Sample records for upper devonian western

  1. Middle Devonian to Late Mississippian event stratigraphy of Overthrust belt region, western United States.

    USGS Publications Warehouse

    Sandberg, C.A.; Gutschick, R.C.; Johnson, J.G.; Poole, F.G.; Sando, W.J.

    1986-01-01

    Twenty eustatic and epeirogenic events mainly dated by conodonts are distinguished between the Middle Devonian and the lower Upper Mississippian in Great Basin, in Rocky Mountains and in the Overthrust belt regions.-Journal Editors

  2. The stratigraphic utility of the trace fossil Pteridichnites biseriatus in the Upper Devonian of eastern West Virginia and western Virginia, USA

    USGS Publications Warehouse

    McDowell, R.R.; Avary, K.L.; Matchen, D.L.; Britton, J.Q.

    2007-01-01

    Similar lithologies and lithofacies are present in two Upper Devonian siliciclastic units, the Brallier and Foreknobs formations, in eastern West Virginia and western Virginia, USA. Specimens of an unusual trace fossil, Pteridichnites biseriatus, occur in variable numbers throughout both stratigraphic units. P. biseriatus is present in abundance in the lowermost Brallier and this abundance-zone serves as a local stratigraphic marker for the Brallier. The trace fossil, originally suggested as an indication of polychaete or arthropod locomotion, is herein proposed as the locomotion trace of an unidentified ophiuroid.

  3. Sedimentology and stratigraphy of the Kanayut Conglomerate, central and western Brooks Range, Alaska; report of 1981 field season

    USGS Publications Warehouse

    Nilsen, T.H.; Moore, T.E.

    1982-01-01

    The Upper Devonian and Lower Mississippian(?) Kanayut Conglomerate forms a major stratigraphic unit along the crest of the Brooks Range of northern Alaska. It crops out for an east-west distance of about 900 km and a north-south distance of about 65 km. The Kanayut is wholly allochthonous and has probably been transported northward on a series of thrust plates. The Kanayut is as thick as 2,600 m in the east-central Brooks Range. It thins and fines to the south and west. The Kanayut forms the middle part of the allochthonous sequence of the Endicott Group, an Upper Devonian and Mississippian clastic sequence underlain by platform limestones of the Baird Group and overlain by platform limestone, carbonaceous shale, and black chert of the Lisburne Group. The Kanayut overlies the marine Upper Devonian Noatak Sandstone or, where it is missing, the marine Upper Devonian Hunt Fork Shale. It is overlain by the marine Mississippian Kayak Shale. The Kanayut Conglomerate forms the fluvial part of a large, coarse-grained delta that prograded to the southwest in Late Devonian time and retreated in Early Mississippian time. Four sections of the Kanayut Conglomerate in the central Brooks Range and five in the western Brooks Range were measured in 1981. The sections from the western Brooks Range document the presence of fluvial cycles in the Kanayut as far west as the shores of the Chukchi Sea. The Kanayut in this area is generally finer grained than it is in the central and eastern Brooks Range, having a maximum clast size of 3 cm. It is probably about 300 m thick. The upper and lower contacts of the Kanayut are gradational. The lower Kanayut contains calcareous, marine-influenced sandstone within channel deposits, and the upper Kanayut contains probable marine interdistributary-bay shale sequences. The members of the Kanayut Conglomerate cannot be differentiated in this region. In the central Brooks Range, sections of the Kanayut Conglomerate at Siavlat Mountain and Kakivilak Creek are typically organized into fining-upward fluvial cycles. The maximum clast size is about 3 cm in this area. The Kanayut in this region is 200-500 m thick and can be divided into the Ear Peak, Shainin Lake, and Stuver Members. The upper contact of the Kanayut with the Kayak Shale is very gradational at Kakivilak Creek and very abrupt at Siavlat Mountain. Paleocurrents from fluvial strata of the Kanayut indicate sediment transport toward the west and south in both the western and central Brooks Range. The maximum clast size distribution generally indicates westward fining from the Shainin Lake region.

  4. Devonian brachiopods of southwesternmost laurentia: Biogeographic affinities and tectonic significance

    USGS Publications Warehouse

    Boucot, A.J.; Poole, F.G.; Amaya-Martinez, R.; Harris, A.G.; Sandberg, C.A.; Page, W.R.

    2008-01-01

    Three brachiopod faunas discussed herein record different depositional and tectonic settings along the southwestern margin of Laurentia (North America) during Devonian time. Depositional settings include inner continental shelf (Cerros de Los Murcielagos), medial continental shelf (Rancho Placeritos), and offshelf continental rise (Rancho Los Chinos). Ages of Devonian brachiopod faunas include middle Early (Pragian) at Rancho Placeritos in west-central Sonora, late Middle (Givetian) at Cerros de Los Murcielagos in northwestern Sonora, and late Late (Famennian) at Rancho Los Chinos in central Sonora. The brachiopods of these three faunas, as well as the gastropod Orecopia, are easily recognized in outcrop and thus are useful for local and regional correlations. Pragian brachiopods dominated by Acrospirifer and Meristella in the "San Miguel Formation" at Rancho Placeritos represent the widespread Appohimchi Subprovince of eastern and southern Laurentia. Conodonts of the early to middle Pragian sulcatus to kindlei Zones associated with the brachiopods confirm the ages indicated by the brachiopod fauna and provide additional information on the depositional setting of the Devonian strata. Biostratigraphic distribution of the Appohimchi brachiopod fauna indicates continuous Early Devonian shelf deposition along the entire southern margin of Laurentia. The largely emergent southwest-trending Transcontinental arch apparently formed a barrier preventing migration and mixing of many genera and species of brachiopods from the southern shelf of Laurentia in northern Mexico to the western shelf (Cordilleran mio-geocline) in the western United States. Middle Devonian Stringocephalus brachiopods and Late Devonian Orecopia gastropods in the "Los Murcielagos Formation" in northwest Sonora represent the southwest-ernmost occurrence of these genera in North America and date the host rocks as Givetian and Frasnian, respectively. Rhynchonelloid brachiopods (Dzieduszyckia sonora) and associated worm tubes in the Los Pozos Formation of the Sonora allochthon in central Sonora are also found in strati-form-barite facies in the upper Upper Devonian (Famennian) part of the Slaven Chert in the Roberts Mountains allochthon (upper plate) of central and western Nevada. Although these brachiopods and worm tubes occur in similar depositional settings along the margin of Laurentia in Mexico, they occur in allochthons that exhibit different tectonic styles and times of emplacement. Thus, the allochthons containing the brachiopods and worm tubes in Sonora and Nevada are parts of separate orogenic belts and have different geographic settings and tectonic histories. Devonian facies belts and faunas in northern Mexico indicate a continuous continental shelf along the entire southern margin of Laurentia. These data, in addition to the continuity of the late Paleozoic Ouachita-Marathon-Sonora orogen across northern Mexico, contradict the early Late Jurassic Mojave-Sonora megashear as a viable hypothesis for large-magnitude offset (600-1100 km) of Proterozoic through Middle Jurassic rocks from California to Sonora. ?? 2008 The Geological Society of America.

  5. New Insights into Arctic Tectonics: Uranium-Lead, (Uranium-Thorium)/Helium, and Hafnium Isotopic Data from the Franklinian Basin, Canadian Arctic Islands

    NASA Astrophysics Data System (ADS)

    Anfinson, Owen Anthony

    More than 2300 detrital zircon uranium-lead (U-Pb) ages, 32 176Hf/177Hf (eHf) isotopic values, 37 apatite helium (AHe) ages, and 72 zircon helium (ZHe) ages represent the first in-depth geochronologic and thermochronologic study of Franklinian Basin strata in the Canadian Arctic and provide new insight on >500 M.y. of geologic history along the northern Laurentian margin (modern orientation). Detrital zircon U-Pb age data demonstrate that the Franklinian Basin succession is composed of strata with three distinctly different provenance signatures. Neoproterozoic and Lower Cambrian formations contain detrital zircon populations consistent with derivation from Archean to Paleoproterozoic gneisses and granites of the west Greenland--northeast Canadian Shield. Lower Silurian to Middle Devonian strata are primarily derived from foreland basin strata of the East Greenland Caledonides (Caledonian orogen). Middle Devonian to Upper Devonian strata also contain detrital zircon populations interpreted as being primarily northerly derived from the continental landmass responsible for the Ellesmerian Orogen (often referred to as Crockerland). U-Pb age data from basal turbidites of the Middle to Upper Devonian clastic succession suggest Crockerland contributed sediment to the northern Laurentian margin by early-Middle Devonian time and that prior to the Ellesmerian Orogeny Crockerland had a comparable geologic history to the northern Baltica Craton. Detrital zircon U-Pb ages in Upper Devonian strata suggest Crockerland became the dominant source by the end of Franklinian Basin sedimentation. Mean eHf values from Paleozoic detrital zircon derived from Crockerland suggest the zircons were primarily formed in either an island arc or continental arc built on accreted oceanic crust setting. ZHe cooling ages from Middle and Upper Devonian strata were not buried deeper than 7 km since deposition and suggest Crockerland was partially exhumed during the Caledonian Orogen. AHe cooling ages are partially reset since deposition and experienced varying burial histories depending on stratigraphic and geographic location within the basin. AHe ages from Middle Devonian strata from the western margin of the basin indicate episodes of exhumation associated with clastic influxes of sediment into the Sverdrup Basin during the Late Jurassic-Early Cretaceous and Late Cretaceous.

  6. Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2013-01-01

    Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.

  7. Provenance and petrofacies, Upper Devonian sandstones, Philip Smith Mountains and Arctic quandrangles, Brooks Range, Alaska: Final report, Project No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A.V.; Coney, P.J.

    1987-11-01

    Late Devonian sandstone beds are exposed as allochthonous sequences that extend for over 1000 km along the east-west strike of the Brooks Range in northern Alaska. These horizons, at least in part, record Late Devonian tectonism and deposition along the southern margin of the Arctic Alaska block. This study identifies clastic petrofacies in the western Philip Smith Mountains and southern Arctic quadrangles and infers the composition of the source terrane. The paleogeography is not known and the original distribution of lithofacies is uncertain, owing to the extensive post-depositional tectonism. In the study area the sandstones are exposed along rugged mountainmore » tops and high ridges. Although exposures are excellent, access is often difficult. Samples were collected from exposures near the western end of the Chandalar Shelf, Atigun Pass, and the Atigun River valley in the Philip Smith Mountains quadrangle and from the Crow Nest Creek and Ottertail Creek areas in the Arctic quadrangle. 34 refs., 17 figs.« less

  8. Revisions to the original extent of the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Enomoto, Catherine B.; Rouse, William A.; Trippi, Michael H.; Higley, Debra K.

    2016-04-11

    Technically recoverable undiscovered hydrocarbon resources in continuous accumulations are present in Upper Devonian and Lower Mississippian strata in the Appalachian Basin Petroleum Province. The province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia, and Alabama. The Upper Devonian and Lower Mississippian strata are part of the previously defined Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) that extends from New York to Tennessee. This publication presents a revision to the extent of the Devonian Shale-Middle and Upper Paleozoic TPS. The most significant modification to the maximum extent of the Devonian Shale-Middle and Upper Paleozoic TPS is to the south and southwest, adding areas in Tennessee, Georgia, Alabama, and Mississippi where Devonian strata, including potential petroleum source rocks, are present in the subsurface up to the outcrop. The Middle to Upper Devonian Chattanooga Shale extends from southeastern Kentucky to Alabama and eastern Mississippi. Production from Devonian shale has been established in the Appalachian fold and thrust belt of northeastern Alabama. Exploratory drilling has encountered Middle to Upper Devonian strata containing organic-rich shale in west-central Alabama. The areas added to the TPS are located in the Valley and Ridge, Interior Low Plateaus, and Appalachian Plateaus physiographic provinces, including the portion of the Appalachian fold and thrust belt buried beneath Cretaceous and younger sediments that were deposited on the U.S. Gulf Coastal Plain.

  9. Lower Paleozoic deep-water facies of the Medfra area, central Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1997

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.; Repetski, John E.

    1999-01-01

    Deep-water facies, chiefly hemipelagic deposits and turbidites, of Cambrian through Devonian age are widely exposed in the Medfra and Mt. McKinley quadrangles. These strata include the upper part of the Telsitna Formation (Middle-Upper Ordovician) and the Paradise Fork Formation (Lower Silurian-Lower Devonian) in the Nixon Fork terrane, the East Fork Hills Formation (Upper Cambrian-Lower Devonian) in the East Fork subterrane of the Minchumina terrane, and the chert and argillite unit (Ordovician) and the argillite and quartzite unit (Silurian- Devonian? and possibly older) in the Telida subterrane of the Minchumina terrane.In the western part of the study area (Medfra quadrangle), both hemipelagic deposits and turbidites are largely calcareous and were derived from the Nixon Fork carbonate platform. East- ern exposures (Mt. McKinley quadrangle; eastern part of the Telida subterrane) contain much less carbonate; hemipelagic strata are mostly chert, and turbidites contain abundant rounded quartz and lesser plagioclase and potassium feldspar. Deep-water facies in the Medfra quadrangle correlate well with rocks of the Dillinger terrane exposed to the south (McGrath quadrangle), but coeval strata in the Mt. McKinley quadrangle are compositionally similar to rocks to the northeast (Livengood quadrangle). Petrographic data thus suggest that the Telida subterranes presently defined is an artificial construct made up of two distinct sequences of disparate provenance.Restoration of 90 and 150 km of dextral strike-slip on the Iditarod and Farewell faults, respectively, aligns the deep-water strata of the Minchumina and Dillinger terranes in a position east of the Nixon Fork carbonate platform. This restoration supports the interpretation that lower Paleozoic rocks in the Nixon Fork and Dillinger terranes, and in the western part of the Minchumina terrane (East Fork subterrane and western part of the Telida subterrane), formed along a single continental margin. Rocks in the eastern part of the Telida subterrane are compositionally distinct from those to the west and may have had a different origin and history.

  10. Silurian and Devonian in Vietnam—Stratigraphy and facies

    NASA Astrophysics Data System (ADS)

    Thanh, Tống Duy; Phương, Tạ Hoàng; Janvier, Philippe; Hùng, Nguyễn Hữu; Cúc, Nguyễn Thị Thu; Dương, Nguyễn Thùy

    2013-09-01

    Silurian and Devonian deposits in Viet Nam are present in several zones and regions, including Quang Ninh, East Bac Bo, and West Bac Bo Zones of the Bac Bo Region, the Dien Bien-Nghe An and Binh Tri Thien Zones of the Viet-Lao Region, and the South Trung Bo, and Western Nam Bo Zones of the South Viet Nam Region (Fig. 1). The main lithological features and faunal composition of the Silurian and Devonian Units in all these zones are briefly described. The Silurian consists of deep-water deposits of the upper parts of the Co To and Tan Mai Formations in the Quang Ninh Zone, the upper parts of the Phu Ngu Formation in the East Bac Bo Zone and the upper parts of the Long Dai and Song Ca Formations in the Viet-Lao Region. Shallow water facies Silurian units containing benthic faunas are more widely distributed, including the upper part of the Sinh Vinh and Bo Hieng Formations in the West Bac Bo Zone, the Kien An Formation in the Quang Ninh Zone, and, in the Viet-Lao Region, the Dai Giang Formation and the upper part of the Tay Trang Formation. No Lower and Middle Devonian deposits indicate deep water facies, but they are characterized by different shallow water facies. Continental to near shore, deltaic facies characterize the Lower Devonian Song Cau Group in the East Bac Bo Zone, the Van Canh Formation in the Quang Ninh Zone, and the A Choc Formation in the Binh Tri Thien Zone. Similar facies also occur in the Givetian Do Son Formation of the Quang Ninh Zone, and the Tan Lap Formation in the East Bac Bo Zone, and consist of coarse terrigenous deposits—cross-bedded conglomerates, sandstone, etc. Most Devonian units are characterized by shallow marine shelf facies. Carbonate and terrigenous-carbonate facies dominate, and terrigenous facies occur in the Lower and Middle Devonian sections in some areas only. The deep-water-like facies is characteriztic for some Upper Devonian formations in the Bac Bo (Bang Ca and Toc Tat Formations) and Viet-Lao Regions (Thien Nhan and Xom Nha Formations). These formations contain cherty shale or siliceous limestone, and fossils consist of conodonts, but there are also brachiopods and other benthos. They were possibly deposited in a deep water environment on the slope of the continental shelf. Most Devonian units distributed in the North and the Central Viet Nam consist of self shallow water sediments, and apparently they were deposited in a passive marginal marine environment. The coarse clastic continental or subcontinental deposits are distributed only in some areas of the East Bac Bo and of the Quang Ninh zones of the Bac Bo Region, and in the south of the Binh Tri Thien Zone. This situation suggests the influence of the Caledonian movement at the end of the Silurian period that called the Guangxi movement in South China.

  11. Thermal maturity patterns (conodont color alteration index and vitrinite reflectance) in Upper Ordovician and Devonian rocks of the Appalachian basin: a major revision of USGS Map I-917-E using new subsurface collections: Chapter F.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Repetski, John E.; Ryder, Robert T.; Weary, David J.; Harris, Anita G.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The conodont color alteration index (CAI) introduced by Epstein and others (1977) and Harris and others (1978) is an important criterion for estimating the thermal maturity of Ordovician to Mississippian rocks in the Appalachian basin. Consequently, the CAI isograd maps of Harris and others (1978) are commonly used by geologists to characterize the thermal and burial history of the Appalachian basin and to better understand the origin and distribution of oil and gas resources in the basin. The main objectives of this report are to present revised CAI isograd maps for Ordovician and Devonian rocks in the Appalachian basin and to interpret the geologic and petroleum resource implications of these maps. The CAI isograd maps presented herein complement, and in some areas replace, the CAI-based isograd maps of Harris and others (1978) for the Appalachian basin. The CAI data presented in this report were derived almost entirely from subsurface samples, whereas the CAI data used by Harris and others (1978) were derived almost entirely from outcrop samples. Because of the different sampling methods, there is little geographic overlap of the two data sets. The new data set is mostly from the Allegheny Plateau structural province and most of the data set of Harris and others (1978) is from the Valley and Ridge structural province, east of the Allegheny structural front (fig. 1). Vitrinite reflectance, based on dispersed vitrinite in Devonian black shale, is another important parameter for estimating the thermal maturity in pre-Pennsylvanian-age rocks of the Appalachian basin (Streib, 1981; Cole and others, 1987; Gerlach and Cercone, 1993; Rimmer and others, 1993; Curtis and Faure, 1997). This chapter also presents a revised percent vitrinite reflectance (%R0) isograd map based on dispersed vitrinite recovered from selected Devonian black shales. The Devonian black shales used for the vitrinite studies reported herein also were analyzed by RockEval pyrolysis and total organic carbon (TOC) content in weight percent. Although the RockEval and TOC data are included in this chapter (table 1), they are not shown on the maps. The revised CAI isograd and percent vitrinite reflectance isograd maps cover all or parts of Kentucky, New York, Ohio, Pennsylvania, Virginia, and West Virginia (fig. 1), and the following three stratigraphic intervals: Upper Ordovician carbonate rocks, Lower and Middle Devonian carbonate rocks, and Middle and Upper Devonian black shales. These stratigraphic intervals were chosen for the following reasons: (1) they represent target reservoirs for much of the oil and gas exploration in the Appalachian basin; (2) they are stratigraphically near probable source rocks for most of the oil and gas; (3) they include geologic formations that are nearly continuous across the basin; (4) they contain abundant carbonate grainstone-packstone intervals, which give a reasonable to good probability of recovery of conodont elements from small samples of drill cuttings; and (5) the Middle and Upper Devonian black shale contains large amounts of organic matter for RockEval, TOC, and dispersed vitrinite analyses. Thermal maturity patterns of the Upper Ordovician Trenton Limestone are of particular interest here, because they closely approximate the thermal maturity patterns in the overlying Upper Ordovician Utica Shale, which is the probable source rock for oil and gas in the Upper Cambrian Rose Run Sandstone (sandstone), Upper Cambrian and Lower Ordovician Knox Group (Dolomite), Lower and Middle Ordovician Beekmantown Group (dolomite or Dolomite), Upper Ordovician Trenton and Black River Limestones, and Lower Silurian Clinton/Medina sandstone (Cole and others, 1987; Jenden and others, 1993; Laughrey and Baldassare, 1998; Ryder and others, 1998; Ryder and Zagorski, 2003). The thermal maturity patterns of the Lower Devonian Helderberg Limestone (Group), Middle Devonian Onondaga Limestone, and Middle Devonian Marcellus Shale-Upper Devonian Rhine street Shale Member-Upper Devonian Ohio Shale are of interest, because they closely approximate the thermal maturity patterns in the Marcellus Shale, Upper Devonian Rhinestreet Shale Member, and Upper Devonian Huron Member of the Ohio Shale, which are the most important source rocks for oil and gas in the Appalachian basin (de Witt and Milici, 1989; Klemme and Ulmishek, 1991). The Marcellus, Rhinestreet, and Huron units are black-shale source rocks for oil and (or) gas in the Lower Devonian Oriskany Sandstone, the Upper Devonian sandstones, the Middle and Upper Devonian black shales, and the Upper Devonian-Lower Mississippian(?) Berea Sandstone (Patchen and others, 1992; Roen and Kepferle, 1993; Laughrey and Baldassare, 1998).

  12. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left-lateral displacement along this fault zone. If this model is correct, the Mojave-Sonora megashear played a direct role in the Pennsylvanian truncation of the continental margin, and any younger displacement on this fault has been relatively small. ?? 2005 Geological Society of America.

  13. The Inskip Formation, the Harmony Formation, and the Havallah Sequence of Northwestern Nevada - An Interrelated Paleozoic Assemblage in the Home of the Sonoma Orogeny

    USGS Publications Warehouse

    Ketner, Keith B.

    2008-01-01

    An area between the towns of Winnemucca and Battle Mountain in northwestern Nevada, termed the arkosic triangle, includes the type areas of the middle to upper Paleozoic Inskip Formation and Havallah sequence, the Upper Devonian to Mississippian Harmony Formation, the Sonoma orogeny, and the Golconda thrust. According to an extensive body of scientific literature, the Havallah sequence, a diverse assemblage of oceanic rocks, was obducted onto the continent during the latest Permian or earliest Triassic Sonoma orogeny by way of the Golconda thrust. This has been the most commonly accepted theory for half a century, often cited but rarely challenged. The tectonic roles of the Inskip and Harmony Formations have remained uncertain, and they have never been fully integrated into the accepted theory. New, and newly interpreted, data are incompatible with the accepted theory and force comprehensive stratigraphic and tectonic concepts that include the Inskip and Harmony Formations as follows: middle to upper Paleozoic strata, including the Inskip, Harmony, and Havallah, form an interrelated assemblage that was deposited in a single basin on an autochthonous sequence of Cambrian, Ordovician, and lowest Silurian strata of the outer miogeocline. Sediments composing the Upper Devonian to Permian sequence entered the basin from both sides, arkosic sands, gravel, limestone olistoliths, and other detrital components entered from the west, and quartz, quartzite, chert, and other clasts from the east. Tectonic activity was expressed as: (1) Devonian uplift and erosion of part of the outer miogeocline; (2) Late Devonian depression of the same area, forming a trough, probably fault-bounded, in which the Inskip, Harmony, and Havallah were deposited; (3) production of intraformational and extrabasinal conglomerates derived from the basinal rocks; and (4) folding or tilting of the east side of the depositional basin in the Pennsylvanian. These middle to upper Paleozoic deposits were compressed in the Jurassic, causing east-verging thrusts in the eastern part of the depositional basin (Golconda thrust) and west-verging thrusts and folds in the western part. Hypotheses involving a far-traveled allochthon that was obducted from an ocean or back-arc basin are incompatible with modern observations and concepts.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.

    This document consists of the following papers: inorganic geochemistry studies of the Eastern Kentucky Gas Field; lithology studies of upper Devonian well cuttings in the Eastern Kentucky Gas Field; possible effects of plate tectonics on the Appalachian Devonian black shale production in eastern Kentucky; preliminary depositional model for upper Devonian Huron age organic black shale in the Eastern Kentucky Gas Field; the anatomy of a large Devonian black shale gas field; the Cottageville (Mount Alto) Gas Field, Jackson County, West Virginia: a case study of Devonian shale gas production; the Eastern Kentucky Gas Field: a geological study of the relationshipsmore » of Ohio Shale gas occurrences to structure, stratigraphy, lithology, and inorganic geochemical parameters; and a statistical analysis of geochemical data for the Eastern Kentucky Gas Field.« less

  15. Radon-222 content of natural gas samples from Upper and Middle Devonian sandstone and shale reservoirs in Pennsylvania—preliminary data

    USGS Publications Warehouse

    Rowan, E.L.; Kraemer, T.F.

    2012-01-01

    Samples of natural gas were collected as part of a study of formation water chemistry in oil and gas reservoirs in the Appalachian Basin. Nineteen samples (plus two duplicates) were collected from 11 wells producing gas from Upper Devonian sandstones and the Middle Devonian Marcellus Shale in Pennsylvania. The samples were collected from valves located between the wellhead and the gas-water separator. Analyses of the radon content of the gas indicated 222Rn (radon-222) activities ranging from 1 to 79 picocuries per liter (pCi/L) with an overall median of 37 pCi/L. The radon activities of the Upper Devonian sandstone samples overlap to a large degree with the activities of the Marcellus Shale samples.

  16. Devonian salt dissolution-collapse breccias flooring the Cretaceous Athabasca oil sands deposit and development of lower McMurray Formation sinkholes, northern Alberta Basin, Western Canada

    NASA Astrophysics Data System (ADS)

    Broughton, Paul L.

    2013-01-01

    The sub-Cretaceous paleotopography underlying giant Lower Cretaceous Athabasca oil sands, northern Alberta, has an orthogonal lattice pattern of troughs up to 50 km long and 100 m deep between pairs of cross-cutting lineaments. These structures are interpreted to have been inherited from a similar pattern of dissolution collapse-subsidence troughs in the underlying Middle Devonian salt beds. Removal of more than 100 m of halite salt fragmented the overlying Upper Devonian strata into fault blocks and collapse breccias that subsided into the underlying dissolution troughs. The unusually low 1:2 to 1:3 thickness ratios of halite salts to the overlying strata resulted in the Upper Devonian strata collapse-subsidence into underlying salt dissolution troughs being more cataclysmic during the first phase of salt removal. The second phase of slower but complete salt removal between the earlier troughs resulted in a more gradual subsidence of the overlying strata. This obliterated the earlier pattern of giant cross-cutting dissolution troughs bounded by major lineaments. The collapse breccia fabrics underlying the earlier troughs differ from those from areas between the troughs. Collapse breccias underlying the large troughs often have crushed fabrics distributed in zones that rapidly pinched out between fault blocks. Breccias between troughs developed as giant mosaics of detached carbonate blocks that formed breccia pipe complexes. Multiple sinkholes up to 100 m deep aligned along multi-km linear valley trends that dissected the sub-Cretaceous paleotopography. These sinkhole trends formed orthogonal patterns inherited from underlying lattice of NW-SE and NE-SW salt structured lineaments. These cross-cutting sinkhole trends have a smaller 5 km scale reticulate pattern similar to the giant 50 km scale pattern of collapse-subsidence troughs. Other sinkholes developed as lower McMurray strata sagged when underlying Devonian fault blocks and breccia pipes differentially subsided.

  17. Assessment of undiscovered continuous gas resources in Upper Devonian Shales of the Appalachian Basin Province, 2017

    USGS Publications Warehouse

    Enomoto, Catherine B.; Trippi, Michael H.; Higley, Debra K.; Rouse, William A.; Dulong, Frank T.; Klett, Timothy R.; Mercier, Tracey J.; Brownfield, Michael E.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Marra, Kristen R.; Le, Phuong A.; Woodall, Cheryl A.; Schenk, Christopher J.

    2018-04-19

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 10.7 trillion cubic feet of natural gas in Upper Devonian shales of the Appalachian Basin Province.

  18. The carpenter fork bed, a new - and older - Black-shale unit at the base of the New Albany shale in central Kentucky: Characterization and significance

    USGS Publications Warehouse

    Barnett, S.F.; Ettensohn, F.R.; Norby, R.D.

    1996-01-01

    Black shales previously interpreted to be Late Devonian cave-fill or slide deposits are shown to be much older Middle Devonian black shales only preserved locally in Middle Devonian grabens and structural lows in central Kentucky. This newly recognized - and older -black-shale unit occurs at the base of the New Albany Shale and is named the Carpenter Fork Bed of the Portwood Member of the New Albany Shale after its only known exposure on Carpenter Fork in Boyle County, central Kentucky; two other occurrences are known from core holes in east-central Kentucky. Based on stratigraphic position and conodont biostratigraphy, the unit is Middle Devonian (Givetian: probably Middle to Upper P. varcus Zone) in age and occurs at a position represented by an unconformity atop the Middle Devonian Boyle Dolostone and its equivalents elsewhere on the outcrop belt. Based on its presence as isolated clasts in the overlying Duffin Bed of the Portwood Member, the former distribution of the unit was probably much more widespread - perhaps occurring throughout western parts of the Rome trough. Carpenter Fork black shales apparently represent an episode of subsidence or sea-level rise coincident with inception of the third tectophase of the Acadian orogeny. Deposition, however, was soon interrupted by reactivation of several fault zones in central Kentucky, perhaps in response to bulge migration accompanying start of the tectophase. As a result, much of central Kentucky was uplifted and tilted, and the Carpenter Fork Bed was largely eroded from the top of the Boyle, except in a few structural lows like the Carpenter Fork graben where a nearly complete record of Middle to early Late Devonian deposition is preserved.

  19. Middle to Late Devonian-Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Koehl, Jean-Baptiste P.; Bergh, Steffen G.; Henningsen, Tormod; Faleide, Jan Inge

    2018-03-01

    The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle-Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms-Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE-SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya-Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top-NW normal displacement in Middle to Late Devonian-Carboniferous times. The Troms-Finnmark Fault Complex displays a zigzag-shaped pattern of NNE-SSW- and ENE-WSW-trending extensional faults before it terminates to the north as a WNW-ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW-ESE-trending, margin-oblique segment of the Troms-Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden-Komagelva Fault Zone, which is made of WNW-ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden-Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW-ESE-trending segment of the Troms-Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy-Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE-WSW- to NE-SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian-early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya-Ingøya shear zone truncated and decapitated the Trollfjorden-Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden-Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.

  20. Late Devonian shale deposition based on known and predicted occurrence of Foerstia in Michigan basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, R.D.

    The fossil Foerstia (Protosalvinia) marks a time zone within Late Devonian shale sequences in the eastern US. Its recent discovery in Michigan has led to more accurate correlations among the three large eastern basins. Subdivisions of the Devonian-Mississippi shale sequence in Michigan based on gamma-ray correlations reveal an idealized black shale geometry common to other eastern black shales, such as the Sunbury of Michigan and Ohio, the Clegg Creek of Indiana, the Dunkirk of Pennsylvania and New York, and the lower Huron of Ohio and West Virginia. In Michigan, Foerstia occurs at a stratigraphic position postulated to mark a majormore » change in depositional conditions and source areas. This position strengthens the physical and paleontologic evidence for a formal division of the Antrim. Isopach maps of the shale sequence above and below Foerstia show a relatively uniform and continuous black shale deposit (units 1A, 1B, and 1C) below Foerstia. This deposit is unlike the wedge of sediment found above Foerstia, which is composed of a western facies (Ellsworth) and an eastern facies (upper Antrim) that should be combined in a single stratigraphic unit conforming to Forgotson's concept of a format.« less

  1. A search for stratiform massive-sulfide exploration targets in Appalachian Devonian rocks; a case study using computer-assisted attribute-coincidence mapping

    USGS Publications Warehouse

    Wedow, Helmuth

    1983-01-01

    The empirical model for sediment-associated, stratiform, exhalative, massive-sulfide deposits presented by D. Large in 1979 and 1980 has been redesigned to permit its use in a computer-assisted search for exploration-target areas in Devonian rocks of the Appalachian region using attribute-coincidence mapping (ACM). Some 36 gridded-data maps and selected maps derived therefrom were developed to show the orthogonal patterns, using the 7-1/2 minute quadrangle as an information cell, of geologic data patterns relevant to the empirical model. From these map and data files, six attribute-coincidence maps were prepared to illustrate both variation in the application of ACM techniques and the extent of possible significant exploration-target areas. As a result of this preliminary work in ACM, four major (and some lesser) exploration-target areas needing further study and analysis have been defined as follows: 1) in western and central New York in the outcrop area of lowermost Upper Devonian rocks straddling the Clarendon-Linden fault; 2) in western Virginia and eastern West Virginia in an area largely coincident with the well-known 'Oriskany' Mn-Fe ores; 3) an area in West Virginia, Maryland, and Virginia along and nearby the trend of the Alabama-New York lineament of King and Zietz approximately between 38- and 40-degrees N. latitude; and 4) an area in northeastern Ohio overlying an area coincident with a significant thickness of Silurian salt and high modern seismic activity. Some lesser, smaller areas suggested by relatively high coincidence may also be worthy of further study.

  2. Novel reef fabrics from the Devonian Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Wood, Rachel

    1998-11-01

    Large cement-filled cavities (0.2 to 1.5 m wide) are well developed in slope-margin sediments of the spectacular Upper Devonian (Frasnian) reefs of the Canning Basin, Western Australia, where they account for up to 50% of the primary porosity. These are here interpreted as primary reef framework cavities that formed beneath a variety of domal, tabular or laminar stromatoporoid sponges. Of particular note are those created by unusual, very thin (2 to 8 mm), laminar stromatoporoids (mainly Stachyodes australe), that formed arching, hollow domes up to 0.3 m in height and 1.5 m in diameter over the sediment surface to enclose flat-based cavities. The free undersurface of these stromatoporoids often supported a hitherto unrecognised cryptic community, dominated by pendent growth of the putative calcified cyanobacterium Renalcis, with rare intergrown lithistid sponges and spiny atrypid brachiopods. The uneven growth surface of the cryptos imparts an irregular, stromatactis-like texture to the upper surface of the remaining cavity, which is filled by early marine, finely banded, fibrous cements (mainly radiaxial calcite) interbedded with often multiple generations of geopetal sediment containing peloids and ostracod debris. This ecology yields the tabular stromatoporoid- Renalcis fabric described ubiquitously from the Canning Basin reef complex. Such unusual reef fabrics are a consequence of the ecology of shallow marine mid-Palaeozoic reefs which were quite unlike that of modern coral reefs. The frequent preservation of relatively delicate, in situ communities was due to (1) rapid and pervasive early cementation, (2) growth under non-energetic conditions, and (3) the relative insignificance of bioeroders associated with reefs at this time.

  3. Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA

    USGS Publications Warehouse

    Morrow, J.R.; Sandberg, C.A.; Malkowski, K.; Joachimski, M.M.

    2009-01-01

    At Hancock Summit West, Nevada, western USA, uppermost Givetian (upper Middle Devonian) and lower and middle Frasnian (lower Upper Devonian) rocks of the lower Guilmette Formation include, in stratigraphic sequence, carbonate-platform facies of the conodont falsiovalis, transitans, and punctata Zones; the type Alamo Breccia Member of the middle punctata Zone; and slope facies of the punctata and hassi Zones. The catastrophically deposited Alamo Breccia and related phenomena record the ~ 382??Ma Alamo event, produced by a km-scale bolide impact into a marine setting seaward of an extensive carbonate platform fringing western North America. Re-evaluation of conodonts from the lower Guilmette Formation and Alamo Breccia Member, together with regional sedimentologic and conodont biofacies comparisons, now firmly locates the onset of the Johnson et al. (1985) transgressive-regressive (T-R) cycle IIc, which occurred after the start of the punctata Zone, within a parautochthonous megablock low in the Alamo Breccia. Whole-rock carbon isotope analyses through the lower Guilmette Formation and Alamo Breccia Member reveal two positive ??13Ccarb excursions: (1) a small, 3??? excursion, which is possibly correlative with the falsiovalis Event previously identified from sections in Western Europe and Australia, occurs below the breccia in the Upper falsiovalis Zone to early part of the transitans Zone; and (2) a large, multi-part excursion, dominated by a 6??? positive shift, begins above the start of the punctata Zone and onset of T-R cycle IIc and continues above the Alamo Breccia, ending near the punctata- hassi zonal boundary. This large excursion correlates with the punctata Event, a major positive ??13C excursion previously recognized in eastern Laurussia and northern Gondwana. Consistent with previous studies, at Hancock Summit West the punctata Event is apparently not associated with any regional extinctions or ecosystem reorganizations. In the study area, onset of the main punctata Event began after the start of both the punctata Zone and T-R cycle IIc, and preceded the Alamo impact by less than 650??k.y., as inferred from conodont biochronologic and regional rock-accumulation rate estimates. Although complicated by the heterolithic, high-energy deposits of the Alamo Breccia, the carbon isotope record of the breccia and post-breccia beds does not indicate a major impact-correlative perturbation to the carbon cycle. This study extends recognition of the punctata Event to western Laurussia, further reinforcing the potential global scale of the event and its potential importance to understanding early to middle Frasnian marine geochemistry and palaeoenvironments. Based on previous models and our observations, increased tectonic activity, increased nutrient flux to oceans, increased marine bioproductivity, widespread anoxia, and increased organic carbon burial were all likely key factors in driving the punctata Event excursion. Furthermore, periodic eustatic and regional relative sea-level rises may have played an important role in promoting organic carbon burial and in maintaining a link between the primary open-marine geochemical signal and that recorded on the shallow-marine, lower Guilmette carbonate platform. ?? 2009 Elsevier B.V. All rights reserved.

  4. The Frasnian-Famennian boundary (Upper Devonian) within the Hanover-Dunkirk transition, northern Appalachian basin, western New York state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Over, D.J.

    In western New York State interbedded pyritic silty green and dark grey shales and siltstone of the Hanover Member, Java Formation, West Falls Group, are overlain by thick pyritic dark grey-black shale of the Dunkirk Member of the Canadaway formation. The dark shales in the upper Hanover and Dunkirk contain a diverse and well preserved conodont fauna which allows precise placement of the Frasnian-Famennian boundary at several described sections. At Pt. Gratiot, in far western New York State, the contact between the Hanover and Dunkirk is disconformable. The Frasnian-Famennian boundary is marked by a pyritic lag deposit at the basemore » of the Dunkirk which contains Palmatolepis triangularis and Pa. subperlobata. The underlying upper Hanover is characterized by Pa. bogartensis , Pa. cf. Pa. rhenana, Pa. winchelli, and Ancyrognathus (asymmetricus/calvini) Eastward, in the direction of the paleo-source area, the Frasnian-Famennian boundary is within the upper Hanover Member. At Irish Gulf the boundary is recognized within a 10 cm thick laminated pyritic dark grey shale bed 3.0 m below the base of the Dunkirk. Palmatolepis triangularis and Pa. subperlobata occur below a conodont-rich lag layer in the upper 2 cm of the bed. Palmatolepis bogartensis , Pa. cf. Pa. rhenana, Ancyrodella curvata, and Icriodus alternatus occur in the underlying 8 cm. Palmatolepis triangularis and Pa. winchelli occur in an underlying dark shale bed separated from the boundary bed by a hummocky cross-bedded siltstone layer.« less

  5. Distribution and variation of the inorganic fraction of Devonian to Bashkirian black shales in the north-western part of the Dniepr-Donets Basin, Ukraine

    NASA Astrophysics Data System (ADS)

    Wegerer, Eva; Sachsenhofer, Reinhard; Misch, David; Aust, Nicolai

    2016-04-01

    Mineralogical data of 112 core samples from 12 wells are used to investigate lateral and vertical variations in the lithofacies of Devonian to Bashkirian black shales in the north-western part of the Dniepr-Donets-Basin. Sulphur and carbonate contents as well as organic geochemical parameters, including TOC and Hydrogen Index have been determined on the same sample set within the frame of an earlier study (Sachsenhofer et al. 2010). This allows the correlation of inorganic and organic composition of the black shales. Aims of the study are to distinguish between detrital and authigenic minerals, to relate the lithofacies of the black shales with the tectono-stratigraphic sequences of the Dniepr-Donets Basin, to contribute to the reconstruction of the depositional environment and to relate diagenetic processes with the thermal history of the basin. Mineral compositions were determined primarily using XRD-measurements applying several measurement procedures, e.g. chemical and temperature treatment, and specific standards. Major differences exist in the mineralogical composition of the black shales. For example, clay mineral contents range from less than 20 to more than 80 Vol%. Kaolinite contents are significantly higher in rocks with a Tournaisian or Early Visean age than in any other stratigraphic unit. This is also true for two Lower Visean coal samples from the shallow north-westernmost part of the basin. Chlorite contents reach maxima in uppermost Visean and overlying rocks. Quartz contents are often high in Upper Visean rocks and reach maxima in Bashkirian units. Feldspar-rich rocks are observed in Devonian sediments from the north-western part of the study area and may reflect the proximity to a sediment source. Carbonate contents are typically low, but reach very high values in some Tournaisian, Lower Visean and Serpukhovian samples. Pyrite contents reach maxima along the basin axis in Tournaisian and Visean rocks reflecting anoxic conditions. Mixed layer minerals are dominated by illite. Their presence in samples from depth exceeding 5 km reflects the low thermal overprint of Paleozoic rocks in the north-western Dniepr-Donets-Basin.

  6. A late Devonian impact event and its association with a possible extinction event on Eastern Gondwana

    NASA Technical Reports Server (NTRS)

    Wang, K.; Geldsetzer, H. H. J.

    1992-01-01

    Evidence from South China and Western Australia for a 365-Ma impact event in the Lower crepida conodont zone of the Famennian stage of the Late Devonian (about 1.5 Ma after the Frasnian/Famennian extinction event) includes microtektitelike glassy microspherules, geochemical anomalies (including a weak Ir), a probable impact crater (greater than 70 k) at Taihu in South China, and an Ir anomaly in Western Australia. A brachiopod faunal turnover in South China, and the 'strangelove ocean'-like c-delta 13 excursions in both Chinese and Australian sections indicate that at least a regional-scale extinction might have occurred at the time of the impact. A paleoreconstruction shows that South China was very close to and facing Western Australia in the Late Devonian. The carbon isotopic excursions, which occur at the same stratigraphic level in both South China and Western Australia cannot be explained as being coincidental. The c-delta 13 excursions and the brachiopod faunal turnover in South China indicate that there might have been at least a regional (possibly global) extinction in the Lower crepida zone. The impact-derived microspherules and geochemical anomalies (especially the Ir) indicate a Lower crepida zone impact event on eastern Gondwana. The location, type of target rocks, and possibly age of the Taihu Lake crater qualify as the probable site of this Late Devonian impact.

  7. The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites

    NASA Astrophysics Data System (ADS)

    von Raumer, Jürgen F.; Nesbor, Heinz-Dieter; Stampfli, Gérard M.

    2017-10-01

    Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean preceding the general Late Variscan crustal shortening and oroclinal bending.

  8. Upper Devonian outcrop stratigraphy, southwestern Virginia and southeastern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennison, J.M.; Filer, J.K.; Rossbach, T.J.

    Ongoing outcrop studies are resulting in the extension of existing formal lithostratigraphic units and revision of previously less refined subdivisions of Upper Devonian strata in southwestern Virginia and southeastern West Virginia. A 425 km (263 mi) long stratigraphic cross-section has been constructed primarily from the outcrop belt along the Allegheny Structural Front, supplemented by sections from nearby outcrop belts. This NE-SW striking cross-section is oblique to the nearly due N-S depositional strike of the Upper Devonian Acadian orogenic wedge. To the southwest, the Upper Devonian section thins from 2,100 meters (6,900 feet) to 230 meters (756 feet) as progressively moremore » distal deposits are encountered. An integrated approach has been taken to establish chronostratigraphic control within the cross-section. The best time markers include particularly regressive parasequences which can be identified across facies boundaries (especially the Pound and Briery Gap Sandstones and their equivalents), volcanic ashes, and an organic-rich shale zone marking the base of a major transgression (equivalent to the base of the Huron Shale in Ohio and the Dunkirk Shale of New York). These tools provide chronostratigraphic correlation through the undivided Brallier Formation. Supplemental control includes biostratigraphic markers as well as marine dull redbeds within the Foreknobs which parallel other time lines and may represent partially reduced influxes of oxidized coastal plain sediments during minor parasequence scale regressions.« less

  9. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction.

    PubMed

    Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  10. Regional stratigraphy and petroleum potential, Ghadames basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emme, J.J.; Sunderland, B.L.

    1991-03-01

    The Ghadames basin in east-central Algeria extends over 65,000 km{sup 2} (25,000 mi{sup 2}), of which 90% is covered by dunes of the eastern Erg. This intracratonic basin consists of up to 6000 m (20,000 ft) of dominantly clastic Paleozoic through Mesozoic strata. The Ghadames basin is part of a larger, composite basin complex (Ilizzi-Ghadames-Triassic basins) where Paleozoic strata have been truncated during a Hercynian erosional event and subsequently overlain by a northward-thickening wedge of Mesozoic sediments. Major reservoir rocks include Triassic sandstones that produce oil, gas, and condensate in the western Ghadames basin, Siluro-Devonian sandstones that produce mostly oilmore » in the shallower Ilizzi basin to the south, and Cambro-Ordovician orthoquartzites that produce oil at Hassi Messaoud to the northwest. Organic shales of the Silurian and Middle-Upper Devonian are considered primary source rocks. Paleozoic shales and Triassic evaporite/red bed sequences act as seals for hydrocarbon accumulations. The central Ghadames basin is underexplored, with less than one wildcat well/1700 km{sup 2} (one well/420,000 ac). Recent Devonian and Triassic oil discoveries below 3500 m (11,500 ft) indicate that deep oil potential exists. Exploration to date has concentrated on structural traps. Subcrop and facies trends indicate that potential for giant stratigraphic or combination traps exists for both Siluro-Devonian and Triassic intervals. Modern seismic acquisition and processing techniques in high dune areas can be used to successfully identify critical unconformity-bound sequences with significant stratigraphic trap potential. Advances in seismic and drilling technology combined with creative exploration should result in major petroleum discoveries in the Ghadames basin.« less

  11. Devonian and Mississippian rocks of the northern Antelope Range, Eureka County, Nevada

    USGS Publications Warehouse

    Hose, Richard Kenneth; Armstrong, A.K.; Harris, A.G.; Mamet, B.L.

    1982-01-01

    Lower through Upper Devonian rocks of the northern Antelope Range, Nev., consist of four formational rank units more than 800 m thick, separated from Mississippian units by an unconformity. The lower three Devonian units, the Beacon Peak Dolomite, McColley Canyon Formation, and Denay Limestone are known in other areas; the top unit, the Fenstermaker Wash Formation, is new. The Mississippian units, more than 280 m thick, are divisible into three units which are unlike coeval units elsewhere, and are herein named the Davis Spring Formation, Kinkead Spring Limestone, and Antelope Range Formation. Systematic sampling of the Devonian sequence has yielded relatively abundant conodonts containing several biostratigraphic ally significant taxa. The Mississippian units contain redeposited conodonts of chiefly Late Devonian and Early Mississippian (Kinderhookian) age together with indigenous Osagean foraminifers and algae in the Kinkead Spring Limestone.

  12. Assessment of Appalachian basin oil and gas resources: Devonian gas shales of the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System: Chapter G.9 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Milici, Robert C.; Swezey, Christopher S.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    This report presents the results of a U.S. Geological Survey (USGS) assessment of the technically recoverable undiscovered natural gas resources in Devonian shale in the Appalachian Basin Petroleum Province of the eastern United States. These results are part of the USGS assessment in 2002 of the technically recoverable undiscovered oil and gas resources of the province. This report does not use the results of a 2011 USGS assessment of the Devonian Marcellus Shale because the area considered in the 2011 assessment is much greater than the area of the Marcellus Shale described in this report. The USGS assessment in 2002 was based on the identification of six total petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian gas shales described in this report are within the Devonian Shale-Middle and Upper Paleozoic Total Petroleum System, which extends generally from New York to Tennessee. This total petroleum system is divided into ten assessment units (plays), four of which are classified as conventional and six as continuous. The Devonian shales described in this report make up four of these continuous assessment units. The assessment results are reported as fully risked fractiles (F95, F50, F5, and the mean); the fractiles indicate the probability of recovery of the assessment amount. The products reported are oil, gas, and natural gas liquids. The mean estimates for technically recoverable undiscovered hydrocarbons in the four gas shale assessment units are 12,195.53 billion cubic feet (12.20 trillion cubic feet) of gas and 158.91 million barrels of natural gas liquids

  13. Geometry of the neoproterozoic and paleozoic rift margin of western Laurentia: Implications for mineral deposit settings

    USGS Publications Warehouse

    Lund, K.

    2008-01-01

    The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the polarity and kinematics of the rift segment. Locally, discrete mineral belts parallel secondary structures such as rotated crustal blocks at depth that produced sedimentary subbasins and conduits for hydrothermal fluids. Where the miogeocline was overprinted by Mesozoic and Cenozoic deformation and magmatism, igneous rock-related mineral deposits are common. ??2008 Geological Society of America.

  14. Subsurface stratigraphy of upper Devonian clastics in southern West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, D.W.; Patchen, D.G.

    Studies of upper Devonian shales and siltstones in southern West Virginia have resulted in a refinement of the stratigraphic framework used in characterizing the gas-producing Devonian shales. Gamma-ray log correlation around the periphery of the Appalachian Basin has extended the usage of New York stratigraphic nomenclature for the interval between the base of the Dunkirk shale and the top of the Tully limestone to southern West Virginia. Equivalents of the Dunkirk shale and younger rocks of New York are recognized in southwestern West Virginia and are named according to Ohio usage. Gas production is primarily from the basal black shalemore » member of the Ohio shale. Gas shows from older black shale units (Rhinestreet and Marcellus shales) are recorded from wells east of the major producing trend. Provided suitable stimulation techniques can be developed, these older and deeper black shales may prove to be another potential gas resource.« less

  15. Hydrocarbon potential of Upper Devonian black shale, eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, I.M.; Frankie, W.T.; Moody, J.R.

    The gas-producing Upper Devonian black shales of eastern Kentucky represent cycles of organic units alternating with less-organic units that were dominated by an influx of clastics from a northeastern source. This pattern of sedimentation is typical throughout the southern Appalachian basin in areas basinal to, yet still influenced by, the Catskill delta to the northwest. These black shales, which thin westward onto the Cincinnati arch, dip eastward into the Appalachian basin. To evaluate the future gas potential of Devonian shale, a data base has been compiled, consisting of specific geologic and engineering information from 5920 Devonian shale wells in Letcher,more » Knott, Floyd, Martin, and Pike Counties, Kentucky. The first successful gas completion in eastern Kentucky was drilled in Martin County in 1901. Comparison of initial open-flow potential (IP) and long-term production data for these wells demonstrates that higher IP values generally indicate wells of higher production potential. Areas of higher IP are aligned linearly, and these lineaments are interpreted to be related to fracture systems within the Devonian shale. These fractures may be basement influenced. Temperature log analyses indicate that the greatest number of natural gas shows occur in the lower Huron Member of the Ohio Shale. Using both the temperature log to indicate gas shows and the gamma-ray log to determine the producing unit is a workable method for selecting the interval for treatment.« less

  16. Assessment of Paleozoic terrane accretion along the southern central Andes using detrital zircon geochronology

    NASA Astrophysics Data System (ADS)

    McKenzie, R.; Horton, B. K.; Fuentes, F.; Fosdick, J. C.; Capaldi, T.; Stockli, D. F.; Alvarado, P. M.

    2015-12-01

    Two distinct Paleozoic terranes known as Cuyania and Chilenia occupy the southern central Andes of Argentina and Chile. Because the proposed terrane boundaries coincide with major structural elements of the modern Andean system at 30-36°S, it is important to understand their origins and potential role in guiding later Andean deformation. The Cuyania terrane of western Argentina encompasses the Precordillera (PC) and a thick-skinned thrust block of the western Sierras Pampeanas, persisting southward to the San Rafael Basin (SRB). Although recently challenged, Cuyania has been long considered a piece of southern Laurentia that rifted away during the early Cambrian and collided with the Argentine margin during the Ordovician. Chilenia is situated west of Cuyania and includes the Frontal Cordillera (FC) and Andean magmatic arc. This less-studied terrane was potentially accreted during an enigmatic Devonian orogenic event. We present new detrital zircon U-Pb age data from siliciclastic sedimentary rocks that span the entire Paleozoic to Triassic from the FC, PC, and SRB. Cambrian rocks of the PC exhibit similar zircon age distributions with prominent ~1.4 and subordinate ~1.1 Ga populations, which are distinct from other Paleozoic strata. Plutonic rocks with these ages are common in southern Laurentia, whereas ~1.4 Ga zircons are uncommon in South American age distributions. This supports a Laurentian origin for Cuyania in isolation from Argentina during the Cambrian. Upper Paleozoic strata from the PC, FC, and SRB all yield similar age data suggesting shared provenance across the proposed Cuyania-Chilenia suture. Age distributions also notably lack Devonian-age grains. The regional paucity of Devonian plutonic rocks and detrital zircon casts doubt on a possible arc system between these terranes at this time, a key requisite for the mid-Paleozoic transfer and accretion of Chilenia to the Argentine margin. Collectively, these data question the precise boundaries of the Chilenia terrane.

  17. Biogeography of late Silurian and devonian rugose corals

    USGS Publications Warehouse

    Oliver, W.A.

    1977-01-01

    Three marine benthic faunal realms can be recognized in the Early and Middle Devonian. The Eastern Americas Realm consisted of most of the eastern half of North America and South America north of the Amazon. This realm extended in a southwest direction from the Devonian equator to approximately 35??S and was an isolated epicontinental sea during much of its history. The Eastern Americas Realm was bounded on the west by the Transcontinental Arch, on the north by the Canadian Shield and on the east and southeast by a peninsular extension of the Old Red Continent. These barriers were emergent during much, but not all, of Devonian time. Seaways beyond these barriers belonged to the Old World Realm. The Malvinokaffric Realm that was farther south was apparently temperate to arctic in climate and latitudinal position and contained few corals. Rugose corals in the Eastern Americas Realm show increasing generic-level endemism from the Late Silurian through the Early Devonian; during the late Early Devonian, 92% of the rugosan genera are not known anywhere else in the world. Endemism decreased through the Middle Devonian to zero in the early Late Devonian. The Early Devonian increase in endemism paralleled, and was probably related to, the development of the Old Red Continent as a barrier between America and Africa-Europe. The waning of endemism in the Middle Devonian reflects the breaching of the land barriers. This permitted some migration in and out of the realm in early Middle Devonian time but greatest movements were in late Middle Devonian time. Principal migration directions were from western or Arctic North America into the Michigan-Hudson Bay area and from the southern Appalachian area into Africa. ?? 1977.

  18. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    USGS Publications Warehouse

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  19. On the fossil faunas of the Upper Devonian: The Genesee section, New York

    USGS Publications Warehouse

    Williams, Henry Shaler

    1887-01-01

    I have the honor to transmit herewith for publication as a bulletin a second contribution to the study of Devonian paleontology, Bulletin No. 3, "On the Fossil Faunas of the Upper Devonian," having been designed as the first of a series of papers on the comparative paleontology of the Devonian and Carboniferous.In that paper I gave the results of a study of the section along the meridian of Ithaca and Cayuga Lake, running southward, which may be called the Cayuga section.In 1883 examination was made south along the meridian running through Genesee County, New York, into McKean County, Pennsylvania, where the Alton coal beds were reached. The general results of this survey were communicated to the Director of the United States Geological Survey and an abstract of my communication was published in Science, Vol. II, pp. 836, 837, December 28, 1883. The present paper is a detailed report of the study of the materials of this Genesee section.Since the field work was done several additional sections have been examined: in 1884, sections through Western New York (and adjoining Pennsylvania) from Chautauqua County westward and into Ohio as far as the meridian of Cleveland; and in 1885 the region between the Cayuga section and those of Delaware and Otsego Counties, as far as Oneonta, were examined. The materials are under investigation and will be reported upon as soon as their study is completed.The sections are made along meridians, in order to make them more readily and simply comparable. Each long meridional section runs through the same stratigraphical series of deposits and is made up of a series of small local sections, such as the individual outcrop of the rocks renders possible.It is not supposed that in any case these sections are exhaustive, but it is intended that so far as they go the relative position of the faunas in the sections shall be precise and the association of species in each horizon shall be given as it is, so that the faunas can be identified, and thus, while they will leave much to be added, these studies, it is hoped, will give an outline of the geographical distribution and geological range of faunas and their species which will make a comparative study of the faunas possible.Respectfully yours, HENRY S. WILLIAMS.

  20. Evolution of Devonian carbonate-shelf margin, Nevada

    USGS Publications Warehouse

    Morrow, J.R.; Sandberg, C.A.

    2008-01-01

    The north-trending, 550-km-long Nevada segment of the Devonian carbonate-shelf margin, which fringed western North America, evidences the complex interaction of paleotectonics, eustasy, biotic changes, and bolide impact-related influences. Margin reconstruction is complicated by mid-Paleozoic to Paleogene compressional tectonics and younger extensional and strike-slip faulting. Reports published during the past three decades identify 12 important events that influenced development of shelf-margin settings; in chronological order, these are: (1) Early Devonian inheritance of Silurian stable shelf inargin, (2) formation of Early to early Middle 'Devonian shelf-margin basins, (3) propradation of later Middle Devonian shelf margin, (4) late Middle Devonian Taghanic ondap and continuing long-term Frasnian transgression, (5) initiation of latest Middle Devonian to early Frasnian proto-Antler orogenic forebulge, (6) mid-Frasnian Alamo Impact, (7) accelerated development of proto-Antler forebulge and backbulge Pilot basin, (8) global late Frasnian sentichatovae sea-level rise, (9) end-Frasnian sea-level fluctuations and ensuing mass extinction, (10) long-term Famennian regression and continept-wide erosion, (11) late Famennian emergence: of Ahtler orogenic highlands, and (12) end-Devonian eustatic sea-level fall. Although of considerable value for understanding facies relationships and geometries, existing standard carbonate platform-margin models developed for passive settings else-where do not adequately describe the diverse depositional and, structural settings along the Nevada Devonian platform margin. Recent structural and geochemical studies suggest that the Early to Middle Devonian-shelf-margin basins may have been fault-bound and controlled by inherited Precambrian structure. Subsequently, the migrating latest Middle to Late Devonian Antler orogenic forebulge exerted a dominant control on shelf-margin position, morphology, and sedimentation. ??Geological Society of America.

  1. Structural evolution and petroleum productivity of the Baltic basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulmishek, G.F.

    The Baltic basin is an oval depression located in the western part of the Russian craton; it occupies the eastern Baltic Sea and adjacent onshore areas. The basin contains more than 5,000 m of sedimentary rocks ranging from latest Proterozoic to Tertiary in age. These rocks consist of four tectonostratigraphic sequences deposited during major tectonic episodes of basin evolution. Principal unconformities separate the sequences. The basin is underlain by a rift probably filled with Upper Proterozoic rocks. Vendian and Lower Cambrian rocks (Baikalian sequence) form two northeast-trending depressions. The principal stage of the basin development was during deposition of amore » thick Middle Cambrian-Lower Devonian (Caledonian) sequence. This stage was terminated by the most intense deformations in the basin history. The Middle Devonian-Carboniferous (Hercynian) and Permian-Tertiary (Kimmerian-Alpine) tectonic and depositional cycles only slightly modified the basin geometry and left intact the main structural framework of underlying rocks. The petroleum productivity of the basin is related to the Caledonian tectonostratigraphic sequence that contains both source rocks and reservoirs. However, maturation of source rocks, migration of oil, and formation of fields took place mostly during deposition of the Hercynian sequence.« less

  2. A carbon isotopic and sedimentological record of the latest Devonian (Famennian) from the Western U.S. and Germany

    USGS Publications Warehouse

    Myrow, P.M.; Strauss, J.V.; Creveling, J.R.; Sicard, K.R.; Ripperdan, R.; Sandberg, C.A.; Hartenfels, S.

    2011-01-01

    New carbon isotopic data from upper Famennian deposits in the western United States reveal two previously unrecognized major positive isotopic excursions. The first is an abrupt ~. 3??? positive excursion, herein referred to as ALFIE (A Late Famennian Isotopic Excursion), recorded in two sections of the Pinyon Peak Limestone of north-central Utah. Integration of detailed chemostratigraphic and biostratigraphic data suggests that ALFIE is the Laurentian record of the Dasberg Event, which has been linked to transgression in Europe and Morocco. Sedimentological data from the Chaffee Group of western Colorado also record transgression at a similar biostratigraphic position, with a shift from restricted to open-marine lithofacies. ALFIE is not evident in chemostratigraphic data from age-equivalent strata in Germany studied herein and in southern Europe, either because it is a uniquely North American phenomenon, or because the German sections are too condensed relative to those in Laurentia. A second positive carbon isotopic excursion from the upper Chaffee Group of Colorado is recorded in transgressive strata deposited directly above a previously unrecognized paleokarst interval. The age of this excursion, and the duration of the associated paleokarst hiatus, are not well constrained, although the events occurred sometime after the Late Famennian Middle expansa Zone. The high positive values recorded in this excursion are consistent with those associated with the youngest Famennian Middle to Late praesulcata Hangenberg Isotopic Excursion in Europe, the isotopic expression of the Hangenberg Event, which included mass extinction, widespread black shale deposition, and a glacio-eustatic fall and rise. If correct, this would considerably revise the age of the Upper Chaffee Group strata of western Colorado. ?? 2011 Elsevier B.V.

  3. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity.

    PubMed

    De Vleeschouwer, David; Da Silva, Anne-Christine; Sinnesael, Matthias; Chen, Daizhao; Day, James E; Whalen, Michael T; Guo, Zenghui; Claeys, Philippe

    2017-12-22

    The Late Devonian envelops one of Earth's big five mass extinction events at the Frasnian-Famennian boundary (374 Ma). Environmental change across the extinction severely affected Devonian reef-builders, besides many other forms of marine life. Yet, cause-and-effect chains leading to the extinction remain poorly constrained as Late Devonian stratigraphy is poorly resolved, compared to younger cataclysmic intervals. In this study we present a global orbitally calibrated chronology across this momentous interval, applying cyclostratigraphic techniques. Our timescale stipulates that 600 kyr separate the lower and upper Kellwasser positive δ 13 C excursions. The latter excursion is paced by obliquity and is therein similar to Mesozoic intervals of environmental upheaval, like the Cretaceous Ocean-Anoxic-Event-2 (OAE-2). This obliquity signature implies coincidence with a minimum of the 2.4 Myr eccentricity cycle, during which obliquity prevails over precession, and highlights the decisive role of astronomically forced "Milankovitch" climate change in timing and pacing the Late Devonian mass extinction.

  4. Devonian-Carboniferous boundary succession in Eastern Taurides, Turkey

    NASA Astrophysics Data System (ADS)

    Atakul-Özdemir, Ayşe; Altıner, Demir; Özkan-Altıner, Sevinç

    2015-04-01

    The succession covering the Devonian-Carboniferous boundary in Eastern Taurides comprises mainly limestones, shales and siltstones. The studied section starts at the base with bioturbated limestones alternating with shales and is followed upwards by platy limestones, and continues with the alternations of bioturbated and platy limestones. Towards the upper part of the succession the alternations of limestone, shales and siltstones reappear again and the top of the section is capped by quartz arenitic sandstone. The studied section spanning the Uppermost Devonian-Lower Carboniferous interval yields a not very abundant, but quite important assemblage of conodont taxa including species of Bispathodus, Polygnathus, Palmatolepis, Spathognathodus and Vogelgnathus. The uppermost Devonian part of the succession is characterized by the presence of Bispathodus costatus, Bispathodus aculeatus aculeatus, Polygnathus communis communis, Palmatolepis gracilis gracilis and Spathognathodus sp.. The Lower Carboniferous in the studied section is represented by the appearance of Polygnathus inornatus and Polygnathus communis communis. Based on the recovered conodont assemblages, Devonian-Carboniferous boundary in Eastern Turides has been determined by the appearance and disappearance of major conodont species.

  5. Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and northeastern Russia

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Gagiev, Mussa; Bradley, Dwight C.; Repetski, John E.

    2002-01-01

    Lower Paleozoic platform carbonate strata in northern Alaska (parts of the Arctic Alaska, York, and Seward terranes; herein called the North Alaska carbonate platform) and central Alaska (Farewell terrane) share distinctive lithologic and faunal features, and may have formed on a single continental fragment situated between Siberia and Laurentia. Sedimentary successions in northern and central Alaska overlie Late Proterozoic metamorphosed basement; contain Late Proterozoic ooid-rich dolostones, Middle Cambrian outer shelf deposits, and Ordovician, Silurian, and Devonian shallow-water platform facies, and include fossils of both Siberian and Laurentian biotic provinces. The presence in the Alaskan terranes of Siberian forms not seen in wellstudied cratonal margin sequences of western Laurentia implies that the Alaskan rocks were not attached to Laurentia during the early Paleozoic.The Siberian cratonal succession includes Archean basement, Ordovician shallow-water siliciclastic rocks, and Upper Silurian–Devonian evaporites, none of which have counterparts in the Alaskan successions, and contains only a few of the Laurentian conodonts that occur in Alaska. Thus we conclude that the lower Paleozoic platform successions of northern and central Alaska were not part of the Siberian craton during their deposition, but may have formed on a crustal fragment rifted away from Siberia during the Late Proterozoic. The Alaskan strata have more similarities to coeval rocks in some peri-Siberian terranes of northeastern Russia (Kotelny, Chukotka, and Omulevka). Lithologic ties between northern Alaska, the Farewell terrane, and the peri-Siberian terranes diminish after the Middle Devonian, but Siberian afµnities in northern and central Alaskan biotas persist into the late Paleozoic.

  6. Identification of remagnetization processes in Paleozoic sedimentary rocks of the northeast Rhenish Massif in Germany by K-Ar dating and REE tracing of authigenic illite and Fe oxides

    NASA Astrophysics Data System (ADS)

    Zwing, A.; Clauer, N.; Liewig, N.; Bachtadse, V.

    2009-06-01

    This study combines mineralogical, chemical (rare earth elemental (REE)) and isotopic (K-Ar) data of clay minerals as well as chemical compositions (major and REE) of Fe oxide leachates from remagnetized Palaeozoic sedimentary rocks from NE Rhenish Massif in Germany, for which the causes of remagnetization are not yet clear. The dominant carrier of the syntectonic, pervasive Carboniferous magnetization is magnetite. The Middle Devonian clastic rocks record an illitization event at 348 ± 7 Ma probably connected to a major magmatic event in the Mid-German Crystalline Rise, whereas a second illitization episode at 324 ± 3 Ma is coeval to the northward migrating deformation through the Rhenish Massif, being only detected in Upper Devonian and Lower Carboniferous rocks. The age of that younger illitization is not significantly different from that of the remagnetization, which, however, is not restricted to the upper part of the orogenic belt, but affects also the Middle Devonian strata. The REE patterns of the Fe-enriched leachates support two mineralization episodes with varied oxidation-reduction conditions outlined by varied Eu and Ce anomalies. This is not compatible with a unique, pervasive migration of orogenic fluids on a regional scale to explain the remagnetization in the studied region. While clay diagenesis and remagnetization are time-equivalent in Upper Devonian and Lower Carboniferous rocks, they are not so in Middle Devonian rocks. Transformation of smectite into illite cannot, therefore, account for the growth of associated authigenic magnetite, which must have been triggered by a different process. Since remagnetization and deformation ages are similar, the mechanism could relate to local physical conditions such as pressure solution and changing pore fluid pressure due to tectonic stress as well as to chemical conditions such as changing composition of the pore fluids.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, P.E.; Maynard, J.B.; Pryor, W.A.

    Studies of shales in the Appalachian area are reported (mainly in the form of abstracts of reports or manuscripts). They discuss the geology, lithology, stratigraphy, radioactivity, organic matter, the isotopic abundance of carbon and sulfur isotopes, etc. of shales in this area with maps. One report discusses Devonian paliocurrents in the central and northern Appalachian basin. Another discusses sedimentology of the Brallier Formation. The stratigraphy of upper Devonian shales along the southern shore of Lake Erie was also studied. (LTN)

  8. Upper Paleozoic Marine Shale Characteristics and Exploration Prospects in the Northwestern Guizhong Depression, South China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao

    2018-05-01

    Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.

  9. Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27-32°LS): an example of geodynamic switching

    NASA Astrophysics Data System (ADS)

    Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2018-04-01

    We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.

  10. Ontogenetic and intraspecific variation in the late Emsian - Eifelian (Devonian) conodonts Polygnathus serotinus and P. bultyncki in the Prague Basin (Czech Republic) and Nevada (western U.S.)

    NASA Astrophysics Data System (ADS)

    Klapper, Gilbert; Vodrážková, Stanislava

    2013-06-01

    Klapper, G. and Vodražkova, S. 2013. Ontogenetic and intraspecific variation in the late Emsian - Eifelian (Devonian) conodonts Polygnathus serotinus and P. bultyncki in the Prague Basin (Czech Republic) and Nevada (western U.S.). Acta Geologica Polonica, 63 (2), 153-174, Warszawa. Samples from populations of Polygnathus serotinus Telford 1975 and P. bultyncki Weddige 1977 from the Prague Basin and Nevada display normal variation for Devonian conodont species. A considerable number of previous authors, however, have proposed unnecessary synonyms of these two species, primarily because they have not recognized ontogenetic variation. In contrast, we interpret the variation as ontogenetic as well as intraspecific and present detailed synonymies as a result. A third species, P. praetrigonicus Bardashev 1992, which has been carried in open nomenclature for many years, is an important indicator of the basal costatus Zone in the Prague Basin, New York, and Nevada. We review the stratigraphic distribution of these three species and the conodont zonation across the Emsian-Eifelian (Lower-Middle Devonian) boundary. Polygnathus pseudocostatus sp. nov. (partitus-costatus zones, central Nevada) is described herein. We have observed a decrease in the pit size during ontogeny in P. bultyncki although we have not measured enough specimens to rule out intraspecific versus ontogenetic variation.

  11. Petrology, geochemistry and Sm-Nd analyses on the Balkan-Carpathian Ophiolite (BCO - Romania, Serbia, Bulgaria): Remnants of a Devonian back-arc basin in the easternmost part of the Variscan domain

    NASA Astrophysics Data System (ADS)

    Plissart, Gaëlle; Monnier, Christophe; Diot, Hervé; Mărunţiu, Marcel; Berger, Julien; Triantafyllou, Antoine

    2017-04-01

    The pre-Alpine basement of the Southern Carpathians/Western Balkans contains four ophiolitic massifs dismembered by Alpine tectonics, which define the ;Balkan-Carpathian Ophiolite; (BCO) for which the tectonic setting and age of formation are still debated (Precambrian or Early Devonian). In this contribution, we demonstrate that, in light of a Pre-Alpine restoration, the four massifs belonged to a unique slice of very complete, obducted oceanic lithosphere and we re-evaluate its tectonic setting. Large chromitite volumes with Al-rich spinel compositions (Cr# = 0.39-0.48), as well as major and trace geochemical results on basalts (slightly enriched N-MORBs with low negative Nb anomaly associated with calk-alkaline BABBs), point to a formation in a back-arc basin. Mantle spinel composition (Cr# = 0.49-0.51) and melting modeling indicate mean melting extents of 8.5-11% favouring intermediate spreading rate. New Sm-Nd dating on lower gabbroic rocks give a whole rock isochron, interpreted as the age of formation of the BCO crust at 409 ± 38 Ma, thus confirming an Early Devonian oceanic crust. The previous ∼563 Ma U-Pb zircon age can be interpreted as casual inheritance indicating the proximity of an old continental lithosphere. Taking into account the lithological evidences and paleocontinental affinities of the two recognized terranes separated by the BC oceanic basin (Balkans and Sredna Gora) and by analogy with other Variscan ophiolites in Western/Central Europe, we suggest that the BC ophiolite belong to the ∼400 Ma ophiolites group obducted between West and East Galatia and belonging to the southern Variscan suture. However, the BC ophiolite is the only one of this group obducted to the north and not involved in the Lower Allochthon/ophiolite/Upper Allochthon thrust pile, likely explaining its exceptional preservation. Finally, we tentatively propose a new unifying tectonic model where different terrane drift rates and highly oblique displacements create two Rheic branches, the ;Rheic; and the ;Galicia-Brittany-Massif Central;.

  12. Provenance of upper Triassic sandstone, southwest Iberia (Alentejo and Algarve basins): tracing variability in the sources

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Ribeiro, C.; Gama, C.; Drost, K.; Chichorro, M.; Vilallonga, F.; Hofmann, M.; Linnemann, U.

    2017-01-01

    Laser ablation ICP-MS U-Pb analyses have been conducted on detrital zircon of Upper Triassic sandstone from the Alentejo and Algarve basins in southwest Iberia. The predominance of Neoproterozoic, Devonian, Paleoproterozoic and Carboniferous detrital zircon ages confirms previous studies that indicate the locus of the sediment source of the late Triassic Alentejo Basin in the pre-Mesozoic basement of the South Portuguese and Ossa-Morena zones. Suitable sources for the Upper Triassic Algarve sandstone are the Upper Devonian-Lower Carboniferous of the South Portuguese Zone (Phyllite-Quartzite and Tercenas formations) and the Meguma Terrane (present-day in Nova Scotia). Spatial variations of the sediment sources of both Upper Triassic basins suggest a more complex history of drainage than previously documented involving other source rocks located outside present-day Iberia. The two Triassic basins were isolated from each other with the detrital transport being controlled by two independent drainage systems. This study is important for the reconstruction of the late Triassic paleogeography in a place where, later, the opening of the Central Atlantic Ocean took place separating Europe from North America.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCollum, L.B.; Buchanan, J.P.; McCollum, M.B.

    The Antler orogeny is a textbook example of a Paleozoic mountain building and crustal shortening event in western North America. A relatively complex geologic history of the type Antler at Battle Mountain, Nevada, is interpreted as distinct thrust plates of Lower Cambrian Scott Canyon Formation, Upper Cambrian Harmony Sandstone, and Ordovician Valmy Formation, overlain unconformably by the Middle Pennsylvanian Battle Formation. Mississippian crustal deformation and emplacement of the Roberts Mountain thrust have previously been thought to characterize the Antler orogen. Detailed sedimentology studies of the Scott Canyon and Harmony, and the relationship with the overlying Battle Formation at the typemore » section of the Antler orogeny, cast doubt on the previously accepted geologic history. The Scott Canyon is an interbedded sequence of pillow basalts, Late Devonian radiolarian cherts, and mudstone debris flows with numerous limestone olistoliths, many containing undescribed archaeocyathid fauna. The contact of the Harmony with the Battle Formation appears channeled, but otherwise conformable, and the Battle has been interpreted as an alluvial fan facies. The paleoenvironmental interpretation of these sediments is that the Scott Canyon was deposited upon a Late Devonian active continental margin setting, with prograding fan deposits of the Harmony Sandstone, overlain by Middle Pennsylvanian fanglomerates of the Battle Formation. This conformable sequence appears to preclude any major uplift within the type Antler orogen.« less

  14. Utility of palmatolepids and icriodontids in recognizing Upper Devonian Series, Stage, and possible substage boundaries

    USGS Publications Warehouse

    Ziegler, W.; Sandberg, C.A.

    2000-01-01

    Conodonts are accepted internationally to define Devonian Series and Stage boundaries. Hence, the evolution and taxonomy of pelagic palmatolepids, primarily Palmatolepis and its direct ancestor Mesotaxis, and shallow-water icriodontids, Icriodus, Pelekysgnathus, and "Icriodus", are the major tools for recognizing subdivisions of the Upper Devonian. Palmatolepids are the basis for the Late Devonian Standard Conodont Zonation (ZIEGLER & SANDBERG 1990), whereas icriodontids are the basis for the alternative, integrated shallow-water zonation (SANDBERG & DREESEN 1984). However, an alternative palmatolepid taxonomy for some Frasnian species has been employed recently by some conodont workers using the Montagne Noire (M.N.) zonation, shape analyses of Pa elements, and multielement reconstructions of KLAPPER (1989), KLAPPER & FOSTER (1993); and KLAPPER et al. (1996). Herein, the evolution of palmatolepids and icriodontids is summarized in terms of our zonation and some of the taxonomic differences with the alternative M.N. zonation are exemplified. One of the problems in relating the Standard and M.N. zonations arises from previous errors of interpretation and drafting of the Martenberg section in Germany. This section was designated the reference section for the Frasnian transitans through jamieae Zones by ZIEGLER & SANDBERG (1990). Herein, the early and middle Frasnian zonal boundaries at Martenberg are improved by re-study of our old and recent collections from three profiles, spaced only 4 m apart. Serious problems exist with the Global Stratotype Sections and Points (GSSP's), selected by the Subcommission on Devonian Stratigraphy, following the paleontologic definition of the bases of the Frasnian, Famennian, and Tournaisian Stages, because of the difficulty in making global correlations from these GSSP's. Our summary of these problems should be helpful if future workers decide to relocate these GSSP's.

  15. The Late Devonian Gogo Formation Lägerstatte of Western Australia: Exceptional Early Vertebrate Preservation and Diversity

    NASA Astrophysics Data System (ADS)

    Long, John A.; Trinajstic, Kate

    2010-05-01

    The Gogo Formation of Western Australia preserves a unique Late Devonian (Frasnian) reef fauna. The exceptional three-dimensional preservation of macrofossils combined with unprecedented soft-tissue preservation (including muscle bundles, nerve cells, and umbilical structures) has yielded a particularly rich assemblage with almost 50 species of fishes described. The most significant discoveries have contributed to resolving placoderm phylogeny and elucidating their reproductive physiology. Specifically, these discoveries have produced data on the oldest known vertebrate embryos; the anatomy of the primitive actinopterygian neurocranium and phylogeny of the earliest actinopterygians; the histology, radiation, and plasticity of dipnoan (lungfish) dental and cranial structures; the anatomy and functional morphology of the extinct onychodonts; and the anatomy of the primitive tetrapodomorph head and pectoral fin.

  16. The Fossil Fauna of the Islands Region of Western Lake Erie.

    ERIC Educational Resources Information Center

    Bowe, Lulu M., Comp.

    The islands of western Lake Erie are rock-bound isles that abound in rocky outcrops and quarries. The rocks of these islands are of two distinct types, Silurian dolomites and Devonian limestones. The dolomites, exposed in the Bass Islands and Sister Islands are virtually devoid of fossils. Conversely, the limestones of Johnson Island, Marblehead,…

  17. Micromorphologic evidence for paleosol development in the Endicott group, Siksikpuk formation, Kingak(?) shale, and Ipewik formation, western Brooks range, Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; White, Tim

    2005-01-01

    Micromorphologic evidence indicates the presence of paleosols in drill-core samples from four sedimentary units in the Red Dog area, western Brooks Range. Well-developed sepic-plasmic fabrics and siderite spherules occur in claystones of the Upper Devonian through Lower Mississippian(?) Kanayut Conglomerate (Endicott Group), the Pennsylvanian through Permian Siksikpuk Formation (Etivluk Group), the Jurassic through Lower Cretaceous Kingak(?) Shale, and the Lower Cretaceous Ipewik Formation. Although exposure surfaces have been previously recognized in the Endicott Group and Kingak Shale on the basis of outcrop features, our study is the first microscopic analysis of paleosols from these units, and it provides the first evidence of subaerial exposure in the Siksikpuk and Ipewik Formations. Regional stratigraphic relations and geochemical data support our interpretations. Paleosols in the Siksikpuk, Kingak, and Ipewik Formations likely formed in nearshore coastal-plain environments, with pore waters subjected to inundation by the updip migration of slightly brackish ground water, whereas paleosols in the Kanayut Conglomerate probably formed in a more distal setting relative to a marine basin.

  18. New U-Pb zircon ages and the duration and division of Devonian time

    USGS Publications Warehouse

    Tucker, R.D.; Bradley, D.C.; Ver Straeten, C.A.; Harris, A.G.; Ebert, J.R.; McCutcheon, S.R.

    1998-01-01

    Newly determined U-Pb zircon ages of volcanic ashes closely tied to biostratigraphic zones are used to revise the Devonian time-scale. They are: 1) 417.6 ?? 1.0 Ma for an ash within the conodont zone of Icriodus woschmidti/I. w. hesperius Lochkovian); 2) 408.3 ?? 1.9 Ma for an ash of early Emsian age correlated with the conodont zones of Po. dehiscens--Lower Po. inversus; 3) 391.4 ?? 1.8 Ma for an ash within the Po. c. costatus Zone and probably within the upper half of the zone (Eifelian); and 4) 381.1 ?? 1.3 Ma for an ash within the range of the Frasnian conodont Palmatolepis punctata (Pa. punctata Zone to Upper Pa. hassi Zone). U-Pb zircon ages for two rhyolites bracketing a palyniferous bed of the pusillites-lepidophyta spore zone, are dated at 363.8 ?? 2.2 Ma and 363 ?? 2.2 Ma and 363.4 ?? 1.8 Ma, respectively, suggesting an age of ~363 Ma for a level within the late Famennian Pa. g. expansa Zone. These data, together with other published zircon ages, suggest that the base and top of the Devonian lie close to 418 Ma and 362 Ma, respectively, thus lengthening the period of ~20% over current estimates. We suggest that the duration of the Middle Devonian (Eifelian and Givitian) is rather brief, perhaps no longer than 11.5 Myr (394 Ma-382.5 Ma), and that the Emsian and Famennian are the longest stages in the period with estimated durations of ~15.5 Myr and 14.5 Myr, respectively.

  19. Devonian-Carboniferous unconformity in Argentina and its relation to the Eo-Hercynian orogeny in southern South America

    NASA Astrophysics Data System (ADS)

    López-Gamundí, O. R.; Rossello, E. A.

    1993-04-01

    The Devonian-Carboniferous contact in southern South America, characterized by a sharp unconformity, has been related to the Late Devonian-Early Carboniferous Eo-Hercynian orogeny. The Calingasta-Uspallata basin of western Argentina and the Sauce-Grande basin (Ventana Foldbelt) of eastern Argentina have been selected to characterize this unconformity. The Eo-Hercynian movements were accompanied in western Argentina by igneous activity related to a Late Devonian—Early Carboniferous magmatic arc mainly exposed today along the Andean Cordillera. This magmatic activity is partly reflected also in eastern Argentina (Ventana Foldbelt), where isotopic dates suggest a thermal event also related to the intrusions present to the west in the North Patagonian Massif and Sierras Pampeanas. The scarcity of Lower Carboniferous deposits in the stratigraphic record of southern South America suggests that the Early Carboniferous was a time interval dominated by uplift and erosion followed by widespread subsidence during the Middle and Late Carboniferous. The origin of the Eo-Hercynian orogeny can be linked with the convergence between the Arequipa Massif, and its southern extension, and the South American continent. Its effects are best represented along the ‘Palaeo-Pacific’ margin, although distant effects are discernible in the cratonic areas of eastern South America.

  20. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivitymore » values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs.« less

  1. Algoma-, Superior-, and oolitic-type iron deposits of the Islamic Republic of Mauritania (phase V, deliverable 83): Chapter O in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Joud, M. Y.; Taleb, M. A.; Horton, John D.

    2015-01-01

    Phanerozoic oolitic ironstones are hosted in the upper Silurian and lower Devonian rocks of the Gara Bouya Ali Group and the Zemmour Group in the Tindouf Basin in northern Mauritania and in the end Ordovician Tichit Group, the Silurian Oued Chig Group, and the lower Devonian Tenemouj Group in the Taoudeni Basin near Tidjikja. These rock groups define 11 permissive tracts for Algoma-, Superior-, and oolitic-type iron deposits in Mauritania.

  2. World class Devonian potential seen in eastern Madre de Dios basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.E.; Wagner, J.B.; Carpenter, D.G.

    The Madre de Dios basin in northern Bolivia contains thick, laterally extensive, organic-rich Upper Devonian source rocks that reached the oil-generative stage of thermal maturity after trap and seal formation. Despite these facts, less than one dozen exploration wells have been drilled in the Madre de Dios basin, and no significant reserves have been discovered. Mobil geoscientists conducted a regional geological, geophysical, and geochemical study of the Madre de Dios basin. The work reported here was designed to assess the distribution, richness, depositional environment, and thermal maturity of Devonian source rocks. It is supported by data from over 3,000 mmore » of continuous slimhole core in two of the five Mobil wells in the basin. Source potential also exists in Cretaceous, Mississippian, and Permian intervals. The results of this study have important implications for future exploration in Bolivia and Peru.« less

  3. The New Albany shale in Illinois: Emerging play or prolific source

    USGS Publications Warehouse

    Crockett, Joan; Morse, David E.

    2010-01-01

    The New Albany shale (Upper Devonian) in the Illinois basin is the primary hydrocarbon source rock for the basins nearly 4 billion bbl of oil production to date. The gas play is well-established in Indiana and Western Kentucky. One in-situ oil producing well was reported in a multiply competed well in the New Albany at Johnsonville field in Wayne County, Illinois. The Illinois gas and oil wells at Russellville, in Lawrence County are closely associated with the 0.6% reflectance contour, which suggests a higher level of thermal maturity in this area. Today, only one field, Russellville in eastern Lawrence County has established commercial production in the Ness Albany in Illinois. Two wildcat wells with gas shows were drilled in recent years in southern Saline County, where the New Albany is relatively deeply buried and close to faults associated with the Fluorspar District.

  4. Paleozoic and Mesozoic deformations in the central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, Warren J.; Kistler, Ronald Wayne

    1980-01-01

    Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch. Structures of similar age occur in intensely deformed oceanic-lithospheric and syntectonic plutonic rocks of the lower Kings River area, in Jurassic metavolcanic rocks of the Ritter Range roof pendant, and in Triassic metasedimentary rocks of the Mineral King roof pendant. The final Mesozoic deformation occurred along N. 50?-80? W. trends in both high-country roof pendants and the lower Kings River area; structures of this generation are crosscut by relatively undeformed Upper Cretaceous granitic rocks of the Cathedral Range intrusive epoch.

  5. Geological Structure of the Basement of Western and Eastern Parts of the West-Siberian Plain

    ERIC Educational Resources Information Center

    Ivanov, Kirill S.; Erokhin, Yuriy V.; Ponomarev, Vladimir S.; Pogromskaya, Olga E.; Berzin, Stepan V.

    2016-01-01

    The U-Pb dating (SHRIMP-II on zircon) was obtained for the first time from the basement of the West Siberian Plain in the Western half of the region. It is established that a large part of the protolith of the metamorphic depth in the Shaim-Kuznetsov meganticlinorium contained sedimentary late- and middle-Devonian rocks (395-358 million years).…

  6. Petroleum geology and resources of the Dnieper-Donets Basin, Ukraine and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The Dnieper-Donets basin is almost entirely in Ukraine, and it is the principal producer of hydrocarbons in that country. A small southeastern part of the basin is in Russia. The basin is bounded by the Voronezh high of the Russian craton to the northeast and by the Ukrainian shield to the southwest. The basin is principally a Late Devonian rift that is overlain by a Carboniferous to Early Permian postrift sag. The Devonian rift structure extends northwestward into the Pripyat basin of Belarus; the two basins are separated by the Bragin-Loev uplift, which is a Devonian volcanic center. Southeastward, the Dnieper-Donets basin has a gradational boundary with the Donbas foldbelt, which is a structurally inverted and deformed part of the basin. The sedimentary succession of the basin consists of four tectono-stratigraphic sequences. The prerift platform sequence includes Middle Devonian to lower Frasnian, mainly clastic, rocks that were deposited in an extensive intracratonic basin. 1 The Upper Devonian synrift sequence probably is as thick as 4?5 kilometers. It is composed of marine carbonate, clastic, and volcanic rocks and two salt formations, of Frasnian and Famennian age, that are deformed into salt domes and plugs. The postrift sag sequence consists of Carboniferous and Lower Permian clastic marine and alluvial deltaic rocks that are as thick as 11 kilometers in the southeastern part of the basin. The Lower Permian interval includes a salt formation that is an important regional seal for oil and gas fields. The basin was affected by strong compression in Artinskian (Early Permian) time, when southeastern basin areas were uplifted and deeply eroded and the Donbas foldbelt was formed. The postrift platform sequence includes Triassic through Tertiary rocks that were deposited in a shallow platform depression that extended far beyond the Dnieper-Donets basin boundaries. A single total petroleum system encompassing the entire sedimentary succession is identified in the Dnieper-Donets basin. Discovered reserves of the system are 1.6 billion barrels of oil and 59 trillion cubic feet of gas. More than one-half of the reserves are in Lower Permian rocks below the salt seal. Most of remaining reserves are in upper Visean-Serpukhovian (Lower Carboniferous) strata. The majority of discovered fields are in salt-cored anticlines or in drapes over Devonian horst blocks; little exploration has been conducted for stratigraphic traps. Synrift Upper Devonian carbonate reservoirs are almost unexplored. Two identified source-rock intervals are the black anoxic shales and carbonates in the lower Visean and Devonian sections. However, additional source rocks possibly are present in the deep central area of the basin. The role of Carboniferous coals as a source rock for gas is uncertain; no coal-related gas has been identified by the limited geochemical studies. The source rocks are in the gas-generation window over most of the basin area; consequently gas dominates over oil in the reserves. Three assessment units were identified in the Dnieper-Donets Paleozoic total petroleum system. The assessment unit that contains all discovered reserves embraces postrift Carboniferous and younger rocks. This unit also contains the largest portion of undiscovered resources, especially gas. Stratigraphic and combination structural and stratigraphic traps probably will be the prime targets for future exploration. The second assessment unit includes poorly known synrift Devonian rocks. Carbonate reef reservoirs along the basin margins probably will contain most of the undiscovered resources. The third assessment unit is an unconventional, continuous, basin-centered gas accumulation in Carboniferous low-permeability clastic rocks. The entire extent of this accumulation is unknown, but it occupies much of the basin area. Resources of this assessment unit were not estimated quantitatively.

  7. Discovery of the fossiliferous Cu Brei Formation (Lower Devonian) in the Kon Tum Block (South Viet Nam)

    NASA Astrophysics Data System (ADS)

    Thanh, Tong-Dzuy; Duyen, Than Duc; Hung, Nguyen Huu; My, Bui Phu

    2007-01-01

    Lower Devonian corals and stromatoporoids have recently been discovered in limestones among low grade metamorphic rocks on the western margin of the Kon Tum Block (South Viet Nam). This unit has been identified as the Cu Brei Formation. Coral and stromatoporoid species have been described including Squameofavosites aff. spongiosus, Parallelostroma cf. multicolumnum, Amphipora cf. rasilis, A. cf. raritalis, Simplexodictyon cf. artyschtense, Stromatopora cf. boriarchinovi and Stromatopora sp. indet. The Cu Brei Formation is exposed in a small area 6 km in length and 3 km wide at the foot of Cu Brei Mountain (Sa Thay District, Kon Tum Province). As this formation is in marine shelf facies it is probable that further exposures of Lower Devonian sediments may be discovered in the Kon Tum Block. This discovery raises the question of the tectonic history of the metamorphic Kon Tum Block. It is possible that the block was not an area of positive uplift from the beginning of Paleozoic as has been supposed, but was submerged in a marine environment, at least on its outer margins, in the Devonian, and possibly even earlier, in Early Paleozoic.

  8. Formation and inversion of transtensional basins in the western part of the Lachlan Fold Belt, Australia, with emphasis on the Cobar Basin

    NASA Astrophysics Data System (ADS)

    Glen, R. A.

    The Palaeozoic history of the western part of the Lachlan Fold Belt in New South Wales was dominated by strike-slip tectonics. In the latest Silurian to late Early Devonian, an area of crust >25,000 km 2 lying west of the Gilmore Suture underwent regional sinistral transtension, leading to the development of intracratonic successor basins, troughs and flanking shelves. The volcaniclastic deep-water Mount Hope Trough and Rast Trough, the siliciclastic Cobar Basin and the volcanic-rich Canbelego-Mineral Hill Belt of the Kopyje Shelf all were initiated around the Siluro-Devonian boundary. They all show clear evidence of having evolved by both active syn-rift processes and passive later post-rift (sag-phase) processes. Active syn-rift faulting is best documented for the Cobar Basin and Mount Hope Trough. In the former case, the synchronous activity on several fault sets suggests that the basin formed by sinistral transtension in response to a direction of maximum extension oriented NE-SW. Structures formed during inversion of the Cobar Basin and Canbelego-Mineral Hill Belt indicate closure under a dextral transpressive strain regime, with a far-field direction of maximum shortening oriented NE-SW. In the Cobar Basin, shortening was partitioned into two structural zones. A high-strain zone in the east was developed into a positive half-flower structure by re-activation of early faults and by formation of short-cut thrusts, some with strike-slip movement, above an inferred steep strike-slip fault. Intense subvertical cleavage, a steep extension lineation and variably plunging folds are also present. A lower-strain zone to the west developed by syn-depositional faults being activated as thrusts soling into a gently dipping detachment. A subvertical cleavage and steep extension lineation are locally present, and variably plunging folds are common. Whereas Siluro-Devonian basin-opening appeared to be synchronous in the western part of the fold belt, the different period of basin inversion in the Cobar region (late Early Devonian and Carboniferous) may reflect different movement histories on the master strike-slip faults in this part of the fold belt, the Gilmore Suture and Kiewa Fault.

  9. Dutrochus, a new microdomatid (Gastropoda) genus from the Middle Devonian (Eifelian) of west-central Alaska

    USGS Publications Warehouse

    Blodgett, R.B.

    1993-01-01

    A new gastropod genus, Dutrochus, is established for members of the family Microdomatidae that are characterized by a reticulate ornament of spiral cords and intersecting, finer collabral threads, with all but one spiral cord being of nearly equal strength, and the single remaining cord being of stronger (nearly twice the order) magnitude and being situated at the periphery. It is represented by the type and only known species, Dutrochus alaskensis n. gen. and sp., from the upper part (lower Eifelian) of the Lower? and Middle Devonian Cheeneetnuk Limestone. The genus is very close and nearly homeomorphic to the Permian microdomatid genus Glyptospira. -from Author

  10. Origins and relationships of colonial Heliophyllum in the upper Middle Devonian (Givetian) of New York

    USGS Publications Warehouse

    Oliver, W.A.

    1997-01-01

    Heliophyllum halli Milne-Edwards and Haime is common to abundant in many Lower and Middle Devonian stratigraphic units in New York. Most Heliophyllum are solitary, but both branching and massive colonies are known. Four 'populations' of colonial Heliophyllum in the Givetian part of the sequence are distinct, as is a fifth form that occurs through the section. Each of the colonial forms is interpreted as an independent derivative of solitary forms of H. halli. The relationships appear to range from infrasubspecific to specific, and it is suggested that the complex should be recognized as the Heliophyllum halli species group.

  11. Discovery of a Devonian mafic magmatism on the western border of the Murzuq basin (Saharan metacraton): Paleomagnetic dating and geodynamical implications

    NASA Astrophysics Data System (ADS)

    Derder, M. E. M.; Maouche, S.; Liégeois, J. P.; Henry, B.; Amenna, M.; Ouabadi, A.; Bellon, H.; Bruguier, O.; Bayou, B.; Bestandji, R.; Nouar, O.; Bouabdallah, H.; Ayache, M.; Beddiaf, M.

    2016-03-01

    Intraplate deformation is most often linked to major stress applied on plate margins. When such intraplate events are accompanied by magmatism, the use of several dating methods integrated within a multidisciplinary approach can bring constraints on the age, nature and source mobilized for generating the magma and in turn on the nature of the intraplate deformation. This study focuses on the large gabbro Arrikine sill (35 km in extension) emplaced within the Silurian sediments of the western margin of the Murzuq cratonic basin in southeastern Algeria. Its emplacement is dated during the early Devonian (415-400 Ma) through the determination of a reliable paleomagnetic pole by comparison with the Gondwana Apparent Polar Wander Path (APWP). This age can be correlated with deep phreatic eruptions before Pragian time thought to be at the origin of sand injections and associated circular structures in Algeria and Libya. For the sill, the K-Ar age of 325.6 ± 7.7 Ma is related to a K-rich aplitic phase that has K-enriched by more than 20% the Devonian gabbro. Laser-ICP-MS U-Pb method dates only inherited zircons mostly at c. 2030 Ma with additional ages at c. 2700 Ma and younger ones in the 766-598 Ma age range. The Arrikine sill is a high-Ti alkaline gabbro having the geochemical composition of a hawaiite akin to several intraplate continental and oceanic provinces, including the contemporaneous Aïr ring complexes province in Niger, but also to the Mauna Loa volcano in Hawaii. This peculiar composition akin to that of the contemporaneous Aïr province is in agreement with a lower Devonian age for the Arrikine sill. The lower Devonian Arrikine sill emplacement is related to a "Caledonian" transtensive reactivation of the western metacratonic boundary of the Murzuq craton. This event also generated in the Saharan platform the so-called "Caledonian unconformity" of regional extension, the Aïr ring complexes and magmatic rocks that produced sand injections. It could be related to rifting of the Hun terranes that occurred at the plate margin to the north (Stampfli and Borel, 2002, Blackey, 2008 and references therein). The mid-Carboniferous (c. 326 Ma) reactivation corresponds to Variscan compression on NW Africa generating aplitic fluids, but also to the major "Hercynian unconformity" of regional extension. The generation of the Arrikine magma is attributed to partial melting through adiabatic pressure release of uprising asthenosphere along tectonically reactivated mega-shear zones, here bordering the relictual Murzuq craton enclosed in the Saharan metacraton.

  12. Assessment of undiscovered oil and gas resources of the Devonian Marcellus Shale of the Appalachian Basin Province

    USGS Publications Warehouse

    Coleman, James L.; Milici, Robert C.; Cook, Troy A.; Charpentier, Ronald R.; Kirshbaum, Mark; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2011-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey (USGS) estimated a mean undiscovered natural gas resource of 84,198 billion cubic feet and a mean undiscovered natural gas liquids resource of 3,379 million barrels in the Devonian Marcellus Shale within the Appalachian Basin Province. All this resource occurs in continuous accumulations. In 2011, the USGS completed an assessment of the undiscovered oil and gas potential of the Devonian Marcellus Shale within the Appalachian Basin Province of the eastern United States. The Appalachian Basin Province includes parts of Alabama, Georgia, Kentucky, Maryland, New York, Ohio, Pennsylvania, Tennessee, Virginia, and West Virginia. The assessment of the Marcellus Shale is based on the geologic elements of this formation's total petroleum system (TPS) as recognized in the characteristics of the TPS as a petroleum source rock (source rock richness, thermal maturation, petroleum generation, and migration) as well as a reservoir rock (stratigraphic position and content and petrophysical properties). Together, these components confirm the Marcellus Shale as a continuous petroleum accumulation. Using the geologic framework, the USGS defined one TPS and three assessment units (AUs) within this TPS and quantitatively estimated the undiscovered oil and gas resources within the three AUs. For the purposes of this assessment, the Marcellus Shale is considered to be that Middle Devonian interval that consists primarily of shale and lesser amounts of bentonite, limestone, and siltstone occurring between the underlying Middle Devonian Onondaga Limestone (or its stratigraphic equivalents, the Needmore Shale and Huntersville Chert) and the overlying Middle Devonian Mahantango Formation (or its stratigraphic equivalents, the upper Millboro Shale and middle Hamilton Group).

  13. Evaluation of shale gas potential based on organic matter characteristics and gas concentration in the Devonian Horn River Formation, Canada

    NASA Astrophysics Data System (ADS)

    Choi, Jiyoung; Hong, Sung Kyung; Lee, Hyun Suk

    2017-04-01

    In this study, we investigate organic matter characteristics from the analysis of Rock-Eval6 and biomarker, and estimate methane concentration from headspace method in the Devonian Horn River Formation, which is one of the largest shale reservoir in western Canada. The Horn River Formation consists of the Evie, Otterpark and Muskwa members in ascending stratigraphic order. Total Organic Carbon (TOC) ranges from 0.34 to 7.57 wt%, with an average of 2.78 wt%. The Evie, middle Otterpark and Muskwa members have an average TOC of more than 3%, whereas those of the lower and upper Otterpark Member are less than 2%. Based on Pristane/n-C17 (0.2 0.6) and Phytane/n-C18 (0.3 0.9) ratios, the organic matter in the Evie, middle Otterpark and Muskwa members mainly consists of type II kerogen which are formed in reducing marine environment. Thermal maturity were examined through the use of the distributions of Phenanthrene (P) and Methylphenantrenes (MP) based on m/z 178 and 192 mass chromatograms, respectively (Radke et al., 1982). The methylphenanthrene index (MPI-1) are calculated as follows : MPI-1 = 1.5 × (2MP+3MP)/(P+1MP+9MP), and Ro are calculated as follows : Ro = -0.6 × MPI-1 + 2.3. Estimated Ro ranges between 1.88 and 1.93%, which indicates the last stage of wet gas generation. The methane concentrations in headspace range from 15 to 914 ppmv, with an average of 73.5 ppmv. The methane concentrations in the Evie, middle Otterpark and Muskwa members (up to 914 ppmv) are higher than those of the lower and upper Otterpark Member (up to 75 ppmv). Considering the organic geochemical characteristics and gas concentrations, the shale gas potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members.

  14. Geochemistry, palynology, and regional geology of worldclass Upper Devonian source rocks in the Madre de Dios basin, Bolivia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.E.; Conrad, K.T.; Carpenter, D.G.

    Recent exploration drilling indicates the existence of world-class source rock in the Madre de Dios basin, Bolivia. In the Pando-1 X and -2X wells, over 200 m of poorly bioturbated, organic-rich (TOC = 3-16 wt.%) prodelta to shelf mudstones in the Frasnian-Famennian Tomachi Formation contain oil-prone organic matter (hydrogen index = 400-600 mg HC/g TOC). Our calculated source prolificity indices for this interval in these wells (SPI = 15-18 tons of hydrocarbons per square meter of source rock) exceed that for the Upper Jurassic in Central Saudi Arabia. The Tomachi interval is lithologically equivalent to the Colpacucho Formation in themore » northern Altiplano, the Iquiri Formation in the Cordillera Oriental, and is coeval with other excellent source rocks in North America, Africa, and Eurasia. All of these rocks were deposited under conditions favorable for accumulation of organic matter, including a global highstand and high productivity. However, the Madre de Dios basin was situated at high latitude during the Late Devonian and some of the deposits are interpreted to be of glacial origin, indicating conditions not generally associated with organic-rich deposition. A biomarker and palynological study of Upper Devonian rocks in the Pando-1X well suggests deposition under conditions similar to certain modern fjords. High productivity resulted in preservation of abundant organic matter in the bottom sediments despite a cold, toxic water column. Low-sulfur crude oil produced from the Pando-1X well is geochemically similar to, but more mature than, extracts from associated organic-rich Tomachi samples, and was generated from deeper equivalents of these rocks.« less

  15. Geochronology, stratigraphy and geochemistry of Cambro-Ordovician, Silurian and Devonian volcanic rocks of the Saxothuringian Zone in NE Bavaria (Germany)—new constraints for Gondwana break up and ocean-island magmatism

    NASA Astrophysics Data System (ADS)

    Höhn, Stefan; Koglin, Nikola; Klopf, Lisa; Schüssler, Ulrich; Tragelehn, Harald; Frimmel, Hartwig E.; Zeh, Armin; Brätz, Helene

    2018-01-01

    Stratigraphically well-defined volcanic rocks in Palaeozoic volcano-sedimentary units of the Frankenwald area (Saxothuringian Zone, Variscan Orogen) were sampled for geochemical characterisation and U-Pb zircon dating. The oldest rock suite comprises quartz keratophyre, brecciated keratophyre, quartz keratophyre tuff and basalt, formed in Upper Cambrian to Tremadocian time (c. 497-478 Ma). Basaltic volcanism continued until the Silurian. Quartz keratophyre shows post-collisional calc-alkaline signature, the Ordovician-Silurian basalt has alkaline signature typical of continental rift environments. The combined datasets provide evidence of Cambro-Ordovician bimodal volcanism and successive rifting until the Silurian. This evolution very likely resulted from break-up of the northern Gondwana margin, as recorded in many terranes throughout Europe. The position at the northern Gondwana margin is supported by detrital zircon grains in some tuffs, with typical Gondwana-derived age spectra mostly recording ages of 550-750 Ma and minor age populations of 950-1100 and 1700-2700 Ma. The absence of N-MORB basalt in the Frankenwald area points to a retarded break-off of the Saxothuringian terrane along a continental rift system from Uppermost Cambrian to Middle Silurian time. Geochemical data for a second suite of Upper Devonian basalt provide evidence of emplacement in a hot spot-related ocean-island setting south of the Rheic Ocean. Our results also require partial revision of the lithostratigraphy of the Frankenwald area. The basal volcanic unit of the Randschiefer Formation yielded a Tremadocian age and, therefore, should be attributed to the Vogtendorf Formation. Keratophyre of the Vogtendorf Formation, previously assigned to the Tremadoc, is most likely of Upper Devonian age.

  16. Organic content of Devonian shale in western Appalachian basin.

    USGS Publications Warehouse

    Schmoker, J.W.

    1980-01-01

    In the organic-rich facies of the Devonian shale in the western part of the Appalachian basin, the distribution of organic matter provides an indirect measure of both gas in place and the capacity of the shale to supply gas to permeable pathways.The boundary between organic-rich ('black') and organic-poor ('gray') facies is defined here as 2% organic content by volume. The thickness of organic-rich facies ranges from 200ft in central Kentucky to 1000ft along the Kentucky-West Virginia border. The average content of the organic-rich facies increases from 5% by volume on the edge to 16% in central Kentucky. The net thickness of organic matter in the organic-rich facies shows the amount of organic material in the shale, and is the most fundamental of the organic-content characterizations. Net thickness of organic matter ranges between 20 and 80ft (6.1 and 24.4m) within the mapped area.-from Author

  17. A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana

    USGS Publications Warehouse

    Schmoker, J.W.

    1996-01-01

    The Upper Devonian and Lower Mississippian Bakken Formation in the United States portion of the Williston Basin is both the source and the reservoir for a continuous oil accumulation - in effect a single very large field - underlying approximately 17,800 mi2 (46,100 km2) of North Dakota and Montana. Within this area, the Bakken Formation continuous oil accumulation is not significantly influenced by the water column and cannot be analyzed in terms of conventional, discrete fields. Rather, the continuous accumulation can be envisioned as a collection of oil-charged cells, virtually all of which are capable of producing some oil, but which vary significantly in their production characteristics. Better wellperformance statistics are linked regionally to higher levels of thermal maturity and to lower levels of reservoir heterogeneity. Although portions of the Bakken Formation continuous oil accumulation have reached a mature stage of development, the accumulation as a whole is far from depleted.

  18. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  19. Late Devonian conodonts and event stratigraphy in northwestern Algerian Sahara

    NASA Astrophysics Data System (ADS)

    Mahboubi, Abdessamed; Gatovsky, Yury

    2015-01-01

    Conodonts recovered from the Late Devonian South Marhouma section comprise 5 genera with 31 species (3 undetermined). The fauna establishes the presence of MN Zones 5, undifferentiated 6/7, 8/10 for the Middle Frasnian, the MN Zones 11, 12, 13 for the Upper Frasnian as well as the Early through Late triangularis Zones in the basal Famennian. The outcropping lithological succession is one of mostly nodular calcilutites alternating with numerous marly and shaly deposits, which, in the lower and upper part, comprise several dysoxic dark shale intervals. Among these the Upper Kellwasser horizon can be precisely dated and as such the presence of the terminal Frasnian Kellwasser Event is recognized for the first time in Algeria. Both the Middlesex and Rhinestreet Events cannot yet be precisely located, but supposedly occur among the dark shale horizons in the lower part of the section. However, their assignment to a precise level has so far not been established. Though poor in conodont abundance the South Marhouma section provides first evidence of the presence of several Montagne Noire conodont zones within the so far widely unstudied Frasnian of the Ougarta Chain. As such it is considered representative for the northwestern Algerian Saoura region.

  20. Geology of the Volga-Ural petroleum province and detailed description of the Ramashkino and Arlan oil fields

    USGS Publications Warehouse

    Peterson, James A.; Clarke, James W.

    1983-01-01

    The Volga-Ural petroleum province is in general coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oil fields of the province. The Perm-Bashkir arch forms the northeastern part of the regional high, and the Zhigulevsko-Orenburg arch makes up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles as follows: 1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds from 500 to 5,000 m thick deposited in aulacogens. 2) Vendian (upper Bavly) continental and marine shale and sandstone up to 3,000 m thick. 3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates with abundant reefs in the upper; thickness is 300-1,000 m. In the upper carbonate part is the Kamsko-Kinel trough system, which consists of narrow interconnected deep-water troughs. 4) The Visean-Namurian-Bashkirian cycle, which began with deposition of Visean clastics that draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastics are overlain by marine carbonates. Thickness of the cycle is 50-800 m. 5) Early Moscovian-Early Permian terrigenous clastic deposits and marine carbonate beds 1,000-3,000 m thick. 6) The late Early Permian-Late Permian cycle, which reflects maximum growth of the Ural Mountains and associated Ural foredeep. Evaporites were first deposited, then marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. 7) Continental redbeds of Triassic age and mixed continental and marine elastic beds of Jurassic and Cretaceous age, which were deposited on the southern, southwestern, and northern margins of the Russian platform; they are generally absent in the Volga-Ural province, however. The Volga-Ural oil and gas basin is a single artesian system that contains seven aquifers separated by seals. The areas of greatest hydraulic head are in the eastern parts of the basin near areas where the aquifers crop out on the western slopes of the Ural Mountains. The Peri-Caspian basin is the principal drainage area of the artesian system. Approximately 600 oil and gas fields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized as follows: 1) Upper Proterozoic (Bavly beds), which are promising but not yet commercial. 2) Clastic Devonian, which contains the major reserves and includes the main pays of the super-giant Romashkino field. 3) Carbonate Upper Devonian and lowermost Carboniferous, which is one of the main reef-bearing intervals. 4) Visean (Lower Carboniferous) elastics, which are the main pays in the super-giant Arian field. 5) Carbonate Lower and Middle Carboniferous. 6) Clastic Middle Carboniferous Moscovian. 7) Carbonate Middle and Upper Carboniferous. 8) Carbonate-evaporite Lower Permian, which contains the major gas reserves and the lower part of the Melekess tar deposits. 9) Clastic-carbonate Upper Permian, which contains the major part of the Melekess tar deposits. The Volga-Ural province is divided into several productive regions on a basis of differences in structure, distribution of reservoir and source-rock facies, and general composition of the petroleum accumulations. These regions are the Tatar arch, Birsk saddle, Upper Kama depression, Perm-Bashkir arch, Ufa-Orenburg monocline, Melekess-Sernovodsko-Abdulino basin, Zhligulevsko-Orenburg arch, Ural foredeep, and north borders of the Peri-Casplan depression. Exploration activity has declined in recent years; however, interest remains high in several parts of the province, particula

  1. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone is 0-2,500 feet thick and is composed almost entirely of Upper Devonian to Upper Mississippian limestone, dolomite, and chert. The overlying (Darwin-Humbug) zone is 0-800 feet thick and consists of Upper Mississippian limestone, dolomite, sandstone, shale, gypsum, and solution breccia. The Madison aquifer is overlain conformably by Upper Mississippian and Pennsylvanian rocks. The Madison aquifer in most areas is overlain by Upper Mississippian to Middle Pennsylvanian rocks of the Four Comers confining unit. The lower part of this confining unit, the Belden-Molas subunit, consists of as much as 4,300 feet of shale with subordinate carbonate rocks, sandstone, and minor gypsum. The upper part of the confining unit, the Paradox-Eagle Valley subunit, in most places consists of as much as 9,700 feet of interbedded limestone, dolomite, shale, sandstone, gypsum, anhydrite, and halite. Locally, the evaporitic rocks are deformed into diapirs as much as 15,000 feet thick. The Four Corners confining unit is overlain gradationally to disconformably by Pennsylvanian rocks. The uppermost Paleozoic rocks comprise the Canyonlands aquifer, which is composed of three zones with distinctly different lithologies. The basal (Cutler-Maroon) zone consists of as much as 16,500 feet of Lower Pennsylvanian to Lower Permian sandstone, conglomerate, shale, limestone, dolomite, and gypsum. The middle (Weber-De Chelly) zone consists of as much as 4,000 feet of Middle Pennsylvanian to Lower Permian quartz sandstone with minor carbonate rocks and shale. The upper (Park City-State Bridge) zone consists of as much as 800 feet of Lower to Upper Permian limestone, dolomite, shale, sandstone, phosphorite, chert, and gypsum. The Canyonlands aquifer is overlain disconformably to unconformably by formations of Triassic and Jurassic age.

  2. Geologic map of the Nelson quadrangle, Lewis and Clark County, Montana

    USGS Publications Warehouse

    Reynolds, Mitchell W.; Hays, William H.

    2003-01-01

    The geologic map of the Nelson quadrangle, scale 1:24,000, was prepared as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Nelson area, rocks ranging in age from Middle Proterozoic through Cretaceous are exposed on three major thrust plates in which rocks have been telescoped eastward. Rocks within the thrust plates are folded and broken by thrust faults of smaller displacement than the major bounding thrust faults. Middle and Late Tertiary sedimentary and volcaniclastic rocks unconformably overlie the pre-Tertiary rocks. A major normal fault displaces rocks of the western half of the quadrangle down on the west with respect to strata of the eastern part. Alluvial and terrace gravels and local landslide deposits are present in valley bottoms and on canyon walls in the deeply dissected terrain. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part, strata of the Middle Cambrian Flathead Sandstone, Wolsey Shale, and Meagher Limestone, the Middle and Upper Cambrian Pilgrim Formation and Park Shale undivided, the Devonian Maywood, Jefferson, and lower part of the Three Forks Formation, and Lower and Upper Mississippian rocks assigned to the upper part of the Three Forks Formation and the overlying Lodgepole and Mission Canyon Limestones are complexly folded and faulted. These deformed strata are overlain structurally in the east-central part of the quadrangle by a succession of strata including the Middle Proterozoic Greyson Formation and the Paleozoic succession from the Flathead Sandstone upward through the Lodgepole Limestone. In the east-central area, the Flathead Sandstone rests unconformably on the middle part of the Greyson Formation. The north edge, northwest quarter, and south half of the quadrangle are underlain by a succession of rocks that includes not only strata equivalent to those of the remainder of the quadrangle, but also the Middle Proterozoic Newland, Greyson, and Spokane Formations, Pennsylvanian and Upper Mississippian Amsden Formation and Big Snowy Group undivided, the Permian and Pennsylvanian Phosphoria and Quadrant Formations undivided, the Jurassic Ellis Group and Lower Cretaceous Kootenai Formation. Hornblende diorite sills and irregular bodies of probable Late Cretaceous age intrude Middle Proterozoic, Cambrian and Devonian strata. No equivalent intrusive rocks are present in structurally underlying successions of strata. In this main part of the quadrangle, the Flathead Sandstone cuts unconformably downward from south to north across the Spokane Formation into the upper middle part of the Greyson Formation. Tertiary (Miocene?) strata including sandstone, pebble and cobble conglomerate, and vitric crystal tuff underlie, but are poorly exposed, in the southeastern part of the quadrangle where they are overlain by late Tertiary and Quaternary gravel. The structural complexity of the quadrangle decreases from northeast to southwest across the quadrangle. At the lowest structural level (Avalanche Butte thrust plate) exposed in the canyon of Beaver Creek, lower and middle Paleozoic rocks are folded in northwest-trending east-inclined disharmonic anticlines and synclines that are overlain by recumbently folded and thrust faulted Devonian and Mississippian rocks. The Mississippian strata are imbricated adjacent to the recumbent folds. In the east-central part of the quadrangle, a structurally overlying thrust plate, likely equivalent to the Hogback Mountain thrust plate of the Hogback Mountain quadrangle adjacent to the east (Reynolds, 20xx), juxtaposes recumbently folded Middle Proterozoic and unconformably overlying lower Paleozoic rocks on the complexly folded and faulted rocks of the Avalanche Butte thrust plate. The highest structural plate, bounded below

  3. Evolution of groundwater composition in the depression cone of Riga region

    NASA Astrophysics Data System (ADS)

    Raga, B.; Kalvans, A.; Delina, A.; Perkone, E.; Retike, I.

    2012-04-01

    Riga is the capital of Latvia with around 0.9 million inhabitants where the main water supply is centralised and decentralised, mostly from groundwater sources, that is from the the Arukilas-Amatas multi-aquifer system, which consists of sandstones and siltstone. These rocks belong to the middle and upper Devonian and have good properties for groundwater extraction: they have high permeability and are widely spread. Below this system lies the middle Devonian Narvas aquitard, that consists of marl and clay. But in the southern and western part of Riga this system covers the upper Devonian Salaspils formation which consists of marl and gypsum. In the second half of the 20th century an intensive groundwater extraction from the Arukilas-Amtas multi-aquifer system took place in Riga, causing sharp and significant lowering of piezometric surfaces. The maximal decline of groundwater level was observed in 1972, when it was 16 m lower than the average. From the end of 80's started a regeneration of water table, when the volume of water usage began to decrease. Nowadays piezometric surface in the Arukilas-Amatas multi-aquifer system is being renewed and fluctuations are insignificant. The territory, where natural regime of groundwater has changed and that is induced by antropogenic effect is called "Large Riga". To track chemical changes and evolution in the Arukila-Amata multi-aquifer system long - term monitoring data is used. Data on major ions and piezometric surfaces from 45 monitoring wells that groups in 17 monitoring stations is being analysed. The area is dived into three zones - central, middle and periphery, which differ from each other by the volume of the groundwater level decline. These zones are determined from maps, that shows the piezometric surface difference between two periods: 1949-1951, that describes the natural situation, and 1970-1972, where the minimal groundwater level in the Gauja aquifer was observed. On this basis it was studied how rapidly water chemistry change in aquifers shows up and how these trends change. It was found out that the sources of water with high SO42- which worsen the quality of water in deeper aquifers, are from the Salaspils aquifer, because the first signs were observed in aquifers, that lie below the Salaspils formation. The same water composition changes in deeper aquifers with a time lag. When piezometric surface rised up, the mixing from different aquifers ended, that can be clearly observed in the upper Devonian Plavinu aquifer where, in the latest samples, is an increasing concentration of HCO3- ion. These are the first signs that the situation in this multi-aquifer system begins to return into natural conditions. Despite that Riga is lying near the sea, the lowering of water table in the Arukilas-Amatas multi-aquifer system hasn't induced intensive intrusion of sea water. This process is observed only in some areas, where intrusion occurs through the bed of river Daugava where the Plavinas aquifer dolomites are situated. The significant water composition changes are observed in the central part, where the greatest piezometric surface lowering is, which was sufficient enough to cause stronger downward flow from upper aquifers, that induced the mixing water from different aquifers in this territory. As a result, in this zone there are great water composition changes. Also the first signs about water composition changes show up very quickly, but the return to the natural situation is relatively slow. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060

  4. Sequence stratigraphy and a revised sea-level curve for the Middle Devonian of eastern North America

    USGS Publications Warehouse

    Brett, Carlton E.; Baird, G.C.; Bartholomew, A.J.; DeSantis, M.K.; Ver Straeten, C.A.

    2011-01-01

    The well-exposed Middle Devonian rocks of the Appalachian foreland basin (Onondaga Formation; Hamilton Group, Tully Formation, and the Genesee Group of New York State) preserve one of the most detailed records of high-order sea-level oscillation cycles for this time period in the world. Detailed examination of coeval units in distal areas of the Appalachian Basin, as well as portions of the Michigan and Illinois basins, has revealed that the pattern of high-order sea-level oscillations documented in the New York-Pennsylvania section can be positively identified in all areas of eastern North America where coeval units are preserved. The persistence of the pattern of high-order sea-level cycles across such a wide geographic area suggests that these cycles are allocyclic in nature with primary control on deposition being eustatic sea-level oscillation, as opposed to autocylic controls, such as sediment supply, which would be more local in their manifestation. There is strong evidence from studies of cyclicity and spectral analysis that these cycles are also related to Milankovitch orbital variations, with the short and long-term eccentricity cycles (100. kyr and 405. kyr) being the dominant oscillations in many settings. Relative sea-level oscillations of tens of meters are likely and raise considerable issues about the driving mechanism, given that the Middle Devonian appears to record a greenhouse phase of Phanerozoic history. These new correlations lend strong support to a revised high-resolution sea-level oscillation curve for the Middle Devonian for the eastern portion of North America. Recognized third-order sequences are: Eif-1 lower Onondaga Formation, Eif-2: upper Onondaga and Union Springs formations; Eif-Giv: Oatka Creek Formation; Giv-1: Skaneateles, Giv-2: Ludlowville, Giv-3: lower Moscow, Giv-4: upper Moscow-lower Tully, and Giv-5: middle Tully-Geneseo formations. Thus, in contrast with the widely cited eustatic curve of Johnson et al. (1985), which recognizes just one major transgressive-regressive (T-R) cycle in the early-mid Givetian (If) prior to the major late Givetian Taghanic unconformity (IIa, upper Tully-Geneseo Shale), we recognize four T-R cycles: If (restricted), Ig, Ih, and Ii. We surmise that third-order sequences record eustatic sea-level fluctuations of tens of meters with periodicities of 0.8-2. myr, while their medial-scale (fourth-order) subdivisions record lesser variations primarily of 405. kyr duration (long-term eccentricity). This high-resolution record of sea-level change provides strong evidence for high-order eustatic cycles with probable Milankovitch periodicities, despite the fact that no direct evidence for Middle Devonian glacial sediments has been found to date. ?? 2010.

  5. A global cyclostratigraphic framework constrains the timing and pacing of environmental changes over the Late Devonian (Frasnian - Famennian) mass extinction

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, David; Da Silva, Anne-Christine; Day, James E.; Whalen, Michael; Claeys, Philippe

    2016-04-01

    Milankovitch cycles (obliquity, eccentricity and precession) result in changes in the distribution of solar energy over seasons, as well as over latitudes, on time scales of ten thousands of years to millions of years. These changing patterns in insolation have induced significant variations in Earth's past climate over the last 4.5 billion years. Cyclostratigraphy and astrochronology utilize the geologic imprint of such quasi-cyclic climatic variations to measure geologic time. In recent years, major improvements of the Geologic Time Scale have been proposed through the application of cyclostratigraphy, mostly for the Mesozoic and Cenozoic (Gradstein et al., 2012). However, the field of Paleozoic cyclostratigraphy and astrochronology is still in its infancy and the application of cyclostratigraphic techniques in the Paleozoic allows for a whole new range of research questions. For example, unraveling the timing and pacing of environmental changes over the Late Devonian mass extinction on a 105-year time-scale concerns such a novel research question. Here, we present a global cyclostratigraphic framework for late Frasnian to early Famennian climatic and environmental change, through the integration of globally distributed sections. The backbone of this relative time scale consists of previously published cyclostratigraphies for western Canada and Poland (De Vleeschouwer et al., 2012; De Vleeschouwer et al., 2013). We elaborate this Euramerican base by integrating new proxy data -interpreted in terms of astronomical climate forcing- from the Iowa basin (USA, magnetic susceptibility and carbon isotope data) and Belgium (XRF and carbon isotope data). Next, we expand this well-established cyclostratigraphic framework towards the Paleo-Tethys Ocean, using magnetic susceptibility and carbon isotope records from the Fuhe section in South China (Whalen et al., 2015). The resulting global cyclostratigraphic framework implies an important refinement of the late Frasnian to early Famennian stratigraphy, but also allows for an evaluation of the role of astronomical forcing in perturbing the global carbon cycle and pacing anoxic conditions throughout the Late Devonian mass extinction event. The late Frasnian anoxic Kellwasser events, for example, each represent only a portion of a 405-kyr eccentricity cycle, with the onset of both events separated by 500-600 kyr. References: De Vleeschouwer, D., Whalen, M. T., Day, J. E., and Claeys, P., 2012, Cyclostratigraphic calibration of the Frasnian (Late Devonian) time scale (western Alberta, Canada): Geological Society of America Bulletin, v. 124, no. 5-6, p. 928-942. De Vleeschouwer, D., Rakociński, M., Racki, G., Bond, D. P., Sobień, K., and Claeys, P., 2013, The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland): Earth and Planetary Science Letters, v. 365, p. 25-37. Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G., 2012, The Geologic Time Scale 2012 2-Volume Set, Elsevier. Whalen, M. T., Śliwiński, M. G., Payne, J. H., Day, J. E., Chen, D., and da Silva, A.-C., 2015, Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian-Famennian transition in western Canada and southern China: implications for carbon and nutrient cycling and mass extinction: Geological Society, London, Special Publications, v. 414.

  6. Late Devonian Anoxia Events in the Central Asian Orogenic Belt: a Global Phenomenon

    NASA Astrophysics Data System (ADS)

    Carmichael, S. K.; Waters, J. A.; Suttner, T. J.; Kido, E.; DeReuil, A. A.; Moore, L. M.; Batchelor, C. J.

    2013-12-01

    Atmospheric CO2 values decreased dramatically during the Middle Devonian due to the rapid rise of land plants. These changing environmental conditions resulted in widespread anoxia and extinction events throughout the Late Devonian, including the critical Kellwasser and Hangenberg anoxia events, which are associated with major mass extinctions at both the beginning and end of the Famennian Stage of the Late Devonian. Fammenian sediments in northwestern Xinjiang Province, China, represent a highly fossiliferous shallow marine setting associated with a Devonian oceanic island arc complex. Analysis of multiple geochemical proxies (such as U/Th, Ba, normalized P2O5, V/Cr, Zr), magnetic susceptibility, and mineralogical data (biogenic apatite and pyrite framboids) indicates that these Famennian sequences record not only the Upper Kellwasser Anoxic Event at the Frasnian/Famennian (F/F) boundary but also the rebound from the F/F extinction event. Preliminary evidence suggests that the Hangenberg Anoxic Event can also be recognized in the same sequence, although our biostratigraphic control is less precise. Previous studies of the Kellwasser and Hangenberg Events have been performed on continental shelf environments of Laurussia, Gondwana, Siberia, and South China. The Devonian formations of northwest Xinjiang in this study, however, are part of the Central Asian Orogenic Belt (CAOB), which is thought to have formed as part of a complex amalgamation of intra-oceanic island arcs and continental fragments prior to the end of the latest Carboniferous. These results allow us to confirm the presence of the Kellwasser and Hangenberg Events in the open oceanic part of Paleotethys, indicating that both events were global in scope. The presence of an abundant diverse Famennian fauna between these anoxia/extinction events suggests that the shallow marine ecosystems in the CAOB were somewhat protected due to their tectonic location and relative isolation within an open ocean system. Our new data puts the Late Devonian anoxic events recognized in the CAOB into a global rather than regional context, and helps constrain the nature of ocean anoxia during this period by analysis of locations outside subequatorial North America and Europe.

  7. Total petroleum systems of the Illizi Province, Algeria and Libya; Tanezzuft-Illizi

    USGS Publications Warehouse

    Klett, T.R.

    2000-01-01

    Undiscovered conventional oil and gas resources were assessed within a total petroleum system of the Illizi Province (2056) as part of the U.S. Geological Survey World Petroleum Assessment 2000. The Illizi Province is in eastern Algeria and a small portion of western Libya. The province and its total petroleum system coincide with the Illizi Basin. Although several total petroleum systems may exist within the Illizi Province, only one “composite” total petroleum system is identified. This total petroleum system comprises a single assessment unit. The main source rocks are the Silurian Tanezzuft Formation (or lateral equivalents) and Middle to Upper Devonian mudstone. The total petroleum system was named after the oldest major source rock and the basin in which it resides. The estimated means of the undiscovered conventional petroleum volumes in the Tanezzuft-Illizi Total Petroleum System are 2,814 million barrels of oil (MMBO), 27,785 billion cubic feet of gas (BCFG), and 873 million barrels of natural gas liquids (MMBNGL).

  8. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  9. Rotational and accretionary evolution of the Klamath Mountains, California and Oregon, from Devonian to present time

    USGS Publications Warehouse

    Irwin, William P.; Mankinen, Edward A.

    1998-01-01

    The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.

  10. Paracontinuous boundaries within the Devonian Columbus Limestone and Delaware Formation of central Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conkin, J.E.; Conkin, B.M.

    1994-04-01

    Internal units within the Columbus Limestone (Early Devonian Emsian [Schoharie] to Middle Devonian Eifelian [late Onesquethawan]) and the Delaware Formation (Middle Devonian early Givetian [Cazenovian]) of central Ohio are separated by disconformities of the magnitude of paracontinuities. Stauffer (1909) divided the Columbus Limestone into zones A--H and the Delaware Formation into zones I--M. Within the Columbus, the A Zone (conglomerate at the base of Bellepoint Member) disconformably overlies Late Silurian beds. The D zone at top of the Bellepoint Member (bearing the Kawkawlin Metabentonite horizon) is overlain paracontinuously by the Marblehead Member (Lower Paraspirifer acuminatus-Spirifer macrothyris to Brevispirifer gregarius-Moellerina greeneimore » zones [= E--G zones]), with the Onondagan Indian Nation Metabentonite in the top of the G Zone. The Marblehead Member is overlain paracontinuously by a bone bed at base of the Venice Member (H zone = Upper Paraspirifer acuminatus- Spirifer duodenarius'' Zone). I Zone (Dublin Shale=Marcellus) of the Delaware Formation overlies the Columbus and has two bone beds at its base; Tioga Metabentonite (restricted) overlies the I Zone bone beds and is a few tenths to 1.85 feet above the base of the I Zone. Paracontinuities and bone beds occur at the bases of J, K, and L zones. Conkin and Conkin (1975) have shown Stauffer's (1909) M Zone is an extension of his L Zone. The Olentangy paracontinuously overlies the L Zone.« less

  11. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in north China

    NASA Astrophysics Data System (ADS)

    Xu, Bei; Zhao, Pan; Wang, Yanyang; Liao, Wen; Luo, Zhiwen; Bao, Qingzhong; Zhou, Yongheng

    2015-01-01

    A new tectonic division of the Xing'an-Mongolia orogenic belt (XMOB) in north China has been presented according to our research and a lot of new data of tectonics, geochronology and geochemistry. Four blocks and four sutures have been recognized in the XMOB, including the Erguna (EB), Xing'an-Airgin Sum (XAB), Songliao-Hunshandake (SHB), and Jiamusi (JB), and Xinlin-Xiguitu (XXS), Xilinhot-Heihe (XHS), Mudanjiang (MS) and Ondor Sum-Yongji sutures (OYS). The framework of the XMOB is characterized by a tectonic collage of the blocks and orogenic belts between them. Different Precambrian basements have been found in the blocks, including the Neoproterozoic metamorphic rocks and plutons in the EB, the Neoproterozoic metamorphic rocks in western and eastern of segments of the XAB, Mesoproterozoic and Neoproterozoic metamorphic rocks in middle segments of the XAB, respectively, the Neoproterozoic metamorphic rocks and Mesoproterozoic volcanic rocks and plutons in the SHB, and Neoproterozoic metamorphic rocks in the JB. The XXS resulted from a northwestward subduction of the XAB beneath the EB during the Cambrian, which was followed by the forming of the XHS and OYS in the northwest and south margins of the SHB in the Silurian, respectively. The MS was caused by a westward subduction of the JB beneath the east margin of the SHB during the middle Devonian. The three Cambrian, Silurian and middle Devonian events indicate that the XMOB belongs to a pre-middle Devonian multiple orogenic belt in the Central Asian Orogenic Belt (CAOB). Forming of the XMOB suggests that the southeast part of the Paleo Asian Ocean closed before the middle Devonian.

  12. Devonian (Emsian-Eifelian) fish from the Lower Bokkeveld Group (Ceres Subgroup), South Africa

    NASA Astrophysics Data System (ADS)

    Anderson, M. E.; Almond, J. E.; Evans, F. J.; Long, J. A.

    1999-07-01

    Four major groups of fish are represented by fragmentary remains from South Africa's Lower Bokkeveld Group of Early to Middle Devonian age: the Acanthodii, Chondrichthyes, Placodermi and Osteichthyes. These represent the oldest known occurrences of these groups in southern Africa, as well as an important addition to the very meagre record of earlier Devonian fish from the Malvinokaffric Province of southwestern Gondwana. Bokkeveld fish material comes from the Gydo (Late Emsian) and Tra Tra (Middle Eifelian) Formations of the Western Cape and Eastern Cape Provinces. The cosmopolitan marine acanthodian Machæracanthus is represented only by isolated fin spines which may belong to two different species on the basis of their external ornamentation, cross-sectional outline and internal histology. The elasmobranchs are represented by four elements: (1) a flattened chondrocranium which bears affinity to the Late Devonian-Carboniferous symmoriid (protacrodont) 'cladodont' sharks. It is probably the earliest known (Emsian) shark chondrocranium; (2) an isolated, primitive scapulocoracoid with a very short coracoidal ridge; (3) ankylosed and isolated radials, interpreted as parts of pterygial plates of a paired fin of an unknown chondrichthyan bearing affinity to the Middle Devonian Zamponiopteron from Bolivia; and (4) isolated barlike structures, perhaps gill arch or a jaw elements, thought to be from the same taxon as (3). The placoderms are represented by an incomplete trunk armour and fragmentary, finely ornamented plates of a primitive antiarch. The Osteichthyes are represented by a single large scale of an unidentified dipnoan from the Eifelian of the Cedarberg range, as well as a probable sarcopterygian dermal plate from the Emsian of the Prince Albert area. These are among the earliest sarcopterygian remains recorded from the Malvinokaffric Province.

  13. Late Devonian glacial deposits from the eastern United States signal an end of the mid-Paleozoic warm period

    USGS Publications Warehouse

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.; Stamm, R.

    2008-01-01

    A Late Devonian polymictic diamictite extends for more than 400??km from northeastern Pennsylvania across western Maryland and into east-central West Virginia. The matrix-supported, unbedded, locally sheared diamictite contains subangular to rounded clasts up to 2??m in diameter. The mostly rounded clasts are both locally derived and exotic; some exhibit striations, faceting, and polish. The diamictite commonly is overlain by laminated siltstone/mudstone facies associations (laminites). The laminites contain isolated clasts ranging in size from sand and pebbles to boulders, some of which are striated. The diamictite/laminite sequence is capped by massive, coarse-grained, pebbly sandstone that is trough cross-bedded. A stratigraphic change from red, calcic paleo-Vertisols in strata below the diamictite to non-calcic paleo-Spodosols and coal beds at and above the diamictite interval suggests that the climate became much wetter during deposition of the diamictite. The diamictite deposit is contemporaneous with regressive facies that reflect fluvial incision during the Late Devonian of the Appalachian basin. These deposits record a Late Devonian episode of climatic cooling so extreme that it produced glaciation in the Appalachian basin. Evidence for this episode of climatic cooling is preserved as the interpreted glacial deposits of diamictite, overlain by glaciolacustrine varves containing dropstones, and capped by sandstone interpreted as braided stream outwash. The Appalachian glacigenic deposits are contemporaneous with glacial deposits in South America, and suggest that Late Devonian climatic cooling was global. This period of dramatic global cooling may represent the end of the mid-Paleozoic warm interval that began in the Middle Silurian. ?? 2008 Elsevier B.V. All rights reserved.

  14. First Record of Soft Tissue Preservation in the Upper Devonian of Poland

    PubMed Central

    Zatoń, Michał; Broda, Krzysztof

    2015-01-01

    Soft tissue preservation is reported from Upper Devonian deposits of the Holy Cross Mountains, central Poland, for the first time. The preserved soft tissues are muscles associated with arthropod cuticle fragments. The muscles are phosphatized with variable states of preservation. Well-preserved specimens display the typical banding of striated muscles. Other muscle fragments are highly degraded and/or recrystallized such that their microstructure is barely visible. The phosphatized muscles and associated cuticle are fragmented, occur in patches and some are scattered on the bedding plane. Due to the state of preservation and the lack of diagnostic features, the cuticle identification is problematic; however, it may have belonged to a phyllocarid crustacean. Taphonomic features of the remains indicate that they do not represent fossilized fecal matter (coprolite) but may represent a regurgitate, but the hypothesis is difficult to test. Most probably they represent the leftover remains after arthropod or fish scavenging. The present study shows that soft tissues, which even earlier were manipulated by scavenger, may be preserved if only special microenvironmental conditions within and around the animal remains are established. PMID:26559060

  15. First Record of Soft Tissue Preservation in the Upper Devonian of Poland.

    PubMed

    Zatoń, Michał; Broda, Krzysztof

    2015-01-01

    Soft tissue preservation is reported from Upper Devonian deposits of the Holy Cross Mountains, central Poland, for the first time. The preserved soft tissues are muscles associated with arthropod cuticle fragments. The muscles are phosphatized with variable states of preservation. Well-preserved specimens display the typical banding of striated muscles. Other muscle fragments are highly degraded and/or recrystallized such that their microstructure is barely visible. The phosphatized muscles and associated cuticle are fragmented, occur in patches and some are scattered on the bedding plane. Due to the state of preservation and the lack of diagnostic features, the cuticle identification is problematic; however, it may have belonged to a phyllocarid crustacean. Taphonomic features of the remains indicate that they do not represent fossilized fecal matter (coprolite) but may represent a regurgitate, but the hypothesis is difficult to test. Most probably they represent the leftover remains after arthropod or fish scavenging. The present study shows that soft tissues, which even earlier were manipulated by scavenger, may be preserved if only special microenvironmental conditions within and around the animal remains are established.

  16. Carbonate rocks of the Seward Peninsula, Alaska: Their correlation and paleogeographic significance

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Alta; Repetski, John E.

    2014-01-01

    Paleozoic carbonate strata deposited in shallow platform to off-platform settings occur across the Seward Peninsula and range from unmetamorphosed Ordovician–Devonian(?) rocks of the York succession in the west to highly deformed and metamorphosed Cambrian–Devonian units of the Nome Complex in the east. Faunal and lithologic correlations indicate that early Paleozoic strata in the two areas formed as part of a single carbonate platform. The York succession makes up part of the York terrane and consists of Ordovician, lesser Silurian, and limited, possibly Devonian rocks. Shallow-water facies predominate, but subordinate graptolitic shale and calcareous turbidites accumulated in deeper water, intraplatform basin environments, chiefly during the Middle Ordovician. Lower Ordovician strata are mainly lime mudstone and peloid-intraclast grainstone deposited in a deepening upward regime; noncarbonate detritus is abundant in lower parts of the section. Upper Ordovician and Silurian rocks include carbonate mudstone, skeletal wackestone, and coral-stromatoporoid biostromes that are commonly dolomitic and accumulated in warm, shallow to very shallow settings with locally restricted circulation. The rest of the York terrane is mainly Ordovician and older, variously deformed and metamorphosed carbonate and siliciclastic rocks intruded by early Cambrian (and younger?) metagabbros. Older (Neoproterozoic–Cambrian) parts of these units are chiefly turbidites and may have been basement for the carbonate platform facies of the York succession; younger, shallow- and deep-water strata likely represent previously unrecognized parts of the York succession and its offshore equivalents. Intensely deformed and altered Mississippian carbonate strata crop out in a small area at the western edge of the terrane. Metacarbonate rocks form all or part of several units within the blueschist- and greenschist-facies Nome Complex. The Layered sequence includes mafic meta¬igneous rocks and associated calcareous metaturbidites of Ordovician age as well as shallow-water Silurian dolostones. Scattered metacarbonate rocks are chiefly Cambrian, Ordovician, Silurian, and Devonian dolostones that formed in shallow, warm-water settings with locally restricted circulation and marbles of less constrained Paleozoic age. Carbonate metaturbidites occur on the northeast and southeast coasts and yield mainly Silurian and lesser Ordovician and Devonian conodonts; the northern succession also includes debris flows with meter-scale clasts and an argillite interval with Late Ordovician graptolites and lenses of radiolarian chert. Mafic igneous rocks at least partly of Early Devonian age are common in the southern succession. Carbonate rocks on Seward Peninsula experienced a range of deformational and thermal histories equivalent to those documented in the Brooks Range. Conodont color alteration indices (CAIs) from Seward Peninsula, like those from the Brooks Range, define distinct thermal provinces that likely reflect structural burial. Penetratively deformed high-pressure metamorphic rocks of the Nome Complex (CAIs ≥5) correspond to rocks of the Schist belt in the southern Brooks Range; both record subduction during early stages of the Jurassic–Cretaceous Brooks Range orogeny. Weakly metamorphosed to unmetamorphosed strata of the York terrane (CAIs mainly 2–5), like Brooks Range rocks in the Central belt and structural allochthons to the north, experienced moderate to shallow burial during the main phase of the Brooks Range orogeny. The nature of the contact between the York terrane and the Nome Complex is uncertain; it may be a thrust fault, an extensional surface, or a thrust fault later reactivated as an extensional fault. Lithofacies and biofacies data indicate that, in spite of their divergent Mesozoic histories, rocks of the York terrane and protoliths of the Nome Complex formed as part of the same lower Paleozoic carbonate platform. Stratigraphies in both

  17. Mid and Late Devonian arenites deposited by sheet-flood, braided streams and rivers in the northern Barrier Ranges, far western New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Neef, G.; Bottrill, R. S.; Cohen, D. R.

    1996-05-01

    Extensive and well exposed, fine-grained fluvial sandstone and less common pebbly coarse-grained fluvial sandstone of Devonian age, crop out in the northern Barrier Ranges of far west New South Wales, Australia. These strata were deposited largely on low-gradient alluvial fans in a basin and range landscape and contain common sedimentary structures (especially streaming lineations and tabular cross-beds). Around 400 of these sedimentary structures were measured to determine the palaeoflow trends of the sheet floods, streams or rivers which deposited the sandstone. The strata are mapped as the Mid Devonian Coco Range Sandstone and the Late Devonian Nundooka Sandstone, which together are around 2.7 km thick. They were deposited at the western margin of the large Emsian to Early Carboniferous Darling Basin. The Coco Range Sandstone is Emsian to Eifelian in age (based on fragments) of fossil fish) and it is separated from the Frasnian-Famennian (Late Devonian) Nundooka Sandstone by the north-trending Nundooka Creek Fault. The eastern boundary of the Nundooka Sandstone is formed by the Western Boundary Fault. Eastward of this fault is the north-trending and 40 km wide Bancannia Trough, which contains gently folded Late Silurian to Early Carboniferous strata up to 7.5 km thick. Most of the Coco Range Sandstone and all of the Nundooka Sandstone are non-graded, fine and very fine-grained, light brown sub-litharenites which are considered to have been deposited mainly on low-gradient alluvial fans. Sedimentary successions of 1.75 to 5.25 m thickness in the fine-grained arenite usually commence with Sm (massive or slumped) → Sh (laminated arenite) or St (trough cross-beds) → Sp (tabular cross-bedded sandstone). An erosional surface commonly underlies the sedimentary successions and they are interpreted to be the result of deposition from decelerating sheet floods. Units composed of tabular cross-bedded strata several metres thick are rarely channelised and are interpreted to represent deposition within braided streams flowing upon the fans or deposited at the margin of sheet floods. In the Coco Range Sandstone there are two sheet-like coarse pebbly arenite units (The Valley Tank and Copi Dam Members) which together total 200 m in thickness. Unimodal palaeocurrent trends and heavy mineral suites from within the coarse-grained arenite indicate a derivation from the south near Broken Hill. Sedimentary structures within the coarse-grained arenite indicate a Platte River style of deposition upon distal braid plains, whereas local interdigitation of coarse-grained arenite with fine arenite strata shows that deposition was essentially continuous (i.e. the coarse arenite do not overlie unconformities) and the two lithotypes represent interdigitation of alluvial fans and braid plain deposition. The northward progradation of the coarse arenite units was probably due to a sudden retardation of basement downwarping.

  18. The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan)

    NASA Astrophysics Data System (ADS)

    Brookfield, Michael E.; Hashmat, Ajruddin

    2001-10-01

    The North Afghan platform has a pre-Jurassic basement unconformably overlain by a Jurassic to Paleogene oil- and gas-bearing sedimentary rock platform cover, unconformably overlain by Neogene syn- and post-orogenic continental clastics. The pre-Jurassic basement has four units: (1) An ?Ordovician to Lower Devonian passive margin succession developed on oceanic crust. (2) An Upper Devonian to Lower Carboniferous (Tournaisian) magmatic arc succession developed on the passive margin. (3) A Lower Carboniferous (?Visean) to Permian rift-passive margin succession. (4) A Triassic continental magmatic arc succession. The Mesozoic-Palaeogene cover has three units: (1) A ?Late Triassic to Middle Jurassic rift succession is dominated by variable continental clastics. Thick, coarse, lenticular coal-bearing clastics were deposited by braided and meandering streams in linear grabens, while bauxites formed on the adjacent horsts. (2) A Middle to Upper Jurassic transgressive-regressive succession consists of mixed continental and marine Bathonian to Lower Kimmeridgian clastics and carbonates overlain by regressive Upper Kimmeridgian-Tithonian evaporite-bearing clastics. (3) A Cretaceous succession consists of Lower Cretaceous red beds with evaporites, resting unconformably on Jurassic and older deposits, overlain (usually unconformably) by Cenomanian to Maastrichtian shallow marine limestones, which form a fairly uniform transgressive succession across most of Afghanistan. (4) A Palaeogene succession rests on the Upper Cretaceous limestones, with a minor break marked by bauxite in places. Thin Palaeocene to Upper Eocene limestones with gypsum are overlain by thin conglomerates, which pass up into shales with a restricted brackish-water ?Upper Oligocene-?Lower Miocene marine fauna. The Neogene succession consists of a variable thickness of coarse continental sediments derived from the rising Pamir mountains and adjacent ranges. Almost all the deformation of the North Afghan platform began in the Miocene. Oil and gas traps are mainly in Upper Jurassic carbonates and Lower Cretaceous sandstones across the entire North Afghan block. Upper Jurassic carbonate traps, sealed by evaporites, occur mainly north of the southern limit of the Upper Jurassic salt. Lower Cretaceous traps consist of fine-grained continental sandstones, sealed by Aptian-Albian shales and siltstones. Upper Cretaceous-Palaeocene carbonates, sealed by Palaeogene shales are the main traps along the northern edge of the platform and in the Tajik basin. Almost all the traps are broad anticlines related to Neogene wrench faulting, in this respect, like similar traps along the San Andreas fault. Hydrocarbon sources are in the Mesozoic section. The Lower-Middle Jurassic continental coal-bearing beds provide about 75% of the hydrocarbons; the Callovian-Oxfordian provides about 10%; the Neocomian a meagre 1%, and the Aptian-Albian about 14%. The coal-bearing source rocks decrease very markedly in thickness southwards cross the North Afghan platform. Much of the hydrocarbon generation probably occurred during the Late Cretaceous-Paleogene and migrated to structural traps during Neogene deformation. Since no regional structural dip aids southward hydrocarbon migration, and since the traps are all structural and somewhat small, then there is little chance of very large petroleum fields on the platform. Nevertheless, further studies of the North Afghan platform should be rewarding because: (a) the traps of strike-slip belts are difficult to find without detailed exploration; (b) the troubles of the last 20 years mean that almost no exploration has been done; and, (c) conditions may soon become more favorable. There should be ample potential for oil, and particularly gas, discoveries especially in the northern and western parts of the North Afghan platform.

  19. Tectonic control of Middle Devonian reef building in the Mechra ben Abbou (northern Rehamna, Morocco)Contrôle tectonique de l'édification des récifs Dévonien moyen de Mechra ben Abbou (Rehamna, Maroc)

    NASA Astrophysics Data System (ADS)

    El Kamel, Fouad; El Hassani, Ahmed; Mohsine, Assia; Remmal, Toufik

    2000-01-01

    In the carbonated platform of Upper Emsian to Givetian age, the reef edification is previous to, and contemporaneous with, a tilted block tectonic that has favoured the bioconstruction in its upper part. The tectonic expression is illustrated by several instability marks, such as tension faults, progressive unconformity and the resulting landslide, observed in both the reef development zone and the external platform.

  20. Magnetostratigraphy of late Devonian carbonates of Western Australia: Integrating reversal history with biostratigraphic and 13C records

    NASA Astrophysics Data System (ADS)

    Tohver, E.; Playton, T.; Hillbun, K.; Yan, M.; Pisarevsky, S.; Hansma, J.; Roelofs, B.; Trinajstic, K.; Kirschvink, J. L.; Haines, P.

    2016-12-01

    The Global Polarity Timescale presents a useful basis for chronostratigraphic correlations, but pre-Jurassic records depend on records from sedimentary basins preserved on the continents. At present, the record for the late Devonian is poorly established. Here we present an integrated magnetostratigraphic, biostratigraphic and C-isotope study of the Canning Basin of Western Australia, located on the northern margin of eastern Gondwana. The study region is part of the classic "Devonian Great Barrier Reef", and preserves an outstanding marine record of a prominent mass extinction event (i.e., the Frasnian-Fammenian event, the fifth of the "Big Five" mass extinctions). We present magnetostratigraphic profiles from six different sections (2200 m total) from four separate localities that record different paleowater depths, i.e., lowermost slope to reef/platform deposits of the basin. Correlations between localities are based on conodont assemblages that can be correlated to global records. Paleomagnetic sampling was carried out at the meter-scale for magnetostratigraphic analysis, with duplicate specimens used for carbon isotope stratigraphy. Most samples record a magnetic overprint parallel to the modern geomagnetic direction, but this remanence was removed by laboratory heating to ca. 180°C. Approximately forty percent of samples retain a high temperature characteristic remanent magnetization (ChRM), typically carried by magnetite or hematite. Before using these ChRMs to assign a magnetic polarity, we filtered paleomagnetic directions to eliminate directions >45 degrees from the Fisherian mean direction, avoiding spurious directions and low latitude virtual geomagnetic poles (VGPs) from transitional field directions. The resulting magnetostratigraphic profiles were used to correlate different sections on the basis of matching reversal records, yielding a composite record of the Middle to Late Devonian geomagnetic reversal record. We recognized seventeen major magnetozones, although the total number of individual reversals is much higher. We examine the distribution of both VGPs and ChRMs to assess whether non-Fisherian statistics should be applied to magnetostratigraphic datasets, and we assess the factors that might cause ellipticity of both datasets.

  1. Thermal maturity patterns in New York State using CAI and %Ro

    USGS Publications Warehouse

    Weary, D.J.; Ryder, R.T.; Nyahay, R.E.

    2001-01-01

    New conodont alteration index (CAI) and vitrinite reflectance (%Ro) data collected from drill holes in the Appalachian basin of New York State allow refinement of thermal maturity maps for Ordovician and Devonian rocks. CAI isotherms on the new maps show a pattern that approximates that published by Harris et al. (1978) in eastern and western New York, but it differs in central New York, where the isotherms are shifted markedly westward by more than 100 km and are more tightly grouped. This close grouping of isograds reflects a steeper thermal gradient than previously noted by Harris et al. (1978) and agrees closely with the abrupt west-to-east increase in thermal maturity across New York noted by Johnsson (1986). These data show, in concordance with previous studies, that thermal maturity levels in these rocks are higher than can be explained by simple burial heating beneath the present thickness of overburden. The Ordovician and Devonian rocks of the Appalachian Basin in New York must have been buried by very thick post-Devonian sediments (4-6 km suggested by Sarwar and Friedman 1995) or were exposed to a higher-than-normal geothermal flux caused by crustal extension, or a combination of the two.

  2. Towards a High-resolution Time Scale for the Early Devonian

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; da Silva, A. C.

    2017-12-01

    High-resolution time scales are crucial to understand Earth's history in detail. The construction of a robust geological time scale, however, inevitably becomes increasingly harder further back in time. Uncertainties associated with anchor radiometric ages increase in size, not speaking of the mere presence of suitable datable strata. However, durations of stages can be tightly constrained by making use of cyclic expressions in sediments, an approach that revolutionized the Cenozoic time scale. When precisely determined durations are stitched together, ultimately, a very precise time scale is the result. For the Mesozoic and Paleozoic an astronomical solution as a tuning target is not available but the dominant periods of eccentricity, obliquity and precession are reasonably well constrained for the entire Phanerozoic which enables their detection by means of spectral analysis. Eccentricity is time-invariant and is used as the prime building block. Here we focus on the Early Devonian, on its lowermost three stages: the Lochkovian, Pragian and Emsian. The uncertainties on the Devonian stage boundaries are currently in the order of several millions of years. The preservation of climatic cycles in diagenetically or even anchimetamorphically affected successions, however, is essential. The fit of spectral peak ratios with those calculated for orbital cycles, is classically used as a strong argument for a preserved climatic signal. Here we use primarily the low field magnetic susceptibility (MS) as proxy parameter, supported by gamma-ray spectrometry to test for consistency. Continuous Wavelet Transform, Evolutive Harmonic Analysis, Multitaper Method, and Average Spectral Misfit are used to reach an optimal astronomical interpretation. We report on classic Early Devonian sections from the Czech Republic: the Pozar-CS (Lochkovian and Pragian), Pod Barrandovem (Pragian and Lower Emsian), and Zlichov (Middle-Upper Emsian). Also a Middle-Upper Emsian section from the US (Road 199 section, Kingston, New York) will be targeted. Strata display Milankovitch cycles to a varying visible degree but spectral analysis of MS with supporting magnetic property tests enables to constrain durations up to an order of magnitude more precise than in the current (2012) Geological Time Scale.

  3. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    PubMed

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results warrant further exploration of dacryoconarid stable isotope proxy sensitivity, the isotopic contrast among dacryoconarids, other taxa, and bulk rock, as well as other potential dacryoconarid proxies (Mg/Ca, Sr/Ca, (87) Sr/(86) Sr, microlaser and ion microprobe isotope techniques, and clumped isotopes) for stratigraphic research. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Affinities and architecture of Devonian trunks of Prototaxites loganii.

    PubMed

    Retallack, G J; Landing, Ed

    2014-01-01

    Devonian fossil logs of Prototaxites loganii have been considered kelp-like aquatic algae, rolled up carpets of liverworts, enormous saprophytic fungal fruiting bodies or giant lichens. Algae and rolled liverwort models cannot explain the proportions and branching described here of a complete fossil of Prototaxites loganii from the Middle Devonian (386 Ma) Bellvale Sandstone on Schunnemunk Mountain, eastern New York. The "Schunnemunk tree" was 8.83 m long and had six branches, each about 1 m long and 9 cm diam, on the upper 1.2 m of the main axis. The coalified outermost layer of the Schunnemunk trunk and branches have isotopic compositions (δ(13)CPDB) of -25.03 ± 0.13‰ and -26.17 ± 0.69‰, respectively. The outermost part of the trunk has poorly preserved invaginations above cortical nests of coccoid cells embraced by much-branched tubular cells. This histology is unlike algae, liverworts or vascular plants and most like lichen with coccoid chlorophyte phycobionts. Prototaxites has been placed within Basidiomycota but lacks clear dikaryan features. Prototaxites and its extinct order Nematophytales may belong within Mucoromycotina or Glomeromycota. © 2014 by The Mycological Society of America.

  5. Diagenesis and evolution of microporosity of Middle-Upper Devonian Kee Scarp reefs, Norman Wells, Northwest Territories, Canada: Petrographic and chemical evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Aasm, I.S.; Azmy, K.K.

    The Middle-Upper Devonian Kee Scarp reef complexes of Norman Wells, Northwest Territories, Canada, are oil-producing, stromatoporoid-dominated carbonates. Episodic increases in the rate of sea level rise produced multiple cycles of reef growth that exhibit backstepping characteristics. These carbonates, composed of invariably altered limestones, have original interskeletal, intraskeletal, and intergranular porosity, mostly occluded by nonferroan, dull luminescent cements. Secondary porosity, represented by micropores of various types, developed during diagenesis by aggrading neomorphism and dissolution. The micropores represent the main reservoir porosity in the Kee Scarp limestone. Petrographic, chemical, and isotopic studies of Kee Scarp reef components reveal a complex diagenetic historymore » involving marine fluids modified by increasing water/rock interaction and burial. Neomorphic stabilization of skeletal components caused further depletion in {gamma}{sup 18}O but very little change in {gamma}{sup 13}C, an argument for modification of the original marine fluids with increasing burial. Variations in magnitude of water/rock interaction with depth, facies changes, and porosity modifications probably exerted some control on fractionation and distribution of stable isotopes and trace elements in reef components.« less

  6. Organic metamorphism in the Lower Mississippian-Upper Devonian Bakken shales-II: Soxhlet extraction.

    USGS Publications Warehouse

    Price, L.C.; Ging, T.; Love, A.; Anders, D.

    1986-01-01

    We report on Soxhlet extraction (and subsequent related analyses) of 39 Lower Mississippian-Upper Devonian Bakken shales from the North Dakota portion of the Williston Basin, and analyses of 28 oils from the Basin. Because of the influence of primary petroleum migration, no increase in the relative or absolute concentrations of hydrocarbons or bitumen was observed at the threshold of intense hydrocarbon generation (TIHG), or during mainstage hydrocarbon generation in the Bakken shales. Thus, the maturation indices that have been so useful in delineating the TIHG and mainstage hydrocarbon generation in other studies were of no use in this study, where these events could clearly be identified only by Rock-Eval pyrolysis data. The data of this study demonstrate that primary petroleum migration is a very efficient process. Four distinctive classes of saturated hydrocarbon gas chromatograms from the Bakken shales arose from facies, maturation, and primary migration controls. As a consequence of maturation, the % of saturated hydrocarbons increased in the shale extract at the expense of decreases in the resins and asphaltenes. Measurements involving resins and asphaltenes appear to be excellent maturation indices in the Bakken shales. Two different and distinct organic facies were present in immature Bakken shales. -from Authors

  7. Bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.

    2018-04-20

    The bedrock geologic map of the Lisbon quadrangle, and parts of the Sugar Hill and East Haverhill quadrangles, Grafton County, New Hampshire, covers an area of approximately 73 square miles (189 square kilometers) in west-central New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic Suite, and extends from Maine, through western New Hampshire (down the eastern side of the Connecticut River), through southern New England to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (lower and upper sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of slate, phyllite, ironstone, chert, sandstone, and pelite. The Albee Formation underlies the Ammonoosuc Volcanics and is predominantly composed of interbedded metamorphosed sandstone, siltstone, and phyllite.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics including the Moody Ledge pluton and the Scrag granite of Billings (1937). Subsequent plutonism related to the Acadian orogeny occurred after volcanism and deposition resulted in the Littleton Formation during the Late Devonian, including the intrusion of the Haverhill pluton and French Pond Granite found in the southern part of the map.This report consists of a geologic map and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information. The geologic map is intended to serve as a foundation for applying geologic information to problems involving land use decisions, groundwater availability and quality, earth resources such as natural aggregate for construction, assessment of natural hazards, and engineering and environmental studies for waste disposal sites and construction projects.

  8. Mid-Permian Phosphoria Sea in Nevada and the Upwelling Model

    USGS Publications Warehouse

    Ketner, Keith B.

    2009-01-01

    The Phosphoria Sea extended at least 500 km westward and at least 700 km southwestward from its core area centered in southeastern Idaho. Throughout that extent it displayed many characteristic features of the core: the same fauna, the same unique sedimentary assemblage including phosphate in mostly pelletal form, chert composed mainly of sponge spicules, and an association with dolomite. Phosphoria-age sediments in Nevada display ample evidence of deposition in shallow water. The chief difference between the sediments in Nevada and those of the core area is the greater admixture of sandstone and conglomerate in Nevada. Evidence of the western margin of the Phosphoria Sea where the water deepened and began to lose its essential characteristics is located in the uppermost part of the Upper Devonian to Permian Havallah sequence, which has been displaced tectonically eastward an unknown distance. The relatively deep water in which the mid-Permian part of the Havallah was deposited was a sea of probably restricted east-west width and was floored by a very thick sequence of mainly terrigenous sedimentary rocks. The phosphate content of mid-Permian strata in western exposures tends to be relatively low as a percentage, but the thickness of those strata tends to be high. The core area in and near southeastern Idaho where the concentration of phosphate is highest was separated from any possible site of upwelling oceanic waters by a great expanse of shallow sea.

  9. Late Paleozoic SEDEX deposits in South China formed in a carbonate platform at the northern margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Qiu, Wenhong Johnson; Zhou, Mei-Fu; Liu, Zerui Ray

    2018-05-01

    SEDEX sulfide deposits hosted in black shale and carbonate are common in the South China Block. The Dajiangping pyrite deposit is the largest of these deposits and is made up of stratiform orebodies hosted in black shales. Sandstone interlayered with stratiform orebodies contains detrital zircon grains with the youngest ages of 429 Ma. Pyrite from the orebodies has a Re-Os isochron age of 389 ± 62 Ma, indicative of formation of the hosting strata and syngenetic pyrite ores in the mid-late Devonian. The hosting strata is a transgression sequence in a passive margin and composed of carbonaceous limestone in the lower part and black shales in the upper part. The ore-hosting black shales have high TOC (total organic carbon), Mo, As, Pb, Zn and Cd, indicating an anoxic-euxinic deep basin origin. The high redox proxies, V/(V + Ni) > 0.6 and V/Cr > 1, and the positive correlations of TOC with Mo and V in black shales are also consistent with an anoxic depositional environment. The Dajiangping deposit is located close to the NE-trending Wuchuan-Sihui fault, which was active during the Devonian. The mid-late Devonian mineralization age and the anoxic-euxinic deep basinal condition of this deposit thus imply that the formation of this deposit was causally linked to hydrothermal fluid exhalation in an anoxic fault-bounded basin that developed in a carbonate platform of the South China Block. The regional distribution of many Devonian, stratiform, carbonaceous sediment-hosted sulfide deposits along the NE-trending fault-bounded basins in South China, similar to the Dajiangping deposit, indicates that these deposits formed at a basin developed in the passive margin setting of the South China Block during the Devonian. This environment was caused by the break-up and northward migration of the South China Block from Gandwana.

  10. Leaf evolution in early-diverging ferns: insights from a new fern-like plant from the Late Devonian of China

    PubMed Central

    Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le

    2015-01-01

    Background and Aims With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Methods Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. Key Results A new fern-like taxon, Shougangia bella gen. et sp. nov., is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Conclusions Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. PMID:25979918

  11. Rifting along the northern Gondwana margin and the evolution of the Rheic Ocean: A Devonian age for the El Castillo volcanic rocks (Salamanca, Central Iberian Zone)

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Alonso, G.; Murphy, J. B.; Fernández-Suárez, J.; Hamilton, M. A.

    2008-12-01

    Exposures of volcanic rocks (El Castillo) in the Central Iberian Zone near Salamanca, Spain, are representative of Paleozoic volcanic activity along the northern Gondwanan passive margin. Alkaline basalts and mafic volcaniclastic rocks of this sequence are structurally preserved in the core of the Variscan-Tamames Syncline. On the basis of the occurrence of graptolite fossils in immediately underlying strata, the El Castillo volcanics traditionally have been regarded as Lower Silurian in age. In contrast, most Paleozoic volcanic units in western Iberia are rift-related mafic to felsic rocks emplaced during the Late Cambrian-Early Ordovician, and are attributed to the opening of the Rheic Ocean. We present new zircon U-Pb TIMS data from a mafic volcaniclastic rock within the El Castillo unit. These data yield a near-concordant, upper intercept age of 394.7 ± 1.4 Ma that is interpreted to reflect a Middle Devonian (Emsian-Eifelian) age for the magmatism, demonstrating that the El Castillo volcanic rocks are separated from underlying lower Silurian strata by an unconformity. The U-Pb age is coeval with a widespread extensional event in Iberia preserved in the form of a generalized paraconformity surface described in most of the Iberian Variscan realm. However, in the inner part of the Gondwanan platform, the Cantabrian Zone underwent a major, coeval increase in subsidence and the generation of sedimentary troughs. From this perspective, the eruption age reported here probably represents a discrete phase of incipient rifting along the southern flank of the Rheic Ocean. Paleogeographic reconstructions indicate that this rifting event was coeval with widespread orogeny and ridge subduction along the conjugate northern flank of the Rheic Ocean, the so called Acadian "orogeny". We speculate that ridge subduction resulted in geodynamic coupling of the northern and southern flanks of the Rheic Ocean, and that the extension along the southern flank of the Rheic Ocean is a manifestation of slab pull along the northern flank. This scenario provides a uniform explanation for many features that form at ca. 395 Ma along the Gondwanan margin and has implications for the origin of the coeval oceanic Devonian mafic rocks currently exposed in the Variscan suture of NW Iberia.

  12. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine

    USGS Publications Warehouse

    Gates, Olcott; Moench, R.H.

    1981-01-01

    Exposed in the Machias-Eastport area of southeastern Maine is the thickest (at least 8,000 m), best exposed, best dated, and most nearly complete succession of Silurian and Lower Devonian volcanic strata in the coastal volcanic belt, remnants of which crop out along the coasts of southern New Brunswick, Canada, and southeastern New England in the United States. The volcanics were erupted through the 600-700-million-year-old Avalonian sialic basement. To test the possibility that this volcanic belt was a magmatic arc above a subduction zone prior to presumed Acadian continental collision, samples representing the entire section in the Machias-Eastport area of Maine were chemically analyzed. Three strongly bimodal assemblages of volcanic rocks and associated intrusives are recognized, herein called the Silurian, older Devonian, and younger Devonian assemblages. The Silurian assemblage contains typically nonporphyritic high-alumina tholeiitic basalts, basaltic andesites, and diabase of continental characterand calc-alkalic rhyolites, silicic dacites, and one known dike of andesite. These rocks are associated with fossiliferous, predominantly marine strata of the Quoddy, Dennys, and Edmunds Formations, and the Leighton Formation of the Pembroke Group (the stratigraphic rank of both is revised herein for the Machias-Eastport area), all of Silurian age. The shallow marine Hersey Formation (stratigraphic rank also revised herein) of the Pembroke Group, of latest Silurian age (and possibly earliest Devonian, as suggested by an ostracode fauna), contains no known volcanics; and it evidently was deposited during a volcanic hiatus that immediately preceded emergence of the coastal volcanic belt and the eruption of the older Devonian assemblage. The older Devonian assemblage, in the lagoonal to subaerial Lower Devonian Eastport Formation, contains tholeiitic basalts and basaltic andesites, typically with abundant plagioclase phenocrysts and typically richer in iron and titanium and poorer in magnesium and nickel than the Silurian basalts; and the Eastport Formation has rhyolites and silicic dacites that have higher average SiO2 and K2O contents and higher ratios of FeO* to MgO than the Silurian ones. The younger Devonian assemblage is represented by one sample of basalt from a flow in red beds of the post-Acadian Upper Devonian Perry Formation, and by three samples from pre-Acadian diabases that intrude the Leighton and Hersey Formations. These rocks are even richer in titanium and iron and poorer in magnesium and nickel than the older Devonian basalts. Post-Acadian granitic plutons exposed along the coastal belt for which analyses are available are tentatively included in the younger Devonian assemblage. The most conspicuous features of the coastal volcanics and associated intrusives are the preponderance of rocks of basaltic composition ( < 52 percent SiO2 ) in the Silurian assemblage, and the near absence in all assemblages of intermediate rocks having 57-67 percent SiO2 (calculated without volatiles). All the rocks are variably altered spilites and keratophyres. The basaltic types are adequately defined, however, by eight samples of least altered basalts having calcic plagioclase, clinopyroxene, and 0.5 percent or less CO2 , The more altered basalts are variably enriched or depleted in Na2O, K2O, and CaO relative to the least altered ones. In the silicic rocks no primary ferromagnesian minerals are preserved. The Na2O and K2O contents of the silicic rocks are erratic; they are approximately reciprocal, possibly owing to alkali exchange while the rocks were still glassy. We propose that the coastal volcanic belt extended along an axis of thermal swelling in the Earth's mantle and upward intrusion of partially melted mantle into the sialic Avalonian crust. These processes were accompanied by shoaling and emergence of the belt, and they produced the bimodal volcanism. Tholeiitic basaltic melts segregated from mantle material

  13. Petroleum geology and resources of the Volga-Ural province, U.S.S.R.

    USGS Publications Warehouse

    Peterson, James A.; Clarke, James W.

    1983-01-01

    The Volga-Ural petroleum province is, in general, coincident with the Volga-Ural regional high, a broad upwarp of the east-central part of the Russian (East European) Platform. The central part of the province is occupied by the Tatar arch, which contains the major share of the oilfields of the province. The Komi-Perm arch forms the northeastern part of the regional high, and the Zhigulevsko-Pugachev and Orenburg arches make up the southern part. These arches are separated from one another by elongate downwarps. The platform cover overlies an Archean crystalline basement and consists of seven main sedimentation cycles. (1) Riphean (lower Bavly) continental sandstone, shale, and conglomerate beds, from 500 to 5,000 m thick, were deposited in aulacogens. (2) Vendian (upper Bavly) continental and marine shale and sandstone are up to 3,000 m thick. (3) Middle Devonian-Tournaisian transgressive deposits, which are sandstone, siltstone, and shale in the lower part and carbonates and abundant reefs in the upper part, range from 300 to 1,000 m in thickness. The upper carbonate part includes the Kamsko-Kinel trough system, which consists of narrow, interconnected, deepwater troughs. (4) The Visean-Namurian-Bashkirian cycle began with deposition of Visean clastic deposits, which draped over reefs of the previous cycle and filled in an erosional relief that had formed in some places on the sediments of the previous cycle. The Visean clastic deposits are overlain by marine carbonate beds. The cycle is from 50 to 800 m thick. (5) The lower Moscovian-Lower Permian cycle consists of 1,000 to 3,000 m of terrigenous clastic deposits and marine carbonate beds. (6) The upper Lower Permian-Upper Permian cycle reflects the maximum growth of the Ural Mountains and the associated Ural foredeep. Evaporite deposits were first laid down, followed by marine limestones and dolomites, which intertongue eastward with clastic sediments from the Ural Mountains. (7) Continental red beds of Triassic age and mixed continental and marine clastic beds of Jurassic and Cretaceous age were deposited on the western, southwestern, and northern margins of the Russian Platform; they are generally absent in the Volga-Ural province, however. Approximately 600 oilfields and gasfields and 2,000 pools have been found in the Volga-Ural province. Nine productive sequences are recognized; these are, in general, the same as the sedimentation cycles, although some subdivisions have been added. The clastic section of Middle and early Late Devonian age contains the major recoverable oil accumulations, including the supergiant Romashkino field. Cumulative production to 1980 is estimated at 30 to 35 billion barrels of oil equivalent, identified reserves at about 10 billion barrels of oil equivalent, and undiscovered resources at about 7 billion barrels of oil equivalent. Identified reserves of natural gas are estimated at 100 trillion cubic feet and undiscovered resources at 63 trillion cubic feet.

  14. The Cannery Formation--Devonian to Early Permian arc-marginal deposits within the Alexander Terrane, Southeastern Alaska

    USGS Publications Warehouse

    Karl, Susan M.; Layer, Paul W.; Harris, Anita G.; Haeussler, Peter J.; Murchey, Benita L.

    2011-01-01

    The Cannery Formation consists of green, red, and gray ribbon chert, siliceous siltstone, graywacke-chert turbidites, and volcaniclastic sandstone. Because it contains early Permian fossils at and near its type area in Cannery Cove, on Admiralty Island in southeastern Alaska, the formation was originally defined as a Permian stratigraphic unit. Similar rocks exposed in Windfall Harbor on Admiralty Island contain early Permian bryozoans and brachiopods, as well as Mississippian through Permian radiolarians. Black and green bedded chert with subordinate lenses of limestone, basalt, and graywacke near Kake on Kupreanof Island was initially correlated with the Cannery Formation on the basis of similar lithology but was later determined to contain Late Devonian conodonts. Permian conglomerate in Keku Strait contains chert cobbles inferred to be derived from the Cannery Formation that yielded Devonian and Mississippian radiolarians. On the basis of fossils recovered from a limestone lens near Kake and chert cobbles in the Keku Strait area, the age of the Cannery Formation was revised to Devonian and Mississippian, but this revision excludes rocks in the type locality, in addition to excluding bedded chert on Kupreanof Island east of Kake that contains radiolarians of Late Pennsylvanian and early Permian age. The black chert near Kake that yielded Late Devonian conodonts is nearly contemporaneous with black chert interbedded with limestone that also contains Late Devonian conodonts in the Saginaw Bay Formation on Kuiu Island. The chert cobbles in the conglomerate in Keku Strait may be derived from either the Cannery Formation or the Saginaw Bay Formation and need not restrict the age of the Cannery Formation, regardless of their source. The minimum age of the Cannery Formation on both Admiralty Island and Kupreanof Island is constrained by the stratigraphically overlying fossiliferous Pybus Formation, of late early and early late Permian age. Because bedded radiolarian cherts on both Admiralty and Kupreanof Islands contain radiolarians as young as Permian, the age of the Cannery Formation is herein extended to Late Devonian through early Permian, to include the early Permian rocks exposed in its type locality. The Cannery Formation is folded and faulted, and its stratigraphic thickness is unknown but inferred to be several hundred meters. The Cannery Formation represents an extended period of marine deposition in moderately deep water, with slow rates of deposition and limited clastic input during Devonian through Pennsylvanian time and increasing argillaceous, volcaniclastic, and bioclastic input during the Permian. The Cannery Formation comprises upper Paleozoic rocks in the Alexander terrane of southeastern Alaska. In the pre-Permian upper Paleozoic, the tectonic setting of the Alexander terrane consisted of two or more evolved oceanic arcs. The lower Permian section is represented by a distinctive suite of rocks in the Alexander terrane, which includes sedimentary and volcanic rocks containing early Permian fossils, metamorphosed rocks with early Permian cooling ages, and intrusive rocks with early Permian cooling ages, that form discrete northwest-trending belts. After restoration of 180 km of dextral displacement of the Chilkat-Chichagof block on the Chatham Strait Fault, these belts consist, from northeast to southwest, of (1) bedded chert, siliceous argillite, volcaniclastic turbidites, pillow basalt, and limestone of the Cannery Formation and the Porcupine Slate of Gilbert and others (1987); (2) greenschist-facies Paleozoic metasedimentary and metavolcanic rocks that have Permian cooling ages; (3) silty limestone and calcareous argillite interbedded with pillow basalt and volcaniclastic rocks of the Halleck Formation and the William Henry Bay area; and (4) intermediate-composition and syenitic plutons. These belts correspond to components of an accretionary complex, contemporary metamorphic rocks, forearc-basin deposits,

  15. Geology and hydrocarbon potential of the Hamada and Murzuq basins in western Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirmani, K.U.; Elhaj, F.

    1988-08-01

    The Hamada and Murzuq intracratonic basins of western Libya form a continuation of the Saharan basin which stretches from Algeria eastward into Tunisia and Libya. The tectonics and sedimentology of this region have been greatly influenced by the Caledonian and Hercynian orogenies. Northwest- and northeast-trending faults are characteristic of the broad, shallow basins. The Cambrian-Ordovician sediments are fluvial to shallow marine. The Silurian constitutes a complete sedimentary cycle, ranging from deep marine shales to shallow marine and deltaic sediments. The Devonian occupies a unique position between two major orogenies. The Mesozoic strata are relatively thin. The Triassic consists of well-developedmore » continental sands, whereas the Jurassic and Cretaceous sediments are mainly lagoonal dolomites, evaporites, and shales. Silurian shales are the primary source rock in the area. The quality of the source rock appears to be better in the deeper part of the basin than on its periphery. The Paleozoic has the best hydrocarbon potential. Hydrocarbons have also been encountered in the Triassic and Carboniferous. In the Hamada basin, the best-known field is the El Hamra, with reserves estimated at 155 million bbl from the Devonian. Significant accumulations of oil have been found in the Silurian. Tlacsin and Tigi are two fields with Silurian production. In the Murzuq basin the Cambrian-Ordovician has the best production capability. However, substantial reserves need to be established before developing any field in this basin. Large areas still remain unexplored in western Libya.« less

  16. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province

    USGS Publications Warehouse

    Gaswirth, Stephanie B.; Marra, Kristen R.

    2014-01-01

    The Upper Devonian Three Forks and Upper Devonian to Lower Mississippian Bakken Formations comprise a major United States continuous oil resource. Current exploitation of oil is from horizontal drilling and hydraulic fracturing of the Middle Member of the Bakken and upper Three Forks, with ongoing exploration of the lower Three Forks, and the Upper, Lower, and Pronghorn Members of the Bakken Formation. In 2008, the U.S. Geological Survey (USGS) estimated a mean of 3.65 billion bbl of undiscovered, technically recoverable oil resource within the Bakken Formation. The USGS recently reassessed the Bakken Formation, which included an assessment of the underlying Three Forks Formation. The Pronghorn Member of the Bakken Formation, where present, was included as part of the Three Forks assessment due to probable fluid communication between reservoirs. For the Bakken Formation, five continuous and one conventional assessment units (AUs) were defined. These AUs are modified from the 2008 AU boundaries to incorporate expanded geologic and production information. The Three Forks Formation was defined with one continuous and one conventional AU. Within the continuous AUs, optimal regions of hydrocarbon recovery, or “sweet spots,” were delineated and estimated ultimate recoveries were calculated for each continuous AU. Resulting undiscovered, technically recoverable resource estimates were 3.65 billion bbl for the five Bakken continuous oil AUs and 3.73 billion bbl for the Three Forks Continuous Oil AU, generating a total mean resource estimate of 7.38 billion bbl. The two conventional AUs are hypothetical and represent a negligible component of the total estimated resource (8 million barrels of oil).

  17. Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA)

    NASA Astrophysics Data System (ADS)

    Pas, Damien; Hinnov, Linda; Day, James E. (Jed); Kodama, Kenneth; Sinnesael, Matthias; Liu, Wei

    2018-04-01

    The Late Devonian biosphere was affected by two of the most severe biodiversity crises in Earth's history, the Kellwasser and Hangenberg events near the Frasnian-Famennian (F-F) and the Devonian-Carboniferous (D-C) boundaries, respectively. Current hypotheses for the causes of the Late Devonian extinctions are focused on climate changes and associated ocean anoxia. Testing these hypotheses has been impeded by a lack of sufficient temporal resolution in paleobiological, tectonic and climate proxy records. While there have been recent advances in astronomical calibration that have improved the accuracy of the Frasnian time scale and part of the Famennian, the time duration of the entire Famennian Stage remains poorly constrained. During the Late Devonian, a complete Late Frasnian-Early Carboniferous succession of deep-shelf deposits accumulated in the epieric sea in Illinois Basin of the central North-American mid-continent. A record of this sequence is captured in three overlapping cores (H-30, Sullivan and H-32). The H-30 core section spans the F-F boundary; the Sullivan section spans almost all of the Famennian and the H-32 section sampled spans the interval of the Upper Famennian and the D-C boundary. To have the best chance of capturing Milankovitch cycles, 2000 rock samples were collected at minimum 5-cm-interval across the entire sequence. Magnetic susceptibility (MS) was measured on each sample and the preservation of climatic information into the MS signal was verified through geochemical analyses and low-temperature magnetic susceptibility acquisition. To estimate the duration of the Famennian Stage, we applied multiple spectral techniques and tuned the MS signal using the highly stable 405 kyr cycle for Sullivan and the obliquity cycle for the H-30 and H-32 cores. Based on the correlation between the cores we constructed a Famennian floating astronomical time scale, which indicates a duration of 13.5 ± 0.5 myr. An uncertainty of 0.5 myr was estimated for the uncertainties arising from the errors in the stratigraphic position of the F-F and D-C boundaries, and the 405 kyr cycle counting. Interpolated from the high-resolution U-Pb radiometric ages available for the Devonian-Carboniferous boundary we recalibrated the Frasnian-Famennian boundary numerical age to 372.4 ± 0.9 Ma.

  18. Reevaluation of the Piermont-Frontenac allochthon in the Upper Connecticut Valley: Restoration of a coherent Boundary Mountains–Bronson Hill stratigraphic sequence

    USGS Publications Warehouse

    Rankin, Douglas W.; Tucker, Robert D.; Amelin, Yuri

    2013-01-01

    The regional extent and mode and time of emplacement of the Piermont-Frontenac allochthon in the Boundary Mountains–Bronson Hill anticlinorium of the Upper Connecticut Valley, New Hampshire–Vermont, are controversial. Moench and coworkers beginning in the 1980s proposed that much of the autochthonous pre–Middle Ordovician section of the anticlinorium was a large allochthon of Silurian to Early Devonian rocks correlated to those near Rangeley, Maine. This ∼200-km-long allochthon was postulated to have been transported westward in the latest Silurian to Early Devonian as a soft-sediment gravity slide on a hypothesized Foster Hill fault. New mapping and U-Pb geochronology do not support this interpretation. The undisputed Rangeley sequence in the Bean Brook slice is different from the disputed sequence in the proposed larger Piermont-Frontenac allochthon, and field evidence for the Foster Hill fault is lacking. At the type locality on Foster Hill, the postulated “fault” is a stratigraphic contact within the Ordovician Ammonoosuc Volcanics. The proposed Foster Hill fault would place the Piermont-Frontenac allochthon over the inverted limb of the Cornish(?) nappe, which includes the Emsian Littleton Formation, thus limiting the alleged submarine slide to post-Emsian time. Mafic dikes of the 419 Ma Comerford Intrusive Complex intrude previously folded strata attributed to the larger Piermont-Frontenac allochthon as well as the autochthonous Albee Formation and Ammonoosuc Volcanics. The Lost Nation pluton intruded and produced hornfels in previously deformed Albee strata. Zircons from an apophysis of the pluton in the hornfels have a thermal ionization mass spectrometry 207Pb/206Pb age of 444.1 ± 2.1 Ma. Tonalite near Bath, New Hampshire, has a zircon sensitive high-resolution ion microprobe 206Pb/238U age of 492.5 ± 7.8 Ma. The tonalite intrudes the Albee Formation, formerly interpreted as the Silurian Perry Mountain Formation of the proposed allochthon. Collectively, these features indicate that the large Piermont-Frontenac allochthon gravity slide of Silurian-Devonian strata, as previously proposed, cannot exist. Allochthonous rocks are restricted to a 25 km2 klippe, the Bean Brook slice, emplaced by hard-rock thrusting in the post-Emsian Devonian. The Albee Formation, the oldest unit in the study area, is older than the Late Cambrian tonalite at Bath. The correlation and apparent continuity along strike to the northeast of the Albee Formation with the Dead River Formation suggest that the Albee Formation, like the Dead River Formation, is of Ganderian affinity and that the Bronson Hill magmatic arc in the Upper Connecticut Valley was built on Ganderian crust. The Dead River Formation is unconformably overlain by Middle and Upper Ordovician volcanic units; the unconformity is attributed to the pre-Arenig Penobscottian orogeny. Some of the pre-Silurian deformation in the Upper Connecticut Valley may be Penobscottian rather than Taconian. New stratigraphic units defined herein include the pelitic Scarritt Member of the Albee Formation, the Ordovician Washburn Brook Formation consisting of synsedimentary breccia and coticule, chert, and ironstone, and the Devonian–Silurian Sawyer Mountain Formation, probably correlative with the Frontenac Formation. The Partridge Formation is partially coeval with the Ammonoosuc Volcanics.

  19. The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany

    USGS Publications Warehouse

    Wedepohl, K.H.; Delevaux, M.H.; Doe, B.R.

    1978-01-01

    New lead isotopic compositions have been measured for Paleozoic bedded and vein ore deposits of Europe by the high precision thermal emission (triple filament) technique. Eleven samples have been analyzed from the Upper Permian Kupferschiefer bed with representatives from Poland to England, three samples from the Middle Devonian Rammelsberg deposit and one from the Middle Devonian Meggen deposit, both of which are conformable ore lenses and are in the Federal Republic of Germany (FRG); and also two vein deposits from the FRG were analyzed, from Ramsbeck in Devonian host rocks and from Grund in Carboniferous host rocks. For Kupferschiefer bed samples from Germany, the mineralization is of variable lead isotopic composition and appears to have been derived about 250 m.y. ago from 1700 m.y. old sources, or detritus of this age, in Paleozoic sedimentary rocks. Samples from England, Holland, and Poland have different isotopic characteristics from the German samples, indicative of significantly different source material (perhaps older). The isotopic variability of the samples from the Kupferschiefer bed in Germany probably favors the lead containing waters coming from shoreward (where poor mixing is to be expected) rather than basinward (where better mixing is likely) directions. The data thus support the interpretation of the metal source already given by Wedepohl in 1964. Data on samples from Rammelsberg and Meggen tend to be slightly less radiogenic than for the Kupferschiefer, about the amount expected if the leads were all derived from the same source material but 100 to 150 m.y. apart in time. The vein galena from Ramsbeck is similar to that from Rammelsberg conformable ore lenses, both in rocks of Devonian age; vein galena from Grund in Upper Carboniferous country rocks is similar to some bedded Kupferschiefer mineralization in Permian rocks, as if the lead composition was formed at about the same time and from similar source material as the bedded deposits. Although heat has played a more significant role in the formation of some of these deposits (veins and Rammelsberg-Meggen) than in others (Kupferschiefer), there is no indication of radically different sources for the lead, all apparently coming from sedimentary source material containing Precambrian detritus. One feldspar lead sample from the Brocken-Oker Granite is not the same in isotopic composition as any of the ores analyzed. ?? 1978 Springer-Verlag.

  20. Sea-level and environmental changes around the Devonian-Carboniferous boundary in the Namur-Dinant Basin (S Belgium, NE France): A multi-proxy stratigraphic analysis of carbonate ramp archives and its use in regional and interregional correlations

    NASA Astrophysics Data System (ADS)

    Kumpan, Tomáš; Bábek, Ondřej; Kalvoda, Jiří; Matys Grygar, Tomáš; Frýda, Jiří

    2014-08-01

    The paper focuses on high-resolution multidisciplinary research on three Devonian-Carboniferous boundary sections in shallow-water carbonate rocks in the Namur-Dinant Basin (Belgium, France). The aim of the study is to provide palaeo-environmental reconstructions and correlations supported by several independent quantitative proxies. We describe several correlative horizons and provide their sequence-stratigraphic interpretation based on facies analysis, spectral gamma-ray data, element concentrations (XRF) and δ13Ccarb, with foraminifer-biostratigraphy age control. The most prominent surface is a basal surface of forced regression, which is indicated by a sharp basinwards facies shift and a drop in clay-gamma-ray values and Al concentrations at the base of the Hastière and Avesnelles formations in more distal settings. In proximal settings, this surface merges with a hiatus at the Devonian-Carboniferous boundary inferred from foraminifer biostratigraphy. This hiatus can be correlated with the global Hangenberg sandstone event, which indicates a glacioeustatic sea-level fall. Increasing values of Zr/Al, K/Al, Sr/Al and Mn/Al coincide with the proximal facies of the falling stage system tract and lowstand system tract in the Hastière and Avesnelles formations as a consequence of the enhanced input of siliciclastics and nutrients during low sea levels. The top of the middle Hastière member is interpreted as the maximum regression surface, which is overlain by transgressive system tract of the upper Hastière member. The patterns of gamma-ray, δ13Ccarb, Th/K, Al and Zr/Al curves are well correlated between the studied sections. The δ13Ccarb excursions are correlated with the unnamed excursion in the Upper expansa conodont zone (Carnic Alps) and with the global Hangenberg event s.l. excursion in the kockeli conodont zone. This sequence-stratigraphic framework is used for correlations with deltaic successions from the Tafilalt Basin, Morocco. The basal surface of the forced regression equivalent to the Hangenberg sandstone event, which is typical for deeper-water settings, is easily recognisable and correlatable with gaps in more-shallow water settings. We suggest that it should be taken into account as a possible candidate for the “natural solution” of the Devonian-Carboniferous boundary in discussions concerning its redefinition.

  1. Late Ordovician (post-Sardic) rifting branches in the North Gondwanan Montagne Noire and Mouthoumet massifs of southern France

    NASA Astrophysics Data System (ADS)

    Javier Álvaro, J.; Colmenar, Jorge; Monceret, Eric; Pouclet, André; Vizcaïno, Daniel

    2016-06-01

    Upper Ordovician-Lower Devonian rocks of the Cabrières klippes (southern Montagne Noire) and the Mouthoumet massif in southern France rest paraconformably or with angular discordance on Cambrian-Lower Ordovician strata. Neither Middle-Ordovician volcanism nor associated metamorphism is recorded, and the subsequent Middle-Ordovician stratigraphic gap is related to the Sardic phase. Upper Ordovician sedimentation started in the rifting branches of Cabrières and Mouthoumet with deposition of basaltic lava flows and lahar deposits (Roque de Bandies and Villerouge formations) of continental tholeiite signature (CT), indicative of continental fracturing. The infill of both rifting branches followed with the onset of (1) Katian (Ka1-Ka2) conglomerates and sandstones (Glauzy and Gascagne formations), which have yielded a new brachiopod assemblage representative of the Svobodaina havliceki Community; (2) Katian (Ka2-Ka4) limestones, marlstones, and shales with carbonate nodules, reflecting development of bryozoan-echinoderm meadows with elements of the Nicolella Community (Gabian and Montjoi formations); and (3) the Hirnantian Marmairane Formation in the Mouthoumet massif that has yielded a rich and diverse fossil association representative of the pandemic Hirnantia Fauna. The sealing of the subaerial palaeorelief generated during the Sardic phase is related to Silurian and Early Devonian transgressions leading to onlapping patterns and the record of high-angle discordances.

  2. Leaf evolution in early-diverging ferns: insights from a new fern-like plant from the Late Devonian of China.

    PubMed

    Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le

    2015-06-01

    With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. A new fern-like taxon, SHOUGANGIA BELLA GEN ET SP NOV: , is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A new model for the provenance of the Upper Devonian Old Red Sandstone (UORS) of southern Ireland

    NASA Astrophysics Data System (ADS)

    Ennis, Meg; Meere, Pat; Timmerman, Martin

    2010-05-01

    The geology of Southern Ireland is dominated by the influence of both the Caledonian and Variscan orogenies which have shaped the landscape of today. The Old Red Sandstone (ORS) sequences of the Middle - Upper Devonian Munster Basin have traditionally been viewed as a post-orogenic molasse deposit sourced from the Caledonides (Friend et al. 2000 & references therein), which were subsequently deformed by the Late Carboniferous Variscan Orogeny. This model does not take into account the potential impact of the Acadian Orogeny, an Early to Mid Devonian transpressional tectonic event which culminated in Mid Emsian times and resulted in the deformation and inversion of Lower ORS (LORS) basins across Britain and Ireland (Soper & Woodcock 2003; Meere & Mulchrone 2006). Evidence of Acadian deformation in Southern Ireland is recorded in the LORS sequence of the Lower-Middle Devonian basin, the Dingle Basin. Meere & Mulchrone (2006) show that penetrative deformation visible in the LORS of the Dingle Basin has an Acadian signature and is not associated with Late Carboniferous Variscan compression (Parkin 1976; Todd 2000). The role of the Acadian Orogeny in the tectono-sedimentary evolution of Southern Ireland has been analyzed in this study using a multidisciplinary approach. Petrographic analysis of both the LORS and Upper ORS (UORS) of southern Ireland suggests an alternative provenance model in which there is a direct genetic link between the two Devonian deposits. There is a fining-up relationship between the two basins and the volcanic lithic fragments - while extremely limited in occurrence in the Munster Basin - are strikingly similar in both units. The absence of conglomeratic units at the base of the Munster Basin provide further evidence that the UORS does not represent a classic molasse deposit. This is supported by EMPA data from both basins which indicates identical mica chemistries in both the LORS and UORS. A comparison with the white mica chemistries from a variety of source areas suggests that the mica chemistry is similar to both the Irish Caledonides and also to the Scandian micas; therefore the ultimate source area of the ORS detritus remains ambiguous. This relationship is confirmed by the 40Ar/39Ar step-heating and total fusion age dating which yields Acadian apparent ages for the detrital white mica component in both basins; apparent ages for the Munster Basin micas are in the range 403 to 388 Ma. The Dingle Basin micas yield ages in the range 405 to 385 Ma. The presence of Acadian age micas in both basins and the similarity in mica chemistry suggest an alternative provenance model in which the LORS deposits of the Dingle Basin are inverted and recycled southwards into the UORS Munster Basin. References: Friend, P.F., Williams, B.P.J. and Williams, E.A. 2000. Kinematics and dynamics of Old Red Sandstone basins. In: Friend, P.F., and Williams, B.P.J. (eds.). New Perspectives on the Old Red Sandstone. Geological Society of London Special Publications, 180, 29-60. Meere, P.A. and Mulchrone, K.F. 2006. Timing of deformation within the Old Red Sandstone lithologies from the Dingle Peninsula, SW Ireland. Journal of the Geological Society of London, 163, 461-469. Parkin, J. 1976. Silurian rocks of the Bull's Head, Annascaul and Derrymore Glen inliers, Co. Kerry. Proceedings of the Royal Irish Academy 76B, 577-606. Soper, N.J., and Woodcock, N.H., 2003, The lost Lower Old Red Sandstone of England and Wales: a record of post-Iapetan flexure or Early Devonian transtension? Geological Magazine, 140, 627-647. Todd, S.P., Connery, C., Higgs, K.T. and Murphy, F.C. 2000. An Early Ordovician age for the Annascaul Formation of the SE Dingle Peninsula, SW Ireland. Journal of the Geological Society of London, 157, 823-833.

  4. Bedrock geology of the Mount Carmel and Southington quadrangles, Connecticut

    USGS Publications Warehouse

    Fritts, Crawford Ellswroth

    1962-01-01

    New data concerning the geologic structure, stratigraphy, petrography, origin, and ages of bedrock formations in an area of approximately 111 square miles in south-central Connecticut were obtained in the course of detailed geologic mapping from 1957 to 1960. Mapping was done at a scale of 1:24,000 on topographic base maps having a 10-foot contour interval. Bedrock formations are classified in two principal categories. The first includes metasedimentary, meta-igneous, and igneous rocks of Precambrian to Devonian age, which crop out in the western parts of both quadrangles. The second includes sedimentary and igneous rocks of the Newark Group of Late Triassic age, which crop out in the eastern parts of the quadrangles. Diabase dikes, which are Late Triassic or younger in age, intruded rocks in both the western and eastern parts of the map area. Rocks in the western part of the area underwent progressive regional metamorphism in Middle to Late Devonian time. The arrangement of the chlorite, garnet, biotite, staurolite, and kyanite zones here is approximately the mirror-image of metamorphic zones in Dutchess County, New York. However, garnet appeared before biotite in politic rocks in the map area, because the ration MgO/FeO is low. Waterbury Gneiss and the intrusive Woodtick Gneiss are parts of a basement complex of Precambrian age, which forms the core of the Waterbury dome. This structure is near the southern end of a line of similar domes that lie along the crest of a geanticline east of the Green Mountain anticlinorium. The Waterbury Gneiss is believed to have been metamorphosed in Precambrian time as well as in Paleozoic time. The Woodtick Gneiss also may have been metamorphosed more than once. In Paleozoic time, sediments were deposited in geosynclines during two main cycles of sedimentation. The Straits, Southington Mountain, and Derby Hill Schists, which range in age from Cambrian to Ordovician, reflect a transition from relatively clean politic sediments to thinly layered sediments that contained rather high percentages of fine-grained volcanic debris. Metadiabase and metabasalt extrusives above Derby Hill Schist south of the map area represent more intense volcanic activity before or during the early stages of the Taconic disturbance in Late Ordovician time. Impure argillaceous, siliceous, and minor calcareous sediments of the Wepawaug Schist, which is Silurian and Devonian in age, were deposited unconformably on older rocks during renewed subsidence of a geosyncline. The Wepawaug now occupies the trough of a tight syncline, which formed before and during progressive regional metamorphism at the time of the Acadian orogeny in middle to Late Devonian time. Felsic igneous rocks were intruded into the metasedimentary formations of Paleozoic age before the climax of the latest progressive regional metamorphism. Intrusives that gave rise to the Prospect and Ansonia Gneisses were emplaced mainly in the Southington Mountain Schist, and the igneous rocks as well as the host rocks were metamorphosed in the staurolite zone. Although it is possible that these two intrusives were emplaced during the Taconic disturbance, the writer believes it more likely that the igneous rocks from which the Prospect and Ansonia Gneisses formed were emplaced during the Acadian orogeny. Woodbridge Granite, which intruded the Wepawaug Schist, is Devonian in age and undoubtedly was emplaced during the Acadian orogeny. In this area the granite is essentially unmetamorphosed, because it is in the chlorite, garnet, and biotite zones. Southwest of the map area, however, metamorphic equivalents of the Woodbridge are found in Wepawaug Schist in the staurolite zone. The Ansonia Gneiss, therefore, may be a metamorphic equivalent of the Woodbridge Granite. Rocks of Late Triassic age formerly covered the entire map area, but were eroded from the western part after tilting and faulting in Late Triassic time. The New Haven Arkose of the Newark

  5. The geology of a part of Acadia and the nature of the Acadian orogeny across Central and Eastern Maine

    USGS Publications Warehouse

    Tucker, R.D.; Osberg, P.H.; Berry, H.N.

    2001-01-01

    The zone of Acadian collision between the Medial New England and Composite Avalon terranes is well preserved in Maine. A transect from northwest (Rome) to southeast (Camden) crosses the eastern part of Medial New England comprising the Central Maine basin, Liberty-Orrington thrust sheet, and Fredericton trough, and the western part of Composite Avalon, including the Graham Lake, Clarry Hill, and Clam Cove thrust sheets. U-Pb geochronology of events before, during, and after the Acadian orogeny helps elucidate the nature and distribution of tectonostrati& graphic belts in this zone and the timing of some Acadian events in the Northern Appalachians. The Central Maine basin consists of sedimentary and volcanic rocks of Middle Ordovician (???470 to ???460 Ma) age overlain with probable conformity by latest Ordovician(?) through earliest Devonian marine rift and flysch sedimentary rocks; these are intruded by weakly to undeformed plutonic rocks of Early and Middle Devonian age (???399??378 Ma). The Fredericton trough consists of Early Silurian gray pelite and sandstone to earliest Late Silurian calcareous turbidite, deformed and variably metamorphosed prior to the emplacement of Late Silurian (???422 Ma) and Early to Late Devonian (???418 to ???368 Ma) plutons. The Liberty-Orrington thrust sheet consists of Cambrian(?)-Ordovician (>???474 to ???469 Ma and younger) clastic sedimentary and volcanic rocks intruded by highly deformed Late Silurian (???424 to ???422 Ma) and Devonian (???418 to ???389 Ma) plutons, possibly metamorphosed in Late Silurian time (prior to ???417 Ma), and metamorphosed to amphibolite facies in Early to Middle Devonian time (???400 to ???381 Ma). The Graham Lake thrust sheet contains possible Precambrian rocks, Cambrian sedimentary rocks with a volcanic unit dated at ???503 Ma, and Ordovician rocks with possible Caradocian Old World fossils, metamor& phosed and deformed in Silurian time and intruded by mildly to undeformed Late Silurian (???421 Ma) and Late Devonian (???371 to ???368 Ma) plutons. The Clarry Hill thrust sheet consists of poorly studied, highly metamorphosed Cambrian(?) rocks. The Clam Cove thrust sheet contains highly deformed Precambrian limestone, shale, sandstone, and conglomerate, metamorphosed to epidote amphibolite facies and intruded by a mildly deformed pluton dated at ???421 Ma. Metamorphism, deformation, and voluminous intrusive igneous activity of Silu& rian age are common to both the most southeastern parts of Medial New England and the thrust sheets of Composite Avalon. In contrast to Medial New England, the thrust sheets of Composite Avalon show only modest effects of Devonian deformation and metamorphism. Regional stratigraphic relations, paleontologic findings, and U-Pb geochronology suggest that the Graham Lake, Clarry Hill, and Clam Cove thrust sheets are far-traveled allochthons that were widely separated from Medial New England in the Silurian.

  6. Recognition and delineation of Paleokarst zones by the use of wireline logs in the bitumen-saturated upper Devonian Grosmont formation of Northeastern Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dembicki, E.A.; Machel, H.G.

    1996-05-01

    The Upper Devonian Grosmont Formation in northeastern Alberta, Canada, is a shallow-marine carbonate platform complex that was subaerially exposed for hundreds of millions of years between the Mississippian(?) and Cretaceous. During this lengthy exposure period, an extensive karst system developed that is characterized by an irregular erosional surface, meter-size (several feet) dissolution cavities, collapse breccias, sinkholes, paleosols, and fractures. The karsted Grosmont Formation, which contains giant reserves of bitumen, sub-crops beneath Cretaceous clastic sediments of the giant Athabasca tar sands deposit. The paleokarst in the Grosmont Formation can be recognized on wireline logs in relatively nonargillaceous carbonate intervals (<30 APImore » units on the gamma-ray log) as excursions of the caliper log, off-scale neutron-density porosity readings, and severe cycle skipping of the acoustic log. The paleokarst is more prevalent in the upper units of the Grosmont Formation, and the effects of karstification decrease toward stratigraphically older and deeper units. The paleokarst usually occurs within 35 m (115 ft) of the erosional surface. The reservoir properties of the Grosmont Formation (e.g., thickness, porosity, permeability, and seal effectiveness) are significantly influenced by karstification. Depending upon the location, karstification has either benefited or degraded the reservoir characteristics. Benefits include porosity values greater than 40% (up to 100% in caverns) and permeability values of 30,000 md in severely fractured intervals. Detrimental reservoir characteristics include erosion, porosity and permeability reduction, and seal ineffectiveness.« less

  7. Stratigraphy and facies development of the marine Late Devonian near the Boulongour Reservoir, northwest Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Suttner, Thomas J.; Kido, Erika; Chen, Xiuqin; Mawson, Ruth; Waters, Johnny A.; Frýda, Jiří; Mathieson, David; Molloy, Peter D.; Pickett, John; Webster, Gary D.; Frýdová, Barbora

    2014-02-01

    Late Devonian to Early Carboniferous stratigraphic units within the 'Zhulumute' Formation, Hongguleleng Formation (stratotype), 'Hebukehe' Formation and the Heishantou Formation near the Boulongour Reservoir in northwestern Xinjiang are fossil-rich. The Hongguleleng and 'Hebukehe' formations are biostratigraphically well constrained by microfossils from the latest Frasnian linguiformis to mid-Famennian trachytera conodont biozones. The Hongguleleng Formation (96.8 m) is characterized by bioclastic argillaceous limestones and marls (the dominant facies) intercalated with green spiculitic calcareous shales. It yields abundant and highly diverse faunas of bryozoans, brachiopods and crinoids with subordinate solitary rugose corals, ostracods, trilobites, conodonts and other fish teeth. The succeeding 'Hebukehe' Formation (95.7 m) consists of siltstones, mudstones, arenites and intervals of bioclastic limestone (e.g. 'Blastoid Hill') and cherts with radiolarians. A diverse ichnofauna, phacopid trilobites, echinoderms (crinoids and blastoids) together with brachiopods, ostracods, bryozoans and rare cephalopods have been collected from this interval. Analysis of geochemical data, microfacies and especially the distribution of marine organisms, which are not described in detail here, but used for facies analysis, indicate a deepening of the depositional environment at the Boulongour Reservoir section. Results presented here concern mainly the sedimentological and stratigraphical context of the investigated section. Additionally, one Late Devonian palaeo-oceanic and biotic event, the Upper Kellwasser Event is recognized near the section base.

  8. The anatomy of a major late-stage thrust and implications for models of late-stage collisional orogenesis in the Caledonian crust of northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Anderson, Mark; Hames, Willis; Stokes, Alison

    2010-05-01

    Within the stack of Caledonian crystalline thrust sheets of northern Scandinavia, a single amphibolite facies lithotectonic unit, the Småtinden nappe, is identified as a major, basement-coupled ("stretching") shear zone. This dominantly pelitic unit achieved peak metamorphic conditions of 535-550°C and 8-9kbars, and the stretching geometry suggests that this most likely occurred in response to overthrusting of a hot, pre-assembled Caledonian thrust stack. Along-strike variations in microstructural geometries and patterns of mineral zoning in widely developed porphyroblast phases suggest, however, subsequent strain partitioning within the zone during late-stage decoupling of the thrust stack from the basement along major out-of-sequence thrusts. Large parts of the nappe are characterised by relatively late, static growth preserving concordant Si-Se relationships, and typically symmetrical external fabrics consistent with formation under dominantly pure shear conditions. In the Salangen area, however, the nappe is characterised by early garnet growth, with discordant Si-Se relationships and asymmetric external fabric geometries consistent with formation during ESE-directed simple shear. Remarkably consistent thermometric estimates from chlorites in both regimes (post- and syn-shearing) suggest that out-of-sequence ramping occurred at temperatures in the range 370-400 ̊C, within the typical range of blocking temperatures for argon retention in muscovite. 40Ar-39Ar dating of muscovites from S-C fabrics in the out-of-sequence shear zone suggest that late-stage thrusting occurred during the middle-late Devonian (ca. 395-375 Ma). Hanging-wall and footwall geometries coupled with these radiometric dates indicate that the development of these late thrusts closely relates to reactivation of pre-Caledonian Baltic basement during the Devonian (400-370 Ma). East-west contraction during the upper end of this time frame is peculiar considering that this was the period of large magnitude and rapid extension in western Norway.

  9. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite

    NASA Astrophysics Data System (ADS)

    Joachimski, M. M.; Breisig, S.; Buggisch, W.; Talent, J. A.; Mawson, R.; Gereke, M.; Morrow, J. R.; Day, J.; Weddige, K.

    2009-07-01

    Conodonts, microfossils composed of carbonate-fluor apatite, are abundant in Palaeozoic-Triassic sediments and have a high potential to preserve primary oxygen isotope signals. In order to reconstruct the palaeotemperature history of the Devonian, the oxygen isotope composition of apatite phosphate was measured on 639 conodont samples from sequences in Europe, North America and Australia. The Early Devonian (Lochkovian; 416-411 Myr) was characterized by warm tropical temperatures of around 30 °C. A cooling trend started in the Pragian (410 Myr) with intermediate temperatures around 23 to 25 °C reconstructed for the Middle Devonian (397-385 Myr). During the Frasnian (383-375 Myr), temperatures increased again with temperatures to 30 °C calculated for the Frasnian-Famennian transition (375 Myr). During the Famennian (375-359 Myr), surface water temperatures slightly decreased. Reconstructed Devonian palaeotemperatures do not support earlier views suggesting the Middle Devonian was a supergreenhouse interval, an interpretation based partly on the development of extensive tropical coral-stromatoporoid communities during the Middle Devonian. Instead, the Devonian palaeotemperature record suggests that Middle Devonian coral-stromatoporoid reefs flourished during cooler time intervals whereas microbial reefs dominated during the warm to very warm Early and Late Devonian.

  10. Devonian rocks and Lower and Middle Devonian pelecypods of Guangxi, China, and the Traverse Group of Michigan

    USGS Publications Warehouse

    Pojeta, John

    1986-01-01

    A state-of-the-art summary of the Devonian rocks of China, correlation of the Lower and Middle Devonian of the Guangxi Autonomous Region with the European Standards, and detailed lithologic descriptions of the major Lower and Middle Devonian sections in Guangxi from which pelecypods were collected. Systematic descriptions are given for the Lower and Middle Devonian pelecypods of Guangxi. The Chinese pelecypods are principally compared with the previously little studied Givetian pelecypods of Michigan, which are also described.

  11. The Cambrian-Ordovician rocks of Sonora, Mexico, and southern Arizona, southwestern margin of North America (Laurentia): chapter 35

    USGS Publications Warehouse

    Page, William R.; Harris, Alta C.; Repetski, John E.; Derby, James R.; Fritz, R.D.; Longacre, S.A.; Morgan, W.A.; Sternbach, C.A.

    2013-01-01

    The most complete sections of Ordovician shelf rocks in Sonora are 50 km (31 mi) northwast of Hermosillo. In these sections, the Lower Ordovician is characterized by intraclastic limestone, siltstone, shale, and chert. The Middle Ordovician is mostly silty limestone and quartzite, and the Upper Ordovician is cherty limestone and some argillaceous limestone. A major disconformity separates the Middle Ordovician quartzite from the overlying Upper Ordovician carbonate rocks and is similar to the disconformity between the Middle and Upper Ordovician Eureka Quartzite and Upper Ordovician Ely Springs Dolomite in Nevada and California. In parts of northwestern Sonora, Ordovician rocks are disconformably overlain by Upper Silurain rocks. Northeastward in Sonora and Arizona, toward the craton, Ordovician rocks are progressively truncated by a major onlap unconformity and are overliand by Devonian rocks. Except in local area, Ordovician rocks are generally absent in cratonic platform sequences in northern Sonora and southern Arizona.

  12. Concordant paleolatitudes for Neoproterozoic ophiolitic rocks of the Trinity Complex, Klamath Mountains, California

    USGS Publications Warehouse

    Mankinen, E.A.; Lindsley-Griffin, N.; Griffin, J.R.

    2002-01-01

    New paleomagnetic results from the eastern Klamath Mountains of northern California show that Neoproterozoic rocks of the Trinity ophiolitic complex and overlying Middle Devonian volcanic rocks are latitudinally concordant with cratonal North America. Combining paleomagnetic data with regional geologic and faunal evidence suggests that the Trinity Complex and related terranes of the eastern Klamath plate were linked in some fashion to the North American craton throughout that time, but that distance between them may have varied considerably. A possible model that is consistent with our paleomagnetic results and the geologic evidence is that the Trinity Complex formed and migrated parallel to paleolatitude in the basin between Laurasia and Australia-East Antarctica as the Rodinian supercontinent began to break up. It then continued to move parallel to paleolatitude at least through Middle Devonian time. Although the eastern Klamath plate served as a nucleus against which more western components of the Klamath Mountains province amalgamated, the Klamath superterrane was not accreted to North America until Early Cretaceous time.

  13. New porcellioidean gastropods from early Devonian of Royal Creek area, Yukon Territory, Canada, with notes on their early phylogeny

    USGS Publications Warehouse

    Fryda, J.; Blodgett, R.B.; Lenz, A.C.; Manda, S.

    2008-01-01

    This paper presents a description of new gastropods belonging to the superfamily Porcellioidea (Vetigastropoda) from the richly diverse Lower Devonian gastropod fauna of the Road River Formation in the Royal Creek area, Yukon Territory. This fauna belongs to Western Canada Province of the Old World Realm. The Pragian species Porcellia (Porcellia) yukonensis n. sp. and Porcellia (Paraporcellia) sp. represent the oldest presently known members of subgenera Porcellia (Porcellia) and Porcellia (Paraporcellia). Their simple shell ornamentation fits well with an earlier described evolutionary trend in shell morphology of the Porcellinae. Late Pragian to early Emsian Perryconcha pulchra n. gen. and n. sp. is the first member of the Porcellioidea bearing a row of tremata on adult teleoconch whorls. The occurrence of this shell feature in the Porcellioidea is additional evidence that the evolution of the apertural slit was much more complicated than has been proposed in classical models of Paleozoic gastropod evolution. Copyright ?? 2008, The Paleontological Society.

  14. Seven 365-Million-Year-Old Trilobites Moulting within a Nautiloid Conch

    NASA Astrophysics Data System (ADS)

    Zong, Rui-Wen; Fan, Ruo-Ying; Gong, Yi-Ming

    2016-10-01

    A nautiloid conch containing many disarticulated exoskeletons of Omegops cornelius (Phacopidae, Trilobita) was found in the Upper Devonian Hongguleleng Formation of the northwestern margin of the Junggar Basin, NW China. The similar number of cephala, thoraces and pygidia, unbroken thoraces, explicit exuviae, and lack of other macrofossils in the conch, indicate that at least seven individual trilobites had moulted within the nautiloid living chamber, using the vacant chamber of a dead nautiloid as a communal place for ecdysis. This exuvial strategy manifests cryptic behaviour of trilobites, which may have resulted from the adaptive evolution induced by powerful predation pressure, unstable marine environments, and competition pressure of organisms occupying the same ecological niche in the Devonian period. The unusual presence of several trilobites moulting within a nautiloid conch is possibly associated with social behaviours in face of a serious crisis. New materials in this study open a window for understanding the survival strategy of marine benthic organisms, especially predator-prey interactions and the behavioural ecology of trilobites in the middle Palaeozoic.

  15. Preliminary report on the clay mineralogy of the Upper Devonian Shales in the southern and middle Appalachian Basin

    USGS Publications Warehouse

    Hosterman, John W.; Loferski, Patricia J.

    1978-01-01

    The distribution of kaolinite in parts of the Devonian shale section is the most significant finding of this work. These shales are composed predominately of 2M illite and illitic mixed-layer clay with minor amounts of chlorite and kaolinite. Preliminary data indicate that kaolinite, the only allogenic clay mineral, is present in successively older beds of the Ohio Shale from south to north in the southern and middle parts of the Appalachian basin. This trend in the distribution of kaolinite shows a paleocurrent direction to the southwest. Three well-known methods of preparing the clay fraction for X-ray diffraction analysis were tested and evaluated. Kaolinite was not identified in two of the methods because of layering due to differing settling rates of the clay minerals. It is suggested that if one of the two settling methods of sample preparation is used, the clay film be thin enough for the X-ray beam to penetrate the entire thickness of clay.

  16. Hydrology, water quality, and effects of drought in Monroe County, Michigan

    USGS Publications Warehouse

    Nicholas, J.R.; Rowe, Gary L.; Brannen, J.R.

    1996-01-01

    Monroe County relies heavily on its aquifers and streams for drinking water, irrigation, and other ~ses; however, increased water use, high concentrations of certain constituents in ground water, and droughts may limit the availability of water resources. Although the most densely populated parts of the county use water from the Great Lakes, large amounts of ground water are withdrawn for quarry dewatering, domestic supply, and irrigation.Unconsolidated deposits and bedrock of Silurian and Devonian age underlie Mon_roe County. The unconsolidated deposits are mostly clayey and less than 50 feet thick. Usable amounts of ground water generally are obtained from thin, discontinuous surficial sand deposits or, in the northwestern part of the county, from deep glaciofluvial deposits. In most of the county, however, ground water in unconsolidated deposits is highly susceptible to effects of droughts and to contamination.The bedrock is mostly carbonate rock, and usable quantities of ground water can be obtained from fractures and other secondary openings throughout the county. Transmissivities of the Silurian-Devonian aquifer range from 10 to 6,600 feet squared per day. Aquifer tests and historical informati.on indicate that the Silurian-Devonian aquifer is confmed throughout most of the county. The major recharge area for the Silurian-Devonian aquifer in Monroe County is in the southwest, and groundwater flow is mostly southeastward toward Lake Erie. In the northeastern and southeastern parts of the county, the potentiometric surface of the SilurianDevonian aquifers has been lowered by pumpage to below the elevation of Lake Erie.Streams and artificial drains in Monroe County are tributary to Lake Erie. Most streams are perennial because of sustained discharge from the sand aquifer and the Silurian-Devonian aquifer; however, the lower reaches of River Raisin and Plum Creek lost water to the Silurian-Devonian aquifer in July 1990.The quality of ground water and of streamwater at low flow is suitable for most domestic u~es, irrigation, and recreation. In ground water, dissolved solids and hydrogen sulfide are present at concentrations objectionable to some users. Indicators of ground-water contamination from agricultural activities-pesticides and nitrates-were not present at detectable concentrations or were below U.S. Environmental Protection Agency (USEPA) limits. In streamwater, some treatment to remove bacteria may be necessary in summer months; nitrate concentrations, however, were found to be below USEPA limits.Tritium concentrations indicative of recent recharge to the Silurian-Devonian aquifer are present in a southwest-to-northeast-trending band from Whiteford to Berlin Townships. Generally, where glacial deposits are thicker than 30 feet, rech~rge.takes more than 40 years. Carbon isotope data md1cate that some of the ground water in the Silurian-Devonian aquifer is more than 14,000 years old.Mild droughts are common in Michigan, but long severe droughts, such as those during 1930-37 and 1960-67, are infrequent. The most recent drought, during 1988, was severe but short. Ground-water levels declined throughout the county; the largest declines were probably in the southwest. Shallow bedrock wells completed in only the upper part of the Silurian-Devonian aquifer and near large uses of ground water were especially susceptible to the effects of drought. Deep bedrock wells continued to produce water through the drought of 1988.During droughts, streamflow is reduced because of low ground-water levels and high consumptive uses of surface water. In 1988, annual discharge on the River Raisin was near normal, but monthly averages were below normal from March through August. The quality of surface water during droughts is similar to that during normal lowflow conditions.

  17. Quantitative models for aggregate: some types and examples from Oklahoma carbonate rocks

    USGS Publications Warehouse

    Bliss, James D.

    1999-01-01

    Evaluation of data for three engineering variable--absorption, bulk specific gravity, and freeze-thaw durability (350 cycles)--was made for quarries in carbonate rocks in Oklahoma that supply aggregate. It was found that lower Palrozoic carbonate rocks (Cambrian through Devonian) are likely to make a better quality aggregate than upper Paleozoic (Mississippian to Permian) carbonate rocks. In addition, freeze-thaw durability can be forecast from absorption and is exemplary for lower Paleozoic carbonate rocks.

  18. Assessment of Appalachian basin oil and gas resources:Devonian shale - Middle and Upper Paleozoic Total Petroleum System

    USGS Publications Warehouse

    Milici, Robert C.; Swezey, Christopher S.

    2006-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the technically recoverable undiscovered hydrocarbon resources of the Appalachian Basin Province. The assessment province includes parts of New York, Pennsylvania, Ohio, Maryland, West Virginia, Virginia, Kentucky, Tennessee, Georgia and Alabama. The assessment was based on six major petroleum systems, which include strata that range in age from Cambrian to Pennsylvanian. The Devonian Shale-Middle and Upper Paleozoic Total Petroleum System (TPS) extends generally from New York to Tennessee. This petroleum system has produced a large proportion of the oil and natural gas that has been discovered in the Appalachian basin since the drilling of the Drake well in Pennsylvania in 1859. For assessment purposes, the TPS was divided into 10 assessment units (plays), 4 of which were classified as conventional and 6 as continuous. The results were reported as fully risked fractiles (F95, F50, F5 and the Mean), with the fractiles indicating the probability of recovery of the assessment amount. Products reported were oil (millions of barrels of oil, MMBO), gas (billions of cubic feet of gas, BCFG), and natural gas liquids (millions of barrels of natural gas liquids, MMBNGL). The mean estimates for technically recoverable undiscovered hydrocarbons in the TPS are: 7.53 MMBO, 31,418.88 BCFG (31.42 trillion cubic feet) of gas, and 562.07 MMBNGL.

  19. Position of the Upper Devonian Frasnian--Famennian boundary in the central Appalachians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossbach, T.J.

    Biostratigraphic analysis of eight Upper Devonian sections in VA and WV reveals that the section at Huttonsville, Randolph County, WV, is a key locality for determining the Frasnian-Famennian boundary. The Foreknobs Formation at Huttonsville indicates a higher stratigraphic placement of the Frasnian-Famennian boundary than has been generally assumed. Conodonts are not known within that section, so placement of the boundary uses the last occurrence of tentaculitids and the last and first occurrences of several species of brachiopods. It is believed that the Frasnian-Famennian boundary can be identified independently of the atrypoid brachiopods. Stratigraphic ranges of the cricoconarid Tentaculites discusses andmore » the brachiopod Tropidoleptus carinatus, both considered Frasnian marker fossils, indicate that the Frasnian extends well into the Red Lick Member of the Foreknobs Formation at Huttonsville, with T. carinatus occurring up to 70% of the stratigraphic thickness of the Red Lick. The Famennian marker fossils A. angelica and C. sulcifer are both found at Huttonsville above the last recorded occurrence of all the Frasnian marker fossils. To the northeast of Huttonsville the Frasnian-Famennian series boundary has been placed by other workers within or at the top of the Pound Member of the Foreknobs Formation. This discrepancy implies that either the Pound Member is diachronous or that to the northeast paleoecologic factors caused local disappearances of critical fossils before their extinction at Huttonsville.« less

  20. Middle Devonian to Early Carboniferous event stratigraphy of Devils Gate and Northern Antelope Range sections, Nevada, U.S.A

    USGS Publications Warehouse

    Sandberg, C.A.; Morrow, J.R.; Poole, F.G.; Ziegler, W.

    2003-01-01

    The classic type section of the Devils Gate Limestone at Devils Gate Pass is situated on the eastern slope of a proto-Antler forebulge that resulted from convergence of the west side of the North American continent with an ocean plate. The original Late Devonian forebulge, the site of which is now located between Devils Gate Pass and the Northern Antelope Range, separated the continental-rise to deep-slope Woodruff basin on the west from the backbulge Pilot basin on the east. Two connections between these basins are recorded by deeper water siltstone beds at Devils Gate; the older one is the lower tongue of the Woodruff Formation, which forms the basal unit of the upper member of the type Devils Gate, and the upper one is the overlying, thin lower member of the Pilot Shale. The forebulge and the backbulge Pilot basin originated during the middle Frasnian (early Late Devonian) Early hassi Zone, shortly following the Alamo Impact within the punctata Zone in southern Nevada. Evidence of this impact is recorded by coeval and reworked shocked quartz grains in the Northern Antelope Range and possibly by a unique bypass-channel or megatsunami-uprush sandy diamictite within carbonate-platform rocks of the lower member of the type Devils Gate Limestone. Besides the Alamo Impact and three regional events, two other important global events are recorded in the Devils Gate section. The semichatovae eustatic rise, the maximum Late Devonian flooding event, coincides with the sharp lithogenetic change at the discordant boundary above the lower member of the Devils Gate Limestone. Most significantly, the Devils Gate section contains the thickest and most complete rock record in North America across the late Frasnian linguiformis Zone mass extinction event. Excellent exposures include not only the extinction shale, but also a younger. Early triangularis Zone tsunamite breccia, produced by global collapse of carbonate platforms during a shallowing event that continued into the next younger Famennian Stage. The Northern Antelope Range section is located near the top of the west side of the proto-Antler forebulge. Because of its unusual, tectonically active location, unmatched at any other Nevada localities, this section records only four regional and global events during a timespan slightly longer than that of the Devils Gate section. The global semichatovae rise and late Frasnian mass extinction event are largely masked because of the depositional complexities resulting from this location.

  1. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...

  2. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...

  3. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...

  4. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...

  5. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...

  6. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...

  7. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...

  8. A new Late Devonian genus with seed plant affinities.

    PubMed

    Wang, Deming; Liu, Le

    2015-02-26

    Many ovules of Late Devonian (Famennian) seed plants have been well studied. However, because few taxa occur with anatomically preserved stems and/or petioles, the vascular system of these earliest spermatophytes is little understood and available data come mostly from Euramerica. There remains great controversy over the anatomical differentiation of Late Devonian and Carboniferous seed plant groups of Buteoxylonales, Calamopityales and Lyginopteridales. Protostele evolution of these early spermatophytes needs more research. A new taxon Yiduxylon trilobum gen. et sp. nov. with seed plant affinities has been discovered in the Upper Devonian (Famennian) Tizikou Formation of Hubei Province, China. It is represented by stems, helically arranged and bifurcate fronds with two orders of pinnae and planate pinnules. Both secondary pinnae and pinnules are borne alternately. Stems contain a small protostele with three primary xylem ribs possessing a single peripheral protoxylem strand. Thick secondary xylem displays multiseriate bordered pitting on the tangential and radial walls of the tracheids, and has biseriate to multiseriate and high rays. A narrow cortex consists of inner cortex without sclerotic nests and sparganum-type outer cortex with peripheral bands of vertically aligned sclerenchyma cells. Two leaf traces successively arise tangentially from each primary xylem rib and they divide once to produce four circular-oval traces in the stem cortex. Four vascular bundles occur in two C-shaped groups at each petiole base with ground tissue and peripheral bands of sclerenchyma cells. Yiduxylon justifies the assignment to a new genus mainly because of the protostele with protoxylem strands only near the periphery of primary xylem ribs, leaf trace origination and petiolar vascular supply structure. It shares many definitive characters with Calamopityales and Lyginopteridales, further underscoring the anatomical similarities among early seed plants. The primary vascular system, pycnoxylic-manoxylic secondary xylem with bordered pits on both tangential and radial walls of a tracheid and leaf trace divergence of Yiduxylon suggest transitional features between the early spermatophytes and ancestral aneurophyte progymnosperms.

  9. Representatives of the family Actinostromatidae (Stromatoporoidea) in the Devonian of southern Poland and their ecological significance

    NASA Astrophysics Data System (ADS)

    Wolniewicz, Paweł

    2016-09-01

    Stromatoporoids of the family Actinostromatidae are common constituents of Givetian to Frasnian (Devonian) organic buildups. The species-level structure of actinostromatid assemblages from the Devonian of southern Poland is described in the present paper, with special emphasis on ecological factors that influenced species composition of the communities. Nine species of the genera Actinostroma and Bifariostroma are distinguished. Members of the family Actinostromatidae predominated in stromatoporoid assemblages within lower Frasnian carbonate buildup margins. The most diverse actinostromatid faunas were found within the middle Givetian Stringocephalus Bank, in the upper Givetian-lower Frasnian biostromal complex and in the lower Frasnian organic buildups. Species-level biodiversity was lowest within detrital facies which surrounded the Frasnian carbonate buildups. Species of Actinostroma with well-developed colliculi are commonest within the middle Givetian to early Frasnian coral-stromatoporoid biostromal complexes, whereas species with strongly reduced colliculi predominate early-middle Frasnian organic buildups. The skeletal structure of actinostromatids reflects environmental changes, documenting a transition from species with thin, close-set pillars and widely spaced laminae (common in the middle Givetian) to those with long, thick pillars and megapillars (in Bifariostroma), which were predominant during the early and middle Frasnian. The distribution of growth forms among species reveals a significant intraspecific variation. Species of Actinostroma can be either tabular or low domical, depending on the palaeoenvironmental setting. Thus, the present study confirms that stromatoporoid morphology was influenced by environmental conditions.

  10. Widespread effects of middle Mississippian deformation in the Great Basin of western North America

    USGS Publications Warehouse

    Trexler, J.H.; Cashman, P.H.; Cole, J.C.; Snyder, W.S.; Tosdal, R.M.; Davydov, V.I.

    2003-01-01

    Stratigraphic analyses in central and eastern Nevada reveal the importance of a deformation event in middle Mississippian time that caused widespread deformation, uplift, and erosion. It occurred between middle Osagean and late Meramecian time and resulted in deposition of both synorogenic and postorogenic sediments. The deformation resulted in east-west shortening, expressed as east-vergent folding and east-directed thrusting; it involved sedimentary rocks of the Antler foredeep as well as strata associated with the Roberts Mountains allochthon. A latest Meramecian to early Chesterian unconformity, with correlative conformable lithofacies changes, postdates this deformation and occurs throughout Nevada. A tectonic highland-created in the middle Mississippian and lasting into the Pennsylvanian and centered in the area west and southwest of Carlin, Nevada- shed sediments eastward across the Antler foreland, burying the unconformity. Postorogenic strata are late Meramecian to early Chesterian at the base and are widespread throughout the Great Basin. The tectonism therefore occurred 20 to 30 m.y. after inception of the Late Devonian Antler orogeny, significantly extending the time span of this orogeny or representing a generally unrecognized orogenic event in the Paleozoic evolution of western North America. We propose a revised stratigraphic nomenclature for Mississippian strata in Nevada, based on detailed age control and the recognition of unconformities. This approach resolves the ambiguity of some stratigraphic names and emphasizes genetic relationships within the upper Paleozoic section. We take advantage of better stratigraphic understanding to propose two new stratigraphic units for southern and eastern Nevada: the middle Mississippian Gap Wash and Late Mississippian Captain Jack Formations.

  11. The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade

    PubMed Central

    Coates, Michael I.; Karatajūtė-Talimaa, Valentina; Shelton, Richard M.; Cooper, Paul R.

    2016-01-01

    The Mongolepidida is an Order of putative early chondrichthyan fish, originally erected to unite taxa from the Lower Silurian of Mongolia. The present study reassesses mongolepid systematics through the examination of the developmental, histological and morphological characteristics of scale-based specimens from the Upper Ordovician Harding Sandstone (Colorado, USA) and the Upper Llandovery–Lower Wenlock Yimugantawu (Tarim Basin, China), Xiushan (Guizhou Province, China) and Chargat (north-western Mongolia) Formations. The inclusion of the Mongolepidida within the Class Chondrichthyes is supported on the basis of a suite of scale attributes (areal odontode deposition, linear odontocomplex structure and lack of enamel, cancellous bone and hard-tissue resorption) shared with traditionally recognized chondrichthyans (euchondrichthyans, e.g., ctenacanthiforms). The mongolepid dermal skeleton exhibits a rare type of atubular dentine (lamellin) that is regarded as one of the diagnostic features of the Order within crown gnathostomes. The previously erected Mongolepididae and Shiqianolepidae families are revised, differentiated by scale-base histology and expanded to include the genera Rongolepisand Xinjiangichthys, respectively. A newly described mongolepid species (Solinalepis levis gen. et sp. nov.) from the Ordovician of North America is treated as family incertae sedis, as it possesses a type of basal bone tissue (acellular and vascular) that has yet to be documented in other mongolepids. This study extends the stratigraphic and palaeogeographic range of Mongolepidida and adds further evidence for an early diversification of the Chondrichthyes in the Ordovician Period, 50 million years prior to the first recorded appearance of euchondrichthyan teeth in the Lower Devonian. PMID:27350896

  12. Devonian Terrestrial Revolution: the palaeoenvironment of the oldest known tetrapod tracks, Zachełmie Quarry, Poland

    NASA Astrophysics Data System (ADS)

    Niedźwiedzki, G.

    2012-04-01

    Numerous trackways and isolated prints with digit impressions, which are similar to the foot anatomy of early tetrapods such as Ichthyostega, were found on the three dolomite bed-surfaces in the lower part of the Wojciechowice Formation exposed in the Zachełmie Quarry in the Holy Cross Mountains (south-central Poland), (Niedźwiedzki et al., 2010). The age of the tetrapod track-bearing strata is well-constrained, but the detailed sedimentology of the lower section with tetrapod ichnites is still under study. The Wojciechowice Formation represent one of the first carbonate stages of a transgressive succession that begins with Early Devonian continental to marginal marine clastics and culminates in the development of a Givetian coral-stromatoporoid carbonate platform. The tetrapod track-bearing complex is composed of grey to reddish, thin- to medium-bedded dolomitic shales and marly dolomite mudstones. These deposits from the tetrapod track-bearing horizon lack definitive marine body fossils, and may have formed in a marginal marine environment, e.g. around a coastal lagoon. Mudcracks, columnar peds, root traces, and microbially induced sedimentary structures were found in three distinct pedotypes of very weakly to weakly developed paleosols (Retallack, 2011). Conodonts of the costatus zone (mid-Eifelian) were found 20 m above the uppermost surface with tetrapod tracks in limestones of the upper Wojciechowice Formation, which contain also brachiopod and crinoidal debris. The overlying Kowala Formation is a marine coral limestone and dolostone. The parts of profile with tetrapod ichnites and invertebrate and conodont fossils contain also records of invertebrate traces. Seven ichnotaxa are distributed among four recognized ichnoassemblages. The recognized ichnocoenoses are typical for the shallow-marine (Cruziana ichnofacies) and land-water transitional (Skolithos/Psilonichnus ichnofacies) carbonate depositional environments. The ichnocoenoses are dominated by trace fossils produced by arthropods (probably crustaceans), a group that can create large and distinctive burrows. The palaeoecological information from the Zachełmie section has direct bearing on the interpretation of environmental aspects of tetrapod emergence and terrestrialization. It should be fully integrated with data from other Devonian tetrapod tracksites. Niedźwiedzki, G., Szrek P., Narkiewicz K., Narkiewicz M. and Ahlberg P.E. 2010. Tetrapod trackways from the early Middle Devonian period of Poland. Nature, 463: 43-48. Retallack, G.J. 2011. Woodland Hypothesis for Devonian Tetrapod Evolution. The Journal of Geology, 119, 3: 235-258

  13. Reconnaissance geology of the Central Mastuj Valley, Chitral State, Pakistan

    USGS Publications Warehouse

    Stauffer, Karl W.

    1975-01-01

    The Mastuj Valley in Chitral State is a part of the Hindu Kush Range, and is one of the structurally most complicated areas in northern Pakistan. Sedimentary rocks ranging from at least Middle Devonian to Cretaceous, and perhaps Early Tertiary age lie between ridge-forming granodiorite intrusions and are cut by thrust faults. The thrust planes dip 10? to 40? to the north- west. Movement of the upper thrust plates has been toward the southeast relative to the lower blocks. If this area is structurally typical of the Hindu-Kush and Karakoram Ranges, then these mountains are much more tectonically disturbed than previously recorded, and suggest compression on a scale compatible with the hypothesis that the Himalayan, Karakoram, and Hindu Kush Ranges form part of a continental collision zone. The thrust faults outline two plates consisting of distinctive sedimentary rocks. The lower thrust plate is about 3,000 feet thick and consists of the isoclinally folded Upper Cretaceous to perhaps lower Tertiary Reshun Formation. It has overridden the Paleozoic metasedimentary rocks of the Chitral Slate unit. This thrust plate is, in turn, overridden by an 8,000-foot thick sequence consisting largely of Devonian to Carboniferous limestones and quartzites. A key factor in the tectonic processes has been the relatively soft and plastic lithology of the siltstone layers in the Reshun Formation which have acted as lubricants along the principal thrust faults, where they are commonly found today as fault slices and smears. The stratigraphic sequence, in the central Mastuj Valley was tentatively divided into 9 mapped units. The fossiliferous shales and carbonates of the recently defined Shogram Formation and the clastlcs of the Reshun Formation have been fitted into a sequence of sedimentary rocks that has a total thick- ness of at least 13,000 feet and ranges in age from Devonian to Neogene. Minerals of potential economic significance include antimony sulfides which have been mined elsewhere in Chitral, the tungstate, scheelite, which occurs in relatively high concentrations in heavy-mineral fractions of stream sands, and an iron-rich lateritic rock.

  14. Stratigraphic and structural distribution of reservoirs in Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanescu, M.O.

    1991-08-01

    In Romania, there are reservoirs at different levels of the whole Cambrian-Pliocene interval, but only some of these levels have the favorable structural conditions to accumulate hydrocarbons in commercial quantities. These levels are the Devonian, Triassic, Middle Jurassic, Lower Cretaceous (locally including the uppermost Jurassic), Eocene, Oligocene-lower Miocene, middle and upper Miocene, and Pliocene. The productive reservoirs are represented either by carbonate rocks (in Devonian, Middle Triassic and uppermost Jurassic-Lower Cretaceous) or by detrital rocks (in Lower and Upper Triassic, Middle Jurassic, Eocene, Oligocene, Miocene, and Pliocene). From the structural point of view, the Romanian territory is characterized by themore » coexistence both of platforms (East European, Scythian, and Moesian platforms) and of the strongly tectonized orogenes (North Dobrogea and Carpathian orogenes). Each importance crust shortening was followed by the accumulation of post-tectonic covers, some of them being folded during subsequently tectonic movements. The youngest post-tectonic cover is common both for the platforms (foreland) and Carpathian orogene, representing the Carpathian foredeep. Producing reservoirs are present in the East European and Moesian platforms, in the outer Carpathian units (Tarcau and Marginal folds nappes) and in certain post-tectonic covers which fill the Carpathian foredeep and the Transylvanian and Pannonian basins. In the platforms, hydrocarbons accumulated both in calcareous and detrital reservoirs, whereas in the Carpathian units and in their reservoirs, whereas in the Carpathian units and in their post-tectonic covers, hydrocarbons accumulated only in detrital reservoirs.« less

  15. Ancient plate kinematics derived from the deformation pattern of continental crust: Paleo- and Neo-Tethys opening coeval with prolonged Gondwana-Laurussia convergence

    NASA Astrophysics Data System (ADS)

    Kroner, Uwe; Roscher, Marco; Romer, Rolf L.

    2016-06-01

    The formation and destruction of supercontinents requires prolonged convergent tectonics between particular plates, followed by intra-continental extension during subsequent breakup stages. A specific feature of the Late Paleozoic supercontinent Pangea is the prolonged and diachronous formation of the collisional belts of the Rheic suture zone coeval with recurrent continental breakup and subsequent formation of the mid-ocean ridge systems of the Paleo- and Neo-Tethys oceans at the Devonian and Permian margins of the Gondwana plate, respectively. To decide whether these processes are causally related or not, it is necessary to accurately reconstruct the plate motion of Gondwana relative to Laurussia. Here we propose that the strain pattern preserved in the continental crust can be used for the reconstruction of ancient plate kinematics. We present Euler pole locations for the three fundamental stages of the Late Paleozoic assembly of Pangea and closure of the Rheic Ocean: (I) Early Devonian (ca. 400 Ma) collisional tectonics affected Gondwana at the Armorican Spur north of western Africa and at the promontory of the South China block/Australia of eastern Gondwana, resulting in the Variscan and the Qinling orogenies, respectively. The Euler pole of the rotational axis between Gondwana and Laurussia is positioned east of Gondwana close to Australia. (II) Continued subduction of the western Rheic Ocean initiates the clockwise rotation of Gondwana that is responsible for the separation of the South China block from Gondwana and the opening of Paleo-Tethys during the Late Devonian. The position of the rotational axis north of Africa reveals a shift of the Euler pole to the west. (III) The terminal closure of the Rheic Ocean resulted in the final tectonics of the Alleghanides, the Mauritanides and the Ouachita-Sonora-Marathon belt, occurred after the cessation of the Variscan orogeny in Central Europe, and is coeval with the formation of the Central European Extensional Province and the opening of Neo-Tethys at ca. 300 Ma. The Euler pole for the final closure of the Rheic Ocean is positioned near Oslo (Laurussia). Thus, the concomitant formation of convergent and divergent plate boundaries during the assembly of Pangea is due to the relocation of the particular rotational axis. From a geodynamic point of view, coupled collisional (western Pangea) and extensional tectonics (eastern Pangea) due to plate tectonic reorganization is fully explained by slab pull and ridge push forces.

  16. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China

    NASA Astrophysics Data System (ADS)

    Zheng, Rongguo; Xiao, Wenjiao; Li, Jinyi; Wu, Tairan; Zhang, Wen

    2018-03-01

    The Beishan orogenic belt is a key region for deciphering the accretionary processes of the southern Central Asian Orogenic Belt. Here in this paper we present new zircon U-Pb ages, bulk-rock major and trace element, and zircon Hf isotopic data for the Baitoushan, and Bagelengtai plutons in the western Central Beishan region to address the accretionary processes. The Baitoushan pluton consists of quartz diorites, monzonites and K-feldspar granites, with zircon LA-ICP-MS U-Pb ages of 435 Ma, 421 Ma and 401 Ma, respectively. The Baitoushan quartz diorites and quartz monzonites exhibit relatively high MgO contents and Mg# values (63-72), display enrichments in LILEs and LREEs, and exhibit high Ba (585-1415 ppm), Sr (416-570 ppm) and compatible element (such as Cr and Ni) abundances, which make them akin to typical high-Mg andesites. The Baitoushan quartz diorites and quartz monzonites were probably generated by the interaction of subducted oceanic sediment-derived melts and mantle peridotites. The Baitoushan K-feldspar granites are ascribed to fractionated I-type granites with peraluminous and high-K calc-alkaline characteristics. They exhibit positive εHf(t) values (2.43-7.63) and Mesoproterozoic-Neoproterozoic zircon Hf model ages (0.92-1.60 Ga). Those early Devonian granites, including Baitoushan K-feldspar granite and Gongpoquan leucogranites (402 Ma), are derived from melting of the mafic lower crust and/or sediments by upwelling of hot asthenospheric mantle. The Bagelengtai granodiorites exhibit similar geochemical signatures with that of typical adakites, with a zircon SHRIMP U-Pb age of 435 Ma. They exhibit relatively high Sr (502-628 ppm) and Al2O3 (16.40-17.40 wt.%) contents, and low MgO (1.02-1.29 wt.%), Y (3.37-6.94 ppm) and HREEs contents, with relatively high Sr/Y and (La/Yb)N ratios. The Bagelengtai granodiorites were derived from partial melting of subducted young oceanic crust, with significant contributions of subducted sediments, subsequently hybridized by the mantle peridotite. On the basis of our data and combined with previous data, we conclude that a Silurian-early Devonian slab window model accounts for all geological records in the western segment of the Central Beishan. We further propose that magmatic events associated with a slab window played an important role in crustal growth of the Central Asian Orogenic Belt.

  17. Evidence for long-term climate change in Upper Devonian strata of the central Appalachians

    USGS Publications Warehouse

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.; Kertis, C.A.

    2009-01-01

    The highest 1 to 200 m of the Upper Devonian (Famennian) Catskill and equivalent Hampshire formations exhibit a noticeable vertical or stratigraphic change in color and a shift in lithologic character. The lower part of the unit is characterized by typically red, channel-phase sandstones and overbank siltstone and mudstone containing thin calcareous paleosols. These lithologies give way to greenish gray sandstone containing abundant coaly plant fragments, coalified logs, and pyrite, interbedded with thick intervals of non-calcareous paleo-vertisols. The increase in the prominence of preserved terrestrial organic matter suggests that there was a corresponding increase in the abundance of plants in terrestrial ecosystems. The stratigraphic change in lithology within the upper part of the Catskill-Hampshire succession suggests the onset of environmental conditions that became increasingly wet in response to elevated humid climatic conditions during the final stages of Catskill alluvial plain deposition. The sedimentological signature suggesting increased climatic wetness within the uppermost Catskill and Hampshire formations is nearly contemporaneous with the initiation of Late Devonian Gondwanan glaciation in the paleo-high-latitudes. The Appalachian climate record indicates that this change began during the Fa2c and continued through the latest Famennian, reaching its peak during the Fa2d when glacial deposits are recorded in the paleo-mid-latitudes of the Appalachian basin. Evidence of this late Famennian increase in precipitation also is recorded in the adjacent marine environments. Equivalent-age marine units in Ohio and Kentucky record progressive increases in both total organic carbon and the percentage of terrestrially-derived organic carbon. This suggests that there was a late Famennian increase in terrestrial organic matter productivity, and that during the late Famennian, there were elevated levels of runoff produced by the interpreted increase in precipitation that washed progressively higher amounts of terrestrial organic matter into the local marine environments. The late Famennian climate changes identified within the Appalachian basin strata have been recognizable globally, and appear to have had both positive and negative effects on the Earth's biota. Some marine groups exhibit sharp diversity drops or even extinction coincident with the maximum development of the late Famennian ice age. Conversely, terrestrial biota appears to have been more positively affected by the late Famennian increased wetness that accompanied this progressive climate change. Marked diversification and evolutionary innovation, which appear to coincide with this climatic deviation, can be recognized within terrestrial plant communities and early tetrapod amphibians. ?? 2009 Elsevier B.V. All rights reserved.

  18. Record of the Late Devonian Hangenberg global positive carbon-isotope excursion in an epeiric sea setting: Carbonate production, organic-carbon burial and paleoceanography during the late Famennian

    USGS Publications Warehouse

    Cramer, Bradley D.; Saltzman, Matthew R.; Day, J.E.; Witzke, B.J.

    2008-01-01

    Latest Famennian marine carbonates from the mid-continent of North America were examined to investigate the Late Devonian (very late Famennian) Hangenberg positive carbon-isotope (??13 Ccarb) excursion. This global shift in the ?? 13C of marine waters began during the late Famennian Hangenberg Extinction Event that occurred during the Middle Siphonodella praesulcata conodont zone. The post-extinction recovery interval spans the Upper S. praesulcata Zone immediately below the Devonian-Carboniferous boundary. Positive excursions in ?? 13 Ccarb are often attributed to the widespread deposition of organic-rich black shales in epeiric sea settings. The Hangenberg ??13 Ccarb excursion documented in the Louisiana Limestone in this study shows the opposite trend, with peak ??13 Ccarb values corresponding to carbonate production in the U.S. mid-continent during the highstand phase of the very late Famennian post-glacial sea level rise. Our data indicate that the interval of widespread black shale deposition (Hangenberg Black Shale) predates the peak isotope values of the Hangenberg ??13 Ccarb excursion and that peak values of the Hangenberg excursion in Missouri are not coincident with and cannot be accounted for by high Corg burial in epeiric seas. We suggest instead that sequestration and burial of Corg in the deep oceans drove the peak interval of the ??13Ccarb excursion, as a result of a change in the site of deep water formation to low-latitude epeiric seas as the global climate shifted between cold and warm states.

  19. Collision of the Tacheng block with the Mayile-Barleik-Tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western Altaids

    NASA Astrophysics Data System (ADS)

    Zhang, Ji'en; Xiao, Wenjiao; Luo, Jun; Chen, Yichao; Windley, Brian F.; Song, Dongfang; Han, Chunming; Safonova, Inna

    2018-06-01

    Western Junggar in NW China, located to the southeast of the Boshchekul-Chingiz (BC) Range and to the north of the Chu-Balkhash-Yili microcontinent (CBY), played a key role in the architectural development of the western Altaids. However, the mutual tectonic relationships have been poorly constrained. In this paper, we present detailed mapping, field structural geology, and geochemical data from the Barleik-Mayile-Tangbale Complex (BMTC) in Western Junggar. The Complex is divisible into Zones I, II and III, which are mainly composed of Cambrian-Silurian rocks. Zone I contains pillow lava, siliceous shale, chert, coral-bearing limestone, sandstone and purple mudstone. Zone II consists of basaltic lava, siliceous shale, chert, sandstone and mudstone. Zone III is characterized by basalt, chert, sandstone and mudstone. These rocks represent imbricated ocean plate stratigraphy, which have been either tectonically juxtaposed by thrusting or form a mélange with a block-in-matrix structure. All these relationships suggest that the BMTC is an Early-Middle Paleozoic accretionary complex in the eastern extension of the BC Range. These Early Paleozoic oceanic rocks were thrust onto Silurian sediments forming imbricate thrust stacks that are unconformably overlain by Devonian limestone, conglomerate and sandstone containing fossils of brachiopoda, crinoidea, bryozoa, and plant stems and leaves. The tectonic vergence of overturned folds in cherts, drag-related curved cleavages and σ-type structures on the main thrust surface suggests top-to-the-NW transport. Moreover, the positive εNd(t) values of volcanic rocks from the Tacan-1 drill-core, and the positive εHf(t) values and post-Cambrian ages of detrital zircons from Silurian and Devonian strata to the south of the Tacheng block indicate that its basement is a depleted and juvenile lithosphere. And there was a radial outward transition from coral-bearing shallow marine (shelf) to deep ocean (pelagic) environments, and from OIB/E-MORB to N-MORB lava geochemistry away from the Tacheng block. Comparisons with published data suggest that these positive isotopic values, stratigraphic, structural and geochemical relationships can be best understood as an analogue of the relationships between the Ontong Java oceanic plateau and the Pacific oceanic crust. Therefore we propose that the basement of the Tacheng block was an Early Paleozoic oceanic plateau. The southern part of the Tacheng block was an accretionary complex and the northern part was an oceanic basin in the Early Paleozoic, the configuration of which is similar to that of the present Ontong Java oceanic plateau situated on the Pacific oceanic crust, and its accretion into the Solomon accretionary complex. The presence of Ordovician SSZ-type ophiolites, early Paleozoic blueschist and Silurian SSZ-type intrusions in the BMTC, and Early-Middle Paleozoic continental arc-related intrusive rocks in the northern margin of the CBY provide further corroboration of a former subduction zone between the southern West Junggar and the northern margin of the CBY. Furthermore, consideration of the fact that the Kokchetav-North Tianshan range was collaged to the southern margin of the CBY in the Ordovician-Devonian indicates that both ranges were amalgamated synchronously with the CBY constructing the Early-Middle Paleozoic architecture of western Altaids.

  20. Thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins of North America

    USGS Publications Warehouse

    East, Joseph A.; Swezey, Christopher S.; Repetski, John E.; Hayba, Daniel O.

    2012-01-01

    Much of the oil and gas in the Illinois, Michigan, and Appalachian basins of eastern North America is thought to be derived from Devonian shale that is within these basins (for example, Milici and others, 2003; Swezey, 2002, 2008, 2009; Swezey and others, 2005, 2007). As the Devonian strata were buried by younger sediments, the Devonian shale was subjected to great temperature and pressure, and in some areas the shale crossed a thermal maturity threshold and began to generate oil. With increasing burial (increasing temperature and pressure), some of this oil-generating shale crossed another thermal maturity threshold and began to generate natural gas. Knowledge of the thermal maturity of the Devonian shale is therefore useful for predicting the occurrence and the spatial distribution of oil and gas within these three basins. This publication presents a thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins. The map shows outlines of the three basins (dashed black lines) and an outline of Devonian shale (solid black lines). The basin outlines are compiled from Thomas and others (1989) and Swezey (2008, 2009). The outline of Devonian shale is a compilation from Freeman (1978), Thomas and others (1989), de Witt and others (1993), Dart (1995), Nicholson and others (2004), Dicken and others (2005a,b), and Stoeser and others (2005).

  1. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland)

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, David; Rakociński, Michał; Racki, Grzegorz; Bond, David P. G.; Sobień, Katarzyna; Claeys, Philippe

    2013-03-01

    Rhythmical alternations between limestone and shales or marls characterize the famous Kowala section, Holy Cross Mountains, Poland. Two intervals of this section were studied for evidence of orbital cyclostratigraphy. The oldest interval spans the Frasnian-Famennian boundary, deposited under one of the hottest greenhouse climates of the Phanerozoic. The youngest interval encompasses the Devonian-Carboniferous (D-C) boundary, a pivotal moment in Earth's climatic history that saw a transition from greenhouse to icehouse. For the Frasnian-Famennian sequence, lithological variations are consistent with 405-kyr and 100-kyr eccentricity forcing and a cyclostratigraphic floating time-scale is presented. The interpretation of observed lithological rhythms as eccentricity cycles is confirmed by amplitude modulation patterns in agreement with astronomical theory and by the recognition of precession cycles in high-resolution stable isotope records. The resulting relative time-scale suggests that ˜800 kyr separate the Lower and Upper Kellwasser Events (LKE and UKE, respectively), two periods of anoxia that culminated in massive biodiversity loss at the end of the Frasnian. Th/U and pyrite framboid analyses indicate that during the UKE, oxygen levels remained low for 400 kyr and δ13Corg measurements demonstrate that more than 600 kyr elapsed before the carbon cycle reached a steady state after a +3‰ UKE excursion. The Famennian-Tournaisian (D-C) interval also reveals eccentricity and precession-related lithological variations. Precession-related alternations clearly demonstrate grouping into 100-kyr bundles. The Famennian part of this interval is characterized by several distinctive anoxic black shales, including the Annulata, Dasberg and Hangenberg shales. Our high-resolution cyclostratigraphic framework indicates that those shales were deposited at 2.2 and 2.4 Myr intervals respectively. These durations strongly suggest a link between the long-period (˜2.4 Myr) eccentricity cycle and the development of the Annulata, Dasberg and Hangenberg anoxic shales. It is assumed that these black shales form under transgressive conditions, when extremely high eccentricity promoted the collapse of small continental ice-sheets at the most austral latitudes of western Gondwana.

  2. Using Paleomagnetic, Geochemical and Structural Data to Recognize Post-metamorphic Tectonic Events in the Caledonide Terranes of Western Svalbard.

    NASA Astrophysics Data System (ADS)

    Michalski, K.; Manby, G.; Nejbert, K.; Domańska Siuda, J.; Burzyński, M.

    2015-12-01

    A total of 170 oriented palaeomagnetic samples of Proterozoic-Lower Palaeozoic metacarbonates and metabasites from 28 sites in Hornsund and Oscar II Land, Western Spitsbergen (Fig. 1A) were investigated at the Polish Academy of Sciences Institute of Geophysics . Petrographic and rock-magnetic analyses revealed that the ferromagnetic carriers are dominated by metamorphic pyrrhotite and Low-Ti magnetite. Simultaneous in situ laser ablation 40Ar/39Ar age determination of the samples indicate that a 426-380 Ma Caledonian sensu lato thermal overprint was followed by younger events in the 377-326 Ma and ca. 300 Ma intervals (Fig. 1B). The latter two ages appear to coincide with recently published seismic data indicating that Late Devonian - Carboniferous rifting was followed by similar crustal extension in the SW Barents shelf area in Late Carboniferous time. Published in situ palaeomagnetic directions from Hornsund area in SW Svalbard fit the Silurian sector of the Baltica reference path suggesting that the geometry of the sampled Caledonian Sofekammen Syncline was not modified during following Svalbardian or Eurekan deformation events (Fig. 1C). In contrast, palaeomagnetic directions obtained from Oscar II Land are distant from Caledonian sector of Baltica reference path (Fig. 1C). It is suggested here, that the most significant mechanism responsible for the rotation of the palaeomagnetic directions and modification of geometry of Caledonian tectonic structures of Oscar II Land was listric normal faulting related to the opening of the North Atlantic -Arctic Ocean Basins. Late Cretaceous- Early Tertiary Eurekan folding and thrust faulting appear to have had minor influence on the palaeomagnetic directions obtained. This study is part of the Polish National Science Centre - DEC 2011/03/D/ST10/05193 PALMAG 2012-2016 funded project . Fig. 1. A. Geological sketch map of Western Spitsbergen. B. Probability diagrams derived from insitu 40Ar/39Ar laser ablation age determinations for Oscar II/Haakon VII Land. C. The most stable palaeomagnetic components from Hornsund (squares) and Oscar II Land (ovals) against the reference path for the Batica paleomagnetic directions recalculated for the area of Western Spitsbergen; equal area; open/ full symbols -upper/lower hemisphere.

  3. Devonian alkaline magmatic belt along the northern margin of the North China Block: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min

    2018-03-01

    Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.

  4. Geologic framework of pre-Cretaceous rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico

    USGS Publications Warehouse

    Condon, Steven M.

    1992-01-01

    This report is a discussion and summary of Jurassic and older rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico, and is based on analysis of geophysical logs and observations of outcrops. The Reservation, which is located in the northern San Juan Basin, has been the site of deposition of sediments for much of the Phanerozoic. Geologic times represented on the Reservation are the Precambrian, Cambrian, Devonian, Mississippian, Pennsylvanian, Permian, Triassic, Jurassic, Cretaceous, Tertiary, and Quaternary. Rocks of Ordovician and Silurian age have not been reported in this region. Thicknesses of pre-Cretaceous sedimentary rocks range from about 750 feet (229 meters) on the Archuleta arch, east of the Reservation, to more than 8,300 feet (2,530 meters) just northwest of the Reservation. About 5,500 feet (1,676 meters) of pre-Cretaceous sedimentary rocks occur in the central part of the Reservation, near Ignacio. At Ignacio the top of the Jurassic lies at a depth of 7,600 feet (2,316 meters) below the surface, which is composed of Tertiary rocks. As much as 2,500 feet (762 meters) of Tertiary rocks occur in the area. More than 10,000 feet (3,048 meters) of Cretaceous and younger rocks, and 15,600 feet (4,755 meters) of all Phanerozoic sedimentary rocks occur in the vicinity of the Reservation. In the early Paleozoic the area that includes the Southern Ute Reservation was on the stable western shelf of the craton. During this time sediments that compose the following shallow-marine clastic and carbonate rocks were deposited: the Upper Cambrian Ignacio Quartzite (0-150 feet; 0-46 meters), Upper Devonian Elbert Formation (50-200 feet; 15-61 meters), Upper Devonian Ouray Limestone (10-75 feet; 3-23 meters), and Mississippian Leadville Limestone (0-250 feet; 0-76 meters). Mixed carbonate and clastic deposition, which was punctuated by a unique episode of deposition of evaporite sediments, continued through the Pennsylvanian after a significant episode of erosion at the end of the Mississippian. Pennsylvanian rocks on the Reservation are the Molas Formation (20-100 feet; 6-30 meters) and Hermosa Group (400-2,800 feet; 122-853 meters), which consists of the Pinkerton Trail Formation (40-120 feet; 12-36 meters), Paradox Formation and equivalent rocks (200-1,800 feet; 61-549 meters), and Honaker Trail Formation (200-1,300 feet; 61-396 meters). A unit that is transitional between the Pennsylvanian and Permian is the Rico Formation, which is about 200 feet (61 meters) thick across most of the Reservation area. The close of the Paleozoic Era was marked by a great influx of arkosic clastic sediments from uplifted highlands to the north of the Reservation area during the Permian. Near the paleomountain front the Cutler Formation (presently as thick as 8,000 feet; 2,438 meters) formed as a result of deposition of arkosic sediments; however, the original thickness of the Cutler is unknown due to an unconformity at its top. In the area of the Reservation the Cutler has group status and has been divided into several formations: the Halgaito Formation (350-800 feet; 107-244 meters), Cedar Mesa Sandstone and equivalent rocks (150-350 feet; 46-107 meters), Organ Rock Formation (500-900 feet; 152-274 meters), and De Chelly Sandstone (0-100 feet; 0-30 meters). The sediments of these formations were deposited in a variety of environments, including eolian, mud-flat, and fluvial systems. Following an episode of erosion in the Early and Middle(?) Triassic, deposition in the area of the Southern Ute Reservation continued during the Mesozoic. Sediments of the Upper Triassic Dolores and correlative Chinle Formations were deposited in fluvial, lacustrine, and minor eolian environments. On the Reservation the Dolores is 500-1,200 feet (152-366 meters) thick. Lower Jurassic eolian and fluvial deposits may have been present in much of the Reservation area but have been removed

  5. Givetian ostracods of the Candás Formation (Asturias, North-western Spain): taxonomy, stratigraphy, palaeoecology, relationship to global events and palaeogeographical implications.

    PubMed

    Maillet, Sebastien; Milhau, Bruno; Vreulx, Michel; Posada, Luis-Carlos Sánchez De

    2016-01-27

    Asturian ostracods of the Givetian carbonate Candás Formation are documented for the first time from the Peran-Perlora and Carranques reference sections. More than 1,200 specimens were extracted from 44 samples by means of the hot acetolysis method. In all, 75 taxa are described herein, of which 21 are formally described and one, Evlanella peranensis Maillet n. sp., is new. All the taxa are marine benthic and belong to the Eifelian Mega-Assemblage. The assemblages recognized are representative of semi-restricted to shallow open-marine palaeoenvironments above the storm wave base. The stratigraphical distribution of the taxa shows a strong faunal renewal in the top of the Candás Formation. Long-ranging taxa found at the base of the formation, of which many are known from the base of the Middle Devonian, disappear within the base of the member C and are replaced above, around the Middle/Upper Givetian boundary, by more cosmopolitan taxa characteristic of the Frasnian. The lower half of the member C is also characterized both by unstable environments and occurrence of some short-ranging opportunistic ostracod taxa. This renewal within shallow water ostracod communities is probably a consequence of the global Taghanic Biocrisis, leading world-widely to extinctions in several faunal groups. Faunal affinities with Givetian ostracod taxa reported in other areas of the world reflect the commonly accepted palaeogeographical patterns. Close relations between the Cantabrian Zone (NW-Spain), the Armorican Massif (W-France), the Mouthoumet Massif (S-France) and North Africa (Morocco and Algeria) suggest a narrow oceanic space between the western European terranes and the northern Gondwanan margin that involves an advanced phase of closure of the Medio-European Ocean.

  6. Paleozoic Assemblage of the Northern Sierra Terrane: New Geochronology And Geochemical Data From the Stitching Late Devonian - Early Carboniferous Bowman Lake Batholith, and Associated Rocks

    NASA Astrophysics Data System (ADS)

    Powerman, V.; Hanson, R. E.; Girty, G.; Tretiakov, A.

    2016-12-01

    Previous study (Grove et al., 2008) of detrital zircon ages and the timing of magmatism within the Northern Sierra terrane (NST) suggest that it is exotic relative to western Laurentia, and link it to the Paleozoic Arctic Realm, Baltica and Caledonides. NST is a composite terrane in the North America Cordillera, consisting of four distinct allochthons, thrusted upon each other. As a first step towards the understanding of the origin and tectonic development of the NST we have undertaken the SHRIMP-RG U-Pb zircon dating of the rocks from granites, granodiorites, trondhjemites, tonalites and hypabyssal intrusions, composing the Bowman Lake batholith. The batholith stitches the allochthons of the NST and its crystallization age signifies the timing of juxtaposition SHRIMP-RG analyses from 14 samples yielded an age range of ca. 352-369 Ma, which overlaps the Devonian-Mississipian boundary and constrains the minimum age for amalgamation. Additionally, we have acquired multiple XRF data, favoring the island arc provenance of the Bowman Lake batholith Batholith. Previously proposed ties between NST and Robert Mountains allochthon seem unlikely because the latter was accreted onto the western miogeocline of Laurentia during the Late Dev.-Early Miss. while the NST was most probably still situated within the Arctic Realm. This work has been supported by the grant #14.Z50.31.0017 of the Government of the Russian Federation and by the Russian Foundation for Basic Research grant #15-55-10055. We are grateful to Stanford-USGS SHRIMP-RG center, and personally to Marty Grove and Elizabeth Miller.

  7. Evidence for prolonged mid-Paleozoic plutonism and ages of crustal sources in east-central Alaska from SHRIMP U-Pb dating of syn-magmatic, inherited, and detrital zircon

    USGS Publications Warehouse

    Dusel-Bacon, C.; Williams, I.S.

    2009-01-01

    Sensitive high-resolution ion microprobe (SHRIMP) U-Pb analyses of igneous zircons from the Lake George assemblage in the eastern Yukon-Tanana Upland (Tanacross quadrangle) indicate both Late Devonian (???370 Ma) and Early Mississippian (???350 Ma) magmatic pulses. The zircons occur in four textural variants of granitic orthogneiss from a large area of muscovite-biotite augen gneiss. Granitic orthogneiss from the nearby Fiftymile batholith, which straddles the Alaska-Yukon border, yielded a similar range in zircon U-Pb ages, suggesting that both the Fiftymile batholith and the Tanacross orthogneiss body consist of multiple intrusions. We interpret the overall tectonic setting for the Late Devonian and Early Mississippian magmatism as an extending continental margin (broad back-arc region) inboard of a northeast-dipping (present coordinates) subduction zone. New SHRIMP U-Pb ages of inherited zircon cores in the Tanacross orthogneisses and of detrital zircons from quartzite from the Jarvis belt in the Alaska Range (Mount Hayes quadrangle) include major 2.0-1.7 Ga clusters and lesser 2.7-2.3 Ga clusters, with subordinate 3.2, 1.4, and 1.1 Ga clusters in some orthogneiss samples. For the most part, these inherited and core U-Pb ages match those of basement provinces of the western Canadian Shield and indicate widespread potential sources within western Laurentia for most grain populations; these ages also match the detrital zircon reference for the northern North American miogeocline and support a correlation between the two areas.

  8. Well-Production Data and Gas-Reservoir Heterogeneity -- Reserve Growth Applications

    USGS Publications Warehouse

    Dyman, Thaddeus S.; Schmoker, James W.

    2003-01-01

    Oil and gas well production parameters, including peakmonthly production (PMP), peak-consecutive-twelve month production (PYP), and cumulative production (CP), are tested as tools to quantify and understand the heterogeneity of reservoirs in fields where current monthly production is 10 percent or less of PMP. Variation coefficients, defined as VC= (F5-F95)/F50, where F5, F95, and F50 are the 5th, 95th, and 50th (median) fractiles of a probability distribution, are calculated for peak and cumulative production and examined with respect to internal consistency, type of production parameter, conventional versus unconventional accumulations, and reservoir depth. Well-production data for this study were compiled for 69 oil and gas fields in the Lower Pennsylvanian Morrow Formation of the Anadarko Basin, Oklahoma. Of these, 47 fields represent production from marine clastic facies. The Morrow data were supplemented by data from the Upper Cambrian and Lower Ordovician Arbuckle Group, Middle Ordovician Simpson Group, Middle Pennsylvanian Atoka Formation, and Silurian and Lower Devonian Hunton Group of the Anadarko Basin, one large gas field in Upper Cretaceous reservoirs of north-central Montana (Bowdoin field), and three areas of the Upper Devonian and Lower Mississippian Bakken Formation continuous-type (unconventional) oil accumulation in the Williston Basin, North Dakota and Montana. Production parameters (PMP, PYP, and CP) measure the net result of complex geologic, engineering, and economic processes. Our fundamental hypothesis is that well-production data provide information about subsurface heterogeneity in older fields that would be impossible to obtain using geologic techniques with smaller measurement scales such as petrographic, core, and well-log analysis. Results such as these indicate that quantitative measures of production rates and production volumes of wells, expressed as dimensionless variation coefficients, are potentially valuable tools for documenting reservoir heterogeneity in older fields for field redevelopment and risk analysis.

  9. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale...

  10. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Natural gas produced... DETERMINATION PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.303 Natural gas produced from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale...

  11. Chronology of paleozoic metamorphism and deformation in the Blue Ridge thrust complex, North Carolina and Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldberg, S.A.; Dallmeyer, R.D.

    1997-05-01

    The Blue Ridge province in northwestern North Carolina and northeastern Tennessee records a multiphase collisional and accretionary history from the Mesoproterozoic through the Paleozoic. To constrain the tectonothermal evolution in this region, radiometric ages have been determined for 23 regionally metamorphosed amphibolites, granitic gneisses, and pelitic schists and from mylonites along shear zones that bound thrust sheets and within an internal shear zone. The garnet ages from the Pumpkin Patch a thrust sheet (458, 455, and 451 Ma) are similar to those from the structurally overlying Spruce Pine thrust sheet (460, 456, 455, and 450 Ma). Both thrust sheets exhibitmore » similar upper amphibolite-facies conditions. Because of the high closure temperature for garnet, the garnet ages are interpreted to date growth at or near the peak of Taconic metamorphism. Devonian metamorphic ages are recognized in the Spruce Pine thrust sheet, where Sm-Nd and Rb-Sr garnet ages of 386 and 393 Ma and mineral isochron ages of 397 {+-} 14 and 375 {+-} 27 Ma are preserved. Hornblendes record similar {sup 40}Ar/{sup 39}Ar, Sm-Nd, and Rb-Sr ages of 398 to 379 Ma. Devonian {sup 40}Ar/{sup 39}Ar hornblende ages are also recorded in the structurally lower Pumpkin Patch thrust sheet. The Devonian mineral ages are interpreted to date a discrete tectonothermal event, as opposed to uplift and slow cooling from an Ordovician metamorphic event. The Mississippian mylonitization is interpreted to represent thrusting and initial assembly of crystalline sheets associated with the Alleghanian orogeny. The composite thrust stack of the Blue Ridge complex was subsequently thrust northwestward along the Linville Falls fault during middle Alleghanian orogeny (about 300 Ma).« less

  12. History of gas production from Devonian shale in eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemper, J.R.; Frankie, W.T.; Smath, R.A.

    More than 10,500 wells that penetrate the Devonian shale have been compiled into a data base covering a 25-county area of eastern Kentucky. This area includes the Big Sandy gas field, the largest in the Appalachian basin, and marginal areas to the southwest, west, and northwest. The development of the Big Sandy gas field began in the 1920s in western Floyd County, Kentucky, and moved concentrically outward through 1970. Since 1971, the trend has been for infill and marginal drilling, and fewer companies have been involved. The resulting outline of the Big Sandy gas field covers most of Letcher, Knott,more » Floyd, Martin, and Pike Counties in Kentucky; it also extends into West Virginia. Outside the Big Sandy gas field, exploration for gas has been inconsistent, with a much higher ratio of dry holes. The results of this study, which was partially supported by the Gas Research Institute (GRI), indicate that certain geologic factors, such as fracture size and spacing, probably determine the distribution of commercial gas reserves as well as the outline of the Big Sandy gas field. Future Big Sandy infill and extension drilling will need to be based on an understanding of these factors.« less

  13. Sedimentology of gas-bearing Devonian shales of the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Potter, P. E.; Maynard, J. B.; Pryor, W. A.

    1981-01-01

    Sedimentology of the Devonian shales and its relationship to gas, oil, and uranium are reported. Information about the gas bearing Devonian shales of the Appalachian Basin is organized in the following sections: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas oil, and uranium.

  14. Hydrology of carbonate aquifers in southwestern Linn County and adjacent parts of Benton, Iowa, and Johnson Counties, Iowa

    USGS Publications Warehouse

    Wahl, Kenneth; Bunker, Bill J.

    1986-01-01

    Water analyses from the Devonian and Silurian aquifers indicate that they are of similar chemical quality at most locations in the study area. However, they may commonly contain concentrations of sulfate that exceed 1,000 mil grams per liter. Dissolved-solids concentrations as much as 2,350 milligrams per liter occur in the Silurian aquifer in the western and southwestern part of the study area. Water from the Quaternary aquifer generally is suitable for most uses and dissolved-solids concentrations generally are less than 750 milligrams per liter.

  15. Chemostratigraphic and U-Pb geochronologic constraints on carbon cycling across the Silurian-Devonian boundary

    NASA Astrophysics Data System (ADS)

    Husson, Jon M.; Schoene, Blair; Bluher, Sarah; Maloof, Adam C.

    2016-02-01

    The Devonian Period hosts extraordinary changes to Earth's biosphere. Land plants began their rise to prominence, with early vascular vegetation beginning its colonization of near-shore environments in the latest Silurian. Across the Silurian-Devonian (Pridoli-Lochkovian) transition, carbon isotope analyses of bulk marine carbonates (δC13carb) from Laurentian and Baltic successions reveal a positive δC13carb shift. Known as the Klonk Event, values reach + 5.8 ‰, making it one of the largest carbon isotope excursions in the Phanerozoic. Assigning rates and durations to these significant events requires a robust, precise Devonian time scale. Here we present 675 micritic matrix and 357 fossil-specific δC13carb analyses from the lower Devonian Helderberg Group of New York and West Virginia that exhibit the very positive δC13carb values observed in other Silurian-Devonian basins. This chemostratigraphic dataset is coupled with 66 ID-TIMS U-Pb dates on single zircons from six ash falls intercalated within Helderberg sediments, including dates on the stratigraphically lowest Devonian ashes yet developed. In this work, we (a) demonstrate that matrix and fossil-specific δC13carb values track one another closely in the Helderberg Group, (b) estimate the Silurian-Devonian boundary age in New York to be 421.3 ± 1.2 Ma (2σ; including decay constant uncertainties), and (c) calculate the time required to evolve from baseline to peak δC13carb values at the onset of the Klonk event to be 1.00 ± 0.25 Myr. Under these constraints, a steady-state perturbation to the global carbon cycle can explain the observed excursion with modern fluxes, as long as DIC concentration in the Devonian ocean remained below ∼2× the modern value. Therefore, potential drivers, such as enhanced burial of organic carbon, need not rely on anomalously high total fluxes of carbon to explain the Klonk Event.

  16. Combined Detrital U/Pb Zircon and 40Ar/39Ar Mica Geoochronology to Test Structural Models for a Devonian Orogenic Collapse Basin in the Norwegian Caledonides

    NASA Astrophysics Data System (ADS)

    Templeton, J.; Anders, M.; Fossen, H.

    2014-12-01

    The Hornelen basin is the largest of the Devonian 'Old Red' sandstone basins in Norway, comprising 25 km of alluvial-fluvial deposits which are organized into basin-wide, coarsening-upward megacycles. Hornelen sits with several smaller basins in the hanging wall a major extensional shear zone along which the ultra-high pressure metamorphic core of subducted Baltican crust was rapidly exhumed during the extensional collapse of the Caledonian orogeny. The timing of orogenic collapse corresponds closely to the timing of the basins, which are loosely constrained by sparse trace-fossil assemblages to a mid-Devonian age. Further, the basins are now in brittle fault contact with the underlying mylonitic shear zone and the metamorphic core, implying that they are the upper-crustal expression of large-scale extension and deep-crustal exhumation. Two distinct structural models have been proposed for Hornelen to account for these observations. The strike-slip model juxtaposes different source terranes across the basin-controlling fault and predicts spatially changing provenance within chronostratigraphic units. The supradetachment model links the filling of the basin directly to unroofing of the metamorphic core on a low-angle detachment fault, and predicts basin-wide changes in provenance through time with progressive exhumation of the metamorphic hinterland. We present an extensive new provenance dataset, spanning the Hornelen basin strata through space and time. Detrital zircon U/Pb ages from 18 new samples comprise three distinct populations (1.6, 1.0, and 0.43 Ga) with the Caledonian-aged zircons (ca 0.43 Ga) present mainly along the northern margin of the basin, representing an Upper Allochthon source not found on the southern or eastern margins of the basin. Juxtaposition of different source terranes across the basin supports the strike-slip model. 40Ar/39Ar detrital white mica from the same sample set documents a younging of the dominant age peak from 432 Ma in the oldest sediments to 401 Ma in the youngest units, but does not document any difference between northern and southern mica sources. This trend supports the supradetachment model, but may also be explained by passive, isostatically-driven erosional unroofing of the overthickened orogenic crust.

  17. The impact of precession and obliquity on the Late-Devonian greenhouse climate

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Crucifix, M.; Bounceur, N.; Claeys, P. F.

    2012-12-01

    To date, only few general circulation model (GCM) have been used to simulate the extremely warm greenhouse climate of the Late-Devonian (~370 Ma). As a consequence, the current knowledge on Devonian climate dynamics comes almost exclusively from geological proxy data. Given the fragmentary nature of these data sources, the understanding of the Devonian climate is rather limited. Nonetheless, the Late-Devonian is a key-period in the evolution of life on Earth: the continents were no longer bare but were invaded by land plants, the first forests appeared, soils were formed, fish evolved to amphibians and 70-80% of all animal species were wiped out during the Late Devonian extinction (~376 Ma). In order to better understand the functioning of the climate system during this highly important period in Earth's history, we applied the HadSM3 climate model to the Devonian period under different astronomical configurations. This approach provides insight into the response of Late-Devonian climate to astronomical forcing due to precession and obliquity. Moreover, the assessment of the sensitivity of the Late-Devonian climate to astronomical forcing, presented here, will allow cyclostratigraphers to make better and more detailed interpretations of recurring patterns often observed in Late-Devonian sections. We simulated Late-Devonian climates by prescribing palaeogeography, vegetation distribution and pCO2 concentration (2180 ppm). Different experiments were carried out under 31 different astronomical configurations: three levels for obliquity (ɛ = 22°; 23.5° and 24.5°) and eccentricity (e = 0; 0.03 and 0.07) were chosen. For precession, 8 levels were considered (longitude of the perihelion= 0°; 45°; 90°; 135°; 180°; 235°; 270°). First results suggest that the intensity of precipitation on the tropical Euramerican continent (also known as Laurussia) is highly dependent on changes in precession: During precession maxima (= maximal insolation in SH during winter solstice), precipitation is up to 300 mm/month higher compared to precession minima during the wet season (September - May). During the dry season (June-July-August), the climate is up to 7°C colder during a precession maxima compared to a precession minima. Obliquity doesn't show a significant influence on the climate of the tropical Euramerican continent. However, the imprint of obliquity on the polar climates is extensive with up to 6°C temperature-differences between obliquity maxima and minima at both poles.

  18. Invasive species and biodiversity crises: testing the link in the late devonian.

    PubMed

    Stigall, Alycia L

    2010-12-29

    During the Late Devonian Biodiversity Crisis, the primary driver of biodiversity decline was the dramatic reduction in speciation rates, not elevated extinction rates; however, the causes of speciation decline have been previously unstudied. Speciation, the formation of new species from ancestral populations, occurs by two primary allopatric mechanisms: vicariance, where the ancestral population is passively divided into two large subpopulations that later diverge and form two daughter species, and dispersal, in which a small subset of the ancestral population actively migrates then diverges to form a new species. Studies of modern and fossil clades typically document speciation by vicariance in much higher frequencies than speciation by dispersal. To assess the mechanism behind Late Devonian speciation reduction, speciation rates were calculated within stratigraphically constrained species-level phylogenetic hypotheses for three representative clades and mode of speciation at cladogenetic events was assessed across four clades in three phyla: Arthropoda, Brachiopoda, and Mollusca. In all cases, Devonian taxa exhibited a congruent reduction in speciation rate between the Middle Devonian pre-crisis interval and the Late Devonian crisis interval. Furthermore, speciation via vicariance is almost entirely absent during the crisis interval; most episodes of speciation during this time were due to dispersal. The shutdown of speciation by vicariance during this interval was related to widespread interbasinal species invasions. The lack of Late Devonian vicariance is diametrically opposed to the pattern observed in other geologic intervals, which suggests the loss of vicariant speciation attributable to species invasions during the Late Devonian was a causal factor in the biodiversity crisis. Similarly, modern ecosystems, in which invasive species are rampant, may be expected to exhibit similar shutdown of speciation by vicariance as an outcome of the modern biodiversity crisis.

  19. Early Forest Soils and Their Role in Devonian Global Change

    PubMed

    Retallack

    1997-04-25

    A paleosol in the Middle Devonian Aztec Siltstone of Victoria Land, Antarctica, is the most ancient known soil of well-drained forest ecosystems. Clay enrichment and chemical weathering of subsurface horizons in this and other Devonian forested paleosols culminate a long-term increase initiated during the Silurian. From Silurian into Devonian time, red clayey calcareous paleosols show a greater volume of roots and a concomitant decline in the density of animal burrows. These trends parallel the decline in atmospheric carbon dioxide determined from isotopic records of pedogenic carbonate in these same paleosols. The drawdown of carbon dioxide began well before the Devonian appearance of coals, large logs, and diverse terrestrial plants and animals, and it did not correlate with temporal variation in volcanic or metamorphic activity. The early Paleozoic greenhouse may have been curbed by the evolution of rhizospheres with an increased ratio of primary to secondary production and by more effective silicate weathering during Silurian time.

  20. Stage boundary recognition in the Eastern Americas realm based on rugose corals

    USGS Publications Warehouse

    Oliver, W.A.

    2000-01-01

    Most Devonian stages contain characteristic coral assemblages but these tend to be geographically and facies limited and may or may not be useful for recognising stage boundaries. Within eastern North America, corals contribute to the recognition of two boundaries: the base of the Lochkovian (Silurian-Devonian boundary) and the base of the Eifelian (Lower-Middle Devonian Series boundary).

  1. The Grand St Bernard-Briançonnais Nappe System and the Paleozoic Inheritance of the Western Alps Unraveled by Zircon U-Pb Dating

    NASA Astrophysics Data System (ADS)

    Bergomi, M. A.; Dal Piaz, G. V.; Malusà, M. G.; Monopoli, B.; Tunesi, A.

    2017-12-01

    The continental crust involved in the Alpine orogeny was largely shaped by Paleozoic tectono-metamorphic and igneous events during oblique collision between Gondwana and Laurussia. In order to shed light on the pre-Alpine basement puzzle disrupted and reamalgamated during the Tethyan rifting and the Alpine orogeny, we provide sensitive high-resolution ion microprobe U-Pb zircon and geochemical whole rock data from selected basement units of the Grand St Bernard-Briançonnais nappe system in the Western Alps and from the Penninic and Lower Austroalpine units in the Central Alps. Zircon U-Pb ages, ranging from 459.0 ± 2.3 Ma to 279.1 ± 1.1 Ma, provide evidence of a complex evolution along the northern margin of Gondwana including Ordovician transtension, Devonian subduction, and Carboniferous-to-Permian tectonic reorganization. Original zircon U-Pb ages of 371 ± 0.9 Ma and 369.3 ± 1.5 Ma, from calc-alkaline granitoids of the Grand Nomenon and Gneiss del Monte Canale units, provide the first compelling evidence of Late Devonian orogenic magmatism in the Alps. We propose that rocks belonging to these units were originally part of the Moldanubian domain and were displaced toward the SW by Late Carboniferous strike-slip faulting. The resulting assemblage of basement units was disrupted by Permian tectonics and by Mesozoic opening of the Alpine Tethys. Remnants of the Moldanubian domain became either part of the European paleomargin (Grand Nomenon unit) or part of the Adriatic paleomargin (Gneiss del Monte Canale unit), to be finally accreted into the Alpine orogenic wedge during the Cenozoic.

  2. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  3. Extensional Late Paleozoic deformation on the western margin of Pangea, Patlanoaya area, Acatlán Complex, southern Mexico

    NASA Astrophysics Data System (ADS)

    Ramos-Arias, M. A.; Keppie, J. D.; Ortega-Rivera, A.; Lee, J. W. K.

    2008-02-01

    New mapping in the northern part of the Paleozoic Acatlán Complex (Patlanoaya area) records several ductile shear zones and brittle faults with normal kinematics (previously thought to be thrusts). These movement zones separate a variety of units that pass structurally upwards from: (i) blueschist-eclogitic metamorphic rocks (Piaxtla Suite) and mylonitic megacrystic granites (Columpio del Diablo granite ≡ Ordovician granites elsewhere in the complex); (ii) a gently E-dipping, listric, normal shear zone with top to the east kinematic indicators that formed under upper greenschist to lower amphibolite conditions; (iii) the Middle-Late Ordovician Las Minas quartzite (upper greenschist facies psammites with minor interbedded pelites intruded by mafic dikes and a leucogranite dike from the Columpio del Diablo granite) unconformably overlain by the Otate meta-arenite (lower greenschist facies psammites and pelites): roughly temporal equivalents are the Middle-Late Ordovician Mal Paso and Ojo de Agua units (interbedded metasandstone and slate, and metapelite and mafic minor intrusions, respectively) — some of these units are intruded by the massive, 461 ± 2 Ma, Palo Liso megacrystic granite: decussate, contact metamorphic muscovite yielded a 40Ar/ 39Ar plateau age of 440 ± 4 Ma; (iv) a steeply-moderately, E-dipping normal fault; (v) latest Devonian-Middle Permian sedimentary rocks (Patlanoaya Group: here elevated from formation status). The upward decrease in metamorphic grade is paralleled by a decrease in the number of penetrative fabrics, which varies from (i) three in the Piaxtla Suite, through (ii) two in the Las Minas unit (E-trending sheath folds deformed by NE-trending, subhorizontal folds with top to the southeast asymmetry, both associated with a solution cleavage), (iii) one in the Otate, Mal Paso, and Ojo de Agua units (steeply SE-dipping, NE-SW plunging, open-close folds), to (iv) none in the Patlanoaya Group. 40Ar/ 39Ar analyses of muscovite from the earliest cleavage in the Las Minas unit yielded a plateau age of 347 ± 3 Ma and show low temperature ages of ˜ 260 Ma. Post-dating all of these structures and the Patlanoaya Group are NE-plunging, subvertical folds and kink bands. An E-W, vertical normal fault juxtaposes the low-grade rocks against the Anacahuite amphibolite that is cut by megacrystic granite sheets, both of which were deformed by two penetrative fabrics. Amphibole from this unit has yielded a 40Ar/ 39Ar plateau age of 299 ± 6 Ma, which records cooling through ˜ 490 °C and is probably related to a Permo-Carboniferous reheating event during exhumation. The extensional deformation is inferred to have started in the latest Devonian (˜ 360 Ma) during deposition of the basal Patlanoaya Group, lasting through the rapid exhumation of the Piaxtla Suite at ˜ 350-340 Ma synchronous with cleavage development in the Las Minas unit, deposition of the Patlanoaya Group with active fault-related exhumation suggested by Mississippian and Early Permian conglomerates (˜ 340 and 300 Ma, respectively), and continuing at least into the Middle Permian (≡ 260 Ma muscovite ages). The continuity of Mid-Continent Mississippian fauna from the USA to southern Mexico suggests that this extensional deformation occurred on the western margin of Pangea after closure of the Rheic Ocean.

  4. Geochemical Aspects of Formation of Large Oil Deposits in the Volga-Ural Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Plotnikova, I.; Nosova, F.; Pronin, N.; Nosova, J.; Budkevich, T.

    2012-04-01

    The study of the rocks domanikoid type in the territory of the Ural-Volga region has an almost century-long history, beginning with the first studies of A.D. Archangelsky in the late 20's of last century. But nevertheless the question of the source of oil that formed the industrial deposits of Volga-Ural oil and gas province (OGP), where Romashkinskoye oil field occupies a special place, remains unresolved and topical. According to the sedimentary-migration theory of origin of oil and gas, it is supposed that the primary source of hydrocarbons in this area are the deposits of domanikoid type that contain a large ammount of sapropel organic matter (OM). Semiluki (domanik) horizon of srednefranski substage of the Upper Devonian is considered to be a typical domanikoid stratum. Investigation of the OM of the rocks and oils of the sedimentary cover on the basis of chromato-mass spectrometry method allows us to study the correlations between rock and oil and to assess the location (or absence) of the sources of hydrocarbons in the Paleozoic sedimentary cover. The results of geochemical study of dispersed organic matter (DOM) of rocks from Semiluksky horizon of the Upper Devonian and of the oil from Pashiysky horizon of the Middle Devonian form the basis of this paper. The objectives of this study were the following: to determine the original organic matter of the rocks, which would indicate the conditions of sedimentation of the supposed rock-oil sources; the study of chemofossils (biomarkers) in oil from Pashiyskiy horizon; and the identification of genetic association of DOM rocks from Semiluksky horizon with this oil on the basis of the oil-DOM correlation. The study of biomarkers was carried out with the help of chromato-mass spectrometry in the Laboratory of Geochemistry of Fossil Fuels (Kazan Federal University). In this study we used several informative parameters characterizing the depositional environment, the type of source OM and its maturity: STER / PENT, hC35/hC34, GAM / HOP, S27/S28/S29 (steranes), DIA / REG, Ts / Tm, MOR / HOP, NOR / HOP, TET / TRI, C29SSR, C29BBAA, C31HSR, S30STER, TRI / PENT, TRI / HOP. Comparison in the rock-oil system was performed primarily according to the parameters indicating the depositional environment of the source rock that contains syngenetic DOM - according to the coefficients that determine lithological conditions for the formation of the supposed oil-source bed strata (DIA / REG, Ts / Tm, NOR / HOP, TRI / HOP and STER / PENT). Biomarker ratios indicate a different type of sedimentation basins. Sediments, which accumulated DOM from Semilukskiy horizon, can be characterized by low clay content, or its absence, that is consistent with the carbonate type of cut of the horizon. The bacterial material that was accumulated under reducing conditions of sedimentation appeared to be the source of syngenetic OM. Chemofossils found in oils from Pashiyskiy horizon are typical of sedimentary strata that contain clay - for clastic rocks, which in the study area are mainly represented by deposits and Eyfel Givetian layers of the Middle Devonian and lowfransk substage of the Upper Devonian. The study of correlations obtained for the different coefficients of OM and oils showed that only the relationships between Ts/Tm and DIA/REG and between NOR/HOP and TRI/HOP are characteristic of close, almost similar values of correlation both for the dispersed organic matter and for oil. In all other cases, the character of the correlation of OM is significantly different from that of oil. The differences in values and ranges of biomarker ratios as well as the character of their correlation indicates the absence of genetic connection between the oil from Pashiyskiy horizon for the dispersed organic matter from Semilukskiy horizon. This conclusion is based on the study of five biomarker parameters (DIA/REG, Ts/Tm, NOR/HOP, TRI/HOP and STER/PENT). The research results described in the article clearly indicate the need for further studies of geochemical features of the organic matter of the Paleozoic mantle rocks and the underlying sedimentary and crystalline complexes of Precambrian.

  5. The Boquillas Formation of the Big Bend National Park, Texas, USA, a reference Cenomanian through Santonian (Upper Cretaceous) carbonate succession at the southern end of the Western Interior Seaway

    NASA Astrophysics Data System (ADS)

    Cooper, Dee Ann; Cooper, Roger W.; Stevens, James B.; Stevens, M. S.; Cobban, William A.; Walaszczyk, Ireneusz

    2017-12-01

    The upper lower Cenomanian through middle Santonian (Upper Cretaceous) of the Boquillas Formation in the Big Bend Region of Trans-Pecos Texas consists of a marine carbonate succession deposited at the southern end of the Western Interior Seaway. The Boquillas Formation, subdivided into the lower, c. 78 m thick limestone-shale Ernst Member, and the upper, c. 132 m thick limestone/chalk/marl San Vicente Member, was deposited in a shallow shelf open marine environment at the junction between the Western Interior Seaway and the western margins of the Tethys Basin. Biogeographically, the area was closely tied with the southern Western Interior Seaway. The richly fossiliferous upper Turonian, Coniacian and lower Santonian parts of the Boquillas Formation are particularly promising for multistratigraphic studies.

  6. Geology and undiscovered resource assessment of the potash-bearing Pripyat and Dnieper-Donets Basins, Belarus and Ukraine

    USGS Publications Warehouse

    Cocker, Mark D.; Orris, Greta J.; Dunlap, Pamela; Lipin, Bruce R.; Ludington, Steve; Ryan, Robert J.; Słowakiewicz, Mirosław; Spanski, Gregory T.; Wynn, Jeff; Yang, Chao

    2017-08-03

    Undiscovered potash resources in the Pripyat Basin, Belarus, and Dnieper-Donets Basin, Ukraine, were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey (USGS). The Pripyat Basin (in Belarus) and the Dnieper-Donets Basin (in Ukraine and southern Belarus) host stratabound and halokinetic Upper Devonian (Frasnian and Famennian) and Permian (Cisuralian) potash-bearing salt. The evaporite basins formed in the Donbass-Pripyat Rift, a Neoproterozoic continental rift structure that was reactivated during the Late Devonian and was flooded by seawater. Though the rift was divided, in part by volcanic deposits, into the separate Pripyat and Dnieper-Donets Basins, both basins contain similar potash‑bearing evaporite sequences. An Early Permian (Cisuralian) sag basin formed over the rift structure and was also inundated by seawater resulting in another sequence of evaporite deposition. Halokinetic activity initiated by basement faulting during the Devonian continued at least into the Permian and influenced potash salt deposition and structural evolution of potash-bearing salt in both basins.Within these basins, four areas (permissive tracts) that permit the presence of undiscovered potash deposits were defined by using geological criteria. Three tracts are permissive for stratabound potash-bearing deposits and include Famennian (Upper Devonian) salt in the Pripyat Basin, and Famennian and Cisuralian (lower Permian) salt in the Dnieper-Donets Basin. In addition, a tract was delineated for halokinetic potash-bearing Famennian salt in the Dnieper-Donets Basin.The Pripyat Basin is the third largest source of potash in the world, producing 6.4 million metric tons of potassium chloride (KCl) (the equivalent of about 4.0 million metric tons of potassium oxide or K2O) in 2012. Potash production began in 1963 in the Starobin #1 mine, near the town of Starobin, Belarus, in the northwestern corner of the basin. Potash is currently produced from six potash mines in the Starobin area. Published reserves in the Pripyat Basin area are about 7.3 billion metric tons of potash ore (about 1.3 billion metric tons of K2O) mostly from potash-bearing salt horizons in the Starobin and Petrikov mine areas. The 15,160-square-kilometer area of the Pripyat Basin underlain by Famennian potash-bearing salt contains as many as 60 known potash-bearing salt horizons. Rough estimates of the total mineral endowment associated with stratabound Famennian salt horizons in the Pripyat Basin range from 80 to 200 billion metric tons of potash-bearing salt that could contain 15 to 30 billion metric tons of K2O.Parameters (including the number of economic potash horizons, grades, and depths) for these estimates are not published so the estimates are not easily confirmed. Historically, reserves have been estimated above a depth of 1,200 meters (m) (approximately the depths of conventional underground mining). Additional undiscovered K2O resources could be significantly greater in the remainder of the Fammenian salt depending on the extents and grades of the 60 identified potash horizons above the USGS assessment depth of 3,000 m in the remainder of the tract. Increasing ambient temperatures with increasing depths in the eastern parts of the Pripyat Basin may require a solution mining process which is aided by higher temperatures.No resource or reserve data have been published and little is known about stratabound Famennian and Frasnian salt in the Dnieper-Donets Basin. These Upper Devonian salt units dip to the southeast and extend to depths of 15–19 kilometers (km) or greater. The tract of stratabound Famennian salt that lies above a depth of 3 km, the depth above which potash is technically recoverable by solution mining, underlies an area of about 15,600 square kilometers (km2). If Upper Devonian salt units in the Dnieper-Donets Basin contain potash-bearing strata similar to salt of the same age in the Pripyat Basin, then the stratabound Famennian tract in the Dnieper-Donets Basin could contain significant undiscovered potash resources.The Cisuralian evaporite sequence in the Dnieper-Donets Basin consists of 10 evaporite cycles with the upper 3 cycles containing potash-bearing salt (mainly as sylvite and carnallite) in several subbasins and polyhalite in the sulfate bearing parts of the identified tract. The area of the Cisuralian tract is 62,700 km2. Potash-bearing cycles are as much as 40 m thick. One subbasin is reported to contain 794 million metric tons of “raw or crude” potash-bearing salt which could contain 50 to 150 million metric tons of K2O, depending on the grade. Undiscovered potash resources in the remainder of this permissive tract may be significantly greater. Depths to the Permian salt range from less than 100 to about 1,500 m.Undiscovered resources of halokinetic potash-bearing salt in the Dnieper-Donets Basin were assessed quantitatively for this study by using the standard USGS three-part form of mineral resource assessment (Singer, 2007a; Singer and Menzie, 2010). Delineation of the permissive tract was based on distributions of mapped halokinetic salt structures. This tract contains at least 248 diapiric salt structures with a total area of 7,840 km2 that occupies approximately 8 percent of the basin area. The vertical extent of these salt structures is hundreds of meters to several kilometers. This assessment estimated that a total mean of 11 undiscovered deposits contain an arithmetic mean estimate of about 840 million metric tons of K2O in the halokinetic salt structures of the Dnieper-Donets Basin for which the probabilistic estimate was made.

  7. Geologic controls on cave development in Burnsville Cove, Bath and Highland Counties, Virginia

    USGS Publications Warehouse

    Swezey, Christopher; Haynes, John T.; Lucas, Philip C.; Lambert, Richard A.

    2017-01-01

    Burnsville Cove in Bath and Highland Counties (Virginia, USA) is a karst region in the Valley and Ridge Province of the Appalachian Mountains. The region contains many caves in Silurian to Devonian limestone, and is well suited for examining geologic controls on cave location and cave passage morphology. In Burnsville Cove, many caves are located preferentially near the axes of synclines and anticlines. For example, Butler Cave is an elongate cave where the trunk channel follows the axis of Sinking Creek syncline and most of the side passages follow joints at right angles to the syncline axis. In contrast, the Water Sinks Subway Cave, Owl Cave, and Helictite Cave have abundant maze patterns, and are located near the axis of Chestnut Ridge anticline. The maze patterns may be related to fact that the anticline axis is the site of the greatest amount of flexure, leading to more joints and (or) greater enlargement of joints. Many of the larger caves of Burnsville Cove (e.g., Breathing Cave, Butler Cave–Sinking Creek Cave System, lower parts of the Water Sinks Cave System) are developed in the Silurian Tonoloway Limestone, the stratigraphic unit with the greatest surface exposure in the area. Other caves are developed in the Silurian to Devonian Keyser Limestone of the Helderberg Group (e.g., Owl Cave, upper parts of the Water Sinks Cave System) and in the Devonian Shriver Chert and (or) Licking Creek Limestone of the Helderberg Group (e.g., Helictite Cave). Within the Tonoloway Limestone, the larger caves are developed in the lower member of the Tonoloway Limestone immediately below a bed of silica-cemented sandstone. In contrast, the larger caves in the Keyser Limestone are located preferentially in limestone beds containing stromatoporoid reefs, and some of the larger caves in the Licking Creek Limestone are located in beds of cherty limestone below the Devonian Oriskany Sandstone. Geologic controls on cave passage morphology include joints, bedding planes, and folds. The influence of joints results in tall and narrow cave passages, whereas the influence of bedding planes results in cave passages with flat ceilings and (or) floors. The influence of folds is less common, but a few cave passages follow fold axes and have distinctive arched ceilings.

  8. Linking Fossil Fish Cyclicity and Paleoenvironmental Proxies in the mid-Devonian

    NASA Astrophysics Data System (ADS)

    Grogan, D.; Whiteside, J. H.; Trewin, N. H.; Johnson, J. E.

    2009-12-01

    The significant radiation of fishes throughout the Devonian, combined with the abundance of well-preserved fossil fish assemblages from this period, provides for a high-resolution record of prevalent fish taxa in the Orcadian basin of North Scotland. In addition to their ability to serve as a lake-level and lake-chemistry proxy, the waxing and waning of dominant fish taxa exhibit a pronounced cyclicity, suggesting they respond to broader climate rhythms. Recent studies of mid-Devonian lacustrine sedimentary sequences have quantitatively demonstrated the presence of Milankovitch cyclicity in geochemical and gamma ray proxy records. Spectral analysis of gamma ray data show a strong obliquity peak usually associated with ice-house conditions; this obliquity signal is unexpected as tropical latitudes in the mid-Devonian are traditionally thought to have been in a greenhouse climate. Geochemical data include the measurement of bulk carbon and nitrogen stable isotopes, molecule-specific carbon isotopes of plant biomarkers, and depth ranks from eight sections of the Caithness Flagstone Group of the Orcadian Basin. Evidence for orbital forcing of climate change paired with the fossil fish record provides a unique opportunity to establish an astronomically calibrated timescale for the mid-Devonian, as well as to make a quantitative assessment of the validity of a greenhouse climate existing in the mid-Devonian.

  9. Placoderms (Armored Fish): Dominant Vertebrates of the Devonian Period

    NASA Astrophysics Data System (ADS)

    Young, Gavin C.

    2010-05-01

    Placoderms, the most diverse group of Devonian fishes, were globally distributed in all habitable freshwater and marine environments, like teleost fishes in the modern fauna. Their known evolutionary history (Early Silurian-Late Devonian) spanned at least 70 million years. Known diversity (335 genera) will increase when diverse assemblages from new areas are described. Placoderms first occur in the Early Silurian of China, but their diversity remained low until their main evolutionary radiation in the Early Devonian, after which they became the dominant vertebrates of Devonian seas. Most current placoderm data are derived from the second half of the group's evolutionary history, and recent claims that they form a paraphyletic group are based on highly derived Late Devonian forms; 16 shared derived characters are proposed here to support placoderm monophyly. Interrelationships of seven placoderm orders are unresolved because Silurian forms from China are still poorly known. The relationship of placoderms to the two major extant groups of jawed fishes—osteichthyans (bony fishes) and chondrichthyans (cartilaginous sharks, rays, and chimaeras)—remains uncertain, but the detailed preservation of placoderm internal braincase structures provides insights into the ancestral gnathostome (jawed vertebrate) condition. Placoderms provide the most complex morphological and biogeographic data set for the Middle Paleozoic; marked discrepancies in stratigraphic occurrence between different continental regions indicate strongly endemic faunas that were probably constrained by marine barriers until changes in paleogeography permitted range enlargement into new areas. Placoderm distributions in time and space indicate major faunal interchange between Gondwana and Laurussia near the Frasnian-Famennian boundary; closure of the Devonian equatorial ocean is a possible explanation.

  10. The crustal structure in the transition zone between the western and eastern Barents Sea

    NASA Astrophysics Data System (ADS)

    Shulgin, Alexey; Mjelde, Rolf; Faleide, Jan Inge; Høy, Tore; Flueh, Ernst; Thybo, Hans

    2018-07-01

    We present a crustal-scale seismic profile in the Barents Sea based on new data. Wide-angle seismic data were recorded along a 600 km long profile at 38 ocean bottom seismometer and 52 onshore station locations. The modelling uses the joint refraction/reflection tomography approach where co-located multichannel seismic reflection data constrain the sedimentary structure. Further, forward gravity modelling is based on the seismic model. We also calculate net regional erosion based on the calculated shallow velocity structure. Our model reveals a complex crustal structure of the Baltic Shield to Barents shelf transition zone, as well as strong structural variability on the shelf itself. We document large volumes of pre-Carboniferous sedimentary strata in the transition zone which reach a total thickness of 10 km. A high-velocity crustal domain found below the Varanger Peninsula likely represents an independent crustal block. Large lower crustal bodies with very high velocity and density below the Varanger Peninsula and the Fedynsky High are interpreted as underplated material that may have fed mafic dykes in the Devonian. We speculate that these lower crustal bodies are linked to the Devonian rifting processes in the East European Craton, or belonging to the integral part of the Timanides, as observed onshore in the Pechora Basin.

  11. Constraints on the Amount of deeply subducted Water from numerical Models in comparison with natural Samples

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, M.; Halama, R.

    2014-12-01

    The subduction of hydrated slab mantle to beyond-arc depths is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. During subduction of hydrated oceanic lithosphere, dehydration reactions in the downgoing plate lead to a partitioning of water between upper and lower plate. Water retained in the slab is recycled into the mantle where it controls its rheology and thus plate tectonic velocities. Hence, quantification of the water partitioning in subduction zones is crucial for the understanding of mass transfer between the Earth's surface and the mantle. Combined thermomechanical and thermodynamic models yield quantitative constraints on the water cycle in subduction zones, but unless model results can be linked to natural observations, the reliability of such models remains speculative. We present combined thermomechanical, thermodynamic and geochemical models of active and paleo-subduction zones, whose results can be tested with independent geochemical features in natural rocks. In active subduction zones, evidence for the validity of our model comes from the agreement between modeled and observed across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. In the Kamchatkan subduction zone, for example, the model successfully predicts complex geochemical patterns and the spatial distribution of arc volcanoes. In paleo-subduction zones (e.g. Western Gneiss Region and Western Alps), constraints on the water budget and dehydration behavior of the subducting slab come from trace element zoning patterns in ultra-high pressure (UHP) garnets. Distinct enrichments of Cr, Ni and REE in the UHP zones of the garnets can be reconciled by our models that predict intense rehydration and trace element re-enrichment of the eclogites at UHP conditions by fluids released from the underlying slab mantle. Models of present-day subduction zones indicate the presence of 2.5-6 wt.% of water within the uppermost 15 km of the subducted slab mantle. Depending on hydration depth, between 25 and 90% of this water is recycled into the deeper mantle. The Lower Devonian example from the Western Gneiss Region indicates that subduction of water into the Earth's deeper mantle is an active process at least since the middle Paleozoic.

  12. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

    USGS Publications Warehouse

    Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.

    2015-01-01

    Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in marine black shales are significant in that these shales may provide a more continuous record of fire than is preserved in terrestrial environments. Our data support the idea that major fires are not seen in the fossil record until there is both sufficient and connected fuel and a high enough atmospheric O2 content for it to burn.

  13. Devonian to Carboniferous collision in the Greenland Caledonides: U-Pb zircon and Sm-Nd ages of high-pressure and ultrahigh-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    Gilotti, Jane A.; Nutman, Allen P.; Brueckner, Hannes K.

    2004-10-01

    A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian.

  14. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis.

    PubMed

    Lamsdell, James C; Selden, Paul A

    2017-01-01

    Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  15. Study of hydrocarbon production from the Devonian shale in Letcher, Knott, Floyd, Martin, and Pike Counties, eastern Kentucky annual technical report, July 1, 1984-June 30, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankie, W.T.

    The Kentucky Geological Survey (KGS) at the University of Kentucky is conducting a 2-year research project funded by the Gas Research Institute (GRI) to study hydrocarbon production from the Devonian shale in eastern Kentucky. Objectives are to develop an understanding of relationships between stratigraphy and hydrocarbon production, create a data base, and prepare geologic reports for each county in the study area. Data were compiled from the KGS, GRI Eastern Gas Data System (EGDS), U. S. Department of Energy (DOE), and industry. Research for Letcher County was completed and 270 Devonian wells were entered into the KGS computer data base.more » Devonian black-shale units were correlated using gamma-ray logs. Structure and isopach maps, and stratigraphic cross sections have been constructed. An isopotential map defining areas of equal initial gas production has been prepared. Statistics for Letcher County have been run on the data base using Datatrieve software package. Statistical analyses focused on different types of formation treatments and the resulting production. Temperature logs were used to detect gas-producing intervals within the Mississippian-Devonian black-shale sequence. The results of the research provide the petroleum industry with a valuable tool for gas exploration in the Devonian shales.« less

  16. An Exceptionally Preserved Transitional Lungfish from the Lower Permian of Nebraska, USA, and the Origin of Modern Lungfishes

    PubMed Central

    Pardo, Jason D.; Huttenlocker, Adam K.; Small, Bryan J.

    2014-01-01

    Complete, exceptionally-preserved skulls of the Permian lungfish Persephonichthys chthonica gen. et sp. nov. are described. Persephonichthys chthonica is unique among post-Devonian lungfishes in preserving portions of the neurocranium, permitting description of the braincase of a stem-ceratodontiform for the first time. The completeness of P. chthonica permits robust phylogenetic analysis of the relationships of the extant lungfish lineage within the Devonian lungfish diversification for the first time. New analyses of the relationships of this new species within two published matrices using both maximum parsimony and Bayesian inference robustly place P. chthonica and modern lungfishes within dipterid-grade dipnoans rather than within a clade containing Late Devonian ‘phaneropleurids’ and common Late Paleozoic lungfishes such as Sagenodus. Monophyly of post-Devonian lungfishes is not supported and the Carboniferous-Permian taxon Sagenodus is found to be incidental to the origins of modern lungfishes, suggesting widespread convergence in Late Paleozoic lungfishes. Morphology of the skull, hyoid arch, and pectoral girdle suggests a deviation in feeding mechanics from that of Devonian lungfishes towards the more dynamic gape cycle and more effective buccal pumping seen in modern lungfishes. Similar anatomy observed previously in ‘Rhinodipterus’ kimberyensis likely represents an intermediate state between the strict durophagy observed in most Devonian lungfishes and the more dynamic buccal pump seen in Persephonichthys and modern lungfishes, rather than adaptation to air-breathing exclusively. PMID:25265394

  17. 500 Myr of thermal history elucidated by multi-method detrital thermochronology of North Gondwana Cambrian sandstone (Eilat area, Israel)

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.; Avigad, D.

    2009-04-01

    Following the Neoproterozoic Pan-African orogeny, the Arabian-Nubian Shield (ANS) of North Africa and Arabia was eroded and then covered by Cambrian sandstones that record the onset of platform sedimentation. We applied K-feldspar 40Ar/39Ar, zircon and apatite fission track and apatite (U-Th)/He thermochronology to detritus from Cambrian sandstones of southern Israel deposited at about 500 Ma. U-Pb detrital zircon ages from these sandstones predate deposition and record the earlier Neoproterozoic crustal evolution of the Pan-African orogens. 40Ar/39Ar ages from 50 single grains of K-feldspar yield a Cambrian mean of approximately 535 Ma. The 40Ar/39Ar age spectrum of a multi-grain K-feldspar aliquot displays diffusion behaviour compatible with >560 Ma cooling later affected by a heating event. Assuming that the high temperature domains of the K-feldspars have not been affected by subsequent (hydro)thermal events, and taking previously published K-Ar and Rb-Sr ages from other parts of the East African Orogen at face value, these ages apparently record Pan-African thermal resetting below a thick volcano-sedimentary pile similar to the Saramuj conglomerate in Jordan and/or the Hammamat in Egypt. Detrital zircon fission track (ZFT) ages cluster around 380 Ma, consistent with previous ZFT results from Neoproterozoic basement and sediments of the region, revealing that the Cambrian platform sequence experienced a middle Devonian thermal event and low-grade metamorphism. Regional correlation indicates that during Devonian time the sedimentary cover atop the Cambrian in Israel was never in excess of 2.5 km, requiring an abnormally steep geothermal gradient to explain the complete ZFT annealing. A basal Carboniferous unconformity can be traced from Syria to southern Saudi Arabia, suggesting that the observed Devonian ZFT ages represent a regional tectonothermal event. Similar Devonian ZFT ages were reported from ANS basement outcrops in the Eastern Desert, 500 km south of Eilat. The detrital apatites we studied all have extremely rounded cores suggestive of a distant provenance, but some grains also feature distinct euhedral U-rich apatite overgrowth rims. Authigenic apatite may have grown during the late Devonian thermal event we dated by ZFT, coinciding with existing Rb-Sr ages from authigenic clays in the same deposits and leading to the conclusion that the Devonian event was probably hydrothermal. Like the ZFT ages, the detrital apatite fission track (AFT) ages were also completely reset after deposition. Sixty single grain detrital apatite fission track (AFT) ages group at ~270 Ma with significant dispersion. Inverse modeling of the AFT data indicate extended and/or repeated residence in the AFT partial annealing zone, in turn suggesting an episodic burial-erosion history during the Mesozoic caused by low-amplitude vertical motions. Seven detrital apatite (U-Th)/He ages scatter between 33 and 77 Ma, possibly resulting from extreme compositional zonation associated with the authigenic U-rich overgrowths. The ~70 Ma (U-Th)/He ages are more likely to be accurate, setting 1-2 km as an upper limit (depending on the geothermal gradient) on the post-Cretaceous exhumation of the Cambrian sandstone and showing no evidence for substantial denudation related to Tertiary rifting of the Red Sea.

  18. Precise U/Pb zircons dates of bentonites in Upper Ordovician and Lower Silurian reference sections in North America and Britain.

    NASA Astrophysics Data System (ADS)

    Suarez, S. E.; Brookfield, M. E.; Catlos, E. J.; Stockli, D. F.; Batchelor, R. A.

    2016-12-01

    The end of the Ordovician marks one of the greatest of the Earth's mass extinctions. One hypothesis explains this mass extinction as the result of a short-lived, major glaciation preceded by episodes of increased volcanism brought on by the Taconic orogeny. K-bentonites, weathered volcanic ash, provide evidence for increased volcanism. However, there is a lack of modern precise U-Pb dating of these ashes and some confusion in the biostratigraphy. The aim of this study is to obtain more precise U-Pb zircon ages from biostratigraphically constrained bentonites which will lead to better correlation of the Upper Ordovician and Lower Silurian relative time scales, as well as time the pulses of eruption. Zircon grains were extracted from the samples by heavy mineral separation and U-Pb dated using the Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer at the University of Texas-Austin. We report here 3 precise U-Pb zircon ages from the Trenton Group, Ontario, Canada, and Dob's Linn, Scotland. The youngest age from the top of the Kirkfield Formation in Ontario is 448.0 +/- 18 Ma, which fits with existing late Ordovician stratigraphic ages. At Dob's Linn, Scotland, the site of the Ordovician/Silurian Global Boundary Stratigraphic Section and Point (GSSP), the youngest age for DL7, a bentonite 5 meters below the GSSP is 402.0 +/- 12.0 Ma, and for DL24L, a bentonite 8 meters above the GSSP is 358.2 +/- 7.9 Ma. These are Devonian ages in current timescales - the current age for the GSSP is 443.8 +/- 1.8 Ma, based on an U/Pb dates from a bentonite 1.6 meters above the GSSP at Dob's Linn. We are confident that our techniques rule out contamination and the most likely explanation is that the small zircons we analyzed either suffered Pb loss, or grew overgrowths during low grade hydrothermal metamorphism of the sediments during the intrusion of the Southern Upland Devonian granites during the Caledonian orogeny. These Devonian ages suggest that the 443.8 +/- 1.8 Ma age may also be suspect. The Dob's Linn site is therefore unsuitable for calibrating the biostratigraphic horizons. Work in progress will provide more U-Pb dating of bentonites from around the Ordovician-Silurian boundary in Canada, United States, Britain and Scandinavia with the aim of calibrating the local series and stages in order to help in International correlations.

  19. Geology and hydrocarbon potential of the Oued Mya Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benamrane, O.; Messaoudi, M.; Messelles, H.

    1992-01-01

    The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basin in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field producing from the Cambrian sands. The western part is limited by Hassi R'mel which is one of the biggest gas field in the world, it is producing from the triassic sands. The Mesozoic section is laying on the lower Devonian and in the eastern part, on the Cambrian.more » The main source rock is the Silurian shale with an average thickness of 50m and a total organic matter of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock, but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposits with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column. The authors infer that a large amount of the oil volume generated by the Silurian source rock from the beginning of Cretaceous until now, still not discovered could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands and Cambro-Ordovician reservoirs.« less

  20. Trace Metal Characterization and Ion Exchange Capacity of Devonian to Pennsylvanian Age Bedrock in New York and Pennsylvania in Relation to Drinking Water Quality

    NASA Astrophysics Data System (ADS)

    Spradlin, J.; Fiorentino, A. J., II; Siegel, D. I.

    2014-12-01

    We report the results of an evaluation of the trace and major metal composition of shallow sedimentary rock formations in the Appalachian Basin that control the quality of potable water produced in domestic and other wells. In particular, we quantify the mobile and total metals for which there are health concerns related to unconventional gas exploitation; Fe, Mn, Sr, Ba, As, and Pb. To do this, we sampled the upper 400 feet of Devonian to Pennsylvanian aged bedrock from Marcellus, NY to State College, PA. We used a variation of the U.S. Geological Survey Field Leach Test to assess water reactivity and leaching potential. Al, Zn, and U potentially can be leached from aquifer rocks naturally under acidic conditions, such as where pyrite might oxidize, to above current allowable regulatory values for these metals (2 mg/L, 5 mg/L, and 0.03 mg/L respectively) from some of the clay-rich formations. Groundwater analyses from both New York and Pennsylvania show that natural ion exchange occurs along flow paths from ridges to valleys. We find the laboratory cation exchange capacity (CEC) spans what might be expected for illite and chlorite commonly found in these rocks. Given the low surface area of the mineral surfaces of the fractures through which most of the water moves, the observed ion exchange in these rocks is not well understood. Along with this broad scale study area we investigated a Devonian outcrop 4 miles North of Cortland, NY to evaluate small-scale trace metal heterogeneity within a single stratigraphic section. Together these two studies provide important information to determine the extent to which ground water might be naturally high in trace metal composition, either because of geochemical conditions or entrainment of suspended material not removed prior to sampling.

  1. Tabulate Corals after the Frasnian/Famennian Crisis: A Unique Fauna from the Holy Cross Mountains, Poland

    PubMed Central

    Zapalski, Mikołaj K.; Berkowski, Błażej; Wrzołek, Tomasz

    2016-01-01

    Famennian tabulate corals were very rare worldwide, and their biodiversity was relatively low. Here we report a unique tabulate fauna from the mid- and late Famennian of the western part of the Holy Cross Mountains (Kowala and Ostrówka), Poland. We describe eight species (four of them new, namely ?Michelinia vinni sp. nov., Thamnoptychia mistiaeni sp. nov., Syringopora kowalensis sp. nov. and Syringopora hilarowiczi sp. nov.); the whole fauna consists of ten species (two others described in previous papers). These corals form two assemblages—the lower, mid-Famennian with Thamnoptychia and the upper, late Famennian with representatives of genera ?Michelinia, Favosites, Syringopora and ?Yavorskia. The Famennian tabulates from Kowala represent the richest Famennian assemblage appearing after the F/F crisis (these faunas appear some 10 Ma after the extinction event). Corals described here most probably inhabited deeper water settings, near the limit between euphotic and disphotic zones or slightly above. At generic level, these faunas show similarities to other Devonian and Carboniferous faunas, which might suggest their ancestry to at least several Carboniferous lineages. Tabulate faunas described here represent new recruits (the basin of the Holy Cross mountains was not a refuge during the F/F crisis) and have no direct evolutionary linkage to Frasnian faunas from Kowala. The colonization of the seafloor took place in two separate steps: first was monospecific assemblage of Thamnoptychia, and later came the diversified Favosites-Syringopora-Michelinia fauna. PMID:27007689

  2. Tabulate Corals after the Frasnian/Famennian Crisis: A Unique Fauna from the Holy Cross Mountains, Poland.

    PubMed

    Zapalski, Mikołaj K; Berkowski, Błażej; Wrzołek, Tomasz

    2016-01-01

    Famennian tabulate corals were very rare worldwide, and their biodiversity was relatively low. Here we report a unique tabulate fauna from the mid- and late Famennian of the western part of the Holy Cross Mountains (Kowala and Ostrówka), Poland. We describe eight species (four of them new, namely ?Michelinia vinni sp. nov., Thamnoptychia mistiaeni sp. nov., Syringopora kowalensis sp. nov. and Syringopora hilarowiczi sp. nov.); the whole fauna consists of ten species (two others described in previous papers). These corals form two assemblages-the lower, mid-Famennian with Thamnoptychia and the upper, late Famennian with representatives of genera ?Michelinia, Favosites, Syringopora and ?Yavorskia. The Famennian tabulates from Kowala represent the richest Famennian assemblage appearing after the F/F crisis (these faunas appear some 10 Ma after the extinction event). Corals described here most probably inhabited deeper water settings, near the limit between euphotic and disphotic zones or slightly above. At generic level, these faunas show similarities to other Devonian and Carboniferous faunas, which might suggest their ancestry to at least several Carboniferous lineages. Tabulate faunas described here represent new recruits (the basin of the Holy Cross mountains was not a refuge during the F/F crisis) and have no direct evolutionary linkage to Frasnian faunas from Kowala. The colonization of the seafloor took place in two separate steps: first was monospecific assemblage of Thamnoptychia, and later came the diversified Favosites-Syringopora-Michelinia fauna.

  3. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.

    2011-01-01

    Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu-Au deposits from younger magmatic suites in the district. ?? 2010 Elsevier B.V.

  4. Geologic summary of the Appalachian Basin, with reference to the subsurface disposal of radioactive waste solutions

    USGS Publications Warehouse

    Colton, G.W.

    1962-01-01

    The Appalachian basin is an elongate depression in the crystalline basement complex< which contains a great volume of predominantly sedimentary stratified rocks. As defined in this paper it extends from the Adirondack Mountains in New York to central Alabama. From east to west it extends from the west flank of the Blue Ridge Mountains to the crest of the Findlay and Cincinnati arches and the Nashville dome. It encompasses an area of about 207,000 square miles, including all of West Virginia and parts of New York, New Jersey, Pennsylvania, Ohio, Maryland, Virginia, Kentucky, Tennessee, North Carolina, Georgia, and Alabama. The stratified rocks that occupy the basin constitute a wedge-shaped mass whose axis of greatest thickness lies close to and parallel to the east edge of the basin. The maximum thickness of stratified rocks preserved in any one part of the basin today is between 35,000 and 40,000 feet. The volume of the sedimentary rocks is approximately 510,000 cubic miles and of volcanic rocks is a few thousand cubic miles. The sedimentary rocks are predominantly Paleozoic in age, whereas the volcanic rocks are predominantly Late Precambrian. On the basis of gross lithology the stratified rocks overlying the crystalline basement complex can be divided into nine vertically sequential units, which are designated 'sequences' in this report. The boundaries between contiguous sequences do not necessarily coincide with the commonly recognized boundaries between systems or series. All sequences are grossly wedge shaped, being thickest along the eastern margin of the basin and thinnest along the western margin. The lowermost unit--the Late Precambrian stratified sequence--is present only along part of the eastern margin of the basin, where it lies unconformably on the basement complex. It consists largely of volcanic tuffs and flows but contains some interbedded sedimentary rocks. The Late Precambrian sequence is overlain by the Early Cambrian clastic sequence. Where the older sequence is absent, the Early Cambrian sequence rests on the basement complex. Interbedded fine- to coarse-grained noncarbonate detrital rocks comprise the bulk of the sequence, but some volcanic and carbonate rocks are included. Next above is the Cambrian-Ordovician carbonate sequence which consists largely of limestone and dolomite. Some quartzose sandstone is present in the lower part in the western half of the basin, and much shale is present in the upper part in the southeast part of the basin. The next higher sequence is the Late Ordovician clastic sequence, which consists largely of shale, siltstone, and sandstone. Coarse-grained light-gray to red rocks are common in the sequence along the eastern side of the basin, whereas fine-grained dark-gray to black calcareous rocks are common along the west side. The Late Ordovician clastic sequence is overlain--unconformably in many places--by the Early Silurian clastic sequence. The latter comprises a relatively thin wedge of coarse-grained clastic rocks. Some of the most prolific oil- and gas-producing sandstones in the Appalachian basin are included. Among these are the 'Clinton' sands of Ohio, the Medina Sandstones of New York and Pennsylvania, and the Keefer or 'Big Six' Sandstone of West Virginia and Kentucky. Conformably overlying the Early Silurian clastic sequence is the Silurian-Devonian carbonate sequence, which consists predominantly of limestone and dolomite. It also contains a salt-bearing unit in the north-central part of the basin and a thick wedge of coarse-grained red beds in the northeastern part. The sequence is absent in much of the southern part of the basin. Large volumes of gas and much oil are obtained from some of its rocks, especially from the Oriskany Sandstone and the Huntersville Chert. The Silurian-Devonian carbonate sequence is abruptly overlain by the Devonian clastic sequence--a thick succession of interbedded shale, mudrock, siltstone, and sandstone. Colors range f

  5. The Paleotethys suture in Central Iran

    NASA Astrophysics Data System (ADS)

    Bagheri, S.; Stampfli, G. M.

    2003-04-01

    The Triassic rocks of the Nakhlak area have been used to justify the hypothesis of the rotation of the Central-East Iranian microplate, mainly based on paleomagnetic data. Davoudzadeh and his coworkers (1981) pointed out the existing contrast between the Nakhlakh succession and the time-equivalent lithostratigraphic units exposed in the surrounding regions and compared them with the Triassic rocks of the Aghdarband area on the southern edge of the Turan plate. We recently gathered evidences that this part of central Iran effectively belongs to the Northern Iranian Paleo-Tethys suture zone and related Variscan terrains of the Turan plate. This is the case for the northwestern part of central Iran, where the Anarak-Khur belt (Anarak schists and their thick Cretaceous-Paleocene sedimentary cover) presents all the elements of an orogenic zone such as dismembered ophiolites and silisiclastics, calcareous and volcanic cover which has been deformed and metamorphosed. This belt is separated to the northwest from the Alborz microcontinent by the Great Kavir fault and Cretaceous ophiolite mélanges. To the southeast it is bounded by the Biabanak fault and serpentinites and the Biabanak block, part of the central-east Iranian plate. The later zone is formed by Proterozoic metamorphic basement and marine sedimentary cover, nearly continuous from the Ordovician to the Triassic, at the uppermost part upper Triassic-lower Jurassic bauxites and silisiclastics are observed. Excepted the Ordovician angular unconformities and the boundary between lower Jurassic and younger layers, this sequence displays no significant main unconformities and can be attributed to the Cimmerian super-terrain. Thus, this sequences represents the classical evolution of the southern Paleo-Tethys passive margin, as found in the Alborz microcontinent or the Band-e Bayan zone of Afghanistan and is the witness of large scale duplication of the Paleo-Tethys suture zone through major Alpine strike-slip faults. Within the Anarak-Khur belt limit and to the northeast of the Nakhlak succession, the area of Godar-e Siah of Jandaq, remnants of the Eurasian active margin are found, represented by: 1- A lower Paleozoic to upper Devonian unit consisting mainly of metamorphosed rocks including ophiolitic rocks, pelagic sediments, flysch-like deposits and shallow-water limestones of Devonian age belonging to the Anarak and Kabudan areas. Folding and thrusting was pre-Carboniferous and all geochronological dating based on K/Ar for the Anarak and Kaboudan schists placed this metamorphic event between middle Devonian and Visean. 2- the main part of the lower Carboniferous unit consists of a volcano-sedimentary complex with intercalations of limestone containing Coral, Brachiopod and Foraminiferas. Pyroclastic deposits are followed by continental red beds containing a great variety of grain types, such as hypabyssal to several types of granitoid rock fragments derived from the arc, accompanied by pebbles of chert, fossiliferous carbonate and serpentinite recycled from the accretionary complex, pointing to a fore-arc environment of deposition. 3- The middle Carboniferous to Permian unit consists of coarse littoral conglomerate and sandstones derived from ophiolitic to felsic material with some platform limestones. They represent the final infill of the fore-arc basin and rest unconformably on both the metamorphites and Lower Carboniferous units. These tectono-stratigraphic units are similar to the western Hindu Kush sequences of Afghanistan and Tuarkyr in Turkmenistan and belong to the northern active margin of Paleo-Tethys. Therefore, the Anarak-Khur belt was part of the Variscan terranes located along this margin. Volcano-sedimentary strata with Conodont-bearing limestones of Permian to Triassic age have been found in direct contact with the Biabanak fault which, therefore, is most likely following and reactivating the Paleo-Tethys suture zone.

  6. A late Frasnian (Late Devonian) radiolarian, sponge spicule, and conodont fauna from the Slaven Chert, northern Shoshone Range, Roberts Mountains allochthon, Nevada

    USGS Publications Warehouse

    Boundy-Sanders, S. Q.; Sandberg, C.A.; Murchey, B.L.; Harris, A.G.

    1999-01-01

    Co-occuring conodonts, radiolarians, and sponge spicules from the type locality of the Slaven Chert, northern Shoshone Range, Nevada, indicate that the radiolarian and sponge spicule assemblage described herein correlates with the Late rhenana conodont Zone (late Frasnian). The moderately well preserved radiolarians are the first Frasnian-age fauna described from the Western Hemisphere. They include spumellarians, Ceratoikiscum, and Paleoscenidium, and a radiolarian which we have assigned to a new genus, Durahelenifore Boundy-Sanders and Murchey, with its type species, Durahelenifore robustum Boundy-Sanders and Murchey. Sponge spicules include umbellate microscleres of the Subclass Amphidiscophora, Order Hemidiscosa, previously documented only in Pennsylvanian and younger rocks.

  7. GP Section selects Best Student Paper

    NASA Astrophysics Data System (ADS)

    The AGU Geomagnetism and Paleomagnetism (GP) Section has announced its selection of a paper entitled “Multicomponent Magnetization of the Upper Silurian-Lower Devonian Ringerike Sandstone, Adjacent Dikes, and Permian Lavas, Oslo, Norway” as the best GP student paper presented at the 1986 AGU Spring Meeting. The primary author, Dartmouth College Ph.D. candidate David Douglass, was assisted on the paper by a colleague from Lamont-Doherty Geological Observatory. Douglass received his B.S. in geology from the University of California, Los Angeles, in 1980, and in 1984, he received his M.S. in earth sciences at Dartmouth. His current studies examine the paleomagnetism, structure, and sedimentation of several North Atlantic old red sandstone basins.

  8. Devonian magmatism in the Timan Range, Arctic Russia - subduction, post-orogenic extension, or rifting?

    NASA Astrophysics Data System (ADS)

    Pease, V.; Scarrow, J. H.; Silva, I. G. Nobre; Cambeses, A.

    2016-11-01

    Devonian mafic magmatism of the northern East European Craton (EEC) has been variously linked to Uralian subduction, post-orogenic extension associated with Caledonian collision, and rifting. New elemental and isotopic analyses of Devonian basalts from the Timan Range and Kanin Peninsula, Russia, in the northern EEC constrain magma genesis, mantle source(s) and the tectonic process(es) associated with this Devonian volcanism to a rift-related context. Two compositional groups of low-K2O tholeiitic basalts are recognized. On the basis of Th concentrations, LREE concentrations, and (LREE/HREE)N, the data suggest two distinct magma batches. Incompatible trace elements ratios (e.g., Th/Yb, Nb/Th, Nb/La) together with Nd and Pb isotopes indicate involvement of an NMORB to EMORB 'transitional' mantle component mixed with variable amounts of a continental component. The magmas were derived from a source that developed high (U,Th)/Pb, U/Th and Sm/Nd over time. The geochemistry of Timan-Kanin basalts supports the hypothesis that the genesis of Devonian basaltic magmatism in the region resulted from local melting of transitional mantle and lower crust during rifting of a mainly non-volcanic continental rifted margin.

  9. Devonian of the Northern Rocky Mountains and plains

    USGS Publications Warehouse

    Sandberg, Charles A.; Mapel, William J.

    1967-01-01

    5. Undivided uppermost Devonian (Famennian, to V-VI) and lowermost Mississippian (Tournaisian, cuI-lower cuIIα) carbonaceous and clastic rocks deposited in six shallow basins interspersed among areas uplifted during the penecontemporaneous Antler orogeny.

  10. Geology and hydrology for environmental planning in Washtenaw County, Michigan

    USGS Publications Warehouse

    Fleck, William B.

    1980-01-01

    Washteaw County is underlain by glacial deposits that range in thickness from about 50 feet to about 450 feet. Underlying the glacial deposits are sedimentary rocks of Mississippian and Devonian age. The youngest of these rocks are the sandstones of the Marshall Formation in the western part of the county;  the oldest are the limestones of the Detroit River Group in the southeast corner.Sand and gravel deposits in some places in the county may yield more than 500 gallons per minute of water. Approximately 50 percent of the wells tapping the Marshall Formation, the most reliable bedrock aquifer, can yield as much as 60 gallons per minute.Washtenaw County has sand and gravel deposits that are more than 50 feet thick. The deposits are mined in several areas and are of economic importance. In addition, there may be potential for peat production in the western part of the county and for clay production in the eastern part.

  11. Stratigraphic and palaeoenvironmental summary of the south-east Georgia Embayment: a correlation of exploratory wells

    USGS Publications Warehouse

    Poppe, L.J.; Popenoe, P.; Poag, C.W.; Swift, B.A.

    1995-01-01

    A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic sandstones and shales and marginal marine Lower Cretaceous rocks. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are also described. -from Authors

  12. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen

    NASA Astrophysics Data System (ADS)

    Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong

    2018-05-01

    The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.

  13. The Frasnian-Famennian mass killing event(s), methods of identification and evaluation

    NASA Technical Reports Server (NTRS)

    Geldsetzer, H. H. J.

    1988-01-01

    The absence of an abnormally high number of earlier Devonian taxa from Famennian sediments was repeatedly documented and can hardly be questioned. Primary recognition of the event(s) was based on paleontological data, especially common macrofossils. Most paleontologists place the disappearance of these common forms at the gigas/triangularis contact and this boundary was recently proposed as the Frasnian-Famennian (F-F) boundary. Not unexpectedly, alternate F-F positions were suggested caused by temporary Frasnian survivors or sudden post-event radiations of new forms. Secondary supporting evidence for mass killing event(s) is supplied by trace element and stable isotope geochemistry but not with the same success as for the K/T boundary, probably due to additional 300 ma of tectonic and diagenetic overprinting. Another tool is microfacies analysis which is surprisingly rarely used even though it can explain geochemical anomalies or paleontological overlap not detectable by conventional macrofacies analysis. The combination of microfacies analysis and geochemistry was applied at two F-F sections in western Canada and showed how interdependent the two methods are. Additional F-F sections from western Canada, western United States, France, Germany and Australia were sampled or re-sampled and await geochemical/microfacies evaluation.

  14. Geochemistry and origin of regional dolomites

    NASA Astrophysics Data System (ADS)

    Hanson, G. N.; Meyers, W. J.

    1989-12-01

    The major goal of the carbonate research program at Stony Brook is to better understand the conditions and processes leading to regional diagenesis of carbonate rocks. Our research focuses on studies of ancient, massive dolostones, but we are also studying limestone diagenesis for its own importance, and as it relates to dolomitization. Our approach has been to carry out a very detailed petrographic and geochemical case study to the Mississippian Burlington-Keokuk Fms. of Iowa, Illinois and Missouri, and to develop this as a testing ground for new geochemical and modelling techniques, and for testing various models for regional dolomitization in epicontinental carbonates. The ideas and techniques developed in our Burlington-Keokuk studies are being expanded and applied to carbonate sequences of other ages (Devonian to Neogene), and other tectono-sedimentary settings. The emphasis of this report will be on new developments and results on the Burlington-Keokuk studies and on our diagenetic studies of other strata. Recent research on Burlington-Keokuk rocks include development and application of boron isotopes and the U--Th--Pb system to dolomite studies, investigations of porosity and permeability in the dolostones. Projects on other strata include dolomitization and limestones diagenesis of Devonian carbonates of Alberta and Western Australia, Miocene reefal carbonates of Spain, Neogene carbonates of Curacao and Bonaire, Waulsortian limestones of Ireland, modelling of trace elements and stable isotopes, and experimental growth of calcites to investigate crystallographic controls of trace element incorporation.

  15. No geochemical evidence for an asteroidal impact at late Devonian mass extinction horizon

    NASA Astrophysics Data System (ADS)

    McGhee, G. R., Jr.; Gilmore, J. S.; Orth, C. J.; Olsen, E.

    1984-04-01

    Three sedimentary sequences in New York State (Dunkirk Beach, Walnut Creek Gorge, and Mills Mills) and one sedimentary sequence in Belgium (Sinsin), that cross the Devonian Frasnian-Famennian boundary, were examined for an iridium (Ir) anomaly to determine whether the biotic extinctions at the end of the Cretaceous could have been caused by an asteroidal impact. The sampling at three of the four areas was on 2-cm center points, and 15 to 20 g of sample were collected. The instrumental neutron activation method required 5 g samples, and consequently the distance between samples was less than 1 cm. Though the Devonian samples studied had a high probability of locating an Ir anomaly, none was found. The highest Ir values were between 0.2 and 2 percent of those reported for the marine and terrestrial Ir analyses at the Cretaceous-Tertiary boundary, and Devonian pyrite-rich sediments did not exhibit high Ir concentrations.

  16. Bedded Barite Deposits from Sonora (nw Mexico): a Paleozoic Analog for Modern Cold Seeps

    NASA Astrophysics Data System (ADS)

    Canet, C.; Anadón, P.; González-Partida, E.; Alfonso, P.; Rajabi, A.; Pérez-Segura, E.; Alba-Aldave, L. A.

    2013-05-01

    The Mazatán barite deposits represent an outstanding example of Paleozoic bedded barite, a poorly understood type of mineral deposit of major economic interest. The largest barite bodies of Mazatán are hosted within an Upper Carboniferous flysch succession, which formed part of an accretionary wedge related to the subduction of the Rheic Ocean beneath Gondwana. As well, a few barite occurrences are hosted in Upper Devonian, pre-orogenic turbidites. A variety of mineralized structures is displayed by barite, including: septaria nodules, enterolitic structures, rosettes and debris-flow conglomerates. Barite is accompanied by chalcedony, pyrite (framboids) and berthierine. Gas-rich fluid inclusions in barite were analyzed by Raman spectroscopy and methane was identified, suggesting the occurrence of light hydrocarbons in the environment within which barite precipitated. 13C-depleted carbonates (δ13C: -24.3 to -18.8‰) were found in the barite deposits; they formed through anaerobic oxidation of methane coupled to sulfate reduction, and yield negative δ18O values (-11.9 to -5.2‰) reflecting the isotopic composition of Devonian-Carboniferous seawater. Methane-derived carbonates occur in modern hydrocarbon seeps and have been reported from Mesozoic and Cenozoic seep sediments, but they have never before been described in Paleozoic bedded barite deposits. δ34S of barite varies from +17.6 to +64.1‰, with the lowest values overlapping the range for coeval seawater sulfate; this distribution indicates a process of sulfate reduction. Barite precipitation can be explained by mixing of methane- and barium-rich fluids with pore-water (seawater) containing sulfate residual from microbial reduction. Two analyses from barite gave an 87Sr/86Sr within and slightly above the range for seawater at the time of deposition, with 0.708130 and 0.708588, which would preclude the involvement of hydrothermal fluids in the mineralization process.

  17. Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part 1. Ocean Features and the Category 5 Typhoons’ Intensification

    DTIC Science & Technology

    2008-09-01

    Structure and the Western North Pacific Category 5 Typhoons. Part 1: Ocean Features and the Category 5 Typhoons’ Intensification 5a. CONTRACT NUMBER...intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ &climatological upper-ocean thermal structure data, best-track...Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 3288 MONTHLY WEATHER REVIEW VOLUME 136 Upper-Ocean Thermal Structure and the Western North

  18. Tectonic setting of synorogenic gold deposits of the Pacific Rim

    USGS Publications Warehouse

    Goldfarb, R.J.; Phillips, G.N.; Nokleberg, W.J.

    1998-01-01

    More than 420 million oz of gold were concentrated in circum-Pacific synorogenic quartz loades mainly during two periods of continental growth, one along the Gondwanan margin in the Palaeozoic and the other in the northern Pacific basin between 170 and 50 Ma. These ores have many features in common and can be grouped into a single type of lode gold deposit widespread throughout clastic sedimentary-rock dominant terranes. The auriferous veins contain only a few percent sulphide minerals, have gold:silver ratios typically greater than 1:1, show a distinct association with medium grade metamorphic rocks, and may be associated with large-scale fault zone. Ore fluids are consistently of low salinity and are CO2-rich. In the early and middle Palaeozoic in the southern Pacific basin, a single immense turbidite sequence was added to the eastern margin of Gondwanaland. Deformation of these rocks in southeastern Australia was accompanied by deposition of at least 80 million oz of gold in the Victorian sector of the Lachlan fold belt mainly during the Middle and Late Devonian. Lesser Devonian gold accumulations characterized the more northerly parts of the Gondwanan margin within the Hodgkinson-Broken River and Thomson fold belts. Additional lodes were emplaced in this flyschoid sequence in Devonian or earlier Palaeozoic times in what is now the Buller Terrane, Westland, New Zealand. Minor post-Devonian growth of Gondwanaland included terrane collision and formation of gold-bearing veins in the Permian in Australia's New England fold belt and in the Jurassic-Early Cretaceous in New Zealand's Otago schists. Collision and accretion of dozens of terranes for a 100-m.y.-long period against the western margin of North America and eastern margin of Eurasia led to widespread, lattest Jurassic to Eocene gold veining in the northern Pacific basin. In the former location, Late Jurassic and Early Cretaceous veins and related placer deposits along the western margin of the Sierra Nevada batholith have yielded more than 100 million oz of gold. Additional significant ore-forming events during the development of North America's Cordilleran orogen included those in the Klamath Mountains region, California in the Late Jurassic and Early Cretaceous; the Klondike district, Yukon by the Early Cretaceous; the Nome and Fairbanks districts, Alaska, and the Bridge River district, British Columbia in the middle Cretaceous; and the Juneau gold belt, Alaska in the Eocene. Gold-bearing veins deposited during the Late Jurassic and Early Cretaceous terrane collision that formed the present-day Russian Far East have been the source for more than 130 million oz of placer gold. The abundance of gold-bearing quartz-carbonate veins throughout the Gondwanan, North American and Eurasian continental margins suggests the migration and concentration of large fluid volumes during continental growth. Such volumes could be released during orogenic heating of hydrous silicate mineral phases within accreted marine strata. The common temporal association between gold veining and magmatism around the Pacific Rim reflects these thermal episodes. Melting of the lower thickened crust during arc formation, slab rollback and extensional tectonism, and subduction of a slab window beneath the seaward part of the forearc region can all provide the required heat for initation of the ore-forming processes.

  19. Sedimentology, conodonts and ostracods of the Devonian - Carboniferous strata of the Anseremme railway bridge section, Dinant Basin, Belgium

    USGS Publications Warehouse

    Casier, J.-G.; Mamet, B.; Preat, A.; Sandberg, C.A.

    2004-01-01

    Seven major carbonate microfacies are defined in the Devonian - Carboniferous (D/C) strata (50 m) of the Anseremme railway bridge section, south of Dinant. They permit recognition of several levels encompassing the Etroeungt and Hastie??re formations. "Bathymetric" sequences range from open marine, below the storm wave base, to semi-restricted lagoon. This sequence records a shallowing-upward trend of the relative sea level, from environments below the storm wave base to strongly eroded supraticial pre-evaporitic environments. Faunal components (echinoderms, brachiopods...) indicate open-marine domain for the first six microfacies located within the dysphoticeuphotic zone in relatively shallow waters. The textures of the rocks (mudstones to rudstones) associated with lamination characteristics indicate the position of the storm (SWB) and the fair-weather (FWWB) wave bases. Microfacies seven suggests a semi-restricted platform with salinity fluctuations from hypersaline brines to brackish waters. Thus, the boundary of the Etroeungt/Hastie??re formations is marked by an abrupt drop in sea level. Carbonate micro-conglomerates recording an important erosive phase and a sedimentary hiatus. The environment is again open marine in the upper part of the Hastie??re Formation. Our conclusion is that the Anseremme section is not a reliable continuous succession for the study of the D/C boundary. This confirms the VAN STEENWINKEL (1988, 1993 hypothesis based on other arguments. Conodont faunas demonstrate that the Devonian sequence spans the five youngest conodont zones, but that two of these zones are not represented. The Epinette Formation is dated as the youngest part of the Middle expansa Zone. Thus, the boundary with the Late praesulcata Zone probably coincides with the sharp sedimentological change at the base of the Etroeungt Formation, which is interpreted to belong entirely to this zone. The disconformably overlying basal bed 159 of the Hastie??re Formation is dated as Late praesulcata Zone, with the Early and Middle praesulcata Zones unrepresented because of an hiatus or unconformity. Sparse conodont faunas suggest that only the two next-to-oldest Carboniferous duplicata and sandbergi Zones are represented in the higher part of the Hastie??re Formation. The oldest Carboniferous sulcata Zone and possibly part ofthe duplicata Zone are unrepresented because of an hiatus or unconformity above bed 159. Ostracods are abundant and diversified at most levels in the Anseremme railway bridge section and sixty taxa, the majority in open nomenclature, have been identified and nearly all of them are figured. The ostracod fauna is indicative of shallow-marine environments between fair-weather and storm wave bases in the Etroeungt Formation, and to shallower water conditions periodically subjected to minor salinity variations in the base of the Hastie??re Formation. The upper part of the Hastie??re Formation is marked by a sea-level rise associated with a moderate decrease of the oxygenation of bottom waters. The intra-Devonian hiatus at the Etroeungt-Hastie??re boundary shows no abnormal extinctions and no appearance of new taxa. Thus, the Hangenberg Event is not recognizable in the studied section. Neither the sedimentological analysis nor the palaeontological study of the Bocahut quarry in the Avesnois and of the Anseremme railway bridge section confirm the hypothesis of a highstand for the Hastie??re Formation.

  20. Lower Devonian paleomagnetic dating of a large mafic sill along the western border of the Murzuq cratonic basin (Saharan metacraton, SE Algeria).

    NASA Astrophysics Data System (ADS)

    El-M. Derder, Mohamed; Maouche, Said; Liégeois, Jean-Paul; Henry, Bernard; Amenna, Mohamed; Ouabadi, Aziouz; Bellon, Hervé; Bruguier, Olivier; Bayou, Boualem; Bestandji, Rafik; Nouar, Omar; Bouabdallah, Hamza; Ayache, Mohamed; Beddiaf, Mohamed

    2017-04-01

    The Murzuq basin located in central North Africa, in Algeria, Libya and Niger is a key area, delineating a relictual cratonic area within the Saharan metacraton (Liégeois et al., 2013). On its western border, we discovered a very large sill ("Arrikine" sill), with a thickness up to 250m and a minimum length of 35 km. It is made of mafic rocks and is interbedded within the Silurian sediments of the Tassilis series. In the vicinity, the only known post-Pan-African magmatism is the Cenozoic volcanism in the In Ezzane area. Further south in Niger, also along the SW border of the Murzuq basin, large Paleozoic dolerite (Carte géologique du Sahara central, 1962) are probably related to the "Arrikine" sill magmatism, as they are in the same stratigraphical position. Several hundred kilometers westward and southwestward of Arrikine, Paleozoic magmatic products are known: Carboniferous basic intrusives (346 Ma; Djellit et al., 2006) are located in the Tin Serririne basin and Devonian ring complexes (407 Ma; Moreau et al, 1994) in the Aïr Mountains. For the Arrikine sill, K/Ar data gave a rejuvenation age (326 Ma) related to a K-rich aplitic phase and the LA-ICP-MS U-Pb method on zircon showed that only inherited zircons are present (0.6 to 0.7, 2.0 and 2.7 Ga ages), pointing to ages from the underlying basement corresponding to the Murzuq craton covered by Pan-African sediments (Derder et al., 2016). By contrast, a well-defined paleomagnetic pole yielded an age of 410-400 Ma by comparison with the Gondwana Apparent Polar Wander Path (APWP). This age, similar to that reported for the Aïr complexes (Moreau et al., 1994), can be correlated with the deep phreatic eruption before Pragian time thought to be at the origin of sand injections, which gave circular structures observed on different borders of the Murzuq basin (Moreau et al,. 2012). This Lower Devonian magmatism had therefore a regional extension and can be related to a "Caledonian" transtensive reactivation of the western metacratonic boundary of the Murzuq craton related to distant events along the northern Gondwana margin. References Carte géologique du Sahara central, from "carte géologique du nord ouest de l'Afrique", Centre National de la Recherche Scientifique (CNRS) edition, 1/2.000.000, 1962. Derder M.E.M., Maouche S., Liégeois J.P., Henry B., Amenna M., Ouabadi A., Bellon H., Bruguier O., Bayou B., Bestandji R., Nouar O., Bouabdallah H., Ayache M., Beddiaf M., 2016. Journal of African Earth Sciences 115, 159-176 Djellit, H., Bellon, H., Ouabadi, A., Derder, M.E.M., Henry, B., Bayou, B., Khaldi, A., Baziz, K., Merahi, M.K., 2006. Comptes Rendus Geosciences. 338, 624-631. Liégeois, J.P., Abdelsalam, M.G., Ennih, N., Ouabadi, A., 2013. Gondwana Research, 23, 220-237 Moreau, C., Demaiffe, D., Bellion, Y. and Boullier, A.M., 1994. Tectonophysics, 234, 129-146. Moreau, J., Ghienne, J.F., Hurst, A., 2012. Sedimentology, 59: 1321-1344.

  1. Geometry of an outcrop-scale duplex in Devonian flysch, Maine

    USGS Publications Warehouse

    Bradley, D.C.; Bradley, L.M.

    1994-01-01

    We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.

  2. Eastern Devonian shales: Organic geochemical studies, past and present

    USGS Publications Warehouse

    Breger, I.A.; Hatcher, P.G.; Romankiw, L.A.; Miknis, F.P.

    1983-01-01

    The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Ilinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of the fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales will be reviewed. Recent solid state 13C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a "coaly" nature and hence more prone to producing natural gas.

  3. Eastern Devonian shales: Organic geochemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, I.A.; Hatchner, P.G.; Miknis, F.P.

    The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Illinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of themore » fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales are reviewed. Recent solid state /sup 13/C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a ''coaly'' nature and hence more prone to producing natural gas.« less

  4. Development of multiple unconformities during the Devonian-Carboniferous transition on parts of Laurussia

    USGS Publications Warehouse

    Ettensohn, F.R.; Pashin, J.C.

    1997-01-01

    The Devonian-Carboniferous transition on Laurussia was a time of diverse geologic activity associated with the assembly of Pangea, including episodes of Late Devonian glacial-eustatic lowstand and active orogeny on four margins. Six widespread unconformities are present in the Devonian-Carboniferous (Mississippian) interval on southern parts of Laurussia. We suggest that attention to the timing and plan of the unconformities may provide ways of discerning tectonic and climatic controls on their respective origins. Indeed, unconformities generated by pure eustasy are ideally of interregional extent, whereas unconformities generated by tectonism reflect more local factors associated with the evolution of sedimentary basins. Each of the six unconformities analyzed provides evidence for concurrent eustasy and tectonism. Glaciation was apparently the dominant factor driving the development of unconformities during the latest Devonian. During the Early Carboniferous, however, the volume of glacial ice available to drive eustasy was limited and, at times, tectonism may have been the source of a subordinate eustatic signal. Development of unconformities in southern Laurussia appear to be local manifestations of tectonic and climatic processes associated with supercontinent assembly. Thus, the time may be at hand for construction of a new global stratigraphic paradigm that is based on the plate tectonic supercycle affecting continentality and climate.

  5. Air-breathing adaptation in a marine Devonian lungfish.

    PubMed

    Clement, Alice M; Long, John A

    2010-08-23

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.

  6. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  7. Geologic map of the Rifle Falls quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Shroba, Ralph R.; Egger, Anne

    2001-01-01

    New 1:24,000-scale geologic map of the Rifle Falls 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Upper Cretaceous Iles Formation through Ordovician and Cambrian units. The Iles Formation includes the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale is divided into three members, an upper member, the Niobrara Member, and a lower member. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and the Entrada Sandstone are present. Below the Upper Jurassic Entrada Sandstone, the easternmost limit of the Lower Jurassic and Upper Triassic Glen Canyon Sandstone is recognized. Both the Upper Triassic Chinle Formation and the Lower Triassic(?) and Permian State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is divided into two members, the Schoolhouse Member and a lower member. All the exposures of the Middle Pennsylvanian Eagle Evaporite intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Middle and Lower Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group is divided into the Dyer Dolomite, which is broken into the Coffee Pot Member and the Broken Rib Member, and the Parting Formation. Ordovician through Cambrian units are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two is a large-offset, mid-Tertiary(?) Rifle Falls normal fault, that dips southward placing Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side and presumably was injected into older strata on the upthrown block creating a blister-like, steeply north-dipping sequence of Mississippian and older strata. Also, removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks that form distinctly different styles of compressive deformation called the Elk Park fold and fault complex at different parts of the toe of the slide. The major geologic hazard in the area consist of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Significant uranium and vanadium deposits were mined prior to 1980.

  8. The volcanic-sedimentary sequence of the Lousal deposit, Iberian Pyrite Belt (Portugal)

    NASA Astrophysics Data System (ADS)

    Rosa, Carlos; Rosa, Diogo; Matos, Joao; Relvas, Jorge

    2010-05-01

    The Iberian Pyrite Belt (IPB) is a massive sulfide province that is located in the south of Portugal and Spain, and hosts more than 90 massive sulfide deposits that amount to more than 1850 million metric tonnes of sulfide ore (Tornos, 2006). The ore deposits size, vary from ~1Mt to >100Mt (e.g. Neves Corvo and Aljustrel in Portugal, and Rio Tinto and Tharsis in Spain). The ore deposits are hosted by a submarine sedimentary and volcanic, felsic dominated, succession that constitutes the Upper Devonian to Lower Carboniferous Volcanic and Sedimentary Complex (VSC). The VSC ranges in thickness from approximately 600 to 1300 m (Tornos 2006). The VSC overlies the Phyllite-Quartzite Group (PQ) (Upper Devonian, base unknown) and is overlain by the Baixo Alentejo Flysch Group (Lower to Upper Carboniferous). The Lousal massive sulfide deposit is located in the western part of the IPB and occurs mostly interbedded with black mudstone. The VSC sequence at Lousal mine consists of a mudstone and quartzite sequence (PQ Group) in the lower part of the succession, over which a thick sequence of rhyolitic lavas (>300 m) occurs. Above the rhyolitic lavas there is a thick sequence of black and grey mudstone that hosts the massive sulfide ore bodies, and a rhyolitic sill. The upper part of the VSC sequence consists of a thick mudstone interval that hosts two thick basaltic units, locally with pillows. The rhyolites have small coherent cores, locally with flow bands, that grade to surrounding massive clastic intervals, with large lateral extent. The clasts show jigsaw-fit arrangement in many places and have planar or curviplanar margins and locally are perlitic at the margin. The top contact of these units is in most locations not exposed, which makes difficult to interpret the mode of emplacement. However, the thick clastic intervals, above described, are in accordance with quenching of volcanic glass with abundant water and therefore indicate that quenching of the rhyolites was the dominant fragmentation mechanism. Unlike many locations of the IPB, fiamme-rich pyroclastic units were not identified at Lousal. The ore deposits occur in close proximity with this volcanic centre that may have driven hydrothermal circulation that led to ore formation. The volcanic rocks show intense chloritic alteration, indicating that the mineralizing event occurred after most of the rhyolitic units have emplaced. The massive sulfides show abundant sedimentary structures which is not typical in the massive sulfide deposits of the IPB. The Lousal 50 Mt massive sulfide deposit consists of at least 11 ore bodies and was exploited until 1988 mainly for pyrite. The ores mined averaged 0.7% Cu, 0.8%Pb e 1.4%Zn (Strauss, 1971). These relatively low base metal grades led to an evaluation of the contents and distribution of high-tech element in the ore bodies, which would improve the economic viability of mining the deposit. This evaluation is currently focusing on the distribution and mineralogy of selenium, as ores mined in the past were known to be rich in this element. This work benefits from research projects INCA (PTDC/CTE-GIN/67027/2006; Characterization of crucial mineral resources for the development of renewable energy technologies: The Iberian Pyrite Belt ores as a source of indium and other high-technology elements) and project ARCHYMEDES II (POCTI/CTA/45873/2002), both funded by the Fundação para a Ciência e Tecnologia. REFERENCES Strauss, G.K., 1970. Sobre la geologia de la provincia piritifera del Suroeste de la Peninsula Iberica y sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal): Memoria del IGME 77, 1-266. Tornos, F., 2006. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geology Reviews 28, 259-307.

  9. Eastern Madre de Dios Devonian generated large volumes of oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, K.E.; Wagner, J.B.; Carpenter, D.G.

    This is the second part of an article giving details of a Mobil Corp. regional geological, geophysical, and geochemical study of the Madre de Dios basin. The assessment covered the distribution, richness, depositional environment, and thermal maturity of Devonian source rocks.

  10. Ichnology applied to sequence stratigraphic analysis of Siluro-Devonian mud-dominated shelf deposits, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.

    2018-04-01

    Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with regressive phases on established global sea-level curves for the Silurian-Devonian.

  11. Geologic structure and occurrence of gas in part of southwestern New York. Part 1, Structure and gas possibilities of the Oriskany sandstone in Steuben, Yates, and parts of the adjacent counties

    USGS Publications Warehouse

    Bradley, W.H.; Pepper, J.F.

    1941-01-01

    The area covered by this report is in southwestern New York and includes a little more than 3,000 square miles in Steuben and Yates counties and parts of the six adjacent counties. This area has been mapped to determine the structural attitude of the exposed rocks, so as to aid those interested in prospecting for natural gas in the Oriskany sandstone of Lower Devonian age.Because of the gentle regional dip toward the southwest, the youngest beds are exposed in the southwest corner of the area, and progressively older beds crop out northeastward in successive bands that strike generally northwest. All the exposed rocks are of Upper Devonian age except those in a narrow belt at the extreme north edge of the area, where a small thickness of Middle Devonian rocks crops out. The maximum thickness of beds so exposed is nearly 4,000 feet, of which the lower part is predominantly soft dark shale and the upper part predominantly fine-grained sandstone and gray shale. All the beds are marine except a few tongues of continental deposits red shale and sandstone and gray mudstone in the youngest beds. All the beds thicken southeastward, so that there is a northwestward convergence between any two lithologic units in the series. More than 30 key horizons that are persistent and distinctive were mapped, and altitudes on these key horizons served as a basis for constructing the structure contour map. Many of the key horizons are formation or member boundaries, but others are the tops or bottoms of limestone or sandstone beds within formations. All the stratigraphic units mapped are purely lithologic. (See pi. 2.)The Tully limestone, which crops out along the northern border of the area, is an easily recognizable and therefore valuable key bed for subsurface correlations in this part of the State. Below the Tully limestone is a thick body of Middle Devonian shales of the Hamilton group which rests on another valuable key bed, the hard, cherty Onondaga limestone, also of Middle Devonian age. Below the Onondaga limestone is the Lower Devonian Oriskany sandstone, which is the gas-producing bed. Unlike the Onondaga, the Oriskany is locally thin or absent.The structure of most of the area is shown by contour lines at 25-foot intervals, but where key horizons are lacking the structure is indicated by dip symbols. Upon the regional south and southwest dip are superposed numerous gentle folds whose axes trend approximately northeastward in the greater part of the area but more nearly eastward in the eastern part. The folds generally tend to become narrower and steeper, and therefore more closely spaced, southwestward. Many of the anticlines fork southwestward, whereas the synclines. tend to fork northeastward. All the folds have a westward or southwestward plunge. Throughout the area the rocks are jointed in two dominant sets one that trends northwest and the other east or northeast. No evident relation .between these joints, which were measured only in the hard, relatively brittle beds, and the individual folds or domes was discernible.The faults are concentrated in the northeastern and southwestern parts of the area and trend either northeastward or northwestward. Some are nearly vertical normal faults; others are steep reverse faults. Subsurface data show that most of the faults increase in throw downward and also that many subsurface faults do not reach the surface. A group of faults in the northwestern part of the Greenwood quadrangle and the southwestern part of the Hornell quadrangle were active during Upper Devonian time, while the Gowanda shale and overlying beds were being deposited. At this stratigraphic horizon the beds in a zone a few hundred feet thick are highly deformed in a wide belt on both sides of the faults. Sandstone layers are thinned out into long stringers or swollen into thick masses and in places are bent acutely without fracture. Thin layers of shale, coquina, and sand have flowed together into intricately plicated zones that lack cleavage and joints. These features show that the sediments were deformed while wet and plastic and buried only a little way below the sea floor. The beds that were laid down over these disturbed zones were not involved in this deformation. Many of the sharper flexures and most of the faults are not evident in the beds several hundred feet stratigraphically higher. Accordingly, broad, gentle folds in these higher beds in parts of the area south and west of the northwest corner of the Greenwood quadrangle may conceal, at considerable depths below them, narrow folds separated by abrupt flexures or faults.Several of the larger streams and rivers occupy strike valleys, and their j courses swing to follow the changing strike of the rocks where they cross ( successive folds. But, with few exceptions, the small streams are not adjusted to the bedrock structure. Domes likely to serve as traps for natural gas are concentrated in the northeastern and southwestern parts of the area. The Wayne-Dundee gas field is in the northeastern part. All the other potentially valuable domes in this part of the area have been drilled and found valueless except one small structural feature in the southern part of the Ovid quadrangle, which, if the Oriskany is present, may trap a small quantity of gas.In the Greenwood quadrangle in the southwestern part of the area there is one gas field and four well-defined domes, all of which may be productive if the Oriskany sandstone is present. In the northwest corner of the quadrangle the dips indicate at least two domes that can be adequately defined and evaluated only by geophysical prospecting. The State Line gas field is in tbe Wellsville quadrangle. In the southeast corner of this quadrangle there are three other domes of comparable size that may also be productive if underlain by the Oriskany sandstone. At other places in the Wellsville quadrangle the dips suggest several anticlinal axes on which analogous productive domes maybe found. The structural features in this quadrangle, however, are defined by contours only in the southeastern part. In the Woodhull quadrangle a large dome east of Jasper may be productive, and the western top of the large Woodhull dome in the southwestern part of the quadrangle seems to warrant drilling, despite the absence of the Oriskany in a well on the eastern top. Two wells drilled in 1936 and 1937 a little northeast of a broad, nearly flat-topped dome in the Hornell quadrangle, a few miles east of Hornell,, struck small flows of gas, suggesting that wells drilled higher on this dome may be productive.In much of the southwestern part of the area seismograph surveys should be of great value in determining the structure at the Tully and Onondaga horizons. Without abundant subsurface control of this sort, the danger of drilling into subsurface faults can hardly be overemphasized. Three closed or nearly closed synclines in the Greenwood and Wellsville quadrangles appear to be favorable places to drill for oil in the shallow sands presumably parts of the Dunkirk sandstone.

  12. Geologic structure and occurrence of gas in part of southwestern New York

    USGS Publications Warehouse

    Bradley, Wilmot H.; Pepper, James F.; Richardson, G.B.

    1941-01-01

    The area covered by this report is in southwestern New York and includes a little more than 3,000 square miles in Steuben and Yates counties and parts of the six adjacent counties. This area has been mapped to determine the structural attitude of the exposed rocks, so as to aid those interested in prospecting for natural gas in the Oriskany sandstone of Lower Devonian age.Because of the gentle regional dip toward the southwest, the youngest beds are exposed in the southwest corner of the area, and progressively older beds crop out northeastward in successive bands that strike generally northwest. All the exposed rocks are of Upper Devonian age except those in a narrow belt at the extreme north edge of the area, where a small thickness of Middle Devonian rocks crops out. The maximum thickness of beds so exposed is nearly 4,000 feet, of which the lower part is predominantly soft dark shale and the upper part predominantly fine-grained sandstone and gray shale. All the beds are marine except a few tongues of continental deposits—red shale and sandstone and gray mudstone—in the youngest beds. All the beds thicken southeastward, so that there is a northwestward convergence between any two lithologic units in the series. More than 30 key horizons that are persistent and distinctive were mapped, and altitudes on these key horizons served as a basis for constructing the structure contour map. Many of the key horizons are formation or member boundaries, but others are the tops or bottoms of limestone or sandstone beds within formations. All the stratigraphic units mapped are purely lithologic. (See pl. 2.)The Tully limestone, which crops out along the northern border of the area, is an easily recognizable and therefore valuable key bed for subsurface correlations in this part of the State. Below the Tully limestone is a thick body of Middle Devonian shales of the Hamilton group which rests on another valuable key bed, the hard, cherty Onondaga limestone, also of Middle Devonian age. Below the Onondaga limestone is the Lower Devonian Oriskany sandstone, which is the gas-producing bed. Unlike the Onondaga, the Oriskany is locally thin or absent.The structure of most of the area is shown by contour lines at 25-foot intervals, but, where key horizons are lacking the structure is indicated by dip symbols. Upon the regional south and southwest dip are superposed numerous gentle folds whose axes trend approximately northeastward in the greater part of the area but more nearly eastward in the eastern part. The folds generally tend to become narrower and steeper, and therefore more closely spaced, southwestward. Many of the anticlines fork southwestward, whereas the synclines tend to fork northeastward. All the folds have a westward or southwestward plunge.Throughout the area the rocks are jointed in two dominant sets—one that trends northwest and the other east or northeast. No evident relation between these joints, which were measured only in the hard, relatively brittle beds, and the individual folds or domes was discernible.The faults are concentrated in the northeastern and southwestern parts of the area and trend either northeastward or northwestward. Some are nearly vertical normal faults ; others are steep reverse faults. Subsurface data show that most of the faults increase in throw downward and also that many subsurface faults do not reach the surface. A group of faults in the northwestern part of the Greenwood quadrangle and the southwestern part of the Hornell quadrangle were active during Upper Devonian time, while the Gowanda shale and overlying beds were being deposited. At this stratigraphic horizon the beds in a zone a few hundred feet thick are highly deformed in a wide belt on both sides of the faults. Sandstone layers are thinned out into long stringers or swollen into thick masses and in places are bent acutely without fracture. Thin layers of shale, coquina, and sand have flowed together into intricately plicated zones that lack cleavage and joints. These features show that the sediments were deformed while wet and plastic and buried only a little way below the sea floor. The beds that were laid down over these disturbed zones were not involved in this deformation. Many of the sharper flexures and most of the faults are not evident in the beds several hundred feet stratigraphically higher. Accordingly, broad, gentle folds in these higher beds in parts of the area south and west of the northwest corner of the Greenwood quadrangle may conceal, at considerable depths below them, narrow folds separated by abrupt flexures or faults.Several of the larger streams and rivers occupy strike valleys, and their courses swing to follow the changing strike of the rocks where they cross successive folds. But, with few exceptions, the small streams are not adjusted to the bedrock structure.Domes likely to serve as traps for natural gas are concentrated in the northeastern and southwestern parts of the area. The Wayne-Dundee gas field is in the northeastern part. All the other potentially valuable domes in this part of the area have been drilled and found valueless except one small structural feature in the southern part of the Ovid quadrangle, which, if the Oriskany is present, may trap a small quantity of gas.In the Greenwood quadrangle in the southwestern part of the area there is one gas field and four well-defined domes, all of which may be productive if the Oriskany sandstone is present. In the northwest corner of the quadrangle the dips indicate at least two domes that can be adequately defined and evaluated only by geophysical prospecting. The State Line gas field is in the Wellsville quadrangle. In the southeast corner of this quadrangle there are three other domes of comparable size that may also be productive if underlain by the Oriskany sandstone. At other places in the Wellsville quadrangle the dips suggest several anticlinal axes on which analogous productive domes may be found. The structural features in this quadrangle, however, are defined by contours only in the southeastern part. In the Woodhull quadrangle a large dome east of Jasper may be productive, and the western top of the large Wood-hull dome in the southwestern part of the quadrangle seems to warrant drilling, despite the absence of the Oriskany in a well on the eastern top. Two wells drilled in 1936 and 1937 a little northeast of a broad, nearly flat-topped dome in the Hornell quadrangle, a few miles east of Hornell, struck small flows of gas, suggesting that wells drilled higher on this dome may be productive.In much of the southwestern part of the area seismograph surveys should be of great value in determining the structure at the Tully and Onondaga horizons. Without abundant subsurface control of this sort, the danger of drilling into subsurface faults can hardly be overemphasized.Three closed or nearly closed synclines in the Greenwood and Wellsville quadrangles appear to be favorable places to drill for oil in the shallow sands— presumably parts of the Dunkirk sandstone.

  13. Geology and total petroleum systems of the Paradox Basin, Utah, Colorado, New Mexico, and Arizona

    USGS Publications Warehouse

    Whidden, Katherine J.; Lillis, Paul G.; Anna, Lawrence O.; Pearson, Krystal M.; Dubiel, Russell F.

    2014-01-01

    The most studied source intervals are the Pennsylvanian black shales that were deposited during relative high stands in an otherwise evaporitic basin. These black shales are the source for most of the discovered hydrocarbons in the Paradox Basin. A second oil type can be traced to either a Mississippian or Permian source rock to the west, and therefore requires long-distance migration to explain its presence in the basin. Upper Cretaceous continental to nearshore-marine sandstones are interbedded with coal beds that have recognized coalbed methane potential. Precambrian and Devonian TPSs are considered hypothetical, as both are known to have organic-rich intervals, but no discovered hydrocarbons have been definitively typed back to either of these units.

  14. Ocean plateau-seamount origin of basaltic rocks, Angayucham terrane, central Alaska

    USGS Publications Warehouse

    Barker, F.; Jones, D.L.; Budahn, J.R.; Coney, P.J.

    1988-01-01

    The Angayucham terrane of north-central Alaska (immediately S of the Brooks Range) is a large (ca. 500 km E-W), allochthonous complex of Devonian to Lower Jurassic pillow basalt, diabase sills, gabbro plutons, and chert. The mafic rocks are transitional normal-to-enriched, mid-ocean-ridge (MORB) type tholeiites (TiO2 1.2-3.4%, Nb 7-23 ppm, Ta 0.24-1.08 ppm, Zr 69-214 ppm, and light REE's slightly depleted to moderately enriched). Geologic and geochemical constraints indicate that Angayucham terrane is the upper "skin' (ca. 3-4 km thick) of a long-lived (ca. 170-200 ma) oceanic plateau whose basaltic-gabbroic rocks are like those of seamounts of the East Pacific Rise. -Authors

  15. Late Proterozoic-Paleozoic evolution of the Arctic Alaska-Chukotka terrane based on U-Pb igneous and detrital zircon ages: Implications for Neoproterozoic paleogeographic reconstructions

    USGS Publications Warehouse

    Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.

    2009-01-01

    The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are similar to those in the peri-Gondwanan Avalonian-Cadomian arc system, the Timanide orogen of Baltica, and other circum-Arctic terranes that were proximal to Arctic Alaska prior to the opening of the Amerasian basin in the Early Cretaceous. Our Neoproterozoic reconstruction places the Arctic Alaska-Chukotka terrane in a position near Baltica, northeast of Laurentia, in an arc system along strike with the Avalonian-Cadomian arc terranes. Previously published faunal data indicate that Seward Peninsula had Siberian and Laurentian links by Early Ordovician time. The geologic links between the Arctic Alaska-Chukotka terrane and eastern Laurentia, Baltica, peri-Gondwanan arc terranes, and Siberia from the Paleoproterozoic to the Paleozoic help to constrain paleogeographic models from the Neoproterozoic history of Rodinia to the Mesozoic opening of the Arctic basin. ?? 2009 Geological Society of America.

  16. Unraveling the stratigraphy of the Oriskany Sandstone: A necessity in assessing its site-specific carbon sequestration potential

    USGS Publications Warehouse

    Kostelnik, J.; Carter, K.M.

    2009-01-01

    The widespread distribution, favorable reservoir characteristics, and depth make the Lower Devonian Oriskany Sandstone a viable sequestration target in the Appalachian Basin. The Oriskany Sandstone is thickest in the structurally complex Ridge and Valley Province, thins toward the northern and western basin margins, and is even absent in other parts of the basin (i.e., the no-sand area of northwestern Pennsylvania). We evaluated four regions using petrographic data, core analyses, and geophysical log analyses. Throughout the entire study area, average porosities range from 1.35 to 14%. The most notable porosity types are primary intergranular, secondary dissolution, and fracture porosity. Intergranular primary porosity dominates at stratigraphic pinch-out zones near the Oriskany no-sand area and at the western limit of the Oriskany Sandstone. Secondary porosity occurs from dissolution of carbonate constituents primarily in the combination-traps natural gas play extending through western Pennsylvania, western West Virginia, and eastern Ohio. Fracture porosity dominates in the central Appalachian Plateau Province and Valley and Ridge Province. Based on average porosity, the most likely regions for successful sequestration in the Oriskany interval are (1) updip from Oriskany Sandstone pinch-outs in eastern Ohio, and (2) western Pennsylvania, western West Virginia, and eastern Ohio where production occurs from a combination of stratigraphic and structural traps. Permeability data, where available, were used to further evaluate the potential of these regions. Permeability ranges from 0.2 to 42.7 md. Stratigraphic pinch-outs at the northern and western limits of the basin have the highest permeabilities. We recommend detailed site assessments when evaluating the sequestration potential of a given injection site based on the variability observed in the Oriskany structure, lithology, and reservoir characteristics. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Ceosciences. All rights reserved.

  17. Causes of the great mass extinction of marine organisms in the Late Devonian

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2016-11-01

    The second of the five great mass extinctions of the Phanerozoic occurred in the Late Devonian. The number of species decreased by 70-82%. Major crises occurred at the Frasnian-Famennian and Devonian-Carboniferous boundary. The lithological and geochemical compositions of sediments, volcanic deposits, impactites, carbon and oxygen isotope ratios, evidence of climate variability, and sea level changes reflect the processes that led the critical conditions. Critical intervals are marked by layers of black shales, which were deposited in euxinic or anoxic environments. These conditions were the main direct causes of the extinctions. The Late Devonian mass extinction was determined by a combination of impact events and extensive volcanism. They produced similar effects: emissions of harmful chemical compounds and aerosols to cause greenhouse warming; darkening of the atmosphere, which prevented photosynthesis; and stagnation of oceans and development of anoxia. Food chains collapsed and biological productivity decreased. As a result, all vital processes were disturbed and a large portion of the biota became extinct.

  18. Total petroleum systems of the Grand Erg/Ahnet Province, Algeria and Morocco; the Tanezzuft-Timimoun, Tanezzuft-Ahnet, Tanezzuft-Sbaa, Tanezzuft Mouydir, Tanezzuft-Benoud, and Tanezzuft-Bechar/Abadla

    USGS Publications Warehouse

    Klett, T.R.

    2000-01-01

    Undiscovered, conventional oil and gas resources were assessed within total petroleum systems of the Grand Erg/Ahnet Province (2058) as part of the U.S. Geological Survey World Petroleum Assessment 2000. The majority of the Grand Erg/ Ahnet Province is in western Algeria; a very small portion extends into Morocco. The province includes the Timimoun Basin, Ahnet Basin, Sbaa Basin, Mouydir Basin, Benoud Trough, Bechar/Abadla Basin(s), and part of the Oued Mya Basin. Although several petroleum systems may exist within each of these basins, only seven ?composite? total petroleum systems were identified. Each total petroleum system occurs in a separate basin, and each comprises a single assessment unit. The main source rocks are the Silurian Tanezzuft Formation (or lateral equivalents) and Middle to Upper Devonian mudstone. Maturation history and the major migration pathways from source to reservoir are unique to each basin. The total petroleum systems were named after the oldest major source rock and the basin in which it resides. The estimated means of the undiscovered conventional petroleum volumes in total petroleum systems of the Grand Erg/ Ahnet Province are as follows: [MMBO, million barrels of oil; BCFG, billion cubic feet of gas; MMBNGL, million barrels of natural gas liquids] Total Petroleum System MMBO BCFG MMBNGL Tanezzuft-Timimoun 31 1,128 56 Tanezzuft-Ahnet 34 2,973 149 Tanezzuft-Sbaa 162 645 11 Tanezzuft-Mouydir 12 292 14 Tanezzuft-Benoud 72 2,541 125 Tanezzuft-Bechar/Abadla 16 441 22

  19. The geology of Burnsville Cove, Bath and Highland Counties, Virginia

    USGS Publications Warehouse

    Swezey, Christopher; Haynes, John T.; Lambert, Richard A.; White, William B.; Lucas, Philip C.; Garrity, Christopher P.

    2015-01-01

    Burnsville Cove is a karst region in Bath and Highland Counties of Virginia. A new geologic map of the area reveals various units of limestone, sandstone, and siliciclastic mudstone (shale) of Silurian through Devonian age, as well as structural features such as northeast-trending anticlines and synclines, minor thrust faults, and prominent joints. Quaternary features include erosional (strath) terraces and accumulations of mud, sand, and gravel. The caves of Burnsville Cove are located within predominantly carbonate strata above the Silurian Williamsport Sandstone and below the Devonian Oriskany Sandstone. Most of the caves are located within the Silurian Tonoloway Limestone, rather than the Silurian-Devonian Keyser Limestone as reported previously.

  20. "Belgian black and red marbles" as potential candidates for Global Heritage Stone Resource

    NASA Astrophysics Data System (ADS)

    Tourneur, Francis; Pereira, Dolores

    2016-04-01

    The Paleozoic substrate of South Belgium is rich in compact limestones, able to take a good polished finishing and to be used as "marbles". Among them, the black and red varieties were and still are of special importance, intensively exploited and largely exported, almost worldwide. The pure black marbles were extracted mostly from Frasnian (Upper Devonian) and Viséan (Lower Carboniferous) strata, in many localities like Namur, Dinant, Theux and Basècles. Today only the Frasnian variety is still exploited in a spectacular underground quarry in Golzinne, close to the town of Gembloux. These black marbles, already known in Antiquity, were exported since the Middle Age, first in Western Europe, then, from the 19th c., at a larger scale, almost worldwide. Among their most frequent uses figured of course funeral objects, like the epitaph of the Pope Adrian the 1st, offered by Charlemagne and preserved in the St-Pieter basilica in Rom. Another famous reference is the tombs of the Dukes of Burgundy in Dijon, with white crystalline marble and alabaster. The red marbles are limestones from reefal origin, forming mudmounds more or less rich in fossils of Late Frasnian (Late Devonian) age. They show a strong variability in colors, from dark red to light pinkish grey, and in texture, with many sedimentary structures and/or tectonic veins. The outcrops are non-stratified, which allows extraction of large blocks, for example for high columns. Known in the Roman time, they were intensively exploited since at least the 16th c. During the 19th and beginning of 20th c., more than hundred quarries were active in South Belgium, from Rance at West to Chaudfontaine at East, around Philippeville and Rochefort. They were largely used both in civil and religious buildings, mostly for inside decoration, for examples as altars or fireplaces. Among the most symbolic places, the Belgian red marbles were massively employed in Versailles, like in the famous "Galerie des Glaces". But many examples of historical buildings are known around the world, for examples the decoration of the harem of Topkapi in Istanbul in the 19th c. or in the floors of the St-Pieter basilica in Rom. Today, only one quarry is active, in Vodelée, a village close to Philippeville but all the varieties of colors and textures can be obtained from this unique source. Both referred materials present the characteristics needed to be candidates to the Global Heritage Stone Resource designation.

  1. Paleozoic Hydrocarbon-Seep Limestones

    NASA Astrophysics Data System (ADS)

    Peckmann, J.

    2007-12-01

    To date, five Paleozoic hydrocarbon-seep limestones have been recognized based on carbonate fabrics, associated fauna, and stable carbon isotopes. These are the Middle Devonian Hollard Mound from the Antiatlas of Morocco [1], Late Devonian limestone lenses with the dimerelloid brachiopod Dzieduszyckia from the Western Meseta of Morocco [2], Middle Mississippian limestones with the dimerelloid brachiopod Ibergirhynchia from the Harz Mountains of Germany [3], Early Pennsylvanian limestones from the Tantes Mound in the High Pyrenees of France [4], and Late Pennsylvanian limestone lenses from the Ganigobis Shale Member of southern Namibia [5]. Among these examples, the composition of seepage fluids varied substantially as inferred from delta C-13 values of early diagenetic carbonate phases. Delta C-13 values as low as -50 per mil from the Tantes Mound and -51 per mil from the Ganigobis limestones reveal seepage of biogenic methane, whereas values of -12 per mil from limestones with Dzieduszyckia associated with abundant pyrobitumen agree with oil seepage. Intermediate delta C-13 values of carbonate cements from the Hollard Mound and Ibergirhynchia deposits probably reflect seepage of thermogenic methane. It is presently very difficult to assess the faunal evolution at seeps in the Paleozoic based on the limited number of examples. Two of the known seeps were typified by extremely abundant rhynchonellide brachiopods of the superfamily Dimerelloidea. Bivalve mollusks and tubeworms were abundant at two of the known Paleozoic seep sites; one was dominated by bivalve mollusks (Hollard Mound, Middle Devonian), another was dominated by tubeworms (Ganigobis Shale Member, Late Pennsylvanian). The tubeworms from these two deposits are interpreted to represent vestimentiferan worms, based on studies of the taphonomy of modern vestimentiferans. However, this interpretation is in conflict with the estimated evolutionary age of vestimentiferans based on molecular clock methods, which suggest a maximal age of 126 million years for this group. 1. Peckmann et al. (1999) Facies 40, 281. 2. Peckmann et al. (2007) Palaios 22, 114. 3. Peckmann et al. (2001) Geology 29, 271. 4. Buggisch and Krumm (2005) Facies 51, 566. 5. Himmler et al. (submitted) Palaeogeogr., Palaeoclimatol., Palaeoecol.

  2. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Devonian shale wells in Michigan. 270.306 Section 270.306 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY...) Attesting the applicant has no knowledge of any information not described in the application which is...

  3. In situ FTIR and flash pyrolysis/GC-MS characterization of Protosalvinia (Upper Devonian, Kentucky, USA): Implications for maceral classification

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Carmo, A.

    1998-01-01

    Protosalvinia from Devonian rocks in Kentucky has been analyzed using petrographic and in situ FTIR and flash pyrolysis/GC-MS techniques in order to discuss its origin and placement in organic matter classification. In reflected light, Protosalvinia resembles cutinite in shape, color and reflectance, whereas in fluorescent mode it reveals yellow-green fluorescence, reminiscent of alginite. Alkylbenzenes, alkylnaphthalenes, and n-alkanes are the principal compounds in the pyrolyzates, whereas alkylphenols and n-alk-l-enes are present in minor concentrations. FTIR results show that aliphatic bands (both in stretching and bending modes) are prominent. Protosalvinia also reveals well developed aromatic bands in the out-of-plane region. Such a mixture of aliphatic and aromatic components is not known in documented organic matter types of either marine or terrestrial origin. It is suggested that Protosalvinia might belong to rare marine organisms that yield aromatic pyrolyzates. Based on morphological features and optical properties Protosalvinia should be classified as a maceral of the liptinite group. It does not, however, fit precisely within any of the established categories of the liptinite macerals.Protosalvinia from Devonian rocks in Kentucky has been analyzed using petrographic and in situ FTIR and flash pyrolysis/GC-MS techniques in order to discuss its origin and placement in organic matter classification. In reflected light, Protosalvinia resembles cutinite in shape, color and reflectance, whereas in fluorescent mode it reveals yellow-green fluorescence, reminiscent of alginite. Alkylbenzenes, alkylnaphthalenes, and n-alkanes are the principal compounds in the pyrolyzates, whereas alkylphenols and n-alk-l-enes are present in minor concentrations. FTIR results show that aliphatic bands (both in stretching and bending modes) are prominent. Protosalvinia also reveals well developed aromatic bands in the out-of-plane region. Such a mixture of aliphatic and aromatic components is not known in documented organic matter types of either marine or terrestrial origin. It is suggested that Protosalvinia might belong to rare marine organisms that yield aromatic pyrolyzates. Based on morphological features and optical properties Protosalvinia should be classified as a maceral of the liptinite group. It does not, however, fit precisely within any of the established categories of the liptinite macerals.

  4. Evolutionary trends of stature in upper Paleolithic and Mesolithic Europe.

    PubMed

    Formicola, V; Giannecchini, M

    1999-03-01

    Long bone lengths of all available European Upper Paleolithic (41 males, 25 females) and Mesolithic (171 males, 118 females) remains have been transformed into stature estimates by means of new regression equations derived from Early Holocene skeletal samples using "Fully's anatomical stature" and the major axis regression technique (Formicola & Franceschi, 1996). Statistical analysis of the data, with reference both to time and space parameters, indicates that: (1) Early Upper Paleolithic samples (pre-Glacial Maximum) are very tall; (2) Late Upper Paleolithic groups (post-Glacial Maximum) from Western Europe, compared to their ancestors, show a marked decrease in height; (3) a further, although not significant, reduction of stature affects Western Mesolithics; (4) no regional differences have been observed during both phases of the Upper Paleolithic; (5) a high level of homogeneity has also been found in the Mesolithic, both in Western and Eastern Europe; (6) the internal homogeneity found during the Mesolithic in Western and Eastern Europe is associated with marked inter-regional variability, with populations of the latter region showing systematically significantly greater stature than their Western contemporaries. Evaluation of possible causes for the great stature of the Early Upper Paleolithic samples points to high nutritional standards as the most important factor. Results obtained on later groups clearly indicate that the Last Glacial Maximum, rather than the Mesolithic transition, is the critical phase in the negative trend affecting Western European populations. While changes in the quality of the diet, and in particular decreased protein intake, provide a likely explanation for that trend, variations in levels of gene flow probably also played a role. Reasons for the West-East Mesolithic dichotomy remain unclear and lack of information for the Late Upper Paleolithic of Eastern Europe prevents insight into the remote origins of this phenomenon. Analysis of regional differentiation of stature, particularly well supported by data from Mesolithic sites, points to the absence of today's latitudinal gradients and suggests a relative homogeneity in dietary, cultural and biodemographic patterns for the last hunter-gatherer populations of Western Europe. Copyright 1999 Academic Press.

  5. Geochemistry and origin of regional dolomites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, G.N.; Meyers, W.J.

    1989-12-01

    The major goal of the carbonate research program at Stony Brook is to better understand the conditions and processes leading to regional diagenesis of carbonate rocks. Our research focuses on studies of ancient, massive dolostones, but we are also studying limestone diagenesis for its own importance, and as it relates to dolomitization. Our approach has been to carry out a very detailed petrographic and geochemical case study to the Mississippian Burlington-Keokuk Fms. of Iowa, Illinois and Missouri, and to develop this as a testing ground for new geochemical and modelling techniques, and for testing various models for regional dolomitization inmore » epicontinental carbonates. The ideas and techniques developed in our Burlington-Keokuk studies are being expanded and applied to carbonate sequences of other ages (Devonian to Neogene), and other tectono-sedimentary settings. The emphasis of this report will be on new developments and results on the Burlington-Keokuk studies and on our diagenetic studies of other strata. Recent research on Burlington-Keokuk rocks include development and application of boron isotopes and the U--Th--Pb system to dolomite studies, investigations of porosity and permeability in the dolostones. Projects on other strata include dolomitization and limestones diagenesis of Devonian carbonates of Alberta and Western Australia, Miocene reefal carbonates of Spain, Neogene carbonates of Curacao and Bonaire, Waulsortian limestones of Ireland, modelling of trace elements and stable isotopes, and experimental growth of calcites to investigate crystallographic controls of trace element incorporation. 118 refs., 46 figs.« less

  6. Crocodilian faunal renewal in the Upper Oligocene of Western Europe

    NASA Astrophysics Data System (ADS)

    Antunes, Miguel Telles; Cahuzac, Bruno

    1999-01-01

    The presence of Tomistomine Crocodilians ( Tomistoma sp.) is first recorded in the Upper Oligocene of Western Europe (Chattian, Saint-Geours-de-Maremne, Aquitaine basin). Immigration, probably of Asiatic origin, occurred ca. 26 Ma, prior to the previously earliest records for Lowermost Miocene. Tomistoma points to warm, at least subtropical environments, in agreement with data on invertebrates and fish fauna. Immigrations to Western Europe of Tomistoma (and of Gavialis, in Miocene times) during Upper Oligocene and Lower-Middle Miocene seem related to climatic warming and eustatic rise events. There was a renewal of the European Crocodilian fauna, much impoverished in Late Eocene and reduced to Diplocynodon.

  7. The pre-Mesozoic tectonic unit division of the Xing-Meng orogenic belt (XMOB)

    NASA Astrophysics Data System (ADS)

    Xu, Bei; Zhao, Pan

    2014-05-01

    According to the viewpoint that the paleo-Asian ocean closed by the end of early Paleozoic and extended during the late Paleozoic, a pre-Mesozoic tectonic unit division has been suggested. Five blocks and four sutures have been recognized in the pre-Devonia stage, the five blocks are called Erguna (EB), Xing'an (XB), Airgin Sum-Xilinhot (AXB), Songliao-Hunshandak (SHB) and Jiamusi (JB) blocks and four sutures, Xinlin-Xiguitu (XXS), Airgin Sum-Xilinhot-Heihe (AXHS), Ondor Sum-Jizhong-Yanji (OJYS) and Mudanjiang (MS) sutures. The EB contains the Precambrian base with the ages of 720-850Ma and ɛHf(T)=+2.5to +8.1. The XB is characterized by the Paleoproterozoic granitic gneiss with ɛHf(T)=-3.9 to -8.9. Several ages from 1150 to 1500 Ma bave been acquired in the AXB, proving presence of old block that links with Hutag Uul block in Mongolia to the west. The Paleoproterozoic (1.8-1.9Ga) and Neoproterozoic (750-850Ma) ages have been reported from southern and eastern parts of the SHB, respectively. As a small block in east margin of the XMOB, the JB outcrops magmatite and granitic gneiss bases with ages of 800-1000Ma. The XXS is marked by blueschists with zircon ages of 490-500Ma in Toudaoqiao village, ophiolites in Xiguitu County and granite with ages of about 500Ma along the northern segment of XXS. The AXHS is characterized by the early Paleozoic arc magmatic rocks with ages from 430Ma to 490Ma, mélange and the late Devonia molass basins, which indicates a northward subduction of the SHB beneath the AXB during the early-middle Paleozoic. The OJYS is composed of the early Paleozoic volcanic rocks, diorites and granites with ages of 425-475Ma, blueschists, ophiolitic mélange, the late Silurian flysch and Early-Middle Devonian molasses in western segment, granites (420-450Ma) in middle segment, and plagiogranites (443Ma) and the late Silurian molasses in eastern segment. This suture was caused by a southward subduction of the SHB beneath the North China block. The MS is between the SHB and JB, marked by the three phase granites of 485, 450 and 425Ma in the SHB. Tectonic units of the middle Devonian-Carboniferous tectonic stage include the middle-late Devonian continental basin, Carboniferious continental and epeiric sea basin, intrusive and irruptive igneous rock belt with ages from 300Ma to 330Ma containing granites, diorites, gabbros and biomodal volcanic rocks, and early Carboniferious ophiolites of 330-350Ma in Hegenshan and Erenhot. The Permian tectonic units can be divided into continental rift belt, ophiolite belt, alkaline rock belt and "red sea"-like ocean basin, which indicates an continuous extension environment during the Permian. The continental rift belt is composed of thick continental sedimentary rocks containing plant fossils, biomodal volcanic rocks (270-290Ma). The alkaline rocks can be divided into north and south belts by their distribution. The Solonker ophiolite is a thrust sheet that is inserted in a thrust stack containing the Upper Carboniferious epeiric sea clastic rocks and carbornates. The "red sea"-like ocean basin is characterized by basalt sequences with ages of 246-260Ma, which shows an affinity to E-MORB and a tendency towards OIB.

  8. Chapter 1: An overview of the petroleum geology of the Arctic

    USGS Publications Warehouse

    Spencer, A.M.; Embry, A.F.; Gautier, D.L.; Stoupakova, A.V.; Sorensen, K.

    2011-01-01

    Nine main petroleum provinces containing recoverable resources totalling 61 Bbbl liquids + 269 Bbbloe of gas are known in the Arctic. The three best known major provinces are: West Siberia-South Kara, Arctic Alaska and Timan-Pechora. They have been sourced principally from, respectively, Upper Jurassic, Triassic and Devonian marine source rocks and their hydrocarbons are reservoired principally in Cretaceous sandstones, Triassic sandstones and Palaeozoic carbonates. The remaining six provinces except for the Upper Cretaceous-Palaeogene petroleum system in the Mackenzie Delta have predominantly Mesozoic sources and Jurassic reservoirs. There are discoveries in 15% of the total area of sedimentary basins (c. 8 ?? 106 km2), dry wells in 10% of the area, seismic but no wells in 50% and no seismic in 25%. The United States Geological Survey estimate yet-to-find resources to total 90 Bbbl liquids + 279 Bbbloe gas, with four regions - South Kara Sea, Alaska, East Barents Sea, East Greenland - dominating. Russian estimates of South Kara Sea and East Barents Sea are equally positive. The large potential reflects primarily the large undrilled areas, thick basins and widespread source rocks. ?? 2011 The Geological Society of London.

  9. Thermal maturity of northern Appalachian Basin Devonian shales: Insights from sterane and terpane biomarkers

    USGS Publications Warehouse

    Hackley, Paul C.; Ryder, Robert T.; Trippi, Michael H.; Alimi, Hossein

    2013-01-01

    To better estimate thermal maturity of Devonian shales in the northern Appalachian Basin, eleven samples of Marcellus and Huron Shale were characterized via multiple analytical techniques. Vitrinite reflectance, Rock–Eval pyrolysis, gas chromatography (GC) of whole rock extracts, and GC–mass spectrometry (GCMS) of extract saturate fractions were evaluated on three transects that lie across previously documented regional thermal maturity isolines. Results from vitrinite reflectance suggest that most samples are immature with respect to hydrocarbon generation. However, bulk geochemical data and sterane and terpane biomarker ratios from GCMS suggest that almost all samples are in the oil window. This observation is consistent with the presence of thermogenic gas in the study area and higher vitrinite reflectance values recorded from overlying Pennsylvanian coals. These results suggest that vitrinite reflectance is a poor predictor of thermal maturity in early mature areas of Devonian shale, perhaps because reported measurements often include determinations of solid bitumen reflectance. Vitrinite reflectance interpretations in areas of early mature Devonian shale should be supplanted by evaluation of thermal maturity information from biomarker ratios and bulk geochemical data.

  10. Euryhaline ecology of early tetrapods revealed by stable isotopes.

    PubMed

    Goedert, Jean; Lécuyer, Christophe; Amiot, Romain; Arnaud-Godet, Florent; Wang, Xu; Cui, Linlin; Cuny, Gilles; Douay, Guillaume; Fourel, François; Panczer, Gérard; Simon, Laurent; Steyer, J-Sébastien; Zhu, Min

    2018-06-01

    The fish-to-tetrapod transition-followed later by terrestrialization-represented a major step in vertebrate evolution that gave rise to a successful clade that today contains more than 30,000 tetrapod species. The early tetrapod Ichthyostega was discovered in 1929 in the Devonian Old Red Sandstone sediments of East Greenland (dated to approximately 365 million years ago). Since then, our understanding of the fish-to-tetrapod transition has increased considerably, owing to the discovery of additional Devonian taxa that represent early tetrapods or groups evolutionarily close to them. However, the aquatic environment of early tetrapods and the vertebrate fauna associated with them has remained elusive and highly debated. Here we use a multi-stable isotope approach (δ 13 C, δ 18 O and δ 34 S) to show that some Devonian vertebrates, including early tetrapods, were euryhaline and inhabited transitional aquatic environments subject to high-magnitude, rapid changes in salinity, such as estuaries or deltas. Euryhalinity may have predisposed the early tetrapod clade to be able to survive Late Devonian biotic crises and then successfully colonize terrestrial environments.

  11. Timber resource of Michigan's Western Upper Peninsula Unit, 1980.

    Treesearch

    John S. Jr. Spencer

    1982-01-01

    The fourth inventory of the timber resource of Michigan's Western Upper Peninsula Survey Unit shows an 8% decline in commercial forest area and a 22% gain in growing-stock volume between 1966 and 1980. Presented are highlights and statistics on area, volume, growth, motility, removals, utilization, and biomass.

  12. Forest statistics for Michigan's Western Upper Peninsula Unit, 1993.

    Treesearch

    Earl C. Leatherberry

    1994-01-01

    The fifth inventory of Michigan's Western Upper Peninsula Unit reports 12,329.1 million acres of land, of which 4,836.5 million acres are forested. This bulletin presents statistical highlights and contains detailed tables of forest area, as well as timber volume, growth, removals, mortality, and ownership.

  13. Geology of the Devonian Marcellus Shale--Valley and Ridge province, Virginia and West Virginia--a field trip guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28-29, 2011

    USGS Publications Warehouse

    Enomoto, Catherine B.; Coleman, James L.; Haynes, John T.; Whitmeyer, Steven J.; McDowell, Ronald R.; Lewis, J. Eric; Spear, Tyler P.; Swezey, Christopher S.

    2012-01-01

    Detailed and reconnaissance field mapping and the results of geochemical and mineralogical analyses of outcrop samples indicate that the Devonian shales of the Broadtop Synclinorium from central Virginia to southern Pennsylvania have an organic content sufficiently high and a thermal maturity sufficiently moderate to be considered for a shale gas play. The organically rich Middle Devonian Marcellus Shale is present throughout most of the synclinorium, being absent only where it has been eroded from the crests of anticlines. Geochemical analyses of outcrop and well samples indicate that hydrocarbons have been generated and expelled from the kerogen originally in place in the shale. The mineralogical characteristics of the Marcellus Shale samples from the Broadtop Synclinorium are slightly different from the averages of samples from New York, Pennsylvania, northeast Ohio, and northern West Virginia. The Middle Devonian shale interval is moderately to heavily fractured in all areas, but in some areas substantial fault shearing has removed a regular "cleat" system of fractures. Conventional anticlinal gas fields in the study area that are productive from the Lower Devonian Oriskany Sandstone suggest that a continuous shale gas system may be in place within the Marcellus Shale interval at least in a portion of the synclinorium. Third-order intraformational deformation is evident within the Marcellus shale exposures. Correlations between outcrops and geophysical logs from exploration wells nearby will be examined by field trip attendees.

  14. The Neoacadian orogenic core of the souther Appalachians: a Geo-traverse through the migmatitic inner Piedmont from the Brushy Mountains to Lincolnton, North Carolina

    USGS Publications Warehouse

    Merschat, Arthur J.; Hatcher, Robert D.; Byars, Heather E.; Gilliam, William G.; Eppes, Martha Cary; Bartholomew, Mervin J.

    2012-01-01

    The Inner Piedmont extends from North Carolina to Alabama and comprises the Neoacadian (360–345 Ma) orogenic core of the southern Appalachian orogen. Bordered to west by the Blue Ridge and the exotic Carolina superterrane to the east, the Inner Piedmont is cored by an extensive region of migmatitic, sillimanite-grade rocks. It is a composite of the peri-Laurentian Tugaloo terrane and mixed Laurentian and peri-Gondwanan affinity Cat Square terrane, which are exposed in several gentle-dipping thrust sheets (nappes). The Cat Square terrane consists of Late Silurian to Early Devonian pelitic schist and metagraywacke intruded by several Devonian to Mississippian peraluminous granitoids, and juxtaposed against the Tugaloo terrane by the Brindle Creek fault. This field trip through the North Carolina Inner Piedmont will examine the lithostratigraphies of the Tugaloo and Cat Square terranes, deformation associated with Brindle Creek fault, Devonian-Mississippian granitoids and charnockite of the Cat Square terrane, pervasive amphibolite-grade Devonian-Mississippian (Neoacadian) deformation and metamorphism throughout the Inner Piedmont, and existence of large crystalline thrust sheets in the Inner Piedmont. Consistent with field observations, geochronology and other data, we have hypothesized that the Carolina superterrane collided obliquely with Laurentia near the Pennsylvania embayment during the Devonian, overrode the Cat Square terrane and Laurentian margin, and squeezed the Inner Piedmont out to the west and southwest as an orogenic channel buttressed against the footwall of the Brevard fault zone.

  15. The Devonian Marcellus Shale and Millboro Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.

    2014-01-01

    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  16. An exceptionally preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in ray-finned fishes

    PubMed Central

    Giles, Sam; Darras, Laurent; Clément, Gaël; Blieck, Alain; Friedman, Matt

    2015-01-01

    Actinopterygians (ray-finned fishes) are the most diverse living osteichthyan (bony vertebrate) group, with a rich fossil record. However, details of their earliest history during the middle Palaeozoic (Devonian) ‘Age of Fishes' remains sketchy. This stems from an uneven understanding of anatomy in early actinopterygians, with a few well-known species dominating perceptions of primitive conditions. Here we present an exceptionally preserved ray-finned fish from the Late Devonian (Middle Frasnian, ca 373 Ma) of Pas-de-Calais, northern France. This new genus is represented by a single, three-dimensionally preserved skull. CT scanning reveals the presence of an almost complete braincase along with near-fully articulated mandibular, hyoid and gill arches. The neurocranium differs from the coeval Mimipiscis in displaying a short aortic canal with a distinct posterior notch, long grooves for the lateral dorsal aortae, large vestibular fontanelles and a broad postorbital process. Identification of similar but previously unrecognized features in other Devonian actinopterygians suggests that aspects of braincase anatomy in Mimipiscis are apomorphic, questioning its ubiquity as stand-in for generalized actinopterygian conditions. However, the gill skeleton of the new form broadly corresponds to that of Mimipiscis, and adds to an emerging picture of primitive branchial architecture in crown gnathostomes. The new genus is recovered in a polytomy with Mimiidae and a subset of Devonian and stratigraphically younger actinopterygians, with no support found for a monophyletic grouping of Moythomasia with Mimiidae. PMID:26423841

  17. Paleozoic carbonate buildup (reef) inventory, central and southeastern Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacson, P.E.

    1987-08-01

    Knowledge of central and southeastern Idaho's Paleozoic rocks to date suggest that three styles of buildup (reef) complexes occur in Late Devonian, Mississippian, and Pennsylvanian-Permian time. The Late Devonian Jefferson Formation has stromatoporoid and coral (both rugosan and tabulate) organisms effecting a buildup in the Grandview Canyon vicinity; Early Mississippian Waulsortian-type mud mounds occur in the Lodgepole formation of southeastern Idaho; there are Late Mississippian Waulsortian-type mounds in the Surrett Canyon Formation of the Lost River Range; and cyclic Pennsylvanian-Permian algal and hydrozoan buildups occur in the Juniper gulch Member of the Snaky Canyon Formation in the Arco Hills andmore » Lemhi Range. Late Devonian (Frasnian) carbonates of the Jefferson formation show buildup development on deep ramp sediments.« less

  18. Relating Stress Drop Variations with Geological Setting for Injection-Induced Seismicity and Its Seismic Hazard Implications

    NASA Astrophysics Data System (ADS)

    Urbancic, T.; Viegas, G. F.; Baig, A.

    2017-12-01

    We observe conflicting stress drop estimates of M0 to M4 injection-induced earthquakes in two regions of the Western Canadian Sedimentary Basin. Induced earthquakes in the Horn River Basin show lower stress drops than induced earthquakes in the Duvernay Basin by a factor of 10 to 20. Higher stress drop earthquakes have a significant role in seismic hazard as they generate higher frequency strong ground motions which can potentially cause more damages, making it important to understand its causes. Both earthquake datasets occur below shale reservoirs under hydraulic-fracture stimulation programs. Both treatment programs target the same shale formation (Muskwa in Horn River Basin and Duvernay in Duvernay Basin) at approximately the same depth (3 km). Both reservoirs are located to the edge of the Western Canadian Sedimentary Basin bordering the Rocky Mountains and are under the same tectonic setting, both currently and during the Devonian depositional phase. The major observable difference is the local geology. While the Horn River Basin in northeast British Columbia shows mostly continuous horizontal stratification the Duvernay shale in the Fox Creek region in Alberta drapes over Leduc Formation reefs which cross-cut it as chains of reefs, isolated atolls and isolated pinnacles. Schultz et al. (2017) showed that induced seismicity in the Duvernay Basin region occurs primarily in the margins of the Devonian carbonate reefs (10 to 20 km away) where optimally oriented basement faults exist. The fault system is in part associated with basement tectonism and isostatic compensation mechanisms involved in the reefs diagenesis. We propose that the observed stress drop differences are caused by different regional stress characteristics, with events occurring in more stressed regions having higher stress drops. These areas of higher stress are found at the margins of the denser Leduc reefs formation and may be caused either by load transfer, isostatic compensation mechanisms, and accumulation of strain energy in the underlying fault system. The geological setting in which earthquakes occur may be a more important factor than previously considered in seismic hazard studies.

  19. Sedimentary records on the subduction-accretion history of the Russian Altai, northwestern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Sun, Min

    2017-04-01

    The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of intermediate-felsic igneous rocks, highlighting both crustal growth and recycling. Importantly, a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sedimentary sequence of the GA. These detrital zircons possibly have the same source as their counterpart from the AM. This implies that the two terranes with countrary evolutionary history, i.e. the GA and AM, amalgamated before the early Devonian. To summary, the AM and GA represented two separated subduction-accretion systems in the early Paleozoic and subsequently amalgamated prior to the early Devonian, documenting complicated accretionary orogenesis and significant lateral crustal growth in the CAOB. Acknowledgement This study is financially supported by the Major Research Project of the Ministry of Science and Technology of China (2014CB44801 and 2014CB448000), Hong Kong Research Grant Council (HKU705313P and HKU17303415), National Science Foundation of China (41273048) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132731).

  20. Climate effects caused by land plant invasion in the Devonian

    NASA Astrophysics Data System (ADS)

    Hir guillaume, Le; yannick, Donnadieu; yves, Goddéris; brigitte, Meyer-Berthaud; gilles, Ramstein

    2017-04-01

    Land plants invaded continents during the Mid-Paleozoic. Their spreading and diversification have been compared to the Cambrian explosion in terms of intensity and impact on the diversification of life on Earth. Whereas prior studies were focused on the evolution of the root system and its weathering contribution, here we investigated the biophysical impacts of plant colonization on the surface climate through changes in continental albedo, roughness, thermal properties, and potential evaporation using a 3D-climate model coupled to a global biogeochemical cycles associated to a simple model for vegetation dynamics adapted to Devonian conditions. From the Early to the Late Devonian, we show that continental surface changes induced by land plants and tectonic drift have produced a large CO2 drawdown without being associated to a global cooling, because the cooling trend is counteracted by a warming trend resulting from the surface albedo reduction. If CO2 is consensually assumed as the main driver of the Phanerozoic climate, during land-plant invasion, the modifications of soil properties could have played in the opposite direction of the carbon dioxide fall, hence maintaining warm temperatures during part of the Devonian.

  1. A Systems Approach to Identifying Exploration and Development Opportunities in the Illinois Basin: Digital Portifolio of Plays in Underexplored Lower Paleozoic Rocks [Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyler, Beverly; Harris, David; Keith, Brian

    2008-06-30

    This study examined petroleum occurrence in Ordovician, Silurian and Devonian reservoirs in the Illinois Basin. Results from this project show that there is excellent potential for additional discovery of petroleum reservoirs in these formations. Numerous exploration targets and exploration strategies were identified that can be used to increase production from these underexplored strata. Some of the challenges to exploration of deeper strata include the lack of subsurface data, lack of understanding of regional facies changes, lack of understanding the role of diagenetic alteration in developing reservoir porosity and permeability, the shifting of structural closures with depth, overlooking potential producing horizons,more » and under utilization of 3D seismic techniques. This study has shown many areas are prospective for additional discoveries in lower Paleozoic strata in the Illinois Basin. This project implemented a systematic basin analysis approach that is expected to encourage exploration for petroleum in lower Paleozoic rocks of the Illinois Basin. The study has compiled and presented a broad base of information and knowledge needed by independent oil companies to pursue the development of exploration prospects in overlooked, deeper play horizons in the Illinois Basin. Available geologic data relevant for the exploration and development of petroleum reservoirs in the Illinois Basin was analyzed and assimilated into a coherent, easily accessible digital play portfolio. The primary focus of this project was on case studies of existing reservoirs in Devonian, Silurian, and Ordovician strata and the application of knowledge gained to future exploration and development in these underexplored strata of the Illinois Basin. In addition, a review of published reports and exploration in the New Albany Shale Group, a Devonian black shale source rock, in Illinois was completed due to the recent increased interest in Devonian black shales across the United States. The New Albany Shale is regarded as the source rock for petroleum in Silurian and younger strata in the Illinois Basin and has potential as a petroleum reservoir. Field studies of reservoirs in Devonian strata such as the Geneva Dolomite, Dutch Creek Sandstone and Grassy knob Chert suggest that there is much additional potential for expanding these plays beyond their current limits. These studies also suggest the potential for the discovery of additional plays using stratigraphic concepts to develop a subcrop play on the subkaskaskia unconformity boundary that separates lower Devonian strata from middle Devonian strata in portions of the basin. The lateral transition from Geneva Dolomite to Dutch Creek Sandstone also offers an avenue for developing exploration strategies in middle Devonian strata. Study of lower Devonian strata in the Sesser Oil Field and the region surrounding the field shows opportunities for development of a subcrop play where lower Devonian strata unconformably overlie Silurian strata. Field studies of Silurian reservoirs along the Sangamon Arch show that opportunities exist for overlooked pays in areas where wells do not penetrate deep enough to test all reservoir intervals in Niagaran rocks. Mapping of Silurian reservoirs in the Mt. Auburn trend along the Sangamon Arch shows that porous reservoir rock grades laterally to non-reservoir facies and several reservoir intervals may be encountered in the Silurian with numerous exploration wells testing only the uppermost reservoir intervals. Mapping of the Ordovician Trenton and shallower strata at Centralia Field show that the crest of the anticline shifted through geologic time. This study illustrates that the axes of anticlines may shift with depth and shallow structure maps may not accurately predict structurally favorable reservoir locations at depth.« less

  2. Difference in tree growth responses to climate at the upper treeline: Qilian Juniper in the Anyemaqen Mountains.

    PubMed

    Peng, Jianfeng; Gou, Xiaohua; Chen, Fahu; Li, Jinbao; Liu, Puxing; Zhang, Yong; Fang, Keyan

    2008-08-01

    Three ring-width chronologies were developed from Qilian Juniper (Sabina przewalskii Kom.) at the upper treeline along a west-east gradient in the Anyemaqen Mountains. Most chronological statistics, except for mean sensitivity (MS), decreased from west to east. The first principal component (PC1) loadings indicated that stands in a similar climate condition were most important to the variability of radial growth. PC2 loadings decreased from west to east, suggesting the difference of tree-growth between eastern and western Anyemaqen Mountains. Correlations between standard chronologies and climatic factors revealed different climatic influences on radial growth along a west-east gradient in the study area. Temperature of warm season (July-August) was important to the radial growth at the upper treeline in the whole study area. Precipitation of current May was an important limiting factor of tree growth only in the western (drier) upper treeline, whereas precipitation of current September limited tree growth in the eastern (wetter) upper treeline. Response function analysis results showed that there were regional differences between tree growth and climatic factors in various sampling sites of the whole study area. Temperature and precipitation were the important factors influencing tree growth in western (drier) upper treeline. However, tree growth was greatly limited by temperature at the upper treeline in the middle area, and was more limited by precipitation than temperature in the eastern (wetter) upper treeline.

  3. Cope's Rule and Romer's theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates

    PubMed Central

    Lamsdell, James C.; Braddy, Simon J.

    2010-01-01

    Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates. PMID:19828493

  4. The first direct evidence of a Late Devonian coelacanth fish feeding on conodont animals

    NASA Astrophysics Data System (ADS)

    Zatoń, Michał; Broda, Krzysztof; Qvarnström, Martin; Niedźwiedzki, Grzegorz; Ahlberg, Per Erik

    2017-04-01

    We describe the first known occurrence of a Devonian coelacanth specimen from the lower Famennian of the Holy Cross Mountains, Poland, with a conodont element preserved in its digestive tract. A small spiral and phosphatic coprolite (fossil excrement) containing numerous conodont elements and other unrecognized remains was also found in the same deposits. The coprolite is tentatively attributed to the coelacanth. Although it is unclear whether the Late Devonian coelacanth from Poland was an active predator or a scavenger, these finds provide the first direct evidence of feeding on conodont animals by early coelacanth fish, and one of the few evidences of feeding on these animals known to date. It also expands our knowledge about the diet and trophic relations between the Paleozoic marine animals in general.

  5. Birth and demise of the Rheic Ocean magmatic arc(s): Combined U-Pb and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Gutíerrez-Alonso, G.; Murphy, J. B.; Drost, K.; Gama, C.; Silva, J. B.

    2017-05-01

    Paleozoic continental reconstructions indicate that subduction of Rheic oceanic lithosphere led to collision between Laurussia and Gondwana which was a major event in the formation of the Ouachita-Appalachian-Variscan orogenic belt and the amalgamation of Pangea. However, arc systems which record Rheic Ocean subduction are poorly preserved. The preservation of Devonian detrital zircon in Late Devonian-Early Carboniferous siliciclastic rocks of SW Iberia, rather than arc-related igneous rocks indicates that direct evidence of the arc system may have been largely destroyed by erosion. Here we report in-situ detrital zircon U-Pb isotopic analyses of Late Devonian-Early Carboniferous siliciclastic rocks from the Pulo do Lobo Zone, which is a reworked Late Paleozoic suture zone located between Laurussia and Gondwana. Detrital zircon age spectra from the Pulo do Lobo Zone Frasnian formations show striking similarities, revealing a wide range of ages dominated by Neoproterozoic and Paleoproterozoic grains sourced from rocks typical of peri-Gondwanan terranes, such as Avalonia, the Meguma terrane and the Ossa-Morena Zone. Pulo do Lobo rocks also include representative populations of Mesoproterozoic and Early Silurian zircons that are typical of Avalonia and the Meguma terrane which are absent in the Ossa-Morena Zone. The Famennian-Tournaisian formations from the Pulo do Lobo Zone, however, contain more abundant Middle-Late Devonian zircon indicating the contribution from a previously unrecognized source probably related to the Rheic Ocean magmatic arc(s). The Middle-Late Devonian to Early Carboniferous zircon ages from the siliciclastic rocks of SW Iberia (South Portuguese, Pulo do Lobo and Ossa-Morena zones) have a wide range in εHfT values (- 8.2 to + 8.3) indicating the likely crystallization from magmas formed in a convergent setting. The missing Rheic Ocean arc was probably built on a Meguma/Avalonia type basement. We propose for the Pulo do Lobo Zone that the Frasnian sedimentation occurred through the opening of a back-arc basin formed along the Laurussian active margin during Rheic Ocean subduction, as has been recently proposed for the Rhenohercynian Zone in Central Europe. Detrital zircon ages in the Frasnian siliciclastic rocks indicate provenance in the Meguma terrane, Avalonia and Devonian Rheic Ocean arc(s). As a result of back-arc basin inversion, the Frasnian formations underwent deformation, metamorphism and denudation and were unconformably overlain by Famennian to Visean siliciclastic strata (including the Phyllite-Quartzite Formation of the South Portuguese Zone). The Latest Devonian-Early Carboniferous detritus were probably shed to the Pulo do Lobo Zone (Represa and Santa Iria formations) by recycling of Devonian siliciclastic rocks, from the South Portuguese Zone (Meguma terrane) and from a new distinct source with Baltica/Laurentia derivation (preserved in the Horta da Torre Formation and Alajar Mélange).

  6. Paleotopography and substrate lithology as controls on initiation of Waulsortian Reef Growth: examples from Sacramento Mountains, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahr, W.M.; Blount, W.M.; George, P.G.

    1986-05-01

    Frameless mud mounds, usually called Waulsortian reefs, are common in Osagean and Kinderhookian rocks of North America and western Europe. Spectacular Waulsortian reefs crop out in the Sacramento Mountains of New Mexico along 10 mi of continuous exposure, where detailed petrographic studies and field measurements of the strata between the top of the Devonian and the base of the reefs reveal: (1) down-to-the-southwest paleoslope on an uneven, gently dipping ramp; (2) widespread deposition of skeletal packstones and siliciclastics to the northeast; (3) patchy, local thicks of skeletal packstones surrounded by shaly wackestones to the southwest; (4) relict highs on themore » Devonian surface beneath the skeletal packstone pods; (5) clusters of sheetlike reefs weakly associated with paleotopography in the northern outcrops; and (6) large, dome-like individual reefs strongly associated with depositional topography and skeletal packstone/grainstone substrates in the southern outcrops. The pre-reef strata do not exhibit abrupt changes in thickness or lithology to indicate a break in regional slope, and the reefs are not aligned with patterns in thickness of facies that would distinguish shelf-edge environments from lagoonal environments. Like their European counterparts, the Osagean reefs in the Sacramento Mountains grew on a ramp where the nonreef facies were grainy updip and muddy downdip, and reef anatomy varied from sheetlike updip to dome-like downdip. The association between paleotopography, substrate lithology, and the initiation of Waulsortian reef growth provides new information about regional depositional patterns in the Early Mississippian.« less

  7. The Mesozoic and Palaeozoic granitoids of north-western New Guinea

    NASA Astrophysics Data System (ADS)

    Jost, Benjamin M.; Webb, Max; White, Lloyd T.

    2018-07-01

    A large portion of the Bird's Head Peninsula of NW New Guinea is an inlier that reveals the pre-Cenozoic geological history of the northern margin of eastern Gondwana. The peninsula is dominated by a regional basement high exposing Gondwanan ('Australian') Palaeozoic metasediments intruded by Palaeozoic and Mesozoic granitoids. Here, we present the first comprehensive study of these granitoids, including field and petrographic descriptions, bulk rock geochemistry, and U-Pb zircon age data. We further revise and update previous subdivisions of granitoids in the area. Most granitoids were emplaced as small to medium-scale intrusions during two episodes in the Devonian-Carboniferous and the Late Permian-Triassic, separated by a period of apparent magmatic quiescence. The oldest rocks went unrecognised until this study, likely due to the younger intrusive events resetting the K-Ar isotopic system used in previous studies. Most of the Palaeozoic and Mesozoic granitoids are peraluminous and in large parts derived from partial melts of the country rock. This is corroborated by local migmatites and country rock xenoliths. Although rare, metaluminous and mafic rocks show that partial melts of mantle-derived material played a minor role in granitoid petrogenesis, especially during the Permian-Triassic. The Devonian-Carboniferous granitoids and associated volcanics are locally restricted, whereas the Permian-Triassic intrusions are found across NW New Guinea and further afield. The latter were likely part of an extensive active continental margin above a subduction system spanning the length of what is now New Guinea and potentially extending southward through eastern Australia and Antarctica.

  8. A review of the arcuate structures in the Iberian Variscides; constraints and genetic models

    NASA Astrophysics Data System (ADS)

    Dias, R.; Ribeiro, A.; Romão, J.; Coke, C.; Moreira, N.

    2016-06-01

    The main Ibero-Armorican Arc (IAA) is essentially defined by a predominant NW-SE trend in the Iberian branch and an E-W trend in the Brittany one. However, in northern Spain it presents a 180° rotation, sometimes known as the Cantabrian Arc (CA). The relation between both arcs is controversial, being considered either as a single arc due to one tectonic event, or as the result of a polyphasic process. According to the last assumption, there is a later arcuate structure (CA), overlapping a previous major one (IAA). Whatever the models, they must be able to explain the presence of a Variscan sinistral transpression in Iberia and a dextral one in Armorica, and a deformation spanning from the Devonian to the Upper Carboniferous. Another arcuate structure, in continuity with the CA, the Central-Iberian Arc (CIA) was recently proposed mainly based upon on magnetic anomalies, geometry of major folds and Ordovician paleocurrents. The critical review of the structural, stratigraphic and geophysical data supports both the IAA and the CA, but as independent structures. However, the presence of a CIA is highly questionable and could not be supported. The complex strain pattern of the IAA and the CA could be explained by a Devonian - Carboniferous polyphasic indentation of a Gondwana promontory. In this model the CA is essentially a thin-skinned arc, while the IAA has a more complex and longer evolution that has led to a thick-skinned first order structure. Nevertheless, both arcs are essentially the result of a lithospheric bending process during the Iberian Variscides.

  9. The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moretti, I.; Montemurro, G.; Aguilera, E.

    A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mgmore » HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.« less

  10. Material composition of the basalt-trachyte series of the early Devonian of the Saralin graben-rift

    NASA Astrophysics Data System (ADS)

    Grinev, O. M.; Grinev, R. O.; Bogorodov, A. A.; Adylbaev, R. R.

    2017-12-01

    The article clarifies the structural-tectonic position of the Saralin graben. It is determined that, along with the Balyksinsky graben located to the south and the Goryachegorsky volcanic plateau to the north, they are the connecting structural links between the Kuznetsk-Alatau alkaline province and the adjacent Minusinsk trough. In the early Devonian, the alkaline province was formed as a vaulted-block structure (the “shoulder” of the rift), and the Minusinsk deflection as a depression with the dominant volcanism in it. The boundary between these positive and negative structures was the deep Balyksinsko-Saralinsky fault. In the stratigraphic section of the graben, the lower molassoid part (Ustkundustylskaya stratum), the middle trachybasaltoid stratum (Bazarskay) and the upper problematic Ashpanian stratum are distinguished. In addition to analcime basalts, a large extrusive-subvolcanic dome-shaped construction of trachytes is considered. By petrographic and material composition, volcanites of graben are represented by the dominant basalt-trachyte series in the composition of basanites, trachybasalts, trachyandesites, trachytes. The rocks of the basalt-andesibasalt-andesite series are limited. Foidites are rare. Geochemical data indicate the genetic relationship of the volcanics of the studied series. Geochemically, they are clearly specialized in Sc, Ti, Zn, Zr, Th, U, Mn and P. According to the content of some of these elements, the rocks may have an industrial potential. In geodynamic and genetic plans, graben and its volcanics were formed during plume-tectonic processes involving mantle plume, enriched mantle, and recycling processes of these formations with the substance of the consolidated PR-PZ1 cortex.

  11. Upper Cretaceous and lower Eocene conglomerates of Western Transverse Ranges: evidence for tectonic rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, W.E.; Krause, R.G.F.

    1989-04-01

    Stratigraphic and paleomagnetic studies have suggested that the western Transverse Ranges (WTR) microplate is allochthonous, and may have experienced translational and rotational motions. Present paleocurrent directions from the Upper Cretaceous Jalama Formation of the Santa Ynez Mountains are north-directed; these forearc sediments (Great Valley sequence) contain magmatic arc-derived conglomerate clasts from the Peninsular Ranges in southern California. Paleocurrents in the lower Eocene Juncal and Cozy Dell Formations are south-directed. This juxtaposition is best explained by 90/degrees/ or more of clockwise rotation of the WTR microplate, so that Upper Cretaceous forearc sediments sourced from the Peninsular Ranges magmatic arc were depositedmore » by west-directed currents. Eocene sediments were derived from an uplifted portion of the western basin margin and deposited by east-directed currents. Franciscan olistoliths in the Upper Cretaceous sediments indicate deposition adjacent to an accretionary wedge; conglomeratic clasts recycled from the Upper Cretaceous sequence, and radiolarian cherts and ophiolitic boulders in the Eocene strata indicate derivation from an outer accretionary ridge.« less

  12. Alligator ridge district, East-Central Nevada: Carlin-type gold mineralization at shallow depths

    USGS Publications Warehouse

    Nutt, C.J.; Hofstra, A.H.

    2003-01-01

    Carlin-type deposits in the Alligator Ridge mining district are present sporadically for 40 km along the north-striking Mooney Basin fault system but are restricted to a 250-m interval of Devonian to Mississippian strata. Their age is bracketed between silicified ca. 45 Ma sedimentary rocks and unaltered 36.5 to 34 Ma volcanic rocks. The silicification is linked to the deposits by its continuity with ore-grade silicification in Devonian-Mississippian strata and by its similar ??18O values (_e1???17???) and trace element signature (As, Sb, Tl, Hg). Eocene reconstruction indicates that the deposits formed at depths of ???300 to 800 m. In comparison to most Carlin-type gold deposits, they have lower Au/Ag, Au grades, and contained Au, more abundant jasperoid, and textural evidence from deposition of an amorphous silica precursor in jasperoid. These differences most likely result from their shallow depth of formation. The peak fluid temperature (_e1???230??C) and large ??18OH2O value shift from the meteroric water line (_e1???20???) suggest that ore fluids were derived from depths of 8 km or more. A magnetotelluric survey indicates that the Mooney Basin fault system penetrates to mid-crustal depths. Deep circulation of meteoric water along the Mooney Basin fault system may have been in response to initial uplift of the East Humboldt-Ruby Mountains metamorphic core complex; convection also may have been promoted by increased heat flow associated with large magnitude extension in the core complex and regional magmatism. Ore fluids ascended along the fault system until they encountered impermeable Devonian and Mississippian shales, at which point they moved laterally through permeable strata in the Devonian Guilmette Formation, Devonian-Mississippian Pilot Shale, Mississippian Joana Limestone, and Mississippian Chainman Shale toward erosional windows where they ascended into Eocene fluvial conglomerates and lake sediments. Most gold precipitated by sulfidation of host-rock Fe and mixing with local ground water in zones of lateral fluid flow in reactive strata, such as the Lower Devonian-Mississippian Pilot Shale.

  13. Exploration limited since '70s in Libya's Sirte basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.

    1995-03-13

    Esso Standard made the first Libyan oil discovery in the western Ghadames basin in 1957. The Atshan-2 well tested oil from Devonian sandstones, and the play was a continuation of the Paleozoic trend found productive in the neighboring Edjeleh region of eastern Algeria. Exploration in the Sirte basin began in earnest in 1958. Within the next 10 years, 16 major oil fields had been discovered, each with recoverable reserves greater than 500 million bbl of oil. Libya currently produces under OPEC quota approximately 1.4 million b/d of oil, with discovered in-place reserves of 130 billion bbl of oil. The papermore » describes the structural framework, sedimentary basins of Libya, the Sirte basin, petroleum geology, play types, source rocks, generation and migration of hydrocarbons, oil reserves, potential, and acreage availability.« less

  14. Regional magnetic anomalies, crustal strength, and the location of the northern Cordilleran fold-and-thrust belt

    USGS Publications Warehouse

    Saltus, R.W.; Hudson, T.L.

    2007-01-01

    The northern Cordilleran fold-and-thrust belt in Canada and Alaska is at the boundary between the broad continental margin mobile belt and the stable North American craton. The fold-and-thrust belt is marked by several significant changes in geometry: cratonward extensions in the central Yukon Territory and northeastern Alaska are separated by marginward re-entrants. These geometric features of the Cordilleran mobile belt are controlled by relations between lithospheric strength and compressional tectonic forces developed along the continental margin. Regional magnetic anomalies indicate deep thermal and compositional characteristics that contribute to variations in crustal strength. Our detailed analysis of one such anomaly, the North Slope deep magnetic high, helps to explain the geometry of the fold-and-thrust front in northern Alaska. This large magnetic anomaly is inferred to reflect voluminous mafic magmatism in an old (Devonian?) extensional domain. The presence of massive amounts of malic material in the lower crust implies geochemical depletion of the underlying upper mantle, which serves to strengthen the lithosphere against thermal erosion by upper mantle convection. We infer that deep-source magnetic highs are an important indicator of strong lower crust and upper mantle. This stronger lithosphere forms buttresses that play an important role in the structural development of the northern Cordilleran fold-and-thrust belt. ?? 2007 The Geological Society of America.

  15. A terrestrial fauna from the Scottish Lower Carboniferous

    NASA Astrophysics Data System (ADS)

    Wood, S. P.; Panchen, A. L.; Smithson, T. R.

    1985-03-01

    Despite several important discoveries, extending over more than 120 years, our knowledge of early land vertebrates is still sparse. The earliest tetrapod remains are known from the Upper Devonian of East Greenland1-3 and Australia4-6, but the tetrapod fossil record does not become plentiful until Coal Measure times, in the Upper Carboniferous, some 50 Myr later. Finds in the Lower Carboniferous are very few indeed. Apart from two localities in West Virginia, USA7,8, and one in Nova Scotia, Canada9, all other Lower Carboniferous tetrapod sites are from the Viséan of Fife and the Lothian Region, Scotland10,11. We report here the discovery of an assemblage of terrestrial animals from a new Lower Carboniferous locality in the Lothian Region. Specimens were collected from the East Kirkton Limestone in the Brigantian stage of the Scottish Viséan, and include the first articulated amphibian skeleton to be found in the Lower Carboniferous of Europe in the twentieth century. This find is the earliest well-preserved amphibian skeleton ever discovered. The associated fauna is remarkable for the presence of myriapods, scorpions, the earliest known harvest-man and several other types of amphibian. The presence of such forms, together with the striking absence of fishes, suggests that the amphibians form an integral part of a terrestrial fauna; terrestrial amphibians are otherwise unknown before the Upper Carboniferous Coal Measures.

  16. Geology of the Devonian black shales of the Appalachian basin

    USGS Publications Warehouse

    Roen, J.B.

    1983-01-01

    Black shales of Devonian age in the Appalachian basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. Concurrent with periodic and varied economic exploitations of the black shales are geologic studies. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies produced a regional stratigraphic network that correlates the 15-foot sequence in Tennessee with 3,000 feet of interbedded black and gray shales in central New York. The classic Devonian black-shale sequence in New York has been correlated with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long range correlations within the Appalachian basin and provided a basis for correlations with the black shales of the Illinois and Michigan basins. Areal distribution of selected shale units along with paleocurrent studies, clay mineralogy, and geochemistry suggests variations in the sediment source and transport directions. Current structures, faunal evidence, lithologic variations, and geochemical studies provide evidence to support interpretation of depositional environments. In addition, organic geochemical data combined with stratigraphic and structural characteristics of the shale within the basin allow an evaluation of the resource potential of natural gas in the Devonian shale sequence.

  17. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events

    PubMed Central

    Algeo, T. J.

    1998-01-01

    The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.

  18. Bedrock geologic map of the Littleton and Lower Waterford quadrangles, Essex and Caledonia Counties, Vermont, and Grafton County, New Hampshire

    USGS Publications Warehouse

    Rankin, Douglas W.

    2018-06-13

    The bedrock geologic map of the Littleton and Lower Waterford quadrangles covers an area of approximately 107 square miles (277 square kilometers) north and south of the Connecticut River in east-central Vermont and adjacent New Hampshire. This map was created as part of a larger effort to produce a new bedrock geologic map of Vermont through the collection of field data at a scale of 1:24,000. A large part of the map area consists of the Bronson Hill anticlinorium, a post-Early Devonian structure that is cored by metamorphosed Cambrian to Devonian sedimentary, volcanic, and plutonic rocks. The northwestern part of the map is divided by the Monroe fault which separates Early Devonian rocks of the Connecticut Valley-Gaspé trough from rocks of the Bronson Hill anticlinorium.The Bronson Hill anticlinorium is the apex of the Middle Ordovician to earliest-Silurian Bronson Hill magmatic arc that contains the Ammonoosuc Volcanics, Partridge Formation, and Oliverian Plutonic suite, and extends from Maine, down the eastern side of the Connecticut River in New Hampshire, to Long Island Sound. The deformed and partially eroded arc is locally overlain by a relatively thin Silurian section of metasedimentary rocks (Clough Quartzite and Fitch Formation) that thickens to the east. The Silurian section near Littleton is disconformably overlain by a thicker, Lower Devonian section that includes mostly metasedimentary rocks and minor metavolcanic rocks of the Littleton Formation. The Bronson Hill anticlinorium is bisected by a series of northeast-southwest trending Mesozoic normal faults. Primarily among them is the steeply northwest-dipping Ammonoosuc fault that divides older and younger units (upper and lower sections) of the Ammonoosuc Volcanics. The Ammonoosuc Volcanics are lithologically complex and predominantly include interlayered and interfingered rhyolitic to basaltic volcanic and volcaniclastic rocks, as well as lesser amounts of metamorphic and metasedimentary rocks. The Ammonoosuc Volcanics overlies the Albee Formation that consists of interlayered feldspathic sandstone, siltstone, pelite, and slate.During the Late Ordovician, a series of arc-related plutons intruded the Ammonoosuc Volcanics, including the Whitefield pluton to the east, the Scrag granite of Billing (1937) in the far southeastern corner of the map, the Highlandcroft Granodiorite just to the west of the Ammonoosuc fault, and the Joslin Turn tonalite (just north of the Connecticut River). To the east of the Monroe fault lies the late Silurian Comerford Intrusive Complex, which consists of metamorphosed gabbro, diorite, tonalite, aplitic tonalite, and crosscutting diabase dikes. Abundant mafic dikes of the Comerford Intrusive Complex intruded the Albee Formation and Ammonoosuc Volcanics well east of the Monroe fault.This report consists of a single geologic map sheet and an online geographic information systems database that includes contacts of bedrock geologic units, faults, outcrops, and structural geologic information.

  19. Confirmation of the southwest continuation of the Cat Square terrane, southern Appalachian Inner Piedmont, with implications for middle Paleozoic collisional orogenesis

    USGS Publications Warehouse

    Huebner, Matthew T.; Hatcher, Robert D.; Merschat, Arthur J.

    2017-01-01

    Detailed geologic mapping, U-Pb zircon geochronology and whole-rock geochemical analyses were conducted to test the hypothesis that the southwestern extent of the Cat Square terrane continues from the northern Inner Piedmont (western Carolinas) into central Georgia. Geologic mapping revealed the Jackson Lake fault, a ∼15 m-thick, steeply dipping sillimanite-grade fault zone that truncates lithologically distinct granitoids and metasedimentary units, and roughly corresponds with a prominent aeromagnetic lineament hypothesized to represent the southern continuation of the terrane-bounding Brindle Creek fault. Results of U-Pb SHRIMP geochronology indicate Late Ordovician to Silurian granitoids (444–439 Ma) occur exclusively northwest of the fault, whereas Devonian (404–371 Ma) granitoids only occur southeast of the fault. The relatively undeformed Indian Springs granodiorite (three individual bodies dated 317–298 Ma) crosscuts the fault and occurs on both sides, which indicates the Jackson Lake fault is a pre-Alleghanian structure. However, detrital zircon signatures from samples southeast of the Jackson Lake fault reveal dominant Grenville provenance, in contrast to Cat Square terrane detrital zircon samples from the northern Inner Piedmont, which include peri-Gondwanan (600–500 Ma) and a prominent Ordovician-Silurian (∼430 Ma) signature. We interpret the rocks southeast of the Jackson Lake fault to represent the southwestern extension of the Cat Square terrane primarily based on the partitioning of granitoid ages and lithologic distinctions similar to the northern Inner Piedmont.Data suggest Cat Square terrane metasedimentary rocks were initially deposited in a remnant ocean basin setting and developed into an accretionary prism in front of the approaching Carolina superterrane, ultimately overridden by it in Late Devonian to Early Mississippian time. Burial to >20 km resulted in migmatization of lower plate rocks, forming an infrastructure beneath the Carolina superterrane suprastructure. Provenance patterns support ∼250 km of Devonian dextral translation of the composite Inner Piedmont, which places the northern portion of the Inner Piedmont adjacent to a suite of ∼430 Ma plutons in the Virginia Blue Ridge during deposition. The megascopic thrust-nappe structural style of the northern Inner Piedmont, combined with southwest-directed lateral extrusion at mid-crustal depths, may reconcile differences in timing of metamorphism between the Carolina and central Georgia Inner Piedmont and structural contrasts between the Brindle Creek and Jackson Lake faults.

  20. Tectonic transition associated with Kazakhstan Orocline in the Late Paleozoic: magmatic archives of western Chinese Tianshan

    NASA Astrophysics Data System (ADS)

    Cai, Keda

    2016-04-01

    Kazakhstan accretionary system was a principle component of the Central Asian Orogenic Belt (CAOB) that is one of the largest accretionary orogens on earth. The Kazakhstan composite continent could have been established in the Early Paleozoic by the Kazakhstan accretionary system in the form of progressively amalgamations of diverse tectonic units, such as continental ribbon, accretionary prim, oceanic remnant and arc material. Subsequently, the composite continent was bended to form a spectacular U-shaped architecture that probably occurred in the Late Paleozoic. The western Chinese Tianshan is situated on the south wing of the Kazakhstan Orocline, featured by extensive magmatim, intense deformation and voluminous mineralization. Our new geochronological and geochemical data suggest a noticeable magmatic gap between Late Devonian and Early carboniferous and contrasting magma sources of these magmatic rocks. The significant shifts correspond to the tectonic transition from terrane amalgamation to mountain bending in the Early Paleozoic. This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (2014CB448000), Xinjiang outstanding youth scientific grant (2013711003) and the Talent Awards to KDC from the China Government under the 1000 Talent Plan.

  1. Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation

    NASA Astrophysics Data System (ADS)

    Harvey, Thomas H. P.; Vélez, Maria I.; Butterfield, Nicholas J.

    2012-01-01

    The early history of crustaceans is obscured by strong biases in fossil preservation, but a previously overlooked taphonomic mode yields important complementary insights. Here we describe diverse crustacean appendages of Middle and Late Cambrian age from shallow-marine mudstones of the Deadwood Formation in western Canada. The fossils occur as flattened and fragmentary carbonaceous cuticles but provide a suite of phylogenetic and ecological data by virtue of their detailed preservation. In addition to an unprecedented range of complex, largely articulated filtering limbs, we identify at least four distinct types of mandible. Together, these fossils provide the earliest evidence for crown-group branchiopods and total-group copepods and ostracods, extending the respective ranges of these clades back from the Devonian, Pennsylvanian, and Ordovician. Detailed similarities with living forms demonstrate the early origins and subsequent conservation of various complex food-handling adaptations, including a directional mandibular asymmetry that has persisted through half a billion years of evolution. At the same time, the Deadwood fossils indicate profound secular changes in crustacean ecology in terms of body size and environmental distribution. The earliest radiation of crustaceans is largely cryptic in the fossil record, but "small carbonaceous fossils" reveal organisms of surprisingly modern aspect operating in an unfamiliar biosphere.

  2. Results of coal bed methane drilling, Mylan Park, Monongalia County, West Virginia

    USGS Publications Warehouse

    Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Crangle, Robert D.; Britton, James Q.

    2004-01-01

    The Department of Energy National Energy Technology Laboratory funded drilling of a borehole (39.64378 deg E , -80.04376 deg N) to evaluate the potential for coal bed methane and carbon dioxide sequestration at Mylan Park, Monongalia County, West Virginia. The drilling commenced on September 23, 2002 and was completed on November 14, 2002. The 2,525 ft deep hole contained 1,483.41 ft of Pennsylvanian coal-bearing strata, 739.67 feet of Mississippian strata, and 301.93 ft. of Devonian strata. The drill site was located directly over abandoned Pittsburgh and Sewickley coal mines. Coal cores from remaining mine pillars were cut and retrieved for desorption from both mines. In addition, coals were cored and desorbed from the Pittsburgh Roof, Little Pittsburgh, Elk Lick, Brush Creek, Upper Kittanning, Middle Kittanning, Clarion, Upper Mercer, Lower Mercer, and Quakertown coal beds. All coals are Pennsylvanian in age and are high-volatile-A bituminous in rank. A total of 34.75 ft of coal was desorbed over a maximum period of 662 days, although most of the coal was desorbed for about 275 days. This report is provided in Adobe Acrobat format. Appendix 3 is provided in Excel format.

  3. Petrology and diagenetic history of the upper shale member of the Late Devonian-Early Mississippian Bakken Formation, Williston Basin, North Dakota

    USGS Publications Warehouse

    Neil S. Fishman,; Sven O. Egenhoff,; Boehlke, Adam; Lowers, Heather A.

    2015-01-01

    The organic-rich upper shale member of the upper Devonian–lower Mississippian Bakken Formation (Williston Basin, North Dakota, USA) has undergone significant diagenetic alteration, irrespective of catagenesis related to hydrocarbon generation. Alteration includes precipitation of numerous cements, replacement of both detrital and authigenic minerals, multiple episodes of fracturing, and compaction. Quartz authigenesis occurred throughout much of the member, and is represented by multiple generations of microcrystalline quartz. Chalcedonic quartz fills radiolarian microfossils and is present in the matrix. Sulfide minerals include pyrite and sphalerite. Carbonate diagenesis is volumetrically minor and includes thin dolomite overgrowths and calcite cement. At least two generations of fractures are observed. Based on the authigenic minerals and their relative timing of formation, the evolution of pore waters can be postulated. Dolomite and calcite resulted from early postdepositional aerobic oxidation of some of the abundant organic material in the formation. Following aerobic oxidation, conditions became anoxic and sulfide minerals precipitated. Transformation of the originally opaline tests of radiolaria resulted in precipitation of quartz, and quartz authigenesis is most common in more distal parts of the depositional basin where radiolaria were abundant. Because quartz authigenesis is related to the distribution of radiolaria, there is a link between diagenesis and depositional environment. Furthermore, much of the diagenesis in the upper shale member preceded hydrocarbon generation, so early postdepositional processes were responsible for occlusion of significant original porosity in the member. Thus, diagenetic mineral precipitation was at least partly responsible for the limited ability of these mudstones to provide porosity for storage of hydrocarbons.

  4. Some contrasting biostratigraphic links between the Baker and Olds Ferry Terranes, eastern Oregon

    USGS Publications Warehouse

    Nestell, Merlynd K.; Blome, Charles D.

    2016-01-01

    New stratigraphic and paleontologic data indicate that ophiolitic melange windows in the Olds Ferry terrane of eastern Oregon contain limestone blocks and chert that are somewhat different in age than those present in the adjacent Baker terrane melange. The melange windows in the Olds Ferry terrane occur as inliers in the flyschoid Early and Middle Jurassic age Weatherby Formation, which depositionally overlies the contact between the melange-rich Devonian to Upper Triassic rocks of the Baker terrane on the north, and Upper Triassic and Early Jurassic volcanic arc rocks of the Huntington Formation on the south. The Baker terrane and Huntington Formation represent fragments of a subduction complex and related volcanic island arc, whereas the Weatherby Formation consists of forearc basin sedimentary deposits. The tectonic blocks in the melange windows of the Weatherby Formation (in the Olds Ferry terrane) are dated by scarce biostratigraphic evidence as Upper Pennsylvanian to Lower Permian and Upper Triassic. In contrast, tectonic blocks of limestone in theBaker terrane yield mostly fusulinids and small foraminifers of Middle Pennsylvanian Moscovian age at one locality.Middle Permian (Guadalupian) Tethyan fusulinids and smaller foraminifers (neoschwagerinids and other Middle Permian genera) are present at a few other localities. Late Triassic conodonts and bryozoans are also present in a few of the Baker terrane tectonic blocks. These limestone blocks are generally embedded in Permian and Triassic radiolarian bearing chert or argillite. Based on conodont, radiolarian and fusulinid data, the age limits of the meange blocks in the Weatherby Formation range from Pennsylvanian to Late Triassic.

  5. Benefits of applying technology to Devonian shale wells. Topical report, July-December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voneiff, G.W.; Gatens, J.M.

    1993-01-01

    The report summarizes the benefits of applying technology to Devonian Shales wells in the Appalachian Basin. The results of the work suggest that an intermediate level of technology application, with an incremental cost of $6,700/well, is best for routine application in the Devonian Shales. The technology level uses conventional well tests, rock mechanical properties logs, a borehole camera, and a moderate logging suite. Most of these tools and technologies should be used on only a portion of the wells in multi-well projects, reducing the per well cost of the technology. Determining the correct reservoir description is critical to optimizing themore » stimulation treatment. The most critical reservoir properties are bulk and matrix permeabilities, net pay, stress profile, and natural fracture spacing in the direction perpendicular to induced hydraulic fractures. Applying technology to improve the accuracy of the reservoir description can significantly increase well profitability.« less

  6. Tetrapod trackways from the early Middle Devonian period of Poland.

    PubMed

    Niedźwiedzki, Grzegorz; Szrek, Piotr; Narkiewicz, Katarzyna; Narkiewicz, Marek; Ahlberg, Per E

    2010-01-07

    The fossil record of the earliest tetrapods (vertebrates with limbs rather than paired fins) consists of body fossils and trackways. The earliest body fossils of tetrapods date to the Late Devonian period (late Frasnian stage) and are preceded by transitional elpistostegids such as Panderichthys and Tiktaalik that still have paired fins. Claims of tetrapod trackways predating these body fossils have remained controversial with regard to both age and the identity of the track makers. Here we present well-preserved and securely dated tetrapod tracks from Polish marine tidal flat sediments of early Middle Devonian (Eifelian stage) age that are approximately 18 million years older than the earliest tetrapod body fossils and 10 million years earlier than the oldest elpistostegids. They force a radical reassessment of the timing, ecology and environmental setting of the fish-tetrapod transition, as well as the completeness of the body fossil record.

  7. Geological duration of ammonoids controlled their geographical range of fossil distribution.

    PubMed

    Wani, Ryoji

    2017-01-01

    The latitudinal distributions in Devonian-Cretaceous ammonoids were analyzed at the genus level, and were compared with the hatchling sizes (i.e., ammonitella diameters) and the geological durations. The results show that (1) length of temporal ranges of ammonoids effected broader ranges of fossil distribution and paleobiogeography of ammonoids, and (2) the hatchling size was not related to the geographical range of fossil distribution of ammonoids. Reducing the influence of geological duration in this analysis implies that hatchling size was one of the controlling factors that determined the distribution of ammonoid habitats at any given period in time: ammonoids with smaller hatchling sizes tended to have broader ammonoid habitat ranges. These relationships were somewhat blurred in the Devonian, Carboniferous, Triassic, and Jurassic, which is possibly due to (1) the course of development of a reproductive strategy with smaller hatchling sizes in the Devonian and (2) the high origination rates after the mass extinction events.

  8. Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project

    Treesearch

    Maria K. Janowiak; Louis R. Iverson; David J. Mladenoff; Emily Peters; Kirk R. Wythers; Weimin Xi; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; P. Danielle Shannon; Chris Swanston; Linda R. Parker; Amy J. Amman; Brian Bogaczyk; Christine Handler; Ellen Lesch; Peter B. Reich; Stephen Matthews; Matthew Peters; Anantha Prasad; Sami Khanal; Feng Liu; Tara Bal; Dustin Bronson; Andrew Burton; Jim Ferris; Jon Fosgitt; Shawn Hagan; Erin Johnston; Evan Kane; Colleen Matula; Ryan O' Connor; Dale Higgins; Matt St. Pierre; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; David Neitzel; Michael Notaro; Adena Rissman; Chadwick Rittenhouse; Robert Ziel

    2014-01-01

    Forest ecosystems across the Northwoods will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Laurentian Mixed Forest Province of northern Wisconsin and western Upper Michigan under a range of future climates. Information on current forest conditions, observed climate...

  9. Intertidal biofilm distribution underpins differential tide-following behavior of two sandpiper species (Calidris mauri and Calidris alpina) during northward migration

    NASA Astrophysics Data System (ADS)

    Jiménez, Ariam; Elner, Robert W.; Favaro, Corinna; Rickards, Karen; Ydenberg, Ronald C.

    2015-03-01

    The discovery that some shorebird species graze heavily on biofilm adds importance to elucidating coastal processes controlling biofilm, as well as impetus to better understand patterns of shorebird use of intertidal flats. Western sandpipers (Calidris mauri) and dunlin (Calidris alpina) stopover in the hundreds of thousands on the Fraser River estuary, British Columbia, Canada, during northward migration to breeding areas. Western sandpipers show greater modification of tongue and bill morphology for biofilm feeding than dunlin, and their diet includes more biofilm. Therefore, we hypothesized that these congeners differentially use the intertidal area. A tide following index (TFI) was used to describe their distributions in the upper intertidal during ebbing tides. Also, we assessed sediment grain size, biofilm (= microphytobenthic or MPB) biomass and invertebrate abundance. Foraging dunlin closely followed the ebbing tide line, exploiting the upper intertidal only as the tide retreated through this area. In contrast, western sandpipers were less prone to follow the tide, and spent more time in the upper intertidal. Microphytobenthic biomass and sediment water content were highest in the upper intertidal, indicating greater biofilm availability for shorebirds in the first 350 m from shore. Invertebrate density did not differ between sections of the upper intertidal. Overall, western sandpiper behaviour and distribution more closely matched MPB biofilm availability than invertebrate availability. Conservation of sandpipers should consider physical processes, such as tides and currents, which maintain the availability of biofilm, a critical food source during global migration.

  10. Stratigraphy and Mesozoic–Cenozoic tectonic history of northern Sierra Los Ajos and adjacent areas, Sonora, Mexico

    USGS Publications Warehouse

    Page, William R.; Gray, Floyd; Iriondo, Alexander; Miggins, Daniel P.; Blodgett, Robert B.; Maldonado, Florian; Miller, Robert J.

    2010-01-01

    Geologic mapping in the northern Sierra Los Ajos reveals new stratigraphic and structural data relevant to deciphering the Mesozoic–Cenozoic tectonic evolution of the range. The northern Sierra Los Ajos is cored by Proterozoic, Cambrian, Devonian, Mississippian, and Pennsylvanian strata, equivalent respectively to the Pinal Schist, Bolsa Quartzite and Abrigo Limestone, Martin Formation, Escabrosa Limestone, and Horquilla Limestone. The Proterozoic–Paleozoic sequence is mantled by Upper Cretaceous rocks partly equivalent to the Fort Crittenden and Salero Formations in Arizona, and the Cabullona Group in Sonora, Mexico.Absence of the Upper Jurassic–Lower Cretaceous Bisbee Group below the Upper Cretaceous rocks and above the Proterozoic–Paleozoic rocks indicates that the Sierra Los Ajos was part of the Cananea high, a topographic highland during the Late Jurassic and Early Cretaceous. Deposition of Upper Cretaceous rocks directly on Paleozoic and Proterozoic rocks indicates that the Sierra Los Ajos area had subsided as part of the Laramide Cabullona basin during Late Cretaceous time. Basal beds of the Upper Cretaceous sequence are clast-supported conglomerate composed locally of basement (Paleozoic) clasts. The conglomerate represents erosion of Paleozoic basement in the Sierra Los Ajos area coincident with development of the Cabullona basin.The present-day Sierra Los Ajos reaches elevations of greater than 2600 m, and was uplifted during Tertiary basin-and-range extension. Upper Cretaceous rocks are exposed at higher elevations in the northern Sierra Los Ajos and represent an uplifted part of the inverted Cabullona basin. Tertiary uplift of the Sierra Los Ajos was largely accommodated by vertical movement along the north-to-northwest-striking Sierra Los Ajos fault zone flanking the west side of the range. This fault zone structurally controls the configuration of the headwaters of the San Pedro River basin, an important bi-national water resource in the US-Mexico border region.

  11. Peeking out of the basins: looking for the Late Devonian Kellwasser Event in the open ocean in the Central Asian Orogenic Belt, southwestern Mongolia

    NASA Astrophysics Data System (ADS)

    Thomas, R. M., Jr.; Carmichael, S. K.; Waters, J. A.; Batchelor, C. J.

    2017-12-01

    Two of the top five most devastating mass extinctions in Earth's history occurred during the Late Devonian (419.2 Ma - 358.9 Ma), and are commonly associated with the black shale deposits of the Kellwasser and Hangenberg ocean anoxia events. Our understanding of these extinction events is incomplete partly due to sample bias, as 95% of the field sites studying the Late Devonian are limited to continental shelves and continental marine basins, and 77% of these sites are derived from the Euramerican paleocontinent. The Samnuuruul Formation at the Hoshoot Shiveetiin Gol locality (HSG), located in southwestern Mongolia, offers a unique opportunity to better understand global oceanic conditions during the Late Devonian. The HSG locality shows a continuous sequence of terrestrial to marine sediments on the East Junggar arc; an isolated, open-ocean island arc within the Central Asian Orogenic Belt (CAOB). Samples from this near shore locality consist of volcanogenic silts, sands and immature conglomerates as well as calc-alkalic basalt lava flows. Offshore sections contain numerous limestones with Late Devonian fossil assemblages. Preliminary biostratigraphy of the associated marine and terrestrial sequences can only constrain the section to a general Late Devonian age, but TIMS analysis of detrital zircons from volcanogenic sediments from the Samnuuruul Formation in localities 8-50 km from the site suggests a late Frasnian age (375, 376 Ma). To provide a more precise radiometric age of the HSG locality, zircon geochronology using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) will be performed at UNC-Chapel Hill. If the HSG section crosses the Frasnian-Famennian boundary, geochemical, mineralogical, and ichnological signatures of the Kellwasser Event are expected to be preserved, if the Kellwasser Event was indeed global in scope (as suggested by Carmichael et al. (2014) for analogous sites on the West Junggar arc in the CAOB). Black shale accumulation anywhere in the CAOB would be unlikely due to the paleoenvironment and arc topography, so additional multiproxy techniques are required for recognition of the Kellwasser Event in regions such as the HSG, which are outside of the basins where they have historically been studied. Carmichael et al. (2014) Paleo3 399, 394-403.

  12. Tectonic overprint on magnetic fabric of the Ordovician Thetford Mines Ophiolite (Canada)

    NASA Astrophysics Data System (ADS)

    Di Chiara, Anita; Morris, Antony; Anderson, Mark W.; Menegon, Luca

    2017-04-01

    Studies in modern oceanic settings suggest locally along low-spreading ridges both lower crust and upper mantle peridotites may be exhumed to the seafloor in features known as oceanic core complexes (OCC). Examples of OCC on geological record can be preserved in ophiolites, relict of oceanic crust obducted onto continental margins, as for example the Jurassic Mirdita Ophiolite (Albania), suggesting that this spreading mode was active in the past. In order to understand such dynamics further, we investigated the OCC preserved in the Thetford Mines Ophiolite (TMO). TMO is part of the Southern Quebec ophiolites in the Canadian Appalachians (Quebec region), divided into three lithotectonic assemblages: The Humber Zone, a remnant of the Laurentian continental margin; The Cambrian-Ordovician Dunnage Zone, a remnant of the Iapetus Ocean and including the TMO and other ophiolites; and Silurian-Devonian Gaspé Belt, the sedimentary cover sequence. These were subjected to polyphase deformation, experiencing two Paleozoic orogenies: The Ordovician Taconian Orogeny (the Humber and Dunnage zones were amalgamated) and the Devonian Acadian orogeny which deformed and metamorphosed both the Dunnage Zone and the overlying Gaspe Belt. Here we present results from 12 paleomagnetic sites sampled on Humber zone on pillow lavas, dykes, layered gabbros and serpentinized dunites. Our results from AMS experiments show that these rocks, formed by fundamentally different magmatic processes, share a common magnetic fabric, with a kmin axis NW-SE orientated and the kmax steeply plunging to the NE. Additional processing of acquired BSE images and chemical mapping analyses at the SEM show that the kmax of the magnetic fabric is parallel to the elongation of magnetic particles (Iron rich minerals). This remarkably consistent fabric has a tectonic origin and is consistent with shortening perpendicular to the regional trend of fold axes.

  13. Implications of latest Pennsylvanian to Middle Permian paleontological and U-Pb SHRIMP data from the Tecomate Formation to re-dating tectonothermal events in the Acatlán Complex, Southern Mexico

    USGS Publications Warehouse

    Keppie, J. Duncan; Sandberg, Charles A.; Miller, B.V.; Sanchez-Zavala, J. L.; Nance, R.D.; Poole, Forrest G.

    2004-01-01

    Limestones in the highly deformed Tecomate Formation, uppermost unit of the Acatla??n Complex, are latest Pennsylvanian-earliest Middle Permian in age rather than Devonian, the latter based on less diagnostic fossils. Conodont collections from two marble horizons now constrain its age to range from latest Pennsylvanian to latest Early Permian or early Middle Permian. The older collection contains Gondolella sp., Neostreptognathodus sp., and Streptognathodus sp., suggesting an oldest age limit close to the Pennsylvanian-Permian time boundary. The other collection contains Sweet-ognathus subsymmetricus, a short-lived species ranging only from Kungurian (latest Leonardian) to Wordian (earliest Guadelupian: 272 ?? 4 to 264 ?? 2 Ma). A fusilinid, Parafusulina c.f. P. antimonioensis Dunbar, in a third Tecomate marble horizon is probably Wordian (early Guadelupian, early Middle Permian). Furthermore, granite pebbles in a Tecomate conglomerate have yielded ???320-264 Ma U-Pb SHRIMP ages probably derived from the ???288 Ma, arc-related Totoltepec pluton. Collectively, these data suggest a correlation with two nearby units: (1) the Missourian-Leonardian carbonate horizons separated by a Wolfcampian(?) conglomerate in the upper part of the less deformed San Salvador Patlanoaya Formation; and (2) the clastic, Westphalian-Leonardian Matzitzi Formation. This requires that deformation in the Tecomate Formation be of Early-Middle Permian age rather than Devonian. These three formations are re-interpreted as periarc deposits with deformation related to oblique subduction. The revised dating of the Tecomate Formation is consistent with new data, which indicates that the unconformity between the Tecomate and the Piaxtla Group is mid-Carboniferous and corresponds to a tectonothermal event. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.

  14. Paleoecology of the Devonian-Mississippian black-shale sequence in eastern Kentucky with an atlas of some common fossils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barron, L.S.; Ettensohn, F.R.

    The Devonian-Mississippian black-shale sequence of eastern North America is a distinctive stratigraphic interval generally characterized by low clastic influx, high organic production in the water column, anaerobic bottom conditions, and the relative absence of fossil evidence for biologic activity. The laminated black shales which constitute most of the black-shale sequence are broken by two major sequences of interbedded greenish-gray, clayey shales which contain bioturbation and pyritized micromorph invertebrates. The black shales contain abundant evidence of life from upper parts of the water column such as fish fossils, conodonts, algae and other phytoplankton; however, there is a lack of evidence ofmore » benthic life. The rare brachiopods, crinoids, and molluscs that occur in the black shales were probably epiplanktic. A significant physical distinction between the environment in which the black sediments were deposited and that in which the greenish-gray sediments were deposited was the level of dissolved oxygen. The laminated black shales point to anaerobic conditions and the bioturbated greenish-gray shales suggest dysaerobic to marginally aerobic-dysaerobic conditions. A paleoenvironmental model in which quasi-estuarine circulation compliments and enhances the effect of a stratified water column can account for both depletion of dissolved oxygen in the bottom environments and the absence of oxygen replenishment during black-shale deposition. Periods of abundant clastic influx from fluvial environments to the east probably account for the abundance of clays in the greenish-gray shale as well as the small amounts of oxygen necessary to support the depauparate, opportunistic, benthic faunas found there. These pulses of greenish-gray clastics were short-lived and eventually were replaced by anaerobic conditions and low rates of clastic sedimentation which characterized most of black-shale deposition.« less

  15. Reported middle Paleozoic fossils and new geochronological data from the southern and central Appalachians: Disposable outrageous hypothesis or justification for major revision of tectonic history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatcher, R.D. Jr.

    Recently published interpretations of fossil fragments from the Walden Creek Group (Ocoee Supergroup) suggesting that these rocks are middle Paleozoic (Devonian to Early Carboniferous), and new geochronological data that yield late Paleozoic age dates on rocks and major faults in the Blue Ridge and piedmont, if taken alone, would permit speculation that most of the deformation and metamorphism affecting this part of the orogen is Alleghanian. The two Ordovician clastic wedges (Sevier, Llanvirn, and Martinsburg, Caradoc-Ashgill) and the Carboniferous-Permian wedge(s), along with many radiometric ages on plutons, indicate uplift and sediment dispersal from the interior of the southern and centralmore » Appalachians (SCA) that may have resulted from Taconian and Alleghanian deformation. Combining the reproducible fossil evidence, including that from Alabama and a recently discovered crinoid fragment from the upper part of the Murphy belt sequence, with the most current geochronological data requires that peak metamorphism and penetrative deformation be at least Devonian or younger at the southwestern end of the orogen, and Late Ordovician or younger in the Carolinas and northern Georgia. Zircon ages reported from large thrust and dextral strike-slip faults bounding the Pine Mountain window indicate all of the faults there may be Alleghanian, except the younger sinistral Mesozoic faults, and requires that both metamorphism and penetrative deformation there also be Alleghanian. As in New England, the southern Appalachian Alleghanian metamorphic core is now known to be much more extensive. The older data require that the Taconian and perhaps the Acadian orogenies were significant events in the SCA, but these new data reconfirm the dominance of Alleghanian continent-continent collision processes here.« less

  16. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zhu, Bei; Peate, David W.; Guo, Zhaojie; Liu, Runchao; Du, Wei

    2017-10-01

    We have identified a new crustally derived granite pluton that is related to the Emeishan Large Igneous Province (ELIP). This pluton (the Wase pluton, near Dali) shows two distinct SHRIMP zircon U-Pb age groups ( 768 and 253 Ma). As it has an intrusive relationship with Devonian limestone, the younger age is interpreted as its formation, which is related to the ELIP event, whereas the 768 Ma Neoproterozoic-aged zircons were inherited from Precambrian crustal component of the Yangtze Block, implying the pluton has a crustally derived origin. This is consistent with its peraluminous nature, negative Nb-Ta anomaly, enrichment in light rare earth elements, high 87Sr/86Sr(i) ratio (0.7159-0.7183) and extremely negative ɛ(Nd)(i) values (-12.15 to -13.70), indicative of melts derived from upper crust materials. The Wase pluton-intruded Devonian strata lie stratigraphically below the Shangcang ELIP sequence, which is the thickest volcanic sequence ( 5400 m) in the whole ELIP. The uppermost level of the Shangcang sequence contains laterally restricted rhyolite. Although the rhyolite has the same age as the Wase pluton, its geochemical features demonstrate a different magma origin. The rhyolite displays moderate 87Sr/86Sr(i) (0.7053), slightly negative ɛ(Nd)(i) (-0.18) and depletions in Ba, Cs, Eu and Sr, implying derivation from differentiation of a mantle-derived mafic magma source. The coexistence of crustally and mantle-derived felsic systems, along with the robust development of dike swarms, vent proximal volcanics and thickest flood basalts piles in Dali, shows that the Dali area was probably where the most active Emeishan magmatism had once existed.

  17. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, F.J.; Boudjema, A.; Lounis, R.

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less

  18. Fractographic logging for determination of pre-core and core-induced fractures: Nicholas Combs No. 7239 well, Hazard, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulander, B.R.; Dean, S.L.; Barton, C.C.

    1977-01-01

    Methods results, and conclusions formulated during a prototype fractographic logging study of seventy-five feet of oriented Devonian shale core are summarized. The core analyzed is from the Nicholas Combs No. 7239 well located twelve miles due north of Hazard, Kentucky. The seventy-five foot core length was taken from a cored section lying between 2369.0 feet (subsea) and 2708.0 feet (subsea). Total core length is 339.0 feet. The core was extracted from the upper Devonian Ohio and Olentangy shale formations. Results indicate that there are few tectonic (pre-core) fractures within the studied core section. The region may nevertheless be cut atmore » core sample depth by well-defined vertical or inclined tectonic fractures that the vertically drilled test core didn't intersect. This is likely since surface Plateau systematic fractures in other Plateau areas are vertical to sub-vertical and seldom have a frequency of less than one major fracture per foot. The remarkable directional preference of set three fractures about strikes of N 40/sup 0/ E, N 10/sup 0/ W, N 45/sup 0/ W, suggests some incipient pre-core rock anisotropy or stored directional strain energy. If this situation exists, the anisotropy strike change or stored strain variance from N 40/sup 0/ E to N 45/sup 0/ W downcore remains an unanswered question. Tectonic features, indicating local and/or regional movement plans, are present on and within the tectonichorizontal fracture set one. Slickensides had a preferred orientation within several core levels, and fibrous-nonfibrous calcite serves as fracture fillings.« less

  19. Stable isotopic compositions of early calcite cements in the Middle Devonian Coralville Formation (Cedar Valley Group), eastern Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludvigson, G.A.; Gonzalez, L.S.; Witzke, B.J.

    1993-03-01

    The Middle-Upper Devonian Cedar Valley Gp in Iowa is subdivided into four formations each representing a broad transgressive-regressive (T-R) cycle of deposition. Cycles consist of basal open marine facies that shallow upward into capping peritidal facies. Results from ongoing diagenetic studies of the Coralville Fm (late Givetian), the second T-R cycle of the Cedar Valley Gp, have focused attention on the origins of early cements. Early calcite cements in the Coralville Fm of Johnson County, Iowa, include blocky equant spars filling fenestral voids in birdseye limestones of the Iowa City Mbr and isopachous bladed spars that occur throughout the Coralville.more » Bladed spars fill stromatactis and microkarstic voids in the Iowa City Mbr, and sheltered voids in underlying open-marine skeletal packstones of the Cou Falls Mbr (lower Coralville cycle). The bladed spars include nonluminescent inclusion-free domains that contain up to 4,000 ppm Mg, and luminescent inclusion-rich domains that contain less than 2,000 ppm Mg. Birdseye spars have a constructive oscillatory luminescent-nonluminescent zonation controlled by Mn contents and contain less than 1,000 ppm Mg. Nonluminescent domains in bladed spars have the heaviest oxygen isotopic compositions of all components in the Coralville, similar to the isotopically heaviest nonluminescent brachiopods but have [delta][sup 13]C values ranging from [minus]3 to [minus]5 [per thousand]. They are interpreted to have precipitated from marine fluids saturated by CO[sub 2] produced from bacterial oxidation of organic matter. Altered luminescent domains in the bladed spars have the same [delta][sup 13]C compositions, but have widely varying [delta][sup 18]O compositions, ranging to [minus]9 [per thousand].« less

  20. Geochemical and stable isotopic data on barren and mineralized drill core in the Devonian Popovich Formation, Screamer sector of the Betze-Post gold deposit, northern Carlin trend, Nevada

    USGS Publications Warehouse

    Christiansen, William D.; Hofstra, Albert H.; Zohar, Pamela B.; Tousignant, Gilles

    2011-01-01

    The Devonian Popovich Formation is the major host for Carlin-type gold deposits in the northern Carlin trend of Nevada. The Popovich is composed of gray to black, thin-bedded, calcareous to dolomitic mudstone and limestone deposited near the carbonate platform margin. Carlin-type gold deposits are Eocene, disseminated, auriferous pyrite deposits characterized by acid leaching, sulfidation, and silicification that are typically hosted in Paleozoic calcareous sedimentary rocks exposed in windows through siliceous sedimentary rocks of the Roberts Mountains allochthon. The Carlin trend currently is the largest gold producer in the United States. The Screamer ore zone is a tabular body on the periphery of the huge Betze-Post gold deposit. Screamer is a good place to study both the original lithogeochemistry of the Popovich Formation and the effects of subsequent alteration and mineralization because it is below the level of supergene oxidation, mostly outside the contact metamorphic aureole of the Jurassic Goldstrike stock, has small, high-grade ore zones along fractures and Jurassic dikes, and has intervening areas with lower grade mineralization and barren rock. In 1997, prior to mining at Screamer, drill core intervals from barren and mineralized Popovich Formation were selected for geochemical and stable isotope analysis. The 332, five-foot core samples analyzed are from five holes separated by as much as 2000 feet (600 meters). The samples extend from the base of the Wispy unit up through the Planar and Soft sediment deformation units into the lower part of the upper Mud unit of the Popovich Formation.

  1. Evaluation of Methane Sources in Groundwater in Northeastern Pennsylvania

    PubMed Central

    Molofsky, Lisa J; Connor, John A; Wylie, Albert S; Wagner, Tom; Farhat, Shahla K

    2013-01-01

    Testing of 1701 water wells in northeastern Pennsylvania shows that methane is ubiquitous in groundwater, with higher concentrations observed in valleys vs. upland areas and in association with calcium-sodium-bicarbonate, sodium-bicarbonate, and sodium-chloride rich waters—indicating that, on a regional scale, methane concentrations are best correlated to topographic and hydrogeologic features, rather than shale-gas extraction. In addition, our assessment of isotopic and molecular analyses of hydrocarbon gases in the Dimock Township suggest that gases present in local water wells are most consistent with Middle and Upper Devonian gases sampled in the annular spaces of local gas wells, as opposed to Marcellus Production gas. Combined, these findings suggest that the methane concentrations in Susquehanna County water wells can be explained without the migration of Marcellus shale gas through fractures, an observation that has important implications for understanding the nature of risks associated with shale-gas extraction. PMID:23560830

  2. 101 Things to Do for Your Bicentennial: A Program for the American Issues Forum. A Teaching Guide for the Cultural History and Geography of the Western Frontier and Upper Missouri Region.

    ERIC Educational Resources Information Center

    Milne, Bruce G.; Hoover, Herbert T.

    The junior-high-level teaching guide incorporates historical, geographical, social, political, and cultural materials that cover the heritage of the society of the Western Frontier and Upper Missouri region: Minnesota, Iowa, North and South Dakota, Nebraska, Wyoming, Utah, Colorado, and Montana. The purpose is to acquaint students with culture of…

  3. Turonian (Upper Cretaceous) inoceramid bivalves of the genus Mytiloides from the Sredna Gora Mountains, north-western Bulgaria

    NASA Astrophysics Data System (ADS)

    Dochev, Docho

    2015-03-01

    The inoceramid bivalves of the genus Mytiloides, from the Turonian (Upper Cretaceous) of the Sredna Gora Mts (north-western Bulgaria), are studied. The material comes from three sections: Izvor, Filipovtsi, and Vrabchov dol. Eight species are described taxonomically, with one left in open nomenclature: M. cf. mytiloides (Mantell, 1822), M. mytiloidiformis (Tröger, 1967), M. incertus (Jimbo, 1894), M. scupini (Heinz, 1930), M. herbichi (Atabekian, 1969), M. striatoconcentricus (Gümbel, 1868), M. labiatoidiformis (Tröger, 1967) and M. carpathicus (Simionescu, 1899). Mytiloides incertus and Mytiloides scupini are index species for the eponymous Upper Turonian inoceramid biozones.

  4. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Gaoxue; Li, Yongjun; Santosh, M.; Yang, Baokai; Yan, Jing; Zhang, Bing; Tong, Lili

    2012-10-01

    The West Junggar domain in NW China is a distinct tectonic unit of the Central Asian Orogenic Belt (CAOB). It is composed of Paleozoic ophiolitic mélanges, arcs and accretionary complexes. The Sartuohai ophiolitic mélange in the eastern West Junggar forms the northeastern part of the Darbut ophiolitic mélange, which contains serpentinized harzburgite, pyroxenite, dunite, cumulate, pillow lava, abyssal radiolarian chert and podiform chromite, overlain by the Early Carboniferous volcano-sedimentary rocks. In this paper we report new geochronological and geochemical data from basaltic and gabbroic blocks embedded within the Sartuohai ophiolitic mélange, to assess the possible presence of a Devonian mantle plume in the West Junggar, and evaluate the petrogenesis and implications for understanding of the Paleozoic continental accretion of CAOB. Zircon U-Pb analyses from the alkali basalt and gabbro by laser ablation inductively coupled plasma mass spectrometry yielded weighted mean ages of 375 ± 2 Ma and 368 ± 11 Ma. Geochemically, the Sartuohai ophiolitic mélange includes at least two distinct magmatic units: (1) a Late Devonian fragmented ophiolite, which were produced by ca. 2-10% spinel lherzolite partial melting in arc-related setting, and (2) contemporary alkali lavas, which were derived from 5% to 10% garnet + minor spinel lherzolite partial melting in an oceanic plateau or a seamount. Based on detailed zircon U-Pb dating and geochemical data for basalts and gabbros from the Sartuohai ophiolitic mélange, in combination with previous work, indicate a complex evolution by subduction-accretion processes from the Devonian to the Carboniferous. Furthermore, the alkali basalts from the Sartuohai ophiolitic mélange might be correlated to a Devonian mantle plume-related magmatism within the Junggar Ocean. If the plume model as proposed here is correct, it would suggest that mantle plume activity significantly contributed to the crustal growth in the CAOB.

  5. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    PubMed Central

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730

  6. Contrasting tectonothermal domains and faulting in the Potomac terrane, Virginia-Maryland - Discrimination by 40Ar/39Ar and fission-track thermochronology

    USGS Publications Warehouse

    Kunk, Michael J.; Wintsch, R.P.; Naeser, C.W.; Naeser, N.D.; Southworth, C.S.; Drake, Avery A.; Becker, J.L.

    2005-01-01

    New 40Ar/39Ar data reveal ages and thermal discontinuities that identify mapped and unmapped fault boundaries in the Potomac terrane in northern Virginia, thus confirming previous interpretations that it is a composite terrane. The rocks of the Potomac terrane were examined along the Potomac River, where it has been previously subdivided into three units: the Mather Gorge, Sykesville, and Laurel Formations. In the Mather Gorge Formation, at least two metamorphic thermal domains were identified, the Blockhouse Point and Bear Island domains, separated by a fault active in the late Devonian. Early Ordovician (ca. 475 Ma) cooling ages of amphibole in the Bear Island domain reflect cooling from Taconic metamorphism, whereas the Blockhouse Point domain was first metamorphosed in the Devonian. The 40Ar/39Ar data from muscovites in a third (eastern) domain within the Mather Gorge Formation, the Stubblefield Falls domain, record thrusting of the Sykesville Formation over the Mather Gorge Formation on the Plummers Island fault in the Devonian. The existence of two distinctly different thermal domains separated by a tectonic boundary within the Mather Gorge argues against its status as a formation. Hornblende cooling ages in the Sykesville Formation are Early Devonian (ca. 400 Ma), reflecting cooling from Taconic and Acadian metamorphism. The ages of retrograde and overprinting muscovite in phyllonites from domain-bounding faults are late Devonian (Acadian) and late Pennsylvanian (Alleghanian), marking the time of assembly of these domains and subsequent movement on the Plummers Island fault. Our data indicate that net vertical motion between the Bear Island domain of the Mather Gorge complex and the Sykesville Formation across the Plummers Island fault is east-side-up. Zircon fission-track cooling ages demonstrate thermal equillbrium across the Potomac terrane in the early Permian, and apatite fission-track cooling ages record tilting of the Potomac terrane in the Cretaceous or later with the west side up at least 1 km. ?? 2005 Geological Society of America.

  7. Tectonics and hydrocarbon potential of the Barents Megatrough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, D.; Vinogradov, A.; Yunov, A.

    1991-08-01

    Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less

  8. A Self-Powered Fast-Sampling Profiling Float in support of a Mesoscale Ocean Observing System in the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Valdez, T.; Chao, Y.; Davis, R. E.; Jones, J.

    2012-12-01

    This talk will describe a new self-powered profiling float that can perform fast sampling over the upper ocean for long durations in support of a mesoscale ocean observing system in the Western North Pacific. The current state-of-the-art profiling floats can provide several hundreds profiles for the upper ocean every ten days. To quantify the role of the upper ocean in modulating the development of Typhoons requires at least an order of magnitude reduction for the sampling interval. With today's profiling float and battery technology, a fast sampling of one day or even a few hours will reduce the typical lifetime of profiling floats from years to months. Interactions between the ocean and typhoons often involves mesoscale eddies and fronts, which require a dense array of floats to reveal the 3-dimensional structure. To measure the mesoscale ocean over a large area like the Western North Pacific therefore requires a new technology that enables fast sampling and long duration at the same time. Harvesting the ocean renewable energy associated with the vertical temperature differentials has the potential to power profiling floats with fast sampling over long durations. Results from the development and deployment of a prototype self-powered profiling float (known as SOLO-TREC) will be presented. With eight hours sampling in the upper 500 meters, the upper ocean temperature and salinity reveal pronounced high frequency variations. Plans to use the SOLO-TREC technology in support of a dense array of fast sampling profiling floats in the Western North Pacific will be discussed.

  9. Fracture patterns and their origin in the upper Devonian Antrim Shale gas reservoir of the Michigan basin; a review

    USGS Publications Warehouse

    Ryder, Robert T.

    1996-01-01

    INTRODUCTION: Black shale members of the Upper Devonian Antrim Shale are both the source and reservoir for a regional gas accumulation that presently extends across parts of six counties in the northern part of the Michigan basin (fig. 1). Natural fractures are considered by most petroleum geologists and oil and gas operators who work the Michigan basin to be a necessary condition for commercial gas production in the Antrim Shale. Fractures provide the conduits for free gas and associated water to flow to the borehole through the black shale which, otherwise, has a low matrix permeability. Moreover, the fractures assist in the release of gas adsorbed on mineral and(or) organic matter in the shale (Curtis, 1992). Depths to the gas-producing intervals (Norwood and Lachine Members) generally range from 1,200 to 1,800 ft (Oil and Gas Journal, 1994). Locally, wells that produce gas from the accumulation are as deep as 2,200 (Oil and Gas Journal, 1994). Even though natural fractures are an important control on Antrim Shale gas production, most wells require stimulation by hydraulic fracturing to attain commercial production rates (Kelly, 1992). In the U.S. Geological Survey's National Assessment of United States oil and gas, Dolton (1995) estimates that, at a mean value, 4.45 trillion cubic feet (TCF) of gas are recoverable as additions to already discovered quantities from the Antrim Shale in the productive area of the northern Michigan trend. Dolton (1995) also suggests that undiscovered Antrim Shale gas accumulations exist in other parts of the Michigan basin. The character, distribution, and origin of natural fractures in the Antrim Shale gas accumulation have been studied recently by academia and industry. The intent of these investigations is to: 1) predict 'sweet spots', prior to drilling, in the existing gas-producing trend, 2) improve production practices in the existing trend, 3) predict analogous fracture-controlled gas accumulations in other parts of the Michigan basin, and 4) improve estimates of the recoverable gas in the Antrim Shale gas plays (Dolton, 1995). This review of published literature on the characteristics of Antrim Shale fractures, their origin, and their controls on gas production will help to define objectives and goals in future U.S. Geological Survey studies of Antrim Shale gas resources.

  10. Lagrangian mixed layer modeling of the western equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Shinoda, Toshiaki; Lukas, Roger

    1995-01-01

    Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.

  11. An intramontane pull-apart basin in tectonic escape deformation: Elbistan Basin, Eastern Taurides, Turkey

    NASA Astrophysics Data System (ADS)

    Yusufoğlu, H.

    2013-04-01

    The Elbistan Basin in the east-Central Anatolia is an intramontane structural depression in the interior part of the Anatolide-Tauride Platform. The Neogene fill in and around Elbistan Basin develops above the Upper Devonian to lower Tertiary basement and comprises two units separated by an angular unconformity: (1) intensely folded and faulted Miocene shallow marine to terrestrial and lacustrine sediments and (2) nearly flat-lying lignite-bearing lacustrine (lower unit) and fluvial (upper unit) deposits of Plio-Quaternary Ahmetçik Formation. The former is composed of Lower-Middle Miocene Salyan, Middle-upper Middle Miocene Gövdelidağ and Upper Miocene Karamağara formations whereas the latter one is the infill of the basin itself in the present configuration of the Elbistan Basin. The basin is bound by normal faults with a minor strike-slip component. It commenced as an intramontane pull-apart basin and developed as a natural response to Early Pliocene tectonic escape-related strike-slip faulting subsequent to post-collisional intracontinental compressional tectonics during which Miocene sediments were intensely deformed. The Early Pliocene time therefore marks a dramatic changeover in tectonic regime and is interpreted as the beginning of the ongoing last tectonic evolution and deformation style in the region unlike to previous views that it commenced before that time. Consequently, the Elbistan Basin is a unique structural depression that equates the extensional strike-slip regime in east-Central Anatolia throughout the context of the neotectonical framework of Turkey across progressive collision of Arabia with Eurasia. Its Pliocene and younger history differs from and contrasts with that of the surrounding pre-Pliocene basins such as Karamağara Basin, on which it has been structurally superimposed.

  12. Sedimentology, CSFe relationships and stable isotopic compositions in Devonian black mudrocks, Mackenzie Mountains, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Al-Aasm, I. S.; Morad, S.; Durocher, S.; Muir, I.

    1996-11-01

    An integrated approach combining CSFe relationships, stable isotopic compositions, and lithofacies characterization was utilized to constrain the palaeoenvironmental and early diagenetic conditions of Middle-Upper Devonian (Eifelian-Frasnian) mudrocks from the Mackenzie Mountains, Northwest Territories, Canada. These rocks include the Hare Indian Formation (informally subdivided into the lower Bluefish Member and the Hare Indian Upper Member), Carcajou Marker and Canol Formation. The Bluefish Member is dominated by black, laminated, organic-rich shales (TOC = 0.35-10.34 wt.%; av. 5.83 wt.) with moderate degrees of pyritization (DOP) of 0.34-0.67 (av. 0.55). These mudrocks were deposited in dysoxic marine bottom-waters that became progressively more oxygenated with time. Variations in TOC, DOP and organic matter δ 13C PDB values (-29.7% to -19.9%; av. -27.2%) are attributed to repeated clastic dilution and increased input of terrestrial organic matter in association with shallowing-upward ramp-clinothem cycles. Pyrite δ 34S CDT values (-32.7% to -18.8%; av. -24.9%) indicate an open system, bacteriogenic seawater-sulphate reduction. Conversely, the overlying Hare Indian Upper Member, characterized by clinothem facies, is composed of grey to green mudstone with minor argillaceous limestones and considerably less organic matter contents (TOC = 0.28-2.99 wt.%; δ 13C = -29.5% to -22.5%). Deposition occurred in oxic to slightly dysoxic waters (DOP = 0.20-0.54; δ 34S = -23.0% to -20.9%), depending on the palaeotopographic location along the depositional slope. A rapid rise in sea level drowned the carbonate 'ramp' member of the Ramparts Formation and produced the thin, organic-rich Carcajou Marker. Bottom-water stagnation that resulted from subdued ramp palaeotopography produced anoxic sea bottom. Black, laminated, organic-rich shales from the Canol Formation (TOC = 1.37-6.68 wt.%) are very similar to those of the Bluefish Member, and are likewise basinal sediments. However, TOC, DOP and organic-matter δ 13C PDB values (-29.1% to -20.8%; av. -26.2%) do not show pronounced variations and indicate that low-energy, quietwater conditions persisted over relatively long, uninterrupted periods of time. High DOP values (0.72-0.93) throughout the Canol Formation suggest that deposition occurred in anoxic bottom-waters, but as basin-fill conditions continued there was a shift to a dysoxic environment (DOP = 0.55-0.65), which grades into nearshore and offshore sequences of the overlying Imperial Formation. In contrast with the Hare Indian Formation, much heavier δ 34S CDT values of pyrite in Canol mudrocks (-11.1% to +5.3%; av. -3.1%) point to bacterial sulphate reduction in a closed to semi-closed system with respect to seawater sulphate.

  13. Geologic Map of the Weaverville 15' Quadrangle, Trinity County, California

    USGS Publications Warehouse

    Irwin, William P.

    2009-01-01

    The Weaverville 15' quadrangle spans parts of five generally north-northwest-trending accreted terranes. From east to west, these are the Eastern Klamath, Central Metamorphic, North Fork, Eastern Hayfork, and Western Hayfork terranes. The Eastern Klamath terrane was thrust westward over the Central Metamorphic terrane during early Paleozoic (Devonian?) time and, in Early Cretaceous time (approx. 136 Ma), was intruded along its length by the massive Shasta Bally batholith. Remnants of overlap assemblages of the Early Cretaceous (Hauterivian) Great Valley sequence and the Tertiary Weaverville Formation cover nearly 10 percent of the quadrangle. The base of the Eastern Klamath terrane in the Weaverville quadrangle is a peridotite-gabbro complex that probably is correlative to the Trinity ophiolite (Ordovician), which is widely exposed farther north beyond the quadrangle. In the northeast part of the Weaverville quadrangle, the peridotite-gabbro complex is overlain by the Devonian Copley Greenstone and the Mississippian Bragdon Formation. Where these formations were intruded by the Shasta Bally batholith, they formed an aureole of gneissic and other metamorphic rocks around the batholith. Westward thrusting of the Eastern Klamath terrane over an adjacent body of mafic volcanic and overlying quartzose sedimentary rocks during Devonian time formed the Salmon Hornblende Schist and the Abrams Mica Schist of the Central Metamorphic terrane. Substantial beds of limestone in the quartzose sedimentary unit, generally found near the underlying volcanic rock, are too metamorphosed for fossils to have survived. Rb-Sr analysis of the Abrams Mica Schist indicates a metamorphic age of approx. 380 Ma. West of Weavervillle, the Oregon Mountain outlier of the Eastern Klamath terrane consists mainly of Bragdon Formation(?) and is largely separated from the underlying Central Metamorphic terrane by serpentinized peridotite that may be a remnant of the Trinity ophiolite. The North Fork terrane is faulted against the west edge of the Central Metamorphic terrane, and its northerly trend is disrupted by major left-lateral offsets along generally west-northwest-trending faults. The serpentinized peridotite-gabbro complex that forms the western base of the terrane is the Permian North Fork ophiolite, which to the east is overlain by broken formation of mafic-volcanic rocks, red chert, siliceous tuff, argillite, minor limestone, and clastic sedimentary rocks. The chert and siliceous tuff contain radiolarians of Permian and Mesozoic ages, and some are as young as Early Jurassic (Pliensbachian). Similar Pliensbachian radiolarians are found in Franciscan rocks of the Coast Ranges. The Eastern Hayfork terrane is broken formation and melange of mainly chert, sandstone, argillite, and various exotic blocks. The cherts yield radiolarians of Permian and Triassic ages but none of clearly Jurassic age. Limestone bodies of the Eastern Hayfork terrane contain Permian microfaunas of Tethyan affinity. The Western Hayfork terrane, exposed only in a small area in the southwestern part of the quadrangle, consists dominantly of mafic tuff and dark slaty argillite. Sparse paleontologic data indicate a Mesozoic age for the strata. The terrane includes small bodies of diorite that are related to the nearby Wildwood pluton of Middle Jurassic age and probably are related genetically to the stratified rocks. The terrane is interpreted to be the accreted remnants of a Middle Jurassic volcanic arc. Shortly after intrusion by Shasta Bally batholith (approx. 136 Ma), much of the southern half of the Weaverville quadrangle was overlapped by Lower Cretaceous, dominantly Hauterivian, marine strata of the Great Valley sequence, and to a lesser extent later during Oligocene and (or) Miocene time by fluvial and lacustrine deposits of the Weaverville Formation. This map of the Weaverville Quadrangle is a digital rendition of U.S. Geological Survey Miscellaneous Field

  14. Emsian synorogenic paleogeography of the Maine Applachians

    USGS Publications Warehouse

    Bradley, D.; Tucker, R.

    2002-01-01

    The Acadian deformation front in the northern Appalachians of Maine and New Hampshire can now be closely located during the early Emsian (Early Devonian; 408-406 Ma). Tight correlations between paleontologically and isotopically dated rocks are possible only because of a new 408-Ma time scale tie point for the early Emsian. The deformation front lay between a belt of Lower Devonian flysch and molasse that were deposited in an Acadian foreland basin and had not yet been folded and a belt of early Emsian plutons that intruded folded Lower Devonian rocks. This plutonic belt includes the newly dated Ore Mountain gabbro (U/Pb; 406 Ma), which hosts magmatic-sulfide mineralization. Along the deformation front, a 407-Ma pluton that locally truncates Acadian folds (Katahdin) was the feeder to volcanic rocks (Traveler Rhyolite; 406-407 Ma) that are part of the foreland-basin succession involved in these same folds. The Emsian igneous rocks thus define a syncollisional magmatic province that straddled the deformation front. These findings bear on three alternative subduction geometries for the Acadian collision.

  15. Wangshangkia, a new Devonian ostracod genus from Dushan of Guizhou, South China

    NASA Astrophysics Data System (ADS)

    Song, Junjun; Gong, Yiming

    2018-02-01

    Wangshangkia, a new genus of Ostracoda, from the Late Devonian in Dushan of Guizhou, South China, is described. This genus belongs to the family Bairdiocyprididae Shaver, 1961 and includes two new species, i.e. Wangshangkia dushaniensis and W. bailouiensis. The new genus is characterized by a wide ventral carina with radial striae. It is reported from the Famennian of South China and disappeared just below the Devonian-Carboniferous boundary. Wangshangkia is essentially a benthic crawler and is restricted to the shallow-marine depositional environment with a low hydrodynamic condition. Wangshangkia: urn:lsid:zoobank.org:act:34BF01D4-D202-492D-8E27-BC508EF7EFFB W. dushaniensis: urn:lsid:zoobank.org:act:D267C362-7510-4D19-996B-EA1848D7D025 W. bailouiensis: urn:lsid:zoobank.org:act:FE988AA0-7363-4D9E-A5AB-1526C8DBCDD9

  16. Geologic map of the Vail East quadrangle, Eagle County, Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Bryant, Bruce; Redsteer, Margaret H.

    2003-01-01

    New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Vail East quadrangle straddles the Gore fault system, the western structural boundary of the Gore Range. The Gore fault system is a contractional structure that has been recurrently active since at least the early Paleozoic and marks the approximate eastern boundary of the Central Colorado trough, a thick late Paleozoic depocenter into which thousands of meters of clastic sediment were deposited from several uplifts, including the ancestral Front Range. The Gore fault was active during both the late Paleozoic and Upper Cretaceous-lower Tertiary (Laramide) deformations. In addition, numerous north-northwest faults that cut the crystalline rocks of the Gore Range were active during at least 5 periods, the last of which was related to Neogene uplift of the Gore Range and formation of the northern Rio Grande rift. Early Proterozoic crystalline rocks underlie the high Gore Range, north and east of the Gore fault system. These rocks consist predominantly of migmatitic biotite gneiss intruded by mostly granitic rocks of the 1.667-1.750 Ma Cross Creek batholith, part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, 1987). Southwest of the Gore fault, a mostly gently south-dipping sequence of Pennsylvanian Mimturn Formation, as thick as 1,900 m, and the Permian and Pennsylvanian Maroon Formation (only the basal several hundred meters are exposed in the quadrangle)were shed from the ancestral Front Range and overlie a thin sequence of Devonian and Cambrian rocks. The Minturn Formation is a sequence of interlayered pink, maroon, and gray conglomerate, sandstone, shale, and marine limestone. The Maroon Formation is mostly reddish conglomerate and sandstone. Glacial till of both the middle Pleistocene Bull Lake and late Pleistocene Pinedale glaciations are well exposed along parts of the Gore Creek valley and its tributaries, although human development has profoundly altered the outcrop patterns along the Gore Creek valley bottom. Landslides, some of which are currently active, are also mapped.

  17. Geological development and Phanerozoic crustal accretion in the western segment of the southern Tien Shan (Kyrgyzstan, Uzbekistan and Tajikistan)

    NASA Astrophysics Data System (ADS)

    Brookfield, M. E.

    2000-12-01

    The Tien Shan form a high intracontinental mountain belt, lying north of the main India-Asia collision mountains, and consist of re-activated Paleozoic orogens. The western segment of the southern Tien Shan lies northwest of the Pamir and west of the Talas-Fergana fault. The stratigraphy, lithology, igneous and metamorphic petrology and geochemistry of this segment indicate that it was formed by the assembly of Lower Paleozoic arcs which developed into microcontinents with Upper Paleozoic mature shelf and slope clastic and carbonate sediments. Precambrian continental crust is confined to two small blocks along its southern margin. The bulk of the southern Tien Shan consists of ?Vendian to Silurian oceanic and slope clastic rocks, resting on oceanic lithosphere, and overlain by thick passive margin Devonian to mid-Carboniferous mature shelf clastics and carbonates. These are unconformably overlain by syn- and post-orogenic immature clastic sediments derived from mountains on the north formed by closure of a Carboniferus southern Tajik and a northern Vendian to Carboniferous Turkestan ocean with the southern Tien Shan microcontinent sandwiched between. Associated with these collisions are late Carboniferous to Permian intrusives, which form three south to north (though overlapping) suites; a southern calc-alkaline granodiorite-granite suite, an intermediate gabbro-monzodiorite-granite suite, and a northern alkaline monzodiorite-granite-alaskite suite. The gabbro-monzodiorite-granite suite forms the earliest subduction-related magmatism of the southern Tien Shan: rare earth element patterns are consistent with derivation from a primitive or slightly enriched mantle. The other suites show more crustal contamination. Rb and Sr vary with depth and degree of partial melting and are consistent with progressive involvement of crustal material in partial melts during collision. The gradual change in composition within each complex, lasting in some cases from 295 to 250 Ma (the entire Permian), may be explained by a consecutive shift in the melting sedimentary cover of the subducting plate from oceanic crust through transitional crust to marginal continental crust. Like the Central Asian orogenic belt (the main focus of IGCP 420), the Tien Shan represent a net addition of continental crust during the Phanerozoic. Very little of the belt has any Precambrian precursor.

  18. Barents Sea Crustal and Upper Mantle Structure from Deep Seismic and Potential Field Data

    NASA Astrophysics Data System (ADS)

    Aarseth, I.; Mjelde, R.; Breivik, A. J.; Minakov, A.; Huismans, R. S.; Faleide, J. I.

    2016-12-01

    The Barents Sea basement comprises at least two different domains; the Caledonian in the west and the Timanian in the east. Contrasting interpretations have been published recently, as the transition between these two domains is not well constrained. Interpretations of new high-quality magnetic data covering most of the SW Barents Sea challenged previous studies of the Late Paleozoic basin configurations in the western and central Barents Sea. Two major directions of Caledonian structures have been proposed by different authors: N-S and SW-NE. Two regional ocean bottom seismic (OBS) profiles, crossing these two major directions, were acquired in 2014.The primary goal in this project is to locate the main Caledonian suture in the western Barents Sea, as well as the possible Barentsia-Baltica suture postulated further eastwards. High velocity anomalies associated with Caledonian eclogites are particularly interesting as they may be related to Caledonian suture zones. The collapse of the Caledonian mountain range predominantly along these suture zones is expected to be closely linked to the deposition of Devonian erosional products, and subsequent rifting is likely to be influenced by inheritance of Caledonian trends. P-wave travel-time modelling is done by use of a combined ray-tracing and inversion scheme, and gravity modelling has been used to support the seismic model. The results indicate high P-wave velocities (mostly over 4 km/s) close to the seafloor as well as high velocity (around 6 km/s) zones at shallow depths which are interpreted as volcanic sills. The crustal transect reveals areas of complex geology and velocity inversions. Strong reflections from within the crystalline crust indicate a heterogeneous basement terrain. Gravity modelling agrees with this, as several blocks with variable densities had to be introduced in order to reproduce the observed gravity anomalies. Refractions from the top of the crystalline basement together with reflections from the Moho gives basement velocities from 6.2 km/s at the top to 6.7 km/s at the base of the crust. In the middle of the profile, a rapid deepening of Moho creates a root structure that may be interpreted in terms of a Caledonian suture zone, with the crustal root representing a remnant of the continental collision.

  19. The effect of long-term regional pumping on hydrochemistry and dissolved gas content in an undeveloped shale-gas-bearing aquifer in southwestern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Hamilton, Stewart M.; Grasby, Stephen E.; McIntosh, Jennifer C.; Osborn, Stephen G.

    2015-02-01

    Baseline groundwater geochemical mapping of inorganic and isotopic parameters across 44,000 km2 of southwestern Ontario (Canada) has delineated a discreet zone of natural gas in the bedrock aquifer coincident with an 8,000-km2 exposure of Middle Devonian shale. This study describes the ambient geochemical conditions in these shales in the context of other strata, including Ordovician shales, and discusses shale-related natural and anthropogenic processes contributing to hydrogeochemical conditions in the aquifer. The three Devonian shales—the Kettle Point Formation (Antrim equivalent), Hamilton Group and Marcellus Formation—have higher DOC, DIC, HCO3, CO2(aq), pH and iodide, and much higher CH4(aq). The two Ordovician shales—the Queenston and Georgian-Bay/Blue Mountain Formations—are higher in Ca, Mg, SO4 and H2S. In the Devonian shale region, isotopic zones of Pleistocene-aged groundwater have halved in size since first identified in the 1980s; potentiometric data implicate regional groundwater extraction in the shrinkage. Isotopically younger waters invading the aquifer show rapid increases in CH4(aq), pH and iodide with depth and rapid decrease in oxidized carbon species including CO2, HCO3 and DIC, suggesting contemporary methanogenesis. Pumping in the Devonian shale contact aquifer may stimulate methanogenesis by lowering TDS, removing products and replacing reactants, including bicarbonate, derived from overlying glacial sedimentary aquifers.

  20. Further study of Late Devonian seed plant Cosmosperma polyloba: its reconstruction and evolutionary significance.

    PubMed

    Liu, Le; Wang, Deming; Meng, Meicen; Xue, Jinzhuang

    2017-06-26

    The earliest seed plants in the Late Devonian (Famennian) are abundant and well known. However, most of them lack information regarding the frond system and reconstruction. Cosmosperma polyloba represents the first Devonian ovule in China and East Asia, and its cupules, isolated synangiate pollen organs and pinnules have been studied in the preceding years. New fossils of Cosmosperma were obtained from the type locality, i.e. the Leigutai Member of the Wutong Formation in Fanwan Village, Changxing County, Zhejiang Province, South China. The collection illustrates stems and fronds extensively covered in prickles, as well as fertile portions including uniovulate cupules and anisotomous branches bearing synangiate pollen organs. The stems are unbranched and bear fronds helically. Fronds are dimorphic, displaying bifurcate and trifurcate types, with the latter possibly connected to fertile rachises terminated by pollen organs. Tertiary and quaternary rachises possessing pinnules are arranged alternately (pinnately). The cupule is uniovulate and the ovule has four linear integumentary lobes fused in basal 1/3. The striations on the stems and rachises may indicate a Sparganum-type cortex. Cosmosperma further demonstrates diversification of frond branching patterns in the earliest seed plants. The less-fused cupule and integument of this plant are considered primitive among Devonian spermatophytes with uniovulate cupules. We tentatively reconstructed Cosmosperma with an upright, semi-self-supporting habit, and the prickles along stems and frond rachises were interpreted as characteristics facilitating supporting rather than defensive structures.

  1. Gravity field over northern Eurasia and variations in the strength of the upper mantle

    NASA Technical Reports Server (NTRS)

    Kogan, Mikhail G.; Mcnutt, Marcia K.

    1993-01-01

    The correlation of long-wavelength gravity anomalies in northern Eurasia with seismic velocity anomalies in the upper mantle reverses in sign between western and eastern Eurasia. The difference between western and eastern Eurasia can be explained by the presence of a low-viscosity zone in the uppermost mantle beneath eastern Eurasia that is absent to the west. The location of the lateral change in viscosity corresponds with the geologic boundary between the older shields and platforms of the Baltics, Russia, and Siberia and the younger, geologically active mountain belts of eastern Asia. This relation provides evidence that differences in the strength of the upper mantle control the locus of intracontinental deformation.

  2. Inoceramid and foraminiferal record and biozonation of the Turonian and Coniacian (Upper Cretaceous) of the Mangyshlak Mts., western Kazakhstan

    NASA Astrophysics Data System (ADS)

    Walaszczyk, Ireneusz; Kopaevich, Ludmila F.; Beniamovski, Vladimir N.

    2013-12-01

    Walaszczyk, I., Kopaevich, L.F. and Beniamovski, V.N. 2013. Inoceramid and foraminiferal record and biozonation of the Turonian and Coniacian (Upper Cretaceous) of the Mangyshlak Mts., western Kazakhstan. Acta Geologica Polonica, 63 (4), 469-487. Warszawa. The Turonian and Coniacian (Upper Cretaceous) of the Mangyshlak Mts., western Kazakhstan, yielded a rich and relatively complete inoceramid bivalve record. The faunas and their succession correspond to those known from central and eastern Europe, allowing the zonation established in the latter areas to be applied in a virtually identical form. The gaps in the record of the group in Mangyshlak stem from the regional hiatuses in the geological record in the area and do not reflect any biogeographical differences between eastern and central-western Europe. Planktonic foraminifera are rare. Four successive interval range zones can be distinguished: in ascending stratigraphic order, the Helvetoglobotrunaca helvetica, Marginotruncaca pseudolinneiana, Marginotruncana coronata, and Concavotruncana concavata zones. Their correlation with the inoceramid zonation and, consequently, with the chronostratigraphic scheme, is demonstrated. The zonation and chronostratigraphic subdivision as applied in Mangyshlak may easily be applied to other areas of the peri-Caspian region (Caucasus, Tuarkyr, Kopet-Dagh, SE margin of the East-European Craton).

  3. Geologic map of the Horse Mountain Quadrangle, Garfield County, Colorado

    USGS Publications Warehouse

    Perry, W.J.; Shroba, R.R.; Scott, R.B.; Maldonado, Florian

    2003-01-01

    New 1:24,000-scale geologic map of the Horse Mountain 7.5' quadrangle, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, summarizes available geologic information for the quadrangle. It provides new interpretations of the stratigraphy, structure, and geologic hazards in the area of the southwest flank of the White River uplift. Bedrock strata include the Paleocene and early Eocene Wasatch Formation down through Ordovician and Cambrian units into Precambrian hornblende tonalite. The Wasatch Formation includes the Shire, Molina and Atwell Gulch Members which are mapped separately. The underlying Upper Cretaceous Mesaverde Group is subdivided into the Willams Fork and Iles Formations. The Cameo-Fairfield clinker zone within the Williams Fork Formation is mapped separately. The Iles Formation includes the Rollins Sandstone Member at the top, mapped separately, and the Cozzette Sandstone and Corcoran Sandstone Members, which are undivided. The Mancos Shale consists of four members, an upper member, the Niobrara Member, the Juana Lopez Member, and a lower member, undivided. The Lower Cretaceous Dakota Sandstone, the Upper Jurassic Morrison Formation, and Jurassic Entrada Sandstone are mapped separately. The Lower Jurassic and Upper Triassic Glen Canyon Sandstone is mapped with the Entrada in the Horse Mountain Quadrangle. The upper Triassic Chinle Formation and the Lower Permian and Triassic(?) State Bridge Formation are present. The Pennsylvanian and Permian Maroon Formation is undivided. All the exposures of the Middle Pennsylvanian Eagle Valley Evaporite are diapiric, intruded into the Middle Pennsylvanian Eagle Valley Formation, which includes locally mappable limestone beds. The Lower and Middle Pennsylvanian Belden Formation and the Lower Mississippian Leadville Limestone are present. The Upper Devonian Chaffee Group consists of the Dyer Dolomite and the underlying Parting Quartzite, undivided. Locally, the Lower Ordovician Manitou Formation is mapped separately beneath the Chaffee. Elsewhere, Ordovician through Cambrian units, the Manitou and Dotsero Formations, underlain by the Sawatch Quartzite, are undivided. The southwest flank of the White River uplift is a late Laramide structure that is represented by the steeply southwest-dipping Grand Hogback, which is only present in the southwestern corner of the map area, and less steeply southwest-dipping older strata that flatten to nearly horizontal attitudes in the northern part of the map area. Between these two are a complex of normal faults, the largest of which dips southward placing Chafee dolostone and Leadville Limestone adjacent to Eagle Valley and Maroon Formations. Diapiric Eagle Valley Evaporite intruded close to the fault on the down-thrown side. Removal of evaporite by either flow or dissolution from under younger parts of the strata create structural benches, folds, and sink holes on either side of the normal fault. A prominent dipslope of the Morrison-Dakota-Mancos part of the section forms large slide blocks and mass movement deposits consisting of a chaos of admixed Morrison and Dakota lithologies. The major geologic hazard in the area consists of large landslides both associated with dip-slope slide blocks and the steep slopes of the Eagle Valley Formation and Belden Formation in the northern part of the map. Abandoned coal mines are present along the north face of the Grand Hogback in the lower part of the Mesaverde Group

  4. Detrital zircon geochronology of pre- and syncollisional strata, Acadian orogen, Maine Appalachians

    USGS Publications Warehouse

    Bradley, Dwight C.; O'Sullivan, Paul B.

    2017-01-01

    The Central Maine Basin is the largest expanse of deep-marine, Upper Ordovician to Devonian metasedimentary rocks in the New England Appalachians, and is a key to the tectonics of the Acadian Orogeny. Detrital zircon ages are reported from two groups of strata: (1) the Quimby, Rangeley, Perry Mountain and Smalls Falls Formations, which were derived from inboard, northwesterly sources and are supposedly older; and (2) the Madrid, Carrabassett and Littleton Formations, which were derived from outboard, easterly sources and are supposedly younger. Deep-water deposition prevailed throughout, with the provenance shift inferred to mark the onset of foredeep deposition and orogeny. The detrital zircon age distribution of a composite of the inboard-derived units shows maxima at 988 and 429 Ma; a composite from the outboard-derived units shows maxima at 1324, 1141, 957, 628, and 437 Ma. The inboard-derived units have a greater proportion of zircons between 450 and 400 Ma. Three samples from the inboard-derived group have youngest age maxima that are significantly younger than the nominal depositional ages. The outboard-derived group does not share this problem. These results are consistent with the hypothesised provenance shift, but they signal potential problems with the established stratigraphy, structure, and (or) regional mapping. Shallow-marine deposits of the Silurian to Devonian Ripogenus Formation, from northwest of the Central Maine Basin, yielded detrital zircons featuring a single age maximum at 441 Ma. These zircons were likely derived from a nearby magmatic arc now concealed by younger strata. Detrital zircons from the Tarratine Formation, part of the Acadian foreland-basin succession in this strike belt, shows age maxima at 1615, 980 and 429 Ma. These results are consistent with three episodes of zircon recycling beginning with the deposition of inboard-derived strata of the Central Maine Basin, which were shed from post-Taconic highlands located to the northwest. Next, southeasterly parts of this succession were deformed in the Acadian orogeny, shedding detritus towards the northwest into what remained of the basin. Finally, by Pragian time, all strata in the Central Maine Basin had been deformed and detritus from this new source accumulated as the Tarratine Formation in a new incarnation of the foreland basin. Silurian-Devonian strata from the Central Maine Basin have similar detrital zircon age distributions to coeval rocks from the Arctic Alaska and Farewell terranes of Alaska and the Northwestern terrane of Svalbard. We suggest that these strata were derived from different segments of the 6500-km-long Appalachian-Caledonide orogen.

  5. Texture and depositional history of near-surface alluvial deposits in the central part of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Laudon, Julie; Belitz, Kenneth

    1989-01-01

    Saline conditions and associated high levels of selenium and other soluble trace elements in soil, shallow ground water, and agricultural drain water of the western San Joaquin Valley, California, have prompted a study of the texture of near-surface alluvial deposits in the central part of the western valley. Texture is characterized by the percentage of coarse-grained sediment present within a specified subsurface depth interval and is used as a basis for mapping the upper 50 feet of deposits. Resulting quantitative descriptions of the deposits are used to interpret the late Quaternary history of the area. Three hydrogeologic units--Coast Range alluvium, flood-basin deposits, and Sierran sand--can be recognized in the upper 50 feet of deposits in the central part of the western San Joaquin Valley. The upper 30 feet of Coast Range alluvium and the adjacent 5 to 35 feet of flood-basin deposits are predominantly fine grained. These fine-grained Coast Range deposits are underlain by coarse-grained channel deposits. The fine-grained flood basin deposits are underlain by coarse-grained Sierran sand. The extent and orientation of channel deposits below 20 feet in the Coast Range alluvium indicate that streams draining the Coast Range may have been tributary to the axial stream that deposited the Sierran sand and that streamflow may have been to the southeast. The fining-upward stratigraphic sequence in the upper 50 feet of deposits and the headward retreat of tributary stream channels from the valley trough with time support a recent hypothesis of climatic control of alluviation in the western San Joaquin Valley.

  6. Discovery of the first ichthyosaur from the Jurassic of India: Implications for Gondwanan palaeobiogeography

    PubMed Central

    Pandey, Dhirendra K.; Alberti, Matthias; Fürsich, Franz T.; Thakkar, Mahesh G.; Chauhan, Gaurav D.

    2017-01-01

    An articulated and partially preserved skeleton of an ichthyosaur was found in the Upper Jurassic (Upper Kimmeridgian) Katrol Formation exposed at a site south of the village Lodai in Kachchh district, Gujarat (western India). Here we present a detailed description and inferred taxonomic relationship of the specimen. The present study revealed that the articulated skeleton belongs to the family Ophthalmosauridae. The new discovery from India further improves the depauperate fossil record of ichthyosaurs from the former Gondwanan continents. Based on the preserved length of the axial skeleton and anterior part of the snout and taking into account the missing parts of the skull and postflexural region, it is suggested that the specimen may represent an adult possibly reaching a length of 5.0–5.5 m. The widespread occurrence of ophthalmosaurids in the Upper Jurassic deposits of western Tethys, Madagascar, South America and India points to possible faunal exchanges between the western Tethys and Gondwanan continents through a southern seaway. PMID:29069082

  7. NEHRP soil classifications for estimating site-dependent seismic coefficients in the Upper Mississippi Embayment

    USGS Publications Warehouse

    Street, R.; Woolery, E.W.; Wang, Z.; Harris, J.B.

    2001-01-01

    Local soil conditions have a profound influence on the characteristics of ground shaking during an earthquake. Exceptionally deep soil deposits, on the order of 100-1000 m deep, are found in the Upper Mississippi Embayment of the central United States. Shear waves (SH) from earthquakes in the New Madrid seismic zone are expected to be strongly affected by the sharp impedance contrasts at the bedrock/sediment interface, attenuation of seismic waves in the soil column, and the SH-wave velocities of the more poorly consolidated near-surface (???50 m) soils. SH-wave velocities of the near-surface soils at nearly 400 sites in the Upper Mississippi Embayment were determined using conventional seismic SH-wave refraction and reflection techniques. Based on the average SH-wave velocities of the upper 30 m of the soils, sites in the Mississippi River floodplain portion of the study area are predominantly classified as Site Class D (180-360 m/s) in accordance with the 1997 NEHRP provisions. Sites away from the active floodplains in western Kentucky and western Tennessee, the SH-wave velocities of the upper 30 m of soils typically ranged from mid-200 to mid-300 m/s. Several sites in western Kentucky had averaged SH-wave velocities greater than 360 m/s, thereby qualifying them as Site Class C (360-760 m/s) in accordance with the 1997 NEHRP provisions. One dimensional site effects, including amplification and dynamic site period, were calculated for a representative suite of sites across the Upper Mississippi Embayment at latitude ?? 38.5??. Although seismic attenuation is greater in the Mississippi River floodplain (i.e. thicker, lower velocity material), the site effects tend to be greater than in the uplands of western Tennessee because of larger impedance contrasts within the near-surface soils. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. Hydrogeology and simulation of ground-water flow in the Silurian-Devonian aquifer system, Johnson County, Iowa

    USGS Publications Warehouse

    Tucci, Patrick; McKay, Robert M.

    2006-01-01

    The greatest limitation to the model is the lack of measured or estimated water-budget components for comparison to simulated water-budget components. Because the model is only calibrated to measured water levels, and not to water-budget components, the model results are nonunique. Other model limitations include the relatively coarse grid scale, lack of detailed information on pumpage from the quarry and from private developments and domestic wells, and the lack of separate water-level data for the Silurian- and Devonian-age rocks.

  9. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind profiles to determine wind effects on the vehicle and for a commit to launch decision. These assessments incorporate wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the upper-level winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Five sets of temporal wind pairs at various times (.75, 1.5, 2, 3 and 4-hrs) at the Eastern Range, Western Range and Wallops Flight Facility were developed for use in upper-level wind assessments. Database development procedures as well as statistical analysis of temporal wind variability at each launch range will be presented.

  10. Impact of climate warming on upper layer of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Chul; Delworth, Thomas L.; Rosati, Anthony; Zhang, Rong; Anderson, Whit G.; Zeng, Fanrong; Stock, Charles A.; Gnanadesikan, Anand; Dixon, Keith W.; Griffies, Stephen M.

    2013-01-01

    The impact of climate warming on the upper layer of the Bering Sea is investigated by using a high-resolution coupled global climate model. The model is forced by increasing atmospheric CO2 at a rate of 1% per year until CO2 reaches double its initial value (after 70 years), after which it is held constant. In response to this forcing, the upper layer of the Bering Sea warms by about 2°C in the southeastern shelf and by a little more than 1°C in the western basin. The wintertime ventilation to the permanent thermocline weakens in the western Bering Sea. After CO2 doubling, the southeastern shelf of the Bering Sea becomes almost ice-free in March, and the stratification of the upper layer strengthens in May and June. Changes of physical condition due to the climate warming would impact the pre-condition of spring bio-productivity in the southeastern shelf.

  11. Upper Devonian vertebrate taphonomy and sedimentology from the Klunas fossil site, Tervete Formation, Latvia

    NASA Astrophysics Data System (ADS)

    Vasiļkova, J.; Lukševičs, E.; Stinkulis, Ä.¢.; Zupinš, I.

    2012-04-01

    The deposits of the Tervete Formation, Famennian Stage of Latvia, comprising weakly cemented sandstone and sand intercalated with dolomitic marls, siltstone and clay, have been traditionally interpreted as having formed in a shallow, rather restricted sea with lowered salinity. During seven field seasons the excavations took place in the south-western part of Latvia, at the Klunas site, and resulted in extensive palaeontological and sedimentological data. The taphonomical analysis has been performed, having evaluated the size, sorting, orientation of the fossils, articulation and skeletal preservation as well as the degree of fragmentation and abrasion. The sedimentological analysis involved interpretation of sedimentary structures, palaeocurrent direction reconstruction, grain-size analysis and approximate water depth calculations. The vertebrate assemblage of the Klunas site represents all known taxa of the Sparnene Regional Stage of the Baltic Devonian, comprising placoderms Bothriolepis ornata Eichwald, B. jani Lukševičs, Phyllolepis tolli Vasiliauskas, Dunkleosteus sp. and Chelyophorus sp., sarcopterygians Holoptychius nobilissimus Agassiz, Platycephalichthys skuenicus Vorobyeva, Cryptolepis sp., Conchodus sp., Glyptopomus ? sp., "Strunius" ? sp., and Dipterus sp., as well as an undetermined actinopterygian. Placoderms Bothriolepis ornata and B. jani dominate the assemblage. The fossils are represented in the main by fully disarticulated placoderm plates and plate fragments, sarcopterygian scales and teeth, rarely bones of the head and shoulder girdle, and acanthodian spines and scales. The characteristic feature is the great amount of fragmentary remains several times exceeding the number of intact bones. The horizontal distribution of the bones over the studied area is not homogenous, distinct zones of increased or decreased density of fossils can be traced. Zones of the increased density usually contain many elements of various sizes, whereas zones of the decreased density might be subdivided into two types: 1, with limited number of large bones; 2, with scattered relatively small scales or fragments. The shape and size of zones of increased density of fossils slightly resemble that of subaqueous dunes. Within the Klunas fossil site three taphonomically distinct oryctocoenoses can be traced, differing in the compactness of accumulation, size, disarticulation and fragmentation of bones and showing various degree of mixing of repeatedly buried and very fresh, partially articulated material. Analysis of similarities and differences between these oryctocoenoses demonstrates that all are sedimentary concentrations and have to be assessed as allochtonous assemblages. However, despite these differences, the 1st and the 3rd oryctocoenoses, which have been formed as vertebrate bone accumulations on the bottom of an erosional channel, have much in common contrary to the 2nd oryctocoenosis, which exemplifies the lens of fossil bearing cross-stratified sandstone formed in subaqueous dunes. The concentrations of vertebrate remains have been formed under the influence of fluvial and tidal processes in the shallow water environment, most probably deltaic or estuarine settings. It has been found also that elongated placoderm and sarcopterygian bones might be better indicators of the palaeoflow direction in comparison with very elongated, but dense acanthodian spines or sarcopterygian teeth.

  12. Stratigraphic, regional unconformity analysis and potential petroleum plays of East Siberian Sea Basin

    NASA Astrophysics Data System (ADS)

    Karpov, Yury; Stoupakova, Antonina; Suslova, Anna; Agasheva, Mariia

    2017-04-01

    The East Siberian Sea basin (ESSB) one of the most unexplored part of the Russian Arctic shelf, extending for over 1000 km from New Siberian Islands archipelago to Wrangel Island. This region is considered as a region with probable high petroleum potential. Within the ESSB several phases of orogeny are recognized [1]: Elsmerian orogeny in Early Devonian, Early Brooks orogeny in Early Cretaceous, Late Brooks orogeny in Late Cretaceous. Two generations of the basins could be outlined. Both of these generations are controlled by the basement domains [1]: Paleozoic (post-Devonian) to Mesozoic basins preserved north of the Late Mesozoic frontal thrusts; Aptian-Albian to Quaternary basins, postdating the Verkhoyansk-Brookian orogeny, and evolving mainly over the New-Siberian-Chukchi Fold Belt. Basin is filled with siliclastic sediments and in the deepest depocentres sediments thickness exceeds 8-10 km in average. Seismic data was interpreted using methods of seismic stratigraphy. Finally, main seismic horizons were indicated and each horizon follows regional stratigraphic unconformities: mBU - in base of Cenozoic, BU - in base of Upper Cretaceous, LCU - in base of Cretaceous, JU - in middle of Jurassic, F - in top of Basement. In ESSB, we can identify Permian, Triassic, Jurassic, Cretaceous, Paleogene and Neogene seismic stratigraphy complexes. Perspective structures, investigated in ESSB were founded out by comparing seismogeological cross-sections with explored analogs in other onshore and offshore basins [2, 3, 4]. The majority of structures could be connected with stratigraphic and fault traps. The most perspective prospects are probably connected with grabens and depressions, where thickness of sediments exceed 10 km. Reservoirs in ESSB are proposed by regional geological explorations on New Siberian Islands Archipelago and Wrangel Island. Potential seals are predominantly assigned to Jurassic and Cretaceous periods. Thick clinoform units of various geometry and trajectories were found in Southern part of ESSB. These clinoform sequences could be formed as a result of significant subsidence followed by rapid sedimentary influx. All possible perspective structures were mapped on tectonic scheme of basin. References: [1] Drachev S.S., Malyshev N.A. and Nikishin A.M., 2010 Tectonic history and petroleum geology of the Russian Arctic Shelves: an overview. Petroleum Geology Conference series, 7, 591-619. [2] Spencer A.M., Embry A.F., Gautier D.L., Stoupakova A.V. and Sorensen K., 2011 An overview of the petroleum geology of the Arctic, Geological Society Memoirs, 35, 1-15. [3] Stoupakova A., Kirykhina T., Suslova A., Kirykhina N., Sautkin R. and Bordunov S., 2012 Structure, hydrocarbon prospects of the Russian Western arctic shelf. AAPG Arctic technology conference. Manuscript. Electronic version. AAPG Houston, USA. [4] Verzhbitsky V.E., Sokolov, S.D., Tuchkova M.I., Frantzen E.M., Little A., Lobkovsky L.I., 2012 The South Chukchi Sedimentary Basin (Chukchi Sea, Russian Arctic): Age, Structural Pattern, and Hydrocarbon Potential in D. Gao, ed., Tectonics and sedimentation: Implications for petroleum systems: AAPG Memoir, 100, 267-290.

  13. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte.

    PubMed

    Matsunaga, Kelly K S; Tomescu, Alexandru M F

    2016-04-01

    The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian-Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant-substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. How Reducing was the Late Devonian Ocean? The Role of Extensive Expansion of Anoxia in Marine Biogeochemical Cycles of Redox Sensitive Metals.

    NASA Astrophysics Data System (ADS)

    Sahoo, S. K.; Jin, H.

    2017-12-01

    The evolution of Earth's biogeochemical cycles is intimately linked to the oxygenation of the oceans and atmosphere. The Late Devonian is no exception as its characterized with mass extinction and severe euxinia. Here we use concentrations of Molybdenum (Mo), Vanadium (V), Uranium (U) and Chromium (Cr) in organic rich black shales from the Lower Bakken Formation of the Williston Basin, to explore the relationship between extensive anoxia vs. euxinia and it's relation with massive release of oxygen in the ocean atmosphere system. XRF data from 4 core across the basin shows that modern ocean style Mo, U and Cr enrichments are observed throughout the Lower Bakken Formation, yet V is not enriched until later part of the formation. Given the coupling between redox-sensitive-trace element cycles and ocean redox, various models for Late Devonian ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients. Here, we examine the differing redox behavior of molybdenum and vanadium under an extreme anoxia and relatively low extent of euxinia. The model suggests that Late Devonian was perhaps extensively anoxic- 40-50% compared to modern seafloor area, and a very little euxinia. Mo enrichments extend up to 500 p.p.m. throughout the section, representative of a modern reducing ocean. However, coeval low V enrichments only support towards anoxia, where anoxia is a source of V, and a sink for Mo. Our model suggests that the oceanic V reservoir is extremely sensitive to perturbations in the extent of anoxic condition, particularly during post glacial times.

  15. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.

  16. Geology of the Devonian black shales of the Appalachian Basin

    USGS Publications Warehouse

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  17. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants

    NASA Astrophysics Data System (ADS)

    Wallace, Malcolm W.; Hood, Ashleigh vS.; Shuster, Alice; Greig, Alan; Planavsky, Noah J.; Reed, Christopher P.

    2017-05-01

    There has been extensive debate about the history of Earth's oxygenation and the role that land plant evolution played in shaping Earth's ocean-atmosphere system. Here we use the rare earth element patterns in marine carbonates to monitor the structure of the marine redox landscape through the rise and diversification of animals and early land plants. In particular, we use the relative abundance of cerium (Ceanom), the only redox-sensitive rare earth element, in well-preserved marine cements and other marine precipitates to track seawater oxygen levels. Our results indicate that there was only a moderate increase in oceanic oxygenation during the Ediacaran (average Cryogenian Ceanom = 1.1, average Ediacaran Ceanom = 0.62), followed by a decrease in oxygen levels during the early Cambrian (average Cryogenian Ceanom = 0.90), with significant ocean anoxia persisting through the early and mid Paleozoic (average Early Cambrian-Early Devonian Ceanom = 0.84). It was not until the Late Devonian that oxygenation levels are comparable to the modern (average of all post-middle Devonian Ceanom = 0.55). Therefore, this work confirms growing evidence that the oxygenation of the Earth was neither unidirectional nor a simple two-stage process. Further, we provide evidence that it was not until the Late Devonian, when large land plants and forests first evolved, that oxygen levels reached those comparable to the modern world. This is recorded with the first modern-like negative Ceanom (values <0.6) occurring at around 380 Ma (Frasnian). This suggests that land plants, rather than animals, are the 'engineers' responsible for the modern fully oxygenated Earth system.

  18. Reconstructing multiple arc-basin systems in the Altai-Junggar area (NW China): Implications for the architecture and evolution of the western Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Li, Di; He, Dengfa; Tang, Yong

    2016-05-01

    The Altai-Junggar area in northwestern China is a critical region to gain insights on the tectonic framework and geological evolution of the western Central Asian Orogenic Belt (CAOB). In this study, we report results from integrated geological, geochemical and geophysical investigations on the Wulungu Depression of the Junggar Basin to determine the basement nature of the basin and understand its amalgamation history with the Chinese Altai, within the broad tectonic evolution of the Altai-Junggar area. Based on borehole and seismic data, the Wulungu Depression is subdivided into two NW-trending tectonic units (Suosuoquan Sag and Hongyan High) by southward-vergent thrust faults. The Suosuoquan Sag consists of the Middle-Late Devonian basaltic andesite, andesite, dacite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava flows and shallow marine sediments from a proximal juvenile provenance (zircon εHf(t) = 6.0-14.9), compared to the Late Carboniferous andesite and rhyolite in the Hongyan High. Zircon SIMS U-Pb ages for dacites and andesites indicate that these volcanics in the Suosuoquan Sag and Hongyan High erupted at 376.3 Ma and 313.4 Ma, respectively. The Middle-Late Devonian basaltic andesites from well LC1 are calc-alkaline and exhibit primitive magma-like MgO contents (7.9-8.6%) and Mg# values (66-68), with low initial 87Sr/86Sr (0.703269-0.704808) and positive εNd(t) values (6.6-7.6), and relatively high Zr abundance (98.2-116.0 ppm) and Zr/Y ratios (5.1-5.4), enrichment in LREEs and LILEs (e.g., Th and U) and depletion in Nb, Ta and Ti, suggesting that they were probably derived from a metasomatized depleted mantle in a retro-arc extensional setting. The well LC1 andesitic tuffs, well L8 dacites, well WL1 dacitic tuffs and well L5 andesites belong to calc-alkaline and metaluminous to peraluminous (A/CNK = 0.8-1.7) series, and display low Mg# values (35-46) and variably positive εNd(t) (4.5-8.5) and εHf(t) (10.2-16.8) values, as well as young isotopic model ages. These Devonian-Carboniferous intermediate-felsic volcanics are interpreted as the products of partial melting of a juvenile lower crust with some contributions from mantle components in an evolved island arc setting from immature to mature island arc. The basin filling pattern and the distribution of arc volcanics and their zircon Hf model ages with the eruptive time suggest that the Wulungu Depression represents an island arc-basin system with the development of a Carboniferous retro-arc basin. In combination with previous work, we propose that the northern Junggar area comprises three arc-basin belts from south to north: the Darbut-Luliang-Karamaili, Wulungu-Yemaquan, and Saur-Fuhai-Dulate. Such tectonic subdivisions are consistent with the regional gravity and magnetic anomaly data. The recognition of the Wulungu arc-basin system demonstrates that the Junggar Basin is likely underlain by juvenile continental crust rather than ancient Precambrian basement, and also implies that the CAOB was built by amalgamation of multiple linear arcs and accretionary complexes.

  19. Dynamics of the Oceanic Surface Mixed Layer. Proceedings of ’Aha Huliko’a Hawaiian Winter Workshop (4th) Held in Manoa, Hawaii on January 14-16, 1987,

    DTIC Science & Technology

    1987-01-01

    the tropical Pacific Ocean . Contribution in Atmospheric Science No. 20, University of California, Davis. Wyrtki, K., 1981: An estimate of... distribution of net E-P and heating in the tropical Pacific determines the vertical T-S relationship of the upper ocean in the western equatorial Pacific... contributing factor. The effect of such impulsive forcing on the western equatorial Pacific upper ocean can be seen in Fig. 11 from the

  20. Sequence stratigraphy, geodynamics, and detrital geothermochronology of Cretaceous foreland basin deposits, western interior U.S.A

    NASA Astrophysics Data System (ADS)

    Painter, Clayton S.

    Three studies on Cordilleran foreland basin deposits in the western U.S.A. constitute this dissertation. These studies differ in scale, time and discipline. The first two studies include basin analysis, flexural modeling and detailed stratigraphic analysis of Upper Cretaceous depocenters and strata in the western U.S.A. The third study consists of detrital zircon U-Pb analysis (DZ U-Pb) and thermochronology, both zircon (U-Th)/He and apatite fission track (AFT), of Upper Jurassic to Upper Cretaceous foreland-basin conglomerates and sandstones. Five electronic supplementary files are a part of this dissertation and are available online; these include 3 raw data files (Appendix_A_raw_isopach_data.txt, Appendix_C_DZ_Data.xls, Appendix_C_U-Pb_apatite.xls), 1 oversized stratigraphic cross section (Appendix_B_figure_5.pdf), and 1 figure containing apatite U-Pb concordia plots (Appendix_C_Concordia.pdf). Appendix A is a combination of detailed isopach maps of the Upper Cretaceous Western Interior, flexural modeling and a comparison to dynamic subsidence models as applied to the region. Using these new isopach maps and modeling, I place the previously recognized but poorly constrained shift from flexural to non-flexural subsidence at 81 Ma. Appendix B is a detailed stratigraphic study of the Upper Cretaceous, (Campanian, ~76 Ma) Sego Sandstone Member of the Mesaverde Group in northwestern Colorado, an area where little research has been done on this formation. Appendix C is a geo-thermochronologic study to measure the lag time of Upper Jurassic to Upper Cretaceous conglomerates and sandstones in the Cordilleran foreland basin. The maximum depositional ages using DZ U-Pb match existing biostratigraphic age controls. AFT is an effective thermochronometer for Lower to Upper Cretaceous foreland stratigraphy and indicates that source material was exhumed from >4--5 km depth in the Cordilleran orogenic belt between 118 and 66 Ma, and zircon (U-Th)/He suggests that it was exhumed from <8--9 km depth. Apatite U-Pb analyses indicate that volcanic contamination is a significant issue, without which, one cannot exclude the possibility that the youngest detrital AFT population is contaminated with significant amounts of volcanogenic apatite and does not represent source exhumation. AFT lag times are <5 Myr with relatively steady-state to slightly increasing exhumation rates. Lag time measurements indicate exhumation rates of ~0.9->>1 km/Myr.

  1. Geology of the Cupsuptic quadrangle, Maine

    USGS Publications Warehouse

    Harwood, David S.

    1966-01-01

    The Cupsuptic quadrangle, in west-central Maine, lies in a relatively narrow belt of pre-Silurian rocks extending from the Connecticut River valley across northern New Hampshire to north-central Maine. The Albee Formation, composed of green, purple, and black phyllite with interbedded-quartzite, is exposed in the core of a regional anticlinorium overlain to the southeast by greenstone of the Oquossoc Formation which in turn is overlain by black slate of the Kamankeag Formation. In the northern part of the quadrangle the Albee Formation is overlain by black slate, feldspathic graywacke, and minor greenstone of the Dixville Formation. The Kamankeag Formation is dated as 1-ate Middle Ordovician by graptolites (zone 12) found near the base of the unit. The Dixville Formation is correlated with the Kamankeag Formation and Oquossoc Formation and is considered to be Middle Ordovician. The Albee Formation is considered to be Middle to Lower Ordovician from correlations with similar rocks in northeastern and southwestern Vermont. The Oquossoc and Kamankeag Formations are correlated with the Amonoosuc and Partridge Formations of northern New Hampshire. The pre-Silurian rocks are unconformably overlain by unnamed rocks of Silurian age in the southeast, west-central, and northwest ninths of the quadrangle. The basal Silurian units are boulder to cobble polymict conglomerate and quartz-pebble conglomerate of late Lower Silurian (Upper Llandovery) age. The overlying rocks are either well-bedded slate and quartzite, silty limestone, or arenaceous limestone. Thearenaceous limestone contains Upper Silurian (Lower Ludlow) brachiopods. The stratified rocks have been intruded by three stocks of biotite-muscovite quartz monzonite, a large body of metadiorite and associated serpentinite, smaller bodies of gabbro, granodiorite, and intrusive felsite, as well as numerous diabase and quartz monzonite dikes. The metadiorite and serpentinite, and possibly the gabbro and granodiorite are Late Ordovician in age. The quartz monzonite is considered to be Late Devonian. Five tectonic events are inferred from the structural features in the area. The earliest was a period of folding producing tightly-appressed, northeast-trending folds in the rocks of pre-Silurian age. In the second stage the folded pre-Silurian rocks were uplifted, eroded, and truncated to produce a major unconformity between the Middle Ordovician and Lower Silurian rocks. These events constitute the Taconic orogeny. The third tectonic event was a period of folding, probably of Middle Devonian age, that warped the unconformity and overlying rocks into open, gently-plunging, east-trending folds. This period of folding undoubtedly changed the attitude of the early folds in the pre-Silurian units but it did not produce any recognizable, cross-cutting planar features in the older rocks. The fourth tectonic event was a period of igneous intrusion that locally deformed the northeast-trending folds in the pre-Silurian rocks into a macroscopic drag fold plunging at 80 degrees in a direction S.10?w. A north-trending, subvertical slip cleavage was produced locally during this period of Late Devonian (?) deformation. A period of faulting, possibly of Triassic age, dislocated some of the earlier features. The rocks are in the chlorite zone of regional metamorphism, but have been contact metamorphosed to sillimanite-bearing hornfels adjacent to the quartz monzonite stocks. The chemical changes in chlorite, biotite, garnet, cordierite, and muscovite in the chlorite, biotite, andalusite, and sillimanite zones have been-studied by optical and x-ray methods and by partial chemical analyses. The progressive changes in mineral assemblages have been graphically portrayed on quaternary diagrams and ternary projections.

  2. A Remaining Open Paleogeography of Paleo-Asian Ocean by Early Permian, Paleomagnetic Constraints from Eastern CAOB

    NASA Astrophysics Data System (ADS)

    Zhang, Donghai; Huang, Baochun; Zhao, Jie; Meert, Joseph; Zhang, Ye; Liang, Yalun; Bai, Qianhui; Zhao, Qian; Zhou, Tinghong

    2017-04-01

    We carry out a combined paleomagnetic and U-Pb geochronologic study on Paleozoic strata ranging from Lower Devonian to Upper Permian in mid-eastern Inner Mongolia, NE China with the purpose of puzzling out the timing and location of the final closure of Paleo-Asian Ocean (PAO), and thus provides further implications for the evolution of eastern Central Asian Orogenic Belt (CAOB). Inside North Margin of North China Block (NMNCB), 20 sites from Middle Permian Elitu formation and 9 sites from Lower Permian Sanmianjing formation yields a high temperature Characteristic Remanent Magnetism (ChRM) of Dg=330.9, Ig=54.3, Kg=4.9, a95g=14.9 N= 24 before and Ds=347.4, Is=38.1, Ks=28.6, a95s=5.6, N=24 after tilt correction. 13 sites from Songliao-Xilinhot Block (SXB) isolate a ChRM of Dg=196.6, Ig=36.4, Kg=18.0, a95g=11.1, N=13; Ds=222.9, Is=20.5, Ks=15.7 a95s=11.9, N=13 with a positive fold test, which suggests a likely primary magnetization. Inside of Khingan-Airgin Sum Block (KAB), 2 different component is extracted from Lower Devonian Niqiuhe formation, Upper Carboniferous Baoligaomiao formation and Lower Permian Dashizhai formation. A high temperature Component A (Dg=28.3, Ig=29.7, Kg=24.4, a95g=6.6, N= 21; Ds=49.8, Is=62.1, Ks=57.4, a95s=4.2, N=21) with a synfolding origin is derived from 21 sites of Baoligaomiao formation in west KAB, which is traditionally named as Uliastai passive continental margin, whilst 11 sites from Lower Devonian Niqiuhe formation in east KAB generate a post-folding Component B (Dg=196.6, Ig=36.4, Kg=18.0, a95g=11.1, N=11; Ds=222.9, Is=20.5, Ks=15.7, a95s=11.9, N=11) with a possible remagnetization in early Permian suggested by widely exposed granitic intrusion of 299 Ma in adjacent areas. Accordingly, 4 paleomagnetic poles are calculated as early-middle Permian of NMNCB (Plat=67.9°N, Plong=326.7°E, A95=4.2°), early Permian of SXB (Plat=45.3°N, Plong=250.3°E, A95=5.8°), late Carboniferous of west KAB (Plat=55.1°N, Plong=187.8°E, A95=6.2°) and early Permian of (Plat=-16.3°N, Plong=109.1°E, A95=8.4°). The early Permian paleomagnetic pole of SXB and NMNCB are located at a common small circle centered around the reference site (43° N, 114° E), whilst late Carboniferous pole of west KAB and early Permian pole of east KAB share a similar paleolatitude, about 17.8° higher than that of SXB and NMNCB, with a huge 85° longitudinal difference in between. These data indicate the final closure of PAO happened at the northern Hegenshan-Heihe Suture Zone (HHSZ) after early Permian instead of the pre-assumed southern Solonker-Xar Moron Suture Zone (SXMSZ) with a remaining open paleogeography of Paleo-Asian Ocean between SXB and KAB by early Permian. Keywords: Paleo-Asian Ocean, Central Asian Orogenic Belt, Paleomagnetism, Paleolatitude, Late Paleozoic, XMOB.

  3. The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications

    NASA Astrophysics Data System (ADS)

    Bagheri, Sasan; Stampfli, Gérard M.

    2008-04-01

    The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian-Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician-Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block. The "Variscan accretionary complex" is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/ 39Ar ages are obtained as 333-320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian-Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/ 39Ar radiometric ages of 163-156 Ma. The "Variscan" accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280-230 Ma 40Ar/ 39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U-Pb age for the trondhjemite-rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block. The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian-Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak. One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak-Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak-Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.

  4. Does Late Miocene Exhumation Along the Western Slope of the Colorado Rockies Reflect Differential Rock Uplift?

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. H.; Kirby, E.; Aslan, A.; Karlstrom, K. E.; Heizler, M. T.; Kelley, S. A.; Piotraschke, R. E.; Furlong, K. P.

    2011-12-01

    It is increasingly recognized that dynamic effects associated with changes in mantle flow and buoyancy can influence the evolution of surface topography. In the Rocky Mountain province of the western United States, recent seismic deployments reveal intriguing correlations between anomalies in the velocity structure of the upper mantle and regions of high topography. Here, we investigate whether regional correlations between upper-mantle structure and topography are associated with the history of Late Cenozoic fluvial incision and exhumation. Major tributaries of the upper Colorado River, including the Gunnison and Dolores Rivers, which drain high topography in central and western Colorado overlie upper mantle with slow seismic wave velocities; these drainages exhibit relatively steep longitudinal profiles (normalized for differences in drainage area and discharge) and are associated with ~1000-1500 m of incision over the past 10 Ma. In contrast, tributaries of the Green River that drain the western slope in northern Colorado (White, Yampa, and Little Snake Rivers) overlie mantle of progressively higher seismic wave velocities. River profiles in northern Colorado are two to three times less steep along reaches with comparable bedrock lithologies. New Ar39/Ar40 ages on ~11 Ma basalt flows capping the Tertiary Brown's Park Formation in northern Colorado indicate that the magnitude of exhumation along these profiles ranges from ~400 - 600 m over this time interval. The correspondence of steep river profiles in regions of greater incision implies that the fluvial systems are dynamically adjusting to an external forcing. New constraints on the exhumation history of the upper Colorado River from apatite fission track ages in boreholes near Rifle, Colorado are best explained by an onset of exhumation at ca. 8-10 Ma. Thus, relative base level fall associated with development of Grand Canyon (ca. 6-5 Ma) does not explain the regional onset of incision along the western slope of the Rockies. Additionally, new cosmogenic burial ages from fan-terrace complexes near Rifle, Colorado show that Colorado River incision occurred at similar rates over both 10 Ma and 2 Ma timescales. Fluvial incision in response to relative base level fall or to changes in regional climate cannot easily explain the history of differential incision along the western slope. Given the correspondence of steep channels, large magnitude incision and regions of low seismic velocity mantle, we suggest that differential rock uplift, driven, in part, by differences in the buoyancy and/or convective flow of the mantle beneath western Colorado is the likely driver for Neogene incision.

  5. Structural Mapping and Geomorphology of Ireland's Southwest Continental Shelf Using High Resolution Sonar

    NASA Astrophysics Data System (ADS)

    Bowden, S.; Wireman, R.

    2016-02-01

    Bathymetric surveys were conducted on the continental shelf off the southwest coast of County Cork, Ireland by the Marine Institute of Ireland, the Geological Survey of Ireland, and the INFOMAR project. Data were collected from July 2006 through September 2014 using a Kongsberg EM2040 multibeam echosounder aboard the R/Vs Celtic Voyager and Keary, and a Kongsberg EM1002 on the R/V Celtic Explorer. Sonar data were post-processed with CARIS HIPS and SIPS 9.0 to create 2D and 3D bathymetric and backscatter intensity surfaces with a resolution of 1 m. The offshore study site is part of the 286 Ma western Variscian orogenic front and has several massive outcrops, exhibiting 5 to 20 m of near-vertical relief. These outcrops were structurally mapped and relatively aged, and exhibit significant folding, rotation, tilting, and joint systems. Google Earth, ArcGIS, and previous terrestrial studies were used to further analyze how geomorphology is controlled by seafloor composition and structural features. Rock type and age were interpreted by comparing fracture analysis of the joints and fold trends to similar onshore outcrops documented previously, to determine an age of 416-299 Ma for the shelf's outcropping strata and associated structural features. The oldest features observed are regional anticlines and synclines containing Upper Devonian Old Red Sandstone and Lower Carboniferous shales. Within the shale layers are NE-SW plunging parasitic chevron folds. Jointing is observed in both sandstone and shale layers and is superimposed on chevron folding, with cross joints appearing to influence shallow current patterns. Rotation of the regional folds is the youngest structural feature, as both the parasitic folds and joint systems are warped. Our study shows that high resolution sonar is an effective tool for offshore structural mapping and is an important resource for understanding the geomorphology and geologic history of submerged outcrops on continental shelf systems.

  6. Importance of inorganic geochemical characteristics on assessment of shale gas potential in the Devonian Horn River Formation of western Canada

    NASA Astrophysics Data System (ADS)

    Hong, Sung Kyung; Shinn, Young Jae; Choi, Jiyoung; Lee, Hyun Suk

    2017-04-01

    The gas generation and storage potentials of shale has mostly been assessed by original TOC (TOCo) and original kerogen type. However, in the Horn River Formation, organic geochemical tools and analysis are barely sufficient for assessing the TOCo and original kerogen type because residual carbon contents represent up to 90% of TOC in shales. Major and trace elements are used as proxies for the bottom water oxygen level, for terrestrial sediment input and for productivity, which is related with variation of kerogen type. By using the inorganic geochemical proxies, we attempt to assess original kerogen type in shale gas formation and suggest its implication for HIo (original Hydrogen Index) estimation. The estimated HIo in this study allows us to calculate a reliable TOCo. These results provide new insights into the accurate estimation of the hydrocarbon potential of shale gas resources. The inorganic geochemical proxies indicate vertical variations of productivity (EX-SiO2 and Baauth), terrestrial sediment input (Al2O3, Zr, Hf, and Nb) and oxygen content in bottom water during deposition (Moauth, Uauth and Th/U), which represent the temporal changes in the mixing ratio between Type II and III kerogens. The Horn River Formation has different HIo values calculated from EX-SiO2 (biogenic origin) and it is ranked by HIo value in descending order: Evie and Muskwa members (500-700 mgHC/gTOC) > middle Otterpark Member (400-500 mgHC/gTOC) > upper Otterpark Member (300-400 mgHC/gTOC) > lower Otterpark Member (200 mgHC/gTOC). Based on the original kerogen type and TOCo, the gas generation and storage potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members. The source rock potential is excellent for the Evie Member with a remarkable difference between TOCo and measured TOC.

  7. Source rock contributions to the Lower Cretaceous heavy oil accumulations in Alberta: a basin modeling study

    USGS Publications Warehouse

    Berbesi, Luiyin Alejandro; di Primio, Rolando; Anka, Zahie; Horsfield, Brian; Higley, Debra K.

    2012-01-01

    The origin of the immense oil sand deposits in Lower Cretaceous reservoirs of the Western Canada sedimentary basin is still a matter of debate, specifically with respect to the original in-place volumes and contributing source rocks. In this study, the contributions from the main source rocks were addressed using a three-dimensional petroleum system model calibrated to well data. A sensitivity analysis of source rock definition was performed in the case of the two main contributors, which are the Lower Jurassic Gordondale Member of the Fernie Group and the Upper Devonian–Lower Mississippian Exshaw Formation. This sensitivity analysis included variations of assigned total organic carbon and hydrogen index for both source intervals, and in the case of the Exshaw Formation, variations of thickness in areas beneath the Rocky Mountains were also considered. All of the modeled source rocks reached the early or main oil generation stages by 60 Ma, before the onset of the Laramide orogeny. Reconstructed oil accumulations were initially modest because of limited trapping efficiency. This was improved by defining lateral stratigraphic seals within the carrier system. An additional sealing effect by biodegraded oil may have hindered the migration of petroleum in the northern areas, but not to the east of Athabasca. In the latter case, the main trapping controls are dominantly stratigraphic and structural. Our model, based on available data, identifies the Gordondale source rock as the contributor of more than 54% of the oil in the Athabasca and Peace River accumulations, followed by minor amounts from Exshaw (15%) and other Devonian to Lower Jurassic source rocks. The proposed strong contribution of petroleum from the Exshaw Formation source rock to the Athabasca oil sands is only reproduced by assuming 25 m (82 ft) of mature Exshaw in the kitchen areas, with original total organic carbon of 9% or more.

  8. Fold-structure analysis of paleozoic rocks in the Variscan Harz Mountains (Lautenthal, Central Germany) based on laserscanning and 3D modelling

    NASA Astrophysics Data System (ADS)

    Wagner, Bianca; Leiss, Bernd; Stöpler, Ralf; Zahnow, Fabian

    2017-04-01

    Folded paleozoic sedimentary rocks of Upper Devonian to Lower Carboniferous age are very well exposed in the abandoned chert quarry of Lautenthal in the western Harz Mountains. The outcrop represents typical structures of the Rhenohercynian thrust and fold belt of the Variscan orogen and therefore allows quantitative studies for the understanding of e.g. fold mechanisms and the amount of shortening. The sequence is composed of alternating beds of cherts, shales and tuffites, which show varying thicknesses, undulating and thinning out of certain layers. Irregularly occurring lenses of greywackes are interpreted as sedimentary intrusions. The compressive deformation style is expressed by different similar and parallel fold structures at varying scales as well as small-scale reverse faults and triangle structures. An accurate mapping of the outcrop in the classical way is very challenging due to distant and unconnected outcrop parts with differing elevations and orientations. Furthermore, the visibility is limited because of nearby trees, diffuse vegetation cover and no available total view. Therefore, we used a FARO 120 3D laserscanner and Trimble GNSS device to generate a referenced and drawn to scale point cloud of the complete quarry. Based on the point cloud a geometric 3D model of prominent horizons and structural features of various sizes was constructed. Thereafter, we analyzed the structures in matters of orientation and deformation mechanisms. Finally, we applied a retrodeformation algorithm on the model to restore the original sedimentary sequence and to calculate shortening including the amount of pressure solution. Only digital mapping allows such a time-saving, accurate and especially complete 3D survey of this excellent study object. We demonstrated that such 3D-models enable spatial correlations with other complex structures cropping out in the area. Moreover, we confirmed that a structural upscaling to the 100 to 1000 m scale is much easier and much more instructive than it could have been done in the classical way.

  9. Bedrock geologic map of the Nashua South quadrangle, Hillsborough County, New Hampshire, and Middlesex County, Massachusetts

    USGS Publications Warehouse

    Walsh, Gregory J.; Jahns, Richard H.; Aleinikoff, John N.

    2013-01-01

    The bedrock geology of the 7.5-minute Nashua South quadrangle consists primarily of deformed Silurian metasedimentary rocks of the Berwick Formation. The metasedimentary rocks are intruded by a Late Silurian to Early Devonian diorite-gabbro suite, Devonian rocks of the Ayer Granodiorite, Devonian granitic rocks of the New Hampshire Plutonic Suite including pegmatite and the Chelmsford Granite, and Jurassic diabase dikes. The bedrock geology was mapped to study the tectonic history of the area and to provide a framework for ongoing hydrogeologic characterization of the fractured bedrock of Massachusetts and New Hampshire. This report presents mapping by G.J. Walsh and R.H. Jahns and zircon U-Pb geochronology by J.N. Aleinikoff. The complete report consists of a map, text pamphlet, and GIS database. The map and text pamphlet are only available as downloadable files (see frame at right). The GIS database is available for download in ESRITM shapefile and Google EarthTM formats, and includes contacts of bedrock geologic units, faults, outcrops, structural geologic information, photographs, and a three-dimensional model.

  10. The Valley and Ridge Province of eastern Pennsylvania - stratigraphic and sedimentologic contributions and problems ( USA).

    USGS Publications Warehouse

    Epstein, J.B.

    1986-01-01

    The rocks in the area, which range from Middle Ordovician to Late Devonian in age, are more than 7620 m thick. This diversified group of sedimentary rocks was deposited in many different environments, ranging from deep sea, through neritic and tidal, to alluvial. In general, the Middle Ordovician through Lower Devonian strata are a sedimentary cycle related to the waxing and waning of Taconic tectonism. The sequence began with a greywacke-argillite suite (Martinsburg Formation) representing synorogenic basin deepening. This was followed by basin filling and progradation of a sandstone-shale clastic wedge (Shawangunk Formation and Bloomsburg Red Beds) derived from the erosion of the mountains that were uplifted during the Taconic orogeny. The sequence ended with deposition of many thin units of carbonate, sandstone, and shale on a shelf marginal to a land area of low relief. Another tectonic-sedimentary cycle, related to the Acadian orogeny, began with deposition of Middle Devonian rocks. Deep-water shales (Marcellus Shale) preceded shoaling (Mahantango Formation) and turbidite sedimentation (Trimmers Rock Formation) followed by another molasse (Catskill Formation). -from Author

  11. Teachers' Perspectives of the New Western Australian Earth and Environmental Science Course: Lessons for the Australian Curriculum

    ERIC Educational Resources Information Center

    Dawson, Vaille; Moore, Leah

    2011-01-01

    In 2007, a new upper secondary course, Earth and Environmental Science (EES) was introduced in Western Australia. The development and implementation of the course was supported by Earth Science Western Australia (ESWA), a consortium of universities, the CSIRO and other organisations. The role of ESWA is to support the teaching of earth science in…

  12. Calibration of streamflow gauging stations at the Tenderfoot Creek Experimental Forest

    Treesearch

    Scott W. Woods

    2007-01-01

    We used tracer based methods to calibrate eleven streamflow gauging stations at the Tenderfoot Creek Experimental Forest in western Montana. At six of the stations the measured flows were consistent with the existing rating curves. At Lower and Upper Stringer Creek, Upper Sun Creek and Upper Tenderfoot Creek the published flows, based on the existing rating curves,...

  13. Petrology and sedimentology of the Horlick Formation (Lower Devonian), Ohio Range, Transantarctic Mountains

    USGS Publications Warehouse

    McCartan, Lucy; Bradshaw, Margaret A.

    1987-01-01

    The Horlick Formation of Early Devonian age is as thick as 50 m and consists of subhorizontal, interbedded subarkosic sandstone and chloritic shale and mudstone. The Horlick overlies an erosion surface cut into Ordovician granitic rocks and is, in turn, overlain by Carboniferous and Permian glacial and periglacial deposits. Textures, sedimentary structures, and ubiquitous marine body fossils and animal traces suggest that the Horlick was deposited on a shallow shelf having moderate wave energy and a moderate tidal range. The source terrane probably lay to the north, and longshore transport was toward the west.

  14. Plate tectonic history of the Arctic

    NASA Technical Reports Server (NTRS)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  15. Evidence of land plant affinity for the Devonian fossil Protosalvinia (Foerstia)

    USGS Publications Warehouse

    Romankiw, L.A.; Hatcher, P.G.; Roen, J.B.

    1988-01-01

    The Devonian plant fossil Protosalvinia (Foerstia) has been examined by solid-state 13C nuclear magnetic resonance spectroscopy (NMR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). Results of these studies reveal that the chemical structure of Protosalvinia is remarkably similar to that of coalified wood. A well-defined phenolic carbon peak in the NMR spectra and the appearance of phenol and alkylated phenols in pyrolysis products are clearly indicative of lignin-like compounds. These data represent significant new information on the chemical nature of Protosalvinia and provide the first substantial organic geochemical evidence for land plant affinity. -Authors

  16. The Lower Devonian marginal-marine ecosystems of the Holy Cross Mountains, Poland - new discoveries and observations

    NASA Astrophysics Data System (ADS)

    Szrek, P.; Niedźwiedzki, G.; Dec, M.

    2012-04-01

    Despite of more than 100 years of study, the Lower Devonian deposits of the Holy Cross Mountains (central Poland) are still not well understood from the biostratigraphical, environmental and also paleontological point of views. During field works and excavations conducted in 2011 numerous fossils (body and trace fossils) were discovered in a few Lower Devonian outcrops of the region. The siliciclastic sequence of the Lower Devonian of the southern part of the Holy Cross Mountains, is renowned for abundant vertebrate fossils, including mainly the jawless fish and placoderm remains. During the first detailed taphonomic study of the vertebrate assemblage from the so-called "Placoderm Sandstones" cropping out at the Podłazie near Daleszyce, abundant vertebrate remains have been collected (more than 600 specimens). Their analysis (that is in progress) will be the first description of so rich and numerous vertebrates association from the Central Europe that contains placoderms, sharks, acathodians and sarcopterygians. The degree of fragmentation of the bones and disarticulation of the skeletons suggest that the carcasses were reworked and transported before burial. Sedimentological data suggest deposition in a shallow marine environment. Numerous invertebrate ichnofossils (Phycodes isp. Skolithos isp., Diplichnites isp., Monomorphichnus isp., Lockeia cf. siliquaria, Corophioides isp. and Teichinus isp.) particularly well preserved were ascertained in another Lower Devonian site near Iwaniska. Moreover a very interesting assemblage of trace fossils corresponding to traces of feeding fishes were discovered. They are very similar to those found in much younger deposits (e.g. from the Eocene of Turkey). Its interpretation found them as made by placoderms is taken into consideration recently, because of its fiting to whole morphology of small coccosteids. They are also important that they could be the first imprints of soft body of the placoderm as a life animal according to good preservation of particular specimens. The occurrence of characteristic trace fossils is taken as strong evidence of marine influences of the studied section, where sedimentological features are not so clear, with exceptions of very few surfaces covered with symmetrical wave marks. The distribution of the most common trace fossils recognized in the field allowed for different interpretation than was proposed in the past which set up the river influence in the Lower Dewonian of the eastern part of the Holy Cross Mountains, but it is not confirmed by mentioned above invertebrate ichnofossils. Instead of this the development of Skolithos and Cruziana ichnofacies in Iwaniska profile, indicate high energy conditions in foreshore zone, respectively. All the Lower Devonian sites with trace fossils and vertebrate bonebeds from the Holy Cross Mountains are associated with sandy deposits and have been formed in a sea-coastal zone during rather rapid sedimentation episodes, but differ in fossil abundance and degree of preservation.

  17. Geology, Murzuk oil development could boost S. W. Libya prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D.

    1995-03-06

    With the recent involvement of Repsol, Total, and OMV in developing the 2 billion bbl oil-in-place Murzuk field complex, an infrastructure will be finally constructed in western Libya which will act as a precursor to more exploration activity and development projects in the Murzuk and Ghadames basins. Murzuk, an intra-cratonic sag basin, is a huge ladle-shaped structural basin covering more than 400,000 sq km and extending beyond the borders of southern Libya. The structure of the area is quite simple. The sub-horizontal or gently dipping strata are faulted and the faults are most frequently parallel to the anticlinal axis. Tectonicmore » movements affected the basin to a greater or lesser degree from early Paleozoic (Caledonian) to post-Eocene (Alpine) times. The paper describes the exploration history; stratigraphy; the Ordovician, Silurian and Devonian, and Carboniferous reservoirs; source rocks; oil gravity and gas content; hydrogeologic constraints; aquifer influence on hydrocarbon accumulation; geologic structures; Murzuk field development; and acreage availability.« less

  18. Pink marine sediments reveal rapid ice melt and Arctic meltwater discharge during Dansgaard-Oeschger warmings.

    PubMed

    Rasmussen, Tine L; Thomsen, Erik

    2013-01-01

    The climate of the last glaciation was interrupted by numerous abrupt temperature fluctuations, referred to as Greenland interstadials and stadials. During warm interstadials the meridional overturning circulation was active transferring heat to the north, whereas during cold stadials the Nordic Seas were ice-covered and the overturning circulation was disrupted. Meltwater discharge, from ice sheets surrounding the Nordic Seas, is implicated as a cause of this ocean instability, yet very little is known regarding this proposed discharge during warmings. Here we show that, during warmings, pink clay from Devonian Red Beds is transported in suspension by meltwater from the surrounding ice sheet and replaces the greenish silt that is normally deposited on the north-western slope of Svalbard during interstadials. The magnitude of the outpourings is comparable to the size of the outbursts during the deglaciation. Decreasing concentrations of ice-rafted debris during the interstadials signify that the ice sheet retreats as the meltwater production increases.

  19. Magnetic properties of sediments in cores from the Mandovi estuary, western India: Inferences on provenance and pollution.

    PubMed

    Prajith, A; Rao, V Purnachandra; Kessarkar, Pratima M

    2015-10-15

    Magnetic properties of sediments were investigated in 7 gravity cores recovered along a transect of the Mandovi estuary, western India to understand their provenance and pollution. The maximum magnetic susceptibility of sediments was at least 6 times higher in the upper/middle estuary than in lower estuary/bay. The χfd% and χARM/SIRM of sediments indicated coarse, multi-domain and pseudo-single domain magnetic grains, resembling ore material in the upper/middle estuary and coarse stable single domain (SSD) to fine SSD grains in the lower estuary/bay. Mineralogy parameters indicated hematite and goethite-dominated sediments in the upper/middle estuary and magnetite-dominated sediments in the lower estuary/bay. Two sediment types were discernible because of deposition of abundant ore material in the upper/middle estuary and detrital sediment in the lower estuary/bay. The enrichment factor and Index of geo-accumulation of metals indicated significant to strong pollution with respect to Fe and Mn in sediments from the upper/middle estuary. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evaluation of methane sources in groundwater in northeastern Pennsylvania.

    PubMed

    Molofsky, Lisa J; Connor, John A; Wylie, Albert S; Wagner, Tom; Farhat, Shahla K

    2013-01-01

    Testing of 1701 water wells in northeastern Pennsylvania shows that methane is ubiquitous in groundwater, with higher concentrations observed in valleys vs. upland areas and in association with calcium-sodium-bicarbonate, sodium-bicarbonate, and sodium-chloride rich waters--indicating that, on a regional scale, methane concentrations are best correlated to topographic and hydrogeologic features, rather than shale-gas extraction. In addition, our assessment of isotopic and molecular analyses of hydrocarbon gases in the Dimock Township suggest that gases present in local water wells are most consistent with Middle and Upper Devonian gases sampled in the annular spaces of local gas wells, as opposed to Marcellus Production gas. Combined, these findings suggest that the methane concentrations in Susquehanna County water wells can be explained without the migration of Marcellus shale gas through fractures, an observation that has important implications for understanding the nature of risks associated with shale-gas extraction. © 2013, Cabot Oil and Gas Corporation. Groundwater © 2013, National GroundWater Association.

  1. Gujarat, Western India

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Extremely high sediment loads are delivered to the Arabian Sea along the coast of Pakistan (upper left) and western India. In the case of the Indus River (far upper left) this sedimentation, containing large quantities of desert sand, combines with wave action to create a large sand-bar like delta. In the arid environment, the delta lacks much vegetation, but contains numerous mangrove-lined channels. This true-color image from May 2001 shows the transition from India's arid northwest to the wetter regions farther south along the coast. The increase in vegetation along the coast is brought about by the moisture trapping effect of the Western Ghats Mountain Range that runs north-south along the coast. Heavy sediment is visible in the Gulf of Kachchh (north) and the Gulf of Khambhat(south), which surround the Gujarat Peninsula.

  2. Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic.

    PubMed

    Gress, Erika; Andradi-Brown, Dominic A; Woodall, Lucy; Schofield, Pamela J; Stanley, Karl; Rogers, Alex D

    2017-01-01

    Non-native lionfish have been recorded throughout the western Atlantic on both shallow and mesophotic reefs, where they have been linked to declines in reef health. In this study we report the first lionfish observations from the deep sea (>200 m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of 304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the context of other deeper lionfish observations and records, our results imply that lionfish may be present in the 200-300 m depth range of the upper-bathyal zone across many locations in the western Atlantic, but currently are under-sampled compared to shallow habitats. We highlight the need for considering deep-sea lionfish populations in future invasive lionfish management.

  3. Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic

    USGS Publications Warehouse

    Gress, Erika; Andradi-Brown, Dominic A; Woodall, Lucy; Schofield, Pam; Stanley, Karl; Rogers, Alex D.

    2017-01-01

    Non-native lionfish have been recorded throughout the western Atlantic on both shallow and mesophotic reefs, where they have been linked to declines in reef health. In this study we report the first lionfish observations from the deep sea (>200 m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of 304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the context of other deeper lionfish observations and records, our results imply that lionfish may be present in the 200–300 m depth range of the upper-bathyal zone across many locations in the western Atlantic, but currently are under-sampled compared to shallow habitats. We highlight the need for considering deep-sea lionfish populations in future invasive lionfish management.

  4. The Rhynie hot-spring system: implications for the Devonian timescale, development of Devonian biota, gold mineralization, evolution of the atmosphere and Earth outgassing

    NASA Astrophysics Data System (ADS)

    Mark, D.; Rice, C.; Stuart, F.; Trewin, N.

    2011-12-01

    The Rhynie cherts are hot spring sinters that contain world-renowned plant and animal remains and anomalously high quantities of heavy metals, including gold. The biota in several beds is preserved undeformed with plants in life positions thus establishing that they and the indurating hydrothermal fluids were coeval. Despite the international importance of the Rhynie cherts their age has been poorly constrained for three reasons: (1) lack of a precise radio-isotopic age, (2) low resolution of spore biostratigraphic schemes for Devonian terrestrial deposits, with only one to a few zones per stage, and (3) poor resolution of the early Devonian timescale. Wellman (2004) assigned a Pragian-?earliest Emsian age to the Rhynie cherts on the basis of the spore assemblage. An 40Ar/39Ar dating study targeting Rhynie chert yielded an age of 395 ± 12 Ma (1σ) (Rice et al., 1995). This contribution discusses a new high-precision 40Ar/39Ar age (407.1 ± 2.2 Ma, 2σ) for the Devonian hot-spring system at Rhynie (Mark et al., 2011) and demonstrates that a proposed U-Pb age (411.5 ± 1.1 Ma, 2σ) for the Rhynie cherts (Parry et al., 2011) is inconsistent with both field evidence and our interpretation of the U-Pb data. The 40Ar/39Ar age provides a robust marker for the polygonalis-emsiensis Spore Assemblage Biozone within the Pragian-?earliest Emsian. It also constrains the age of a wealth of flora and fauna preserved in life positions as well as dating gold mineralization. Furthermore, we have now determined the Ar isotope composition of pristine samples of the Rhynie chert using an ARGUS multi-collector mass spectrometer and a low blank laser extraction technique. 40Ar/36Ar are systematically lower than the modern air value (Lee et al., 2006), and are not accompanied by non-atmospheric 38Ar/36Ar ratios. We conclude that the Rhynie chert captured and has preserved Devonian atmosphere-derived Ar. The data indicate that the 40Ar/36Ar of Devonian atmosphere was at least 3 % lower than the modern air value (Lee et al., 2006). Thus the Earth's atmosphere has accumulated at least 5 ± 0.2 x 1016 moles of 40Ar in the last c. 407 Ma, at an average rate of 1.24 ± 0.06 x 108 mol 40Ar/year. This overlaps the 40Ar accumulation rate determined from ice cores for the last 800,000 years (Bender et al. 2008) and implies that there has been no resolvable temporal change in outgassing rate since the mid-Palaeozoic. The new chronological and Ar isotope data provide a unique tie point and dictate outgassing of the Earth's interior early in Earth history. [1] Bender, M. et al. (2008) Proceedings of the National Academy of Sciences, 105, 8232-8237. [2] Wellman, C.H., 2004. Proceedings of the Royal Society of London. Biological Sciences, 271, 985-992. [3] Lee, J.Y. et al. (2006) Geochimica et Cosmochimica Acta, 70, 4507-4512. [4] Mark, D.F. et al. (2011) Geochimica et Cosmochimica Acta, 75, 555-569. [5] Parry, S.F. et al. (2011) Journal of the Geological Society, London, 168, 863-872. [6] Rice, C.M. et al. (1995) Journal of the Geological Society, London, 152, 229-2250.

  5. Mid to late Devonian back-arc rift basins in the Brooks Range, AK, and across the Arctic: a possible paleogeographic piercing point for Arctic reconstructions

    NASA Astrophysics Data System (ADS)

    Hoiland, C. W.; Miller, E. L.; Hourigan, J. K.

    2013-12-01

    The westernmost Brooks Range, Alaska, is underlain by basement of probable Baltic or Timanian affinity (e.g. Miller et al., 2011; Amato et al., 2009), while the eastern Brooks Range is underlain by Laurentian affinity basement (e.g. Strauss et al., 2013). A post-Timanian and pre-Mississippian suture or contact is thus required based on continuity of late Devonian and younger strata across the Brooks Range (e.g. Dumoulin et al., 2002). This inferred juxtaposition has been proposed as the distal and diachronous (though possibly non-collisional) continuation of the Caledonian orogen (e.g. Moore et al., 2012) but the actual location and character of this suture within basement rocks of the Brooks Range remain speculative. New laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb single grain detrital zircon (DZ) geochronology of basement rocks from the Cosmos Hills, Slate Creek, and Wiseman regions suggest that metamorphic rocks in these regions are Devonian, not pre-Devonian. New SHRIMP-RG analyses of the Kogoluktuk orthogneiss (Cosmos) (zircon: 383 Ma × 5 Ma, 2-sigma errors, consistent with Dillon et al. 1980) revealed no inherited cores from which to infer basement affinity. DZ spectra from metasedimentary and metavolcanic wall rock contain youngest detrital zircon populations with ages (390 Ma) just barely older than the cross-cutting intrusive age, providing tight bracketing of depositional age. These zircon ages are noticeably younger than Caledonian magmatic ages (430-420 Ma) suggesting deposition in a volcanically and tectonically active setting (likely extensional) as originally suggested by Hitzman et al (1986). Zircon spectra (Cosmos) contain notable amounts of "Timanian" age zircons (c. 700-550 Ma), and a spread of zircons from 1-2 Ga (including 1.5-1.6 Ga ages of the Laurentian "magmatic gap', e.g. Grove et al. 2008) more typical of derivation from Baltic rather than Laurentian sources. East in the Wiseman and Slate Creek localities, the detrital signature becomes characteristically Laurentian, with a notable absence of Timanian and "magmatic gap" ages. A youngest age population of 390 Ma still provides a maximum depositional age, but minimum age is poorly constrained. The coarse and feldspathic nature of many of these intercalated volcanic and clastic sequences suggests a proximal provenance, thus serving as a proxy for local pre-Devonian basement ages and affinity. We might, therefore, infer a non-Laurentian basement for the AACM at least as far east as the Cosmos Hills but not further east than the Wiseman region. These Devonian-age volcanic/rift basins may be related to slab roll-back and induced backarc rifting that occurred obliquely across a 'Caledonian' suture, possibly in response to global plate re-organization. Rifting, accompanied by bimodal volcanism (the Ambler Sequence), may have aided the removal and translation of peri-Baltic terranes to a position outboard of the proto-Cordilleran margin ('Northwestern Passage' of Colpron & Nelson, 2009). Further correlations might be drawn with the Sakmarian-Magnitogorsk arcs of the pre-Uralian margin of Europe. These Devonian backarc rift sequences - more widespread than previously thought - may serve as critical additional tie-points for paleogeographic reconstructions of the Arctic.

  6. Lithologies of the basement complex (Devonian and older) in the National Petroleum Reserve - Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Houseknecht, David W.

    2001-01-01

    Rocks of the basement complex (Devonian and older) were encountered in at least 30 exploratory wells in the northern part of the NPRA. Fine-grained, variably deformed sedimentary rocks deposited in a slope or basinal setting predominate and include varicolored (mainly red and green) argillite in the Simpson area, dark argillite and chert near Barrow, and widespread gray argillite. Chitinozoans of Middle-Late Ordovician and Silurian age occur in the dark argillite and chert unit. Sponge spicules and radiolarians establish a Phanerozoic age for the varicolored and gray argillite units, both of which contain local interbeds of chert-rich sandstone and silt-stone. Conglomerate and sandstone, also chert-rich but interbedded with mudstone and coal and of Early-Middle Devonian age, occur in the Topagoruk area; these strata formed in a fluvial environment. At East Teshekpuk, granite of probable Devonian age was penetrated. Brecciated, quartz-veined rock of uncertain protolith that may be part of the basement complex was encountered in the Ikpikpuk well. Seismic data indicate that angular unconformities truncate all sedimentary units of the basement complex in NPRA. Rocks correlative in age and lithofacies with the dark argillite and chert unit occur in the subsurface near Prudhoe Bay. Other argillite units in NPRA have similarities to basement rocks in the subsurface adjacent to ANWR and the Ordovician-Silurian Iviagik Group at Cape Lisburne, but lack the interbedded limestones found in the ANWR strata, and are less metamorphosed than, and compositionally distinct from, the Iviagik. The Topagoruk conglomerate and the East Teshekpuk granite resemble the Ulungarat formation and the Okpilak batholith, respectively, in the northeastern Brooks Range.

  7. Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods?

    PubMed

    Friedman, Matt; Brazeau, Martin D

    2011-02-07

    Past research on the emergence of digit-bearing tetrapods has led to the widely accepted premise that this important evolutionary event occurred during the Late Devonian. The discovery of convincing digit-bearing tetrapod trackways of early Middle Devonian age in Poland has upset this orthodoxy, indicating that current scenarios which link the timing of the origin of digited tetrapods to specific events in Earth history are likely to be in error. Inspired by this find, we examine the fossil record of early digit-bearing tetrapods and their closest fish-like relatives from a statistical standpoint. We find that the Polish trackways force a substantial reconsideration of the nature of the early tetrapod record when only body fossils are considered. However, the effect is less drastic (and often not statistically significant) when other reliably dated trackways that were previously considered anachronistic are taken into account. Using two approaches, we find that 95 per cent credible and confidence intervals for the origin of digit-bearing tetrapods extend into the Early Devonian and beyond, spanning late Emsian to mid Ludlow. For biologically realistic diversity models, estimated genus-level preservation rates for Devonian digited tetrapods and their relatives range from 0.025 to 0.073 per lineage-million years, an order of magnitude lower than species-level rates for groups typically considered to have dense records. Available fossils of early digited tetrapods and their immediate relatives are adequate for documenting large-scale patterns of character acquisition associated with the origin of terrestriality, but low preservation rates coupled with clear geographical and stratigraphic sampling biases caution against building scenarios for the origin of digits and terrestrialization tied to the provenance of particular specimens or faunas.

  8. Do riparian plant community characteristics differ between Tamarix (L.) invaded and non-invaded sites on the upper Verde River, Arizona?

    Treesearch

    Tyler D. Johnson; Thomas E. Kolb; Alvin L. Medina

    2009-01-01

    Invasion by Tamarix (L.) can severely alter riparian areas of the western U.S., which are globally rare ecosystems. The upper Verde River, Arizona, is a relatively free-flowing river and has abundant native riparian vegetation. Tamarix is present on the upper Verde but is a minor component of the vegetation (8% of stems). This...

  9. First early Mesozoic amber in the Western Hemisphere

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1991-01-01

    Detrital amber pebbles and granules have been discovered in Upper Triassic strata on the Colorado Plateau. Although amber previously has been reported from Pennsylvanian, Jurassic, Cretaceous, and Tertiary strata, we know of no other reported Triassic occurrence in North America or the Western Hemisphere. The new discovered occurrences of amber are at two localities in the lower part of the Petrified Forest Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona. The paper coals and carbonaceous paper shales containing the amber also contain fossil palynomorph assemblages that indicate a late Carnian age for these occurrences. -Authors

  10. The Role of Accreditation in Consumer Protection.

    ERIC Educational Resources Information Center

    Warner, W. Keith; Andersen, Kay J.

    1982-01-01

    Upper-level college administrators in the Western accreditation region were surveyed about how well the Western Association of Schools and Colleges (WASC) served its constituency. Questions concerned consumer protection as an objective of accreditation, emphasis on disseminating information about the accreditation process, and potential policy…

  11. Continental crust

    USGS Publications Warehouse

    Pakiser, L.C.

    1964-01-01

    The structure of the Earth’s crust (the outer shell of the earth above the M-discontinuity) has been intensively studied in many places by use of geophysical methods. The velocity of seismic compressional waves in the crust and in the upper mantle varies from place to place in the conterminous United States. The average crust is thick in the eastern two-thirds of the United States, in which the crustal and upper-mantle velocities tend to be high. The average crust is thinner in the western one-third of the United States, in which these velocities tend to be low. The concept of eastern and western superprovinces can be used to classify these differences. Crustal and upper-mantle densities probably vary directly with compressional-wave velocity, leading to the conclusion that isostasy is accomplished by the variation in densities of crustal and upper-mantle rocks as well as in crustal thickness, and that there is no single, generally valid isostatic model. The nature of the M-discontinuity is still speculative.

  12. Using seismic reflection data to reveal high-resolution structure and pathway of the upper Western Boundary Undercurrent core at Eirik Drift

    NASA Astrophysics Data System (ADS)

    Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele

    2015-12-01

    The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.

  13. Earth observation taken by the Expedition 20 crew

    NASA Image and Video Library

    2009-07-25

    ISS020-E-026195 (25 July 2009) --- Aorounga Impact Crater is featured in this image photographed by an Expedition 20 crew member on the International Space Station. Aorounga Impact Crater is located in the Sahara Desert of north-central Chad and is one of the best preserved impact structures in the world. According to scientists, the crater is thought to be middle or upper Devonian to lower Mississippian (approximately 345 ? 370 million years old) based on the age of the sedimentary rocks deformed by the impact. Spaceborne Imaging Radar (SIR) data collected in 1994 suggests that Aorounga is one of a set of three craters formed by the same impact event. The other two suggested impact structures are buried by sand deposits. The concentric ring structure of the Aorounga crater ? renamed Aorounga South in the multiple-crater interpretation of SIR data ? is clearly visible in this detailed photograph. The central highland, or peak, of the crater is surrounded by a small sand-filled trough; this in turn is surrounded by a larger circular trough. Linear rock ridges alternating with light orange sand deposits cross the image from upper left to lower right; these are called yardangs by geomorphologists. Yardangs form by wind erosion of exposed rock layers in a unidirectional wind field. The wind blows from the northeast at Aorounga, and sand dunes formed between the yardangs are actively migrating to the southwest.

  14. Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia

    NASA Astrophysics Data System (ADS)

    Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.

    2012-12-01

    The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy damping mechanism (probably biological) at the mound surface.

  15. Physical Mechanisms for the Maintenance of GCM-Simulated Madden-Julian Oscillation over the Indian Ocean and Pacific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liping; Wu, Xiaoqing

    2011-05-05

    The kinetic energy budget is conducted to analyze the physical processes responsible for the improved Madden-Julian Oscillation (MJO) simulated by the Iowa State University general circulation models (ISUGCM). The modified deep convection scheme that includes the revised convection closure, convection trigger condition and convective momentum transport (CMT) enhances the equatorial (10oS-10oN) MJO-related perturbation kinetic energy (PKE) in the upper troposphere and leads to more robust and coherent eastward propagating MJO signal. In the MJO source region-the Indian Ocean (45oE-120oE), the upper-tropospheric MJO PKE is maintained by the vertical convergence of wave energy flux and the barotropic conversion through the horizontalmore » shear of mean flow. In the convectively active region-the western Pacific (120oE-180o), the upper-tropospheric MJO PKE is supported by the convergence of horizontal and vertical wave energy fluxes. Over the central-eastern Pacific (180o-120oW), where convection is suppressed, the upper-tropospheric MJO PKE is mainly due to the horizontal convergence of wave energy flux. The deep convection trigger condition produces stronger convective heating which enhances the perturbation available potential energy (PAPE) production and the upward wave energy fluxes, and leads to the increased MJO PKE over the Indian Ocean and western Pacific. The trigger condition also enhances the MJO PKE over the central-eastern Pacific through the increased convergence of meridional wave energy flux from the subtropical latitudes of both hemispheres. The revised convection closure affects the response of mean zonal wind shear to the convective heating over the Indian Ocean and leads to the enhanced upper-tropospheric MJO PKE through the barotropic conversion. The stronger eastward wave energy flux due to the increase of convective heating over the Indian Ocean and western Pacific by the revised closure is favorable to the eastward propagation of MJO and the convergence of horizontal wave energy flux over the central-eastern Pacific. The convection-induced momentum tendency tends to decelerate the upper-tropospheric wind which results in a negative work to the PKE budget in the upper troposphere. However, the convection momentum tendency accelerates the westerly wind below 800 hPa over the western Pacific, which is partially responsible for the improved MJO simulation.« less

  16. Significance of detrital zircons in upper Devonian ocean-basin strata of the Sonora allochthon and Lower Permian synorogenic strata of the Mina Mexico foredeep, central Sonora, Mexico

    USGS Publications Warehouse

    Poole, F.G.; Gehrels, G.E.; Stewart, John H.

    2008-01-01

    U-Pb isotopic dating of detrital zircons from a conglomeratic barite sandstone in the Sonora allochthon and a calciclastic sandstone in the Mina Mexico foredeep of the Minas de Barita area reveals two main age groups in the Upper Devonian part of the Los Pozos Formation, 1.73-1.65 Ga and 1.44-1.42 Ga; and three main age groups in the Lower Permian part of the Mina Mexico Formation, 1.93-1.91 Ga, 1.45-1.42 Ga, and 1.1-1.0 Ga. Small numbers of zircons with ages of 2.72-2.65 Ga, 1.30-1.24 Ga, ca. 2.46 Ga, ca. 1.83 Ga, and ca. 0.53 Ga are also present in the Los Pozos sandstone. Detrital zircons ranging in age from 1.73 to 1.65 Ga are considered to have been derived from the Yavapai, Mojave, and Mazatzal Provinces and their transition zones of the southwestern United States and northwestern Mexico. The 1.45-1.30 Ga detrital zircons were probably derived from scattered granite bodies within the Mojave and Mazatzal basement rocks in the southwestern United States and northwestern Mexico, and possibly from the Southern and Eastern Granite-Rhyolite Provinces of the southern United States. The 1.24-1.0 Ga detrital zircons are believed to have been derived from the Grenville (Llano) Province to the east and northeast or from Grenvilleage intrusions or anatectites to the north. Several detrital zircon ages ranging from 2.72 to 1.91 Ga were probably derived originally from the Archean Wyoming Province and Early Paleoproterozoic rocks of the Lake Superior region. These older detrital zircons most likely have been recycled one or more times into the Paleozoic sandstones of central Sonora. The 0.53 Ga zircon is believed to have been derived from a Lower Cambrian granitoid or meta-morphic rock northeast of central Sonora, possibly in New Mexico and Colorado, or Oklahoma. Detrital zircon geochronology suggests that most of the detritus in both samples was derived from Laurentia to the north, whereas some detritus in the Permian synorogenic foredeep sequence was derived from the evolving accretionary wedge to the south. Compositional and sedimentological differences between the continental-rise Los Pozos conglomeratic barite sandstone and the foredeep Mina Mexico calciclastic sandstone imply different depositional and tectonic settings. ?? 2008 The Geological Society of America.

  17. Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic

    PubMed Central

    Woodall, Lucy; Schofield, Pamela J.; Stanley, Karl; Rogers, Alex D.

    2017-01-01

    Non-native lionfish have been recorded throughout the western Atlantic on both shallow and mesophotic reefs, where they have been linked to declines in reef health. In this study we report the first lionfish observations from the deep sea (>200 m) in Bermuda and Roatan, Honduras, with lionfish observed to a maximum depth of 304 m off the Bermuda platform, and 250 m off West End, Roatan. Placed in the context of other deeper lionfish observations and records, our results imply that lionfish may be present in the 200–300 m depth range of the upper-bathyal zone across many locations in the western Atlantic, but currently are under-sampled compared to shallow habitats. We highlight the need for considering deep-sea lionfish populations in future invasive lionfish management. PMID:28828275

  18. Impact ejecta layer from the mid-Devonian: possible connection to global mass extinctions.

    PubMed

    Ellwood, Brooks B; Benoist, Stephen L; El Hassani, Ahmed; Wheeler, Christopher; Crick, Rex E

    2003-06-13

    We have found evidence for a bolide impacting Earth in the mid-Devonian ( approximately 380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.

  19. Input-form data for the U.S. Geological Survey assessment of the Devonian and Mississippian Bakken and Devonian Three Forks Formations of the U.S. Williston Basin Province, 2013

    USGS Publications Warehouse

    ,; Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.

    2013-01-01

    In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type assessment units throughout the United States. The purpose of this report is to provide supplemental documentation and information used in the Bakken-Three Forks assessment.

  20. Impact Ejecta Layer from the Mid-Devonian: Possible Connection to Global Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Ellwood, Brooks B.; Benoist, Stephen L.; Hassani, Ahmed El; Wheeler, Christopher; Crick, Rex E.

    2003-06-01

    We have found evidence for a bolide impacting Earth in the mid-Devonian (~380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.

  1. Environmental conditions as the cause of the great mass extinction of marine organisms in the Late Devonian

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2017-08-01

    During the Late Devonian extinction, 70-82% of all marine species disappeared. The main causes of this mass extinction include tectonic activity, climate and sea-level fluctuations, volcanism, and the collision of the Earth with cosmic bodies (impact events). The major causes are considered to be volcanism accompanying formation of the Viluy traps and, probably, basaltic magmatism in the Southern Urals, alkaline magmatism within the East European platform, and volcanism in northern Iran and northern and southern China. Several large impact craters of Late Devonian age have been documented in different parts of the world. The available data indicate that this time period on the Earth was marked by two major sequences of events: terrestrial events that resulted in extensive volcanism and cosmic (or impact) events. They produced similar effects such as emissions of harmful chemical compounds and aerosols to cause greenhouse warming and the darkening of the atmosphere, which prevented photosynthesis and cause ocean stagnation and anoxia. This disrupted the food chain and reduced ecosystem productivity. As a result, all vital processes were disturbed and a large part of the marine biota became extinct.

  2. Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda)

    PubMed Central

    Wang, Yan-hui; Engel, Michael S.; Rafael, José A.; Wu, Hao-yang; Rédei, Dávid; Xie, Qiang; Wang, Gang; Liu, Xiao-guang; Bu, Wen-jun

    2016-01-01

    Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. PMID:27958352

  3. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant

    NASA Astrophysics Data System (ADS)

    Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J.; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F.; Hao, Shougang

    2016-08-01

    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.

  4. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant.

    PubMed

    Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F; Hao, Shougang

    2016-08-23

    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.

  5. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant

    PubMed Central

    Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J.; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F.; Hao, Shougang

    2016-01-01

    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant−soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet−dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant−soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated. PMID:27503883

  6. Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplé-Barrandian Unit, Bohemian Massif): palaeotectonic implications

    NASA Astrophysics Data System (ADS)

    Patočka, F.; Pruner, P.; Štorch, P.

    The Barrandian area (the Teplá-Barrandian unit, Bohemian Massif) provided palaeomagnetic results on Early Palaeozoic rocks and chemical data on siliciclastic sediments of both Middle Cambrian and Early Ordovician to Middle Devonian sedimentary sequences; an outcoming interpretation defined source areas of clastic material and palaeotectonic settings of the siliciclastic rock deposition. The siliciclastic rocks of the earliest Palaeozoic sedimentation cycle, deposited in the Cambrian Příbram-Jince Basin of the Barrandian, were derived from an early Cadomian volcanic island arc developed on Neoproterozoic oceanic lithosphere and accreted to a Cadomian active margin of northwestern Gondwana. Inversion of relief terminated the Cambrian sedimentation, and a successory Prague Basin subsided nearby since Tremadocian. Source area of the Ordovician and Early Silurian shallow-marine siliciclastic sediments corresponded to progressively dissected crust of continental arc/active continental margin type of Cadomian age. Since Late Ordovician onwards both synsedimentary within-plate basic volcanics and older sediments had been contributing in recognizable proportions to the siliciclastic rocks. The siliciclastic sedimentation was replaced by deposition of carbonate rocks throughout late Early Silurian to Early Devonian period of withdrawal of the Cadomian clastic material source. Above the carbonates an early Givetian flysch-like siliciclastic suite completed sedimentation in the Barrandian. In times between Middle Cambrian and Early/Middle Devonian boundary interval an extensional tectonic setting prevailed in the Teplá-Barrandian unit. The extensional regime was related to Early Palaeozoic large-scale fragmentation of the Cadomian belt of northwestern Gondwana and origin of Armorican microcontinent assemblage. The Teplá-Barrandian unit was also engaged in a peri-equatorially oriented drift of Armorican microcontinent assemblage throughout the Early Palaeozoic: respective palaeolatitudes of 58°S (Middle Cambrian) and 17°S (Middle Devonian) were inferred for the Barrandian rocks. The Middle Devonian flysch-like siliciclastics of the Prague Basin suggest a reappearance of the deeply dissected Cadomian source area in a proximity of the Barrandian due to early Variscan convergences and collisions of the Armorican microcontinents. Significant palaeotectonic rotations are palaeomagnetically evidenced to take place during oblique convergence and final docking of the Teplá-Barrandian microplate within the Variscan terrane mosaic of the Bohemian Massif.

  7. Devonian volcanic rocks of the southern Chinese Altai, NW China: Petrogenesis and implication for a propagating slab-window magmatism induced by ridge subduction during accretionary orogenesis

    NASA Astrophysics Data System (ADS)

    Ma, Xiaomei; Cai, Keda; Zhao, Taiping; Bao, Zihe; Wang, Xiangsong; Chen, Ming; Buslov, M. M.

    2018-07-01

    Ridge-trench interaction is a common tectonic process of the present-day Pacific Rim accretionary orogenic belts, and this process may facilitate "slab-window" magmatism that can produce significant thermal anomalies and geochemically unusual magmatic events. However, ridge-trench interaction has rarely been well-documented in the ancient geologic record, leading to grossly underestimation of this process in tectonic syntheses of plate margins. The Chinese Altai was inferred to have undergone ridge subduction in the Devonian and a slab-window model is proposed to interpret its high-temperature metamorphism and geochemically unique magmatic rocks, which can serve as an excellent and unique place to refine the tectonic evolution associated with ridge subduction in an ancient accretionary orogeny. For this purpose, we carried out geochemical and geochronological studies on Devonian basaltic rocks in this region. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating results yield an age of 376.2 ± 2.4 Ma, suggesting an eruption at the time of Late Devonian. Geochemically, the samples in this study have variable SiO2 (43.3-58.3 wt%), low K2O (0.02-0.07 wt%) and total alkaline contents (2.16-5.41 wt%), as well as Fe2O3T/MgO ratios, showing typical tholeiitic affinity. On the other hand, the basaltic rocks display MORB-like REE patterns ((La/Yb)N = 0.90-2.57) and (Ga/Yb)N = 0.97-1.28), and have moderate positive εNd(t) values (+4.4 to +5.4), which collectively suggest a derivation from a mixing source comprising MORB-like mantle of a mature back-arc basin and subordinate arc mantle wedge. These basaltic rocks are characterized by Low La/Yb (1.26-3.69), Dy/Yb (1.51-1.77) and Sm/Yb (0.83-1.32) ratios, consistent with magmas derived from low degree (∼10%) partial melting of the spinel lherzolite source at a quite shallow mantle depth. Considering the distinctive petrogenesis of the basaltic rocks in this region, the Late Devonian basalts in the southern Chinese Altai is suggested to have witnessed the propagating process of slab-window magmatism that was induced by ridge subduction in a nascent rifting stage of a back-arc basin.

  8. 187Re - 187Os nuclear geochronometry: age dating with permil precision

    NASA Astrophysics Data System (ADS)

    Roller, Goetz

    2016-04-01

    Recently, 187Re - 187Os nuclear geochronometry, a new dating method combining ideas of nuclear astrophysics with geochronology, has successfully been used to calculate two-point-isochron (TPI) ages for Devonian black gas shales using the isotopic signature of an r-process geochronometer as one data point in a TPI diagram [1]. Based upon a nuclear production ratio 187Re/188Os = 5.873, TPI ages were calculated for 12 SDO-1 (Devonian Ohio Shale, Appalachian Basin) aliquants, for which repeated Re-Os measurements are reported in the literature [2]. TPI ages range from 384.5 ± 2.7 Ma (187Os/188Osi = 0.29413 ± 0.00023) to 387.7 ± 2.1 Ma (187Os/188Osi = 0.29407 ± 0.00019) with a mean of 386.67 ± 1.79 Ma). The result is consistent with the isochronous age from the 12 aliquants alone (386 ± 16 Ma, 187Os/188Osi = 0.31±0.31), which is bracketed by U-Pb ages for the Belpre Ash (381.1 ± 3.3 Ma) and the Tioga Ash bed (390.0 ± 2.5 Ma) [3] from the Appalachian Basin. Hence, SDO-1 can be assigned to the Givetian stage (varcus-zone) of the Middle Devonian, close to the Eifelian/Givetian boundary (using the time-scale of [3] or [4]). If an age is calculated from an isochron diagram for the 12 aliquants including the nuclear geochronometer, a permil precision can be achieved, an interesting feature with respect to any effort towards calibrating the Geologic Timescale. Additionally, a Th/U evolution (or: Th/U-time) diagram can be plotted using U-Pb zircon age data and Th/U ratios from volcanic rocks and ashes reported in the literature [3] for specific Devonian samples from the Appalachian Basin. Since the Re-Os age obtained for SDO-1 can also be connected to its Th/U ratio, it turns out, that Th/U ratios might be helpful age indicators, as demonstrated for the Devonian using the U-Pb and Re-Os datasets. [1] Roller (2015), GSA Abstr. with Programs 47, #248-14. [2] Du Vivier et al. (2014), Earth Planet. Sci. Lett. 389, 23 - 33. [3] Tucker et al. (1998), Earth Planet. Sci. Lett. 158, 175 - 186. [4] Kaufmann (2006), Earth-Sci. Revs. 76, 175 - 190.

  9. The late Cenomanian oyster Lopha staufferi (Bergquist, 1944) - the oldest ribbed oyster in the Upper Cretaceous of the Western Interior of the United States

    NASA Astrophysics Data System (ADS)

    Hook, Stephen C.; Cobban, William A.

    2016-12-01

    Lopha staufferi (Bergquist, 1944) is a medium-sized, ribbed, Late Cretaceous oyster with a slightly curved axis and a zigzag commissure; it appears suddenly and conspicuously in upper Cenomanian rocks in the Western Interior Basin of the United States. At maturity, the ribs on both valves thicken into steep flanks that allow the oyster to increase interior volume without increasing its exterior footprint on the seafloor. Lopha staufferi is the first (earliest) ribbed oyster in the Late Cretaceous of the Western Interior, but has no ancestor in the basin. It disappears from the rock record as suddenly as it appeared, leaving no direct descendent in the basin. In the southern part of the basin where it is well constrained, L. staufferi is restricted stratigraphically to the upper Cenomanian Metoicoceras mosbyense Zone (= Dunveganoceras conditum Zone in the north). Lopha staufferi has an unusual paleogeographic distribution, occurring in only two, widely scattered areas in the basin. It has been found at several localities near the western shoreline of the Late Cretaceous Seaway in west-central New Mexico and adjacent Arizona, and in localities 1,900 km (1,200 mi) to the northeast near the eastern shoreline in northeastern Minnesota, but nowhere in between. In west-central New Mexico and adjacent Arizona, L. staufferi is a guide fossil to the Twowells Tongue of the Dakota Sandstone.

  10. Western redcedar lumber recovery from a western Washington sawmill.

    Treesearch

    E.E. Matson

    1957-01-01

    During the summer of 1956 a lumber-recovery study was made at E. C. Miller Lumber Company in Aberdeen, Wash. to determine the grades of lumber that can be expected from western redcedar logs. This sawmill is equipped with a 24-foot carriage, a 10-foot band headrig, a band pony headrig, and an edger. All of the upper grades of lumber are seasoned and then sent to the...

  11. Reconstructing the Thermo-tectonic history of the Rwenzori Mountains, D. R. Congo

    NASA Astrophysics Data System (ADS)

    Mansour, S.; Bauer, F.; Glasmacher, P. D. U. A. A.; Grobe, R. W.; Starz, M.

    2014-12-01

    The Albertine Rift forms the northern section of the western Rift of the East African Rift System (EARS). The Rwenzori Mtns evolved along the eastern rift shoulder of the Albertine Rift, rising up to form a striking feature within the rift valley with elevations reaching 5109 m a.s.l. While, the scarcity of volcanic activity in the Western Rift has raised questions about the Rwenzori Mtns origin and how this fits into the general evolution of the Albertine Rift and the EARS. Detailed thermochronologic study of Bauer et al., (2013) on the eastern side on Rwenzori Mtns, differentiated it into northern and southern blocks. The northern block cooled faster to ~120 °C in Carboniferous to Permian times. The second cooling event to ~70 °C occurred in Mesozoic time. The third cooling event to surface temperature occurred in the Neogene. While, the southern block shows an earlier onset of cooling at >400 Ma. Temperatures of about 70 °C were reached in Silurian to Devonian times. During this study, 33 samples were collected from the western side of central Rwenzori. Zircon and apatite fission track and (U/Th)-He techniques were applied on these samples. The apatite fission track data could be divided into three age groups; ~45±11, ~25±5, ~12±2 Ma. These results reveal the difference in thermo-tectonic history between the eastern and western flanks of Rwenzori Mtns and support the tilt uplift geometry hypotheses (e.g. Pickford et al., 1993). ReferencesBauer, F.U., Glasmacher, U.A., Ring, U., Karl, M., Schumann, A., Nagudi, B., 2013. Tracing the exhumation history of the Rwenzori Mountains, Albertine Rift, Uganda, using low-temperature thermochronology, Tectonophysics, 599, 8-28. http://dx.doi.org/10.1016/j.tecto.2013.03.032. Pickford, M., Senut, B., Hadoto, D., 1993. Geology and Palaeobiology of the Albertine Rift Valley Uganda-Zaire, vol. 1. Geology. CIFEG Occas, Orleans. Publication, vol. 24, pp. 1-190.

  12. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Liu, Xiu-Jin; Liu, Li-Juan

    2013-10-01

    Whole rock major and trace element, Nd-Sr and zircon Hf isotopic compositions and secondary-ion mass spectrometry zircon U-Pb ages of eleven granitoid intrusions and dioritic rocks from the East Junggar (NW China) were analyzed in this study. The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 Ma) following volcanic eruption of the Batamayi Formation. Zircons from the East Junggar granitoids yielded 210 concordant 206Pb/238U ages which are all younger than 334 Ma and exhibit ɛHf(t) values distinctly higher than Devonian arc volcanic-rocks. Seismic P-wave velocities of deep crust of the East Junggar proper resemble those of oceanic crust (OC). These characteristics suggest absence of volcanic rock and volcano-sedimentary rock of Devonian and Early Carboniferous from the source region. The East Junggar granitoids show ɛNd(t) and initial 87Sr/86Sr values substantially overlapping those of the Armantai ophiolite in the area. The Early Paleozoic OC with seamount-like composition as the Zhaheba-Armantai ophiolites remained in the lower crust and formed main source rock of the East Junggar granitoids. Based on petrography and geochemistry, the East Junggar granitoids are classified into peralkaline A-type in the northern subarea, I-type (I1 and I2 subgroups) mainly in the north and A-type in the south of the southern subarea. The perthitic or argillated core and oligoclasic rim with an argillated boundary of feldspar phenocrysts and inclusion of perthites or its overgrowth by matrix plagioclase, in the monzogranites (northern subarea), suggest mixing of peralkaline granitic magma with mafic magma. In the north of the southern subarea, the presence of magmatic microdioritic enclaves (MMEs) in the I1 subgroup granitoids, transfer of plagioclase phenocrysts and hornblendes between host granodiorite and the MME across the boundary and a prominent resorption surface in the plagioclase phenocrysts indicate mixing of crustal magma (I2 subgroup granitoids) with mafic magma. Magma mixing shifted (87Sr/86Sr)i of the I1 subgroup granitoids towards the mantle array. Two generations of hornblende with zonal distribution and similar mineral and geochemical compositions of quartz monzodiorite and hosted MME with unfractionated rare earth elements (REE) suggest extended magma mixing with onset probably at or near source region. These observations imply concurrency of mantle input and the crustal melting and, hence, a causal relationship between underplating/intraplating and the lower OC/upper OC melting. The I-type granitoids experienced plagioclase and hornblende fractionations, whereas fractionated phases of the two groups of A-type granites were alkali feldspar and albite-oligoclase with significant involvement of F--rich fluid. Granodioritic parent magmas of the I2 subgroup granitoids stemmed from the hydrous upper OC. Parent magmas of the two A-type groups possess syenogranitic or quartz syenitic compositions. The peralkaline A-type granites stemmed from the lower OC, whereas the A-type granites from dehydrated upper OC left behind after extensive partial melting and extraction of I-type granitoids. Based on comparison in the ternary system Mg2SiO4-CaAl2SiO6-SiO2, most of the Batamayi volcanic rocks with affinity to ocean-island basalts were derived from asthenospheric upwelling. The gabbro-dioritic rocks with higher light to heavy REE ratios stemmed from metasomatized lithospheric mantle. Both of the above mafic rocks contain subducted slab component.

  13. A geologic framework for mineralization in the western Brooks Range

    USGS Publications Warehouse

    Young, Lorne E.

    2004-01-01

    The Brooks Range is a 950-km-long north-vergent fold and thrust belt, which was formed during Mesozoic convergence of the continental Arctic Alaska terrane and the oceanic Angayucham terrane and was further shortened and uplifted in Tertiary time. The Arctic Alaska terrane consists of parautochthonous rocks and the Endicott Mountains and De Long Mountains subterranes. The Endicott Mountains allochthon of the western Brooks Range is the setting for many sulfide and barite occurrences, such as the supergiant Red Dog zinc-lead mine. Mineralization is sediment hosted and most commonly is present in black shale and carbonate turbidites of the Mississippian Kuna Formation. The reconstructed Kuna basin is a 200 by +600 km feature that represents the culmination of a remarkable chain of events that includes three fluvial-deltaic and two or more orogenic cycles, Middle Devonian to Mississippian episodes of extension and igneous activity, and the emergence of a seaward Lower Proterozoic landmass that may have constituted a barrier to marine circulation. Mississippian extension and related horst-and-graben architecture in the western Brooks Range is manifested in part by strong facies variability between coeval units of allochthons and structural plates. Shallow marine to possibly nonmarine arkose, platform to shelf carbonate, slope-to-basin shale, chert and carbonate turbidites, and submarine volcanic rocks are all represented in Mississippian time. The structural setting of Mississippian sedimentation, volcanism, and mineralization in the Kuna basin may be comparable to documented Devono-Mississippian extensional sags or half-grabens in the subsurface north of the Brooks Range. Climate, terrestrial ecosystems, multiple fluvial-deltaic aquifers, and structural architecture affected the liberation, movement, and redeposition of metals in ways that are incompletely understood.

  14. Fault distribution in the Precambrian basement of South Norway

    NASA Astrophysics Data System (ADS)

    Gabrielsen, Roy H.; Nystuen, Johan Petter; Olesen, Odleiv

    2018-03-01

    Mapping of the structural pattern by remote sensing methods (Landsat, SPOT, aerial photography, potential field data) and field study of selected structural elements shows that the cratonic basement of South Norway is strongly affected by a regular lineament pattern that encompasses fault swarms of different orientation, age, style, attitude and frequency. Albeit counting numerous fault and fracture populations, the faults are not evenly distributed and N-S to NNE-SSW/NNW-SSE and NE-SE/ENE-WSW-systems are spatially dominant. N-S to NNW-SSE structures can be traced underneath the Caledonian nappes to the Western Gneiss Region in western and central South Norway, emphasizing their ancient roots. Dyke swarms of different ages are found within most of these zones. Also, the Østfold, Oslo-Trondheim and the Mandal-Molde lineament zones coincide with trends of Sveconorwegian post-collision granites. We conclude that the N-S-trend includes the most ancient structural elements, and that the trend can be traced back to the Proterozoic (Svecofennian and Sveconorwegian) orogenic events. Some of the faults may have been active in Neoproterozoic times as marginal faults of rift basins at the western margin of Baltica. Remnants of such fault activity have survived in the cores of many of the faults belonging to this system. The ancient systems of lineaments were passively overridden by the Caledonian fold-and-thrust system and remained mostly, but note entirely inactive throughout the Sub-Cambrian peneplanation and the Caledonian orogenic collapse in the Silurian-Devonian. The system was reactivated in extension from Carboniferous times, particularly in the Permian with the formation of the Oslo Rift and parts of it remain active to the Present, albeit by decreasing extension and fault activity.

  15. Bedrock Geology and Asbestos Deposits of the Upper Missisquoi Valley and Vicinity, Vermont

    USGS Publications Warehouse

    Cady, Wallace Martin; Albee, Arden Leroy; Chidester, A.H.

    1963-01-01

    The upper Missisquoi Valley and vicinity as described in this report covers an area of about 250 square miles at the headwaters of the Missisquoi River in north-central Vermont. About 90 percent of the area is forested and the remainder is chiefly farm land. The topography reflects the geologic structure and varied resistance of the bedrock to erosion. Most of the area is on the east limb of the Green Mountain anticlinorium, which is the principal structural feature of Vermont. The bedrock is predominantly sedimentary and volcanic rock that has been regionally metamorphosed. It was intruded before metamorphism by mafic and ultramafic igneous rocks, and after metamorphism by felsic and mafic igneous rocks. The metamorphosed sedimentary and volcanic rocks range in age from Cambrian(?) to Middle Silurian, the intrusive igneous rocks from probably Late Ordovician to probably late Permian. Metamorphism and principal folding in the region occurred in Middle Devonian time. The metamorphosed sedimentary and volcanic rocks make up a section at least 25,000 feet thick and can be divided into nine formations. The Hazens Notch formation of Cambrian(?) and Early Cambrian age is characterized by carbonaceous schist. It is succeeded in western parts of the area by the Jay Peak formation of Early Cambrian age, which is chiefly a schist that is distinguished by the general absence of carbonaceous zones; in central parts of the area the Hazens Notch formation is followed by the Belvidere Mountain amphibolite, probably the youngest of the formations of Early Cambrian age. The Ottauquechee formation, composed of carbonaceous phyllite and quartzite, and phyllitic graywacke, is of Middle Cambrian age. The Stowe formation of Late Cambrian(?) and Early(?) Ordovician age overlies the Ottauquechee and is predominantly noncarbonaceous schist, though it also contains greenstone and carbonaceous schist and phyllite. The Umbrella Hill formation of Middle Ordovician age is characteristically a conglomerate in which the mineral chloritoid is common. The overlying Moretown formation, also of Middle Ordovician age, contains granulite and slate, also greenstone and amphibolite of the Coburn Hill volcanic member. The Shaw Mountain formation, made up of conglomerate, phyllite, and limestone, is the oldest Silurian unit. The Shaw Mountain formation is succeeded by the Northfield slate of Middle Silurian age. The igneous rocks of the region include various ultramafic plutonic rocks, such as dunite, peridotite, and serpentinite, probably of Late Ordovician age; sills and nearly concordant dikes of metagabbro of Late Ordovician age; biotite granite plutons or Middle or Late Devonian age, most notably on Eltey Mountain; and hypabyssallamprophyre, probably of late Permian age. Metamorphic zoning is shown by the distribution of rocks of the epidote-amphibolite facies and the greenschist facies in and near the Green Mountains, and near Coburn Hill and Eltey Mountain. Metasomatism related to regional metamorphism has produced porphyroblasts and quartz segregations in the sedimentary and volcanic rocks, and steatitization and carbonatization of serpentinite. Contact metamorphism has formed rocks of the epidote-amphibolite facies near granite plutons, and probably calc-silicate rock at the contacts of ultramafic plutons. The axial anticline of the Green Mountain anticlinorium and other anticlines and synclines to the east are the major longitudinal structural features of the area. These structures are complicated by transverse folds, particularly a syncline in the vicinity of Tillotson Peak. Early minor cross folds that are best developed in the Hazens Notch formation are believed to be genetically related to the transverse folds. The axial planes of the cross folds are folded about the axes of the later longitudinal folds of the Green Mountain anticlinorium. The longitudinal and transverse fold systems probably formed in the same episode of defor

  16. Geologic map of the Yucca Mountain region, Nye County, Nevada

    USGS Publications Warehouse

    Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.

    2002-01-01

    Yucca Mountain, Nye County, Nev., has been identified as a potential site for underground storage of high-level radioactive waste. This geologic map compilation, including all of Yucca Mountain and Crater Flat, most of the Calico Hills, western Jackass Flats, Little Skull Mountain, the Striped Hills, the Skeleton Hills, and the northeastern Amargosa Desert, portrays the geologic framework for a saturated-zone hydrologic flow model of the Yucca Mountain site. Key geologic features shown on the geologic map and accompanying cross sections include: (1) exposures of Proterozoic through Devonian strata inferred to have been deformed by regional thrust faulting and folding, in the Skeleton Hills, Striped Hills, and Amargosa Desert near Big Dune; (2) folded and thrust-faulted Devonian and Mississippian strata, unconformably overlain by Miocene tuffs and lavas and cut by complex Neogene fault patterns, in the Calico Hills; (3) the Claim Canyon caldera, a segment of which is exposed north of Yucca Mountain and Crater Flat; (4) thick densely welded to nonwelded ash-flow sheets of the Miocene southwest Nevada volcanic field exposed in normal-fault-bounded blocks at Yucca Mountain; (5) upper Tertiary and Quaternary basaltic cinder cones and lava flows in Crater Flat and at southernmost Yucca Mountain; and (6) broad basins covered by Quaternary and upper Tertiary surficial deposits in Jackass Flats, Crater Flat, and the northeastern Amargosa Desert, beneath which Neogene normal and strike-slip faults are inferred to be present on the basis of geophysical data and geologic map patterns. A regional thrust belt of late Paleozoic or Mesozoic age affected all pre-Tertiary rocks in the region; main thrust faults, not exposed in the map area, are interpreted to underlie the map area in an arcuate pattern, striking north, northeast, and east. The predominant vergence of thrust faults exposed elsewhere in the region, including the Belted Range and Specter Range thrusts, was to the east, southeast, and south. The vertical to overturned strata of the Striped Hills are hypothesized to result from successive stacking of three south-vergent thrust ramps, the lowest of which is the Specter Range thrust. The CP thrust is interpreted as a north-vergent backthrust that may have been roughly contemporaneous with the Belted Range and Specter Range thrusts. The southwest Nevada volcanic field consists predominantly of a series of silicic tuffs and lava flows ranging in age from 15 to 8 Ma. The map area is in the southwestern quadrant of the southwest Nevada volcanic field, just south of the Timber Mountain caldera complex. The Claim Canyon caldera, exposed in the northern part of the map area, contains thick deposits of the 12.7-Ma Tiva Canyon Tuff, along with widespread megabreccia deposits of similar age, and subordinate thick exposures of other 12.8- to 12.7-Ma Paintbrush Group rocks. An irregular, blocky fault array, which affects parts of the caldera and much of the nearby area, includes several large-displacement, steeply dipping faults that strike radially to the caldera and bound south-dipping blocks of volcanic rock. South and southeast of the Claim Canyon caldera, in the area that includes Yucca Mountain, the Neogene fault pattern is dominated by closely spaced, north-northwest- to north-northeast-striking normal faults that lie within a north-trending graben. This 20- to 25-km-wide graben includes Crater Flat, Yucca Mountain, and Fortymile Wash, and is bounded on the east by the 'gravity fault' and on the west by the Bare Mountain fault. Both of these faults separate Proterozoic and Paleozoic sedimentary rocks in their footwalls from Miocene volcanic rocks in their hanging walls. Stratigraphic and structural relations at Yucca Mountain demonstrate that block-bounding faults were active before and during eruption of the 12.8- to 12.7-Ma Paintbrush Group, and significant motion on these faults continued unt

  17. Contrasting andean geodynamics drive evolution of lowland taxa in western Amazonia

    USDA-ARS?s Scientific Manuscript database

    Using a palm lineage of 15 species (Astrocaryum sect. Huicungo), we tested an hypothesis that past geologic events in western Amazonia influenced the modern configuration of the upper Amazon drainage and thus diversification and distribution of these palsm, which found only in this region. The chang...

  18. Development of a Zooplankton Assemblage Indicator for the 2012 National Lakes Assessment: Performance in the Western U.S.

    EPA Science Inventory

    We used zooplankton count data collected as part of the 2012 National Lakes Assessment (NLA) to develop candidate metrics and multimetric indices (MMIs) for five aggregated ecoregions of the conterminous USA (Coastal Plains, Eastern Highlands, Plains, Upper Midwest, and Western M...

  19. Stratigraphic and palaeoenvironmental summary of the south-east Georgia embayment: a correlation of exploratory wells

    USGS Publications Warehouse

    Poppe, Lawrence J.; Popenoe, Peter; Poag, C. Wylie; Swift, B. Ann

    1995-01-01

    A Continental Offshore Stratigraphic Test (COST) well and six exploratory wells have been drilled in the south-east Georgia embayment. The oldest rocks penetrated are weakly metamorphosed Lower Ordovician quartz arenites and Silurian shales and argillites in the Transco 1005-1 well and Upper Devonian argillites in the COST GE-1 well. These marine strata, which are equivalent to the Tippecanoe sequence in Florida, underlie the post-rift unconformity and represent part of a disjunct fragment of Gondwana that was sutured to the North American craton during the late Palaeozoic Alleghanian orogeny. The Palaeozoic strata are unconformably overlain by interbedded non-marine Jurassic (Bajocian and younger) sandstones and shales and marginal marine Lower Cretaceous sandstones, calcareous shales and carbonates, which contain scattered beds of coal and evaporite. Together, these rocks are stratigraphically equivalent to the onshore Fort Pierce and Cotton Valley(?) Formations and rocks of the Lower Cretaceous Comanchean Provincial Series. The abundance of carbonates and evaporites in this interval, which reflects marine influences within the embayment, increases upwards, eastwards and southwards. The Upper Cretaceous part of the section is composed mainly of neritic calcareous shales and shaley limestones stratigraphically equivalent to the primarily marginal marine facies of the onshore Atkinson, Cape Fear and Middendorf Formations and Black Creek Group, and to limestones and shales of the Lawson Limestone and Peedee Formations. Cenozoic strata are primarily semiconsolidated marine carbonates. Palaeocene to middle Eocene strata are commonly cherty; middle Miocene to Pliocene strata are massive and locally phosphatic and glauconitic; Quaternary sediments are dominated by unconsolidated carbonate sands. The effects of eustatic changes and shifts in the palaeocirculation are recorded in the Upper Cretaceous and Tertiary strata.

  20. U-Pb detrital zircon dates and provenance data from the Beaufort Group (Karoo Supergroup) reflect sedimentary recycling and air-fall tuff deposition in the Permo-Triassic Karoo foreland basin

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.

    2018-07-01

    Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.

  1. Calculation of temperature distribution and rheological properties of the lithosphere along geotransect in the Red Sea region

    NASA Astrophysics Data System (ADS)

    Dérerová, Jana; Kohút, Igor; Radwan, Anwar H.; Bielik, Miroslav

    2017-12-01

    The temperature model of the lithosphere along profile passing through the Red Sea region has been derived using 2D integrated geophysical modelling method. Using the extrapolation of failure criteria, lithology and calculated temperature distribution, we have constructed the rheological model of the lithosphere in the area. We have calculated the strength distribution in the lithosphere and constructed the strength envelopes for both compressional and extensional regimes. The obtained results indicate that the strength steadily decreases from the Western desert through the Eastern desert towards the Red Sea where it reaches its minimum for both compressional and extensional regime. Maximum strength can be observed in the Western desert where the largest strength reaches values of about 250-300 MPa within the upper crust on the boundary between upper and lower crust. In the Eastern desert we observe slightly decreased strength with max values about 200-250 MPa within upper crust within 15 km with compression being dominant. These results suggest mostly rigid deformation in the region or Western and Eastern desert. In the Red Sea, the strength rapidly decreases to its minimum suggesting ductile processes as a result of higher temperatures.

  2. Magnetic properties and anomalies related to eclogite- and high-pressure granulite-facies mafic rocks: What do they tell about magnetization of deep-crustal lithosphere?

    NASA Astrophysics Data System (ADS)

    McEnroe, S. A.; Robinson, P.

    2012-12-01

    The magnetic response of crustal rocks is directly related to type and abundance of oxides in the rock bodies. About 800 samples from mafic bodies and mantle peridotites from the eclogite-facies part of the Western Gneiss Region, Norway, were studied for magnetic properties and oxide mineralogy, and show strong variations. Many eclogites are paramagnetic, while adjacent gabbros from which the eclogites were derived during high-pressure (HP) recrystallization, either preserved or formed magnetite during HP metamorphism or during the following exhumation. Phase petrology indicates many of these rocks were subjected to 4 Gpa and possibly to 6 Gpa equivalent to depths of 125 and 200 km during the Scandian (Upper Silurian - Lower Devonian) continental subduction. Likely conditions in intermediate stages of exhumation were temperature (T) > 700C and pressure (P) of 1 GPa. When magnetite dominates in these samples, the primary control on magnetization is abundance, because magnetite in coarse-grained igneous and high-grade metamorphic rocks is commonly of multi-domain size, close to end-member, and with few microstructures. With few features to stabilize the NRM, the magnetic response is dominated by induced magnetization (Ji). When exsolved members of the rhombohedral ilmenite-hematite solid solution are present, commonly in more oxidized rocks, the response is dominated by the NRM (Jr), and NRM intensity is more complicated than in magnetite-bearing rocks. Important here, in addition to the amount of oxide, are the orientation of the oxide grains relative to the magnetizing field, and the amount of exsolution lamellae, mostly produced during cooling from HP conditions, leading to lamellar magnetism. Where there is no coexisting magnetite, these rocks have high Q values (Jr/Ji) because the induced magnetization (Ji) is low. For such more oxidized rocks, remanent anomalies are generally more common than for more reduced magnetite-bearing rocks formed under the same conditions. Mafic rocks from the Southwest Swedish Granulite Region contain high-pressure granulite-facies assemblages produced during Sveconorwegian (early Neoproterozoic) metamorphism with peak T of 770C and P 0.75-1.05 GPa. Here, the assemblages commonly indicate more oxidized compositions than prevailing in the Western Gneiss Region. Thus, the NRM is dominant, and resultant magnetic vectors are controlled by NRM vectors, nearly opposite to the Earth's present magnetic field, giving rise to striking negative anomalies. Both regions offer insights and show strong variations in the magnetic properties of lower crustal rocks.

  3. Window into the Caledonian orogen: Structure of the crust beneath the East Shetland platform, United Kingdom

    USGS Publications Warehouse

    McBride, J.H.; England, R.W.

    1999-01-01

    Reprocessing and interpretation of commercial and deep seismic reflection data across the East Shetland platform and its North Sea margin provide a new view of crustal subbasement structure beneath a poorly known region of the British Caledonian orogen. The East Shetland platform, east of the Great Glen strike-slip fault system, is one of the few areas of the offshore British Caledonides that remained relatively insulated from the Mesozoic and later rifting that involved much of the area around the British Isles, thus providing an "acoustic window" into the deep structure of the orogen. Interpretation of the reflection data suggests that the crust beneath the platform retains a significant amount of its original Caledonian and older architecture. The upper to middle crust is typically poorly reflective except for individual prominent dipping reflectors with complex orientations that decrease in dip with depth and merge with a lower crustal layer of high reflectivity. The three-dimensional structural orientation of the reflectors beneath the East Shetland platform is at variance with Caledonian reflector trends observed elsewhere in the Caledonian orogen (e.g., north of the Scottish mainland), emphasizing the unique tectonic character of this part of the orogen. Upper to middle crustal reflectors are interpreted as Caledonian or older thrust surfaces that were possibly reactivated by Devonian extension associated with post-Caledonian orogenic collapse. The appearance of two levels of uneven and diffractive (i.e., corrugated) reflectivity in the lower crust, best developed on east-west-oriented profiles, is characteristic of the East Shetland platform. However, a north-south-oriented profile reveals an interpreted south-vergent folded and imbricated thrust structure in the lower crust that appears to be tied to the two levels of corrugated reflectivity on the east-west profiles. A thrust-belt origin for lower crustal reflectivity would explain its corrugated appearance. Regional seismic velocity models derived from refraction data suggest that this reflectivity correlates with a continuous lower crustal layer that has an intermediate seismic velocity. The lower crustal reflectivity is determined to be older than Mesozoic age by the bending down and truncation of the two reflectivity levels at the western margin of the North Sea Viking graben by a major mantle reflector inferred to be associated with Mesozoic rifting. The results of this study are thus in contrast with orthodox interpretations of the reflective layered lower crust as being caused by mantle-derived igneous intrusion or by deformation fabrics associated with stretching in response to continental rifting.

  4. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians

    NASA Astrophysics Data System (ADS)

    Bąk, Krzysztof; Bąk, Marta

    2013-06-01

    Bąk, K. and Bąk M. 2013. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians. Acta Geologica Polonica, 63 (2), 223-237. Warszawa. The foraminiferal and radiolarian biostratigraphy of selected sections of the Zabijak Formation, the youngest sediments of the Tatra massif (Central Western Carpathians), have been studied. Benthic foraminifers, mainly agglutinated species, occur abundantly and continuously throughout the studied succession, while planktic foraminifers are generally sparse. Five planktic and two benthic foraminiferal zones have been recognized. The marly part of the Zabijak Formation comprises the Pseudothalmanninella ticinensis (Upper Albian) through the Rotalipora cushmani (Upper Cenomanian) planktic foraminiferal zones, and the Haplophragmoides nonioninoides and Bulbobaculites problematicus benthic foraminiferal zones. The radiolarians were recognized exclusively in the Lower Cenomanian part of the formation.

  5. Seismicity in the platform regions of Ukraine in the zones of anomalous electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kushnir, A. N.; Kulik, S. N.; Burakhovich, T. K.

    2013-05-01

    It is established for the first time that there are several regions in Ukraine, in which the earthquakes occurring within platform territory are correlated to the anomalous conductive structures in the Earth's crust and upper mantle. These regions are identified as (1) Donbass and the eastern part of the Dnieper-Donetsk Depression (DDD); (2) eastern margin of the Ingulets-Krivoi Rog suture zone in the area of the Krivoi Rog-Kremenchug fault zone; (3) the western part of the Cis-Azov megablock; (4) the western boundary of the Ukrainian Shield and its slope; (5) North Dobruja and Pre-Dobrujan Depression. The reconstructed tree-dimensional (3D) geoelectrical models of the Earth's crust and upper mantle feature anomalously low values of electric resistivity. The earthquake sources in the platform areas of Ukraine are localized above the top and in the upper parts of the crustal anomalies of electrical conductivity.

  6. First recognition of the genus Verneuilia Hall and Clarke (Brachiopoda, Spiriferida) from North America (west-central Alaska)

    USGS Publications Warehouse

    Blodgett, R.B.; Johnson, J.G.

    1994-01-01

    The brachiopod genus Verneuilia Hall and Clarke, 1893, is recognized for the first time in North America, where it is represented by a new species described here. V. langenstrasseni. This occurrence extends not only the geographic range of the genus, but also the lower age and stratigraphic limit into the Eifelian (early Middle Devonian). Previously, the oldest known species was the type, V. cheiropteryx d'Archiac and de Verneuil, 1842, from the Givetian (late Middle Devonian) of Germany. Internal structures of V. langenstrasseni n.sp. are similar to those of genera in the ambocoeliid subfamily Rhynchospiriferinae, providing the first good evidence of a systematic relationship. -Authors

  7. Geochemical and mineralogical sampling of the Devonian shales in the Broadtop synclinorium, Appalachian basin, in Virginia, West Virginia, Maryland, and Pennsylvania

    USGS Publications Warehouse

    Enomoto, Catherine B.; Coleman, James L.; Swezey, Christopher S.; Niemeyer, Patrick W.; Dulong, Frank T.

    2015-01-01

    The presence of conventional anticlinal gas fields in the study area that are productive from the underlying Lower Devonian Oriskany Sandstone suggests that an unconventional (or continuous) shale gas system may be in place within the Marcellus Shale in the study area. Results of this study indicate that the Marcellus Shale in the Broadtop synclinorium generally is similar in organic geochemical nature throughout its extent, and based on the sample analyses, there are no clearly identifiable high potential areas (or “sweet spots”) in the study area. This report contains analyses of 132 outcrop and well drill-cuttings samples.

  8. Seismic imaging of extended crust with emphasis on the western United States

    USGS Publications Warehouse

    McCarthy, J.; Thompson, G.A.

    1988-01-01

    Understanding of the crust has improved dramatically following the application of seismic reflection and refraction techniques to studies of the deep crust. This is particularly true in areas where the last tectonic event was extensional, such as the Basin and Range province of the western United States and much of western Europe. In these regions, a characteristic reflective pattern has emerged, whereby the lower crust is highly reflective and the upper crust and upper mantle are either poorly reflective or strikingly nonreflective. In the metamorphic-core-complex belt in the western United States, where extension can be as much as an order of magnitude greater than in the more classic continental rift zones, the lower crustal reflectivity thickens and rises, yielding a picture of a crust that is reflective throughout. If metamorphic core complexes are representative of extended continental crust world-wide, then these results suggest that magmatism and ductile flow have also contributed to the evolution of the middle and lower crust in many other areas around the world. -from Authors

  9. Stratigraphy and depositional environments of Fox Hills Formation in Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, D.J.

    The Fox Hills Formation (Maestrichtian), representing part of a regressive wedge deposited during the withdrawal of the sea from the Western Interior at the close of the Cretaceous, consists of marginal marine strata transitional between the offshore deposits of the underlying Pierre Shale and the terrestrial deltaic and coastal deposits of the overlying Hell Creek Formation. An investigation of outcrops of the Fox Hills Formation along the western and southern flanks of the Williston basin and study of over 300 oil and gas well logs from the central part of the basin indicate that the formation can be divided bothmore » stratigraphically and areally. Stratigraphically, the Fox Hills can be divided into lower and upper sequences; the lower includes the Trail City and Timber Lake Members, and the upper sequence includes the Colgate Member in the west and the Iron Lightning and Linton Members in the east. Areally, the formation can be divided into a northeastern and western part, where the strata are 30-45 m thick and are dominated by the lower sequence, and into a southeastern area where both the lower and upper sequences are well developed in a section 80-130 m thick. Typically, the lower Fox Hills consists of upward-coarsening shoreface or delta-front sequences containing hummocky bedding and a limited suite of trace fossils, most notably Ophiomorpha. In the southeast, however, these strata are dominated by bar complexes, oriented northeast-southwest, composed of cross-bedded medium to very fine-grained sand with abundant trace and body fossils. The upper Fox Hills represents a variety of shoreface, deltaic, and channel environments. The strata of the Fox Hills Formation exhibit facies similar to those reported for Upper Cretaceous gas reservoirs in the northern Great Plains.« less

  10. Pre-Variscan evolution of the Western Tatra Mountains: new insights from U-Pb zircon dating.

    PubMed

    Burda, Jolanta; Klötzli, Urs

    In situ LA-MC-ICP-MS U-Pb zircon geochronology combined with cathodoluminescence imaging were carried out to determine protolith and metamorphic ages of orthogneisses from the Western Tatra Mountains (Central Western Carpathians). The metamorphic complex is subdivided into two units (the Lower Unit and the Upper Unit). Orthogneisses of the Lower Unit are mostly banded, fine- to medium-grained rocks while in the Upper Unit varieties with augen structures predominate. Orthogneisses show a dynamically recrystallised mineral assemblage of Qz + Pl + Bt ± Grt with accessory zircon and apatite. They are peraluminous (ASI = 1.20-1.27) and interpreted to belong to a high-K calc-alkaline suite of a VAG-type tectonic setting. LA-MC-ICP-MS U-Pb zircon data from samples from both units, from crystals with oscillatory zoning and Th/U > 0.1, yield similar concordia ages of ca. 534 Ma. This is interpreted to reflect the magmatic crystallization age of igneous precursors. These oldest meta-magmatics so far dated in the Western Tatra Mountains could be linked to the fragmentation of the northern margin of Gondwana. In zircons from a gneiss from the Upper Unit, cores with well-developed oscillatory zoning are surrounded by weakly luminescent, low contrast rims (Th/U < 0.1). These yield a concordia age of ca. 387 Ma corresponding to a subsequent, Eo-Variscan, high-grade metamorphic event, connected with the formation of crustal-scale nappe structures and collision-related magmatism.

  11. Divergent plate motion drives rapid exhumation of (ultra)high pressure rocks

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Malusà, Marco G.; Zhao, Liang; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Gerya, Taras

    2018-06-01

    Exhumation of (ultra)high pressure [(U)HP] rocks by upper-plate divergent motion above an unbroken slab, first proposed in the Western Alps, has never been tested by numerical methods. We present 2D thermo-mechanical models incorporating subduction of a thinned continental margin beneath either a continental or oceanic upper plate, followed by upper-plate divergent motion away from the lower plate. Results demonstrate how divergent plate motion may trigger rapid exhumation of large volumes of (U)HP rocks directly to the Earth's surface, without the need for significant overburden removal by erosion. Model exhumation paths are fully consistent with natural examples for a wide range of upper-plate divergence rates. Exhumation rates are systematically higher than the divergent rate imposed to the upper plate, and the modeled size of exhumed (U)HP domes is invariant for different rates of upper-plate divergence. Major variations are instead predicted at depth for differing model scenarios, as larger amounts of divergent motion may allow mantle-wedge exhumation to shallow depth under the exhuming domes. The transient temperature increase, due to ascent of mantle-wedge material in the subduction channel, has a limited effect on exhumed continental (U)HP rocks already at the surface. We test two examples, the Cenozoic (U)HP terranes of the Western Alps (continental upper plate) and eastern Papua New Guinea (oceanic upper plate). The good fit between model predictions and the geologic record in these terranes encourages the application of these models globally to pre-Cenozoic (U)HP terranes where the geologic record of exhumation is only partly preserved.

  12. Long-term Variation of Ventilation System in the East Sea (Japan Sea) Revealed by Heat Content Change and Water Mass Analysis

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Chang, K. I.; Kim, K. R.; Lobanov, V. B.

    2016-02-01

    The semi-enclosed East Sea (ES) is called a miniature ocean with its own thermohaline circulation characterized by the formation of deep and intermediate water masses in the Japan Basin, southward discharge of those subsurface water masses towards the Ulleung and Yamato basins, and northward heat transport by the Tsushima Warm Current in the upper layer. Reports have been given of rapid changes of physical and biogeochemical properties associated with its ventilation system. We present results on upper ocean heat content variations and changes in water mass structure and properties from the analysis of historical and most recent hydrographic data. The analysis of non-seasonal heat content (HCA) variations in the upper 500 m from 1976 to 2007 highlights the 2-year lagged in-phase decadal-scale HCA variations in the eastern and western ES until 1995 followed by uncorrelated variations between two regions thereafter with pronounced interannual variations. Long-term trend of HCA in the entire ES shows an increasing trend, but with a large increase in the eastern part and relatively weaker but statistically significant decrease in the western part. The thickness variation of water warmer than 10°C mainly contributes to the HCA variation. Analyses of upper circulation in conjunction with climate indices suggest the importance of the wind-stress curl pattern represented by the Western Pacific index in the western ES and the influence of the Siberian High in the eastern ES. The thickness and temperature variation of 1-5°C representing the East Sea Intermediate Water (ESIW) is relatively minor contributor to the HCA variation in the upper 500 m. However, the thickness (temperature) of the ESIW has been increased (decreased) in the entire ES since 1992, which implies that the formation of the ESIW has been activated in recent decades. To investigate water mass changes in deeper than 500 m, we use full-depth CTD data obtained from CREAMS expeditions from 1993 to 2015. Temperature deeper than 1000 m has been increased about 0.03°C during 20 years and the depth of deep salinity minimum depth which is the lower (upper) limit of the East Sea Central Water (Deep Water) has been deepened. Other characteristics of water mass structure and property changes will be presented.

  13. Integrating Reflection Seismic, Gravity and Magnetic Data to Reveal the Structure of Crystalline Basement: Implications for Understanding Rift Development

    NASA Astrophysics Data System (ADS)

    Lenhart, Antje; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon; Gawthorpe, Robert L.

    2016-04-01

    Numerous rifts form above crystalline basement containing pervasive faults and shear zones. However, the compositional and mechanical heterogeneity within crystalline basement and the geometry and kinematics of discrete and pervasive basement fabrics are poorly understood. Furthermore, the interpretation of intra-crustal structures beneath sedimentary basins is often complicated by limitations in the depth of conventional seismic imaging, the commonly acoustically transparent nature of basement, limited well penetrations, and complex overprinting of multiple tectonic events. Yet, a detailed knowledge of the structural and lithological complexity of crystalline basement rocks is crucial to improve our understanding of how rifts evolve. Potential field methods are a powerful but perhaps underutilised regional tool that can decrease interpretational uncertainty based solely on seismic reflection data. We use petrophysical data, high-resolution 3D reflection seismic volumes, gridded gravity and magnetic data, and 2D gravity and magnetic modelling to constrain the structure of crystalline basement offshore western Norway. Intra-basement structures are well-imaged on seismic data due to relatively shallow burial of the basement beneath a thin (<3.5 km) sedimentary cover. Variations in basement composition were interpreted from detailed seismic facies analysis and mapping of discrete intra-basement reflections. A variety of data filtering and isolation techniques were applied to the original gravity and magnetic data in order to enhance small-scale field variations, to accentuate formation boundaries and discrete linear trends, and to isolate shallow and deep crustal anomalies. In addition, 2D gravity and magnetic data modelling was used to verify the seismic interpretation and to further constrain the configuration of the upper and lower crust. Our analysis shows that the basement offshore western Norway is predominantly composed of Caledonian allochthonous nappes overlying large-scale anticlines of Proterozoic rocks of the Western Gneiss Region. Major Devonian extensional brittle faults, detachments and shear zones transect those tectono-stratigraphic units. Results from structural analysis of enhanced gravity and magnetic data indicate the presence of distinct intra-basement bodies and structural lineaments at different scales and depth levels which correlate with our seismic data interpretation and can be linked to their onshore counterparts exposed on mainland Norway. 2D forward models of gravity and magnetic data further support our interpretation and quantitatively constrain variations in magnetic and density properties of principal basement units. We conclude that: i) enhanced gravity and magnetic data are a powerful tool to constrain the geometry of individual intra-basement bodies and to detect structural lineaments not imaged in seismic data; ii) insights from this study can be used to evaluate the role of pre-existing basement structures on the evolution of rift basins; and iii) the integration of a range of geophysical datasets is crucial to improve our understanding of the deep subsurface.

  14. A new osteichthyan from the late Silurian of Yunnan, China.

    PubMed

    Choo, Brian; Zhu, Min; Qu, Qingming; Yu, Xiaobo; Jia, Liantao; Zhao, Wenjin

    2017-01-01

    Our understanding of early gnathostome evolution has been hampered by a generally scant fossil record beyond the Devonian. Recent discoveries from the late Silurian Xiaoxiang Fauna of Yunnan, China, have yielded significant new information, including the earliest articulated osteichthyan fossils from the Ludlow-aged Kuanti Formation. Here we describe the partial postcranium of a new primitive bony fish from the Kuanti Formation that represents the second known taxon of pre-Devonian osteichthyan revealing articulated remains. The new form, Sparalepis tingi gen. et sp. nov., displays similarities with Guiyu and Psarolepis, including a spine-bearing pectoral girdle and a placoderm-like dermal pelvic girdle, a structure only recently identified in early osteichthyans. The squamation with particularly thick rhombic scales shares an overall morphological similarity to that of Psarolepis. However, the anterior flank scales of Sparalepis possess an unusual interlocking system of ventral bulges embraced by dorsal concavities on the outer surfaces. A phylogenetic analysis resolves Sparalepis within a previously recovered cluster of stem-sarcopterygians including Guiyu, Psarolepis and Achoania. The high diversity of osteichthyans from the Ludlow of Yunnan strongly contrasts with other Silurian vertebrate assemblages, suggesting that the South China block may have been an early center of diversification for early gnathostomes, well before the advent of the Devonian "Age of Fishes".

  15. Global microbial carbonate proliferation after the end-Devonian mass extinction: Mainly controlled by demise of skeletal bioconstructors

    PubMed Central

    Yao, Le; Aretz, Markus; Chen, Jitao; Webb, Gregory E.; Wang, Xiangdong

    2016-01-01

    Microbial carbonates commonly flourished following mass extinction events. The end-Devonian (Hangenberg) mass extinction event is a first-order mass extinction on the scale of the ‘Big Five’ extinctions. However, to date, it is still unclear whether global microbial carbonate proliferation occurred after the Hangenberg event. The earliest known Carboniferous stromatolites on tidal flats are described from intertidal environments of the lowermost Tournaisian (Qianheishan Formation) in northwestern China. With other early Tournaisian microbe-dominated bioconstructions extensively distributed on shelves, the Qianheishan stromatolites support microbial carbonate proliferation after the Hangenberg extinction. Additional support comes from quantitative analysis of the abundance of microbe-dominated bioconstructions through the Famennian and early Tournaisian, which shows that they were globally distributed (between 40° latitude on both sides of the palaeoequator) and that their abundance increased distinctly in the early Tournaisian compared to the latest Devonian (Strunian). Comparison of variations in the relative abundance of skeleton- versus microbe-dominated bioconstructions across the Hangenberg and ‘Big Five’ extinctions suggests that changes in abundance of skeletal bioconstructors may play a first-order control on microbial carbonate proliferation during extinction transitions but that microbial proliferation is not a general necessary feature after mass extinctions. PMID:28009013

  16. Modern methods rediscover deep gas. [Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, J.S.

    1979-03-01

    In 1973, Northern Natural Gas (NNG) Co.'s Midland exploration and production district acquired a 7-section lease block on a Devonian-Montoya prospect suggested by trend geology and limited seismic data. This acreage block was 2 miles west of the abandoned Hershey field, and included acreage on which the Devonian was tested at noncommercial rates in 1962. Additional seismic data confirmed the presence of a drillable prospect on NNG's acreage block. Engineering analyses of the reservoir characteristics suggested that modern completion and treatment techniques would result in a commercial producer. NNG's management approved the expenditure and the first well was spudded inmore » April, 1977. This well, the No. 1 Hershenson, was completed in Sept., 1977 as the discovery well in the Hershey West (Devonian-Montoya) field for a calculated open flow potential (CAOFP) of 20.5 mmcfd dry gas from perforations at 15,445 to 16,017 ft. The confirmation well, No. 1 Hershenson 6, was spudded in May, 1978, and completed in Oct., 1978, for a CAOFP of 86.3 mmcfd from perforations at 16,000 to 16,624 ft. A third well, No. 1 Maddox-Willbanks 15, was spudded in Nov., 1978. Rediscovered field potential justified construction of a gas processing plant and a 16-mile pipeline.« less

  17. Drilling of a deviated well: E. C. Newell 10056-D Meigs County, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, J.A.

    1982-09-30

    The Department of Energy's (DOE) Eastern Gas Shales Program (EGSP) has focused primarily on the resource characterization of the Devonian shales in the Appalachian, Michigan and Illinois Basins, where the collective volume of gas in place is estimated to be on the order of 280 Tcf. From an early assessment of the petrophysical properties of these shales, attention now has turned to an understanding of the mechanisms controlling production of this unconventional-gas source. However, present knowledge of the production history of the Devonian shales is inadequate for an accurate estimation of the gas reserves, the optimum well spacing for gasmore » extraction, and the preferred stimulation techniques to be used. As part of this program, a Deviated Well Test was designed to evaluate the spacing of natural fractures in the Devonian shale in Meigs County, Ohio as a follow-on test to further define shale production characteristics and to assess the benefit of additional section gained by drilling through the producing interval at the approximate angle for dip of 60/sup 0/ from vertical. The Columbia Gas Transmission Company, E.C. Newell 10056-D well, on the same site as a previous Off-Set Well Test, was selected for this investigation. This report summarizes drilling operations on this Deviated Well Test.« less

  18. Synthrusting deposition of the Pennsylvanian and Permian Strathearn Formation, Northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Theodore, T.G.; Berger, V.I.; Singer, D.A.; Harris, A.G.; Stevens, C.H.

    2004-01-01

    The middle Upper Pennsylvanian and middle Lower Permian Strathearn Formation belongs to the overlap assemblage of the Antler orogen in Nevada. At Beaver Peak, near the Carlin Trend of gold deposits, it contains synorogenic conglomerate deposits associated with emplacement of a regionally extensive, 1-km-thick tectonic wedge that is floored by the Coyote thrust. Normal marine conodont biofacies throughout the Strathearn Formation suggest middle shelf or deeper, depositional environments. The allochthon floored by the Coyote thrust has been thrust above a middle Upper Pennsylvanian, lower conglomerate unit of the Strathearn Formation. A middle Lower Permian upper conglomerate unit, the highest unit recognized in the Strathearn Formation, as well as similarly aged dolomitic siltstone, onlap directly onto Ordovician quartzarenite of the Vinini Formation that makes up most of the Coyote allochthon. Quartz grains and quartzarenite fragments of variable roundness and shape in the conglomerate units were derived from the presently adjoining tectonic lobe of mostly quartzarenite that advanced southeast (present geographic coordinates) during the late Paleozoic into the developing Strathearn basin. Chert fragments in the conglomerates probably were derived mostly from Devonian Slaven Chert, including a widespread thick me??lange unit of the Slaven Chert in the footwall of the Coyote thrust.Lithologic and shape ratio data from approximately 4200 clasts at 17 sites of the two major conglomerate units in the Strathearn Formation at Beaver Peak are roughly similar in that they contain only chert and quartzarenite clasts, and chert clasts predominate in both units. They differ in the relative proportion of the two lithologies whereby quartzarenite clasts increase sixfold in the upper unit (middle Lower Permian) versus its content in the lower conglomerate unit. Relations at the unconformity between the upper conglomerate unit and its underlying quartzarenite shows quartzarenite fragments actually breaking away from an immediately subjacent source. Ordovocian quartzarenite, which forms a tectonically uplifted wedge with the Coyote thrust at its base, became a source region for much of the quartzarenite detritus deposited preferentially in the upper parts of the Strathearn Formation. The conglomerate units of the Strathearn Formation temporally bracket emplacement of the Coyote thrust. Thrusting related to contractional reactivation of the Robert Mountains thrust system largely was completed by middle Early Permian. ?? 2004 Published by Elsevier B.V.

  19. A review of crust and upper mantle structure studies of the Snake River Plain-Yellowstone volcanic system: A major lithospheric anomaly in the western U.S.A.

    USGS Publications Warehouse

    Iyer, H.M.

    1984-01-01

    The Snake River Plain-Yellowstone volcanic system is one of the largest, basaltic, volcanic field in the world. Here, there is clear evidence for northeasterly progression of rhyolitic volcanism with its present position in Yellowstone. Many theories have been advanced for the origin of the Snake River Plain-Yellowstone system. Yellowstone and Eastern Snake River Plain have been studied intensively using various geophysical techniques. Some sparse geophysical data are available for the Western Snake River Plain as well. Teleseismic data show the presence of a large anomalous body with low P- and S-wave velocities in the crust and upper mantle under the Yellowstone caldera. A similar body in which compressional wave velocity is lower than in the surrounding rock is present under the Eastern Snake River Plain. No data on upper mantle anomalies are available for the Western Snake River Plain. Detailed seismic refraction data for the Eastern Snake River Plain show strong lateral heterogeneities and suggest thinning of the granitic crust from below by mafic intrusion. Available data for the Western Snake River Plain also show similar thinning of the upper crust and its replacement by mafic material. The seismic refraction results in Yellowstone show no evidence of the low-velocity anomalies in the lower crust suggested by teleseismic P-delay data and interpreted as due to extensive partial melting. However, the seismic refraction models indicate lower-than-normal velocities and strong lateral inhomogeneities in the upper crust. Particularly obvious in the refraction data are two regions of very low seismic velocities near the Mallard Eake and Sour Creek resurgent domes in the Yellowstone caldera. The low-velocity body near the Sour Creek resurgent dome is intepreted as partially molten rock. Together with other geophysical and thermal data, the seismic results indicate that a sub-lithospheric thermal anomaly is responsible for the time-progressive volcanism along the Eastern Snake River Plain. However, the exact mechanism responsible for the volcanism and details of magma storage and migration are not yet fully understood. ?? 1984.

  20. Global climatic changes during the Devonian-Mississippian: Stable isotope biogeochemistry of brachiopods

    NASA Astrophysics Data System (ADS)

    Brand, Uwe

    1989-12-01

    A progressive trend towards heavier δ 13C values of Devonian-Mississippian brachiopods from North America, Europe, Afghanistan and Algeria probably reflects expansion of the terrestrestrial and/or marine biomass and/or burial of carbon in soils/sediments. Oceanic Productivity crises, based on perturbations in the overall δ 13C trend, are recognized for the Mid Givetian, Early Famennian, Late Kinderhookian, Late Osagean and Early and Late Meramecian. The Givetian productivity crisis was probably accompanied by massive overturn of biologically toxic deep-ocean water. Temperature data, adjusted for the possible secular variation of seawater, support the hypothesis of global greenhouse conditions for the Devonian (mean of 30°C, mean of 26°C if extrinsic data are deleted) and icehouse conditions for the Mississippian (mean of 17°C). During the Mid Givetian, Frasnian and Early Famennian calculated water temperatures for tropical epeiric seas were generally above the thermal threshold limit (˜ 38°C) of most marine invertebrates or epeiric seawater was characterized by unusually low salinities (˜ pp ppt) or a combination of the two. These elevated water temperatures and/or low salinities, in conjunction with the postulated productivity crises and overturning of toxic deep waters are considered prime causes for the biotic crisis of the Late Devonian. In addition, a presumed expanding oxygen-minimum zone and general anoxia in the oceans prevented shallow-water organisms from escaping these inhospitable conditions. Re-population of the tropical seas occurred, after either water temperatures had dropped below the thermal threshold limit and/or salinities were back to normal, and oceanic productivity had increased due to more vigorous oceanic circulation, sometime during the Mid-Late Famennian. Migration of eurythermal, shallow- and deeper-water organisms into the vacant niches of the shallow seas was possible because of, generally, slightly lower sea levels, but, more importantly of more restricted oxygen-minimum zone and generally reduced oceanic anoxia.

  1. Late Devonian glacigenic and associated facies from the central Appalachian Basin, eastern United States

    USGS Publications Warehouse

    Brezinski, D.K.; Cecil, C.B.; Skema, V.W.

    2010-01-01

    Late Devonian strata in the eastern United States are generally considered as having been deposited under warm tropical conditions. However, a stratigraphically restricted Late Devonian succession of diamictite- mudstonesandstone within the Spechty Kopf and Rockwell Formations that extends for more than 400 km along depositional strike within the central Appalachian Basin may indicate other wise. This lithologic association unconformably overlies the Catskill Formation, where a 3- to 5-m-thick interval of deformed strata occurs immediately below the diamictite strata. The diamictite facies consists of several subfacies that are interpreted to be subglacial, englacial, supraglacial meltout, and resedimented deposits. The mudstone facies that overlies the diamictite consists of subfacies of chaotically bedded, clast-poor mudstone, and laminated mudstone sub facies that represent subaqueous proximal debris flows and distal glaciolacustrine rhythmites or varvites, respectively. The pebbly sandstone facies is interpreted as proglacial braided outwash deposits that both preceded glacial advance and followed glacial retreat. Both the tectonic and depositional frameworks suggest that the facies were deposited in a terrestrial setting within the Appalachian foreland basin during a single glacial advance and retreat. Regionally, areas that were not covered by ice were subject to increased rainfall as indicated by wet-climate paleosols. River systems eroded deeper channels in response to sea-level drop during glacial advance. Marine facies to the west contain iceborne dropstone boulders preserved within contemporaneous units of the Cleveland Shale Member of the Ohio Shale.The stratigraphic interval correlative with sea-level drop, climate change, and glacigenic succession represents one of the Appalachian Basin's most prolific oil-and gas-producing intervals and is contemporaneous with a global episode of sea-level drop responsible for the deposition of the Hangenberg Shale/Sandstone of Europe. This interval records the Hangenberg biotic crisis near the Devonian-Carboniferous boundary. ?? 2009 Geological Society of America.

  2. New Plants from the Lower Devonian Pingyipu Group, Jiangyou County, Sichuan Province, China

    PubMed Central

    Edwards, Dianne; Geng, Bao-Yin; Li, Cheng-Sen

    2016-01-01

    Descriptions of Lower Devonian plants from Yunnan, South China, have revolutionized concepts of diversity and disparity in tracheophytes soon after they became established on land. Sichuan assemblages have received little attention since their discovery almost 25 years ago and require revision. With this objective, fieldwork involving detailed logging and collection of fossils was undertaken in the Longmenshan Mountain Region, Jiangyou County and yielded the two new taxa described here. They are preserved as coalified compressions and impressions that allowed morphological but not anatomical analyses. Yanmenia (Zosterophyllum) longa comb nov is based on numerous rarely branching shoots with enations resembling lycophyte microphylls, without evidence for vasculature. The presence of sporangia is equivocal making assignation to the Lycopsida conjectural. The plant was recently described as a zosterophyll, but lacks strobili. These are present in the second plant and comprise bivalved sporangia. The strobili terminate aerial stems which arise from a basal axial complex displaying diversity in branching including H- and K- forms. These features characterise the Zosterophyllopsida, although the plant differs from Zosterophyllum in valve shape. Comparisons indicate greatest similarities to the Lower Devonian Guangnania cuneata, from Yunnan, but differences, particularly in the nature of the sporangium border, require the erection of a new species, G. minor. Superficial examination of specimens already published indicate a high degree of endemism at both species and generic level, while this study shows that Yanmenia is confined to Sichuan and Guangnania is one of the very few genera shared with Yunnan, where assemblages also show a high proportion of further endemic genera. Such provincialism noted in the Chinese Lower Devonian is explained by the palaeogeographic isolation of the South China plate, but this cannot account for differences/endemism between the Sichuan and Yunnan floras. Such an enigma demands further integrated geological, palaeobotanical and palynological studies. PMID:27851760

  3. Paleomagnetism of Devonian dykes in the northern Kola Peninsula and its bearing on the apparent polar wander path of Baltica in the Precambrian

    NASA Astrophysics Data System (ADS)

    Veselovskiy, Roman V.; Bazhenov, Mikhail L.; Arzamastsev, Andrey A.

    2016-04-01

    Mafic dykes and large alkaline and carbonatite intrusions of Middle-Late Devonian age are widespread on the Kola Peninsula in NE Fennoscandia. These magmatic rocks are well characterized with petrographic, geochemical and geochronological data but no paleomagnetic results have been reported yet. We studied dolerite dykes from the northern part of the Peninsula and isolated three paleomagnetic components in these rocks. A low-temperature component is aligned along the present-day field, while a major constituent of natural remanent magnetization is an intermediate-temperature component (Decl. = 79.6°, Inc. = 78.5°, α95 = 5,9°, N = 17 sites) that is present in most Devonian dykes but is found in some baked metamorphic rocks and Proterozoic dykes too. Finally, a primary Devonian component could be reliably isolated from two dykes only. Rock-magnetic studies point to presumably primary low-Ti titanomagnetite and/or pure magnetite as the main remanence carriers but also reveal alteration of the primary minerals and the formation of new magnetic phases. The directions of a major component differ from the Middle Paleozoic reference data for Baltica but closely match those for the 190 ± 10 Ma interval recalculated from the apparent polar wander path of the craton. We assume that this Early Jurassic component is a low-temperature overprint of chemical origin. The main impact of the new results is not to mid-Paleozoic or Early Mesozoic times but to much older epochs. Analysis of paleomagnetic data shows that the directionally similar remanences are present in objects with the ages ranging from 500 Ma to 2 Ga over entire Fennoscandia. Hence we argue that an Early Jurassic remagnetization is of regional extent but cannot link it to a certain process and a certain tectonic event. If true, this hypothesis necessitates a major revision of the APWP for Baltica over a wide time interval.

  4. Sea-level changes vs. organic productivity as controls on Early and Middle Devonian bioevents: Facies- and gamma-ray based sequence-stratigraphic correlation of the Prague Basin, Czech Republic

    NASA Astrophysics Data System (ADS)

    Bábek, Ondřej; Faměra, Martin; Šimíček, Daniel; Weinerová, Hedvika; Hladil, Jindřich; Kalvoda, Jiří

    2018-01-01

    The Devonian marine stratigraphic record is characterized by a number of bioevents - overturns in pelagic and benthic faunal assemblages, which are associated with distinct changes in lithology. The coincidence of lithologic and biotic changes can be explained by the causal link between biotic evolution, carbonate production and relative sea-level changes. To gain insight into the sea-level history of Early and Middle Devonian bioevents (the Lochkovian/Pragian Event, Basal Zlíchovian E., Daleje E., and Choteč E.) we carried out a sequence-stratigraphic analysis of carbonate-dominated successions in the Prague Basin (peri-Gondwana), a classic area of Devonian bioevents. The study is based on a basin-wide correlation of facies and field gamma-ray spectrometry (GRS) logs from 18 sections (Lochkovian to Eifelian), supported by element geochemistry and published biostratigraphic and carbon isotope data. Devonian carbonate deposition in the Prague Basin alternated between two end-member modes: an oligotrophic, homoclinal ramp (Praha and Daleje-Třebotov Formations) and a mesotrophic, distally steepened ramp (Lochkov, Zlíchov, and Choteč Formations). They show contrasting facies, particularly the absence/presence of gravity-flow deposits, allochem composition, U/Th ratios, and geochemical composition (productivity proxies such as P/Al, Si/Al, Zn/Al, TOC and stable carbon isotopes). The mesotrophic systems reflect an increased availability of nutrients on the shelf during the late Lochkovian, early Emsian (Zlíchovian), and Eifelian periods when sea surface temperature, pCO2, and silicate weathering rates were higher. The oligotrophic systems deposited during the Pragian-to-earliest Emsian and late Emsian (Dalejan) periods reflect reversed palaeoclimatic trends. We identified three depositional sequences (DS), DS1 (base of Pragian to early Emsian); DS2 (early Emsian to mid Emsian); and DS3 (mid Emsian to mid Eifelian). These sequences were integrated into a peri-Gondwana relative sea-level curve, which was then compared with the Euramerican sea-level curve of Johnson et al. (1985). The bioevents coincided with several sequence stratigraphic surfaces, representing variable limbs of the relative sea-level curve. On the other hand, their conspicuous coincidence with the switching intervals between the colder oligotrophic and warmer mesotrophic modes suggests that organic production linked to global climate was the primary control on biotic overturns, while sea-level fluctuations may have only amplified its effects.

  5. Formation resistivity as an indicator of oil generation in black shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, T.C.; Schmoker, J.W.

    1987-08-01

    Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less

  6. Regional changes and global connections: monitoring climate variability and change in the western United States

    Treesearch

    Henry F. Diaz

    2004-01-01

    Mountain ecosystems of the Western United States are complex and include cold desert biomes, such as those found in Nevada; subpolar biomes found in the upper treeline zone; and tundra ecosystems, occurring above timberline. Many studies (for example, Thompson 2000) suggest that high-elevation environments, comprising glaciers, snow, permafrost, water, and the...

  7. A possible railroad oriented scenario in Potomac River Basin planning

    Treesearch

    George H. Siehl

    1980-01-01

    A trend may develop in which railroads become lifelines between rural and urban populations. For instance, the railroad along the Potomac River presently serves commuters from Washington's western suburbs. The railroad could be used to reclaim surface mined areas in the upper portion of the Potomac. These same lines can also open western Maryland as a recreation...

  8. Arsenic in rocks and stream sediments of the central Appalachian Basin, Kentucky

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Goldhaber, Martin B.; Ruppert, Leslie F.; Hower, James C.

    2002-01-01

    Arsenic (As) enrichment in coal and stream sediments has been documented in the southern Appalachian basin (see Goldhaber and others, submitted) and is attributed to interaction of rocks and coal with metamorphic fluids generated during the Allegheny Orogeny (late Paleozoic). Similarly derived fluids are expected to affect the coal and in the Kentucky Appalachian Basin to the north as well. In addition, similar processes may have influenced the Devonian oil shale on the western margin of the basin. The major goals of this study are to determine the effect such fluids had on rocks in the Kentucky Appalachian basin (fig. 1), and to understand the geochemical processes that control trace-metal source, residence, and mobility within the basin. This report includes data presented in a poster at the USGS workshop on arsenic (February 21 and 22, 2001), new NURE stream sediment data3 , and field data from a trip in April 2001. Although data for major and minor elements and all detectable trace metals are reported in the Appendices, the narrative of this report primarily focuses on arsenic.

  9. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh/Chara shear zone and implications for arc amalgamation and oroclinal bending in the western Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2016-04-01

    The Irtysh/Chara Shear Zone is one of the largest strike-slip systems in the Central Asian Orogenic Belt (CAOB). It records collisional processes of the peri-Siberian orogenic system with the West Junggar-Kazakhstan-Tianshan orogenic system following the closure of the Ob-Zaisan Ocean, but the exact timing of these events remains enigmatic. We conducted detailed structural analysis along the Irtysh Shear Zone (NW China), which together with new geochronological data allows us to reconstruct the tectonic evolution during the final closure of the Ob-Zaisan Ocean. Our results showed that subduction-accretion processes lasted at least until the Late Carboniferous in the Chinese Altai and the East/West Junggar. The subsequent arc amalgamation is characterized by a cycle of crustal thickening, orogenic collapse and transpressional thickening. On a larger scale, the West Junggar- Kazakhstan -Tianshan orogenic system defines a U-shape oroclinal structure (e.g. Xiao et al., 2010). A major phase of oroclinal bending that involved ~110° rotation may have occurred during the Late Devonian to Early Carboniferous (Levashova et al., 2012). Previous authors have linked oroclinal bending with the late Paleozoic amalgamation of the western CAOB, and proposed that a quasi-linear West Junggar- Kazakhstan -Tianshan orogenic system was buckled during the convergence of the Siberian and Tarim cratons following the closure of the Ob-Zaisan Ocean (in the north) and the South Tianshan Ocean (in the south) (e.g. Abrajevitch et al., 2008). This model, however, is not supported by our new data that constrain the closure of the Ob-Zaisan Ocean to the Late Carboniferous. Alternatively, we propose that oroclinal bending may have involved two phases of bending, with the ~110° rotation in the Late Devonian to Early Carboniferous possibly associated with trench retreat. Further tightening may have occurred in response to the convergence of the Siberian and Tarim cratons during the Late Carboniferous to Permian. References: Abrajevitch, A., Van der Voo, R., Bazhenov, M.L., Levashova, N.M., McCausland, P.J.A., 2008. The role of the Kazakhstan orocline in the late Paleozoic amalgamation of Eurasia. Tectonophysics 455, 61-76. Levashova, N., Degtyarev, K., Bazhenov, M., 2012. Oroclinal bending of the Middle and Late Paleozoic volcanic belts in Kazakhstan: Paleomagnetic evidence and geological implications. Geotectonics 46, 285-302. Xiao, W., Huang, B., Han, C., Sun, S., Li, J., 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253-273. Acknowledgements: This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (Grant: 2014CB448000 and 2014CB440801), Hong Kong Research Grant Council (HKU705311P, HKU704712P and HKU17303415), National Science Foundation of China (41273048), HKU seed funding (201111159137) and HKU CRCG grants. This work is a contribution of the Joint Laboratory of Chemical Geodynamics between HKU and CAS (Guangzhou Institute of Geochemistry), IGCP 592 and PROCORE France/Hong Kong Joint Research Scheme.

  10. Characteristics of fish assemblages and related environmental variables for streams of the upper Snake River basin, Idaho and western Wyoming, 1993-95

    USGS Publications Warehouse

    Maret, Terry R.

    1997-01-01

    limited designation for the middle reach of the Snake River between Milner Dam and King Hill and provide a framework for developing indices of biotic integrity by using fish assemblages to evaluate water quality of streams in the upper Snake River Basin.

  11. Didactics, Dance and Teacher Knowing in an Upper Secondary School Context

    ERIC Educational Resources Information Center

    Styrke, Britt-Marie

    2015-01-01

    This article deals with didactics, dance and teacher knowing in an upper secondary school context in Sweden. Dance is referred to as a western theatrical art form as well as to a subject mainly defined through its curriculum. A qualitative interview study with experienced dance teachers constitutes the base on which two overarching theoretical…

  12. Assessment of Undiscovered Technically Recoverable Oil and Gas Resources of the Bakken Formation, Williston Basin, Montana and North Dakota, 2008

    USGS Publications Warehouse

    Pollastro, R.M.; Roberts, L.N.R.; Cook, T.A.; Lewan, M.D.

    2008-01-01

    The U.S. Geological Survey (USGS) has completed an assessment of the undiscovered oil and associated gas resources of the Upper Devonian to Lower Mississippian Bakken Formation in the U.S. portion of the Williston Basin of Montana and North Dakota and within the Williston Basin Province. The assessment is based on geologic elements of a total petroleum system (TPS), which include (1) source-rock distribution, thickness, organic richness, maturation, petroleum generation, and migration; (2) reservoir-rock type (conventional or continuous), distribution, and quality; and (3) character of traps and time of formation with respect to petroleum generation and migration. Framework studies in stratigraphy and structural geology and modeling of petroleum geochemistry, combined with historical exploration and production analyses, were used to estimate the undiscovered, technically recoverable oil resource of the Bakken Formation. Using this framework, the USGS defined a Bakken-Lodgepole TPS and seven assessment units (AU) within the system. For the Bakken Formation, the undiscovered oil and associated gas resources were quantitatively estimated for six of these AUs.

  13. Development of a new software for analyzing 3-D fracture network

    NASA Astrophysics Data System (ADS)

    Um, Jeong-Gi; Noh, Young-Hwan; Choi, Yosoon

    2014-05-01

    A new software is presented to analyze fracture network in 3-D. Recently, we completed the software package based on information given in EGU2013. The software consists of several modules that play roles in management of borehole data, stochastic modelling of fracture network, construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes and production of cross-section diagrams. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. A case study was performed to analyze 3-D fracture network system at the Upper Devonian Grosmont Formation in Alberta, Canada. The results have suggested that the developed software is effective in modelling and visualizing 3-D fracture network system, and can provide useful information to tackle the geomechanical problems related to strength, deformability and hydraulic behaviours of the fractured rock masses. This presentation describes the concept and details of the development and implementation of the software.

  14. Ordovician "sphinctozoan" sponges from Prince of Wales Island, southeastern Alaska

    USGS Publications Warehouse

    Rigby, J.K.; Karl, Susan M.; Blodgett, R.B.; Baichtal, J.F.

    2005-01-01

    A faunule of silicified hypercalcified "sphinctozoan" sponges has been recovered from a clast of Upper Ordovician limestone out of the Early Devonian Karheen Formation on Prince of Wales Island in southeastern Alaska. Included in the faunule are abundant examples of the new genus Girtyocoeliana, represented by Girtyocoeliana epiporata (Rigby and Potter), and Corymbospongia adnata Rigby and Potter, along with rare Corymbospongia amplia n. sp., and Girtyocoelia(?) sp., plus common Amblysiphonella sp. 1 and rare Amblysiphonella(?) sp. 2. The assemblage is similar to that from Ordovician clasts from the eastern Klamath Mountains of northern California. This indicates that the Alexander terrane of southeastern Alaska is related paleogeographically to the lithologically and paleontologically similar terrane of the eastern Klamath Mountains. This lithology and fossil assemblage of the clast cannot be tied to any currently known local rock units on Prince of Wales Island. Other clasts in the conglomerate appear to have been locally derived, so it is inferred that the limestone clasts were also locally derived, indicating the presence of a previously undocumented Ordovician limestone unit on northern Prince of Wales Island. 

  15. The composition of fluid inclusions in ore and gangue minerals from the Silesian-Cracow Mississippi Valley-type Zn-Pb deposits Poland: Genetic and environmental implications

    USGS Publications Warehouse

    Viets, J.G.; Hofstra, A.H.; Emsbo, P.; Kozlowski, A.

    1996-01-01

    The composition of fluids extracted from ore and gangue sulfide minerals that span most of the paragenesis of the Silesian-Cracow district was determined using a newly developed ion chromatographic (IC) technique. Ionic species determined were Na+, NH+4, Ca2+, Mg2+, K+, Rb+, Sr2+, Ba2+, Cl-, Br-, F-, I-, PO3-4, CO2-3, HS-, S2O2-3, SO2-4, NO-3, and acetate. Mineral samples included six from the Pomorzany mine and one from the Trzebionka mine which are hosted in the Triassic Muschelkalk Formation, and two samples of drill core from mineralized Upper Devonian strata. Nine paragenetically identifiable sulfide minerals occur throughout the Silesian-Cracow district. These include from earliest to latest: early iron sulfides, granular sphalerite, early galena, light-banded sphalerite, galena, dark-banded sphalerite, iron sulfides, late dark-banded sphalerite with late galena, and late iron sulfides. Seven of the minerals were sampled for fluid inclusion analysis in this study. Only the early iron sulfides and the last galena stage were not sampled. Although the number of analyses are limited to nine samples and two replicates and there is uncertainty about the characteristics of the fluid inclusions analyzed, the data show clear temporal trends in the composition of the fluids that deposited these minerals. Fluid inclusions in minerals deposited later in the paragenesis have significantly more K+, Br-, NH+4, and acetate but less Sr2+ than those deposited earlier in the paragenesis. The later minerals are also characterized by isotopically lighter sulfur and significantly more Tl and As in the solid minerals. The change in ore-fluid chemistry is interpreted to reflect a major change in the hydrologic regime of the district. Apparently, the migrational paths of ore fluids from the Upper Silesian basin changed during ore deposition and the fluids which deposited early minerals reacted with aquifers with very different geochemical characteristics than those that deposited late minerals. The early fluids may have reacted primarily with Devonian and Lower Carboniferous carbonate aquifers deeper in the basin, whereas the later fluids appear to have had extensive contact with organic-rich rocks, probably the shallower Middle and Upper Carboniferous flysch associated with coal measures. High concentrations of toxic Tl and As occur in the readily oxidized marcasite and pyrite minerals deposited by the later fluids. In general, the geochemistry of both the early and late fluids may be explained by an evaporite related origin or by water-rock modification of a saline basinal brine. When compared to the composition of fluid inclusions in Mississippi Valley-type (MVT) ore minerals from the Ozark region of the United States, fluid inclusions in minerals from Silesian-Cracow are fundamentally different, containing more Ca2+, Mg2+, NH+4, Br-, Sr2+ and acetate in all mineral stages with significantly more K+ in later stage minerals. The differences in ore fluid chemistry between the two regions are consistent with the lithologic differences of the respective basins thought to be the source of the mineralizing brines.

  16. Influence of sudden stratospheric warming and quasi biennial oscillation on western disturbance over north India

    NASA Astrophysics Data System (ADS)

    Remya, R.; Kottayil, Ajil; Mohanakumar, K.

    2017-07-01

    This study demonstrates the variability in Western Disturbance during the sudden stratospheric warming (SSW) period and its eventual influence on the north Indian weather pattern. The modulations in the north Indian winter under the two phases of the Quasi-biennial oscillation (QBO) during SSW periods are also examined. The analysis has been carried out by using the ERA interim reanalysis dataset for different pressure levels in the stratosphere and upper troposphere during the time period of 1980-2010. The daily minimum surface temperature data published by India Meteorological Department from 1969 to 2013 has been used for the analysis of temperature anomaly over north India during SSW. The period of intense stratospheric warming witnesses a downward propagation and intensification of kinetic energy from stratosphere to upper troposphere over the Mediterranean and Caspian Sea. When QBO is in easterly phase, the cooling over north India is much larger when compared to the westerly phase during instances of SSW. SSW coincident with the easterly phase of QBO causes an intensified subtropical jet over the mid-latitude regions. The modulation in circulation pattern in stratosphere and upper troposphere when ENSO occurs during SSW period is also analysed separately. This study provides the link among SSW, Western Disturbances and the north Indian cooling during winter season.

  17. A new Trimerocephalus species (Trilobita, Phacopidae) from the Late Devonian (Early Famennian) of Poland.

    PubMed

    Kin, Adrian; Błażejowski, Błażej

    2013-01-01

    This study presents a detailed morphological analysis of a new species belonging to the blind trilobite Trimerocephalus McCoy, 1849, T. chopini n. sp., based on exceptionally well preserved articulated specimens from the Late Devonian (Early Famennian) of the Holy Cross Mountains in central Poland. The occurrence of this taxon in Kowala Quarry near Kielce has been reported previously, with specimens often found in single-file queues representing migratory behaviour that was followed by a mass mortality event that preserved these assemblages. The new taxon is compared with other species of Trimerocephalus and is interpreted as being most closely related to a clade consisting of T. caecus, T. lelievrei, T, inimbi, T. shotoriensis and T. tardispinosus.

  18. Slab geometry of the South American margin from joint inversion of body waves and surface waves

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Ward, K. M.; Porter, R. C.; Portner, D. E.; Lynner, C.; Beck, S. L.; Zandt, G.

    2016-12-01

    The western margin of South America is a long subduction zone with a complex, highly three -dimensional geometry. The first order structure of the slab has previously been inferred from seismicity patterns and locations of volcanoes, but confirmation of the slab geometry by seismic imaging for the entire margin has been limited by either shallow, lithospheric scale models or broader, upper mantle images, often defined on a limited spatial footprint. Here, we present new teleseismic tomographic SV seismic models of the upper mantle from 10°S to 40°S along the South American subduction zone with resolution to a depth of 1000 km as inferred from checkerboard tests. In regions near the Peru Bolivia border (12°S to 18°S) and near central Chile and western Argentina (29.5°S to 33°S) we jointly invert the multi-band direct S and SKS relative delay times with Rayleigh wave phase velocities from ambient noise and teleseismic surface wave tomography. This self-consistent model provides information from the upper crust to below the mantle transition zone along the western margin in these two regions. This consistency allows tracing the slab from the South American coastline to the sub-transition zone upper mantle. From this model we image several features, but most notable is a significant eastward step near the southern edge of the margin (24°-30° S). West of this step, a large high shear velocity body is imaged in the base of and below the transition zone. We suggest this may be a stagnant slab, which is descending into the lower mantle now that it is no longer attached to the surface. This suggests a new component to the subduction history of western South America when an older slab lead the convergence before anchoring in the transition zone, breaking off from the surface, and being overtaken by the modern, actively subducting slab now located further east.

  19. Temporal and Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    USGS Publications Warehouse

    Burdick, Summer M.; VanderKooi, Scott P.

    2010-01-01

    Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year and age-1 and older sub-adult suckers are rare. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. A lack of access to, or abundance of, optimal rearing habitat may exacerbate juvenile sucker mortality or restrict juvenile growth or development. Summer age-0 sucker habitat use and distribution has been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. We designed a study to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. In this document, which meets our annual data summary and reporting obligations, we discuss the results of our second annual spring and summer sampling effort. Catch data collected in 2007 and 2008 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality, which were previously undocumented. In both years during April and May, age-1 and older juvenile suckers were found in shallow water environments. Then, as water temperatures began to warm throughout Upper Klamath Lake in June, age-1 and older juvenile suckers primarily were captured along the western shore in some of the deepest available environments. Following a dramatic decrease in dissolved oxygen concentrations in Eagle Ridge Trench, juvenile suckers were no longer found along the western shore but were captured throughout the rest of Upper Klamath Lake. When dissolved oxygen concentrations were 4 milligrams per liter or greater along the western shore, juvenile sucker captures were again concentrated in that area. Although this pattern indicates that low dissolved oxygen concentration or another related water-quality limitation may force juvenile suckers to leave the western shore, it is unclear as to why age-1 and older juveniles might be attracted to the area in the first place. Understanding this apparent behavior could be important to managing habitat for these species. In this data summary, we also describe the distribution of catches of age-0 suckers and other fishes in Upper Klamath Lake. These data corroborate previous studies that describe age-0 sucker habitat as shallow relative to depths available in Upper Klamath Lake. In this study, we did not seek, nor find additional clarification on age-0 sucker habitat use and distribution in Upper Klamath Lake. Our brief description of the distribution and abundance of all other fish species caught provides a context in which to assess the rarity of juvenile suckers within the fish community of Upper Klamath Lake.

  20. Crown profile equations for stand-grown western hemlock trees in northwestern Oregon.

    Treesearch

    David D. Marshall; Gregory P. Johnson; David W. Hann

    2003-01-01

    Crown profile equations were developed for stand-grown western hemlock(Tsuga heterophylla (Raf.) Sarg.) in northwest Oregon. The profile model uses a segmented approach, dividing the crown into an upper and lower portion at the point of the largest crown width (LCW). The model explains about 86% of the variation in crown width when LCW is known but...

  1. Orff-Schulwerk as a Pedagogical Tool for the Effective Teaching of Italian to Upper Primary Students in Western Australia

    ERIC Educational Resources Information Center

    Paolino, Annamaria; Lummis, Geoffrey W.

    2014-01-01

    The use of songs and music in the Languages classroom is common practice. Research literature contains positive statements about music as a cognitive, linguistic and affective enhancer. Music and Languages risk becoming marginalised in the Western Australian curriculum due to curriculum pressures. Reduction of time in these learning areas could…

  2. Palynostratigraphy of the Upper Cretaceous and Paleogene Deposits in the South of Western Siberia by Example of Russkaya Polyana Boreholes, Omsk Trough

    NASA Astrophysics Data System (ADS)

    Lebedeva, N. K.; Kuz'mina, O. B.

    2018-01-01

    The detailed study of Boreholes 8, 10, and 2 in the Russkaya Polyana district (Omsk Trough) made it possible to reveal the complex structure of the Upper Cretaceous sediments formed in unstable conditions of the marginal part of the Western Siberian basin. The Pokur, Kuznetsovo, Ipatovo, Slavgorod, and Gan'kino formations were subjected to palynological analysis and substantiation of their Late Cretaceous age. Eight biostratigraphic units with dinocysts and five units with spores and pollen from the Albian to the Maastrichtian were identified. The joint application of biostratigraphic and magnetostratigraphic methods made it possible to reveal the stratigraphic breaks in the studied sedimentary stratum and to estimate their scope. The age of the Lower Lyulinvor Subformation was specified in the marginal part of the Omsk Trough. The ingression traces of the Western Siberian basin in the Albian were found for the first time in the considered region.

  3. Upper Palaeolithic genomes reveal deep roots of modern Eurasians.

    PubMed

    Jones, Eppie R; Gonzalez-Fortes, Gloria; Connell, Sarah; Siska, Veronika; Eriksson, Anders; Martiniano, Rui; McLaughlin, Russell L; Gallego Llorente, Marcos; Cassidy, Lara M; Gamba, Cristina; Meshveliani, Tengiz; Bar-Yosef, Ofer; Müller, Werner; Belfer-Cohen, Anna; Matskevich, Zinovi; Jakeli, Nino; Higham, Thomas F G; Currat, Mathias; Lordkipanidze, David; Hofreiter, Michael; Manica, Andrea; Pinhasi, Ron; Bradley, Daniel G

    2015-11-16

    We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic-Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ∼45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ∼25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ∼3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages.

  4. Upper Palaeolithic genomes reveal deep roots of modern Eurasians

    PubMed Central

    Jones, Eppie R.; Gonzalez-Fortes, Gloria; Connell, Sarah; Siska, Veronika; Eriksson, Anders; Martiniano, Rui; McLaughlin, Russell L.; Gallego Llorente, Marcos; Cassidy, Lara M.; Gamba, Cristina; Meshveliani, Tengiz; Bar-Yosef, Ofer; Müller, Werner; Belfer-Cohen, Anna; Matskevich, Zinovi; Jakeli, Nino; Higham, Thomas F. G.; Currat, Mathias; Lordkipanidze, David; Hofreiter, Michael; Manica, Andrea; Pinhasi, Ron; Bradley, Daniel G.

    2015-01-01

    We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ∼45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ∼25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ∼3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages. PMID:26567969

  5. Lithofacies of Spencer Formation, western Tualatin Valley, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Atta, R.O.

    The Spencer Formation crops out in a narrow band that trends north-northwest on the western edge of the Willamette and Tualatin Valleys, Oregon. It apparently conformably overlies mud rocks of either the Yamhill or the Nestucca Formation and is conformably overlain by the Pittsburgh Bluff Formation. The Spencer Formation consists of two members (informal): a lower highly micaceous sandstone (800-1000 ft) and an upper member that is micaceous siltstone and mudstone (1000-1300 ft). The lower member includes an upper part that is light-gray to creamy-gray, silty to muddy, pebbly lithic arkose to feldspathic litharenite, with minor arkose. Sorting is poormore » and beds may be laminated to ripple cross-laminated or massive and bioturbated with abundant mollusk shells, carbonized wood, and burrows. The lower part of the lower member is medium-gray to greenish-gray, silty, pumiceous lithic arkose to feldspathic litharenite. The texture tends to be more uniform and better sorted than that of the upper part of the member. Bedding is commonly massive due to bioturbation. The upper member is medium to dark-gray mudstone with thin pebble-conglomerate lenses. It intertongues with the lower member. Bioturbation, burrows, and carbonized wood are common. The trend in depositional environments appears to be from outer to mid-neritic (lower part, lower member) to shallow neritic, nearshore, and lagoonal (upper part, lower member, and upper member). The provenance of the Spencer Formation includes both proximal volcanics and distant plutonic and high-grade metamorphics.« less

  6. On the origin of a phosphate enriched interval in the Chattanooga Shale (Upper Devonian) of Tennessee-A combined sedimentologic, petrographic, and geochemical study

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Schieber, Juergen

    2015-11-01

    The Devonian Chattanooga Shale contains an uppermost black shale interval with dispersed phosphate nodules. This interval extends from Tennessee to correlative strata in Kentucky, Indiana, and Ohio and represents a significant period of marine phosphate fixation during the Late Devonian of North America. It overlies black shales that lack phosphate nodules but otherwise look very similar in outcrop. The purpose of this study is to examine what sets these two shales apart and what this difference tells us about the sedimentary history of the uppermost Chattanooga Shale. In thin section, the lower black shales (PBS) show pyrite enriched laminae and compositional banding. The overlying phosphatic black shales (PhBS) are characterized by phosbioclasts, have a general banded to homogenized texture with reworked layers, and show well defined horizons of phosphate nodules that are reworked and transported. In the PhBS, up to 8000 particles of P-debris per cm2 occur in reworked beds, whereas the background black shale shows between 37-88 particles per cm2. In the PBS, the shale matrix contains between 8-16 phosphatic particles per cm2. The shale matrix in the PhBS contains 5.6% inertinite, whereas just 1% inertinite occurs in the PBS. The shale matrix in both units is characterized by flat REE patterns (shale-normalized), whereas Phosbioclast-rich layers in the PhBS show high concentrations of REEs and enrichment of MREEs. Negative Ce-anomalies are common to all samples, but are best developed in association with Phosbioclasts. Redox-sensitive elements (Co, U, Mo) are more strongly enriched in the PBS when compared to the PhBS. Trace elements associated with organic matter (Cu, Zn, Cd, Ni) show an inverse trend of enrichment. Deposited atop a sequence boundary that separates the two shale units, the PhBS unit represents a transgressive systems tract and probably was deposited in shallower water than the underlying PBS interval. The higher phosphate content in the PhBS is interpreted as the result of a combination of lower sedimentation rates with reworking/winnowing episodes. Three types of phosphatic beds that reflect different degrees of reworking intensity are observed. Strong negative Ce anomalies and abundant secondary marcasite formation in the PhBS suggests improved aeration of the water column, and improved downward diffusion of oxygen into the sediment. The associated oxidation of previously formed pyrite resulted in a lowering of pore water pH and forced dissolution of biogenic phosphate. Phosphate dissolution was followed by formation of secondary marcasite and phosphate. Repeated, episodic reworking caused repetitive cycles of phosphatic dissolution and reprecipitation, enriching MREEs in reprecipitated apatite. A generally "deeper" seated redox boundary favored P-remineralization within the sediment matrix, and multiple repeats of this process in combination with wave and current reworking at the seabed led to the formation of larger phosphatic aggregates and concentration of phosphate nodules in discrete horizons.

  7. Devonian paleomagnetism of the North Tien Shan: Implications for the middle-Late Paleozoic paleogeography of Eurasia

    NASA Astrophysics Data System (ADS)

    Levashova, Natalia M.; Mikolaichuk, Alexander V.; McCausland, Philip J. A.; Bazhenov, Mikhail L.; Van der Voo, Rob

    2007-05-01

    The Ural-Mongol belt (UMB), between Siberia, Baltica and Tarim, is widely recognized as the locus of Asia's main growth during the Paleozoic, but its evolution remains highly controversial, as illustrated by the disparate paleogeographic models published in the last decade. One of the largest tectonic units of the UMB is the Kokchetav-North Tien Shan Domain (KNTD) that stretches from Tarim in the south nearly to the West Siberian Basin. The KNTD comprises several Precambrian microcontinents and numerous remnants of Early Paleozoic island arcs, marginal basins and accretionary complexes. In Late Ordovician time, all these structures had amalgamated into a single contiguous domain. Its paleogeographic position is of crucial importance for elucidating the Paleozoic evolution of the UMB in general and of the Urals in particular. The Aral Formation, located in Kyrgyzstan in the southern part of the KNTD, consists of a thick Upper Devonian (Frasnian) basalt-andesite sequence. Paleomagnetic data show a dual-polarity characteristic component (Dec/Inc = 286° / + 56°, α95 = 9°, k = 21, N = 15 sites). The primary origin of this magnetization is confirmed by a positive test on intraformational conglomerates. We combine this result with other Paleozoic data from the KNTD and show its latitudinal motion from the Late Ordovician to the end of the Paleozoic. The observed paleolatitudes are found to agree well with the values extrapolated from Baltica to a common reference point (42.5°N, 73°E) in our sampling area for the entire interval; hence coherent motion of the KNTD and Baltica is strongly indicated for most of the Paleozoic. This finding contradicts most published models of the UMB evolution, where the KNTD is separated from Baltica by a rather wide Ural Ocean containing one or more major plate boundaries. An exception is the model of Şengör and Natal'in [A.M.C. Şengör, B.A. Natal'in, Paleotectonics of Asia: fragments of a synthesis, in: A. Yin and M. Harrison (eds.), The tectonic evolution of Asia, Cambridge University Press, Cambridge (1996) 486-640], in which coherent paleolatitudinal motion of Baltica and the KNTD is hypothesized — the latter as part of the Kipchak Arc. We suggest a parallel hypothesis, which explains coherent motion of the KNTD and Baltica. In particular, we argue that if a basin with oceanic crust ever existed between the KNTD and Baltica, it was a narrow one without (significant) active spreading in Middle to Late Paleozoic time. Notably, the paleogeographic position of Siberia during the Middle Paleozoic and hence, the width of the Khanty-Mansi Ocean between Siberia, on the one hand, and Baltica-KNTD, on the other hand, remains largely unconstrained, because of the paucity of high-quality Silurian, Devonian and Carboniferous paleomagnetic results from Siberia.

  8. Sulfur-, oxygen-, and carbon-isotope studies of Ag-Pb-Zn vein-breccia occurrences, sulfide-bearing concretions, and barite deposits in the north-central Brooks Range, with comparisons to shale-hosted stratiform massive sulfide deposits: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Kelley, Karen D.; Leach, David L.; Johnson, Craig A.

    2000-01-01

    Stratiform shale-hosted massive sulfide deposits, sulfidebearing concretions and vein breccias, and barite deposits are widespread in sedimentary rocks of Late Devonian to Permian age in the northern Brooks Range. All of the sulfide-bearing concretions and vein breccias are hosted in mixed continental-marine clastic rocks of the Upper Devonian to Lower Mississippian Endicott Group. The clastic rocks and associated sulfide occurrences underlie chert and shale of Mississippian-Pennsylvanian(?) age that contain large stratiform massive sulfide deposits like that at Red Dog. The relative stratigraphic position of the vein breccias, as well as previously published mineralogical, geochemical, and lead-isotope data, suggest that the vein breccias formed coevally with overlying shale-hosted massive sulfide deposits and that they may represent pathways of oreforming hydrothermal fluids. Barite deposits are hosted either in Mississippian chert and limestone (at essentially the same stratigraphic position as the shale-hosted massive sulfide deposits) or Permian chert and shale. Although most barite deposits have no associated base-metal mineralization, barite occurs with massive sulfide deposits at the Red Dog deposit.Galena and sphalerite from most vein breccias have δ34S values from –7.3 to –0.7‰ (per mil) and –5.1 to 3.6‰, respectively; sphalerite from sulfide-bearing concretions have δ34S values of 0.7 and 4.7‰. This overall range in δ34S values largely overlaps with the range previously determined for galena and sphalerite from shale-hosted massive sulfide deposits at Red Dog and Drenchwater. The Kady vein-breccia occurrence is unusual in having higher δ34S values for sphalerite (12.1 to 12.9‰) and pyrite (11.3‰), consistent with previously published values for the shale-hosted Lik deposit. The correspondence in sulfur isotopic compositions between the stratiform and vein-breccia deposits suggests that they share a common source of reduced sulfur, or derived reduced sulfur by similar geochemical processes. Most likely, the reduced sulfur was derived by biogenic sulfate reduction (BSR) or thermochemical sulfate reduction (TSR) of seawater sulfate during Devonian-Mississippian time.The δ18O values of quartz from the vein breccias are between 16.6 and 19.9‰. Using the sphalerite-galena sulfur isotopic temperature of 188°±25°C, the calulated hydrothermal fluids had δ18O values of 4.2 to 7.5‰. The calculated range of δ18O values of the fluids is similar to that of pore fluids in equilibrium with sedimentary rocks during diagenesis at 100°– 190°C.

  9. Petroleum geology and resources of the North Caspian Basin, Kazakhstan and Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The North Caspian basin is a petroleum-rich but lightly explored basin located in Kazakhstan and Russia. It occupies the shallow northern portion of the Caspian Sea and a large plain to the north of the sea between the Volga and Ural Rivers and farther east to the Mugodzhary Highland, which is the southern continuation of the Ural foldbelt. The basin is bounded by the Paleozoic carbonate platform of the Volga-Ural province to the north and west and by the Ural, South Emba, and Karpinsky Hercynian foldbelts to the east and south. The basin was originated by pre-Late Devonian rifting and subsequent spreading that opened the oceanic crust, but the precise time of these tectonic events is not known. The sedimentary succession of the basin is more than 20 km thick in the central areas. The drilled Upper Devonian to Tertiary part of this succession includes a prominent thick Kungurian (uppermost Lower Permian) salt formation that separates strata into the subsalt and suprasalt sequences and played an important role in the formation of oil and gas fields. Shallow-shelf carbonate formations that contain various reefs and alternate with clastic wedges compose the subsalt sequence on the 1 basin margins. Basinward, these rocks grade into deep-water anoxic black shales and turbidites. The Kungurian salt formation is strongly deformed into domes and intervening depressions. The most active halokinesis occurred during Late Permian?Triassic time, but growth of salt domes continued later and some of them are exposed on the present-day surface. The suprasalt sequence is mostly composed of clastic rocks that are several kilometers thick in depressions between salt domes. A single total petroleum system is defined in the North Caspian basin. Discovered reserves are about 19.7 billion barrels of oil and natural gas liquids and 157 trillion cubic feet of gas. Much of the reserves are concentrated in the supergiant Tengiz, Karachaganak, and Astrakhan fields. A recent new oil discovery on the Kashagan structure offshore in the Caspian Sea is probably also of the supergiant status. Major oil and gas reserves are located in carbonate reservoirs in reefs and structural traps of the subsalt sequence. Substantially smaller reserves are located in numerous fields in the suprasalt sequence. These suprasalt fields are largely in shallow Jurassic and Cretaceous clastic reservoirs in salt dome-related traps. Petroleum source rocks are poorly identified by geochemical methods. However, geologic data indicate that the principal source rocks are Upper Devonian to Lower Permian deep-water black-shale facies stratigraphically correlative to shallow-shelf carbonate platforms on the basin margins. The main stage of hydrocarbon generation was probably in Late Permian and Triassic time, during deposition of thick orogenic clastics. Generated hydrocarbons migrated laterally into adjacent subsalt reservoirs and vertically, through depressions between Kungurian salt domes where the salt is thin or absent, into suprasalt clastic reservoirs. Six assessment units have been identified in the North Caspian basin. Four of them include Paleozoic subsalt rocks of the basin margins, and a fifth unit, which encompasses the entire total petroleum system area, includes the suprasalt sequence. All five of these assessment units are underexplored and have significant potential for new discoveries. Most undiscovered petroleum resources are expected in Paleozoic subsalt carbonate rocks. The assessment unit in subsalt rocks with the greatest undiscovered potential occupies the south basin margin. Petroleum potential of suprasalt rocks is lower; however, discoveries of many small to medium size fields are expected. The sixth identified assessment unit embraces subsalt rocks of the central basin areas. The top of subsalt rocks in these areas occurs at depths ranging from 7 to 10 kilometers and has not been reached by wells. Undiscovered resources of this unit did not rec

  10. An organismal concept for Sengelia radicans gen. et sp. nov. – morphology and natural history of an Early Devonian lycophyte

    PubMed Central

    Tomescu, Alexandru M. F.

    2017-01-01

    Abstract Background and Aims Fossil plants are found as fragmentary remains and understanding them as natural species requires assembly of whole-organism concepts that integrate different plant parts. Such concepts are essential for incorporating fossils in hypotheses of plant evolution and phylogeny. Plants of the Early Devonian are crucial to reconstructing the initial radiation of tracheophytes, yet few are understood as whole organisms. Methods This study assembles a whole-plant concept for the Early Devonian lycophyte Sengelia radicans gen. et sp. nov., based on morphometric data and taphonomic observations from >1000 specimens collected in the Beartooth Butte Formation (Wyoming, USA). Key Results Sengelia radicans occupies a key position between stem-group and derived lycophyte lineages. Sengelia had a rooting system of downward-growing root-bearing stems, formed dense monotypic mats of prostrate shoots in areas that experienced periodic flooding, and was characterized by a life-history strategy adapted for survival after floods, dominated by clonality, and featuring infrequent sexual reproduction. Conclusions Sengelia radicans is the oldest among the very few early tracheophytes for which a detailed, rigorous whole-plant concept integrates morphology, growth habit, life history and growth environment. This plant adds to the diversity of body plans documented among lycophytes and may help elucidate patterns of morphological evolution in the clade. PMID:28334100

  11. The Calvin impact crater and its associated oil production, Cass County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milstein, R.L.

    1996-01-01

    The Calvin impact crater is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The crater is defined by 110 oil and gas test wells, has a diameter of 6.2 km, and consists of a central dome exhibiting 415 m of structural uplift, an annular depression, and an encircling anticlinal rim. Exploration and development of three Devonian oil fields associated wit this structure provide all available subsurface data. All oil production is from the Middle Devonian Traverse Limestone, with the exception of one well producing from the Middle Devonian Sylvania Sandstone. This study models the grossmore » morphology of the Calvin structure using multiple tools and compares the results to known impact craters. Combined results of reflection seismic, gravity, magnetic, and resistivity data, as well as organized relationships between stratigraphic displacement and structural diameters observed in complex impact craters, suggest the Calvin structure is morphologically similar to recognized complex impact craters in sedimentary targets. In addition, individual quartz grains recovered from the Calvin structure exhibit decorated shock lamellae, Boehm lamellae, rhombohederal cleavage, and radiating concussion fractures. Based on the available data, I conclude the Calvin structure is a buried complex impact crater and that the trapping and reservoir characteristics of the associated Calvin 20, Juno Lake, and Calvin 28 oil fields are resultant of the craters morphology.« less

  12. The Calvin impact crater and its associated oil production, Cass County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milstein, R.L.

    1996-12-31

    The Calvin impact crater is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The crater is defined by 110 oil and gas test wells, has a diameter of 6.2 km, and consists of a central dome exhibiting 415 m of structural uplift, an annular depression, and an encircling anticlinal rim. Exploration and development of three Devonian oil fields associated wit this structure provide all available subsurface data. All oil production is from the Middle Devonian Traverse Limestone, with the exception of one well producing from the Middle Devonian Sylvania Sandstone. This study models the grossmore » morphology of the Calvin structure using multiple tools and compares the results to known impact craters. Combined results of reflection seismic, gravity, magnetic, and resistivity data, as well as organized relationships between stratigraphic displacement and structural diameters observed in complex impact craters, suggest the Calvin structure is morphologically similar to recognized complex impact craters in sedimentary targets. In addition, individual quartz grains recovered from the Calvin structure exhibit decorated shock lamellae, Boehm lamellae, rhombohederal cleavage, and radiating concussion fractures. Based on the available data, I conclude the Calvin structure is a buried complex impact crater and that the trapping and reservoir characteristics of the associated Calvin 20, Juno Lake, and Calvin 28 oil fields are resultant of the craters morphology.« less

  13. Syngenetic Au on the Carlin trend: Implications for Carlin-type deposits

    USGS Publications Warehouse

    Emsbo, P.; Hutchinson, R.W.; Hofstra, A.H.; Volk, J.A.; Bettles, K.H.; Baschuk, G.J.; Johnson, C.A.

    1999-01-01

    A new type of gold occurrence recently discovered in the Carlin trend, north-central Nevada, is clearly distinct from classic Carlin-type gold ore. These occurrences are interpreted to be of sedimentary exhalative (sedex) origin because they are stratiform and predate compaction and lithification of their unaltered Devonian host rocks. They contain barite that exhibits ??34S and ??18O values identical to sulfate in Late Devonian seawater and sedex-type barite deposits. Abrupt facies changes in the host rocks strongly suggest synsedimentary faulting and foundering of the carbonate shelf during mineralization, as is characteristic of sedex deposits. Gold occurs both as native inclusions in synsedimentary base-metal sulfides and barite, and as chemical enrichments in sulfide minerals. The absence of alteration and lack of ??13C and ??18O isotopic shift of primary carbonates in these rocks is strong evidence that this gold was not introduced with classic Carlin-type mineralization. Collectively, these features show that the Devonian strata were significantly enriched in gold some 300 m.y. prior to generation of the mid-Tertiary Carlin-type deposits. These strata may have been an important, perhaps even vital, source of gold for the latter. Although gold is typically low in most Zn-Pb-rich sedex deposits, our evidence suggests that transport of gold in basinal fluids, and its subsequent deposition in the sedex environment, can be significant.

  14. Deep in shadows, deep in time: the oldest mesophotic coral ecosystems from the Devonian of the Holy Cross Mountains (Poland)

    NASA Astrophysics Data System (ADS)

    Zapalski, Mikołaj K.; Wrzołek, Tomasz; Skompski, Stanisław; Berkowski, Błażej

    2017-09-01

    Recent mesophotic coral ecosystems (MCE) occur at depths between 30 and 150 m and are characterized by dominance of platy corals. Such morphology is an effect of specific adaptation to efficient light harvesting. Here, we describe and analyze platy coral assemblages from two Middle Devonian localities in the Holy Cross Mountains (Poland) that during this time were located on the southern shelf of Laurussia at tropical latitudes. The Eifelian argillaceous sediments of Skały are dominated by platy and encrusting tabulate corals ( Roseoporella, Platyaxum and Alveolites). Coeval faunas from the shallow-water parts of the Holy Cross Mountains basin display bulbous and branching morphology, thus indicating a Paleozoic coral zonation similar to that known in the Recent. Hence, the Skały site seems to be the oldest known MCE (ca. 390 Ma). A Givetian biostrome from Laskowa Quarry is a second example dominated by platy corals, with abundant branching forms; this site can be recognized as another Devonian MCE. Frondescent Platyaxum, common at both sites, had a growth habit similar to that of Recent Leptoseris, Mycedium or Pavona. Platy morphology is photoadaptive and may evidence photosymbiosis in tabulate ( Alveolites, Roseoporella, Platyaxum) and rugose corals ( Phillipsastrea). Furthermore, it may serve as a tool for recognition of the lower euphotic zone in the fossil record.

  15. Unsuspected functional disparity in Devonian fishes revealed by tooth morphometrics?

    NASA Astrophysics Data System (ADS)

    Gauchey, Samuel; Girard, Catherine; Adnet, Sylvain; Renaud, Sabrina

    2014-09-01

    The shape of features involved in key biological functions, such as teeth in nutrition, can provide insights into ecological processes even in ancient time, by linking the occupation of the morphological space (disparity) to the occupation of the ecological space. Investigating disparity in radiating groups may provide insights into the ecological diversification underlying evolution of morphological diversity. Actinopterygian fishes initiated their radiation in the Devonian, a period characterized by the diversification of marine ecosystem. Although a former morpho-functional analysis of jaw shape concluded to conservative and poorly diversified morphologies in this early part of their history, fish tooth disparity evidenced here an unsuspected diversity of possible functional significance in the pivotal period of the Late Devonian (Famennian). All teeth being caniniforms, some were stocky and robust, in agreement with expectations for active generalist predators. More surprisingly, elongated teeth also occurred at the beginning of Famennian. Their needle-like shape challenges morpho-functional interpretations by making them fragile in response to bending or torsion. The occurrence of both types of fish teeth during the beginning of the Famennian points to a discrete but real increase in disparity, thus testifying a first burst of feeding specialization despite overall conservative jaw morphology. The disappearance of these needle-like teeth in the Late Famennian might have been related to a relay in dental diversity with abundant co-occurring groups, namely conodonts and chondrichthyans (sharks).

  16. 4D petroleum system model of the Mississippian System in the Anadarko Basin Province, Oklahoma, Kansas, Texas, and Colorado, U.S.A.

    USGS Publications Warehouse

    Higley, Debra K.

    2013-01-01

    The Upper Devonian and Lower Mississippian Woodford Shale is an important petroleum source rock for Mississippian reservoirs in the Anadarko Basin Province of Oklahoma, Kansas, Texas, and Colorado, based on results from a 4D petroleum system model of the basin. The Woodford Shale underlies Mississippian strata over most of the Anadarko Basin portions of Oklahoma and northeastern Texas. The Kansas and Colorado portions of the province are almost entirely thermally immature for oil generation from the Woodford Shale or potential Mississippian source rocks, based mainly on measured vitrinite reflectance and modeled thermal maturation. Thermal maturities of the Woodford Shale range from mature for oil to overmature for gas generation at present-day depths of about 5,000 to 20,000 ft. Oil generation began at burial depths of about 6,000 to 6,500 ft. Modeled onset of Woodford Shale oil generation was about 330 million years ago (Ma); peak oil generation was from 300 to 220 Ma.Mississippian production, including horizontal wells of the informal Mississippi limestone, is concentrated within and north of the Sooner Trend area in the northeast Oklahoma portion of the basin. This large pod of oil and gas production is within the area modeled as thermally mature for oil generation from the Woodford Shale. The southern boundary of the trend approximates the 99% transformation ratio of the Woodford Shale, which marks the end of oil generation. Because most of the Sooner Trend area is thermally mature for oil generation from the Woodford Shale, the trend probably includes short- and longer-distance vertical and lateral migration. The Woodford Shale is absent in the Mocane-Laverne Field area of the eastern Oklahoma panhandle; because of this, associated oil migrated from the south into the field. If the Springer Formation or deeper Mississippian strata generated oil, then the southern field area is within the oil window for associated petroleum source rocks. Mississippian fields along the western boundary of the study area were supplied by oil that flowed northward from the Panhandle Field area and westward from the deep basin.

  17. Total Petroleum Systems of the North Carpathian Province of Poland, Ukraine, Czech Republic, and Austria

    USGS Publications Warehouse

    Pawlewicz, Mark

    2006-01-01

    Three total petroleum systems were identified in the North Carpathian Province (4047) that includes parts of Poland, Ukraine, Austria, and the Czech Republic. They are the Isotopically Light Gas Total Petroleum System, the Mesozoic-Paleogene Composite Total Petroleum System, and the Paleozoic Composite Total Petroleum System. The Foreland Basin Assessment Unit of the Isotopically Light Gas Total Petroleum System is wholly contained within the shallow sedimentary rocks of Neogene molasse in the Carpathian foredeep. The biogenic gas is generated locally as the result of bacterial activity on dispersed organic matter. Migration is also believed to be local, and gas is believed to be trapped in shallow stratigraphic traps. The Mesozoic-Paleogene Composite Total Petroleum System, which includes the Deformed Belt Assessment Unit, is structurally complex, and source rocks, reservoirs, and seals are juxtaposed in such a way that a single stratigraphic section is insufficient to describe the geology. The Menilite Shale, an organic-rich rock widespread throughout the Carpathian region, is the main hydrocarbon source rock. Other Jurassic to Cretaceous formations also contribute to oil and gas in the overthrust zone in Poland and Ukraine but in smaller amounts, because those formations are more localized than the Menilite Shale. The Paleozoic Composite Total Petroleum System is defined on the basis of the suspected source rock for two oil or gas fields in western Poland. The Paleozoic Reservoirs Assessment Unit encompasses Devonian organic-rich shale believed to be a source of deep gas within the total petroleum system. East of this field is a Paleozoic oil accumulation whose source is uncertain; however, it possesses geochemical similarities to oil generated by Upper Carboniferous coals. The undiscovered resources in the North Carpathian Province are, at the mean, 4.61 trillion cubic feet of gas and 359 million barrels of oil. Many favorable parts of the province have been extensively explored for oil and gas. The lateral and vertical variability of the structure, the distribution and complex geologic nature of source rocks, and the depths of potential exploration targets, as well as the high degree of exploration, all indicate that future discoveries in this province are likely to be numerous but in small fields.

  18. Unroofing history of Late Paleozoic magmatic arcs within the ``Turan Plate'' (Tuarkyr, Turkmenistan)

    NASA Astrophysics Data System (ADS)

    Garzanti, E.; Gaetani, M.

    2002-07-01

    Stratigraphic, sedimentologic and petrographic data collected on the Kizilkaya sedimentary succession (Western Turkmenistan) demonstrate that the "Turan Plate" consists in fact of an amalgamation of Late Paleozoic to Triassic continental microblocks separated by ocean sutures. In the Kizilkaya area, an ophiolitic sequence including pyroxenite, gabbro, pillow basalt and chert, interpreted as the oceanic crust of a back-arc or intra-arc basin, is tectonically juxtaposed against volcaniclastic redbeds documenting penecontemporaneous felsic arc magmatism (Amanbulak Group). A collisional event took place around ?mid-Carboniferous times, when oceanic rocks underwent greenschist-facies metamorphism and a thick volcaniclastic wedge, with pyroclastic rocks interbedded in the lower part, accumulated (Kizilkaya Formation). The climax of orogenic activity is testified by arid fanglomerates shed from the rapid unroofing of a continental arc sequence, including Middle-Upper Devonian back-reef carbonates and cherts, and the underlying metamorphic and granitoid basement rocks (Yashmu Formation). After a short period of relative quiescence, renewed tectonic activity is indicated by a conglomeratic sequence documenting erosion of a sedimentary and metasedimentary succession including chert, sandstone, slate and a few carbonates. A final stage of rhyolitic magmatism took place during rapid unroofing of granitoid basement rocks (Kizildag Formation). Such a complex sequence of events recorded by the Kizilkaya episutural basin succession documents the stepwise assemblage of magmatic arcs and continental fragments to form the Turan microblock collage during the Late Paleozoic. Evolution of detrital modes is compatible with that predicted for juvenile to accreted and unroofed crustal blocks. The deposition of braidplain lithic arkoses in earliest Triassic time indicates that strong subsidence continued after the end of the volcanic activity, possibly in retroarc foreland basin settings. The occurrence of transgressive coquinas yielding endemic ammonoids ( Dorikranites) characteristic of the whole Caspian area suggests proximity to the southern margin of the newly formed Eurasian continent in the late Early Triassic. The Late Triassic Eo-Cimmerian Orogeny caused only mild tilting and rejuvenation of the underlying succession in the study area. Only at this time were the Turan blocks, a series of Indonesian-type terranes comprised between the Mashad Paleo-Tethys Suture in the south and the Mangyshlak belt in the north, finally incorporated into the Eurasian landmass.

  19. Chronostratigraphic cross section of Cretaceous formations in western Montana, western Wyoming, eastern Utah, northeastern Arizona, and northwestern New Mexico, U.S.A.

    USGS Publications Warehouse

    Merewether, E. Allen; McKinney, Kevin C.

    2015-01-01

    In this transect for time-stratigraphic units of the Cretaceous, lateral changes in lithologies, regional differences in thicknesses, and the abundance of associated disconformities possibly reflect local and regional tectonic events. Examples of evidence of those events follow: (1) Disconformities and the absence of strata of lowest Cretaceous age in western Montana, western Wyoming, and northern Utah indicate significant tectonism and erosion probably during the Late Jurassic and earliest Cretaceous; ( 2) stages of Upper Cretaceous deposition in the transect display major lateral changes in thickness, which probably reflect regional and local tectonism.

  20. Fold interference pattern in thick-skinned tectonics; a case study from the external Variscan belt of Eastern Anti-Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Baidder, L.; Michard, A.; Soulaimani, A.; Fekkak, A.; Eddebbi, A.; Rjimati, E.-C.; Raddi, Y.

    2016-07-01

    Conflicting views are expressed in literature concerning fold interference patterns in thick-skinned tectonic context (e.g. Central Anti-Atlas and Rocky Mountains-Colorado areas). Such patterns are referred to superimposed events with distinct orientation of compression or to the inversion of paleofaults with distinct strike during a single compressional event. The present work presents a case study where both types of control on fold interference are likely to be combined. The studied folds occur in the Tafilalt-Maider area of eastern Anti-Atlas, i.e. in the E-trending foreland fold belt of the Meseta Variscan Orogen in the area where it connects with the SE-trending, intracontinental Ougarta Variscan belt. Detail mapping documents unusual fold geometries such as sigmoidal and croissant- or boomerang-shaped folds associated with a complex major fault pattern. The folded rock material corresponds to a 6-8 km-thick Cambrian-Serpukhovian sedimentary pile that includes alternating competent and incompetent formations. The basement of the Paleozoic succession is made up of rhomboedric tilted blocks that formed during the Cambrian rifting of north-western Gondwana and the Devonian dislocation of the Sahara platform. The latter event is responsible for an array of paleofaults bounding the Maider and South Tafilalt Devonian-Early Carboniferous basins with respect to the adjoining high axes. The Variscan Orogeny began during the Bashkirian-Westphalian with a N-S direction of shortening that converted the NW-trending Ougnat-Ouzina paleogeographic high into a mega dextral shear zone. Folds developed on top of a moving mosaic of basement blocks, being oriented en echelon on the inverted paleofaults or above intensely sheared fault zones. However, a dominantly NE-SW compression responsible for the building of the Ougarta belt also affected the studied area, presumably during the latest Carboniferous-Early Permian. The resulting fold interference pattern and peculiar geometries (J. Tijekht croissant-shaped fold) would exemplify a dual control of deformation by both the variably oriented basement paleofaults and the evolution of the regional shortening direction with time.

  1. Plan of study for the Ohio-Indiana carbonate-bedrock and glacial- aquifer system

    USGS Publications Warehouse

    Bugliosi, E.F.

    1990-01-01

    The major aquifers of 35,000 sq mi area in western Ohio and eastern Indiana consist of Silurian and Devonian carbonate bedrock and Quaternary glacial deposits. These bedrock units and glacial deposits have been designated for study as part of the U.S. Geological Survey 's Regional Aquifer System Analysis program, a nationwide program to assess the regional hydrology, geology and water quality of the Nation 's most important aquifers. The purpose of the study is to define the hydrology, geochemistry, and geologic framework of the aquifer system within the Silurian and Devonian rocks and glacial deposits, with emphasis on describing the groundwater flow patterns and characterizing the water quality. The study, which began in 1988 , is expected to be completed in 1993. In 1980, the aquifers in the study area supplied more than 280 million gallons of water/day to industry, agriculture, and a population of more than 6.3 million people. With a projected future population growth to 7.1 million in 1990, and with intensified agricultural and industrial uses, water withdrawals from these bedrock and glacial aquifers are expected to be increased. The most significant groundwater problems in the study area result from the pronounced areal differences in availability and quality of the groundwater. These differences are related to the lateral discontinuity of many of the glacial deposits and to variations in secondary permeability of the bedrock aquifers associated with patterns of fracturing. Planned activities of the study include compilation of available geohydrologic and water quality data, such as groundwater levels, geohydrologic properties of aquifers, chemical analyses, land use and water use data, and ancillary data such as digital satellite images. Additional geohydrologic and water quality data may be collected from existing wells or wells that may be drilled for this study. A computerized, geographic information system will be used as a data base management tool and for spatial analysis and presentation of the data. A digital computer model will be developed to study the regional groundwater flow system and to investigate the effects of development on the aquifer system. (USGS)

  2. On-plant movement and feeding of western bean cutworm (Lepidoptera: Noctuidae) early instars on corn.

    PubMed

    Paula-Moraes, S V; Hunt, T E; Wright, R J; Hein, G L; Blankenship, E E

    2012-12-01

    Western bean cutworm, Striacosta albicosta (Smith), has undergone a recent eastward expansion from the western U.S. Corn Belt to Pennsylvania and parts of Canada. Little is known about its ecology and behavior, particularly during the early instars, on corn (Zea mays L.). There is a narrow treatment window for larvae, and early detection of the pest in the field is essential. An understanding of western bean cutworm larval feeding and early-instar dispersal is essential to understand larval survival and establishment in corn. Studies were conducted in 2009 through 2011 in Nebraska to determine the feeding and dispersal of early-instar western bean cutworm on corn. The treatment design was a factorial with three corn stages (pretassel, tassel, and posttassel) and five corn plant zones (tassel, above ear, primary ear, secondary ear, and below ear) in a randomized complete block design. The effects of different corn tissues on larval survival and development were investigated in laboratory studies in a randomized complete block design during 2009 and 2011. Treatments were different corn tissues (leaf alone, leaf with developing tassel, pollen, pollen plus silk, and silk alone). Results demonstrated that neonate larvae move to the upper part of the plant, independent of corn stage. Larval growth was optimal when fed on tassel tissue. Overall results indicated a selective benefit for movement of the early instar to upper part of the plant.

  3. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Yong; Huangfu, Gang

    2004-02-01

    Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling-Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian-Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.

  4. History of displacement along Ste. Genevieve Fault Zone, Southwestern Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwalb, H.R.

    1983-09-01

    The Ste. Genevieve fault zone extends eastward from Missouri across the Mississippi River into Jackson County, Illinois, about 75 mi (120 km) southeast of St. Louis. Outcrop studies have dated movement along portions of the zone as pre-Middle Devonian, post-Mississippian, and post-Pennsylvanian. Present displacement is down to the north and east with throw ranging up to 3,000 ft (915 m). However, pre-Middle Devonian movement was down to the south and west. The present upthrown block shows no evidence of vertical movement during the Cambrian and Ordovician. Nor is there any indication that the fault zone was part of the northernmore » border of the Reelfoot basin, where earliest Paleozoic sediments infilled an aulacogen at the northern end of the Mississippi embayment.« less

  5. Application of Remote-Sensing Observations for Detecting Patterns of Localization of PGM Mineralization of Western Bushveld

    NASA Astrophysics Data System (ADS)

    Milovsky, G. A.; Ishmukhametova, V. T.; Orlyankin, V. N.; Shemyakina, E. M.

    2017-12-01

    The differentiated Bushveld complex is studied by remote-space and gravimagnetic methods. The syncline of Western Bushveld is recognized in the southwestern part of the complex, which is characterized by a radial and ring structure of the higher order. The structures, which control the localization of Pt mineralization, are revealed and the possible use of the Landsat 7 ETM+ multizonal space survey is shown for recognizing the rocks of the Basal, Critical, Main, and Upper zones of the norite complex of Western Bushveld.

  6. Petroleum geology and resources of the North Ustyurt Basin, Kazakhstan and Uzbekistan

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2001-01-01

    The triangular-shaped North Ustyurt basin is located between the Caspian Sea and the Aral Lake in Kazakhstan and Uzbekistan and extends offshore both on the west and east. Along all its sides, the basin is bounded by the late Paleozoic and Triassic foldbelts that are partially overlain by Jurassic and younger rocks. The basin formed on a cratonic microcontinental block that was accreted northward to the Russian craton in Visean or Early Permian time. Continental collision and deformation along the southern and eastern basin margins occurred in Early Permian time. In Late Triassic time, the basin was subjected to strong compression that resulted in intrabasinal thrusting and faulting. Jurassic-Tertiary, mostly clastic rocks several hundred meters to 5 km thick overlie an older sequence of Devonian?Middle Carboniferous carbonates, Upper Precambrian massifs and deformed Caledonian foldbelts. The Carboniferous?Lower Permian clastics, carbonates, and volca-basement is at depths from 5.5 km on the highest uplifts to 11 nics, and Upper Permian?Triassic continental clastic rocks, pri-km in the deepest depressions. marily red beds. Paleogeographic conditions of sedimentation, Three total petroleum systems are identified in the basin. the distribution of rock types, and the thicknesses of pre-Triassic Combined volumes of discovered hydrocarbons in these sysstratigraphic units are poorly known because the rocks have been tems are nearly 2.4 billion barrels of oil and 2.4 trillion cubic penetrated by only a few wells in the western and eastern basin feet of gas. Almost all of the oil reserves are in the Buzachi Arch areas. The basement probably is heterogeneous; it includes and Surrounding Areas Composite Total Petroleum System in 2 Petroleum Geology, Resources?North Ustyurt Basin, Kazakhstan and Uzbekistan the western part of the basin. Oil pools are in shallow Jurassic and Neocomian sandstone reservoirs, in structural traps. Source rocks are absent in the total petroleum system area; therefore, the oil could have migrated from the adjacent North Caspian basin. The North Ustyurt Jurassic Total Petroleum System encompasses the rest of the basin area and includes Jurassic and younger rocks. Several oil and gas fields have been discovered in this total petroleum system. Oil accumulations are in Jurassic clastic reservoirs, in structural traps at depths of 2.5?3 km. Source rocks for the oil are lacustrine beds and coals in the continental Jurassic sequence. Gas fields are in shallow Eocene sandstones in the northern part of the total petroleum system. The origin of the gas is unknown. The North Ustyurt Paleozoic Total Petroleum System stratigraphically underlies the North Ustyurt Jurassic system and occupies the same geographic area. The total petroleum system is almost unexplored. Two commercial flows of gas and several oil and gas shows have been tested in Carboniferous shelf carbonates in the eastern part of the total petroleum system. Source rocks probably are adjacent Carboniferous deep-water facies interpreted from seismic data. The western extent of the total petroleum system is conjectural. Almost all exploration drilling in the North Ustyurt basin has been limited to Jurassic and younger targets. The underlying Paleozoic-Triassic sequence is poorly known and completely unexplored. No wells have been drilled in offshore parts of the basin. Each of three total petroleum systems was assessed as a single assessment unit. Undiscovered resources of the basin are small to moderate. Most of the undiscovered oil probably will be discovered in Jurassic and Neocomian stratigraphic and structural traps on the Buzachi arch, especially on its undrilled off-shore extension. Most of the gas discoveries are expected to be in Paleozoic carbonate reservoirs in the eastern part of the basin.

  7. Crustal structure beneath western and eastern Iceland from surface waves and receiver functions

    USGS Publications Warehouse

    Du, Z.; Foulger, G.R.; Julian, B.R.; Allen, R.M.; Nolet, G.; Morgan, W.J.; Bergsson, B.H.; Erlendsson, P.; Jakobsdottir, S.; Ragnarsson, S.; Stefansson, R.; Vogfjord, K.

    2002-01-01

    We determine the crustal structures beneath 14 broad-band seismic stations, deployed in western, eastern, central and southern Iceland, using surface wave dispersion curves and receiver functions. We implement a method to invert receiver functions using constraints obtained from genetic algorithm inversion of surface waves. Our final models satisfy both data sets. The thickness of the upper crust, as defined by the velocity horizon Vs = 3.7 km s-1, is fairly uniform at ???6.5-9 km beneath the Tertiary intraplate areas of western and eastern Iceland, and unusually thick at 11 km beneath station HOT22 in the far south of Iceland. The depth to the base of the lower crust, as defined by the velocity horizon Vs = 4.1 km s-1 is ???20-26 km in western Iceland and ???27-33 km in eastern Iceland. These results agree with those of explosion profiles that detect a thinner crust beneath western Iceland than beneath eastern Iceland. An earlier report of a substantial low-velocity zone beneath the Middle Volcanic Zone in the lower crust is confirmed by a similar observation beneath an additional station there. As was found in previous receiver function studies, the most reliable feature of the results is the clear division into an upper sequence that is a few kilometres thick where velocity gradients are high, and a lower, thicker sequence where velocity gradients are low. The transition to typical mantle velocities is variable, and may range from being very gradational to being relatively sharp and clear. A clear Moho, by any definition, is rarely seen, and there is thus uncertainty in estimates of the thickness of the crust in many areas. Although a great deal of seismic data are now available constraining the structures of the crust and upper mantle beneath Iceland, their geological nature is not well understood.

  8. Toward assessing the effects of bank stabilization activities on wildlife communities of the upper Yellowstone River, U.S.A

    USGS Publications Warehouse

    Skagen, Susan K.; Muths, Erin; Adams, Rod D.

    2001-01-01

    Four amphibian species, three reptile species, and one mammal species are highly vulnerable to bank stabilization activities. Tiger salamanders, boreal toads, western chorus frogs, spotted frogs, rubber boas, racers, western garter snakes, and water shrews are expected to respond primarily to alterations in stream and bank morphology and the loss of still water for amphibian breeding.

  9. Relationship between changes in the upper and lower tropospheric water vapor: A revisit

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sun, D. Z.; Zhang, G. J.

    2017-12-01

    Upper tropospheric water vapor response to enhanced greenhouse gas forcing is as important as the lower tropospheric water vapor response in determining climate sensitivity. Early studies using older versions of climate models have suggested that the upper- and lower-troposphere water vapor changes are more strongly coupled in the climate models than in the observations. Here we reexamine this issue using a state-of-the-art climate model—the NCAR community model CAM5. Specifically, we have calculated the correlations between interannual variations of specific humidity in all levels of the troposphere with that at the surface in CAM5 and in the observations (as represented by the updated ERA-Interim and NCEP reanalysis). It is found that the previously noted biases in how strongly upper tropospheric water vapor and lower troposphere water vapor are linked still exist in CAM5—the change in the tropical averaged upper tropospheric water vapor is more strongly correlated with the change in the surface. However, this bias disappears in the averaged correlation obtained by averaging the point-by-point correlations over the tropics. The spatial pattern of the point-by-point correlations reveals that the better agreement between the model and the observations is related to the opposite model biases in different regions: the correlation is weaker in the model in the western Pacific, but stronger in the central and eastern Pacific. Further analysis of precipitation fields suggests that the weaker (stronger) coupling between tropospheric water vapor and surface moisture over western (central-eastern) Pacific in model is related to weaker (stronger) simulated convective activities in these regions. More specifically, during El Nino, the model has excessive deep convection in the central Pacific, but too littler deep convection in western Pacific. Implications of the results are discussed in the context of climate change as well as in the context of how to improve the model in this regard.

  10. Evaluation of Sugar Maple Dieback in the Upper Great Lakes Region and Development of a Forest Health Youth Education Program

    ERIC Educational Resources Information Center

    Bal, Tara L.

    2013-01-01

    Sugar Maple, "Acer saccharum" Marsh., is one of the most valuable trees in the northern hardwood forests. Severe dieback was recently reported by area foresters in the western Upper Great Lakes Region. Sugar Maple has had a history of dieback over the last 100 years throughout its range and different variables have been identified as…

  11. Photos for estimating fuel loadings before and after prescribed burning in the upper coastal plain of the southeast

    Treesearch

    Eric R. Scholl; Thomas A. Waldrop

    1999-01-01

    Although prescribed burning is common in the Southeastern United States, most fuel models apply to only western forests. This paper documents a fuel classification system that was developed for plantations of loblolly and longleaf pines for the Upper Coastal Plain region. Multivariate analysis of variance and discriminant function analysis were used to confirm eight...

  12. Geohydrologic systems in Kansas physical framework of the upper aquifer unit in the western interior plains aquifer system

    USGS Publications Warehouse

    Hansen, Cristi V.; Spinazola, Joseph M.; Underwood, E.J.; Wolf, R.J.

    1992-01-01

    The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifers and confining systems in Kansas. Chapter D presents maps that show the areal extent, altitude and configuration of the top, and thickness of Mississippian rocks that compose the upper aquifer unit of the Western Interior Plains aquifer system in Kansas, The chapter is limited to the presentation of the physical framework of the upper aquifer unit. The interpretation of the physical framework of the upper aquifer unit is based on selected geophysical and lithologic logs and published maps of stratigraphically equivalent units. Maps indicating the thickness and the altitude and configuration of the top of the upper aquifer unit in the Western Interior Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian basement through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic unit are consistent with the maps of underlying and overlying units. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.

  13. Mining legacy across a wetland landscape: high mercury in Upper Peninsula (Michigan) rivers, lakes, and fish.

    PubMed

    Kerfoot, W Charles; Urban, Noel R; McDonald, Cory P; Zhang, Huanxin; Rossmann, Ronald; Perlinger, Judith A; Khan, Tanvir; Hendricks, Ashley; Priyadarshini, Mugdha; Bolstad, Morgan

    2018-04-25

    A geographic enigma is that present-day atmospheric deposition of mercury in the Upper Peninsula of Michigan is low (48%) and that regional industrial emissions have declined substantially (ca. 81% reduction) relative to downstate. Mercury levels should be declining. However, state (MDEQ) surveys of rivers and lakes revealed elevated total mercury (THg) in Upper Peninsula waters and sediment relative to downstate. Moreover, Western Upper Peninsula (WUP) fish possess higher methyl mercury (MeHg) levels than Northern Lower Peninsula (NLP) fish. A contributing explanation for elevated THg loading is that a century ago the Upper Peninsula was a major industrial region, centered on mining. Many regional ores (silver, copper, zinc, massive sulfides) contain mercury in part per million concentrations. Copper smelters and iron furnace-taconite operations broadcast mercury almost continuously for 140 years, whereas mills discharged tailings and old mine shafts leaked contaminated water. We show that mercury emissions from copper and iron operations were substantial (60-650 kg per year) and dispersed over relatively large areas. Moreover, lake sediments in the vicinity of mining operations have higher THg concentrations. Sediment profiles from the Keweenaw Waterway show that THg accumulation increased 50- to 400-fold above modern-day atmospheric deposition levels during active mining and smelting operations, with lingering MeHg effects. High MeHg concentrations are geographically correlated with low pH and dissolved organic carbon (DOC), a consequence of biogeochemical cycling in wetlands, characteristic of the Upper Peninsula. DOC can mobilize metals and elevate MeHg concentrations. We argue that mercury loading from mining is historically superimposed upon strong regional wetland effects, producing a combined elevation of both THg and MeHg in the Western Upper Peninsula.

  14. Structural record of Lower Miocene westward motion of the Alboran Domain in the Western Betics, Spain

    NASA Astrophysics Data System (ADS)

    Frasca, Gianluca; Gueydan, Frédéric; Brun, Jean-Pierre

    2015-08-01

    In the framework of the Africa-Europe convergence, the Mediterranean system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western end of the system shows a narrow arcuate geometry across the Gibraltar arc, the Betic-Rif belt, in which the relationship between slab dynamics and surface tectonics is not well understood. The present study focuses on the Western Betics, which is characterized by two major thrusts: 1) the Internal/External Zone Boundary limits the metamorphic domain (Alboran Domain) from the fold-and-thrust belts in the External Zone; 2) the Ronda Peridotites Thrust allows the juxtaposition of a strongly attenuated lithosphere section with large bodies of sub-continental mantle rocks on top of upper crustal rocks. New structural data show that two major E-W strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60° thrusts and N140° normal faults developed simultaneously during dextral strike-slip simple shear. Olistostromic sediments of Lower Miocene age were deposited and deformed in this tectonic context and hence provide an age estimate for the inferred continuous westward translation of the Alboran Domain that is accommodated by an E-W lateral (strike-slip) ramp and a N60° frontal thrust. The crustal emplacement of large bodies of sub-continental mantle may occur at the onset of this westward thrusting in the Western Alboran domain. At lithosphere-scale, we interpret the observed deformation pattern as the subduction upper-plate expression of a lateral slab tear and its westward propagation since the Lower Miocene.

  15. Mg/Ca of planktonic foraminifer Pulleniatina obliquiloculata as a thermocline temperature proxy: results from sediment trap experiments in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Sagawa, T.; Saito, T.; Irino, T.

    2017-12-01

    Multi-species approach of planktonic foraminiferal Mg/Ca thermometry has been applied to marine sediments to reconstruct past change of the upper ocean thermal structure. Depth of thermocline and thickness of mixed layer depth in the western equatorial Pacific are of particular interest in terms of the relationship between global climate and ocean heat content in that region. One of questions arising from this approach is which species and calibration are suitable for reconstructing thermocline temperature variations in the past. Knowledge about depth habitat and response of shell Mg/Ca to temperature change is essential to answer this question. Sediment trap experiment has great advantages that allow evaluating seasonal and inter-annual variation of depth habitat of planktonic foraminifera in natural environment. In this study, we analyzed stable isotopes and Mg/Ca of Pulleniatina obliquiloculata collected by two sediment traps moored on the equator in the western and central Pacific during 1999-2002. We estimated habitat depth by comparing the calcification temperature, which is calculated from oxygen isotope, and instrumental data collected by moored buoys in the studied region. The estimated habitat depth of P. obliquiloculata is 100-150 m, which corresponds to the upper thermocline in this region. The habitat depth in western site (175E) is slightly deeper than central Pacific site (160W), probably reflecting thicker mixed layer and deeper thermocline in the western site. Although relationship between Mg/Ca and δ18O-derived calcification temperature is not statistically significant, Mg/Ca values give reasonable temperatures for the upper thermocline when calculated using calibration of Anand et al. (2003). The results of this study confirms the potential of P. obliquiloculata Mg/Ca as a thermocline temperature proxy.

  16. Interannual variability in equatorial Kelvin waves in the upper troposphere and lower stratosphere, and relation to the background equatorial wind

    NASA Astrophysics Data System (ADS)

    Suzuki, J.; Nishi, N.; Fujiwara, M.; Yoneyama, K.

    2016-12-01

    We investigated the influence of the background wind regime on interannual variability in equatorial Kelvin waves in the upper troposphere and lower stratosphere using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data. We focused on variability in the number of Kelvin wave events as a function of the background westerly wind, given by the zonal wind index (ZWI) in the equatorial western hemisphere. The ZWI measures the strength of the upper branch of the Walker circulation in the western hemisphere. Although the ZWI is well correlated with the sea surface temperature in the Niño-3.4 region, nearly half of the peaks of positive (negative) ZWI cases occurred outside of the typical La Niña (El Niño) season (December to February), respectively. In the positive ZWI (stronger westerly) cases, both convective activity over the western Pacific and extratropical Rossby waves were enhanced. Kelvin waves over the western hemisphere appeared frequently at 200 hPa but barely reached 100 hPa due to the strong westerly wind under this level. In the negative ZWI period, on the other hand, the number of Kelvin waves at 200 hPa decreased due to the weaker convection; Kelvin waves reached 100 hPa and propagated even farther upward. We also investigated the relationship between the ZWI and the phase speed of Kelvin waves. Kelvin waves with relatively slow phase speeds are found in negative ZWI cases, but are not found in positive ZWI cases due to the westerly background wind below the altitudes where Kelvin waves commonly propagate.

  17. Receiver function imaging of mantle transition zone discontinuities beneath the Tanzania Craton and the Eastern and Western Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Sun, M.; Liu, K. H.; Fu, X.; Gao, S. S.

    2017-12-01

    To investigate the mechanism of initiation and development of the Eastern African Rifting System (EARS) circumfluent the Tanzania Craton (TC), over 7,100 P-to-S radial receiver functions (RFs) recorded by 87 broadband seismic stations are stacked to map the topography of mantle transition zone (MTZ) discontinuities beneath the TC and the Eastern and Western Branches of the EARS. After time-depth conversion using the 1-D IASP91 Earth model, the resulting 410 km (d410) and 660 km (d660) discontinuity apparent depths are found to be greater than the global averages beneath the whole study area, implying slower than normal upper mantle velocities. The mean thickness of the MTZ beneath the Western Branch and TC is about 252 km, which is comparable to the global average and is inconsistent with the existence of present-day thermal upwelling originating from the lower mantle. In contrast, beneath the Eastern Branch, an 30 km thinning of the MTZ is observed from an up to 50 km and 20 km apparent depression of the d410 and d660, respectively. On the basis of previous seismic tomographic results and empirical relationships between velocity and thermal anomalies, we propose that the most plausible explanation for the observations beneath the volcanic Eastern Branch is the existence of a low-velocity layer extending from the surface to the upper MTZ, probably caused by decompression partial melting associated with continental rifting. The observations are in general agreement with an upper mantle origin for the initiation and development of both the Western and Eastern Branches of the EARS beneath the study area.

  18. Miocene tectonics of the Western Alboran domain: from mantle extensional exhumation to westward thrusting

    NASA Astrophysics Data System (ADS)

    Gueydan, F.; Frasca, G.; Brun, J. P.

    2015-12-01

    In the frame of the Africa-Europe convergence, the Mediterranean tectonic system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western Mediterranean is characterized by the exhumation of the largest subcontinental mantle massif worldwide (the Ronda Peridotite) and a narrow arcuate geometryacross the Gibraltar arc within the Betic-Rif belt (the internal part being called the Alboran domain), where the relationship between slab dynamics and surface tectonics is not well understood. New structural and geochronological data are used to argue for 1/ hyperstrechting of the continental lithosphere allowing extensional mantle exhumation to shallow depths, followed by 2/ lower miocene thrusting. Two Lower Miocene E-W-trending strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60°-trending thrusts and N140°-trending normal faults developed simultaneously during dextral strike-slip simple shear. The inferred continuous westward translation of the Alboran Domain is accommodated by a major E-W-trending lateral ramp (strike-slip) and a N60°-trending frontal thrust. At lithosphere-scale, we interpret the observed deformation pattern as the upper-plate expression of a lateral slab tear and of its westward propagation since Lower Miocene. The crustal emplacement of the Ronda Peridotites occurred at the onset of this westward motion.The Miocene tectonics of the western Alboran is therefore marked by the inversion of a continental rift, triggered by shortening of the upper continental plate and accommodated by E-W dextral strike-slip corridors. During thrusting and westward displacement of the Alboran domain with respect to Iberia, the hot upper plate, which involved the previously exhumed sub-continental mantle, underwent fast cooling.

  19. Diagnostic Analysis of Second Strengthen Heavy Rain in Western Guangdong for NO.1011 Typhoon Fanapi

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2013-12-01

    In order to learn more about the development mechanism of the rainstorm which is caused by No.1101 super typhoon "Fanapi", this paper use weather diagnostic methods to study two processes of heavy rain after "Fanapi" landed in the western part of Guangdong by applying Ncep1 ° × 1 ° reanalysis data and observed precipitation data. Through the preliminary analysis of this typhoon rainstorm, the result shows that cold air and water vapor transmission mainly cause the second strengthen precipitation ,the isoline slope of pseudoequivalent potential temperature reflect the second strengthen precipitation ,the upper troposphere high potential vorticity pass down and the cold dry air in the upper atomosphere confronts with the warm moist air in the lower atmosphere so that the precipitation increase.

  20. Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation

    NASA Astrophysics Data System (ADS)

    Priya, P.; Krishnan, R.; Mujumdar, Milind; Houze, Robert A.

    2017-10-01

    Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June-September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basin have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.

  1. Survey of Rural Areas in the Western United States with the Potential to form Winter Ozone

    NASA Astrophysics Data System (ADS)

    Hall, C. F.; Mansfield, M. L.

    2012-12-01

    Both the Uinta Basin of Eastern Utah and the Upper Green River Basin of Western Wyoming are prone to winter ozone events. Ozone in both basins is believed to require a specific set of meteorological phenomena, namely, snow cover and persistent thermal inversions. It is also believed that the primary source of ozone precursors in both basins is the production of oil and/or natural gas. We have conducted a survey of many basins and valleys in the West United States in order to identify regions having meteorology similar to either the Uinta or the Upper Green River Basins, but also having dissimilar industrial activity. Ozone monitoring in such regions may help us better understand the role of oil and gas emissions in the winter ozone phenomenon.

  2. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen; Li, Yonghua; Ding, Zhifeng; Zhu, Lupei; Wang, Chunyong; Bao, Xuewei; Wu, Yan

    2017-08-01

    We present a new 3-D lithospheric Vs model for the NE Tibetan Plateau (NETP) and the western North China Craton (NCC). First, high-frequency receiver functions (RFs) were inverted using the neighborhood algorithm to estimate the sedimentary structure beneath each station. Then a 3D Vs model with unprecedented resolution was constructed by jointly inverting RFs and Rayleigh wave dispersions. A low-velocity sedimentary layer with thicknesses varying from 2 to 10 km is present in the Yinchuan-Hetao graben, Ordos block, and western Alxa block. Velocities from the middle-lower crust to the uppermost mantle are generally high in the Ordos block and low in the Alxa block, indicating that the Alxa block is not part of the NCC. The thickened crust in southwestern Ordos block and western Alxa block suggests that they have been modified. Two crustal low-velocity zones (LVZs) were detected beneath the Kunlun Fault (KF) zone and western Qilian Terrane (QLT). The origin of the LVZ beneath the KF zone may be the combined effect of shear heating, localized asthenosphere upwelling, and crustal radioactivity. The LVZ in the western QLT, representing an early stage of the LVZ that has developed in the KF zone, acts as a decollement to decouple the deformation between the upper and lower crust and plays a key role in seismogenesis. We propose that the crustal deformation beneath the NETP is accommodated by a combination of shear motion, thickening of the upper-middle crust, and removal of lower crust.

  3. Petroleum system modeling of the western Canada sedimentary basin - isopach grid files

    USGS Publications Warehouse

    Higley, Debra K.; Henry, Mitchell E.; Roberts, Laura N.R.

    2005-01-01

    This publication contains zmap-format grid files of isopach intervals that represent strata associated with Devonian to Holocene petroleum systems of the Western Canada Sedimentary Basin (WCSB) of Alberta, British Columbia, and Saskatchewan, Canada. Also included is one grid file that represents elevations relative to sea level of the top of the Lower Cretaceous Mannville Group. Vertical and lateral scales are in meters. The age range represented by the stratigraphic intervals comprising the grid files is 373 million years ago (Ma) to present day. File names, age ranges, formation intervals, and primary petroleum system elements are listed in table 1. Metadata associated with this publication includes information on the study area and the zmap-format files. The digital files listed in table 1 were compiled as part of the Petroleum Processes Research Project being conducted by the Central Energy Resources Team of the U.S. Geological Survey, which focuses on modeling petroleum generation, 3 migration, and accumulation through time for petroleum systems of the WCSB. Primary purposes of the WCSB study are to Construct the 1-D/2-D/3-D petroleum system models of the WCSB. Actual boundaries of the study area are documented within the metadata; excluded are northern Alberta and eastern Saskatchewan, but fringing areas of the United States are included.Publish results of the research and the grid files generated for use in the 3-D model of the WCSB.Evaluate the use of petroleum system modeling in assessing undiscovered oil and gas resources for geologic provinces across the World.

  4. Reevaluating the age of the Walden Creek Group and the kinematic evolution of the western Blue Ridge, southern Appalachians

    USGS Publications Warehouse

    Thigpen, J. Ryan; Hatcher, Robert D.; Kah, Linda C.; Repetski, John E.

    2016-01-01

    An integrated synthesis of existing datasets (detailed geologic mapping, geochronologic, paleontologic, geophysical) with new paleontologic and geochemical investigations of rocks previously interpreted as part of the Neoproterozoic Walden Creek Group in southeastern Tennessee suggest a necessary reevaluation of the kinematics and structural architecture of the Blue Ridge Foothills. The western Blue Ridge of Tennessee, North Carolina, and Georgia is composed of numerous northwest-directed early and late Paleozoic thrust sheets, which record pronounced variation in stratigraphic/structural architecture and timing of metamorphism. The detailed spatial, temporal, and kinematic relationships of these rocks have remained controversial. Two fault blocks that are structurally isolated between the Great Smoky and Miller Cove-Greenbrier thrust sheets, here designated the Maggies Mill and Citico thrust sheets, contain Late Ordovician-Devonian conodonts and stable isotope chemostratigraphic signatures consistent with a mid-Paleozoic age. Geochemical and paleontological analyses of Walden Creek Group rocks northwest and southeast of these two thrust sheets, however, are more consistent with a Late Neoproterozoic (550–545 Ma) depositional age. Consequently, the structural juxtaposition of mid-Paleozoic rocks within a demonstrably Neoproterozoic-Cambrian succession between the Great Smoky and Miller Cove-Greenbrier thrust sheets suggests that a simple foreland-propagating thrust sequence model is not applicable in the Blue Ridge Foothills. We propose that these younger rocks were deposited landward of the Ocoee Supergroup, and were subsequently plucked from the Great Smoky fault footwall as a horse, and breached through the Great Smoky thrust sheet during Alleghanian emplacement of that structure.

  5. Depositional settings and evolution of a fjord system during the carboniferous glaciation in Northwest Argentina

    NASA Astrophysics Data System (ADS)

    Alonso-Muruaga, Pablo J.; Limarino, Carlos O.; Spalletti, Luis A.; Colombo Piñol, Ferrán

    2018-07-01

    Fjord systems, represented by glacial diamictites and postglacial transgressive shales, formed in the basins of western Argentina during the late Carboniferous Gondwana glaciation. Well exposed fjord deposits of the Guandacol Formation were studied in the Loma de Los Piojos region (Protoprecordillera), where they fill a 2.9 km wide paleovalley with steep side walls and a relatively flat floor. The valley cross-cuts Lower Devonian sandstones and Mississippian mudstones and sandstones, and provides evidence of glacial abrasion, including striated pavements and glacial microtopography (grooves, ridges, and striae). Based on the analysis of seven sedimentary logs, eight sedimentary facies in the valley fill were recognized: (A) Massive diamictites; (B) Laminated mudstones with dropstones; (C) Stratified diamictites; (D) Clast-supported conglomerates and sandstones; (E) Deformed diamictites, conglomerates and sandstones; (F) Folded diamictites; (G) Mudstones interbedded with sandstones, and (H) Stacked and amalgamated sandstones. These sedimentary facies are grouped into two principal facies assemblages that represent different stages of the paleovalley fill. Assemblage 1 is composed of diamictites (Facies A, C and F), laminated mudstones with dropstones (Facies B), and conglomerates (Facies D and E), which represent glacially influenced sedimentation in the paleovalley. Assemblage 2 represents the paleovalley fill when glacial influence ceased, and comprises laminated mudstones interbedded with sandstones (facies G) and stacked sandstone beds (facies H) that mostly record deltaic sedimentation. Stratigraphic relationships, plant fossils found in the paleovalley walls and palynological assemblages recovered in mudstones of facies D help to establish an early Pennsylvanian age for both the incision and the filling of the paleovalley. The studied paleovalley records an exceptional example of the western Gondwanan glacial to postglacial transition. Due to the continuous stratigraphic succession within the paleovalley as well as palynological, megafloristic and radiometric data, this example provides a complete framework of the late Carboniferous postglacial evolution in western Gondwana.

  6. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    The Phanerozoic tectonic evolution of the Circum-North Pacific is recorded mainly in the orogenic collages of the Circum-North Pacific mountain belts that separate the North Pacific from the eastern part of the North Asian Craton and the western part of the North American Craton. These collages consist of tectonostratigraphic terranes that are composed of fragments of igneous arcs, accretionary-wedge and subduction-zone complexes, passive continental margins, and cratons; they are overlapped by continental-margin-arc and sedimentary-basin assemblages. The geologic history of the terranes and overlap assemblages is highly complex because of postaccretionary dismemberment and translation during strike-slip faulting that occurred subparallel to continental margins.We analyze the complex tectonics of this region by the following steps. (1) We assign tectonic environments for the orogenic collages from regional compilation and synthesis of stratigraphic and faunal data. The types of tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (2) We make correlations between terranes. (3) We group coeval terranes into a single tectonic origin, for example, a single island arc or subduction zone. (4) We group igneous-arc and subduction- zone terranes, which are interpreted as being tectonically linked, into coeval, curvilinear arc/subduction-zone complexes. (5) We interpret the original positions of terranes, using geologic, faunal, and paleomagnetic data. (6) We construct the paths of tectonic migration. Six processes overlapping in time were responsible for most of the complexities of the collage of terranes and overlap assemblages around the Circum-North Pacific, as follows. (1) During the Late Proterozoic, Late Devonian, and Early Carboniferous, major periods of rifting occurred along the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  7. Origin of Silurian reefs in the Alexander Terrane of southeastern Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soja, C.M.

    1991-04-01

    Lower to Upper Silurian (upper Llandovery-Ludlow) limestones belonging to the Heceta Formation record several episodes of reef growth in the Alexander terrane of southeastern Alaska. As the oldest carbonates of wide-spread distribution in the region, the Heceta limestones represent the earliest development of a shallow-marine platform within the Alexander arc and the oldest foundation for reef evolution. These deposits provide important insights into the dynamic processes, styles, and bathymetry associated with reef growth in tectonically active oceanic islands. Massive stromatoporoids, corals, and red algae are preserved in fragmental rudstones and represent a fringing reef that formed at the seaward edgemore » of the incipient marine shelf. Accessory constituents in this reef include crinoids and the cyanobacterium Girvanella. Small biostromes were constructed by ramose corals and stromatoporoids on oncolitic substrates in backreef or lagoonal environments. These buildups were associated with low-diversity assemblages of brachiopods and with gastropods, amphiporids, calcareous algae and cyanobacteria. Microbial boundstones reflect the widespread encrustation of cyanobacteria and calcified microproblematica on shelly debris as stromatolitic mats that resulted in the development of a stromatactoid-bearing mud mound and a barrier reef complex. Epiphytaceans, other microbes, and aphrosalpingid sponges were the primary frame-builders of the barrier reefs. These buildups attained significant relief at the shelf margin and shed detritus as slumped blocks and debris flows into deep-water sites along the slope. The similarity of these stromatolitic-aphrosalpingid reefs to those from Siluro-Devonian strata of autochthonous southwestern Alaska suggests paleobiogeographic ties of the Alexander terrane to cratonal North America during the Silurian.« less

  8. Final summary of the laboratory culture and toxicity testing of juvenile western pearlshell (Margaritifera falcata) native to the western United States: Expansion of freshwater mussel water and sediment toxicity testing methods

    EPA Science Inventory

    A Regional Applied Research Effort project with EPA Region 10, ORD and USGS was initiated as a result of a baseline ecological risk assessment (BERA) problem formulation for the Upper Columbia River (UCR) site in northwest Washington. The UCR site is a 165-mile stretch of the Col...

  9. The Effect of Lake Temperatures and Emissions on Ozone Exposure in the Western Great Lakes Region

    Treesearch

    Jerome D. Fast; Warren E. Heilman

    2003-01-01

    A meteorological-chemical model with a 12-km horizontal grid spacing was used to simulate the evolution of ozone over the western Great Lakes region during a 30-day period in the summer of 1999. Lake temperatures in the model were based on analyses derived from daily satellite measurements. The model performance was evaluated using operational surface and upper-air...

  10. Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA

    Treesearch

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint

    2015-01-01

    Over the period 1883–2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...

  11. Upper-plate splay fault earthquakes along the Arakan subduction belt recorded by uplifted coral microatolls on northern Ramree Island, western Myanmar (Burma)

    NASA Astrophysics Data System (ADS)

    Shyu, J. Bruce H.; Wang, Chung-Che; Wang, Yu; Shen, Chuan-Chou; Chiang, Hong-Wei; Liu, Sze-Chieh; Min, Soe; Aung, Lin Thu; Than, Oo; Tun, Soe Thura

    2018-02-01

    Upper-plate structures that splay out from the megathrusts are common features along major convergent plate boundaries. However, their earthquake and tsunami hazard potentials have not yet received significant attention. In this study, we identified at least one earthquake event that may have been produced by an upper-plate splay fault offshore western Myanmar, based on U-Th ages of uplifted coral microatolls. This event is likely an earthquake that was documented historically in C.E. 1848, with an estimated magnitude between 6.8 and 7.2 based on regional structural characteristics. Such magnitude is consistent with the observed co-seismic uplift amount of ∼0.5 m. Although these events are smaller in magnitude than events produced by megathrusts, they may produce higher earthquake and tsunami hazards for local coastal communities due to their proximity. Our results also indicate that earthquake events with co-seismic uplift along the coast may not necessarily produce a flight of marine terraces. Therefore, using only records of uplifted marine terraces as megathrust earthquake proxies may overlook the importance of upper-plate splay fault ruptures, and underestimate the overall earthquake frequency for future seismic and tsunami hazards along major subduction zones of the world.

  12. The earliest seeds

    USGS Publications Warehouse

    Gillespie, W.H.; Rothwell, G.W.; Scheckler, S.E.

    1981-01-01

    Lagenostomalean-type seeds in bifurcating cupule systems have been discovered in the late Devonian Hampshire Formation of Randolph County, West Virginia, USA (Fig. 1). The associated megaflora, plants from coal balls, and vertebrate and invertebrate faunas demonstrate that the material is Famennian; the microflora indicates a more specific Fa2c age. Consequently, these seeds predate Archaeosperma arnoldii1 from the Fa2d of northeastern Pennsylvania, the oldest previously reported seed. By applying precision fracture, transfer, de??gagement, and thin-section techniques to selected cupules from the more than 100 specimens on hand, we have determined the three-dimensional morphology and histology of the seeds (Fig. 2a-h, k) and cupule systems. A comparison with known late Devonian to early Carboniferous seeds reveals that ours are more primitively organized than all except Genomosperma2,3. ?? 1981 Nature Publishing Group.

  13. Paleocurrent analysis of a deformed Devonian foreland basin in the northern Appalachians, Maine, USA

    USGS Publications Warehouse

    Bradley, D.C.; Hanson, L.S.

    2002-01-01

    New paleocurrent data indicate that the widespread Late Silurian and Devonian flysch and molasse succession in Maine was deposited in an ancestral, migrating foreland basin adjacent to an advancing Acadian orogenic belt. The foreland-basin sequence spread across a varied Silurian paleogeography of deep basins and small islands-the vestiges of an intraoceanic arc complex that not long before had collided with the Laurentian passive margin during the Ordovician Taconic Orogeny. We report paleocurrents from 43 sites representing 12 stratigraphic units, the most robust and consistent results coming from three units: Madrid Formation (southwesterly paleoflow), Carrabassett Formation (northerly paleoflow), and Seboomook Group (westerly paleoflow). Deformation and regional metamorphism are sufficiently intense to test the limits of paleocurrent analysis requiring particular care in retrodeformation. ?? 2002 Elsevier Science B.V. All rights reserved.

  14. Preliminary stratigraphic cross section showing radioactive zones in the Devonian dark shales in the eastern part of the Appalachian Basin

    USGS Publications Warehouse

    West, Mareta N.

    1978-01-01

    The U.S. Geological Survey (USGS), in a cooperative agreement with the U.S. Department of Energy (DOE), is participating in the Eastern Gas Shales Project. The purpose of the DOE project is to increase the production of natural gas from eastern United States shales in petroliferous basins through improved exploration and extraction techniques. The USGS participation includes stratigraphic studies which will contribute to the characterization and appraisal of the natural gas resources of Devonian shale in the Appalachian basin.This cross section differs from others in this series partly because many of the shales in the eastern part of the basin are less radioactive than those farther west and because in this area shales that may be gas-productive are not necessarily highly radioactive and black.

  15. An organismal concept for Sengelia radicans gen. et sp. nov. - morphology and natural history of an Early Devonian lycophyte.

    PubMed

    Matsunaga, Kelly K S; Tomescu, Alexandru M F

    2017-05-01

    Fossil plants are found as fragmentary remains and understanding them as natural species requires assembly of whole-organism concepts that integrate different plant parts. Such concepts are essential for incorporating fossils in hypotheses of plant evolution and phylogeny. Plants of the Early Devonian are crucial to reconstructing the initial radiation of tracheophytes, yet few are understood as whole organisms. This study assembles a whole-plant concept for the Early Devonian lycophyte Sengelia radicans gen. et sp. nov., based on morphometric data and taphonomic observations from >1000 specimens collected in the Beartooth Butte Formation (Wyoming, USA). Sengelia radicans occupies a key position between stem-group and derived lycophyte lineages. Sengelia had a rooting system of downward-growing root-bearing stems, formed dense monotypic mats of prostrate shoots in areas that experienced periodic flooding, and was characterized by a life-history strategy adapted for survival after floods, dominated by clonality, and featuring infrequent sexual reproduction. Sengelia radicans is the oldest among the very few early tracheophytes for which a detailed, rigorous whole-plant concept integrates morphology, growth habit, life history and growth environment. This plant adds to the diversity of body plans documented among lycophytes and may help elucidate patterns of morphological evolution in the clade. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Faulting at Thebes Gap, Mo. -Ill. : Implications for New Madrid tectonism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, R.W.; Schultz, A.P.

    1992-01-01

    Recent geologic mapping in the Thebes Gap area has identified numerous NNE- and NE-striking faults having a long-lived and complex structural history. The faults are located in an area of moderate recent seismicity at the northern margin of the Mississippi embayment, approximately 45 km north of the New Madrid seismic zone. Earliest deformation occurred along dextral strike-slip faults constrained as post-Devonian and pre-Cretaceous. Uplift and erosion of all Carboniferous strata suggest that this faulting is related to development of the Pascola arch (Ouachita orogeny). This early deformation is characterized by strongly faulted and folded Ordovician through Devonian rocks overlain inmore » places with angular unconformity by undeformed Cretaceous strata. Elsewhere, younger deformation involves Paleozoic, Cretaceous, Paleocene, and Eocene formations. These units have experienced both minor high-angle normal faulting and major, dextral strike-slip faulting. Quaternary-Tertiary Mounds Gravel is also involved in the latest episode of strike-slip deformation. Enechelon north-south folds, antithetic R[prime] shears, and drag folds indicate right-lateral motion. Characteristic positive and negative flower structures are commonly revealed in cross section. Right-stepping fault strands have produced pull-apart basins where Ordovician, Silurian, Devonian, Cretaceous, and Tertiary units are downdropped several hundreds of meters and occur in chaotic orientations. Similar fault orientations and kinematics, as well as recent seismicity and close proximity, clearly suggest a structural relationship between deformation at Thebes Gap and tectonism associated with the New Madrid area.« less

  17. Bedrock geologic map of the Montpelier and Barre West quadrangles, Washington and Orange Counties, Vermont

    USGS Publications Warehouse

    Walsh, Gregory J.; Kim, Jonathan; Gale, Marjorie H.; King, Sarah M.

    2010-01-01

    The bedrock geology of the Montpelier and Barre West quadrangles consists of Silurian and Devonian metasedimentary rocks of the Connecticut Valley-Gaspe synclinorium (CVGS) and metasedimentary, metavolcanic, and metaintrusive rocks of the Cambrian and Ordovician Moretown and Cram Hill Formations. Devonian granite dikes occur throughout the two quadrangles but are more abundant in the Silurian and Devonian rocks. The pre-Silurian rocks are separated from the rocks of the CVGS by the informally named 'Richardson Memorial Contact,' historically interpreted as either an unconformity or a fault. The results of this report represent mapping by G.J. Walsh, Jonathan Kim, and M.H. Gale from 2002 to 2005. S.M. King assisted Kim and Gale from 2002 to 2003. A.M. Satkoski (Indiana University) assisted Walsh, and L.R. Pascale (University of Vermont) and C.M. Orsi (Middlebury College) assisted Kim and Gale as summer interns in 2003. This study was designed to map the bedrock geology in the area. This map supersedes a preliminary map of the Montpelier quadrangle (Kim, Gale, and others, 2003). A companion study in the Barre West quadrangle (Walsh and Satkoski, 2005) determined the levels of naturally occurring radioactivity in the bedrock from surface measurements at outcrops during the course of 1:24,000-scale geologic mapping to identify which rock types were potential sources of radionuclides. Results of that study indicate that the carbonaceous phyllites in the CVGS have the highest levels of natural radioactivity.

  18. Mapping groundwater development costs for the transboundary Western Aquifer Basin, Palestine/Israel

    NASA Astrophysics Data System (ADS)

    MacDonald, A. M.; Ó Dochartaigh, B. É.; Calow, R. C.; Shalabi, Y.; Selah, K.; Merrett, S.

    2009-11-01

    The costs of developing groundwater in the Western Aquifer Basin vary considerably across the West Bank and Israel. One of the main reasons for this variability is the diverse hydrogeological conditions within the aquifer. Using data from recent hydrogeological investigations, an estimate of the variation of both the drilling and pumping costs was calculated and then mapped across the Upper and Lower Aquifers within the Western Aquifer Basin. These groundwater cost maps proved helpful in analyzing the impacts of hydrogeology on water supply, and also in communicating complex hydrogeological information to a broader audience. The maps clearly demonstrate that the most cost-effective area to develop groundwater is along the Green Line—the 1949 armistice boundary between Israel and the Palestinian West Bank. Any migration of this boundary eastwards will affect the cost and feasibility of developing groundwater within Palestine, making abstraction from the Upper Aquifer impracticable, and increasing the cost of developing the Lower Aquifer. Therefore, the separation wall, which is being constructed to the east of the Armistice Line in Palestinian territory, will significantly reduce the ability of the Palestinians to develop groundwater resources.

  19. Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the Upper Magdalena Valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes

    NASA Astrophysics Data System (ADS)

    Rodríguez, G.; Arango, M. I.; Zapata, G.; Bermúdez, J. G.

    2018-01-01

    Field, petrographic, and geochemical characterization along with U-Pb zircon geochronology of the Jurassic plutons exposed in the Upper Magdalena Valley (Colombia) allowed recognizing distinct western and eastern suites formed in at least three magmatic pulses. The western plutons crop out between the eastern flank of the Central Cordillera and the Las Minas range, being limited by the Avirama and the Betania-El Agrado faults. The western suite comprises a quartz monzonite - quartz monzodiorite - quartz diorite series and subordinate monzogranites. Chemically, the rocks are high-K calc-alkaline I-type granitoids (some reaching the shoshonitic series) with metaluminous of magnesium affinity. Trace-element tectonic discrimination is consistent with magmatism in a continental arc environment. Most rocks of this suite crystallized between 195 and 186 Ma (Early Jurassic, Pliensbachian), but locally some plutons yielded younger ages between 182 and 179 Ma (Early Jurassic, Toarcian). The eastern suite crops out in the eastern margin of the Upper Magdalena Valley, east of the Betania - El Agrado fault. Plutons of this unit belong to the monzogranite series with rock types ranging between syenogranites and granodiorites. They are high-K calc-alkaline continental granitoids, some metaluminous and some peraluminous, related to I-type granites generated in a volcanic arc. Crystallization of the suite was between 173 and 169 Ma (Middle Jurassic, Aalenian-Bajocian), but locally these rocks contain zircon with earlier inherited ages related to the magmatic pulse of the western suite between 182 and 179 Ma (Early Jurassic, Toarcian). The evolution of the Jurassic plutons in the Upper Magdalena Valley is best explained by onset or increase in subduction erosion of the accretionary prism. This explains the eastward migration of the arc away from the trench. Subduction of prism sediments increased the water flux from the subducting slab, decreasing solidus temperatures, therefore increasing the volume of magma and the amount of crustal melts involved in the magma. This is explains the crystallization of older and more primitive quartz-monzodiorite stocks in the west and the later crystallization of granitic bodies with batholitic dimensions in the east.

  20. Structure of the Anayet Permian basin (Axial Zone, Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Rodriguez, L.; Cuevas, J.; Tubía, J. M.

    2012-04-01

    The Anayet Permian basin was generated by strike-slip tectonics that opened subsident basins with pull-apart geometries in the western Spanish Axial Zone (between the Aragon and Tena valleys). A continental succession of Permian age, that represents the first post-variscan deposits in the area, fills the basin and covers discordantly Devonian to Carboniferous limestones, sandstones and slates. Permian deposits have been classically divided in four main detrital groups, with three basic volcanic episodes interbedded (Gisbert, 1984, Bixel, 1987): the Grey Unit (50-120 m, Estefanian to Kungurian) with slates, conglomerates, tobaceous slates, coal and pyroclastic deposits, the Transition Unit (50 m maximum) showing grey and red sandstones and lutites with oolitic limestones intercalated, the Lower Red Unit (250 m) composed of cross-bedded red sandstones and andesitic volcanic rocks at the top, and finally the Upper Red Unit (400 m minimum, top eroded) formed by three fining up megasequences of carbonates, red sandstones and lutites with lacustrine carbonates intercalated and alkali basalts at the top. Increasingly older rocks are found towards the western part of the basin, where its depocenter is located. South-vergent angular folds deform the Permian sedimentary succession. Fold axes are N115 °E-trending, almost horizontal and are characterized by a remarkably constant orientation. Folds exhibit a long limb dipping slightly to the north and a short vertical limb, occasionally reversed. In the Anayet basin four main folds, with a wavelength of 400 m, can be distinguished, two anticlines and two synclines, with minor folds associated. Related to the angular folds an axial plane foliation, E-trending and dipping 40 to 60° to the north, is developed in the lutites. The more competent rocks, conglomerates and breccias, only locally show a spaced fracture cleavage. No main thrusts have been detected in Permian rocks. However, minor scale decollements, usually low angle to bedding-parallel, have been identified along low-dipping limbs of the folds. They can be recognized due to the high colour contrast between the red-coloured Permian beds and the concentration of calcite veins in the decollements. The development of the structures above described has to be linked to the Alpine compressional tectonics. This interpretation is supported by the good correlation in geometry and orientation between the structures observed in the Permian basin and in southernmost areas of the South Pyrenean Zone, where the deformation is imprinted in Cretaceous to Tertiary rocks. In this regard, the southern border of the Anayet basin, at least in the western part, can be interpreted as a normal fault reactivated as a high-angle reverse fault during the positive inversion tectonics induced by the Alpine Orogeny. Bixel, F., 1987. Le volcanisme stephano-permien des Pyrenees petrographie, mineralogie, geochimie. Cuadernos de Geología Ibérica 11, 41-55. Gisbert, J., 1984. Las molasas tardihercínicas del Pirineo, in: Geología de España. Libro Jubilar de J. M. Ríos, Comba, J.A. (Ed.), IGME, Madrid, 168-186.

Top