is an array of time-of-flight distance sensors worn around the front of a user's waist, and the pulses of infrared light provide reliable and accurate measurements of the distances between the user and surrounding obstacles or surfaces. The haptic strap communicates the measured distances through an array of vibratory motors worn around the user's upper abdomen, providing haptic feedback. The linear vibration motors are combined with a point-loaded pretensioned applicator to transmit isolated vibrations to the user. We validated the device's capability in an extensive user study entailing 162 trials with 12 blind users. Users wearing the device successfully walked through hallways, avoided obstacles, and detected staircases.
Fine-Scale Comparison of TOMS Total Ozone Data with Model Analysis of an Intense Midwestern Cyclone
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Gallus, William A., Jr.; Stanford, John L.; Brown, John M.
2000-01-01
High-resolution (approx. 40 km) along-track total column ozone data from the Total Ozone Mapping Spectrometer (TOMS) instrument are compared with a high-resolution mesoscale numerical model analysis of an intense cyclone in the Midwestern United States. Total ozone increased by 100 DU (nearly 38%) as the TOMS instrument passed over the associated tropopause fold region. Complex structure is seen in the meteorological fields and compares well with the total ozone observations. Ozone data support the meteorological analysis showing that stratospheric descent was confined to levels above approx. 600 hPa; significant positive potential vorticity at lower levels is attributable to diabetic processes. Likewise, meteorological fields show that two pronounced ozone streamers extending north and northeastward into Canada at high levels are not bands of stratospheric air feeding into the cyclone; one is a channel of exhaust downstream from the system, and the other apparently previously connected the main cyclonic circulation to a southward intrusion of polar stratospheric air and advected eastward as the cut-off cyclone evolved. Good agreement between small-scale features in the model output and total ozone data underscores the latter's potential usefulness in diagnosing upper tropospheric/lower stratospheric dynamics and kinematics.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul
2016-07-01
Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.
Weems, Robert E.; Tanner, Lawrence H.; Lucas, Spencer G.
2016-01-01
The Upper Permian? - Lower Jurassic Newark Supergroup of eastern North America has a strikingly uniform succession of lithologic units. This uniformity is seen regardless of whether these units are characterized on the basis of their lithostratigraphy, allostratigraphy, biostratigraphy, or chemostratigraphy. After deposition, these units were broken up tectonically and attacked erosionally; parts of them survive today only within localized, down-faulted areas. Many lines of evidence compellingly demonstrate that most or all of these remnant units once were physically continuous between remaining outcrops. It is needlessly confusing to give every remnant of each unit a different name in each area where it persists simply because it is now physically isolated by erosion from other portions of the same unit. Instead, these units should be defined within a regional lithostratigraphic framework that emphasizes their common origins and original stratigraphic continuity. To this end, the formation-level stratigraphy of the Newark Supergroup is reduced from 58 locally applied and locally defined formations to a succession of only 16 uniformly defined and regionally recognizable formations. In all cases the oldest name validly applied to each formation is given priority over more recently erected synonymous names, which are either abandoned or, in a few cases, changed in rank to a member of one of the formations recognized here. The Newark Supergroup is here organized into four regionally recognizable groups, each subdivided into regionally recognizable formations. In ascending order, the Upper Permian?-Middle Triassic Acadia Group (new name) includes the Honeycomb Point Formation, Chedabucto Formation, Economy Formation, and Evangeline Formation. This group is preserved only in the Canadian Fundy and Chedabucto basins. The Upper Triassic (Carnian-Norian) Chatham Group includes the Doswell Formation, Stockton Formation, Lockatong Formation, and Passaic Formation. The Upper Triassic-Lower Jurassic (upper Rhaetian-lower Hettangian) Meriden Group includes the Talcott Formation, Shuttle Meadow Formation, Holyoke Formation, East Berlin Formation, and Hampden Formation. The term "Agawam Group," previously proposed to encompass all Newark Supergroup strata above the highest basalt of the Meriden Group, is here abandoned and replaced with the name "Portland Group" for the same suite of strata. The Lower Jurassic (upper Hettangian-lower Sinemurian) Portland Group includes a lower Boonton Formation, an overlying Longmeadow Sandstone (here reinstated), and the Mount Toby Conglomerate, which laterally intertongues with both the Boonton Formation and the Longmeadow Sandstone.
NASA Astrophysics Data System (ADS)
Cheong, Daekyo; Shin, Seungwon; Park, Yong-Hee; Nam, Seung Il
2010-05-01
The Lake Hovsgol is located in northeast Eurasia which is a tectonic lake formed by rifting, and its thick bottom sediments record climatic change of the past. The lake is a suitable site to study a rapid Quaternary climate change. This study includes analysis of smear slides, particle size analysis, data of spectrophotometer and magnetic susceptibility, trace element analysis using XRF core scanner for HS-3, 5 gravity core sediments from the middle southern Lake Hovsgol. HS-3 core sediments were measured for TOC, and HS-5 core was scrutinized for species analysis of ostracods. HS-3 core was obtained at 160 m water depth, and is divided into three sedimentary units. Unit A of HS-3 is characterized by distinct lamination, high sand contents considerably decreasing towards the upper part, and the ostracods are rarely discovered at the upper part of Unit A. Unit B is characterized by weakly lamination, and some ostracods are observed in the lower part, but diatoms are observed in the upper part of Unit B. Also grain size is getting smaller toward the upper part. Unit C consists of fine diatomaceous ooze and contains abundant diatoms. Overall organic contents are high, and lamination with black-colored organic layer is observed in the lower part of Unit C. HS-5 core was obtained at 210 m water depth and is divided into two sedimentary units with faint boundary. Unit A of HS-5 is characterized by lamination and contains abundant diatoms and ostracods. At Unit B, grain size is getting smaller toward the upper part, and occurrence change of ostracods is observed in the upper part. Framboidal pyrite were formed during the diagenesis. Four species of ostracods are observed in the core sediments, i.e. Cytherissa lacustris, Limnocythere inopinate dominate in the lower part, and Candona lepnevae, Leucocythere sp dominates in the upper part. Carbon age dating results show that sediment unit B of HS-5 and unit C of HS-3 containing rare ostracods are similar in age. The reason of low occurrence of ostracods fossils and high content of sand is consistent with that ostracods disappeared as temperature rise or inhabitant change since late LGM. An age of sediment unit B of HS-3 is the Last Deglacial period when organic contents increased obviously and contents of sand decreased as the lake level rose. The change of magnetic susceptibility and Fe/Al, Ca/Al and Si/Al ratio values are observed at 90 cm depth section of HS-3, which indicates that input sediments changed as the lake level fell due to a temporal cooling at Younger Dryas during the Last Deglacial. The age of the sediment unit C of HS-3 is Holocene. At this period, high contents of organic materials were caused by increase of nutrition input because of a thick vegetation cover as temperature rose, and thus diatom blooming. The organic strata containing mica minerals at early Holocene have been formed during fall or stagnation periods of the lake level. We interpreted that those are closely related to the global environmental change.
Water-Level Changes in Aquifers of the Atlantic Coastal Plain, Predevelopment to 2000
dePaul, Vincent T.; Rice, Donald E.; Zapecza, Otto S.
2008-01-01
The Atlantic Coastal Plain aquifer system, which underlies a large part of the east coast of the United States, is an important source of water for more than 20 million people. As the population of the region increases, further demand is being placed on those ground-water resources. To define areas of past and current declines in ground-water levels, as well as to document changes in those levels, historical water-level data from more than 4,000 wells completed in 13 regional aquifers in the Atlantic Coastal Plain were examined. From predevelopment to 1980, substantial water-level declines occurred in many areas of the Atlantic Coastal Plain. Regional variability in water-level change in the confined aquifers of the Atlantic Coastal Plain resulted from regional differences in aquifer properties and patterns of ground-water withdrawals. Within the Northern Atlantic Coastal Plain, declines of more than 100 ft were observed in New Jersey, Delaware, Maryland, Virginia, and North Carolina. Regional declines in water levels were most widespread in the deeper aquifers that were most effectively confined?the Upper, Middle, and Lower Potomac aquifers. Within these aquifers, water levels had declined up to 200 ft in southern Virginia and to more than 100 ft in New Jersey, Delaware, Maryland, and North Carolina. Substantial water-level declines were also evident in the regional Lower Chesapeake aquifer in southeastern New Jersey; in the Castle Hayne-Piney Point aquifer in Delaware, Maryland, southern Virginia and east-central North Carolina; in the Peedee-Severn aquifer in east-central New Jersey and southeastern North Carolina; and in the Black Creek-Matawan aquifer in east-central New Jersey and east-central North Carolina. Conversely, declines were least severe in the regional Upper Chesapeake aquifer during this period. In the Southeastern Coastal Plain, declines of more than 100 ft in the Chattahoochee River aquifer occurred in eastern South Carolina and in southwestern Georgia, where water levels had declined approximately 140 and 200 ft from prepumping conditions, respectively. Within the Upper Floridan aquifer, decline was most pronounced in the coastal areas of Georgia and northern Florida where ground-water withdrawals were at their highest. These areas included Savannah, Jesup, and Brunswick, Ga., as well as the St. Marys, Ga. and Fernandina Beach, Fla., area. Regional water levels had declined by 80 ft near Brunswick and Fernandina Beach to as much as 160 ft near Savannah. Since 1980, water levels in many areas have continued to fall; however, in some places the rate at which levels declined has slowed. Conservation measures have served to limit withdrawals in affected areas, moderating or stabilizing water-level decline, and in some cases, resulting in substantial recovery. In other cases, increases in ground-water pumpage have resulted in continued rapid decline in water levels. From 1980 to 2000, water levels across the regional Upper, Middle, and Lower Potomac aquifers continued to decline across large parts of Delaware, Maryland, Virginia, and North Carolina, and water levels had stabilized or recovered throughout much of Long Island and New Jersey. Substantial water-level recovery had also occurred in east-central New Jersey in the Peedee-Severn and Black Creek-Matawan aquifers and in east-central North Carolina in the Castle Hayne-Piney Point aquifer. Substantial declines from about 1980 to about 2000 occurred in the Peedee-Severn aquifer in southern New Jersey, the Beaufort-Aquia aquifer in southern Maryland, and the Black Creek-Matawan and Upper Potomac aquifers in central and southern parts of the coastal plain in North Carolina. From 1980 to about 2000, water levels within the regional Upper Floridan aquifer had generally stabilized in response to shifting withdrawal patterns and reductions in pumpage at many places within the coastal region. Ground-water levels had stabilized and recovered at the ma
Space analogue studies in Antarctica
NASA Technical Reports Server (NTRS)
Lugg, D.; Shepanek, M.
1999-01-01
Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.
Space analogue studies in Antarctica
NASA Astrophysics Data System (ADS)
Lugg, D.; Shepanek, M.
1999-09-01
Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.
Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California
Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth
2013-01-01
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands, silts, and clays and generally are coarser closest to the Sierra Nevada and become finer towards the center of the basin. The structure and composition of the deposits in the Madera-Chowchilla study unit are different from those in other parts of the eastern San Joaquin Valley because the Fresno and Chowchilla Rivers primarily drain the Sierra Nevada foothills, whereas the larger rivers drain higher elevations with greater sediment supply. These differences in the sources of sediments are important because they may affect the groundwater chemistry and the physical structure of the sedimentary deposits. Some of the clay layers are lacustrine deposits, the most extensive of which, the Corcoran Clay, underlies the western part of the study unit and divides the primary aquifer system into an unconfined to semi-confined upper system and a largely confined lower system. Regional lateral flow of groundwater is southwest towards the valley trough. Irrigation return flows are the major source of groundwater recharge, and groundwater pumping is the major source of discharge. Groundwater on a lateral flow path may be repeatedly extracted by pumping wells and reapplied at the surface multiple times before reaching the valley trough, resulting in a substantial component of downward vertical flow (Burow and others, 2004; Phillips and others, 2007; Faunt, 2009). This flow pattern enhances movement of water from shallow depths to the primary aquifer system.
NASA Astrophysics Data System (ADS)
El Araby, Mahmoud; Odling, Noelle; Clark, Roger; West, Jared
2010-05-01
Borehole water levels fluctuate in response to deformation of the surrounding aquifer caused by surface loading due to barometric pressure or strain caused by Earth and ocean tides. The magnitude and nature of this response mainly depend on the hydraulic properties of the aquifer and overlying units and borehole design. Thus water level responses reflect the effectiveness of a confining unit as a protective layer against aquifer contamination (and therefore groundwater vulnerability) and to potential aquifer recharge/discharge zones. In this study, time series of borehole water levels and barometric pressure are being investigated using time series analysis and signal processing techniques with the aim of developing a methodology for assessing recharge/discharge distribution and groundwater vulnerability in the confined/semi-confined part of the Chalk aquifer in East Yorkshire, UK. The chalk aquifer in East Yorkshire is an important source for industrial and domestic water supply. The aquifer water quality is threatened by surface pollution particularly by nitrates from agricultural fertilizers. The confined/semi-confined part of this aquifer is covered by various types of superficial deposits resulting in a wide range of the aquifer's degree of confinement. A number of boreholes have been selected for monitoring to cover all these various types of confining units. Automatic pressure transducers are installed to record water levels and barometric pressure measurements at each borehole on 15 minutes recording intervals. In strictly confined aquifers, borehole water level response to barometric pressure is an un-drained instantaneous response and is a constant fraction of the barometric pressure changes. This static confined constant is called the barometric efficiency which can be estimated simply by the slope of a regression plot of water levels versus barometric pressure. However, in the semi confined aquifer case this response is lagged due to water movement between the aquifer and the confining layer. In this case the static constant barometric efficiency is not applicable and the response is represented by a barometric response function which reflects the timing and frequency of the barometric pressure loading. In this study, the barometric response function is estimated using de-convolution techniques both in the time domain (least squares regression de-convolution) and in the frequency domain (discrete Fourier transform de-convolution). In order to estimate the barometric response function, borehole water level fluctuations due to factors other than barometric pressure should be removed (de-trended) as otherwise they will mask the response relation of interest. It is shown from the collected borehole data records that the main four factors other than barometric pressure contribute to borehole water level fluctuations. These are the rainfall recharge, Earth tides, sea tides and pumping activities close to the borehole location. Due to the highly variable nature of the UK weather, rainfall recharge shows a wide variation throughout the winter and summer seasons. This gives a complicated recharge signal over a wide range of frequencies which must be de-trended from the borehole water level data in order to estimate the barometric response function. Methods for removing this recharge signal are developed and discussed. Earth tides are calculated theoretically at each borehole location taking into account oceanic loading effects. Ocean tide effects on water levels fluctuations are clear for the boreholes located close to the coast. A Matlab code has been designed to calculate and de-trend the periodic fluctuations in borehole water levels due to Earth and ocean tides using the least squares regression technique based on a sum of sine and cosine fitting model functions. The program results have been confirmed using spectral analysis techniques.
Hunn, J.D.; Seaber, P.R.
1986-01-01
Water samples were taken from test wells drilled near an inactive phosphatic clayey waste storage settling pond, from the settling pond and its perimeter ditch, and from an active settling pond near White Springs, Hamilton County, in north-central Florida. The purpose was to document the seepage of chemical constituents from the inactive settling pond and ditch into the adjacent surficial groundwater system, and to assess the potential for movement of these constituents into the deeper Floridan aquifer system which is the major source of public supply in the area. The study area is underlain by a 2 ,500-ft-thick sequence of Coastal Plain sediments of Early Cretaceous to Holocene age. The rocks of Tertiary and Quaternary age that underlie the test site area can be grouped into three major geohydrologic units. In descending order, these units are: surficial aquifer, Hawthorn confining unit, and Floridan aquifer system. Phosphate deposits occur in the upper part of the surficial aquifer. Water in the active settling pond is a calcium magnesium sulfate type with a dissolved solids concentration of 250 mg/L, containing greater amounts of phosphorus, iron, aluminum, barium, zinc, and chromium than the other surface waters. Water in the perimeter ditch is a calcium sulfate type with a dissolved solids concentration of 360 to 390 mg/L, containing greater amounts of calcium, sulfate, nitrogen, and fluoride than other surface waters. Water from the inactive settling pond is a calcium magnesium bicarbonate type with a dissolved solids concentration of 140 mg/L, containing more bicarbonate than the other surface waters. Large amounts of chemical constituents in the phosphate waste disposal slurry are apparently trapped in the sediments of the settling ponds. The quality of water in the upper part of the surficial aquifer from wells within 200 to 400 ft of the inactive settling pond shows no signs of chemical contamination from phosphate industry operations. The horizontal groundwater velocity calculated for this aquifer between the ditch surrounding the settling pond and the test wells is between 100 to 2,000 ft/year, which is enough time for water to have reached the test wells in the 6 years the pond has been operating. (Author 's abstract)
Nielsen, Martha G.; Locke, Daniel B.
2012-01-01
In order to evaluate water availability in the State of Maine, the U.S. Geological Survey (USGS) and the Maine Geological Survey began a cooperative investigation to provide the first rigorous evaluation of watersheds deemed "at risk" because of the combination of instream flow requirements and proportionally large water withdrawals. The study area for this investigation includes the Harvey and Merrill Brook watersheds and the Freeport aquifer in the towns of Freeport, Pownal, and Yarmouth, Maine. A numerical groundwater- flow model was used to evaluate groundwater withdrawals, groundwater-surface-water interactions, and the effect of water-management practices on streamflow. The water budget illustrates the effect that groundwater withdrawals have on streamflow and the movement of water within the system. Streamflow measurements were made following standard USGS techniques, from May through September 2009 at one site in the Merrill Brook watershed and four sites in the Harvey Brook watershed. A record-extension technique was applied to estimate long-term monthly streamflows at each of the five sites. The conceptual model of the groundwater system consists of a deep, confined aquifer (the Freeport aquifer) in a buried valley that trends through the middle of the study area, covered by a discontinuous confining unit, and topped by a thin upper saturated zone that is a mixture of sandy units, till, and weathered clay. Harvey and Merrill Brooks flow southward through the study area, and receive groundwater discharge from the upper saturated zone and from the deep aquifer through previously unknown discontinuities in the confining unit. The Freeport aquifer gets most of its recharge from local seepage around the edges of the confining unit, the remainder is received as inflow from the north within the buried valley. Groundwater withdrawals from the Freeport aquifer in the study area were obtained from the local water utility and estimated for other categories. Overall, the public-supply withdrawals (105.5 million gallons per year (Mgal/yr)) were much greater than those for any other category, being almost 7 times greater than all domestic well withdrawals (15.3 Mgal/yr). Industrial withdrawals in the study area (2.0 Mgal/yr) are mostly by a company that withdraws from an aquifer at the edge of the Merrill Brook watershed. Commercial withdrawals are very small (1.0 Mgal/yr), and no irrigation or other agricultural withdrawals were identified in this study area. A three-dimensional, steady-state groundwater-flow model was developed to evaluate stream-aquifer interactions and streamflow depletion from pumping, to help refine the conceptual model, and to predict changes in streamflow resulting from changes in pumping and recharge. Groundwater levels and flow in the Freeport aquifer study area were simulated with the three-dimensional, finite-difference groundwater-flow modeling code, MODFLOW-2005. Study area hydrology was simulated with a 3-layer model, under steady-state conditions. The groundwater model was used to evaluate changes that could occur in the water budgets of three parts of the local hydrologic system (the Harvey Brook watershed, the Merrill Brook watershed, and the buried aquifer from which pumping occurs) under several different climatic and pumping scenarios. The scenarios were (1) no pumping well withdrawals; (2) current (2009) pumping, but simulated drought conditions (20-percent reduction in recharge); (3) current (2009) recharge, but a 50-percent increase in pumping well withdrawals for public supply; and (4) drought conditions and increased pumping combined. In simulated drought situations, the overall recharge to the buried valley is about 15 percent less and the total amount of streamflow in the model area is reduced by about 19 percent. Without pumping, infiltration to the buried valley aquifer around the confining unit decreased by a small amount (0.05 million gallons per day (Mgal/d)), and discharge to the streams increased by about 8 percent (0.3 Mgal/d). A 50-percent increase in pumping resulted in a simulated decrease in streamflow discharge of about 4 percent (0.14 Mgal/d). Streamflow depletion in Harvey Brook was evaluated by use of the numerical groundwater-flow model and an analytical model. The analytical model estimated negligible depletion from Harvey Brook under current (2009) pumping conditions, whereas the numerical model estimated that flow to Harvey Brook decreased 0.38 cubic feet per second (ft3/s) because of the pumping well withdrawals. A sensitivity analysis of the analytical model method showed that conducting a cursory evaluation using an analytical model of streamflow depletion using available information may result in a very wide range in results, depending on how well the hydraulic conductivity variables and aquifer geometry of the system are known, and how well the aquifer fits the assumptions of the model. Using the analytical model to evaluate the streamflow depletion with an incomplete understanding of the hydrologic system gave results that seem unlikely to reflect actual streamflow depletion in the Freeport aquifer study area. In contrast, the groundwater-flow model was a more robust method of evaluating the amount of streamflow depletion that results from withdrawals in the Freeport aquifer, and could be used to evaluate streamflow depletion in both streams. Simulations of streamflow without pumping for each measurement site were compared to the calibratedmodel streamflow (with pumping), the difference in the total being streamflow depletion. Simulations without pumping resulted in a simulated increase in the steady-state flow rate of 0.38 ft3/s in Harvey Brook and 0.01 ft3/s in Merrill Brook. This translates into a streamflow-depletion amount equal to about 8.5 percent of the steady-state base flow in Harvey Brook, and an unmeasurable amount of depletion in Merrill Brook. If pumping was increased by 50 percent and recharge reduced by 20 percent, the amount of streamflow depletion in Harvey Brook could reach 1.41 ft3/s.
Lacombe, Pierre J.; Rosman, Robert
1997-01-01
Water levels in 722 wells in the Coastal Plain of New Jersey, Pennsylvania, and northeastern Delaware were measured during October and November 1993 and were used to define the potentiometric surface of the eight major confined aquifers of the area. Isochlors (lines of equal chloride concentration) for 250 and 10,000 milligrams per liter are included to show the extent of freshwater in each of the aquifers. Estimated water withdrawals from the eight major confined aquifers are reported for 1978-94. Water-withdrawal and water-level maps including isochlors were constructed for the Cohansey aquifer of Cape May County, the Atlantic City 800-foot sand, the Piney Point aquifer, the Wenonah-Mount Laurel aquifer, the Englishtown aquifer system, the Upper Potomac-Raritan-Magothy, the Middle and undifferentiated Potomac-Raritan-Magothy, and the Lower Potomac-Raritan-Magothy aquifers. From 1988 to 1993, water levels near the center of the large cones of depression in the Middlesex-Monmouth County area rose as much as 120 ft in the Wenonah-Mount Laurel aquifer and Englishtown aquifer system, 40 ft in the Upper Potomac-Raritan-Magothy aquifer, and 96 ft in the Middle and undifferentiated Potomac-Raritan-Magothy aquifers. Large cones of depression in the potentiometric surface of aquifers of the Potomac-Raritan-Magothy aquifer system in the Burlington-Camden-Gloucester area remained at about the same altitude; that is, the potentiometric surface neither rose nor fell in the aquifers by more than 5 feet. In the same area, water levels in the Englishtown aquifer system were static, whereas the water levels in the Wenonah-Mount Laurel aquifer declined 5 to 20 feet, forming an expanded cone of depression. Water levels in the Cohansey, Atlantic City 800-foot sand, and Piney Point aquifers declined by 1 to 10 feet during 1988?93.
The occurrence of dystonia in upper-limb multiple sclerosis tremor.
Van der Walt, A; Buzzard, K; Sung, S; Spelman, T; Kolbe, S C; Marriott, M; Butzkueven, H; Evans, A
2015-12-01
The pathophysiology of multiple sclerosis (MS) tremor is uncertain with limited phenotypical studies available. To investigate whether dystonia contributes to MS tremor and its severity. MS patients (n = 54) with and without disabling uni- or bilateral upper limb tremor were recruited (39 limbs per group). We rated tremor severity, writing and Archimedes spiral drawing; cerebellar dysfunction (SARA score); the Global Dystonia Scale (GDS) for proximal and distal upper limbs, dystonic posturing, mirror movements, geste antagoniste, and writer's cramp. Geste antagoniste, mirror dystonia, and dystonic posturing were more frequent and severe (p < 0.001) and dystonia scores were correlated with tremor severity in tremor compared to non-tremor patients. A 1-unit increase in distal dystonia predicted a 0.52-Bain unit (95% confidence interval (CI) 0.08-0.97), p = 0.022) increase in tremor severity and a 1-unit (95% CI 0.48-1.6, p = 0.001) increase in drawing scores. A 1-unit increase in proximal dystonia predicted 0.93-Bain unit increase (95% CI 0.45-1.41, p < 0.001) in tremor severity and 1.5-units (95% CI 0.62-2.41, p = 0.002) increase in the drawing score. Cerebellar function in the tremor limb and tremor severity was correlated (p < 0.001). Upper limb dystonia is common in MS tremor suggesting that MS tremor pathophysiology involves cerebello-pallido-thalamo-cortical network dysfunction. © The Author(s), 2015.
Sarsa, Antonio; Le Sech, Claude
2011-09-13
Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.
Juvenile Solitary Confinement as a Form of Child Abuse.
Clark, Andrew B
2017-09-01
Placing incarcerated juveniles into solitary confinement continues to occur in certain states of the United States, despite the accumulating evidence that it may cause substantial psychological damage to the teenagers who must endure it. The practice has been widely condemned by professional and human rights organizations, amid a growing appreciation of the immaturity and vulnerability of the adolescent brain. Although several states and the federal government have been successful in abolishing or dramatically reducing the use of juvenile solitary confinement, it remains common practice in many facilities. Clinicians working in correctional facilities where juvenile solitary confinement is employed are therefore faced with difficult questions of ethics, as to how best to balance their competing duties, and how to respond to such state-sanctioned ill treatment of their patients. Given the emerging consensus around the psychological damage wrought by sustained solitary confinement, clinicians may well reach the difficult conclusion that they are both legally mandated and ethically bound to file a report of suspected child abuse. Such a report would be unlikely to be investigated for administrative reasons, but it would allow clinicians to communicate the gravity of their concern effectively. © 2017 American Academy of Psychiatry and the Law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starr, R.C.; Green, T.S.; Hull, L.C.
2001-02-28
A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that themore » geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles
2001-02-01
A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that themore » geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.« less
ERIC Educational Resources Information Center
Enke, Kathryn
2014-01-01
Women are underrepresented in senior-level leadership positions in higher education institutions, and their experiences are underrepresented in research about leadership and power in higher education. This qualitative study engaged women senior administrators at liberal arts colleges in the Upper Midwestern United States to better understand how…
Famous Georgians and Their Homes: A Social Studies Unit for Upper Elementary Students.
ERIC Educational Resources Information Center
Deaver, Susan B.
This upper-elementary level social studies curriculum guide is designed to: (1) teach students to understand and appreciate the built (man made) environment; (2) instruct students about Georgia's history and heritage; and (3) introduce the basic concepts of historic preservation. The unit highlights 10 architectural styles of the homes of famous…
A new method for estimating the turbulent heat flux at the bottom of the daily mixed layer
NASA Technical Reports Server (NTRS)
Imawaki, Shiro; Niiler, Pearn P.; Gautier, Catherine H.; Knox, Robert A.; Halpern, David
1988-01-01
Temperature data in the mixed layer and net solar irradiance data at the sea surface are used to estimate the vertical turbulent heat flux at the bottom of the daily mixed layer. The method is applied to data obtained in the eastern tropical Pacific, where the daily cycle in the temperature field is confined to the upper 10-25 m. Equatorial turbulence measurements indicate that the turbulent heat flux is much greater during nighttime than daytime.
NASA Astrophysics Data System (ADS)
Cai, Chen-Yang; Huang, Di-Ying
2014-10-01
The staphylinid subfamily Micropeplinae includes small strongly sclerotized beetles with truncate elytra leaving the most part of abdomen exposed. Fossil micropeplines are rare and confined to Cenozoic representatives of extant genera. Here, we describe the oldest micropepline, Protopeplus cretaceus gen. and sp. n., from the Upper Cretaceous Burmese amber. Fluorescence microscope and confocal laser scanning microscopy (CLSM) were both used to reveal diagnostic features of Micropeplinae and some primitive traits that place Protopeplus very basally within Micropeplinae.
1989-06-01
regenerating optic nerve CNS - Central nervous system FCS - Fetal calf serum Galc - Galactocerebroside G AP - Glial fibriliary acidic protein NGF...nent confinment of the casualty to a wheel chair. Laceration in the upper spinal cord leads to paralysis of the four limbs and a cut in the optic...of microtiter plates in Dulbecco’s modified Eagle medium (DVIEM) containing 10% fetal calf serum (FCS). When the cells reached confluency the medium
2007-09-01
limitations due to so-called "bottle effects" produced by confining production to a single bottle, eliminating grazers, trace metal contamination from the...1, b - 2/3) (Levich, 1962 ) or can be determined by modeling studies of characteristic bubble populations (a = 0.7, b = 0.35) (Keeling, 1993). In this...artifacts associated with the early sampling method. In addition, some of the samples with large supersaturations may have been contaminated with
Motor Impairment Evaluation for Upper Limb in Stroke Patients on the Basis of a Microsensor
ERIC Educational Resources Information Center
Huang, Shuai; Luo, Chun; Ye, Shiwei; Liu, Fei; Xie, Bin; Wang, Caifeng; Yang, Li; Huang, Zhen; Wu, Jiankang
2012-01-01
There has been an urgent need for an effective and efficient upper limb rehabilitation method for poststroke patients. We present a Micro-Sensor-based Upper Limb rehabilitation System for poststroke patients. The wearable motion capture units are attached to upper limb segments embedded in the fabric of garments. The body segment orientation…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.; Marra, J.
2011-10-01
Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) 4th Reactor Unit Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified and the fuel burnup in these samples was determined. A systematic deviation in the burnup values based on the cesium isotopes, in comparison with other radionuclides, was observed. The conducted studies were the first ever performed to demonstrate the presence of significant quantities of {sup 242}Cm and {sup 243}Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuelmore » samples from inside of the ChNPP Confinement Shelter, starting from {sup 241}Am (and going higher), in comparison with the theoretical calculations.« less
High pressure system for 3-D study of elastic anisotropy
NASA Astrophysics Data System (ADS)
Lokajicek, T.; Pros, Z.; Klima, K.
2003-04-01
New high pressure system was designed for the study of elastic anisotropy of condensed matter under high confining pressure up to 700 MPa. Simultaneously could be measured dynamic and static parameters: a) dynamic parameters by ultrasonic sounding, b) static parameters by measuring of spherical sample deformation. The measurement is carried out on spherical samples diameter 50 +/- 0.01 mm. Higher value of confining pressure was reached due to the new construction of sample positioning unit. The positioning unit is equipped with two Portecap step motors, which are located inside the vessel and make possible to rotate with the sphere and couple of piezoceramic transducers. Sample deformation is measured in the same direction as ultrasonic signal travel time. Only electric leads connects inner part of high pressure vessel with surrounding environment. Experimental set up enables: - simultaneous P-wave ultrasonic sounding, - measurement of current sample deformation at sounding points, - measurement of current value of confining pressure and - measurement of current stress media temperature. Air driven high pressure pump Haskel is used to produce high value of confining pressure up to 700 MPa. Ultrasonic signals are recorded by digital scope Agilent 54562 with sampling frequency 100 MHz. Control and measuring software was developed under Agilent VEE software environment working under MS Win 2000 operating system. Measuring set up was tested by measurement of monomineral spherical samples of quartz and corundum. Both of them have trigonal symmetry. The measurement showed that the P-wave velocity range of quartz was between 5.7-7.0 km/sec. and velocity range of corundum was between 9.7-10.9 km/sec. High pressure resistant LVDT transducers Mesing together with Intronix electronic unit were used to monitor sample deformation. Sample deformation is monitored with the accuracy of 0.1 micron. All test measurements proved the good accuracy of the whole measuring set up. This project was supported by Grant Agency of the Czech Republic No.: 205/01/1430.
Altitude of the Top of the Madison Limestone in the Black Hills area, South Dakota, 1999
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and groundwater in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study arca arc Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Madison Limestone within the area of the Black Hills Hydrology Study. The depth to the top of the Madison Limestone can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
Altitude of the Top of the Deadwood Formation in the Black Hills area, South Dakota, 1999
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Deadwood Formation within the area of the Black Hills Hydrology Study. The depth to the top of the Deadwood Formation can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation, However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
Altitude of the Top of the Minnelusa Formation in the Black Hills area, South Dakota, 1999
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and ground water in the Black Hills area of South Dakota (Driscoll, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of Environment and Natural Resources, and the West Dakota Water Development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara, Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top (structure contours) of the Minnelusa Formation within the area of the Black Hills Hydrology Study. The depth to the top of the Minnelusa Formation can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
Altitude of the Top of the Minnekahta Limestone in the Black Hills area, South Dakota, 1999
Carter, Janet M.; Redden, Jack A.
2000-01-01
This map is a product of the Black Hills Hydrology Study, which was initiated in 1990 to assess the quantity, quality, and distribution of surface water and groundwater in the Black Hills area of South Dakota (Driscoli, 1992). This long-term study is a cooperative effort between the U.S. Geological Survey (USGS), the South Dakota Department of environment and Natural Resources, and the West Dakota Water development District, which represents various local and county cooperators. This map is part of a series of 1:100,000-scale maps for the study. The maps include a hydrogeologic map, structure-contour maps (altitudes of the tops of formations) for five formations that contain major aquifers in the study area, and potentiometric maps for these five major aquifers (the Inyan Kara. Minnekahta, Minnelusa, Madison, and Deadwood aquifers).The study area consists of the topographically defined Black Hills and adjacent areas located in western South Dakota. The Black Hills area is an elongated, dome-shaped feature, about 125 miles long and 60 miles wide, which was uplifted during the Laramide orogeny (Feldman and Heimlich, 1980). The oldest geologic units in the study area are Precambrian metamorphic and igneous rocks, which are exposed in the central core of the Black Hills. Surrounding the Precambrian core is a layered series of sedimentary rocks including limestones, sandstones, and shales that are exposed in roughly concentric rings around the uplifted flanks of the Black Hills. The bedrock sedimentary units typically dip away from the uplifted Black Hills at angles that approach or exceed 10 degrees near the outcrops, and decrease with distance from the uplift. Many of the sedimentary units contain aquifers, both within and beyond the study area. Recharge to these aquifers occurs from infiltration of precipitation upon the outcrops and, in some cases, from infiltration of streamflow (Hortness and Driscoll, 1998). Artesian conditions generally exist within these aquifers where an upper confining layer is present. Flowing wells and artesian springs that originate from confined aquifers are common around the periphery of the Black Hills.The purpose of this map is to show the altitude of the top(structure contours) of the Minnekahta limestone within the area of the Black Hills Hydrology Study. The depth to the top of the Minnekahta Limestone can be estimated at a specific site by subtracting the altitude of the top of the formation from the topographic elevation. However, caution is urged in determining the depth to the top of the formation in areas on the map where the contours are approximately located.
Initial Visions of Paradise: Antebellum U.S. Government Documents on the South Pacific
ERIC Educational Resources Information Center
Chapman, Bert
2004-01-01
During the first half of the 19th century, the United States grew from a nation confined to the Atlantic seaboard to a country on the verge of becoming a global power. One factor prompting this growth was the United States' growing intellectual, economic, and strategic interests in the Pacific Ocean. These growing interests were fueled by the…
NASA Astrophysics Data System (ADS)
Gurcay, S.; Cifci, G.; Dondurur, D.; Sozbilir, H.
2012-12-01
Gulfes of Sigacik and Kusadasi (Western Anatolia) are located south of the Middle Eastern Aegean depression which formed by vertical displacements along the NB- to N-trending structural planes. This study consists of the results of the multi-channel seismic reflection and chirp data acquisition by K. Piri Reis, research vessel of Dokuz Eylül University (Izmir-TURKEY), in Sigacik Gulf and Kusadasi Gulf (West Anatolia) in August-2005 and in March-2008. Data were acquired approximately along the 1300km seismic lines. Two main seismic units, lower unit (Pre-Neogene) and upper unit (Neogene), can easily be determined on multi channel seismic sections. It is also observed on seismic sections that there are many active faults deform these units. Two main submarine basins can be determined from multi-channel seismic sections, Sigacik Basin and Kusadasi Basin. The upper unit in Sigacik Basin is deformed generally by strike slip faults. But there are some faults that have sharp vertical movements on lower unit. Some of these vertical movements are followed by strike-slip active faults along the upper unit indicating that these normal movements have changed to lateral movements, recently.
Clark, Allan K.; Robert R. Morris,
2015-01-01
The hydrostratigraphic units of the Edwards and Trinity aquifers have been mapped and described herein using a classification system developed by Choquette and Pray (1970), which is based on porosity types being fabric or not-fabric selective. The naming of hydrostratigraphic units is also based on preexisting names and topographic or historical features that occur in outcrop. The only hydrostratigraphic unit of the Edwards aquifer present in the study area is VIII hydrostratigraphic unit. The mapped hydrostratigraphic units of the upper Trinity aquifer are, from top to bottom: the cavernous, Camp Bullis, upper evaporite, fossiliferous, and lower evaporite and they are interval equivalent to the upper member of the Glen Rose Limestone. The middle Trinity aquifer (interval equivalent to the lower member of the Glen Rose Limestone) contains, from top to bottom: the Bulverde, Little Blanco, Twin Sisters, Doeppenschmidt, Rust, and Honey Creek hydrostratigraphic units. The lower part of the middle Trinity aquifer is formed by the Hensell, Cow Creek, and Hammett hydrostratigraphic units which are interval equivalent to the Hensell Sand Member, the Cow Creek Limestone, and the Hammett Shale Member, respectively, of the Pearsall Formation.
Seismic Shaking, Tsunami Wave Erosion And Generation of Seismo-Turbidites in the Ionian Sea
NASA Astrophysics Data System (ADS)
Polonia, Alina; Nelson, Hans; Romano, Stefania; Vaiani, Stefano Claudio; Colizza, Ester; Gasparotto, Giorgio; Gasperini, Luca
2016-04-01
We are investigating the effects of earthquakes and tsunamis on the sedimentary record in the Ionian Sea through the analysis of turbidite deposits. A comparison between radiometric dating and historical earthquake catalogs suggests that recent turbidite generation is triggered by great earthquakes in the Calabrian and hellenic Arcs such as the AD 1908 Messina, AD 1693 Catania, AD 1169 Eastern Sicily and AD 365 Crete earthquakes. Textural, micropaleontological, geochemical and mineralogical signatures of the youngest three seismo-turbidites reveal cyclic patterns of sedimentary units. The basal stacked turbidites result from multiple slope failure sources as shown by different sedimentary structures as well as mineralogic, geochemical and micropaleontological compositions. The homogenite units, are graded muds deposited from the waning flows of the multiple turbidity currents that are trapped in the Ionian Sea confined basin. The uppermost unit is divided into two parts. The lower marine sourced laminated part without textural gradation, we interpret to result from seiching of the confined water mass that appears to be generated by earthquake ruptures combined with tsunami waves. The uppermost part we interpret as the tsunamite cap that is deposited by the slow settling suspension cloud created by tsunami wave backwash erosion of the shoreline and continental shelf. This tsunami process interpretation is based on the final textural gradation of the upper unit and a more continental source of the tsunami cap which includes C/N >10, the lack of abyssal foraminifera species wirth the local occurrence of inner shelf foraminifera. Seismic reflection images show that some deeper turbidite beds are very thick and marked by acoustic transparent homogenite mud layers at their top. Based on a high resolution study of the most recent of such megabeds (Homogenite/Augias turbidite, i.e. HAT), we show that it was triggered by the AD 365 Crete earthquake. Radiometric dating support a scenario of synchronous deposition of the HAT in an area as wide as 150.000 km2, which suggests basin-scale sediment remobilization processes. The HAT in our cores is made up of a base to top sequence of stacked and graded sand/silt units with different compositions related to the Malta, Calabria and Sicilian margin locations. This composition suggests multiple synchronous slope failures typical of seismo-turbidites; however, the Crete earthquake source is too distant from the Italian margins to cause sediment failures by earthquake shaking. Consequently, because our present evidence suggests shallow-water sediment sources, we reinforce previous interpretations that the HAT is a deep-sea "tsunamite" deposit. Utilizing the expanded stratigraphy of the HAT, together with the heterogeneity of the sediment sources of the Ionian margins, we are trying to unravel the relative contribution of seismic shaking (sediment failures, MTDs, turbidity currents) and of tsunami wave processes (overwash surges, backwash flows, turbidity currents) for seismo-turbidite generation.
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.
2015-11-01
The mid-latitudes of Mars are host to a record of recent episodes of accumulations of ice-rich materials. The record includes debris aprons, interpreted to be debris-covered glaciers, that may represent the preserved remnants of a much more extensive ice sheet. We assessed the possibility of former glacial extents by examining debris aprons and the surrounding plains in Deuteronilus Mensae. Geomorphic units and stratigraphic relationships were mapped and documented from Mars Reconnaissance Orbiter (MRO) Context (CTX) and High Resolution Imaging Science Experiment (HiRISE) camera images, and crater retention ages were estimated from crater size-frequency distributions. Three major units are observed within the study area: debris aprons, lower plains, and upper plains. Debris aprons exhibit characteristics typical for these features documented elsewhere and in previous studies, including integrated flow lineations and patterns, convex-upward profiles, and knobby and brain terrain surface textures. A lower bound on the age for debris aprons is estimated to be 0.9 Ga. Debris aprons are superposed on a lower plains unit having a lower bound age of 3.3-3.5 Ga. A 50-100 m thick upper plains unit superposes both debris apron landforms and lower plains units and has a best-fit minimum age of 0.6 Ga. The upper plains unit exhibits characteristics of atmospherically-emplaced mantle material, including fine-grained nature, sublimation textures, cyclic layering, draping character, and widespread spatial distribution. Fracturing and subsequent sublimation/erosion of upper plains on debris aprons has contributed to many of the surface textures on debris aprons. The upper plains unit has also been eroded from the lower plains and plateaus, evidenced by isolated blocks of upper plains in the interiors of craters and on the walls and tops of plateaus. While no conclusive evidence diagnostic of former cold-based ice sheets are observed in the plains within the study region, such landforms and units may have been poorly developed or absent, as is often the case on Earth, and would have been covered and reworked by later mantling episodes. These observations suggest that emplacement of thick ice-rich mantle deposits extended at least to near the Early/Middle Amazonian boundary and overlapped with the waning stages of glaciation in Deuteronilus Mensae.
Lewis-Brown, Jean C.; Rice, Donald E.; Rosman, Robert; Smith, Nicholas P.
2005-01-01
Production wells in the Westmoreland well field, Fair Lawn, Bergen County, New Jersey (the 'Fair Lawn well field Superfund site'), are contaminated with volatile organic compounds, particularly trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. In 1983, the U.S. Environmental Protection Agency (USEPA) placed the Westmoreland well field on its National Priority List of Superfund sites. In an effort to determine ground-water flow directions, contaminant-plume boundaries, and contributing areas to production wells in Fair Lawn, and to evaluate the effect of present pump-and-treat systems on flowpaths of contaminated ground water, the U.S. Geological Survey (USGS), in cooperation with the USEPA, developed a conceptual hydrogeologic framework and ground-water flow model of the study area. MODFLOW-2000, the USGS three-dimensional finite-difference model, was used to delineate contributing areas to production wells in Fair Lawn and to compute flowpaths of contaminated ground water from three potential contaminant sources to the Westmoreland well field. Straddle-packer tests were used to determine the hydrologic framework of, distribution of contaminants in, and hydrologic properties of water-bearing and confining units that make up the fractured-rock aquifer underlying the study area. The study area consists of about 15 square miles in and near Fair Lawn. The area is underlain by 6 to 100 feet of glacial deposits and alluvium that, in turn, are underlain by the Passaic Formation. In the study area, the Passaic Formation consists of brownish-red pebble conglomerate, medium- to coarse-grained feldspathic sandstone, and micaceous siltstone. The bedrock strata strike N. 9o E. and dip 6.5o to the northwest. The bedrock consists of alternating layers of densely fractured rocks and sparsely fractured rocks, forming a fractured-rock aquifer. Ground-water flow in the fractured-rock aquifer is anisotropic as a result of the interlayering of dipping water-bearing and confining units. Wells of similar depth aligned along the strike of the bedding intersect the same water-bearing units, but wells aligned along the dip of the bedding may intersect different water-bearing units. Consequently, wells aligned along strike are in greater hydraulic connection than wells aligned along dip. The Borough of Fair Lawn pumps approximately 770 million gallons per year from 13 production wells. Hydrographs from six observation wells ranging in depth from 162 to 505 feet in Fair Lawn show that water levels in much of the study area are affected by pumping. Straddle packers were used to isolate discrete intervals within six open-hole observation wells owned by the Fair Lawn Water Department. Transmissivity, water-quality, and static-water-level data were obtained from the isolated intervals. Measured transmissivity ranged from near 0 to 8,900 feet squared per day. The broad range in measured transmissivity is a result of the heterogeneity of the fractured-rock aquifer. Eight water-bearing units and eight confining units were identified in the study area on the basis of transmissivity. The water-bearing units range in thickness from 21 to 95 feet; the mean thickness is 50 feet. The confining units range in thickness from 22 to 248 feet; the mean thickness is 83 feet. Water-level and water-quality data indicate effective separation of water-bearing units by the confining units. Water-quality samples were collected from the six observation wells at 16 depth intervals isolated by the straddle packers in 2000 and 2001. Concentrations of volatile organic compounds generally were low in samples from four of the wells, but were higher in samples from a well in Fair Lawn Industrial Park and in a well in the Westmoreland well field. The digital ground-water flow model was used to simulate steady-state scenarios representing conditions in the study area in 1991 and 2000. These years were chosen because during the intervening period,
NASA Astrophysics Data System (ADS)
Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.
2012-12-01
Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis of the physical driving variables is being conducted to produce a model that predicts stream type and resulting riparian vegetation communities based on channel geometry. This model will be tested on a separate set of 15 study reaches surveyed on the Barry M. Goldwater Air Force Range in southern Arizona. The resulting classification will provide a basis for examining relationships between hydrology, channel and watershed characteristics, riparian vegetation and ecosystem sensitivity of ephemeral streams in arid regions of the American Southwest.
Pakiser, L.C.
1964-01-01
The structure of the Earth’s crust (the outer shell of the earth above the M-discontinuity) has been intensively studied in many places by use of geophysical methods. The velocity of seismic compressional waves in the crust and in the upper mantle varies from place to place in the conterminous United States. The average crust is thick in the eastern two-thirds of the United States, in which the crustal and upper-mantle velocities tend to be high. The average crust is thinner in the western one-third of the United States, in which these velocities tend to be low. The concept of eastern and western superprovinces can be used to classify these differences. Crustal and upper-mantle densities probably vary directly with compressional-wave velocity, leading to the conclusion that isostasy is accomplished by the variation in densities of crustal and upper-mantle rocks as well as in crustal thickness, and that there is no single, generally valid isostatic model. The nature of the M-discontinuity is still speculative.
Tosdal, R.M.; Stone, P.
1994-01-01
A previously unrecognized angular unconformity divides the Jurassic and Cretaceous McCoy Mountains Formation into a lower and an upper unit in the Dome Rock Mountains and Livingston Hills of western Arizona. The intraformation unconformity in the McCoy Mountains Formation developed where rocks of the lower unit were deformed adjacent to the southern margin of the Maria fold and thrust belt. The upper unit of the formation is interpreted as a foreland-basin deposit that was shed southward from the actively rising and deforming fold and thrust belt. The apparent absence of an equivalent unconformity in the McCoy Mountains Formation in adjacent California is presumably a consequence of the observed westward divergence of the outcrop belt from the fold and thrust belt. Tectonic burial beneath the north-vergent Mule Mountains thrust system in the latest Late Cretaceous (~70 Ma) marked the end of Mesozoic contractile deformation in the area. -from Authors
NASA Astrophysics Data System (ADS)
Basilici, Giorgio; Bo, Patrick Führ Dal'; de Oliveira, Emerson Ferreira
2016-07-01
The stratigraphic and sedimentological knowledge of the Bauru Group (Upper Cretaceous, SE Brazil) is still generally insufficient and controversial. A sedimentological and palaeopedological study allowed to interpret the south-eastern portion of the Bauru Group according to the model of a fluvial distributary system. This work has two objectives: (1) to include palaeosols in the interpretation of a fluvial distributary system and (2) to give detailed information on the sedimentological and stratigraphic features of the SE portion of the Bauru Group in order to support biostratigraphical, taphonomic and palaeoecological studies. In the south-eastern portion of the Bauru Group, three genetic stratigraphic units were described and interpreted, here informally called lower, intermediate and upper units. The lower unit is constituted of muddy sandstone salt flat deposits and sandstone sheet deltas deposits and is interpreted as a basinal part of a fluvial distributary system. The intermediate unit is formed of very fine to fine-grained sandstone-filled ribbon channel and sandy sheet-shaped beds, suggesting a distal or medial portion of a fluvial distributary system. The upper unit does not match with the present models of the fluvial distributary system because mostly constituted of moderately developed, well-drained, medium- to fine-grained sandstone palaeosols, which testify pauses of sedimentation to the order of 104 years. Preserved features of sedimentary structures suggest that the parent material was formed by occasional catastrophic unconfined flows. This unit may represent the most distal portion of a fluvial distributary system generated by retrogradation of the alluvial system due to aridification of the climate. The upper unit may be interpreted also as proximal portion of fluvial distributary system if considering the coarser-grained and the well-drained palaeosols. However, the absence of channel deposits makes this interpretation unconvincing.
28 CFR 527.46 - Receiving United States citizens from other countries.
Code of Federal Regulations, 2010 CFR
2010-07-01
... appropriate, competent judicial authority of the transferring country and any modifications thereof; (2) A... credits to which the offender is entitled, such as work done, good behavior, pre-trial confinement, etc...
Timber resource statistics for the upper Tanana block, Tanana inventory unit, Alaska, 1974.
Karl M. Hegg
1983-01-01
This report for the 3.6-million-acre Upper Tanana block is the third of four on the 14-million-acre Tanana Valley forest inventory unit. Descriptions of area, climate, forest, general resource use, and inventory methodology are presented. Area and volume tables are provided for commercial and operable noncommercial forest lands. Estimates for commercial forest land...
Estimation of invasive probability of multiflora rose in the upper Midwest
Weiming Yu; Zhaofei Fan; W. K. Moser; M. H. Hansen; M. D. Nelson
2012-01-01
Multiflora rose (Rosa Multiflora Thunb.) (MFR) is widely spreading across the United States, with up to 38 states in the contiguous United States reporting the presence of this species. In this study, U.S. Forest Service, Northern Research Station Forest Inventory and Analysis (FIA) data from the Upper Midwest states for the period of 2005-2006 were...
Structural stratigraphy of Austin Chalk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbett, K.P.; Friedman, M.
1983-03-01
The mechanical behavior (structural stratigraphy) of the Upper Cretaceous Austin Chalk is established from the study of fracture intensity along its outcrop trend from Dallas to San Antonio and westward to Langtry, Texas, and in the subsurface from the study of core and/or fracture identification logs from 39 wells. Three mechanical-stratigraphic units are recognized as: (1) an upper, fractured massive chalk corresponding to the Bid House Chalk Member, (2) a middle, ductile chalk-marl corresponding to the Dessau Chalk and Burditt Marl Members, and (3) a lower, fractured massive chalk corresponding to the Atco Chalk Member. Representative samples from these unitsmore » were experimentally shortened dry, at 10, 17 34, and 70-MPa confining pressure, 24/sup 0/C (75/sup 0/F), and at 2.5 x 10/sup -4/ s/sup -1/ to determine if the relative mechanical behavior observed at the surface could be extrapolated into the subsurface at different simulated depths of burial. The experimentally determined ductilities do parallel those determined from outcrop and subsurface studies. Through multiple linear regression analyses of strength versus intrinsic rock properties and environmental parameters, it appears that first porosity and then smectite-content are most strongly correlated with strength. For low-porosity specimens (9 to 13.5%) smectite present in amounts as little as 1% by volume has the highest correlation with strength accounting for 83% of its variability. SEM photomicrographs show that the clays are smeared-out along the induced shear fracture surfaces where they are greatly reduced in grain-size. These observations suggest that the smectite acts mechanically as a soft-inclusion, localizing shear failure and correspondingly weakening the material.« less
On the Role of SST Forcing in the 2011 and 2012 Extreme U.S. Heat and Drought: A Study in Contrasts
NASA Technical Reports Server (NTRS)
Wang, Hailan; Schubert, Siegfried; Koster, Randal; Ham, Yoo-Geun; Suarez, Max
2013-01-01
This study compares the extreme heat and drought that developed over the United States in 2011 and 2012 with a focus on the role of SST forcing. Experiments with the NASA GEOS-5 atmospheric general circulation model show that the winter/spring response over the U.S. to the Pacific SST is remarkably similar for the two years despite substantial differences in the tropical Pacific SST. As such, the pronounced winter and early spring temperature differences between the two years (warmth confined to the south in 2011 and covering much of the continent in 2012) primarily reflect differences in the contributions from the Atlantic and Indian Oceans, with both acting to cool the east and upper mid-west during 2011, while during 2012 the Indian Ocean reinforced the Pacific-driven continental-wide warming and the Atlantic played a less important role. During late spring and summer of 2011 the tropical Pacific SST force a continued warming and drying over the southern U.S., though considerably weaker than observed. Nevertheless, the observed anomalies fall within the models intra-ensemble spread. In contrast, the rapid development of intense heat and drying over the central U.S. during June and July of 2012 falls outside the models intra-ensemble spread. The response to the SST (a northward expansion of a modest summer warming linked to the Atlantic) gives little indication that 2012 would produce record-breaking precipitation deficits and heat in the central Great Plains. A diagnosis of the 2012 observed circulation anomalies shows that the most extreme heat and drought was tied to the development of a stationary Rossby wave and an associated anomalous upper tropospheric high maintained by weather transients.
What can the dihedral angle of conjugate-faults tell us?
NASA Astrophysics Data System (ADS)
Ismat, Zeshan
2015-04-01
Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter. The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds. Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.
Observation of superconducting vortex clusters in S/F hybrids
Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; ...
2016-12-09
While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopymore » is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Here, our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.« less
Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO
NASA Astrophysics Data System (ADS)
Yang, Shuhong; Zhang, Jun
2018-06-01
Using the observations from the Optical and Near-infrared Solar Eruption Tracer (ONSET) and the Solar Dynamics Observatory (SDO), we study an M5.7 flare in AR 11476 on 2012 May 10 and a micro-flare in the quiet Sun on 2017 March 23. Before the onset of each flare, there is a reverse S-shaped filament above the polarity inversion line, then the filaments become unstable and begin to rise. The rising filaments gain the upper hand over the tension force of the dome-like overlying loops and thus successfully erupt outward. The footpoints of the reconnecting overlying loops successively brighten and are observed as two flare ribbons, while the newly formed low-lying loops appear as post-flare loops. These eruptions are similar to the classical model of successful filament eruptions associated with coronal mass ejections (CMEs). However, the erupting filaments in this study move along large-scale lines and eventually reach the remote solar surface; i.e., no filament material is ejected into the interplanetary space. Thus, both the flares are confined. These results reveal that some successful filament eruptions can trigger confined flares. Our observations also imply that this kind of filament eruption may be ubiquitous on the Sun, from active regions (ARs) with large flares to the quiet Sun with micro-flares.
Observation of superconducting vortex clusters in S/F hybrids.
Di Giorgio, C; Bobba, F; Cucolo, A M; Scarfato, A; Moore, S A; Karapetrov, G; D'Agostino, D; Novosad, V; Yefremenko, V; Iavarone, M
2016-12-09
While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field H c2 . This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.
Observation of superconducting vortex clusters in S/F hybrids
Di Giorgio, C.; Bobba, F.; Cucolo, A. M.; Scarfato, A.; Moore, S. A.; Karapetrov, G.; D’Agostino, D.; Novosad, V.; Yefremenko, V.; Iavarone, M.
2016-01-01
While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field Hc2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed. PMID:27934898
Ryder, Robert T.; Harris, Anita G.; Repetski, John E.; revised and digitized by Crangle, Robert D.
2003-01-01
A 275-mi-long restored stratigraphic cross section from Medina County, Ohio, through southwestern and south-central Pennsylvania to Hampshire County, W. Va., provides new details on Cambrian and Ordovician stratigraphy in the central Appalachian basin and the structure of underlying Precambrian basement rocks. From west to east, the major structural elements of the block-faulted basement in this section are (1) the relatively stable, slightly extended craton, which includes the Wooster arch, (2) the fault-controlled Ohio-West Virginia hinge zone, which separates the craton from the adjoining Rome trough, (3) the Rome trough, which consists of an east-facing asymmetric graben and an overlying sag basin, and (4) a positive fault block, named here the South-central Pennsylvania arch, which borders the eastern margin of the graben part of the Rome trough. Pre-Middle Ordovician structural relief on Precambrian basement rocks across the down-to-the-west normal fault that separates the Rome trough and the adjoining South-central Pennsylvania arch amounted to between 6,000 and 7,000 ft. The restored cross section shows eastward thickening of the Cambrian and Ordovician sequence from about 3,000 ft near the crest of the Wooster arch at the western end of the section to about 5,150 ft at the Ohio-West Virginia hinge zone adjoining the western margin of the Rome trough to about 19,800 ft near the depositional axis of the Rome trough. East of the Rome trough, at the adjoining western edge of the South-central Pennsylvania arch, the Cambrian and Ordovician sequence thins abruptly to about 13,500 ft and then thins gradually eastward across the arch to about 12,700 ft near the Allegheny structural front and to about 10,150 ft at the eastern end of the restored section. In general, the Cambrian and Ordovician sequence along this section consists of four major lithofacies that are predominantly shallow marine to peritidal in origin. In ascending stratigraphic order, the lithofacies are identified by the following descriptive names: (1) sandstone, shale, limestone, and dolomite unit, (2) dolomite and sandstone unit, (3) limestone and black shale unit, and (4) shale and sandstone unit. Each of these units and their associated subunits thicken from west to east across the restored section to a maximum near the depositional axis of the Rome trough and then thin eastward to the end of the section. The sandstone, shale, limestone, and dolomite unit is largely confined to the asymmetric graben that marks the initial phase of the Rome trough. This unit is Early and Middle Cambrian in age and consists, in ascending order, of a basal sandstone unit (undrilled but probably present), the Tomstown Dolomite (undrilled but probably present), the Waynesboro Formation, and the Pleasant Hill Limestone and its equivalent lower one-third of the Elbrook Formation at the eastern end of the section. The dolomite and sandstone unit forms the core of the Cambrian and Ordovician sequence. In the Rome trough and on the adjoining South-central Pennsylvania arch, this unit consists, in ascending order, of the Middle and Upper Cambrian Warrior Formation and the equivalent upper two-thirds of the Elbrook Formation at the eastern end of the section, the Upper Cambrian Gatesburg Formation, and the Lower Ordovician and Middle Ordovician (Whiterockian and Chazyan) Beekmantown Group. West of the Ohio-West Virginia hinge zone, the dolomite and sandstone unit consists, in ascending order, of the Conasauga Formation of Janssens (1973), the Krysik sandstone of driller's usage, the B zone of Calvert (1964), the Knox Dolomite and the associated Rose Run Sandstone Member, and the Wells Creek Formation. The widespread Knox unconformity is located at the base of the Wells Creek Formation and at or near the top of the adjoining Beekmantown Group, except near the depositional axis of the Rome trough, where the unconformity seems to be absent. The limestone and black shale unit i
Ward, W. C.; Cunningham, K.J.; Renken, R.A.; Wacker, M.A.; Carlson, J.I.
2003-01-01
An analysis was made to describe and interpret the lithology of a part of the Upper Floridan aquifer penetrated by the Regional Observation Monitoring Program (ROMP) 29A test corehole in Highlands County, Florida. This information was integrated into a one-dimensional hydrostratigraphic model that delineates candidate flow zones and confining units in the context of sequence stratigraphy. Results from this test corehole will serve as a starting point to build a robust three-dimensional sequence-stratigraphic framework of the Floridan aquifer system. The ROMP 29A test corehole penetrated the Avon Park Formation, Ocala Limestone, Suwannee Limestone, and Hawthorn Group of middle Eocene to Pliocene age. The part of the Avon Park Formation penetrated in the ROMP 29A test corehole contains two composite depositional sequences. A transgressive systems tract and a highstand systems tract were interpreted for the upper composite sequence; however, only a highstand systems tract was interpreted for the lower composite sequence of the deeper Avon Park stratigraphic section. The composite depositional sequences are composed of at least five high-frequency depositional sequences. These sequences contain high-frequency cycle sets that are an amalgamation of vertically stacked high-frequency cycles. Three types of high-frequency cycles have been identified in the Avon Park Formation: peritidal, shallow subtidal, and deeper subtidal high-frequency cycles. The vertical distribution of carbonate-rock diffuse flow zones within the Avon Park Formation is heterogeneous. Porous vuggy intervals are less than 10 feet, and most are much thinner. The volumetric arrangement of the diffuse flow zones shows that most occur in the highstand systems tract of the lower composite sequence of the Avon Park Formation as compared to the upper composite sequence, which contains both a backstepping transgressive systems tract and a prograding highstand systems tract. Although the porous and permeable layers are not thick, some intervals may exhibit lateral continuity because of their deposition on a broad low-relief ramp. A thick interval of thin vuggy zones and open faults forms thin conduit flow zones mixed with relatively thicker carbonate-rock diffuse flow zones between a depth of 1,070 and 1,244 feet below land surface (bottom of the test corehole). This interval is the most transmissive part of the Avon Park Formation penetrated in the ROMP 29A test corehole and is included in the highstand systems tract of the lower composite sequence. The Ocala Limestone is considered to be a semiconfining unit and contains three depositional sequences penetrated by the ROMP 29A test corehole. Deposited within deeper subtidal depositional cycles, no zones of enhanced porosity and permeability are expected in the Ocala Limestone. A thin erosional remnant of the shallow marine Suwannee Limestone overlies the Ocala Limestone, and permeability seems to be comparatively low because moldic porosity is poorly connected. Rocks that comprise the lower Hawthorn Group, Suwannee Limestone, and Ocala Limestone form a permeable upper zone of the Upper Floridan aquifer, and rocks of the lower Ocala Limestone and Avon Park Formation form a permeable lower zone of the Upper Floridan aquifer. On the basis of a preliminary analysis of transmissivity estimates for wells located north of Lake Okeechobee, spatial relations among groups of relatively high and low transmissivity values within the upper zone are evident. Upper zone transmissivity is generally less than 10,000 feet squared per day in areas located south of a line that extends through Charlotte, Sarasota, DeSoto, Highlands, Polk, Osceola, Okeechobee, and St. Lucie Counties. Transmissivity patterns within the lower zone of the Avon Park Formation cannot be regionally assessed because insufficient data over a wide areal extent have not been compiled.
Barton, G.J.; Krebs, M.M.
1990-01-01
Groundwater beneath a former chemical reclamation facility in New Jersey is contaminated with metals and organic compounds. The off-site migration of these compounds has not been studied; however, a nearby public-supply well is contaminated, and a public-supply well 1,400 ft downgradient from the site may be threatened. The study area, in the New Jersey part of the Atlantic Coastal Plain, is underlain by alluvial deposits composed of gravel, sand, silt, and clay. These deposits comprise the water table aquifer, the confining units, and the confined aquifer throughout the study area. The water table beneath the Swope Oil Superfund site is approximately 17 ft below sea level and groundwater levels throughout the study area are below the stage of the Delaware River. The aquifer system is recharged by precipitation, leakage of water through confining units, and the water induced from the Delaware River. Five public supply-well fields, primarily adjacent to the Delaware River, and four waste disposal sites with observation well networks are located in the study area. Both the water table and confined aquifers are contaminated in several locations. The concentration of metals and/or purgeable organic compounds in more than 20 wells exceeds the U.S. Environmental Protection Agency primary drinking-water standard and the New Jersey Department of Environmental Protection recommended drinking water criteria. Selected data from wells and test borings are presented, including well construction details; drillers ', geologists ', and geophysical logs; water levels; specific-capacity and slug test data; and chemical analysis of groundwater samples. (USGS)
Quasi-Decadal Oscillations Generated by the QBO
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Drob, D. P.; Porter, H. S.; Chan, K. L.; Bhartia, P. K. (Technical Monitor)
2001-01-01
Quasi-decadal oscillations (QDO) have been observed in the stratosphere and have been linked to the equatorial Quasi-Biennial Oscillation (QBO) and to the 11-year solar activity cycle. With the use of a 2D version of our Numerical Spectral Model (NSM) that incorporates Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we demonstrate that beat periods between 9 and 11 years can be generated by the QBO as it interacts through GW filtering with the Annual Oscillation (AO) and Semi-annual Oscillation (SAO). Results are discussed from computations covering up to 50 years, and our analyses leads to the following conclusions. The QDO as a stand-alone signature is largely confined to the upper mesosphere. Its largest signature appears in the form of amplitude modulations of the QBO, AO and SAO, and these extend into the lower stratosphere. The downward control that characterizes the QBO apparently comes into play, and the longer time constants for diffusion and radiative loss at lower altitudes facilitate the QDO response. Although excited by the QBO, which is confined to low latitudes, the QDO is shown to extend to high latitudes. The effect is particularly large for the QBO with period around 33.5 month (near the upper limit of observations), which interacts with the SAO to produce a hemispherically symmetric QDO. Our analysis indicates that the QDO is transferred to high latitudes by the meridional circulation, which prominently exhibits this periodicity particularly in the amplitude modulation of the AO.
Acquired bilateral telangiectatic macules: a distinct clinical entity.
Park, Ji-Hye; Lee, Dong Jun; Lee, Yoo-Jung; Jang, Yong Hyun; Kang, Hee Young; Kim, You Chan
2014-09-01
We evaluated 13 distinct patients with multiple telangiectatic pigmented macules confined mostly to the upper arms to determine if the clinical and histopathological features of these cases might represent a specific clinical entity. We retrospectively investigated the clinical, histopathologic, and immunohistochemical features of 13 patients with multiple telangiectatic pigmented macules on the upper arms who presented between January 2003 and December 2012. Epidermal pigmentation, melanogenic activity, melanocyte number, vascularity, epidermal thickness, and perivascular mast cell number of the specimens were evaluated. Clinically, the condition favored middle-aged men. On histopathologic examination, the lesional skin showed capillary proliferation and telangiectasia in the upper dermis. Histochemical and immunohistochemical analysis revealed basal hyperpigmentation and increased melanogenic activity in the lesional skin (P < .05). No significant difference in epidermal thickness or mast cell number was observed between the normal perilesional skin and the lesional skin. The clinical and histopathologic features of these lesions were relatively consistent in all patients. In addition, the features are quite distinct from other diseases. Based on clinical and histologic features, we suggest the name acquired bilateral telangiectatic macules for this new entity.
Reducing Youth Incarceration in the United States. KIDS COUNT Data Snapshot
ERIC Educational Resources Information Center
Annie E. Casey Foundation, 2013
2013-01-01
A sea change is underway in the nation's approach to dealing with young people who get in trouble with the law. Although the country still leads the industrialized world in the rate at which it locks up young people, the youth confinement rate in the United States is rapidly declining. In 2010 this rate reached a new 35-year low, with almost every…
ERIC Educational Resources Information Center
Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse
2014-01-01
Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…